delayed-inode.c 52 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001
  1. /*
  2. * Copyright (C) 2011 Fujitsu. All rights reserved.
  3. * Written by Miao Xie <miaox@cn.fujitsu.com>
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public
  7. * License v2 as published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  12. * General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public
  15. * License along with this program; if not, write to the
  16. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  17. * Boston, MA 021110-1307, USA.
  18. */
  19. #include <linux/slab.h>
  20. #include "delayed-inode.h"
  21. #include "disk-io.h"
  22. #include "transaction.h"
  23. #include "ctree.h"
  24. #define BTRFS_DELAYED_WRITEBACK 512
  25. #define BTRFS_DELAYED_BACKGROUND 128
  26. #define BTRFS_DELAYED_BATCH 16
  27. static struct kmem_cache *delayed_node_cache;
  28. int __init btrfs_delayed_inode_init(void)
  29. {
  30. delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
  31. sizeof(struct btrfs_delayed_node),
  32. 0,
  33. SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
  34. NULL);
  35. if (!delayed_node_cache)
  36. return -ENOMEM;
  37. return 0;
  38. }
  39. void btrfs_delayed_inode_exit(void)
  40. {
  41. kmem_cache_destroy(delayed_node_cache);
  42. }
  43. static inline void btrfs_init_delayed_node(
  44. struct btrfs_delayed_node *delayed_node,
  45. struct btrfs_root *root, u64 inode_id)
  46. {
  47. delayed_node->root = root;
  48. delayed_node->inode_id = inode_id;
  49. atomic_set(&delayed_node->refs, 0);
  50. delayed_node->ins_root = RB_ROOT;
  51. delayed_node->del_root = RB_ROOT;
  52. mutex_init(&delayed_node->mutex);
  53. INIT_LIST_HEAD(&delayed_node->n_list);
  54. INIT_LIST_HEAD(&delayed_node->p_list);
  55. }
  56. static inline int btrfs_is_continuous_delayed_item(
  57. struct btrfs_delayed_item *item1,
  58. struct btrfs_delayed_item *item2)
  59. {
  60. if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
  61. item1->key.objectid == item2->key.objectid &&
  62. item1->key.type == item2->key.type &&
  63. item1->key.offset + 1 == item2->key.offset)
  64. return 1;
  65. return 0;
  66. }
  67. static inline struct btrfs_delayed_root *btrfs_get_delayed_root(
  68. struct btrfs_root *root)
  69. {
  70. return root->fs_info->delayed_root;
  71. }
  72. static struct btrfs_delayed_node *btrfs_get_delayed_node(struct inode *inode)
  73. {
  74. struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
  75. struct btrfs_root *root = btrfs_inode->root;
  76. u64 ino = btrfs_ino(inode);
  77. struct btrfs_delayed_node *node;
  78. node = ACCESS_ONCE(btrfs_inode->delayed_node);
  79. if (node) {
  80. atomic_inc(&node->refs);
  81. return node;
  82. }
  83. spin_lock(&root->inode_lock);
  84. node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
  85. if (node) {
  86. if (btrfs_inode->delayed_node) {
  87. atomic_inc(&node->refs); /* can be accessed */
  88. BUG_ON(btrfs_inode->delayed_node != node);
  89. spin_unlock(&root->inode_lock);
  90. return node;
  91. }
  92. btrfs_inode->delayed_node = node;
  93. /* can be accessed and cached in the inode */
  94. atomic_add(2, &node->refs);
  95. spin_unlock(&root->inode_lock);
  96. return node;
  97. }
  98. spin_unlock(&root->inode_lock);
  99. return NULL;
  100. }
  101. /* Will return either the node or PTR_ERR(-ENOMEM) */
  102. static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
  103. struct inode *inode)
  104. {
  105. struct btrfs_delayed_node *node;
  106. struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
  107. struct btrfs_root *root = btrfs_inode->root;
  108. u64 ino = btrfs_ino(inode);
  109. int ret;
  110. again:
  111. node = btrfs_get_delayed_node(inode);
  112. if (node)
  113. return node;
  114. node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
  115. if (!node)
  116. return ERR_PTR(-ENOMEM);
  117. btrfs_init_delayed_node(node, root, ino);
  118. /* cached in the btrfs inode and can be accessed */
  119. atomic_add(2, &node->refs);
  120. ret = radix_tree_preload(GFP_NOFS);
  121. if (ret) {
  122. kmem_cache_free(delayed_node_cache, node);
  123. return ERR_PTR(ret);
  124. }
  125. spin_lock(&root->inode_lock);
  126. ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
  127. if (ret == -EEXIST) {
  128. spin_unlock(&root->inode_lock);
  129. kmem_cache_free(delayed_node_cache, node);
  130. radix_tree_preload_end();
  131. goto again;
  132. }
  133. btrfs_inode->delayed_node = node;
  134. spin_unlock(&root->inode_lock);
  135. radix_tree_preload_end();
  136. return node;
  137. }
  138. /*
  139. * Call it when holding delayed_node->mutex
  140. *
  141. * If mod = 1, add this node into the prepared list.
  142. */
  143. static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
  144. struct btrfs_delayed_node *node,
  145. int mod)
  146. {
  147. spin_lock(&root->lock);
  148. if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
  149. if (!list_empty(&node->p_list))
  150. list_move_tail(&node->p_list, &root->prepare_list);
  151. else if (mod)
  152. list_add_tail(&node->p_list, &root->prepare_list);
  153. } else {
  154. list_add_tail(&node->n_list, &root->node_list);
  155. list_add_tail(&node->p_list, &root->prepare_list);
  156. atomic_inc(&node->refs); /* inserted into list */
  157. root->nodes++;
  158. set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
  159. }
  160. spin_unlock(&root->lock);
  161. }
  162. /* Call it when holding delayed_node->mutex */
  163. static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
  164. struct btrfs_delayed_node *node)
  165. {
  166. spin_lock(&root->lock);
  167. if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
  168. root->nodes--;
  169. atomic_dec(&node->refs); /* not in the list */
  170. list_del_init(&node->n_list);
  171. if (!list_empty(&node->p_list))
  172. list_del_init(&node->p_list);
  173. clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
  174. }
  175. spin_unlock(&root->lock);
  176. }
  177. static struct btrfs_delayed_node *btrfs_first_delayed_node(
  178. struct btrfs_delayed_root *delayed_root)
  179. {
  180. struct list_head *p;
  181. struct btrfs_delayed_node *node = NULL;
  182. spin_lock(&delayed_root->lock);
  183. if (list_empty(&delayed_root->node_list))
  184. goto out;
  185. p = delayed_root->node_list.next;
  186. node = list_entry(p, struct btrfs_delayed_node, n_list);
  187. atomic_inc(&node->refs);
  188. out:
  189. spin_unlock(&delayed_root->lock);
  190. return node;
  191. }
  192. static struct btrfs_delayed_node *btrfs_next_delayed_node(
  193. struct btrfs_delayed_node *node)
  194. {
  195. struct btrfs_delayed_root *delayed_root;
  196. struct list_head *p;
  197. struct btrfs_delayed_node *next = NULL;
  198. delayed_root = node->root->fs_info->delayed_root;
  199. spin_lock(&delayed_root->lock);
  200. if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
  201. /* not in the list */
  202. if (list_empty(&delayed_root->node_list))
  203. goto out;
  204. p = delayed_root->node_list.next;
  205. } else if (list_is_last(&node->n_list, &delayed_root->node_list))
  206. goto out;
  207. else
  208. p = node->n_list.next;
  209. next = list_entry(p, struct btrfs_delayed_node, n_list);
  210. atomic_inc(&next->refs);
  211. out:
  212. spin_unlock(&delayed_root->lock);
  213. return next;
  214. }
  215. static void __btrfs_release_delayed_node(
  216. struct btrfs_delayed_node *delayed_node,
  217. int mod)
  218. {
  219. struct btrfs_delayed_root *delayed_root;
  220. if (!delayed_node)
  221. return;
  222. delayed_root = delayed_node->root->fs_info->delayed_root;
  223. mutex_lock(&delayed_node->mutex);
  224. if (delayed_node->count)
  225. btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
  226. else
