safexcel_cipher.c 34 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240
  1. /*
  2. * Copyright (C) 2017 Marvell
  3. *
  4. * Antoine Tenart <antoine.tenart@free-electrons.com>
  5. *
  6. * This file is licensed under the terms of the GNU General Public
  7. * License version 2. This program is licensed "as is" without any
  8. * warranty of any kind, whether express or implied.
  9. */
  10. #include <linux/device.h>
  11. #include <linux/dma-mapping.h>
  12. #include <linux/dmapool.h>
  13. #include <crypto/aead.h>
  14. #include <crypto/aes.h>
  15. #include <crypto/authenc.h>
  16. #include <crypto/des.h>
  17. #include <crypto/sha.h>
  18. #include <crypto/skcipher.h>
  19. #include <crypto/internal/aead.h>
  20. #include <crypto/internal/skcipher.h>
  21. #include "safexcel.h"
  22. enum safexcel_cipher_direction {
  23. SAFEXCEL_ENCRYPT,
  24. SAFEXCEL_DECRYPT,
  25. };
  26. enum safexcel_cipher_alg {
  27. SAFEXCEL_DES,
  28. SAFEXCEL_AES,
  29. };
  30. struct safexcel_cipher_ctx {
  31. struct safexcel_context base;
  32. struct safexcel_crypto_priv *priv;
  33. u32 mode;
  34. enum safexcel_cipher_alg alg;
  35. bool aead;
  36. __le32 key[8];
  37. unsigned int key_len;
  38. /* All the below is AEAD specific */
  39. u32 hash_alg;
  40. u32 state_sz;
  41. u32 ipad[SHA512_DIGEST_SIZE / sizeof(u32)];
  42. u32 opad[SHA512_DIGEST_SIZE / sizeof(u32)];
  43. };
  44. struct safexcel_cipher_req {
  45. enum safexcel_cipher_direction direction;
  46. bool needs_inv;
  47. };
  48. static void safexcel_skcipher_token(struct safexcel_cipher_ctx *ctx, u8 *iv,
  49. struct safexcel_command_desc *cdesc,
  50. u32 length)
  51. {
  52. struct safexcel_token *token;
  53. unsigned offset = 0;
  54. if (ctx->mode == CONTEXT_CONTROL_CRYPTO_MODE_CBC) {
  55. switch (ctx->alg) {
  56. case SAFEXCEL_DES:
  57. offset = DES_BLOCK_SIZE / sizeof(u32);
  58. memcpy(cdesc->control_data.token, iv, DES_BLOCK_SIZE);
  59. cdesc->control_data.options |= EIP197_OPTION_2_TOKEN_IV_CMD;
  60. break;
  61. case SAFEXCEL_AES:
  62. offset = AES_BLOCK_SIZE / sizeof(u32);
  63. memcpy(cdesc->control_data.token, iv, AES_BLOCK_SIZE);
  64. cdesc->control_data.options |= EIP197_OPTION_4_TOKEN_IV_CMD;
  65. break;
  66. }
  67. }
  68. token = (struct safexcel_token *)(cdesc->control_data.token + offset);
  69. token[0].opcode = EIP197_TOKEN_OPCODE_DIRECTION;
  70. token[0].packet_length = length;
  71. token[0].stat = EIP197_TOKEN_STAT_LAST_PACKET |
  72. EIP197_TOKEN_STAT_LAST_HASH;
  73. token[0].instructions = EIP197_TOKEN_INS_LAST |
  74. EIP197_TOKEN_INS_TYPE_CRYTO |
  75. EIP197_TOKEN_INS_TYPE_OUTPUT;
  76. }
  77. static void safexcel_aead_token(struct safexcel_cipher_ctx *ctx, u8 *iv,
  78. struct safexcel_command_desc *cdesc,
  79. enum safexcel_cipher_direction direction,
  80. u32 cryptlen, u32 assoclen, u32 digestsize)
  81. {
  82. struct safexcel_token *token;
  83. unsigned offset = 0;
  84. if (ctx->mode == CONTEXT_CONTROL_CRYPTO_MODE_CBC) {
  85. offset = AES_BLOCK_SIZE / sizeof(u32);
  86. memcpy(cdesc->control_data.token, iv, AES_BLOCK_SIZE);
  87. cdesc->control_data.options |= EIP197_OPTION_4_TOKEN_IV_CMD;
  88. }
  89. token = (struct safexcel_token *)(cdesc->control_data.token + offset);
  90. if (direction == SAFEXCEL_DECRYPT)
  91. cryptlen -= digestsize;
  92. token[0].opcode = EIP197_TOKEN_OPCODE_DIRECTION;
  93. token[0].packet_length = assoclen;
  94. token[0].instructions = EIP197_TOKEN_INS_TYPE_HASH |
  95. EIP197_TOKEN_INS_TYPE_OUTPUT;
  96. token[1].opcode = EIP197_TOKEN_OPCODE_DIRECTION;
  97. token[1].packet_length = cryptlen;
  98. token[1].stat = EIP197_TOKEN_STAT_LAST_HASH;
  99. token[1].instructions = EIP197_TOKEN_INS_LAST |
  100. EIP197_TOKEN_INS_TYPE_CRYTO |
  101. EIP197_TOKEN_INS_TYPE_HASH |
  102. EIP197_TOKEN_INS_TYPE_OUTPUT;
  103. if (direction == SAFEXCEL_ENCRYPT) {
  104. token[2].opcode = EIP197_TOKEN_OPCODE_INSERT;
  105. token[2].packet_length = digestsize;
  106. token[2].stat = EIP197_TOKEN_STAT_LAST_HASH |
  107. EIP197_TOKEN_STAT_LAST_PACKET;
  108. token[2].instructions = EIP197_TOKEN_INS_TYPE_OUTPUT |
  109. EIP197_TOKEN_INS_INSERT_HASH_DIGEST;
  110. } else {
  111. token[2].opcode = EIP197_TOKEN_OPCODE_RETRIEVE;
  112. token[2].packet_length = digestsize;
  113. token[2].stat = EIP197_TOKEN_STAT_LAST_HASH |
  114. EIP197_TOKEN_STAT_LAST_PACKET;
  115. token[2].instructions = EIP197_TOKEN_INS_INSERT_HASH_DIGEST;
  116. token[3].opcode = EIP197_TOKEN_OPCODE_VERIFY;
  117. token[3].packet_length = digestsize |
  118. EIP197_TOKEN_HASH_RESULT_VERIFY;
