fork.c 51 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117
  1. /*
  2. * linux/kernel/fork.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. */
  6. /*
  7. * 'fork.c' contains the help-routines for the 'fork' system call
  8. * (see also entry.S and others).
  9. * Fork is rather simple, once you get the hang of it, but the memory
  10. * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
  11. */
  12. #include <linux/slab.h>
  13. #include <linux/init.h>
  14. #include <linux/unistd.h>
  15. #include <linux/module.h>
  16. #include <linux/vmalloc.h>
  17. #include <linux/completion.h>
  18. #include <linux/personality.h>
  19. #include <linux/mempolicy.h>
  20. #include <linux/sem.h>
  21. #include <linux/file.h>
  22. #include <linux/fdtable.h>
  23. #include <linux/iocontext.h>
  24. #include <linux/key.h>
  25. #include <linux/binfmts.h>
  26. #include <linux/mman.h>
  27. #include <linux/mmu_notifier.h>
  28. #include <linux/fs.h>
  29. #include <linux/mm.h>
  30. #include <linux/vmacache.h>
  31. #include <linux/nsproxy.h>
  32. #include <linux/capability.h>
  33. #include <linux/cpu.h>
  34. #include <linux/cgroup.h>
  35. #include <linux/security.h>
  36. #include <linux/hugetlb.h>
  37. #include <linux/seccomp.h>
  38. #include <linux/swap.h>
  39. #include <linux/syscalls.h>
  40. #include <linux/jiffies.h>
  41. #include <linux/futex.h>
  42. #include <linux/compat.h>
  43. #include <linux/kthread.h>
  44. #include <linux/task_io_accounting_ops.h>
  45. #include <linux/rcupdate.h>
  46. #include <linux/ptrace.h>
  47. #include <linux/mount.h>
  48. #include <linux/audit.h>
  49. #include <linux/memcontrol.h>
  50. #include <linux/ftrace.h>
  51. #include <linux/proc_fs.h>
  52. #include <linux/profile.h>
  53. #include <linux/rmap.h>
  54. #include <linux/ksm.h>
  55. #include <linux/acct.h>
  56. #include <linux/tsacct_kern.h>
  57. #include <linux/cn_proc.h>
  58. #include <linux/freezer.h>
  59. #include <linux/delayacct.h>
  60. #include <linux/taskstats_kern.h>
  61. #include <linux/random.h>
  62. #include <linux/tty.h>
  63. #include <linux/blkdev.h>
  64. #include <linux/fs_struct.h>
  65. #include <linux/magic.h>
  66. #include <linux/perf_event.h>
  67. #include <linux/posix-timers.h>
  68. #include <linux/user-return-notifier.h>
  69. #include <linux/oom.h>
  70. #include <linux/khugepaged.h>
  71. #include <linux/signalfd.h>
  72. #include <linux/uprobes.h>
  73. #include <linux/aio.h>
  74. #include <linux/compiler.h>
  75. #include <linux/sysctl.h>
  76. #include <asm/pgtable.h>
  77. #include <asm/pgalloc.h>
  78. #include <asm/uaccess.h>
  79. #include <asm/mmu_context.h>
  80. #include <asm/cacheflush.h>
  81. #include <asm/tlbflush.h>
  82. #include <trace/events/sched.h>
  83. #define CREATE_TRACE_POINTS
  84. #include <trace/events/task.h>
  85. /*
  86. * Minimum number of threads to boot the kernel
  87. */
  88. #define MIN_THREADS 20
  89. /*
  90. * Maximum number of threads
  91. */
  92. #define MAX_THREADS FUTEX_TID_MASK
  93. /*
  94. * Protected counters by write_lock_irq(&tasklist_lock)
  95. */
  96. unsigned long total_forks; /* Handle normal Linux uptimes. */
  97. int nr_threads; /* The idle threads do not count.. */
  98. int max_threads; /* tunable limit on nr_threads */
  99. DEFINE_PER_CPU(unsigned long, process_counts) = 0;
  100. __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
  101. #ifdef CONFIG_PROVE_RCU
  102. int lockdep_tasklist_lock_is_held(void)
  103. {
  104. return lockdep_is_held(&tasklist_lock);
  105. }
  106. EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
  107. #endif /* #ifdef CONFIG_PROVE_RCU */
  108. int nr_processes(void)
  109. {
  110. int cpu;
  111. int total = 0;
  112. for_each_possible_cpu(cpu)
  113. total += per_cpu(process_counts, cpu);
  114. return total;
  115. }
  116. void __weak arch_release_task_struct(struct task_struct *tsk)
  117. {
  118. }
  119. #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
  120. static struct kmem_cache *task_struct_cachep;
  121. static inline struct task_struct *alloc_task_struct_node(int node)
  122. {
  123. return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
  124. }
  125. static inline void free_task_struct(struct task_struct *tsk)
  126. {
  127. kmem_cache_free(task_struct_cachep, tsk);
  128. }
  129. #endif
  130. void __weak arch_release_thread_info(struct thread_info *ti)
  131. {
  132. }
  133. #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
  134. /*
  135. * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
  136. * kmemcache based allocator.
  137. */
  138. # if THREAD_SIZE >= PAGE_SIZE
  139. static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
  140. int node)
  141. {
  142. struct page *page = alloc_kmem_pages_node(node, THREADINFO_GFP,
  143. THREAD_SIZE_ORDER);
  144. return page ? page_address(page) : NULL;
  145. }
  146. static inline void free_thread_info(struct thread_info *ti)
  147. {
  148. free_kmem_pages((unsigned long)ti, THREAD_SIZE_ORDER);
  149. }
  150. # else
  151. static struct kmem_cache *thread_info_cache;
  152. static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
  153. int node)
  154. {
  155. return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
  156. }
  157. static void free_thread_info(struct thread_info *ti)
  158. {
  159. kmem_cache_free(thread_info_cache, ti);
  160. }
  161. void thread_info_cache_init(void)
  162. {
  163. thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
  164. THREAD_SIZE, 0, NULL);
  165. BUG_ON(thread_info_cache == NULL);
  166. }
  167. # endif
  168. #endif
  169. /* SLAB cache for signal_struct structures (tsk->signal) */
  170. static struct kmem_cache *signal_cachep;
  171. /* SLAB cache for sighand_struct structures (tsk->sighand) */
  172. struct kmem_cache *sighand_cachep;
  173. /* SLAB cache for files_struct structures (tsk->files) */
  174. struct kmem_cache *files_cachep;
  175. /* SLAB cache for fs_struct structures (tsk->fs) */
  176. struct kmem_cache *fs_cachep;
  177. /* SLAB cache for vm_area_struct structures */
  178. struct kmem_cache *vm_area_cachep;
  179. /* SLAB cache for mm_struct structures (tsk->mm) */
  180. static struct kmem_cache *mm_cachep;
  181. static void account_kernel_stack(struct thread_info *ti, int account)
  182. {
  183. struct zone *zone = page_zone(virt_to_page(ti));
  184. mod_zone_page_state(zone, NR_KERNEL_STACK, account);
  185. }
  186. void free_task(struct task_struct *tsk)
  187. {
  188. account_kernel_stack(tsk->stack, -1);
  189. arch_release_thread_info(tsk->stack);
  190. free_thread_info(tsk->stack);
  191. rt_mutex_debug_task_free(tsk);
  192. ftrace_graph_exit_task(tsk);
  193. put_seccomp_filter(tsk);
  194. arch_release_task_struct(tsk);
  195. free_task_struct(tsk);
  196. }
  197. EXPORT_SYMBOL(free_task);
  198. static inline void free_signal_struct(struct signal_struct *sig)
  199. {
  200. taskstats_tgid_free(sig);
  201. sched_autogroup_exit(sig);
  202. kmem_cache_free(signal_cachep, sig);
  203. }
  204. static inline void put_signal_struct(struct signal_struct *sig)
  205. {
  206. if (atomic_dec_and_test(&sig->sigcnt))
  207. free_signal_struct(sig);
  208. }
  209. void __put_task_struct(struct task_struct *tsk)
  210. {
  211. WARN_ON(!tsk->exit_state);
  212. WARN_ON(atomic_read(&tsk->usage));
  213. WARN_ON(tsk == current);
  214. cgroup_free(tsk);
  215. task_numa_free(tsk);
  216. security_task_free(tsk);
  217. exit_creds(tsk);
  218. delayacct_tsk_free(tsk);
  219. put_signal_struct(tsk->signal);
  220. if (!profile_handoff_task(tsk))
  221. free_task(tsk);
  222. }
  223. EXPORT_SYMBOL_GPL(__put_task_struct);
  224. void __init __weak arch_task_cache_init(void) { }
  225. /*
  226. * set_max_threads
  227. */
  228. static void set_max_threads(unsigned int max_threads_suggested)
  229. {
  230. u64 threads;
  231. /*
  232. * The number of threads shall be limited such that the thread
  233. * structures may only consume a small part of the available memory.