  227. btrfs_dequeue_delayed_node(delayed_root, delayed_node);
  228. mutex_unlock(&delayed_node->mutex);
  229. if (atomic_dec_and_test(&delayed_node->refs)) {
  230. bool free = false;
  231. struct btrfs_root *root = delayed_node->root;
  232. spin_lock(&root->inode_lock);
  233. if (atomic_read(&delayed_node->refs) == 0) {
  234. radix_tree_delete(&root->delayed_nodes_tree,
  235. delayed_node->inode_id);
  236. free = true;
  237. }
  238. spin_unlock(&root->inode_lock);
  239. if (free)
  240. kmem_cache_free(delayed_node_cache, delayed_node);
  241. }
  242. }
  243. static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
  244. {
  245. __btrfs_release_delayed_node(node, 0);
  246. }
  247. static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
  248. struct btrfs_delayed_root *delayed_root)
  249. {
  250. struct list_head *p;
  251. struct btrfs_delayed_node *node = NULL;
  252. spin_lock(&delayed_root->lock);
  253. if (list_empty(&delayed_root->prepare_list))
  254. goto out;
  255. p = delayed_root->prepare_list.next;
  256. list_del_init(p);
  257. node = list_entry(p, struct btrfs_delayed_node, p_list);
  258. atomic_inc(&node->refs);
  259. out:
  260. spin_unlock(&delayed_root->lock);
  261. return node;
  262. }
  263. static inline void btrfs_release_prepared_delayed_node(
  264. struct btrfs_delayed_node *node)
  265. {
  266. __btrfs_release_delayed_node(node, 1);
  267. }
  268. static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
  269. {
  270. struct btrfs_delayed_item *item;
  271. item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
  272. if (item) {
  273. item->data_len = data_len;
  274. item->ins_or_del = 0;
  275. item->bytes_reserved = 0;
  276. item->delayed_node = NULL;
  277. atomic_set(&item->refs, 1);
  278. }
  279. return item;
  280. }
  281. /*
  282. * __btrfs_lookup_delayed_item - look up the delayed item by key
  283. * @delayed_node: pointer to the delayed node
  284. * @key: the key to look up
  285. * @prev: used to store the prev item if the right item isn't found
  286. * @next: used to store the next item if the right item isn't found
  287. *
  288. * Note: if we don't find the right item, we will return the prev item and
  289. * the next item.
  290. */
  291. static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
  292. struct rb_root *root,
  293. struct btrfs_key *key,
  294. struct btrfs_delayed_item **prev,
  295. struct btrfs_delayed_item **next)
  296. {
  297. struct rb_node *node, *prev_node = NULL;
  298. struct btrfs_delayed_item *delayed_item = NULL;
  299. int ret = 0;
  300. node = root->rb_node;
  301. while (node) {
  302. delayed_item = rb_entry(node, struct btrfs_delayed_item,
  303. rb_node);
  304. prev_node = node;
  305. ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
  306. if (ret < 0)
  307. node = node->rb_right;
  308. else if (ret > 0)
  309. node = node->rb_left;
  310. else
  311. return delayed_item;
  312. }
  313. if (prev) {
  314. if (!prev_node)
  315. *prev = NULL;
  316. else if (ret < 0)
  317. *prev = delayed_item;
  318. else if ((node = rb_prev(prev_node)) != NULL) {
  319. *prev = rb_entry(node, struct btrfs_delayed_item,
  320. rb_node);
  321. } else
  322. *prev = NULL;
  323. }
  324. if (next) {
  325. if (!prev_node)
  326. *next = NULL;
  327. else if (ret > 0)
  328. *next = delayed_item;
  329. else if ((node = rb_next(prev_node)) != NULL) {
  330. *next = rb_entry(node, struct btrfs_delayed_item,
  331. rb_node);
  332. } else
  333. *next = NULL;
  334. }
  335. return NULL;
  336. }
  337. static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
  338. struct btrfs_delayed_node *delayed_node,
  339. struct btrfs_key *key)
  340. {
  341. struct btrfs_delayed_item *item;
  342. item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
  343. NULL, NULL);
  344. return item;
  345. }
  346. static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
  347. struct btrfs_delayed_item *ins,
  348. int action)
  349. {
  350. struct rb_node **p, *node;
  351. struct rb_node *parent_node = NULL;
  352. struct rb_root *root;
  353. struct btrfs_delayed_item *item;
  354. int cmp;
  355. if (action == BTRFS_DELAYED_INSERTION_ITEM)
  356. root = &delayed_node->ins_root;
  357. else if (action == BTRFS_DELAYED_DELETION_ITEM)
  358. root = &delayed_node->del_root;
  359. else
  360. BUG();
  361. p = &root->rb_node;
  362. node = &ins->rb_node;
  363. while (*p) {
  364. parent_node = *p;
  365. item = rb_entry(parent_node, struct btrfs_delayed_item,
  366. rb_node);
  367. cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
  368. if (cmp < 0)
  369. p = &(*p)->rb_right;
  370. else if (cmp > 0)
  371. p = &(*p)->rb_left;
  372. else
  373. return -EEXIST;
  374. }
  375. rb_link_node(node, parent_node, p);
  376. rb_insert_color(node, root);
  377. ins->delayed_node = delayed_node;
  378. ins->ins_or_del = action;
  379. if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
  380. action == BTRFS_DELAYED_INSERTION_ITEM &&
  381. ins->key.offset >= delayed_node->index_cnt)
  382. delayed_node->index_cnt = ins->key.offset + 1;
  383. delayed_node->count++;
  384. atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
  385. return 0;
  386. }
  387. static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
  388. struct btrfs_delayed_item *item)
  389. {
  390. return __btrfs_add_delayed_item(node, item,
  391. BTRFS_DELAYED_INSERTION_ITEM);
  392. }
  393. static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
  394. struct btrfs_delayed_item *item)
  395. {
  396. return __btrfs_add_delayed_item(node, item,
  397. BTRFS_DELAYED_DELETION_ITEM);
  398. }
  399. static void finish_one_item(struct btrfs_delayed_root *delayed_root)
  400. {
  401. int seq = atomic_inc_return(&delayed_root->items_seq);
  402. /*
  403. * atomic_dec_return implies a barrier for waitqueue_active
  404. */
  405. if ((atomic_dec_return(&delayed_root->items) <
  406. BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0) &&
  407. waitqueue_active(&delayed_root->wait))
  408. wake_up(&delayed_root->wait);
  409. }
  410. static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
  411. {
  412. struct rb_root *root;
  413. struct btrfs_delayed_root *delayed_root;
  414. delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
  415. BUG_ON(!delayed_root);
  416. BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
  417. delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
  418. if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
  419. root = &delayed_item->delayed_node->ins_root;
  420. else
  421. root = &delayed_item->delayed_node->del_root;
  422. rb_erase(&delayed_item->rb_node, root);
  423. delayed_item->delayed_node->count--;
  424. finish_one_item(delayed_root);
  425. }
  426. static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
  427. {
  428. if (item) {
  429. __btrfs_remove_delayed_item(item);
  430. if (atomic_dec_and_test(&item->refs))
  431. kfree(item);
  432. }
  433. }
  434. static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
  435. struct btrfs_delayed_node *delayed_node)
  436. {
  437. struct rb_node *p;
  438. struct btrfs_delayed_item *item = NULL;
  439. p = rb_first(&delayed_node->ins_root);
  440. if (p)
  441. item = rb_entry(p, struct btrfs_delayed_item, rb_node);
  442. return item;
  443. }
  444. static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
  445. struct btrfs_delayed_node *delayed_node)
  446. {
  447. struct rb_node *p;
  448. struct btrfs_delayed_item *item = NULL;
  449. p = rb_first(&delayed_node->del_root);
  450. if (p)
  451. item = rb_entry(p, struct btrfs_delayed_item, rb_node);
  452. return item;
  453. }
  454. static struct btrfs_delayed_item *__btrfs_next_delayed_item(
  455. struct btrfs_delayed_item *item)
  456. {