  119. token[3].stat = EIP197_TOKEN_STAT_LAST_HASH |
  120. EIP197_TOKEN_STAT_LAST_PACKET;
  121. token[3].instructions = EIP197_TOKEN_INS_TYPE_OUTPUT;
  122. }
  123. }
  124. static int safexcel_skcipher_aes_setkey(struct crypto_skcipher *ctfm,
  125. const u8 *key, unsigned int len)
  126. {
  127. struct crypto_tfm *tfm = crypto_skcipher_tfm(ctfm);
  128. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
  129. struct safexcel_crypto_priv *priv = ctx->priv;
  130. struct crypto_aes_ctx aes;
  131. int ret, i;
  132. ret = crypto_aes_expand_key(&aes, key, len);
  133. if (ret) {
  134. crypto_skcipher_set_flags(ctfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
  135. return ret;
  136. }
  137. if (priv->flags & EIP197_TRC_CACHE && ctx->base.ctxr_dma) {
  138. for (i = 0; i < len / sizeof(u32); i++) {
  139. if (ctx->key[i] != cpu_to_le32(aes.key_enc[i])) {
  140. ctx->base.needs_inv = true;
  141. break;
  142. }
  143. }
  144. }
  145. for (i = 0; i < len / sizeof(u32); i++)
  146. ctx->key[i] = cpu_to_le32(aes.key_enc[i]);
  147. ctx->key_len = len;
  148. memzero_explicit(&aes, sizeof(aes));
  149. return 0;
  150. }
  151. static int safexcel_aead_aes_setkey(struct crypto_aead *ctfm, const u8 *key,
  152. unsigned int len)
  153. {
  154. struct crypto_tfm *tfm = crypto_aead_tfm(ctfm);
  155. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
  156. struct safexcel_ahash_export_state istate, ostate;
  157. struct safexcel_crypto_priv *priv = ctx->priv;
  158. struct crypto_authenc_keys keys;
  159. if (crypto_authenc_extractkeys(&keys, key, len) != 0)
  160. goto badkey;
  161. if (keys.enckeylen > sizeof(ctx->key))
  162. goto badkey;
  163. /* Encryption key */
  164. if (priv->flags & EIP197_TRC_CACHE && ctx->base.ctxr_dma &&
  165. memcmp(ctx->key, keys.enckey, keys.enckeylen))
  166. ctx->base.needs_inv = true;
  167. /* Auth key */
  168. switch (ctx->hash_alg) {
  169. case CONTEXT_CONTROL_CRYPTO_ALG_SHA1:
  170. if (safexcel_hmac_setkey("safexcel-sha1", keys.authkey,
  171. keys.authkeylen, &istate, &ostate))
  172. goto badkey;
  173. break;
  174. case CONTEXT_CONTROL_CRYPTO_ALG_SHA224:
  175. if (safexcel_hmac_setkey("safexcel-sha224", keys.authkey,
  176. keys.authkeylen, &istate, &ostate))
  177. goto badkey;
  178. break;
  179. case CONTEXT_CONTROL_CRYPTO_ALG_SHA256:
  180. if (safexcel_hmac_setkey("safexcel-sha256", keys.authkey,
  181. keys.authkeylen, &istate, &ostate))
  182. goto badkey;
  183. break;
  184. case CONTEXT_CONTROL_CRYPTO_ALG_SHA384:
  185. if (safexcel_hmac_setkey("safexcel-sha384", keys.authkey,
  186. keys.authkeylen, &istate, &ostate))
  187. goto badkey;
  188. break;
  189. case CONTEXT_CONTROL_CRYPTO_ALG_SHA512:
  190. if (safexcel_hmac_setkey("safexcel-sha512", keys.authkey,
  191. keys.authkeylen, &istate, &ostate))
  192. goto badkey;
  193. break;
  194. default:
  195. dev_err(priv->dev, "aead: unsupported hash algorithm\n");
  196. goto badkey;
  197. }
  198. crypto_aead_set_flags(ctfm, crypto_aead_get_flags(ctfm) &
  199. CRYPTO_TFM_RES_MASK);
  200. if (priv->flags & EIP197_TRC_CACHE && ctx->base.ctxr_dma &&
  201. (memcmp(ctx->ipad, istate.state, ctx->state_sz) ||
  202. memcmp(ctx->opad, ostate.state, ctx->state_sz)))
  203. ctx->base.needs_inv = true;
  204. /* Now copy the keys into the context */
  205. memcpy(ctx->key, keys.enckey, keys.enckeylen);
  206. ctx->key_len = keys.enckeylen;
  207. memcpy(ctx->ipad, &istate.state, ctx->state_sz);
  208. memcpy(ctx->opad, &ostate.state, ctx->state_sz);
  209. memzero_explicit(&keys, sizeof(keys));
  210. return 0;
  211. badkey:
  212. crypto_aead_set_flags(ctfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
  213. memzero_explicit(&keys, sizeof(keys));
  214. return -EINVAL;
  215. }
  216. static int safexcel_context_control(struct safexcel_cipher_ctx *ctx,
  217. struct crypto_async_request *async,
  218. struct safexcel_cipher_req *sreq,
  219. struct safexcel_command_desc *cdesc)
  220. {
  221. struct safexcel_crypto_priv *priv = ctx->priv;
  222. int ctrl_size;
  223. if (ctx->aead) {
  224. if (sreq->direction == SAFEXCEL_ENCRYPT)
  225. cdesc->control_data.control0 |= CONTEXT_CONTROL_TYPE_ENCRYPT_HASH_OUT;
  226. else
  227. cdesc->control_data.control0 |= CONTEXT_CONTROL_TYPE_HASH_DECRYPT_IN;
  228. } else {
  229. cdesc->control_data.control0 |= CONTEXT_CONTROL_TYPE_CRYPTO_OUT;
  230. /* The decryption control type is a combination of the
  231. * encryption type and CONTEXT_CONTROL_TYPE_NULL_IN, for all
  232. * types.