  234. */
  235. if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
  236. threads = MAX_THREADS;
  237. else
  238. threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
  239. (u64) THREAD_SIZE * 8UL);
  240. if (threads > max_threads_suggested)
  241. threads = max_threads_suggested;
  242. max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
  243. }
  244. #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
  245. /* Initialized by the architecture: */
  246. int arch_task_struct_size __read_mostly;
  247. #endif
  248. void __init fork_init(void)
  249. {
  250. #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
  251. #ifndef ARCH_MIN_TASKALIGN
  252. #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
  253. #endif
  254. /* create a slab on which task_structs can be allocated */
  255. task_struct_cachep = kmem_cache_create("task_struct",
  256. arch_task_struct_size, ARCH_MIN_TASKALIGN,
  257. SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT, NULL);
  258. #endif
  259. /* do the arch specific task caches init */
  260. arch_task_cache_init();
  261. set_max_threads(MAX_THREADS);
  262. init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
  263. init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
  264. init_task.signal->rlim[RLIMIT_SIGPENDING] =
  265. init_task.signal->rlim[RLIMIT_NPROC];
  266. }
  267. int __weak arch_dup_task_struct(struct task_struct *dst,
  268. struct task_struct *src)
  269. {
  270. *dst = *src;
  271. return 0;
  272. }
  273. void set_task_stack_end_magic(struct task_struct *tsk)
  274. {
  275. unsigned long *stackend;
  276. stackend = end_of_stack(tsk);
  277. *stackend = STACK_END_MAGIC; /* for overflow detection */
  278. }
  279. static struct task_struct *dup_task_struct(struct task_struct *orig)
  280. {
  281. struct task_struct *tsk;
  282. struct thread_info *ti;
  283. int node = tsk_fork_get_node(orig);
  284. int err;
  285. tsk = alloc_task_struct_node(node);
  286. if (!tsk)
  287. return NULL;
  288. ti = alloc_thread_info_node(tsk, node);
  289. if (!ti)
  290. goto free_tsk;
  291. err = arch_dup_task_struct(tsk, orig);
  292. if (err)
  293. goto free_ti;
  294. tsk->stack = ti;
  295. #ifdef CONFIG_SECCOMP
  296. /*
  297. * We must handle setting up seccomp filters once we're under
  298. * the sighand lock in case orig has changed between now and
  299. * then. Until then, filter must be NULL to avoid messing up
  300. * the usage counts on the error path calling free_task.
  301. */
  302. tsk->seccomp.filter = NULL;
  303. #endif
  304. setup_thread_stack(tsk, orig);
  305. clear_user_return_notifier(tsk);
  306. clear_tsk_need_resched(tsk);
  307. set_task_stack_end_magic(tsk);
  308. #ifdef CONFIG_CC_STACKPROTECTOR
  309. tsk->stack_canary = get_random_int();
  310. #endif
  311. /*
  312. * One for us, one for whoever does the "release_task()" (usually
  313. * parent)
  314. */
  315. atomic_set(&tsk->usage, 2);
  316. #ifdef CONFIG_BLK_DEV_IO_TRACE
  317. tsk->btrace_seq = 0;
  318. #endif
  319. tsk->splice_pipe = NULL;
  320. tsk->task_frag.page = NULL;
  321. tsk->wake_q.next = NULL;
  322. account_kernel_stack(ti, 1);
  323. return tsk;
  324. free_ti:
  325. free_thread_info(ti);
  326. free_tsk:
  327. free_task_struct(tsk);
  328. return NULL;
  329. }
  330. #ifdef CONFIG_MMU
  331. static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
  332. {
  333. struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
  334. struct rb_node **rb_link, *rb_parent;
  335. int retval;
  336. unsigned long charge;
  337. uprobe_start_dup_mmap();
  338. down_write(&oldmm->mmap_sem);
  339. flush_cache_dup_mm(oldmm);
  340. uprobe_dup_mmap(oldmm, mm);
  341. /*
  342. * Not linked in yet - no deadlock potential:
  343. */
  344. down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
  345. /* No ordering required: file already has been exposed. */
  346. RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
  347. mm->total_vm = oldmm->total_vm;
  348. mm->data_vm = oldmm->data_vm;
  349. mm->exec_vm = oldmm->exec_vm;
  350. mm->stack_vm = oldmm->stack_vm;
  351. rb_link = &mm->mm_rb.rb_node;
  352. rb_parent = NULL;
  353. pprev = &mm->mmap;
  354. retval = ksm_fork(mm, oldmm);
  355. if (retval)
  356. goto out;
  357. retval = khugepaged_fork(mm, oldmm);
  358. if (retval)
  359. goto out;
  360. prev = NULL;
  361. for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
  362. struct file *file;
  363. if (mpnt->vm_flags & VM_DONTCOPY) {
  364. vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
  365. continue;
  366. }
  367. charge = 0;
  368. if (mpnt->vm_flags & VM_ACCOUNT) {
  369. unsigned long len = vma_pages(mpnt);
  370. if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
  371. goto fail_nomem;
  372. charge = len;
  373. }
  374. tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
  375. if (!tmp)
  376. goto fail_nomem;
  377. *tmp = *mpnt;
  378. INIT_LIST_HEAD(&tmp->anon_vma_chain);
  379. retval = vma_dup_policy(mpnt, tmp);
  380. if (retval)
  381. goto fail_nomem_policy;
  382. tmp->vm_mm = mm;
  383. if (anon_vma_fork(tmp, mpnt))
  384. goto fail_nomem_anon_vma_fork;
  385. tmp->vm_flags &=
  386. ~(VM_LOCKED|VM_LOCKONFAULT|VM_UFFD_MISSING|VM_UFFD_WP);
  387. tmp->vm_next = tmp->vm_prev = NULL;
  388. tmp->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
  389. file = tmp->vm_file;
  390. if (file) {
  391. struct inode *inode = file_inode(file);
  392. struct address_space *mapping = file->f_mapping;
  393. get_file(file);
  394. if (tmp->vm_flags & VM_DENYWRITE)
  395. atomic_dec(&inode->i_writecount);
  396. i_mmap_lock_write(mapping);
  397. if (tmp->vm_flags & VM_SHARED)
  398. atomic_inc(&mapping->i_mmap_writable);
  399. flush_dcache_mmap_lock(mapping);
  400. /* insert tmp into the share list, just after mpnt */
  401. vma_interval_tree_insert_after(tmp, mpnt,
  402. &mapping->i_mmap);
  403. flush_dcache_mmap_unlock(mapping);
  404. i_mmap_unlock_write(mapping);
  405. }
  406. /*
  407. * Clear hugetlb-related page reserves for children. This only
  408. * affects MAP_PRIVATE mappings. Faults generated by the child
  409. * are not guaranteed to succeed, even if read-only
  410. */
  411. if (is_vm_hugetlb_page(tmp))
  412. reset_vma_resv_huge_pages(tmp);
  413. /*
  414. * Link in the new vma and copy the page table entries.