  457. struct rb_node *p;
  458. struct btrfs_delayed_item *next = NULL;
  459. p = rb_next(&item->rb_node);
  460. if (p)
  461. next = rb_entry(p, struct btrfs_delayed_item, rb_node);
  462. return next;
  463. }
  464. static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
  465. struct btrfs_root *root,
  466. struct btrfs_delayed_item *item)
  467. {
  468. struct btrfs_block_rsv *src_rsv;
  469. struct btrfs_block_rsv *dst_rsv;
  470. u64 num_bytes;
  471. int ret;
  472. if (!trans->bytes_reserved)
  473. return 0;
  474. src_rsv = trans->block_rsv;
  475. dst_rsv = &root->fs_info->delayed_block_rsv;
  476. num_bytes = btrfs_calc_trans_metadata_size(root, 1);
  477. ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
  478. if (!ret) {
  479. trace_btrfs_space_reservation(root->fs_info, "delayed_item",
  480. item->key.objectid,
  481. num_bytes, 1);
  482. item->bytes_reserved = num_bytes;
  483. }
  484. return ret;
  485. }
  486. static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
  487. struct btrfs_delayed_item *item)
  488. {
  489. struct btrfs_block_rsv *rsv;
  490. if (!item->bytes_reserved)
  491. return;
  492. rsv = &root->fs_info->delayed_block_rsv;
  493. trace_btrfs_space_reservation(root->fs_info, "delayed_item",
  494. item->key.objectid, item->bytes_reserved,
  495. 0);
  496. btrfs_block_rsv_release(root, rsv,
  497. item->bytes_reserved);
  498. }
  499. static int btrfs_delayed_inode_reserve_metadata(
  500. struct btrfs_trans_handle *trans,
  501. struct btrfs_root *root,
  502. struct inode *inode,
  503. struct btrfs_delayed_node *node)
  504. {
  505. struct btrfs_block_rsv *src_rsv;
  506. struct btrfs_block_rsv *dst_rsv;
  507. u64 num_bytes;
  508. int ret;
  509. bool release = false;
  510. src_rsv = trans->block_rsv;
  511. dst_rsv = &root->fs_info->delayed_block_rsv;
  512. num_bytes = btrfs_calc_trans_metadata_size(root, 1);
  513. /*
  514. * btrfs_dirty_inode will update the inode under btrfs_join_transaction
  515. * which doesn't reserve space for speed. This is a problem since we
  516. * still need to reserve space for this update, so try to reserve the
  517. * space.
  518. *
  519. * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
  520. * we're accounted for.
  521. */
  522. if (!src_rsv || (!trans->bytes_reserved &&
  523. src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
  524. ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
  525. BTRFS_RESERVE_NO_FLUSH);
  526. /*
  527. * Since we're under a transaction reserve_metadata_bytes could
  528. * try to commit the transaction which will make it return
  529. * EAGAIN to make us stop the transaction we have, so return
  530. * ENOSPC instead so that btrfs_dirty_inode knows what to do.
  531. */
  532. if (ret == -EAGAIN)
  533. ret = -ENOSPC;
  534. if (!ret) {
  535. node->bytes_reserved = num_bytes;
  536. trace_btrfs_space_reservation(root->fs_info,
  537. "delayed_inode",
  538. btrfs_ino(inode),
  539. num_bytes, 1);
  540. }
  541. return ret;
  542. } else if (src_rsv->type == BTRFS_BLOCK_RSV_DELALLOC) {
  543. spin_lock(&BTRFS_I(inode)->lock);
  544. if (test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
  545. &BTRFS_I(inode)->runtime_flags)) {
  546. spin_unlock(&BTRFS_I(inode)->lock);
  547. release = true;
  548. goto migrate;
  549. }
  550. spin_unlock(&BTRFS_I(inode)->lock);
  551. /* Ok we didn't have space pre-reserved. This shouldn't happen
  552. * too often but it can happen if we do delalloc to an existing
  553. * inode which gets dirtied because of the time update, and then
  554. * isn't touched again until after the transaction commits and
  555. * then we try to write out the data. First try to be nice and
  556. * reserve something strictly for us. If not be a pain and try
  557. * to steal from the delalloc block rsv.
  558. */
  559. ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
  560. BTRFS_RESERVE_NO_FLUSH);
  561. if (!ret)
  562. goto out;
  563. ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
  564. if (!ret)
  565. goto out;
  566. if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
  567. btrfs_debug(root->fs_info,
  568. "block rsv migrate returned %d", ret);
  569. WARN_ON(1);
  570. }
  571. /*
  572. * Ok this is a problem, let's just steal from the global rsv
  573. * since this really shouldn't happen that often.
  574. */
  575. ret = btrfs_block_rsv_migrate(&root->fs_info->global_block_rsv,
  576. dst_rsv, num_bytes);
  577. goto out;
  578. }
  579. migrate:
  580. ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
  581. out:
  582. /*
  583. * Migrate only takes a reservation, it doesn't touch the size of the
  584. * block_rsv. This is to simplify people who don't normally have things
  585. * migrated from their block rsv. If they go to release their
  586. * reservation, that will decrease the size as well, so if migrate
  587. * reduced size we'd end up with a negative size. But for the
  588. * delalloc_meta_reserved stuff we will only know to drop 1 reservation,
  589. * but we could in fact do this reserve/migrate dance several times
  590. * between the time we did the original reservation and we'd clean it
  591. * up. So to take care of this, release the space for the meta
  592. * reservation here. I think it may be time for a documentation page on
  593. * how block rsvs. work.
  594. */
  595. if (!ret) {
  596. trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
  597. btrfs_ino(inode), num_bytes, 1);
  598. node->bytes_reserved = num_bytes;
  599. }
  600. if (release) {
  601. trace_btrfs_space_reservation(root->fs_info, "delalloc",
  602. btrfs_ino(inode), num_bytes, 0);
  603. btrfs_block_rsv_release(root, src_rsv, num_bytes);
  604. }
  605. return ret;
  606. }
  607. static void btrfs_delayed_inode_release_metadata(struct btrfs_root *root,
  608. struct btrfs_delayed_node *node)
  609. {
  610. struct btrfs_block_rsv *rsv;
  611. if (!node->bytes_reserved)
  612. return;
  613. rsv = &root->fs_info->delayed_block_rsv;
  614. trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
  615. node->inode_id, node->bytes_reserved, 0);
  616. btrfs_block_rsv_release(root, rsv,
  617. node->bytes_reserved);
  618. node->bytes_reserved = 0;
  619. }
  620. /*
  621. * This helper will insert some continuous items into the same leaf according
  622. * to the free space of the leaf.
  623. */
  624. static int btrfs_batch_insert_items(struct btrfs_root *root,
  625. struct btrfs_path *path,
  626. struct btrfs_delayed_item *item)
  627. {
  628. struct btrfs_delayed_item *curr, *next;
  629. int free_space;
  630. int total_data_size = 0, total_size = 0;
  631. struct extent_buffer *leaf;
  632. char *data_ptr;
  633. struct btrfs_key *keys;
  634. u32 *data_size;
  635. struct list_head head;
  636. int slot;
  637. int nitems;
  638. int i;
  639. int ret = 0;
  640. BUG_ON(!path->nodes[0]);
  641. leaf = path->nodes[0];
  642. free_space = btrfs_leaf_free_space(root, leaf);
  643. INIT_LIST_HEAD(&head);
  644. next = item;
  645. nitems = 0;
  646. /*
  647. * count the number of the continuous items that we can insert in batch
  648. */
  649. while (total_size + next->data_len + sizeof(struct btrfs_item) <=
  650. free_space) {
  651. total_data_size += next->data_len;
  652. total_size += next->data_len + sizeof(struct btrfs_item);
  653. list_add_tail(&next->tree_list, &head);
  654. nitems++;
  655. curr = next;
  656. next = __btrfs_next_delayed_item(curr);
  657. if (!next)
  658. break;
  659. if (!btrfs_is_continuous_delayed_item(curr, next))
  660. break;
  661. }
  662. if (!nitems) {
  663. ret = 0;
  664. goto out;
  665. }
  666. /*
  667. * we need allocate some memory space, but it might cause the task
  668. * to sleep, so we set all locked nodes in the path to blocking locks
  669. * first.