  233. */
  234. if (sreq->direction == SAFEXCEL_DECRYPT)
  235. cdesc->control_data.control0 |= CONTEXT_CONTROL_TYPE_NULL_IN;
  236. }
  237. cdesc->control_data.control0 |= CONTEXT_CONTROL_KEY_EN;
  238. cdesc->control_data.control1 |= ctx->mode;
  239. if (ctx->aead)
  240. cdesc->control_data.control0 |= CONTEXT_CONTROL_DIGEST_HMAC |
  241. ctx->hash_alg;
  242. if (ctx->alg == SAFEXCEL_DES) {
  243. cdesc->control_data.control0 |= CONTEXT_CONTROL_CRYPTO_ALG_DES;
  244. } else if (ctx->alg == SAFEXCEL_AES) {
  245. switch (ctx->key_len) {
  246. case AES_KEYSIZE_128:
  247. cdesc->control_data.control0 |= CONTEXT_CONTROL_CRYPTO_ALG_AES128;
  248. break;
  249. case AES_KEYSIZE_192:
  250. cdesc->control_data.control0 |= CONTEXT_CONTROL_CRYPTO_ALG_AES192;
  251. break;
  252. case AES_KEYSIZE_256:
  253. cdesc->control_data.control0 |= CONTEXT_CONTROL_CRYPTO_ALG_AES256;
  254. break;
  255. default:
  256. dev_err(priv->dev, "aes keysize not supported: %u\n",
  257. ctx->key_len);
  258. return -EINVAL;
  259. }
  260. }
  261. ctrl_size = ctx->key_len / sizeof(u32);
  262. if (ctx->aead)
  263. /* Take in account the ipad+opad digests */
  264. ctrl_size += ctx->state_sz / sizeof(u32) * 2;
  265. cdesc->control_data.control0 |= CONTEXT_CONTROL_SIZE(ctrl_size);
  266. return 0;
  267. }
  268. static int safexcel_handle_req_result(struct safexcel_crypto_priv *priv, int ring,
  269. struct crypto_async_request *async,
  270. struct scatterlist *src,
  271. struct scatterlist *dst,
  272. unsigned int cryptlen,
  273. struct safexcel_cipher_req *sreq,
  274. bool *should_complete, int *ret)
  275. {
  276. struct safexcel_result_desc *rdesc;
  277. int ndesc = 0;
  278. *ret = 0;
  279. spin_lock_bh(&priv->ring[ring].egress_lock);
  280. do {
  281. rdesc = safexcel_ring_next_rptr(priv, &priv->ring[ring].rdr);
  282. if (IS_ERR(rdesc)) {
  283. dev_err(priv->dev,
  284. "cipher: result: could not retrieve the result descriptor\n");
  285. *ret = PTR_ERR(rdesc);
  286. break;
  287. }
  288. if (likely(!*ret))
  289. *ret = safexcel_rdesc_check_errors(priv, rdesc);
  290. ndesc++;
  291. } while (!rdesc->last_seg);
  292. safexcel_complete(priv, ring);
  293. spin_unlock_bh(&priv->ring[ring].egress_lock);
  294. if (src == dst) {
  295. dma_unmap_sg(priv->dev, src,
  296. sg_nents_for_len(src, cryptlen),
  297. DMA_BIDIRECTIONAL);
  298. } else {
  299. dma_unmap_sg(priv->dev, src,
  300. sg_nents_for_len(src, cryptlen),
  301. DMA_TO_DEVICE);
  302. dma_unmap_sg(priv->dev, dst,
  303. sg_nents_for_len(dst, cryptlen),
  304. DMA_FROM_DEVICE);
  305. }
  306. *should_complete = true;
  307. return ndesc;
  308. }
  309. static int safexcel_send_req(struct crypto_async_request *base, int ring,
  310. struct safexcel_request *request,
  311. struct safexcel_cipher_req *sreq,
  312. struct scatterlist *src, struct scatterlist *dst,
  313. unsigned int cryptlen, unsigned int assoclen,
  314. unsigned int digestsize, u8 *iv, int *commands,
  315. int *results)
  316. {
  317. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(base->tfm);
  318. struct safexcel_crypto_priv *priv = ctx->priv;
  319. struct safexcel_command_desc *cdesc;
  320. struct safexcel_result_desc *rdesc;
  321. struct scatterlist *sg;
  322. unsigned int totlen = cryptlen + assoclen;
  323. int nr_src, nr_dst, n_cdesc = 0, n_rdesc = 0, queued = totlen;
  324. int i, ret = 0;
  325. if (src == dst) {
  326. nr_src = dma_map_sg(priv->dev, src,
  327. sg_nents_for_len(src, totlen),
  328. DMA_BIDIRECTIONAL);
  329. nr_dst = nr_src;
  330. if (!nr_src)
  331. return -EINVAL;
  332. } else {
  333. nr_src = dma_map_sg(priv->dev, src,
  334. sg_nents_for_len(src, totlen),
  335. DMA_TO_DEVICE);
  336. if (!nr_src)
  337. return -EINVAL;
  338. nr_dst = dma_map_sg(priv->dev, dst,
  339. sg_nents_for_len(dst, totlen),
  340. DMA_FROM_DEVICE);
  341. if (!nr_dst) {
  342. dma_unmap_sg(priv->dev, src,
  343. sg_nents_for_len(src, totlen),
  344. DMA_TO_DEVICE);
  345. return -EINVAL;
  346. }
  347. }
  348. memcpy(ctx->base.ctxr->data, ctx->key, ctx->key_len);
  349. if (ctx->aead) {
  350. memcpy(ctx->base.ctxr->data + ctx->key_len / sizeof(u32),
  351. ctx->ipad, ctx->state_sz);
  352. memcpy(ctx->base.ctxr->data + (ctx->key_len + ctx->state_sz) / sizeof(u32),
  353. ctx->opad, ctx->state_sz);
  354. }
  355. spin_lock_bh(&priv->ring[ring].egress_lock);
  356. /* command descriptors */
  357. for_each_sg(src, sg, nr_src, i) {
  358. int len = sg_dma_len(sg);
  359. /* Do not overflow the request */
  360. if (queued - len < 0)
  361. len = queued;
  362. cdesc = safexcel_add_cdesc(priv, ring, !n_cdesc, !(queued - len),
  363. sg_dma_address(sg), len, totlen,
  364. ctx->base.ctxr_dma);
  365. if (IS_ERR(cdesc)) {
  366. /* No space left in the command descriptor ring */
  367. ret = PTR_ERR(cdesc);
  368. goto cdesc_rollback;
  369. }
  370. n_cdesc++;
  371. if (n_cdesc == 1) {
  372. safexcel_context_control(ctx, base, sreq, cdesc);
  373. if (ctx->aead)
  374. safexcel_aead_token(ctx, iv, cdesc,
  375. sreq->direction, cryptlen,
  376. assoclen, digestsize);
  377. else
  378. safexcel_skcipher_token(ctx, iv, cdesc,
  379. cryptlen);