  415. */
  416. *pprev = tmp;
  417. pprev = &tmp->vm_next;
  418. tmp->vm_prev = prev;
  419. prev = tmp;
  420. __vma_link_rb(mm, tmp, rb_link, rb_parent);
  421. rb_link = &tmp->vm_rb.rb_right;
  422. rb_parent = &tmp->vm_rb;
  423. mm->map_count++;
  424. retval = copy_page_range(mm, oldmm, mpnt);
  425. if (tmp->vm_ops && tmp->vm_ops->open)
  426. tmp->vm_ops->open(tmp);
  427. if (retval)
  428. goto out;
  429. }
  430. /* a new mm has just been created */
  431. arch_dup_mmap(oldmm, mm);
  432. retval = 0;
  433. out:
  434. up_write(&mm->mmap_sem);
  435. flush_tlb_mm(oldmm);
  436. up_write(&oldmm->mmap_sem);
  437. uprobe_end_dup_mmap();
  438. return retval;
  439. fail_nomem_anon_vma_fork:
  440. mpol_put(vma_policy(tmp));
  441. fail_nomem_policy:
  442. kmem_cache_free(vm_area_cachep, tmp);
  443. fail_nomem:
  444. retval = -ENOMEM;
  445. vm_unacct_memory(charge);
  446. goto out;
  447. }
  448. static inline int mm_alloc_pgd(struct mm_struct *mm)
  449. {
  450. mm->pgd = pgd_alloc(mm);
  451. if (unlikely(!mm->pgd))
  452. return -ENOMEM;
  453. return 0;
  454. }
  455. static inline void mm_free_pgd(struct mm_struct *mm)
  456. {
  457. pgd_free(mm, mm->pgd);
  458. }
  459. #else
  460. static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
  461. {
  462. down_write(&oldmm->mmap_sem);
  463. RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
  464. up_write(&oldmm->mmap_sem);
  465. return 0;
  466. }
  467. #define mm_alloc_pgd(mm) (0)
  468. #define mm_free_pgd(mm)
  469. #endif /* CONFIG_MMU */
  470. __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
  471. #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
  472. #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
  473. static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
  474. static int __init coredump_filter_setup(char *s)
  475. {
  476. default_dump_filter =
  477. (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
  478. MMF_DUMP_FILTER_MASK;
  479. return 1;
  480. }
  481. __setup("coredump_filter=", coredump_filter_setup);
  482. #include <linux/init_task.h>
  483. static void mm_init_aio(struct mm_struct *mm)
  484. {
  485. #ifdef CONFIG_AIO
  486. spin_lock_init(&mm->ioctx_lock);
  487. mm->ioctx_table = NULL;
  488. #endif
  489. }
  490. static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
  491. {
  492. #ifdef CONFIG_MEMCG
  493. mm->owner = p;
  494. #endif
  495. }
  496. static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
  497. {
  498. mm->mmap = NULL;
  499. mm->mm_rb = RB_ROOT;
  500. mm->vmacache_seqnum = 0;
  501. atomic_set(&mm->mm_users, 1);
  502. atomic_set(&mm->mm_count, 1);
  503. init_rwsem(&mm->mmap_sem);
  504. INIT_LIST_HEAD(&mm->mmlist);
  505. mm->core_state = NULL;
  506. atomic_long_set(&mm->nr_ptes, 0);
  507. mm_nr_pmds_init(mm);
  508. mm->map_count = 0;
  509. mm->locked_vm = 0;
  510. mm->pinned_vm = 0;
  511. memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
  512. spin_lock_init(&mm->page_table_lock);
  513. mm_init_cpumask(mm);
  514. mm_init_aio(mm);
  515. mm_init_owner(mm, p);
  516. mmu_notifier_mm_init(mm);
  517. clear_tlb_flush_pending(mm);
  518. #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
  519. mm->pmd_huge_pte = NULL;
  520. #endif
  521. if (current->mm) {
  522. mm->flags = current->mm->flags & MMF_INIT_MASK;
  523. mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
  524. } else {
  525. mm->flags = default_dump_filter;
  526. mm->def_flags = 0;
  527. }
  528. if (mm_alloc_pgd(mm))
  529. goto fail_nopgd;
  530. if (init_new_context(p, mm))
  531. goto fail_nocontext;
  532. return mm;
  533. fail_nocontext:
  534. mm_free_pgd(mm);
  535. fail_nopgd:
  536. free_mm(mm);
  537. return NULL;
  538. }
  539. static void check_mm(struct mm_struct *mm)
  540. {
  541. int i;
  542. for (i = 0; i < NR_MM_COUNTERS; i++) {
  543. long x = atomic_long_read(&mm->rss_stat.count[i]);
  544. if (unlikely(x))
  545. printk(KERN_ALERT "BUG: Bad rss-counter state "
  546. "mm:%p idx:%d val:%ld\n", mm, i, x);
  547. }
  548. if (atomic_long_read(&mm->nr_ptes))
  549. pr_alert("BUG: non-zero nr_ptes on freeing mm: %ld\n",
  550. atomic_long_read(&mm->nr_ptes));
  551. if (mm_nr_pmds(mm))
  552. pr_alert("BUG: non-zero nr_pmds on freeing mm: %ld\n",
  553. mm_nr_pmds(mm));
  554. #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
  555. VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
  556. #endif
  557. }
  558. /*
  559. * Allocate and initialize an mm_struct.
  560. */
  561. struct mm_struct *mm_alloc(void)
  562. {
  563. struct mm_struct *mm;
  564. mm = allocate_mm();
  565. if (!mm)
  566. return NULL;
  567. memset(mm, 0, sizeof(*mm));
  568. return mm_init(mm, current);
  569. }
  570. /*
  571. * Called when the last reference to the mm
  572. * is dropped: either by a lazy thread or by
  573. * mmput. Free the page directory and the mm.
  574. */
  575. void __mmdrop(struct mm_struct *mm)
  576. {
  577. BUG_ON(mm == &init_mm);
  578. mm_free_pgd(mm);
  579. destroy_context(mm);
  580. mmu_notifier_mm_destroy(mm);
  581. check_mm(mm);
  582. free_mm(mm);
  583. }
  584. EXPORT_SYMBOL_GPL(__mmdrop);
  585. /*
  586. * Decrement the use count and release all resources for an mm.
  587. */
  588. void mmput(struct mm_struct *mm)
  589. {
  590. might_sleep();
  591. if (atomic_dec_and_test(&mm->mm_users)) {
  592. uprobe_clear_state(mm);
  593. exit_aio(mm);
  594. ksm_exit(mm);
  595. khugepaged_exit(mm); /* must run before exit_mmap */
  596. exit_mmap(mm);
  597. set_mm_exe_file(mm, NULL);
  598. if (!list_empty(&mm->mmlist)) {
  599. spin_lock(&mmlist_lock);
  600. list_del(&mm->mmlist);
  601. spin_unlock(&mmlist_lock);
  602. }
  603. if (mm->binfmt)
  604. module_put(mm->binfmt->module);
  605. mmdrop(mm);
  606. }
  607. }
  608. EXPORT_SYMBOL_GPL(mmput);
  609. /**
  610. * set_mm_exe_file - change a reference to the mm's executable file
  611. *
  612. * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
  613. *
  614. * Main users are mmput() and sys_execve(). Callers prevent concurrent
  615. * invocations: in mmput() nobody alive left, in execve task is single
  616. * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
  617. * mm->exe_file, but does so without using set_mm_exe_file() in order
  618. * to do avoid the need for any locks.
  619. */
  620. void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
  621. {
  622. struct file *old_exe_file;
  623. /*
  624. * It is safe to dereference the exe_file without RCU as
  625. * this function is only called if nobody else can access
  626. * this mm -- see comment above for justification.
  627. */
  628. old_exe_file = rcu_dereference_raw(mm->exe_file);
  629. if (new_exe_file)
  630. get_file(new_exe_file);
  631. rcu_assign_pointer(mm->exe_file, new_exe_file);
  632. if (old_exe_file)
  633. fput(old_exe_file);
  634. }
  635. /**
  636. * get_mm_exe_file - acquire a reference to the mm's executable file
  637. *
  638. * Returns %NULL if mm has no associated executable file.
  639. * User must release file via fput().
  640. */
  641. struct file *get_mm_exe_file(struct mm_struct *mm)
  642. {
  643. struct file *exe_file;
  644. rcu_read_lock();
  645. exe_file = rcu_dereference(mm->exe_file);
  646. if (exe_file && !get_file_rcu(exe_file))
  647. exe_file = NULL;
  648. rcu_read_unlock();
  649. return exe_file;
  650. }
  651. EXPORT_SYMBOL(get_mm_exe_file);
  652. /**
  653. * get_task_mm - acquire a reference to the task's mm
  654. *
  655. * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
  656. * this kernel workthread has transiently adopted a user mm with use_mm,
  657. * to do its AIO) is not set and if so returns a reference to it, after
  658. * bumping up the use count. User must release the mm via mmput()
  659. * after use. Typically used by /proc and ptrace.
  660. */
  661. struct mm_struct *get_task_mm(struct task_struct *task)
  662. {
  663. struct mm_struct *mm;
  664. task_lock(task);
  665. mm = task->mm;
  666. if (mm) {
  667. if (task->flags & PF_KTHREAD)
  668. mm = NULL;
  669. else
  670. atomic_inc(&mm->mm_users);
  671. }
  672. task_unlock(task);
  673. return mm;
  674. }
  675. EXPORT_SYMBOL_GPL(get_task_mm);
  676. struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
  677. {
  678. struct mm_struct *mm;
  679. int err;
  680. err = mutex_lock_killable(&task->signal->cred_guard_mutex);
  681. if (err)
  682. return ERR_PTR(err);
  683. mm = get_task_mm(task);
  684. if (mm && mm != current->mm &&
  685. !ptrace_may_access(task, mode)) {
  686. mmput(mm);
  687. mm = ERR_PTR(-EACCES);
  688. }
  689. mutex_unlock(&task->signal->cred_guard_mutex);
  690. return mm;
  691. }
  692. static void complete_vfork_done(struct task_struct *tsk)
  693. {
  694. struct completion *vfork;
  695. task_lock(tsk);
  696. vfork = tsk->vfork_done;
  697. if (likely(vfork)) {
  698. tsk->vfork_done = NULL;
  699. complete(vfork);
  700. }
  701. task_unlock(tsk);
  702. }
  703. static int wait_for_vfork_done(struct task_struct *child,
  704. struct completion *vfork)
  705. {
  706. int killed;
  707. freezer_do_not_count();
  708. killed = wait_for_completion_killable(vfork);
  709. freezer_count();
  710. if (killed) {
  711. task_lock(child);
  712. child->vfork_done = NULL;
  713. task_unlock(child);
  714. }
  715. put_task_struct(child);
  716. return killed;
  717. }
  718. /* Please note the differences between mmput and mm_release.