  670. */
  671. btrfs_set_path_blocking(path);
  672. keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS);
  673. if (!keys) {
  674. ret = -ENOMEM;
  675. goto out;
  676. }
  677. data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS);
  678. if (!data_size) {
  679. ret = -ENOMEM;
  680. goto error;
  681. }
  682. /* get keys of all the delayed items */
  683. i = 0;
  684. list_for_each_entry(next, &head, tree_list) {
  685. keys[i] = next->key;
  686. data_size[i] = next->data_len;
  687. i++;
  688. }
  689. /* reset all the locked nodes in the patch to spinning locks. */
  690. btrfs_clear_path_blocking(path, NULL, 0);
  691. /* insert the keys of the items */
  692. setup_items_for_insert(root, path, keys, data_size,
  693. total_data_size, total_size, nitems);
  694. /* insert the dir index items */
  695. slot = path->slots[0];
  696. list_for_each_entry_safe(curr, next, &head, tree_list) {
  697. data_ptr = btrfs_item_ptr(leaf, slot, char);
  698. write_extent_buffer(leaf, &curr->data,
  699. (unsigned long)data_ptr,
  700. curr->data_len);
  701. slot++;
  702. btrfs_delayed_item_release_metadata(root, curr);
  703. list_del(&curr->tree_list);
  704. btrfs_release_delayed_item(curr);
  705. }
  706. error:
  707. kfree(data_size);
  708. kfree(keys);
  709. out:
  710. return ret;
  711. }
  712. /*
  713. * This helper can just do simple insertion that needn't extend item for new
  714. * data, such as directory name index insertion, inode insertion.
  715. */
  716. static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
  717. struct btrfs_root *root,
  718. struct btrfs_path *path,
  719. struct btrfs_delayed_item *delayed_item)
  720. {
  721. struct extent_buffer *leaf;
  722. char *ptr;
  723. int ret;
  724. ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
  725. delayed_item->data_len);
  726. if (ret < 0 && ret != -EEXIST)
  727. return ret;
  728. leaf = path->nodes[0];
  729. ptr = btrfs_item_ptr(leaf, path->slots[0], char);
  730. write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
  731. delayed_item->data_len);
  732. btrfs_mark_buffer_dirty(leaf);
  733. btrfs_delayed_item_release_metadata(root, delayed_item);
  734. return 0;
  735. }
  736. /*
  737. * we insert an item first, then if there are some continuous items, we try
  738. * to insert those items into the same leaf.
  739. */
  740. static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
  741. struct btrfs_path *path,
  742. struct btrfs_root *root,
  743. struct btrfs_delayed_node *node)
  744. {
  745. struct btrfs_delayed_item *curr, *prev;
  746. int ret = 0;
  747. do_again:
  748. mutex_lock(&node->mutex);
  749. curr = __btrfs_first_delayed_insertion_item(node);
  750. if (!curr)
  751. goto insert_end;
  752. ret = btrfs_insert_delayed_item(trans, root, path, curr);
  753. if (ret < 0) {
  754. btrfs_release_path(path);
  755. goto insert_end;
  756. }
  757. prev = curr;
  758. curr = __btrfs_next_delayed_item(prev);
  759. if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
  760. /* insert the continuous items into the same leaf */
  761. path->slots[0]++;
  762. btrfs_batch_insert_items(root, path, curr);
  763. }
  764. btrfs_release_delayed_item(prev);
  765. btrfs_mark_buffer_dirty(path->nodes[0]);
  766. btrfs_release_path(path);
  767. mutex_unlock(&node->mutex);
  768. goto do_again;
  769. insert_end:
  770. mutex_unlock(&node->mutex);
  771. return ret;
  772. }
  773. static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
  774. struct btrfs_root *root,
  775. struct btrfs_path *path,
  776. struct btrfs_delayed_item *item)
  777. {
  778. struct btrfs_delayed_item *curr, *next;
  779. struct extent_buffer *leaf;
  780. struct btrfs_key key;
  781. struct list_head head;
  782. int nitems, i, last_item;
  783. int ret = 0;
  784. BUG_ON(!path->nodes[0]);
  785. leaf = path->nodes[0];
  786. i = path->slots[0];
  787. last_item = btrfs_header_nritems(leaf) - 1;
  788. if (i > last_item)
  789. return -ENOENT; /* FIXME: Is errno suitable? */
  790. next = item;
  791. INIT_LIST_HEAD(&head);
  792. btrfs_item_key_to_cpu(leaf, &key, i);
  793. nitems = 0;
  794. /*
  795. * count the number of the dir index items that we can delete in batch
  796. */
  797. while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
  798. list_add_tail(&next->tree_list, &head);
  799. nitems++;
  800. curr = next;
  801. next = __btrfs_next_delayed_item(curr);
  802. if (!next)
  803. break;
  804. if (!btrfs_is_continuous_delayed_item(curr, next))
  805. break;
  806. i++;
  807. if (i > last_item)
  808. break;
  809. btrfs_item_key_to_cpu(leaf, &key, i);
  810. }
  811. if (!nitems)
  812. return 0;
  813. ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
  814. if (ret)
  815. goto out;
  816. list_for_each_entry_safe(curr, next, &head, tree_list) {
  817. btrfs_delayed_item_release_metadata(root, curr);
  818. list_del(&curr->tree_list);
  819. btrfs_release_delayed_item(curr);
  820. }
  821. out:
  822. return ret;
  823. }
  824. static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
  825. struct btrfs_path *path,
  826. struct btrfs_root *root,
  827. struct btrfs_delayed_node *node)
  828. {
  829. struct btrfs_delayed_item *curr, *prev;
  830. int ret = 0;
  831. do_again:
  832. mutex_lock(&node->mutex);
  833. curr = __btrfs_first_delayed_deletion_item(node);
  834. if (!curr)
  835. goto delete_fail;
  836. ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
  837. if (ret < 0)
  838. goto delete_fail;
  839. else if (ret > 0) {
  840. /*
  841. * can't find the item which the node points to, so this node
  842. * is invalid, just drop it.