  380. }
  381. queued -= len;
  382. if (!queued)
  383. break;
  384. }
  385. /* result descriptors */
  386. for_each_sg(dst, sg, nr_dst, i) {
  387. bool first = !i, last = (i == nr_dst - 1);
  388. u32 len = sg_dma_len(sg);
  389. rdesc = safexcel_add_rdesc(priv, ring, first, last,
  390. sg_dma_address(sg), len);
  391. if (IS_ERR(rdesc)) {
  392. /* No space left in the result descriptor ring */
  393. ret = PTR_ERR(rdesc);
  394. goto rdesc_rollback;
  395. }
  396. n_rdesc++;
  397. }
  398. spin_unlock_bh(&priv->ring[ring].egress_lock);
  399. request->req = base;
  400. *commands = n_cdesc;
  401. *results = n_rdesc;
  402. return 0;
  403. rdesc_rollback:
  404. for (i = 0; i < n_rdesc; i++)
  405. safexcel_ring_rollback_wptr(priv, &priv->ring[ring].rdr);
  406. cdesc_rollback:
  407. for (i = 0; i < n_cdesc; i++)
  408. safexcel_ring_rollback_wptr(priv, &priv->ring[ring].cdr);
  409. spin_unlock_bh(&priv->ring[ring].egress_lock);
  410. if (src == dst) {
  411. dma_unmap_sg(priv->dev, src,
  412. sg_nents_for_len(src, totlen),
  413. DMA_BIDIRECTIONAL);
  414. } else {
  415. dma_unmap_sg(priv->dev, src,
  416. sg_nents_for_len(src, totlen),
  417. DMA_TO_DEVICE);
  418. dma_unmap_sg(priv->dev, dst,
  419. sg_nents_for_len(dst, totlen),
  420. DMA_FROM_DEVICE);
  421. }
  422. return ret;
  423. }
  424. static int safexcel_handle_inv_result(struct safexcel_crypto_priv *priv,
  425. int ring,
  426. struct crypto_async_request *base,
  427. bool *should_complete, int *ret)
  428. {
  429. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(base->tfm);
  430. struct safexcel_result_desc *rdesc;
  431. int ndesc = 0, enq_ret;
  432. *ret = 0;
  433. spin_lock_bh(&priv->ring[ring].egress_lock);
  434. do {
  435. rdesc = safexcel_ring_next_rptr(priv, &priv->ring[ring].rdr);
  436. if (IS_ERR(rdesc)) {
  437. dev_err(priv->dev,
  438. "cipher: invalidate: could not retrieve the result descriptor\n");
  439. *ret = PTR_ERR(rdesc);
  440. break;
  441. }
  442. if (likely(!*ret))
  443. *ret = safexcel_rdesc_check_errors(priv, rdesc);
  444. ndesc++;
  445. } while (!rdesc->last_seg);
  446. safexcel_complete(priv, ring);
  447. spin_unlock_bh(&priv->ring[ring].egress_lock);
  448. if (ctx->base.exit_inv) {
  449. dma_pool_free(priv->context_pool, ctx->base.ctxr,
  450. ctx->base.ctxr_dma);
  451. *should_complete = true;
  452. return ndesc;
  453. }
  454. ring = safexcel_select_ring(priv);
  455. ctx->base.ring = ring;
  456. spin_lock_bh(&priv->ring[ring].queue_lock);
  457. enq_ret = crypto_enqueue_request(&priv->ring[ring].queue, base);
  458. spin_unlock_bh(&priv->ring[ring].queue_lock);
  459. if (enq_ret != -EINPROGRESS)
  460. *ret = enq_ret;
  461. queue_work(priv->ring[ring].workqueue,
  462. &priv->ring[ring].work_data.work);
  463. *should_complete = false;
  464. return ndesc;
  465. }
  466. static int safexcel_skcipher_handle_result(struct safexcel_crypto_priv *priv,
  467. int ring,
  468. struct crypto_async_request *async,
  469. bool *should_complete, int *ret)
  470. {
  471. struct skcipher_request *req = skcipher_request_cast(async);
  472. struct safexcel_cipher_req *sreq = skcipher_request_ctx(req);
  473. int err;
  474. if (sreq->needs_inv) {
  475. sreq->needs_inv = false;
  476. err = safexcel_handle_inv_result(priv, ring, async,
  477. should_complete, ret);
  478. } else {
  479. err = safexcel_handle_req_result(priv, ring, async, req->src,
  480. req->dst, req->cryptlen, sreq,
  481. should_complete, ret);
  482. }
  483. return err;
  484. }
  485. static int safexcel_aead_handle_result(struct safexcel_crypto_priv *priv,
  486. int ring,
  487. struct crypto_async_request *async,
  488. bool *should_complete, int *ret)
  489. {
  490. struct aead_request *req = aead_request_cast(async);
  491. struct crypto_aead *tfm = crypto_aead_reqtfm(req);
  492. struct safexcel_cipher_req *sreq = aead_request_ctx(req);
  493. int err;
  494. if (sreq->needs_inv) {
  495. sreq->needs_inv = false;
  496. err = safexcel_handle_inv_result(priv, ring, async,
  497. should_complete, ret);
  498. } else {
  499. err = safexcel_handle_req_result(priv, ring, async, req->src,
  500. req->dst,
  501. req->cryptlen + crypto_aead_authsize(tfm),
  502. sreq, should_complete, ret);
  503. }
  504. return err;
  505. }
  506. static int safexcel_cipher_send_inv(struct crypto_async_request *base,
  507. int ring, struct safexcel_request *request,
  508. int *commands, int *results)
  509. {
  510. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(base->tfm);
  511. struct safexcel_crypto_priv *priv = ctx->priv;
  512. int ret;
  513. ret = safexcel_invalidate_cache(base, priv, ctx->base.ctxr_dma, ring,
  514. request);
  515. if (unlikely(ret))
  516. return ret;
  517. *commands = 1;
  518. *results = 1;
  519. return 0;
  520. }
  521. static int safexcel_skcipher_send(struct crypto_async_request *async, int ring,
  522. struct safexcel_request *request,
  523. int *commands, int *results)
  524. {
  525. struct skcipher_request *req = skcipher_request_cast(async);
  526. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
  527. struct safexcel_cipher_req *sreq = skcipher_request_ctx(req);