  719. * mmput is called whenever we stop holding onto a mm_struct,
  720. * error success whatever.
  721. *
  722. * mm_release is called after a mm_struct has been removed
  723. * from the current process.
  724. *
  725. * This difference is important for error handling, when we
  726. * only half set up a mm_struct for a new process and need to restore
  727. * the old one. Because we mmput the new mm_struct before
  728. * restoring the old one. . .
  729. * Eric Biederman 10 January 1998
  730. */
  731. void mm_release(struct task_struct *tsk, struct mm_struct *mm)
  732. {
  733. /* Get rid of any futexes when releasing the mm */
  734. #ifdef CONFIG_FUTEX
  735. if (unlikely(tsk->robust_list)) {
  736. exit_robust_list(tsk);
  737. tsk->robust_list = NULL;
  738. }
  739. #ifdef CONFIG_COMPAT
  740. if (unlikely(tsk->compat_robust_list)) {
  741. compat_exit_robust_list(tsk);
  742. tsk->compat_robust_list = NULL;
  743. }
  744. #endif
  745. if (unlikely(!list_empty(&tsk->pi_state_list)))
  746. exit_pi_state_list(tsk);
  747. #endif
  748. uprobe_free_utask(tsk);
  749. /* Get rid of any cached register state */
  750. deactivate_mm(tsk, mm);
  751. /*
  752. * If we're exiting normally, clear a user-space tid field if
  753. * requested. We leave this alone when dying by signal, to leave
  754. * the value intact in a core dump, and to save the unnecessary
  755. * trouble, say, a killed vfork parent shouldn't touch this mm.
  756. * Userland only wants this done for a sys_exit.
  757. */
  758. if (tsk->clear_child_tid) {
  759. if (!(tsk->flags & PF_SIGNALED) &&
  760. atomic_read(&mm->mm_users) > 1) {
  761. /*
  762. * We don't check the error code - if userspace has
  763. * not set up a proper pointer then tough luck.
  764. */
  765. put_user(0, tsk->clear_child_tid);
  766. sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
  767. 1, NULL, NULL, 0);
  768. }
  769. tsk->clear_child_tid = NULL;
  770. }
  771. /*
  772. * All done, finally we can wake up parent and return this mm to him.
  773. * Also kthread_stop() uses this completion for synchronization.
  774. */
  775. if (tsk->vfork_done)
  776. complete_vfork_done(tsk);
  777. }
  778. /*
  779. * Allocate a new mm structure and copy contents from the
  780. * mm structure of the passed in task structure.
  781. */
  782. static struct mm_struct *dup_mm(struct task_struct *tsk)
  783. {
  784. struct mm_struct *mm, *oldmm = current->mm;
  785. int err;
  786. mm = allocate_mm();
  787. if (!mm)
  788. goto fail_nomem;
  789. memcpy(mm, oldmm, sizeof(*mm));
  790. if (!mm_init(mm, tsk))
  791. goto fail_nomem;
  792. err = dup_mmap(mm, oldmm);
  793. if (err)
  794. goto free_pt;
  795. mm->hiwater_rss = get_mm_rss(mm);
  796. mm->hiwater_vm = mm->total_vm;
  797. if (mm->binfmt && !try_module_get(mm->binfmt->module))
  798. goto free_pt;
  799. return mm;
  800. free_pt:
  801. /* don't put binfmt in mmput, we haven't got module yet */
  802. mm->binfmt = NULL;
  803. mmput(mm);
  804. fail_nomem:
  805. return NULL;
  806. }
  807. static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
  808. {
  809. struct mm_struct *mm, *oldmm;
  810. int retval;
  811. tsk->min_flt = tsk->maj_flt = 0;
  812. tsk->nvcsw = tsk->nivcsw = 0;
  813. #ifdef CONFIG_DETECT_HUNG_TASK
  814. tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
  815. #endif
  816. tsk->mm = NULL;
  817. tsk->active_mm = NULL;
  818. /*
  819. * Are we cloning a kernel thread?
  820. *
  821. * We need to steal a active VM for that..
  822. */
  823. oldmm = current->mm;
  824. if (!oldmm)
  825. return 0;
  826. /* initialize the new vmacache entries */
  827. vmacache_flush(tsk);
  828. if (clone_flags & CLONE_VM) {
  829. atomic_inc(&oldmm->mm_users);
  830. mm = oldmm;
  831. goto good_mm;
  832. }
  833. retval = -ENOMEM;
  834. mm = dup_mm(tsk);
  835. if (!mm)
  836. goto fail_nomem;
  837. good_mm:
  838. tsk->mm = mm;
  839. tsk->active_mm = mm;
  840. return 0;
  841. fail_nomem:
  842. return retval;
  843. }
  844. static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
  845. {
  846. struct fs_struct *fs = current->fs;
  847. if (clone_flags & CLONE_FS) {
  848. /* tsk->fs is already what we want */
  849. spin_lock(&fs->lock);
  850. if (fs->in_exec) {
  851. spin_unlock(&fs->lock);
  852. return -EAGAIN;
  853. }
  854. fs->users++;
  855. spin_unlock(&fs->lock);
  856. return 0;
  857. }
  858. tsk->fs = copy_fs_struct(fs);
  859. if (!tsk->fs)
  860. return -ENOMEM;
  861. return 0;
  862. }
  863. static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
  864. {
  865. struct files_struct *oldf, *newf;
  866. int error = 0;
  867. /*
  868. * A background process may not have any files ...
  869. */
  870. oldf = current->files;
  871. if (!oldf)
  872. goto out;
  873. if (clone_flags & CLONE_FILES) {
  874. atomic_inc(&oldf->count);
  875. goto out;
  876. }
  877. newf = dup_fd(oldf, &error);
  878. if (!newf)
  879. goto out;
  880. tsk->files = newf;
  881. error = 0;
  882. out:
  883. return error;
  884. }
  885. static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
  886. {
  887. #ifdef CONFIG_BLOCK
  888. struct io_context *ioc = current->io_context;
  889. struct io_context *new_ioc;
  890. if (!ioc)
  891. return 0;
  892. /*
  893. * Share io context with parent, if CLONE_IO is set
  894. */
  895. if (clone_flags & CLONE_IO) {
  896. ioc_task_link(ioc);
  897. tsk->io_context = ioc;
  898. } else if (ioprio_valid(ioc->ioprio)) {
  899. new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
  900. if (unlikely(!new_ioc))
  901. return -ENOMEM;
  902. new_ioc->ioprio = ioc->ioprio;
  903. put_io_context(new_ioc);
  904. }
  905. #endif
  906. return 0;
  907. }
  908. static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
  909. {
  910. struct sighand_struct *sig;
  911. if (clone_flags & CLONE_SIGHAND) {
  912. atomic_inc(&current->sighand->count);
  913. return 0;
  914. }
  915. sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
  916. rcu_assign_pointer(tsk->sighand, sig);
  917. if (!sig)
  918. return -ENOMEM;
  919. atomic_set(&sig->count, 1);
  920. memcpy(sig->action, current->sighand->action, sizeof(sig->action));
  921. return 0;
  922. }
  923. void __cleanup_sighand(struct sighand_struct *sighand)
  924. {
  925. if (atomic_dec_and_test(&sighand->count)) {
  926. signalfd_cleanup(sighand);
  927. /*
  928. * sighand_cachep is SLAB_DESTROY_BY_RCU so we can free it
  929. * without an RCU grace period, see __lock_task_sighand().
  930. */
  931. kmem_cache_free(sighand_cachep, sighand);
  932. }
  933. }
  934. /*
  935. * Initialize POSIX timer handling for a thread group.