  843. */
  844. prev = curr;
  845. curr = __btrfs_next_delayed_item(prev);
  846. btrfs_release_delayed_item(prev);
  847. ret = 0;
  848. btrfs_release_path(path);
  849. if (curr) {
  850. mutex_unlock(&node->mutex);
  851. goto do_again;
  852. } else
  853. goto delete_fail;
  854. }
  855. btrfs_batch_delete_items(trans, root, path, curr);
  856. btrfs_release_path(path);
  857. mutex_unlock(&node->mutex);
  858. goto do_again;
  859. delete_fail:
  860. btrfs_release_path(path);
  861. mutex_unlock(&node->mutex);
  862. return ret;
  863. }
  864. static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
  865. {
  866. struct btrfs_delayed_root *delayed_root;
  867. if (delayed_node &&
  868. test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
  869. BUG_ON(!delayed_node->root);
  870. clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
  871. delayed_node->count--;
  872. delayed_root = delayed_node->root->fs_info->delayed_root;
  873. finish_one_item(delayed_root);
  874. }
  875. }
  876. static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
  877. {
  878. struct btrfs_delayed_root *delayed_root;
  879. ASSERT(delayed_node->root);
  880. clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
  881. delayed_node->count--;
  882. delayed_root = delayed_node->root->fs_info->delayed_root;
  883. finish_one_item(delayed_root);
  884. }
  885. static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
  886. struct btrfs_root *root,
  887. struct btrfs_path *path,
  888. struct btrfs_delayed_node *node)
  889. {
  890. struct btrfs_key key;
  891. struct btrfs_inode_item *inode_item;
  892. struct extent_buffer *leaf;
  893. int mod;
  894. int ret;
  895. key.objectid = node->inode_id;
  896. key.type = BTRFS_INODE_ITEM_KEY;
  897. key.offset = 0;
  898. if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
  899. mod = -1;
  900. else
  901. mod = 1;
  902. ret = btrfs_lookup_inode(trans, root, path, &key, mod);
  903. if (ret > 0) {
  904. btrfs_release_path(path);
  905. return -ENOENT;
  906. } else if (ret < 0) {
  907. return ret;
  908. }
  909. leaf = path->nodes[0];
  910. inode_item = btrfs_item_ptr(leaf, path->slots[0],
  911. struct btrfs_inode_item);
  912. write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
  913. sizeof(struct btrfs_inode_item));
  914. btrfs_mark_buffer_dirty(leaf);
  915. if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
  916. goto no_iref;
  917. path->slots[0]++;
  918. if (path->slots[0] >= btrfs_header_nritems(leaf))
  919. goto search;
  920. again:
  921. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  922. if (key.objectid != node->inode_id)
  923. goto out;
  924. if (key.type != BTRFS_INODE_REF_KEY &&
  925. key.type != BTRFS_INODE_EXTREF_KEY)
  926. goto out;
  927. /*
  928. * Delayed iref deletion is for the inode who has only one link,
  929. * so there is only one iref. The case that several irefs are
  930. * in the same item doesn't exist.
  931. */
  932. btrfs_del_item(trans, root, path);
  933. out:
  934. btrfs_release_delayed_iref(node);
  935. no_iref:
  936. btrfs_release_path(path);
  937. err_out:
  938. btrfs_delayed_inode_release_metadata(root, node);
  939. btrfs_release_delayed_inode(node);
  940. return ret;
  941. search:
  942. btrfs_release_path(path);
  943. key.type = BTRFS_INODE_EXTREF_KEY;
  944. key.offset = -1;
  945. ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
  946. if (ret < 0)
  947. goto err_out;
  948. ASSERT(ret);
  949. ret = 0;
  950. leaf = path->nodes[0];
  951. path->slots[0]--;
  952. goto again;
  953. }
  954. static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
  955. struct btrfs_root *root,
  956. struct btrfs_path *path,
  957. struct btrfs_delayed_node *node)
  958. {
  959. int ret;
  960. mutex_lock(&node->mutex);
  961. if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
  962. mutex_unlock(&node->mutex);
  963. return 0;
  964. }
  965. ret = __btrfs_update_delayed_inode(trans, root, path, node);
  966. mutex_unlock(&node->mutex);
  967. return ret;
  968. }
  969. static inline int
  970. __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
  971. struct btrfs_path *path,
  972. struct btrfs_delayed_node *node)
  973. {
  974. int ret;
  975. ret = btrfs_insert_delayed_items(trans, path, node->root, node);
  976. if (ret)
  977. return ret;
  978. ret = btrfs_delete_delayed_items(trans, path, node->root, node);
  979. if (ret)
  980. return ret;
  981. ret = btrfs_update_delayed_inode(trans, node->root, path, node);
  982. return ret;
  983. }
  984. /*
  985. * Called when committing the transaction.
  986. * Returns 0 on success.
  987. * Returns < 0 on error and returns with an aborted transaction with any
  988. * outstanding delayed items cleaned up.
  989. */
  990. static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
  991. struct btrfs_root *root, int nr)
  992. {
  993. struct btrfs_delayed_root *delayed_root;
  994. struct btrfs_delayed_node *curr_node, *prev_node;
  995. struct btrfs_path *path;
  996. struct btrfs_block_rsv *block_rsv;
  997. int ret = 0;
  998. bool count = (nr > 0);
  999. if (trans->aborted)
  1000. return -EIO;
  1001. path = btrfs_alloc_path();
  1002. if (!path)
  1003. return -ENOMEM;
  1004. path->leave_spinning = 1;
  1005. block_rsv = trans->block_rsv;
  1006. trans->block_rsv = &root->fs_info->delayed_block_rsv;
  1007. delayed_root = btrfs_get_delayed_root(root);
  1008. curr_node = btrfs_first_delayed_node(delayed_root);
  1009. while (curr_node && (!count || (count && nr--))) {
  1010. ret = __btrfs_commit_inode_delayed_items(trans, path,
  1011. curr_node);
  1012. if (ret) {
  1013. btrfs_release_delayed_node(curr_node);
  1014. curr_node = NULL;
  1015. btrfs_abort_transaction(trans, root, ret);
  1016. break;
  1017. }
  1018. prev_node = curr_node;
  1019. curr_node = btrfs_next_delayed_node(curr_node);
  1020. btrfs_release_delayed_node(prev_node);
  1021. }
  1022. if (curr_node)
  1023. btrfs_release_delayed_node(curr_node);
  1024. btrfs_free_path(path);
  1025. trans->block_rsv = block_rsv;
  1026. return ret;
  1027. }
  1028. int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
  1029. struct btrfs_root *root)
  1030. {
  1031. return __btrfs_run_delayed_items(trans, root, -1);
  1032. }
  1033. int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans,
  1034. struct btrfs_root *root, int nr)
  1035. {
  1036. return __btrfs_run_delayed_items(trans, root, nr);
  1037. }
  1038. int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
  1039. struct inode *inode)
  1040. {
  1041. struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
  1042. struct btrfs_path *path;
  1043. struct btrfs_block_rsv *block_rsv;
  1044. int ret;
  1045. if (!delayed_node)
  1046. return 0;
  1047. mutex_lock(&delayed_node->mutex);
  1048. if (!delayed_node->count) {
  1049. mutex_unlock(&delayed_node->mutex);
  1050. btrfs_release_delayed_node(delayed_node);
  1051. return 0;
  1052. }
  1053. mutex_unlock(&delayed_node->mutex);
  1054. path = btrfs_alloc_path();
  1055. if (!path) {
  1056. btrfs_release_delayed_node(delayed_node);
  1057. return -ENOMEM;
  1058. }
  1059. path->leave_spinning = 1;
  1060. block_rsv = trans->block_rsv;
  1061. trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
  1062. ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
  1063. btrfs_release_delayed_node(delayed_node);
  1064. btrfs_free_path(path);
  1065. trans->block_rsv = block_rsv;
  1066. return ret;
  1067. }
  1068. int btrfs_commit_inode_delayed_inode(struct inode *inode)
  1069. {
  1070. struct btrfs_trans_handle *trans;
  1071. struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
  1072. struct btrfs_path *path;
  1073. struct btrfs_block_rsv *block_rsv;
  1074. int ret;
  1075. if (!delayed_node)
  1076. return 0;
  1077. mutex_lock(&delayed_node->mutex);
  1078. if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
  1079. mutex_unlock(&delayed_node->mutex);
  1080. btrfs_release_delayed_node(delayed_node);
  1081. return 0;
  1082. }
  1083. mutex_unlock(&delayed_node->mutex);
  1084. trans = btrfs_join_transaction(delayed_node->root);
  1085. if (IS_ERR(trans)) {
  1086. ret = PTR_ERR(trans);
  1087. goto out;
  1088. }
  1089. path = btrfs_alloc_path();
  1090. if (!path) {
  1091. ret = -ENOMEM;
  1092. goto trans_out;
  1093. }
  1094. path->leave_spinning = 1;