  528. struct safexcel_crypto_priv *priv = ctx->priv;
  529. int ret;
  530. BUG_ON(!(priv->flags & EIP197_TRC_CACHE) && sreq->needs_inv);
  531. if (sreq->needs_inv)
  532. ret = safexcel_cipher_send_inv(async, ring, request, commands,
  533. results);
  534. else
  535. ret = safexcel_send_req(async, ring, request, sreq, req->src,
  536. req->dst, req->cryptlen, 0, 0, req->iv,
  537. commands, results);
  538. return ret;
  539. }
  540. static int safexcel_aead_send(struct crypto_async_request *async, int ring,
  541. struct safexcel_request *request, int *commands,
  542. int *results)
  543. {
  544. struct aead_request *req = aead_request_cast(async);
  545. struct crypto_aead *tfm = crypto_aead_reqtfm(req);
  546. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
  547. struct safexcel_cipher_req *sreq = aead_request_ctx(req);
  548. struct safexcel_crypto_priv *priv = ctx->priv;
  549. int ret;
  550. BUG_ON(!(priv->flags & EIP197_TRC_CACHE) && sreq->needs_inv);
  551. if (sreq->needs_inv)
  552. ret = safexcel_cipher_send_inv(async, ring, request, commands,
  553. results);
  554. else
  555. ret = safexcel_send_req(async, ring, request, sreq, req->src,
  556. req->dst, req->cryptlen, req->assoclen,
  557. crypto_aead_authsize(tfm), req->iv,
  558. commands, results);
  559. return ret;
  560. }
  561. static int safexcel_cipher_exit_inv(struct crypto_tfm *tfm,
  562. struct crypto_async_request *base,
  563. struct safexcel_cipher_req *sreq,
  564. struct safexcel_inv_result *result)
  565. {
  566. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
  567. struct safexcel_crypto_priv *priv = ctx->priv;
  568. int ring = ctx->base.ring;
  569. init_completion(&result->completion);
  570. ctx = crypto_tfm_ctx(base->tfm);
  571. ctx->base.exit_inv = true;
  572. sreq->needs_inv = true;
  573. spin_lock_bh(&priv->ring[ring].queue_lock);
  574. crypto_enqueue_request(&priv->ring[ring].queue, base);
  575. spin_unlock_bh(&priv->ring[ring].queue_lock);
  576. queue_work(priv->ring[ring].workqueue,
  577. &priv->ring[ring].work_data.work);
  578. wait_for_completion(&result->completion);
  579. if (result->error) {
  580. dev_warn(priv->dev,
  581. "cipher: sync: invalidate: completion error %d\n",
  582. result->error);
  583. return result->error;
  584. }
  585. return 0;
  586. }
  587. static int safexcel_skcipher_exit_inv(struct crypto_tfm *tfm)
  588. {
  589. EIP197_REQUEST_ON_STACK(req, skcipher, EIP197_SKCIPHER_REQ_SIZE);
  590. struct safexcel_cipher_req *sreq = skcipher_request_ctx(req);
  591. struct safexcel_inv_result result = {};
  592. memset(req, 0, sizeof(struct skcipher_request));
  593. skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
  594. safexcel_inv_complete, &result);
  595. skcipher_request_set_tfm(req, __crypto_skcipher_cast(tfm));
  596. return safexcel_cipher_exit_inv(tfm, &req->base, sreq, &result);
  597. }
  598. static int safexcel_aead_exit_inv(struct crypto_tfm *tfm)
  599. {
  600. EIP197_REQUEST_ON_STACK(req, aead, EIP197_AEAD_REQ_SIZE);
  601. struct safexcel_cipher_req *sreq = aead_request_ctx(req);
  602. struct safexcel_inv_result result = {};
  603. memset(req, 0, sizeof(struct aead_request));
  604. aead_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
  605. safexcel_inv_complete, &result);
  606. aead_request_set_tfm(req, __crypto_aead_cast(tfm));
  607. return safexcel_cipher_exit_inv(tfm, &req->base, sreq, &result);
  608. }
  609. static int safexcel_queue_req(struct crypto_async_request *base,
  610. struct safexcel_cipher_req *sreq,
  611. enum safexcel_cipher_direction dir, u32 mode,
  612. enum safexcel_cipher_alg alg)
  613. {
  614. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(base->tfm);
  615. struct safexcel_crypto_priv *priv = ctx->priv;
  616. int ret, ring;
  617. sreq->needs_inv = false;
  618. sreq->direction = dir;
  619. ctx->alg = alg;
  620. ctx->mode = mode;
  621. if (ctx->base.ctxr) {
  622. if (priv->flags & EIP197_TRC_CACHE && ctx->base.needs_inv) {
  623. sreq->needs_inv = true;
  624. ctx->base.needs_inv = false;
  625. }
  626. } else {
  627. ctx->base.ring = safexcel_select_ring(priv);
  628. ctx->base.ctxr = dma_pool_zalloc(priv->context_pool,
  629. EIP197_GFP_FLAGS(*base),
  630. &ctx->base.ctxr_dma);
  631. if (!ctx->base.ctxr)
  632. return -ENOMEM;
  633. }
  634. ring = ctx->base.ring;
  635. spin_lock_bh(&priv->ring[ring].queue_lock);
  636. ret = crypto_enqueue_request(&priv->ring[ring].queue, base);
  637. spin_unlock_bh(&priv->ring[ring].queue_lock);
  638. queue_work(priv->ring[ring].workqueue,
  639. &priv->ring[ring].work_data.work);
  640. return ret;
  641. }
  642. static int safexcel_ecb_aes_encrypt(struct skcipher_request *req)
  643. {
  644. return safexcel_queue_req(&req->base, skcipher_request_ctx(req),
  645. SAFEXCEL_ENCRYPT, CONTEXT_CONTROL_CRYPTO_MODE_ECB,
  646. SAFEXCEL_AES);
  647. }
  648. static int safexcel_ecb_aes_decrypt(struct skcipher_request *req)
  649. {
  650. return safexcel_queue_req(&req->base, skcipher_request_ctx(req),
  651. SAFEXCEL_DECRYPT, CONTEXT_CONTROL_CRYPTO_MODE_ECB,
  652. SAFEXCEL_AES);
  653. }