  936. */
  937. static void posix_cpu_timers_init_group(struct signal_struct *sig)
  938. {
  939. unsigned long cpu_limit;
  940. cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
  941. if (cpu_limit != RLIM_INFINITY) {
  942. sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
  943. sig->cputimer.running = true;
  944. }
  945. /* The timer lists. */
  946. INIT_LIST_HEAD(&sig->cpu_timers[0]);
  947. INIT_LIST_HEAD(&sig->cpu_timers[1]);
  948. INIT_LIST_HEAD(&sig->cpu_timers[2]);
  949. }
  950. static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
  951. {
  952. struct signal_struct *sig;
  953. if (clone_flags & CLONE_THREAD)
  954. return 0;
  955. sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
  956. tsk->signal = sig;
  957. if (!sig)
  958. return -ENOMEM;
  959. sig->nr_threads = 1;
  960. atomic_set(&sig->live, 1);
  961. atomic_set(&sig->sigcnt, 1);
  962. /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
  963. sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
  964. tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
  965. init_waitqueue_head(&sig->wait_chldexit);
  966. sig->curr_target = tsk;
  967. init_sigpending(&sig->shared_pending);
  968. INIT_LIST_HEAD(&sig->posix_timers);
  969. seqlock_init(&sig->stats_lock);
  970. prev_cputime_init(&sig->prev_cputime);
  971. hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  972. sig->real_timer.function = it_real_fn;
  973. task_lock(current->group_leader);
  974. memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
  975. task_unlock(current->group_leader);
  976. posix_cpu_timers_init_group(sig);
  977. tty_audit_fork(sig);
  978. sched_autogroup_fork(sig);
  979. sig->oom_score_adj = current->signal->oom_score_adj;
  980. sig->oom_score_adj_min = current->signal->oom_score_adj_min;
  981. sig->has_child_subreaper = current->signal->has_child_subreaper ||
  982. current->signal->is_child_subreaper;
  983. mutex_init(&sig->cred_guard_mutex);
  984. return 0;
  985. }
  986. static void copy_seccomp(struct task_struct *p)
  987. {
  988. #ifdef CONFIG_SECCOMP
  989. /*
  990. * Must be called with sighand->lock held, which is common to
  991. * all threads in the group. Holding cred_guard_mutex is not
  992. * needed because this new task is not yet running and cannot
  993. * be racing exec.
  994. */
  995. assert_spin_locked(&current->sighand->siglock);
  996. /* Ref-count the new filter user, and assign it. */
  997. get_seccomp_filter(current);
  998. p->seccomp = current->seccomp;
  999. /*
  1000. * Explicitly enable no_new_privs here in case it got set
  1001. * between the task_struct being duplicated and holding the
  1002. * sighand lock. The seccomp state and nnp must be in sync.
  1003. */
  1004. if (task_no_new_privs(current))
  1005. task_set_no_new_privs(p);
  1006. /*
  1007. * If the parent gained a seccomp mode after copying thread
  1008. * flags and between before we held the sighand lock, we have
  1009. * to manually enable the seccomp thread flag here.
  1010. */
  1011. if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
  1012. set_tsk_thread_flag(p, TIF_SECCOMP);
  1013. #endif
  1014. }
  1015. SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
  1016. {
  1017. current->clear_child_tid = tidptr;
  1018. return task_pid_vnr(current);
  1019. }
  1020. static void rt_mutex_init_task(struct task_struct *p)
  1021. {
  1022. raw_spin_lock_init(&p->pi_lock);
  1023. #ifdef CONFIG_RT_MUTEXES
  1024. p->pi_waiters = RB_ROOT;
  1025. p->pi_waiters_leftmost = NULL;
  1026. p->pi_blocked_on = NULL;
  1027. #endif
  1028. }
  1029. /*
  1030. * Initialize POSIX timer handling for a single task.
  1031. */
  1032. static void posix_cpu_timers_init(struct task_struct *tsk)
  1033. {
  1034. tsk->cputime_expires.prof_exp = 0;
  1035. tsk->cputime_expires.virt_exp = 0;
  1036. tsk->cputime_expires.sched_exp = 0;
  1037. INIT_LIST_HEAD(&tsk->cpu_timers[0]);
  1038. INIT_LIST_HEAD(&tsk->cpu_timers[1]);
  1039. INIT_LIST_HEAD(&tsk->cpu_timers[2]);
  1040. }
  1041. static inline void
  1042. init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
  1043. {
  1044. task->pids[type].pid = pid;
  1045. }
  1046. /*
  1047. * This creates a new process as a copy of the old one,
  1048. * but does not actually start it yet.
  1049. *
  1050. * It copies the registers, and all the appropriate
  1051. * parts of the process environment (as per the clone
  1052. * flags). The actual kick-off is left to the caller.
  1053. */
  1054. static struct task_struct *copy_process(unsigned long clone_flags,
  1055. unsigned long stack_start,
  1056. unsigned long stack_size,
  1057. int __user *child_tidptr,
  1058. struct pid *pid,
  1059. int trace,
  1060. unsigned long tls)
  1061. {
  1062. int retval;
  1063. struct task_struct *p;
  1064. if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
  1065. return ERR_PTR(-EINVAL);
  1066. if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
  1067. return ERR_PTR(-EINVAL);
  1068. /*
  1069. * Thread groups must share signals as well, and detached threads
  1070. * can only be started up within the thread group.
  1071. */
  1072. if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
  1073. return ERR_PTR(-EINVAL);
  1074. /*
  1075. * Shared signal handlers imply shared VM. By way of the above,
  1076. * thread groups also imply shared VM. Blocking this case allows
  1077. * for various simplifications in other code.
  1078. */
  1079. if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
  1080. return ERR_PTR(-EINVAL);
  1081. /*
  1082. * Siblings of global init remain as zombies on exit since they are
  1083. * not reaped by their parent (swapper). To solve this and to avoid
  1084. * multi-rooted process trees, prevent global and container-inits
  1085. * from creating siblings.
  1086. */
  1087. if ((clone_flags & CLONE_PARENT) &&
  1088. current->signal->flags & SIGNAL_UNKILLABLE)
  1089. return ERR_PTR(-EINVAL);
  1090. /*
  1091. * If the new process will be in a different pid or user namespace
  1092. * do not allow it to share a thread group with the forking task.
  1093. */
  1094. if (clone_flags & CLONE_THREAD) {
  1095. if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
  1096. (task_active_pid_ns(current) !=
  1097. current->nsproxy->pid_ns_for_children))
  1098. return ERR_PTR(-EINVAL);
  1099. }
  1100. retval = security_task_create(clone_flags);
  1101. if (retval)
  1102. goto fork_out;
  1103. retval = -ENOMEM;
  1104. p = dup_task_struct(current);
  1105. if (!p)
  1106. goto fork_out;
  1107. ftrace_graph_init_task(p);
  1108. rt_mutex_init_task(p);
  1109. #ifdef CONFIG_PROVE_LOCKING
  1110. DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
  1111. DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
  1112. #endif
  1113. retval = -EAGAIN;
  1114. if (atomic_read(&p->real_cred->user->processes) >=
  1115. task_rlimit(p, RLIMIT_NPROC)) {
  1116. if (p->real_cred->user != INIT_USER &&
  1117. !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
  1118. goto bad_fork_free;
  1119. }
  1120. current->flags &= ~PF_NPROC_EXCEEDED;
  1121. retval = copy_creds(p, clone_flags);
  1122. if (retval < 0)
  1123. goto bad_fork_free;
  1124. /*
  1125. * If multiple threads are within copy_process(), then this check
  1126. * triggers too late. This doesn't hurt, the check is only there
  1127. * to stop root fork bombs.