  1095. block_rsv = trans->block_rsv;
  1096. trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
  1097. mutex_lock(&delayed_node->mutex);
  1098. if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
  1099. ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
  1100. path, delayed_node);
  1101. else
  1102. ret = 0;
  1103. mutex_unlock(&delayed_node->mutex);
  1104. btrfs_free_path(path);
  1105. trans->block_rsv = block_rsv;
  1106. trans_out:
  1107. btrfs_end_transaction(trans, delayed_node->root);
  1108. btrfs_btree_balance_dirty(delayed_node->root);
  1109. out:
  1110. btrfs_release_delayed_node(delayed_node);
  1111. return ret;
  1112. }
  1113. void btrfs_remove_delayed_node(struct inode *inode)
  1114. {
  1115. struct btrfs_delayed_node *delayed_node;
  1116. delayed_node = ACCESS_ONCE(BTRFS_I(inode)->delayed_node);
  1117. if (!delayed_node)
  1118. return;
  1119. BTRFS_I(inode)->delayed_node = NULL;
  1120. btrfs_release_delayed_node(delayed_node);
  1121. }
  1122. struct btrfs_async_delayed_work {
  1123. struct btrfs_delayed_root *delayed_root;
  1124. int nr;
  1125. struct btrfs_work work;
  1126. };
  1127. static void btrfs_async_run_delayed_root(struct btrfs_work *work)
  1128. {
  1129. struct btrfs_async_delayed_work *async_work;
  1130. struct btrfs_delayed_root *delayed_root;
  1131. struct btrfs_trans_handle *trans;
  1132. struct btrfs_path *path;
  1133. struct btrfs_delayed_node *delayed_node = NULL;
  1134. struct btrfs_root *root;
  1135. struct btrfs_block_rsv *block_rsv;
  1136. int total_done = 0;
  1137. async_work = container_of(work, struct btrfs_async_delayed_work, work);
  1138. delayed_root = async_work->delayed_root;
  1139. path = btrfs_alloc_path();
  1140. if (!path)
  1141. goto out;
  1142. again:
  1143. if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND / 2)
  1144. goto free_path;
  1145. delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
  1146. if (!delayed_node)
  1147. goto free_path;
  1148. path->leave_spinning = 1;
  1149. root = delayed_node->root;
  1150. trans = btrfs_join_transaction(root);
  1151. if (IS_ERR(trans))
  1152. goto release_path;
  1153. block_rsv = trans->block_rsv;
  1154. trans->block_rsv = &root->fs_info->delayed_block_rsv;
  1155. __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
  1156. trans->block_rsv = block_rsv;
  1157. btrfs_end_transaction(trans, root);
  1158. btrfs_btree_balance_dirty_nodelay(root);
  1159. release_path:
  1160. btrfs_release_path(path);
  1161. total_done++;
  1162. btrfs_release_prepared_delayed_node(delayed_node);
  1163. if (async_work->nr == 0 || total_done < async_work->nr)
  1164. goto again;
  1165. free_path:
  1166. btrfs_free_path(path);
  1167. out:
  1168. wake_up(&delayed_root->wait);
  1169. kfree(async_work);
  1170. }
  1171. static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
  1172. struct btrfs_fs_info *fs_info, int nr)
  1173. {
  1174. struct btrfs_async_delayed_work *async_work;
  1175. if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
  1176. return 0;
  1177. async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
  1178. if (!async_work)
  1179. return -ENOMEM;
  1180. async_work->delayed_root = delayed_root;
  1181. btrfs_init_work(&async_work->work, btrfs_delayed_meta_helper,
  1182. btrfs_async_run_delayed_root, NULL, NULL);
  1183. async_work->nr = nr;
  1184. btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
  1185. return 0;
  1186. }
  1187. void btrfs_assert_delayed_root_empty(struct btrfs_root *root)
  1188. {
  1189. struct btrfs_delayed_root *delayed_root;
  1190. delayed_root = btrfs_get_delayed_root(root);
  1191. WARN_ON(btrfs_first_delayed_node(delayed_root));
  1192. }
  1193. static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
  1194. {
  1195. int val = atomic_read(&delayed_root->items_seq);
  1196. if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
  1197. return 1;
  1198. if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
  1199. return 1;
  1200. return 0;
  1201. }
  1202. void btrfs_balance_delayed_items(struct btrfs_root *root)
  1203. {
  1204. struct btrfs_delayed_root *delayed_root;
  1205. struct btrfs_fs_info *fs_info = root->fs_info;
  1206. delayed_root = btrfs_get_delayed_root(root);
  1207. if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
  1208. return;
  1209. if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
  1210. int seq;
  1211. int ret;
  1212. seq = atomic_read(&delayed_root->items_seq);
  1213. ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
  1214. if (ret)
  1215. return;
  1216. wait_event_interruptible(delayed_root->wait,
  1217. could_end_wait(delayed_root, seq));
  1218. return;
  1219. }
  1220. btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
  1221. }
  1222. /* Will return 0 or -ENOMEM */
  1223. int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
  1224. struct btrfs_root *root, const char *name,
  1225. int name_len, struct inode *dir,
  1226. struct btrfs_disk_key *disk_key, u8 type,
  1227. u64 index)
  1228. {
  1229. struct btrfs_delayed_node *delayed_node;
  1230. struct btrfs_delayed_item *delayed_item;
  1231. struct btrfs_dir_item *dir_item;
  1232. int ret;
  1233. delayed_node = btrfs_get_or_create_delayed_node(dir);
  1234. if (IS_ERR(delayed_node))
  1235. return PTR_ERR(delayed_node);
  1236. delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
  1237. if (!delayed_item) {
  1238. ret = -ENOMEM;
  1239. goto release_node;
  1240. }
  1241. delayed_item->key.objectid = btrfs_ino(dir);
  1242. delayed_item->key.type = BTRFS_DIR_INDEX_KEY;
  1243. delayed_item->key.offset = index;
  1244. dir_item = (struct btrfs_dir_item *)delayed_item->data;
  1245. dir_item->location = *disk_key;
  1246. btrfs_set_stack_dir_transid(dir_item, trans->transid);
  1247. btrfs_set_stack_dir_data_len(dir_item, 0);
  1248. btrfs_set_stack_dir_name_len(dir_item, name_len);
  1249. btrfs_set_stack_dir_type(dir_item, type);
  1250. memcpy((char *)(dir_item + 1), name, name_len);
  1251. ret = btrfs_delayed_item_reserve_metadata(trans, root, delayed_item);
  1252. /*
  1253. * we have reserved enough space when we start a new transaction,
  1254. * so reserving metadata failure is impossible
  1255. */
  1256. BUG_ON(ret);
  1257. mutex_lock(&delayed_node->mutex);
  1258. ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
  1259. if (unlikely(ret)) {
  1260. btrfs_err(root->fs_info, "err add delayed dir index item(name: %.*s) "
  1261. "into the insertion tree of the delayed node"
  1262. "(root id: %llu, inode id: %llu, errno: %d)",
  1263. name_len, name, delayed_node->root->objectid,
  1264. delayed_node->inode_id, ret);
  1265. BUG();
  1266. }
  1267. mutex_unlock(&delayed_node->mutex);
  1268. release_node:
  1269. btrfs_release_delayed_node(delayed_node);
  1270. return ret;
  1271. }
  1272. static int btrfs_delete_delayed_insertion_item(struct btrfs_root *root,
  1273. struct btrfs_delayed_node *node,
  1274. struct btrfs_key *key)
  1275. {
  1276. struct btrfs_delayed_item *item;
  1277. mutex_lock(&node->mutex);
  1278. item = __btrfs_lookup_delayed_insertion_item(node, key);
  1279. if (!item) {
  1280. mutex_unlock(&node->mutex);
  1281. return 1;
  1282. }
  1283. btrfs_delayed_item_release_metadata(root, item);
  1284. btrfs_release_delayed_item(item);
  1285. mutex_unlock(&node->mutex);
  1286. return 0;
  1287. }
  1288. int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
  1289. struct btrfs_root *root, struct inode *dir,
  1290. u64 index)
  1291. {
  1292. struct btrfs_delayed_node *node;
  1293. struct btrfs_delayed_item *item;
  1294. struct btrfs_key item_key;
  1295. int ret;
  1296. node = btrfs_get_or_create_delayed_node(dir);
  1297. if (IS_ERR(node))
  1298. return PTR_ERR(node);
  1299. item_key.objectid = btrfs_ino(dir);
  1300. item_key.type = BTRFS_DIR_INDEX_KEY;
  1301. item_key.offset = index;
  1302. ret = btrfs_delete_delayed_insertion_item(root, node, &item_key);
  1303. if (!ret)
  1304. goto end;
  1305. item = btrfs_alloc_delayed_item(0);
  1306. if (!item) {
  1307. ret = -ENOMEM;
  1308. goto end;
  1309. }
  1310. item->key = item_key;
  1311. ret = btrfs_delayed_item_reserve_metadata(trans, root, item);
  1312. /*
  1313. * we have reserved enough space when we start a new transaction,
  1314. * so reserving metadata failure is impossible.