  654. static int safexcel_skcipher_cra_init(struct crypto_tfm *tfm)
  655. {
  656. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
  657. struct safexcel_alg_template *tmpl =
  658. container_of(tfm->__crt_alg, struct safexcel_alg_template,
  659. alg.skcipher.base);
  660. crypto_skcipher_set_reqsize(__crypto_skcipher_cast(tfm),
  661. sizeof(struct safexcel_cipher_req));
  662. ctx->priv = tmpl->priv;
  663. ctx->base.send = safexcel_skcipher_send;
  664. ctx->base.handle_result = safexcel_skcipher_handle_result;
  665. return 0;
  666. }
  667. static int safexcel_cipher_cra_exit(struct crypto_tfm *tfm)
  668. {
  669. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
  670. memzero_explicit(ctx->key, sizeof(ctx->key));
  671. /* context not allocated, skip invalidation */
  672. if (!ctx->base.ctxr)
  673. return -ENOMEM;
  674. memzero_explicit(ctx->base.ctxr->data, sizeof(ctx->base.ctxr->data));
  675. return 0;
  676. }
  677. static void safexcel_skcipher_cra_exit(struct crypto_tfm *tfm)
  678. {
  679. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
  680. struct safexcel_crypto_priv *priv = ctx->priv;
  681. int ret;
  682. if (safexcel_cipher_cra_exit(tfm))
  683. return;
  684. if (priv->flags & EIP197_TRC_CACHE) {
  685. ret = safexcel_skcipher_exit_inv(tfm);
  686. if (ret)
  687. dev_warn(priv->dev, "skcipher: invalidation error %d\n",
  688. ret);
  689. } else {
  690. dma_pool_free(priv->context_pool, ctx->base.ctxr,
  691. ctx->base.ctxr_dma);
  692. }
  693. }
  694. static void safexcel_aead_cra_exit(struct crypto_tfm *tfm)
  695. {
  696. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
  697. struct safexcel_crypto_priv *priv = ctx->priv;
  698. int ret;
  699. if (safexcel_cipher_cra_exit(tfm))
  700. return;
  701. if (priv->flags & EIP197_TRC_CACHE) {
  702. ret = safexcel_aead_exit_inv(tfm);
  703. if (ret)
  704. dev_warn(priv->dev, "aead: invalidation error %d\n",
  705. ret);
  706. } else {
  707. dma_pool_free(priv->context_pool, ctx->base.ctxr,
  708. ctx->base.ctxr_dma);
  709. }
  710. }
  711. struct safexcel_alg_template safexcel_alg_ecb_aes = {
  712. .type = SAFEXCEL_ALG_TYPE_SKCIPHER,
  713. .engines = EIP97IES | EIP197B | EIP197D,
  714. .alg.skcipher = {
  715. .setkey = safexcel_skcipher_aes_setkey,
  716. .encrypt = safexcel_ecb_aes_encrypt,
  717. .decrypt = safexcel_ecb_aes_decrypt,
  718. .min_keysize = AES_MIN_KEY_SIZE,
  719. .max_keysize = AES_MAX_KEY_SIZE,
  720. .base = {
  721. .cra_name = "ecb(aes)",
  722. .cra_driver_name = "safexcel-ecb-aes",
  723. .cra_priority = 300,
  724. .cra_flags = CRYPTO_ALG_TYPE_SKCIPHER | CRYPTO_ALG_ASYNC |
  725. CRYPTO_ALG_KERN_DRIVER_ONLY,
  726. .cra_blocksize = AES_BLOCK_SIZE,
  727. .cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
  728. .cra_alignmask = 0,
  729. .cra_init = safexcel_skcipher_cra_init,
  730. .cra_exit = safexcel_skcipher_cra_exit,
  731. .cra_module = THIS_MODULE,
  732. },
  733. },
  734. };
  735. static int safexcel_cbc_aes_encrypt(struct skcipher_request *req)
  736. {
  737. return safexcel_queue_req(&req->base, skcipher_request_ctx(req),
  738. SAFEXCEL_ENCRYPT, CONTEXT_CONTROL_CRYPTO_MODE_CBC,
  739. SAFEXCEL_AES);
  740. }
  741. static int safexcel_cbc_aes_decrypt(struct skcipher_request *req)
  742. {
  743. return safexcel_queue_req(&req->base, skcipher_request_ctx(req),
  744. SAFEXCEL_DECRYPT, CONTEXT_CONTROL_CRYPTO_MODE_CBC,
  745. SAFEXCEL_AES);
  746. }
  747. struct safexcel_alg_template safexcel_alg_cbc_aes = {
  748. .type = SAFEXCEL_ALG_TYPE_SKCIPHER,
  749. .engines = EIP97IES | EIP197B | EIP197D,
  750. .alg.skcipher = {
  751. .setkey = safexcel_skcipher_aes_setkey,
  752. .encrypt = safexcel_cbc_aes_encrypt,
  753. .decrypt = safexcel_cbc_aes_decrypt,
  754. .min_keysize = AES_MIN_KEY_SIZE,
  755. .max_keysize = AES_MAX_KEY_SIZE,
  756. .ivsize = AES_BLOCK_SIZE,
  757. .base = {
  758. .cra_name = "cbc(aes)",
  759. .cra_driver_name = "safexcel-cbc-aes",
  760. .cra_priority = 300,
  761. .cra_flags = CRYPTO_ALG_TYPE_SKCIPHER | CRYPTO_ALG_ASYNC |
  762. CRYPTO_ALG_KERN_DRIVER_ONLY,
  763. .cra_blocksize = AES_BLOCK_SIZE,
  764. .cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
  765. .cra_alignmask = 0,
  766. .cra_init = safexcel_skcipher_cra_init,
  767. .cra_exit = safexcel_skcipher_cra_exit,
  768. .cra_module = THIS_MODULE,
  769. },
  770. },
  771. };
  772. static int safexcel_cbc_des_encrypt(struct skcipher_request *req)
  773. {
  774. return safexcel_queue_req(&req->base, skcipher_request_ctx(req),
  775. SAFEXCEL_ENCRYPT, CONTEXT_CONTROL_CRYPTO_MODE_CBC,
  776. SAFEXCEL_DES);
  777. }
  778. static int safexcel_cbc_des_decrypt(struct skcipher_request *req)
  779. {
  780. return safexcel_queue_req(&req->base, skcipher_request_ctx(req),
  781. SAFEXCEL_DECRYPT, CONTEXT_CONTROL_CRYPTO_MODE_CBC,
  782. SAFEXCEL_DES);
  783. }
  784. static int safexcel_des_setkey(struct crypto_skcipher *ctfm, const u8 *key,
  785. unsigned int len)
  786. {
  787. struct crypto_tfm *tfm = crypto_skcipher_tfm(ctfm);
  788. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
  789. u32 tmp[DES_EXPKEY_WORDS];
  790. int ret;
  791. if (len != DES_KEY_SIZE) {