  1128. */
  1129. retval = -EAGAIN;
  1130. if (nr_threads >= max_threads)
  1131. goto bad_fork_cleanup_count;
  1132. delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
  1133. p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
  1134. p->flags |= PF_FORKNOEXEC;
  1135. INIT_LIST_HEAD(&p->children);
  1136. INIT_LIST_HEAD(&p->sibling);
  1137. rcu_copy_process(p);
  1138. p->vfork_done = NULL;
  1139. spin_lock_init(&p->alloc_lock);
  1140. init_sigpending(&p->pending);
  1141. p->utime = p->stime = p->gtime = 0;
  1142. p->utimescaled = p->stimescaled = 0;
  1143. prev_cputime_init(&p->prev_cputime);
  1144. #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
  1145. seqcount_init(&p->vtime_seqcount);
  1146. p->vtime_snap = 0;
  1147. p->vtime_snap_whence = VTIME_INACTIVE;
  1148. #endif
  1149. #if defined(SPLIT_RSS_COUNTING)
  1150. memset(&p->rss_stat, 0, sizeof(p->rss_stat));
  1151. #endif
  1152. p->default_timer_slack_ns = current->timer_slack_ns;
  1153. task_io_accounting_init(&p->ioac);
  1154. acct_clear_integrals(p);
  1155. posix_cpu_timers_init(p);
  1156. p->start_time = ktime_get_ns();
  1157. p->real_start_time = ktime_get_boot_ns();
  1158. p->io_context = NULL;
  1159. p->audit_context = NULL;
  1160. threadgroup_change_begin(current);
  1161. cgroup_fork(p);
  1162. #ifdef CONFIG_NUMA
  1163. p->mempolicy = mpol_dup(p->mempolicy);
  1164. if (IS_ERR(p->mempolicy)) {
  1165. retval = PTR_ERR(p->mempolicy);
  1166. p->mempolicy = NULL;
  1167. goto bad_fork_cleanup_threadgroup_lock;
  1168. }
  1169. #endif
  1170. #ifdef CONFIG_CPUSETS
  1171. p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
  1172. p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
  1173. seqcount_init(&p->mems_allowed_seq);
  1174. #endif
  1175. #ifdef CONFIG_TRACE_IRQFLAGS
  1176. p->irq_events = 0;
  1177. p->hardirqs_enabled = 0;
  1178. p->hardirq_enable_ip = 0;
  1179. p->hardirq_enable_event = 0;
  1180. p->hardirq_disable_ip = _THIS_IP_;
  1181. p->hardirq_disable_event = 0;
  1182. p->softirqs_enabled = 1;
  1183. p->softirq_enable_ip = _THIS_IP_;
  1184. p->softirq_enable_event = 0;
  1185. p->softirq_disable_ip = 0;
  1186. p->softirq_disable_event = 0;
  1187. p->hardirq_context = 0;
  1188. p->softirq_context = 0;
  1189. #endif
  1190. p->pagefault_disabled = 0;
  1191. #ifdef CONFIG_LOCKDEP
  1192. p->lockdep_depth = 0; /* no locks held yet */
  1193. p->curr_chain_key = 0;
  1194. p->lockdep_recursion = 0;
  1195. #endif
  1196. #ifdef CONFIG_DEBUG_MUTEXES
  1197. p->blocked_on = NULL; /* not blocked yet */
  1198. #endif
  1199. #ifdef CONFIG_BCACHE
  1200. p->sequential_io = 0;
  1201. p->sequential_io_avg = 0;
  1202. #endif
  1203. /* Perform scheduler related setup. Assign this task to a CPU. */
  1204. retval = sched_fork(clone_flags, p);
  1205. if (retval)
  1206. goto bad_fork_cleanup_policy;
  1207. retval = perf_event_init_task(p);
  1208. if (retval)
  1209. goto bad_fork_cleanup_policy;
  1210. retval = audit_alloc(p);
  1211. if (retval)
  1212. goto bad_fork_cleanup_perf;
  1213. /* copy all the process information */
  1214. shm_init_task(p);
  1215. retval = copy_semundo(clone_flags, p);
  1216. if (retval)
  1217. goto bad_fork_cleanup_audit;
  1218. retval = copy_files(clone_flags, p);
  1219. if (retval)
  1220. goto bad_fork_cleanup_semundo;
  1221. retval = copy_fs(clone_flags, p);
  1222. if (retval)
  1223. goto bad_fork_cleanup_files;
  1224. retval = copy_sighand(clone_flags, p);
  1225. if (retval)
  1226. goto bad_fork_cleanup_fs;
  1227. retval = copy_signal(clone_flags, p);
  1228. if (retval)
  1229. goto bad_fork_cleanup_sighand;
  1230. retval = copy_mm(clone_flags, p);
  1231. if (retval)
  1232. goto bad_fork_cleanup_signal;
  1233. retval = copy_namespaces(clone_flags, p);
  1234. if (retval)
  1235. goto bad_fork_cleanup_mm;
  1236. retval = copy_io(clone_flags, p);
  1237. if (retval)
  1238. goto bad_fork_cleanup_namespaces;
  1239. retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
  1240. if (retval)
  1241. goto bad_fork_cleanup_io;
  1242. if (pid != &init_struct_pid) {
  1243. pid = alloc_pid(p->nsproxy->pid_ns_for_children);
  1244. if (IS_ERR(pid)) {
  1245. retval = PTR_ERR(pid);
  1246. goto bad_fork_cleanup_io;
  1247. }
  1248. }
  1249. p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
  1250. /*
  1251. * Clear TID on mm_release()?
  1252. */
  1253. p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
  1254. #ifdef CONFIG_BLOCK
  1255. p->plug = NULL;
  1256. #endif
  1257. #ifdef CONFIG_FUTEX
  1258. p->robust_list = NULL;
  1259. #ifdef CONFIG_COMPAT
  1260. p->compat_robust_list = NULL;
  1261. #endif
  1262. INIT_LIST_HEAD(&p->pi_state_list);
  1263. p->pi_state_cache = NULL;
  1264. #endif
  1265. /*
  1266. * sigaltstack should be cleared when sharing the same VM
  1267. */
  1268. if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
  1269. p->sas_ss_sp = p->sas_ss_size = 0;
  1270. /*
  1271. * Syscall tracing and stepping should be turned off in the
  1272. * child regardless of CLONE_PTRACE.
  1273. */
  1274. user_disable_single_step(p);
  1275. clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
  1276. #ifdef TIF_SYSCALL_EMU
  1277. clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
  1278. #endif
  1279. clear_all_latency_tracing(p);
  1280. /* ok, now we should be set up.. */
  1281. p->pid = pid_nr(pid);
  1282. if (clone_flags & CLONE_THREAD) {
  1283. p->exit_signal = -1;
  1284. p->group_leader = current->group_leader;
  1285. p->tgid = current->tgid;
  1286. } else {
  1287. if (clone_flags & CLONE_PARENT)
  1288. p->exit_signal = current->group_leader->exit_signal;
  1289. else
  1290. p->exit_signal = (clone_flags & CSIGNAL);
  1291. p->group_leader = p;
  1292. p->tgid = p->pid;
  1293. }
  1294. p->nr_dirtied = 0;
  1295. p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
  1296. p->dirty_paused_when = 0;
  1297. p->pdeath_signal = 0;
  1298. INIT_LIST_HEAD(&p->thread_group);
  1299. p->task_works = NULL;
  1300. /*
  1301. * Ensure that the cgroup subsystem policies allow the new process to be
  1302. * forked. It should be noted the the new process's css_set can be changed
  1303. * between here and cgroup_post_fork() if an organisation operation is in
  1304. * progress.
  1305. */
  1306. retval = cgroup_can_fork(p);
  1307. if (retval)
  1308. goto bad_fork_free_pid;
  1309. /*
  1310. * Make it visible to the rest of the system, but dont wake it up yet.
  1311. * Need tasklist lock for parent etc handling!
  1312. */
  1313. write_lock_irq(&tasklist_lock);
  1314. /* CLONE_PARENT re-uses the old parent */
  1315. if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
  1316. p->real_parent = current->real_parent;
  1317. p->parent_exec_id = current->parent_exec_id;
  1318. } else {
  1319. p->real_parent = current;
  1320. p->parent_exec_id = current->self_exec_id;
  1321. }
  1322. spin_lock(&current->sighand->siglock);
  1323. /*
  1324. * Copy seccomp details explicitly here, in case they were changed
  1325. * before holding sighand lock.
  1326. */
  1327. copy_seccomp(p);
  1328. /*
  1329. * Process group and session signals need to be delivered to just the
  1330. * parent before the fork or both the parent and the child after the
  1331. * fork. Restart if a signal comes in before we add the new process to
  1332. * it's process group.
  1333. * A fatal signal pending means that current will exit, so the new
  1334. * thread can't slip out of an OOM kill (or normal SIGKILL).