  1315. */
  1316. BUG_ON(ret);
  1317. mutex_lock(&node->mutex);
  1318. ret = __btrfs_add_delayed_deletion_item(node, item);
  1319. if (unlikely(ret)) {
  1320. btrfs_err(root->fs_info, "err add delayed dir index item(index: %llu) "
  1321. "into the deletion tree of the delayed node"
  1322. "(root id: %llu, inode id: %llu, errno: %d)",
  1323. index, node->root->objectid, node->inode_id,
  1324. ret);
  1325. BUG();
  1326. }
  1327. mutex_unlock(&node->mutex);
  1328. end:
  1329. btrfs_release_delayed_node(node);
  1330. return ret;
  1331. }
  1332. int btrfs_inode_delayed_dir_index_count(struct inode *inode)
  1333. {
  1334. struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
  1335. if (!delayed_node)
  1336. return -ENOENT;
  1337. /*
  1338. * Since we have held i_mutex of this directory, it is impossible that
  1339. * a new directory index is added into the delayed node and index_cnt
  1340. * is updated now. So we needn't lock the delayed node.
  1341. */
  1342. if (!delayed_node->index_cnt) {
  1343. btrfs_release_delayed_node(delayed_node);
  1344. return -EINVAL;
  1345. }
  1346. BTRFS_I(inode)->index_cnt = delayed_node->index_cnt;
  1347. btrfs_release_delayed_node(delayed_node);
  1348. return 0;
  1349. }
  1350. void btrfs_get_delayed_items(struct inode *inode, struct list_head *ins_list,
  1351. struct list_head *del_list)
  1352. {
  1353. struct btrfs_delayed_node *delayed_node;
  1354. struct btrfs_delayed_item *item;
  1355. delayed_node = btrfs_get_delayed_node(inode);
  1356. if (!delayed_node)
  1357. return;
  1358. mutex_lock(&delayed_node->mutex);
  1359. item = __btrfs_first_delayed_insertion_item(delayed_node);
  1360. while (item) {
  1361. atomic_inc(&item->refs);
  1362. list_add_tail(&item->readdir_list, ins_list);
  1363. item = __btrfs_next_delayed_item(item);
  1364. }
  1365. item = __btrfs_first_delayed_deletion_item(delayed_node);
  1366. while (item) {
  1367. atomic_inc(&item->refs);
  1368. list_add_tail(&item->readdir_list, del_list);
  1369. item = __btrfs_next_delayed_item(item);
  1370. }
  1371. mutex_unlock(&delayed_node->mutex);
  1372. /*
  1373. * This delayed node is still cached in the btrfs inode, so refs
  1374. * must be > 1 now, and we needn't check it is going to be freed
  1375. * or not.
  1376. *
  1377. * Besides that, this function is used to read dir, we do not
  1378. * insert/delete delayed items in this period. So we also needn't
  1379. * requeue or dequeue this delayed node.
  1380. */
  1381. atomic_dec(&delayed_node->refs);
  1382. }
  1383. void btrfs_put_delayed_items(struct list_head *ins_list,
  1384. struct list_head *del_list)
  1385. {
  1386. struct btrfs_delayed_item *curr, *next;
  1387. list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
  1388. list_del(&curr->readdir_list);
  1389. if (atomic_dec_and_test(&curr->refs))
  1390. kfree(curr);
  1391. }
  1392. list_for_each_entry_safe(curr, next, del_list, readdir_list) {
  1393. list_del(&curr->readdir_list);
  1394. if (atomic_dec_and_test(&curr->refs))
  1395. kfree(curr);
  1396. }
  1397. }
  1398. int btrfs_should_delete_dir_index(struct list_head *del_list,
  1399. u64 index)
  1400. {
  1401. struct btrfs_delayed_item *curr, *next;
  1402. int ret;
  1403. if (list_empty(del_list))
  1404. return 0;
  1405. list_for_each_entry_safe(curr, next, del_list, readdir_list) {
  1406. if (curr->key.offset > index)
  1407. break;
  1408. list_del(&curr->readdir_list);
  1409. ret = (curr->key.offset == index);
  1410. if (atomic_dec_and_test(&curr->refs))
  1411. kfree(curr);
  1412. if (ret)
  1413. return 1;
  1414. else
  1415. continue;
  1416. }
  1417. return 0;
  1418. }
  1419. /*
  1420. * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
  1421. *
  1422. */
  1423. int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
  1424. struct list_head *ins_list, bool *emitted)
  1425. {
  1426. struct btrfs_dir_item *di;
  1427. struct btrfs_delayed_item *curr, *next;
  1428. struct btrfs_key location;
  1429. char *name;
  1430. int name_len;
  1431. int over = 0;
  1432. unsigned char d_type;
  1433. if (list_empty(ins_list))
  1434. return 0;
  1435. /*
  1436. * Changing the data of the delayed item is impossible. So
  1437. * we needn't lock them. And we have held i_mutex of the
  1438. * directory, nobody can delete any directory indexes now.
  1439. */
  1440. list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
  1441. list_del(&curr->readdir_list);
  1442. if (curr->key.offset < ctx->pos) {
  1443. if (atomic_dec_and_test(&curr->refs))
  1444. kfree(curr);
  1445. continue;
  1446. }
  1447. ctx->pos = curr->key.offset;
  1448. di = (struct btrfs_dir_item *)curr->data;
  1449. name = (char *)(di + 1);
  1450. name_len = btrfs_stack_dir_name_len(di);
  1451. d_type = btrfs_filetype_table[di->type];
  1452. btrfs_disk_key_to_cpu(&location, &di->location);
  1453. over = !dir_emit(ctx, name, name_len,
  1454. location.objectid, d_type);
  1455. if (atomic_dec_and_test(&curr->refs))
  1456. kfree(curr);
  1457. if (over)
  1458. return 1;
  1459. *emitted = true;
  1460. }
  1461. return 0;
  1462. }
  1463. static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
  1464. struct btrfs_inode_item *inode_item,
  1465. struct inode *inode)
  1466. {
  1467. btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
  1468. btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
  1469. btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
  1470. btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
  1471. btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
  1472. btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
  1473. btrfs_set_stack_inode_generation(inode_item,
  1474. BTRFS_I(inode)->generation);
  1475. btrfs_set_stack_inode_sequence(inode_item, inode->i_version);
  1476. btrfs_set_stack_inode_transid(inode_item, trans->transid);
  1477. btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
  1478. btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
  1479. btrfs_set_stack_inode_block_group(inode_item, 0);
  1480. btrfs_set_stack_timespec_sec(&inode_item->atime,
  1481. inode->i_atime.tv_sec);
  1482. btrfs_set_stack_timespec_nsec(&inode_item->atime,
  1483. inode->i_atime.tv_nsec);
  1484. btrfs_set_stack_timespec_sec(&inode_item->mtime,
  1485. inode->i_mtime.tv_sec);
  1486. btrfs_set_stack_timespec_nsec(&inode_item->mtime,
  1487. inode->i_mtime.tv_nsec);
  1488. btrfs_set_stack_timespec_sec(&inode_item->ctime,
  1489. inode->i_ctime.tv_sec);
  1490. btrfs_set_stack_timespec_nsec(&inode_item->ctime,
  1491. inode->i_ctime.tv_nsec);
  1492. btrfs_set_stack_timespec_sec(&inode_item->otime,
  1493. BTRFS_I(inode)->i_otime.tv_sec);
  1494. btrfs_set_stack_timespec_nsec(&inode_item->otime,
  1495. BTRFS_I(inode)->i_otime.tv_nsec);
  1496. }
  1497. int btrfs_fill_inode(struct inode *inode, u32 *rdev)
  1498. {
  1499. struct btrfs_delayed_node *delayed_node;
  1500. struct btrfs_inode_item *inode_item;
  1501. delayed_node = btrfs_get_delayed_node(inode);
  1502. if (!delayed_node)
  1503. return -ENOENT;
  1504. mutex_lock(&delayed_node->mutex);
  1505. if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
  1506. mutex_unlock(&delayed_node->mutex);
  1507. btrfs_release_delayed_node(delayed_node);