  792. crypto_skcipher_set_flags(ctfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
  793. return -EINVAL;
  794. }
  795. ret = des_ekey(tmp, key);
  796. if (!ret && (tfm->crt_flags & CRYPTO_TFM_REQ_WEAK_KEY)) {
  797. tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY;
  798. return -EINVAL;
  799. }
  800. /* if context exits and key changed, need to invalidate it */
  801. if (ctx->base.ctxr_dma)
  802. if (memcmp(ctx->key, key, len))
  803. ctx->base.needs_inv = true;
  804. memcpy(ctx->key, key, len);
  805. ctx->key_len = len;
  806. return 0;
  807. }
  808. struct safexcel_alg_template safexcel_alg_cbc_des = {
  809. .type = SAFEXCEL_ALG_TYPE_SKCIPHER,
  810. .engines = EIP97IES | EIP197B | EIP197D,
  811. .alg.skcipher = {
  812. .setkey = safexcel_des_setkey,
  813. .encrypt = safexcel_cbc_des_encrypt,
  814. .decrypt = safexcel_cbc_des_decrypt,
  815. .min_keysize = DES_KEY_SIZE,
  816. .max_keysize = DES_KEY_SIZE,
  817. .ivsize = DES_BLOCK_SIZE,
  818. .base = {
  819. .cra_name = "cbc(des)",
  820. .cra_driver_name = "safexcel-cbc-des",
  821. .cra_priority = 300,
  822. .cra_flags = CRYPTO_ALG_TYPE_SKCIPHER | CRYPTO_ALG_ASYNC |
  823. CRYPTO_ALG_KERN_DRIVER_ONLY,
  824. .cra_blocksize = DES_BLOCK_SIZE,
  825. .cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
  826. .cra_alignmask = 0,
  827. .cra_init = safexcel_skcipher_cra_init,
  828. .cra_exit = safexcel_skcipher_cra_exit,
  829. .cra_module = THIS_MODULE,
  830. },
  831. },
  832. };
  833. static int safexcel_ecb_des_encrypt(struct skcipher_request *req)
  834. {
  835. return safexcel_queue_req(&req->base, skcipher_request_ctx(req),
  836. SAFEXCEL_ENCRYPT, CONTEXT_CONTROL_CRYPTO_MODE_ECB,
  837. SAFEXCEL_DES);
  838. }
  839. static int safexcel_ecb_des_decrypt(struct skcipher_request *req)
  840. {
  841. return safexcel_queue_req(&req->base, skcipher_request_ctx(req),
  842. SAFEXCEL_DECRYPT, CONTEXT_CONTROL_CRYPTO_MODE_ECB,
  843. SAFEXCEL_DES);
  844. }
  845. struct safexcel_alg_template safexcel_alg_ecb_des = {
  846. .type = SAFEXCEL_ALG_TYPE_SKCIPHER,
  847. .engines = EIP97IES | EIP197B | EIP197D,
  848. .alg.skcipher = {
  849. .setkey = safexcel_des_setkey,
  850. .encrypt = safexcel_ecb_des_encrypt,
  851. .decrypt = safexcel_ecb_des_decrypt,
  852. .min_keysize = DES_KEY_SIZE,
  853. .max_keysize = DES_KEY_SIZE,
  854. .ivsize = DES_BLOCK_SIZE,
  855. .base = {
  856. .cra_name = "ecb(des)",
  857. .cra_driver_name = "safexcel-ecb-des",
  858. .cra_priority = 300,
  859. .cra_flags = CRYPTO_ALG_TYPE_SKCIPHER | CRYPTO_ALG_ASYNC |
  860. CRYPTO_ALG_KERN_DRIVER_ONLY,
  861. .cra_blocksize = DES_BLOCK_SIZE,
  862. .cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
  863. .cra_alignmask = 0,
  864. .cra_init = safexcel_skcipher_cra_init,
  865. .cra_exit = safexcel_skcipher_cra_exit,
  866. .cra_module = THIS_MODULE,
  867. },
  868. },
  869. };
  870. static int safexcel_aead_encrypt(struct aead_request *req)
  871. {
  872. struct safexcel_cipher_req *creq = aead_request_ctx(req);
  873. return safexcel_queue_req(&req->base, creq, SAFEXCEL_ENCRYPT,
  874. CONTEXT_CONTROL_CRYPTO_MODE_CBC, SAFEXCEL_AES);
  875. }
  876. static int safexcel_aead_decrypt(struct aead_request *req)
  877. {
  878. struct safexcel_cipher_req *creq = aead_request_ctx(req);
  879. return safexcel_queue_req(&req->base, creq, SAFEXCEL_DECRYPT,
  880. CONTEXT_CONTROL_CRYPTO_MODE_CBC, SAFEXCEL_AES);
  881. }
  882. static int safexcel_aead_cra_init(struct crypto_tfm *tfm)
  883. {
  884. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
  885. struct safexcel_alg_template *tmpl =
  886. container_of(tfm->__crt_alg, struct safexcel_alg_template,
  887. alg.aead.base);
  888. crypto_aead_set_reqsize(__crypto_aead_cast(tfm),
  889. sizeof(struct safexcel_cipher_req));
  890. ctx->priv = tmpl->priv;
  891. ctx->aead = true;
  892. ctx->base.send = safexcel_aead_send;
  893. ctx->base.handle_result = safexcel_aead_handle_result;
  894. return 0;
  895. }
  896. static int safexcel_aead_sha1_cra_init(struct crypto_tfm *tfm)
  897. {
  898. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
  899. safexcel_aead_cra_init(tfm);
  900. ctx->hash_alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA1;
  901. ctx->state_sz = SHA1_DIGEST_SIZE;
  902. return 0;
  903. }
  904. struct safexcel_alg_template safexcel_alg_authenc_hmac_sha1_cbc_aes = {
  905. .type = SAFEXCEL_ALG_TYPE_AEAD,
  906. .engines = EIP97IES | EIP197B | EIP197D,
  907. .alg.aead = {
  908. .setkey = safexcel_aead_aes_setkey,
  909. .encrypt = safexcel_aead_encrypt,
  910. .decrypt = safexcel_aead_decrypt,
  911. .ivsize = AES_BLOCK_SIZE,
  912. .maxauthsize = SHA1_DIGEST_SIZE,
  913. .base = {
  914. .cra_name = "authenc(hmac(sha1),cbc(aes))",
  915. .cra_driver_name = "safexcel-authenc-hmac-sha1-cbc-aes",
  916. .cra_priority = 300,
  917. .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC |
  918. CRYPTO_ALG_KERN_DRIVER_ONLY,
  919. .cra_blocksize = AES_BLOCK_SIZE,
  920. .cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
  921. .cra_alignmask = 0,
  922. .cra_init = safexcel_aead_sha1_cra_init,
  923. .cra_exit = safexcel_aead_cra_exit,