  1335. */
  1336. recalc_sigpending();
  1337. if (signal_pending(current)) {
  1338. spin_unlock(&current->sighand->siglock);
  1339. write_unlock_irq(&tasklist_lock);
  1340. retval = -ERESTARTNOINTR;
  1341. goto bad_fork_cancel_cgroup;
  1342. }
  1343. if (likely(p->pid)) {
  1344. ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
  1345. init_task_pid(p, PIDTYPE_PID, pid);
  1346. if (thread_group_leader(p)) {
  1347. init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
  1348. init_task_pid(p, PIDTYPE_SID, task_session(current));
  1349. if (is_child_reaper(pid)) {
  1350. ns_of_pid(pid)->child_reaper = p;
  1351. p->signal->flags |= SIGNAL_UNKILLABLE;
  1352. }
  1353. p->signal->leader_pid = pid;
  1354. p->signal->tty = tty_kref_get(current->signal->tty);
  1355. list_add_tail(&p->sibling, &p->real_parent->children);
  1356. list_add_tail_rcu(&p->tasks, &init_task.tasks);
  1357. attach_pid(p, PIDTYPE_PGID);
  1358. attach_pid(p, PIDTYPE_SID);
  1359. __this_cpu_inc(process_counts);
  1360. } else {
  1361. current->signal->nr_threads++;
  1362. atomic_inc(&current->signal->live);
  1363. atomic_inc(&current->signal->sigcnt);
  1364. list_add_tail_rcu(&p->thread_group,
  1365. &p->group_leader->thread_group);
  1366. list_add_tail_rcu(&p->thread_node,
  1367. &p->signal->thread_head);
  1368. }
  1369. attach_pid(p, PIDTYPE_PID);
  1370. nr_threads++;
  1371. }
  1372. total_forks++;
  1373. spin_unlock(&current->sighand->siglock);
  1374. syscall_tracepoint_update(p);
  1375. write_unlock_irq(&tasklist_lock);
  1376. proc_fork_connector(p);
  1377. cgroup_post_fork(p);
  1378. threadgroup_change_end(current);
  1379. perf_event_fork(p);
  1380. trace_task_newtask(p, clone_flags);
  1381. uprobe_copy_process(p, clone_flags);
  1382. return p;
  1383. bad_fork_cancel_cgroup:
  1384. cgroup_cancel_fork(p);
  1385. bad_fork_free_pid:
  1386. if (pid != &init_struct_pid)
  1387. free_pid(pid);
  1388. bad_fork_cleanup_io:
  1389. if (p->io_context)
  1390. exit_io_context(p);
  1391. bad_fork_cleanup_namespaces:
  1392. exit_task_namespaces(p);
  1393. bad_fork_cleanup_mm:
  1394. if (p->mm)
  1395. mmput(p->mm);
  1396. bad_fork_cleanup_signal:
  1397. if (!(clone_flags & CLONE_THREAD))
  1398. free_signal_struct(p->signal);
  1399. bad_fork_cleanup_sighand:
  1400. __cleanup_sighand(p->sighand);
  1401. bad_fork_cleanup_fs:
  1402. exit_fs(p); /* blocking */
  1403. bad_fork_cleanup_files:
  1404. exit_files(p); /* blocking */
  1405. bad_fork_cleanup_semundo:
  1406. exit_sem(p);
  1407. bad_fork_cleanup_audit:
  1408. audit_free(p);
  1409. bad_fork_cleanup_perf:
  1410. perf_event_free_task(p);
  1411. bad_fork_cleanup_policy:
  1412. #ifdef CONFIG_NUMA
  1413. mpol_put(p->mempolicy);
  1414. bad_fork_cleanup_threadgroup_lock:
  1415. #endif
  1416. threadgroup_change_end(current);
  1417. delayacct_tsk_free(p);
  1418. bad_fork_cleanup_count:
  1419. atomic_dec(&p->cred->user->processes);
  1420. exit_creds(p);
  1421. bad_fork_free:
  1422. free_task(p);
  1423. fork_out:
  1424. return ERR_PTR(retval);
  1425. }
  1426. static inline void init_idle_pids(struct pid_link *links)
  1427. {
  1428. enum pid_type type;
  1429. for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
  1430. INIT_HLIST_NODE(&links[type].node); /* not really needed */
  1431. links[type].pid = &init_struct_pid;
  1432. }
  1433. }
  1434. struct task_struct *fork_idle(int cpu)
  1435. {
  1436. struct task_struct *task;
  1437. task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0);
  1438. if (!IS_ERR(task)) {
  1439. init_idle_pids(task->pids);
  1440. init_idle(task, cpu);
  1441. }
  1442. return task;
  1443. }
  1444. /*
  1445. * Ok, this is the main fork-routine.
  1446. *
  1447. * It copies the process, and if successful kick-starts
  1448. * it and waits for it to finish using the VM if required.
  1449. */
  1450. long _do_fork(unsigned long clone_flags,
  1451. unsigned long stack_start,
  1452. unsigned long stack_size,
  1453. int __user *parent_tidptr,
  1454. int __user *child_tidptr,
  1455. unsigned long tls)
  1456. {
  1457. struct task_struct *p;
  1458. int trace = 0;
  1459. long nr;
  1460. /*
  1461. * Determine whether and which event to report to ptracer. When
  1462. * called from kernel_thread or CLONE_UNTRACED is explicitly
  1463. * requested, no event is reported; otherwise, report if the event
  1464. * for the type of forking is enabled.
  1465. */
  1466. if (!(clone_flags & CLONE_UNTRACED)) {
  1467. if (clone_flags & CLONE_VFORK)
  1468. trace = PTRACE_EVENT_VFORK;
  1469. else if ((clone_flags & CSIGNAL) != SIGCHLD)
  1470. trace = PTRACE_EVENT_CLONE;
  1471. else
  1472. trace = PTRACE_EVENT_FORK;
  1473. if (likely(!ptrace_event_enabled(current, trace)))
  1474. trace = 0;
  1475. }
  1476. p = copy_process(clone_flags, stack_start, stack_size,
  1477. child_tidptr, NULL, trace, tls);
  1478. /*
  1479. * Do this prior waking up the new thread - the thread pointer
  1480. * might get invalid after that point, if the thread exits quickly.
  1481. */
  1482. if (!IS_ERR(p)) {
  1483. struct completion vfork;
  1484. struct pid *pid;
  1485. trace_sched_process_fork(current, p);
  1486. pid = get_task_pid(p, PIDTYPE_PID);
  1487. nr = pid_vnr(pid);
  1488. if (clone_flags & CLONE_PARENT_SETTID)
  1489. put_user(nr, parent_tidptr);
  1490. if (clone_flags & CLONE_VFORK) {
  1491. p->vfork_done = &vfork;
  1492. init_completion(&vfork);
  1493. get_task_struct(p);
  1494. }
  1495. wake_up_new_task(p);
  1496. /* forking complete and child started to run, tell ptracer */
  1497. if (unlikely(trace))
  1498. ptrace_event_pid(trace, pid);
  1499. if (clone_flags & CLONE_VFORK) {
  1500. if (!wait_for_vfork_done(p, &vfork))
  1501. ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
  1502. }
  1503. put_pid(pid);
  1504. } else {
  1505. nr = PTR_ERR(p);
  1506. }
  1507. return nr;
  1508. }
  1509. #ifndef CONFIG_HAVE_COPY_THREAD_TLS
  1510. /* For compatibility with architectures that call do_fork directly rather than
  1511. * using the syscall entry points below. */
  1512. long do_fork(unsigned long clone_flags,
  1513. unsigned long stack_start,
  1514. unsigned long stack_size,
  1515. int __user *parent_tidptr,
  1516. int __user *child_tidptr)
  1517. {
  1518. return _do_fork(clone_flags, stack_start, stack_size,
  1519. parent_tidptr, child_tidptr, 0);
  1520. }
  1521. #endif
  1522. /*
  1523. * Create a kernel thread.
  1524. */
  1525. pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
  1526. {
  1527. return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
  1528. (unsigned long)arg, NULL, NULL, 0);
  1529. }
  1530. #ifdef __ARCH_WANT_SYS_FORK
  1531. SYSCALL_DEFINE0(fork)
  1532. {
  1533. #ifdef CONFIG_MMU
  1534. return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
  1535. #else
  1536. /* can not support in nommu mode */
  1537. return -EINVAL;
  1538. #endif
  1539. }
  1540. #endif
  1541. #ifdef __ARCH_WANT_SYS_VFORK
  1542. SYSCALL_DEFINE0(vfork)
  1543. {
  1544. return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
  1545. 0, NULL, NULL, 0);
  1546. }
  1547. #endif
  1548. #ifdef __ARCH_WANT_SYS_CLONE
  1549. #ifdef CONFIG_CLONE_BACKWARDS
  1550. SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
  1551. int __user *, parent_tidptr,
  1552. unsigned long, tls,
  1553. int __user *, child_tidptr)
  1554. #elif defined(CONFIG_CLONE_BACKWARDS2)
  1555. SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
  1556. int __user *, parent_tidptr,
  1557. int __user *, child_tidptr,
  1558. unsigned long, tls)
  1559. #elif defined(CONFIG_CLONE_BACKWARDS3)
  1560. SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
  1561. int, stack_size,
  1562. int __user *, parent_tidptr,
  1563. int __user *, child_tidptr,
  1564. unsigned long, tls)
  1565. #else
  1566. SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
  1567. int __user *, parent_tidptr,
  1568. int __user *, child_tidptr,
  1569. unsigned long, tls)
  1570. #endif
  1571. {
  1572. return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
  1573. }
  1574. #endif
  1575. #ifndef ARCH_MIN_MMSTRUCT_ALIGN
  1576. #define ARCH_MIN_MMSTRUCT_ALIGN 0
  1577. #endif
  1578. static void sighand_ctor(void *data)
  1579. {
  1580. struct sighand_struct *sighand = data;
  1581. spin_lock_init(&sighand->siglock);
  1582. init_waitqueue_head(&sighand->signalfd_wqh);
  1583. }
  1584. void __init proc_caches_init(void)
  1585. {
  1586. sighand_cachep = kmem_cache_create("sighand_cache",
  1587. sizeof(struct sighand_struct), 0,
  1588. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
  1589. SLAB_NOTRACK|SLAB_ACCOUNT, sighand_ctor);
  1590. signal_cachep = kmem_cache_create("signal_cache",
  1591. sizeof(struct signal_struct), 0,
  1592. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
  1593. NULL);
  1594. files_cachep = kmem_cache_create("files_cache",
  1595. sizeof(struct files_struct), 0,
  1596. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
  1597. NULL);
  1598. fs_cachep = kmem_cache_create("fs_cache",
  1599. sizeof(struct fs_struct), 0,
  1600. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
  1601. NULL);
  1602. /*
  1603. * FIXME! The "sizeof(struct mm_struct)" currently includes the
  1604. * whole struct cpumask for the OFFSTACK case. We could change
  1605. * this to *only* allocate as much of it as required by the
  1606. * maximum number of CPU's we can ever have. The cpumask_allocation
  1607. * is at the end of the structure, exactly for that reason.