  1508. return -ENOENT;
  1509. }
  1510. inode_item = &delayed_node->inode_item;
  1511. i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
  1512. i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
  1513. btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item));
  1514. inode->i_mode = btrfs_stack_inode_mode(inode_item);
  1515. set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
  1516. inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
  1517. BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
  1518. BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
  1519. inode->i_version = btrfs_stack_inode_sequence(inode_item);
  1520. inode->i_rdev = 0;
  1521. *rdev = btrfs_stack_inode_rdev(inode_item);
  1522. BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
  1523. inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
  1524. inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
  1525. inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
  1526. inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
  1527. inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
  1528. inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
  1529. BTRFS_I(inode)->i_otime.tv_sec =
  1530. btrfs_stack_timespec_sec(&inode_item->otime);
  1531. BTRFS_I(inode)->i_otime.tv_nsec =
  1532. btrfs_stack_timespec_nsec(&inode_item->otime);
  1533. inode->i_generation = BTRFS_I(inode)->generation;
  1534. BTRFS_I(inode)->index_cnt = (u64)-1;
  1535. mutex_unlock(&delayed_node->mutex);
  1536. btrfs_release_delayed_node(delayed_node);
  1537. return 0;
  1538. }
  1539. int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
  1540. struct btrfs_root *root, struct inode *inode)
  1541. {
  1542. struct btrfs_delayed_node *delayed_node;
  1543. int ret = 0;
  1544. delayed_node = btrfs_get_or_create_delayed_node(inode);
  1545. if (IS_ERR(delayed_node))
  1546. return PTR_ERR(delayed_node);
  1547. mutex_lock(&delayed_node->mutex);
  1548. if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
  1549. fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
  1550. goto release_node;
  1551. }
  1552. ret = btrfs_delayed_inode_reserve_metadata(trans, root, inode,
  1553. delayed_node);
  1554. if (ret)
  1555. goto release_node;
  1556. fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
  1557. set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
  1558. delayed_node->count++;
  1559. atomic_inc(&root->fs_info->delayed_root->items);
  1560. release_node:
  1561. mutex_unlock(&delayed_node->mutex);
  1562. btrfs_release_delayed_node(delayed_node);
  1563. return ret;
  1564. }
  1565. int btrfs_delayed_delete_inode_ref(struct inode *inode)
  1566. {
  1567. struct btrfs_delayed_node *delayed_node;
  1568. /*
  1569. * we don't do delayed inode updates during log recovery because it
  1570. * leads to enospc problems. This means we also can't do
  1571. * delayed inode refs
  1572. */
  1573. if (BTRFS_I(inode)->root->fs_info->log_root_recovering)
  1574. return -EAGAIN;
  1575. delayed_node = btrfs_get_or_create_delayed_node(inode);
  1576. if (IS_ERR(delayed_node))
  1577. return PTR_ERR(delayed_node);
  1578. /*
  1579. * We don't reserve space for inode ref deletion is because:
  1580. * - We ONLY do async inode ref deletion for the inode who has only
  1581. * one link(i_nlink == 1), it means there is only one inode ref.
  1582. * And in most case, the inode ref and the inode item are in the
  1583. * same leaf, and we will deal with them at the same time.
  1584. * Since we are sure we will reserve the space for the inode item,
  1585. * it is unnecessary to reserve space for inode ref deletion.
  1586. * - If the inode ref and the inode item are not in the same leaf,
  1587. * We also needn't worry about enospc problem, because we reserve
  1588. * much more space for the inode update than it needs.
  1589. * - At the worst, we can steal some space from the global reservation.
  1590. * It is very rare.
  1591. */
  1592. mutex_lock(&delayed_node->mutex);
  1593. if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
  1594. goto release_node;
  1595. set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
  1596. delayed_node->count++;
  1597. atomic_inc(&BTRFS_I(inode)->root->fs_info->delayed_root->items);
  1598. release_node:
  1599. mutex_unlock(&delayed_node->mutex);
  1600. btrfs_release_delayed_node(delayed_node);
  1601. return 0;
  1602. }
  1603. static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
  1604. {
  1605. struct btrfs_root *root = delayed_node->root;
  1606. struct btrfs_delayed_item *curr_item, *prev_item;
  1607. mutex_lock(&delayed_node->mutex);
  1608. curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
  1609. while (curr_item) {
  1610. btrfs_delayed_item_release_metadata(root, curr_item);
  1611. prev_item = curr_item;
  1612. curr_item = __btrfs_next_delayed_item(prev_item);
  1613. btrfs_release_delayed_item(prev_item);
  1614. }
  1615. curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
  1616. while (curr_item) {
  1617. btrfs_delayed_item_release_metadata(root, curr_item);
  1618. prev_item = curr_item;
  1619. curr_item = __btrfs_next_delayed_item(prev_item);
  1620. btrfs_release_delayed_item(prev_item);
  1621. }
  1622. if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
  1623. btrfs_release_delayed_iref(delayed_node);
  1624. if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
  1625. btrfs_delayed_inode_release_metadata(root, delayed_node);
  1626. btrfs_release_delayed_inode(delayed_node);
  1627. }
  1628. mutex_unlock(&delayed_node->mutex);
  1629. }
  1630. void btrfs_kill_delayed_inode_items(struct inode *inode)
  1631. {
  1632. struct btrfs_delayed_node *delayed_node;
  1633. delayed_node = btrfs_get_delayed_node(inode);
  1634. if (!delayed_node)
  1635. return;
  1636. __btrfs_kill_delayed_node(delayed_node);
  1637. btrfs_release_delayed_node(delayed_node);
  1638. }
  1639. void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
  1640. {
  1641. u64 inode_id = 0;
  1642. struct btrfs_delayed_node *delayed_nodes[8];
  1643. int i, n;
  1644. while (1) {
  1645. spin_lock(&root->inode_lock);
  1646. n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
  1647. (void **)delayed_nodes, inode_id,
  1648. ARRAY_SIZE(delayed_nodes));
  1649. if (!n) {
  1650. spin_unlock(&root->inode_lock);
  1651. break;
  1652. }
  1653. inode_id = delayed_nodes[n - 1]->inode_id + 1;
  1654. for (i = 0; i < n; i++)
  1655. atomic_inc(&delayed_nodes[i]->refs);
  1656. spin_unlock(&root->inode_lock);
  1657. for (i = 0; i < n; i++) {
  1658. __btrfs_kill_delayed_node(delayed_nodes[i]);
  1659. btrfs_release_delayed_node(delayed_nodes[i]);
  1660. }
  1661. }
  1662. }
  1663. void btrfs_destroy_delayed_inodes(struct btrfs_root *root)
  1664. {
  1665. struct btrfs_delayed_root *delayed_root;
  1666. struct btrfs_delayed_node *curr_node, *prev_node;
  1667. delayed_root = btrfs_get_delayed_root(root);
  1668. curr_node = btrfs_first_delayed_node(delayed_root);
  1669. while (curr_node) {
  1670. __btrfs_kill_delayed_node(curr_node);
  1671. prev_node = curr_node;
  1672. curr_node = btrfs_next_delayed_node(curr_node);
  1673. btrfs_release_delayed_node(prev_node);
  1674. }
  1675. }