  924. .cra_module = THIS_MODULE,
  925. },
  926. },
  927. };
  928. static int safexcel_aead_sha256_cra_init(struct crypto_tfm *tfm)
  929. {
  930. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
  931. safexcel_aead_cra_init(tfm);
  932. ctx->hash_alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA256;
  933. ctx->state_sz = SHA256_DIGEST_SIZE;
  934. return 0;
  935. }
  936. struct safexcel_alg_template safexcel_alg_authenc_hmac_sha256_cbc_aes = {
  937. .type = SAFEXCEL_ALG_TYPE_AEAD,
  938. .engines = EIP97IES | EIP197B | EIP197D,
  939. .alg.aead = {
  940. .setkey = safexcel_aead_aes_setkey,
  941. .encrypt = safexcel_aead_encrypt,
  942. .decrypt = safexcel_aead_decrypt,
  943. .ivsize = AES_BLOCK_SIZE,
  944. .maxauthsize = SHA256_DIGEST_SIZE,
  945. .base = {
  946. .cra_name = "authenc(hmac(sha256),cbc(aes))",
  947. .cra_driver_name = "safexcel-authenc-hmac-sha256-cbc-aes",
  948. .cra_priority = 300,
  949. .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC |
  950. CRYPTO_ALG_KERN_DRIVER_ONLY,
  951. .cra_blocksize = AES_BLOCK_SIZE,
  952. .cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
  953. .cra_alignmask = 0,
  954. .cra_init = safexcel_aead_sha256_cra_init,
  955. .cra_exit = safexcel_aead_cra_exit,
  956. .cra_module = THIS_MODULE,
  957. },
  958. },
  959. };
  960. static int safexcel_aead_sha224_cra_init(struct crypto_tfm *tfm)
  961. {
  962. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
  963. safexcel_aead_cra_init(tfm);
  964. ctx->hash_alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA224;
  965. ctx->state_sz = SHA256_DIGEST_SIZE;
  966. return 0;
  967. }
  968. struct safexcel_alg_template safexcel_alg_authenc_hmac_sha224_cbc_aes = {
  969. .type = SAFEXCEL_ALG_TYPE_AEAD,
  970. .engines = EIP97IES | EIP197B | EIP197D,
  971. .alg.aead = {
  972. .setkey = safexcel_aead_aes_setkey,
  973. .encrypt = safexcel_aead_encrypt,
  974. .decrypt = safexcel_aead_decrypt,
  975. .ivsize = AES_BLOCK_SIZE,
  976. .maxauthsize = SHA224_DIGEST_SIZE,
  977. .base = {
  978. .cra_name = "authenc(hmac(sha224),cbc(aes))",
  979. .cra_driver_name = "safexcel-authenc-hmac-sha224-cbc-aes",
  980. .cra_priority = 300,
  981. .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC |
  982. CRYPTO_ALG_KERN_DRIVER_ONLY,
  983. .cra_blocksize = AES_BLOCK_SIZE,
  984. .cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
  985. .cra_alignmask = 0,
  986. .cra_init = safexcel_aead_sha224_cra_init,
  987. .cra_exit = safexcel_aead_cra_exit,
  988. .cra_module = THIS_MODULE,
  989. },
  990. },
  991. };
  992. static int safexcel_aead_sha512_cra_init(struct crypto_tfm *tfm)
  993. {
  994. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
  995. safexcel_aead_cra_init(tfm);
  996. ctx->hash_alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA512;
  997. ctx->state_sz = SHA512_DIGEST_SIZE;
  998. return 0;
  999. }
  1000. struct safexcel_alg_template safexcel_alg_authenc_hmac_sha512_cbc_aes = {
  1001. .type = SAFEXCEL_ALG_TYPE_AEAD,
  1002. .engines = EIP97IES | EIP197B | EIP197D,
  1003. .alg.aead = {
  1004. .setkey = safexcel_aead_aes_setkey,
  1005. .encrypt = safexcel_aead_encrypt,
  1006. .decrypt = safexcel_aead_decrypt,
  1007. .ivsize = AES_BLOCK_SIZE,
  1008. .maxauthsize = SHA512_DIGEST_SIZE,
  1009. .base = {
  1010. .cra_name = "authenc(hmac(sha512),cbc(aes))",
  1011. .cra_driver_name = "safexcel-authenc-hmac-sha512-cbc-aes",
  1012. .cra_priority = 300,
  1013. .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC |
  1014. CRYPTO_ALG_KERN_DRIVER_ONLY,
  1015. .cra_blocksize = AES_BLOCK_SIZE,
  1016. .cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
  1017. .cra_alignmask = 0,
  1018. .cra_init = safexcel_aead_sha512_cra_init,
  1019. .cra_exit = safexcel_aead_cra_exit,
  1020. .cra_module = THIS_MODULE,
  1021. },
  1022. },
  1023. };
  1024. static int safexcel_aead_sha384_cra_init(struct crypto_tfm *tfm)
  1025. {
  1026. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
  1027. safexcel_aead_cra_init(tfm);
  1028. ctx->hash_alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA384;
  1029. ctx->state_sz = SHA512_DIGEST_SIZE;
  1030. return 0;
  1031. }
  1032. struct safexcel_alg_template safexcel_alg_authenc_hmac_sha384_cbc_aes = {
  1033. .type = SAFEXCEL_ALG_TYPE_AEAD,
  1034. .engines = EIP97IES | EIP197B | EIP197D,
  1035. .alg.aead = {
  1036. .setkey = safexcel_aead_aes_setkey,
  1037. .encrypt = safexcel_aead_encrypt,
  1038. .decrypt = safexcel_aead_decrypt,
  1039. .ivsize = AES_BLOCK_SIZE,
  1040. .maxauthsize = SHA384_DIGEST_SIZE,
  1041. .base = {
  1042. .cra_name = "authenc(hmac(sha384),cbc(aes))",
  1043. .cra_driver_name = "safexcel-authenc-hmac-sha384-cbc-aes",
  1044. .cra_priority = 300,
  1045. .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC |
  1046. CRYPTO_ALG_KERN_DRIVER_ONLY,
  1047. .cra_blocksize = AES_BLOCK_SIZE,
  1048. .cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
  1049. .cra_alignmask = 0,
  1050. .cra_init = safexcel_aead_sha384_cra_init,
  1051. .cra_exit = safexcel_aead_cra_exit,
  1052. .cra_module = THIS_MODULE,
  1053. },
  1054. },
  1055. };