  1608. */
  1609. mm_cachep = kmem_cache_create("mm_struct",
  1610. sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
  1611. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
  1612. NULL);
  1613. vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
  1614. mmap_init();
  1615. nsproxy_cache_init();
  1616. }
  1617. /*
  1618. * Check constraints on flags passed to the unshare system call.
  1619. */
  1620. static int check_unshare_flags(unsigned long unshare_flags)
  1621. {
  1622. if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
  1623. CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
  1624. CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
  1625. CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
  1626. return -EINVAL;
  1627. /*
  1628. * Not implemented, but pretend it works if there is nothing
  1629. * to unshare. Note that unsharing the address space or the
  1630. * signal handlers also need to unshare the signal queues (aka
  1631. * CLONE_THREAD).
  1632. */
  1633. if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
  1634. if (!thread_group_empty(current))
  1635. return -EINVAL;
  1636. }
  1637. if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
  1638. if (atomic_read(&current->sighand->count) > 1)
  1639. return -EINVAL;
  1640. }
  1641. if (unshare_flags & CLONE_VM) {
  1642. if (!current_is_single_threaded())
  1643. return -EINVAL;
  1644. }
  1645. return 0;
  1646. }
  1647. /*
  1648. * Unshare the filesystem structure if it is being shared
  1649. */
  1650. static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
  1651. {
  1652. struct fs_struct *fs = current->fs;
  1653. if (!(unshare_flags & CLONE_FS) || !fs)
  1654. return 0;
  1655. /* don't need lock here; in the worst case we'll do useless copy */
  1656. if (fs->users == 1)
  1657. return 0;
  1658. *new_fsp = copy_fs_struct(fs);
  1659. if (!*new_fsp)
  1660. return -ENOMEM;
  1661. return 0;
  1662. }
  1663. /*
  1664. * Unshare file descriptor table if it is being shared
  1665. */
  1666. static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
  1667. {
  1668. struct files_struct *fd = current->files;
  1669. int error = 0;
  1670. if ((unshare_flags & CLONE_FILES) &&
  1671. (fd && atomic_read(&fd->count) > 1)) {
  1672. *new_fdp = dup_fd(fd, &error);
  1673. if (!*new_fdp)
  1674. return error;
  1675. }
  1676. return 0;
  1677. }
  1678. /*
  1679. * unshare allows a process to 'unshare' part of the process
  1680. * context which was originally shared using clone. copy_*
  1681. * functions used by do_fork() cannot be used here directly
  1682. * because they modify an inactive task_struct that is being
  1683. * constructed. Here we are modifying the current, active,
  1684. * task_struct.
  1685. */
  1686. SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
  1687. {
  1688. struct fs_struct *fs, *new_fs = NULL;
  1689. struct files_struct *fd, *new_fd = NULL;
  1690. struct cred *new_cred = NULL;
  1691. struct nsproxy *new_nsproxy = NULL;
  1692. int do_sysvsem = 0;
  1693. int err;
  1694. /*
  1695. * If unsharing a user namespace must also unshare the thread group
  1696. * and unshare the filesystem root and working directories.
  1697. */
  1698. if (unshare_flags & CLONE_NEWUSER)
  1699. unshare_flags |= CLONE_THREAD | CLONE_FS;
  1700. /*
  1701. * If unsharing vm, must also unshare signal handlers.
  1702. */
  1703. if (unshare_flags & CLONE_VM)
  1704. unshare_flags |= CLONE_SIGHAND;
  1705. /*
  1706. * If unsharing a signal handlers, must also unshare the signal queues.
  1707. */
  1708. if (unshare_flags & CLONE_SIGHAND)
  1709. unshare_flags |= CLONE_THREAD;
  1710. /*
  1711. * If unsharing namespace, must also unshare filesystem information.
  1712. */
  1713. if (unshare_flags & CLONE_NEWNS)
  1714. unshare_flags |= CLONE_FS;
  1715. err = check_unshare_flags(unshare_flags);
  1716. if (err)
  1717. goto bad_unshare_out;
  1718. /*
  1719. * CLONE_NEWIPC must also detach from the undolist: after switching
  1720. * to a new ipc namespace, the semaphore arrays from the old
  1721. * namespace are unreachable.
  1722. */
  1723. if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
  1724. do_sysvsem = 1;
  1725. err = unshare_fs(unshare_flags, &new_fs);
  1726. if (err)
  1727. goto bad_unshare_out;
  1728. err = unshare_fd(unshare_flags, &new_fd);
  1729. if (err)
  1730. goto bad_unshare_cleanup_fs;
  1731. err = unshare_userns(unshare_flags, &new_cred);
  1732. if (err)
  1733. goto bad_unshare_cleanup_fd;
  1734. err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
  1735. new_cred, new_fs);
  1736. if (err)
  1737. goto bad_unshare_cleanup_cred;
  1738. if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
  1739. if (do_sysvsem) {
  1740. /*
  1741. * CLONE_SYSVSEM is equivalent to sys_exit().
  1742. */
  1743. exit_sem(current);
  1744. }
  1745. if (unshare_flags & CLONE_NEWIPC) {
  1746. /* Orphan segments in old ns (see sem above). */
  1747. exit_shm(current);
  1748. shm_init_task(current);
  1749. }
  1750. if (new_nsproxy)
  1751. switch_task_namespaces(current, new_nsproxy);
  1752. task_lock(current);
  1753. if (new_fs) {
  1754. fs = current->fs;
  1755. spin_lock(&fs->lock);
  1756. current->fs = new_fs;
  1757. if (--fs->users)
  1758. new_fs = NULL;
  1759. else
  1760. new_fs = fs;
  1761. spin_unlock(&fs->lock);
  1762. }
  1763. if (new_fd) {
  1764. fd = current->files;
  1765. current->files = new_fd;
  1766. new_fd = fd;
  1767. }
  1768. task_unlock(current);
  1769. if (new_cred) {
  1770. /* Install the new user namespace */
  1771. commit_creds(new_cred);
  1772. new_cred = NULL;
  1773. }
  1774. }
  1775. bad_unshare_cleanup_cred:
  1776. if (new_cred)
  1777. put_cred(new_cred);
  1778. bad_unshare_cleanup_fd:
  1779. if (new_fd)
  1780. put_files_struct(new_fd);
  1781. bad_unshare_cleanup_fs:
  1782. if (new_fs)
  1783. free_fs_struct(new_fs);
  1784. bad_unshare_out:
  1785. return err;
  1786. }
  1787. /*
  1788. * Helper to unshare the files of the current task.
  1789. * We don't want to expose copy_files internals to
  1790. * the exec layer of the kernel.
  1791. */
  1792. int unshare_files(struct files_struct **displaced)
  1793. {
  1794. struct task_struct *task = current;
  1795. struct files_struct *copy = NULL;
  1796. int error;
  1797. error = unshare_fd(CLONE_FILES, &copy);
  1798. if (error || !copy) {
  1799. *displaced = NULL;
  1800. return error;
  1801. }
  1802. *displaced = task->files;
  1803. task_lock(task);
  1804. task->files = copy;
  1805. task_unlock(task);
  1806. return 0;
  1807. }
  1808. int sysctl_max_threads(struct ctl_table *table, int write,
  1809. void __user *buffer, size_t *lenp, loff_t *ppos)
  1810. {
  1811. struct ctl_table t;
  1812. int ret;
  1813. int threads = max_threads;
  1814. int min = MIN_THREADS;
  1815. int max = MAX_THREADS;
  1816. t = *table;
  1817. t.data = &threads;
  1818. t.extra1 = &min;
  1819. t.extra2 = &max;
  1820. ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
  1821. if (ret || !write)
  1822. return ret;
  1823. set_max_threads(threads);
  1824. return 0;
  1825. }