tree.c 127 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105
  1. /*
  2. * Read-Copy Update mechanism for mutual exclusion
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License as published by
  6. * the Free Software Foundation; either version 2 of the License, or
  7. * (at your option) any later version.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, you can access it online at
  16. * http://www.gnu.org/licenses/gpl-2.0.html.
  17. *
  18. * Copyright IBM Corporation, 2008
  19. *
  20. * Authors: Dipankar Sarma <dipankar@in.ibm.com>
  21. * Manfred Spraul <manfred@colorfullife.com>
  22. * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
  23. *
  24. * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
  25. * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
  26. *
  27. * For detailed explanation of Read-Copy Update mechanism see -
  28. * Documentation/RCU
  29. */
  30. #include <linux/types.h>
  31. #include <linux/kernel.h>
  32. #include <linux/init.h>
  33. #include <linux/spinlock.h>
  34. #include <linux/smp.h>
  35. #include <linux/rcupdate.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/sched.h>
  38. #include <linux/nmi.h>
  39. #include <linux/atomic.h>
  40. #include <linux/bitops.h>
  41. #include <linux/export.h>
  42. #include <linux/completion.h>
  43. #include <linux/moduleparam.h>
  44. #include <linux/module.h>
  45. #include <linux/percpu.h>
  46. #include <linux/notifier.h>
  47. #include <linux/cpu.h>
  48. #include <linux/mutex.h>
  49. #include <linux/time.h>
  50. #include <linux/kernel_stat.h>
  51. #include <linux/wait.h>
  52. #include <linux/kthread.h>
  53. #include <linux/prefetch.h>
  54. #include <linux/delay.h>
  55. #include <linux/stop_machine.h>
  56. #include <linux/random.h>
  57. #include <linux/ftrace_event.h>
  58. #include <linux/suspend.h>
  59. #include "tree.h"
  60. #include "rcu.h"
  61. MODULE_ALIAS("rcutree");
  62. #ifdef MODULE_PARAM_PREFIX
  63. #undef MODULE_PARAM_PREFIX
  64. #endif
  65. #define MODULE_PARAM_PREFIX "rcutree."
  66. /* Data structures. */
  67. static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
  68. static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
  69. /*
  70. * In order to export the rcu_state name to the tracing tools, it
  71. * needs to be added in the __tracepoint_string section.
  72. * This requires defining a separate variable tp_<sname>_varname
  73. * that points to the string being used, and this will allow
  74. * the tracing userspace tools to be able to decipher the string
  75. * address to the matching string.
  76. */
  77. #ifdef CONFIG_TRACING
  78. # define DEFINE_RCU_TPS(sname) \
  79. static char sname##_varname[] = #sname; \
  80. static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
  81. # define RCU_STATE_NAME(sname) sname##_varname
  82. #else
  83. # define DEFINE_RCU_TPS(sname)
  84. # define RCU_STATE_NAME(sname) __stringify(sname)
  85. #endif
  86. #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
  87. DEFINE_RCU_TPS(sname) \
  88. struct rcu_state sname##_state = { \
  89. .level = { &sname##_state.node[0] }, \
  90. .call = cr, \
  91. .fqs_state = RCU_GP_IDLE, \
  92. .gpnum = 0UL - 300UL, \
  93. .completed = 0UL - 300UL, \
  94. .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
  95. .orphan_nxttail = &sname##_state.orphan_nxtlist, \
  96. .orphan_donetail = &sname##_state.orphan_donelist, \
  97. .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
  98. .name = RCU_STATE_NAME(sname), \
  99. .abbr = sabbr, \
  100. }; \
  101. DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data)
  102. RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
  103. RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
  104. static struct rcu_state *rcu_state_p;
  105. LIST_HEAD(rcu_struct_flavors);
  106. /* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
  107. static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
  108. module_param(rcu_fanout_leaf, int, 0444);
  109. int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
  110. static int num_rcu_lvl[] = { /* Number of rcu_nodes at specified level. */
  111. NUM_RCU_LVL_0,
  112. NUM_RCU_LVL_1,
  113. NUM_RCU_LVL_2,
  114. NUM_RCU_LVL_3,
  115. NUM_RCU_LVL_4,
  116. };
  117. int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
  118. /*
  119. * The rcu_scheduler_active variable transitions from zero to one just
  120. * before the first task is spawned. So when this variable is zero, RCU
  121. * can assume that there is but one task, allowing RCU to (for example)
  122. * optimize synchronize_sched() to a simple barrier(). When this variable
  123. * is one, RCU must actually do all the hard work required to detect real
  124. * grace periods. This variable is also used to suppress boot-time false
  125. * positives from lockdep-RCU error checking.
  126. */
  127. int rcu_scheduler_active __read_mostly;
  128. EXPORT_SYMBOL_GPL(rcu_scheduler_active);
  129. /*
  130. * The rcu_scheduler_fully_active variable transitions from zero to one
  131. * during the early_initcall() processing, which is after the scheduler
  132. * is capable of creating new tasks. So RCU processing (for example,
  133. * creating tasks for RCU priority boosting) must be delayed until after
  134. * rcu_scheduler_fully_active transitions from zero to one. We also
  135. * currently delay invocation of any RCU callbacks until after this point.
  136. *
  137. * It might later prove better for people registering RCU callbacks during
  138. * early boot to take responsibility for these callbacks, but one step at
  139. * a time.
  140. */
  141. static int rcu_scheduler_fully_active __read_mostly;
  142. static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
  143. static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
  144. static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
  145. static void invoke_rcu_core(void);
  146. static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
  147. /* rcuc/rcub kthread realtime priority */
  148. static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO;
  149. module_param(kthread_prio, int, 0644);
  150. /* Delay in jiffies for grace-period initialization delays. */
  151. static int gp_init_delay = IS_ENABLED(CONFIG_RCU_TORTURE_TEST_SLOW_INIT)
  152. ? CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY
  153. : 0;
  154. module_param(gp_init_delay, int, 0644);
  155. /*
  156. * Track the rcutorture test sequence number and the update version
  157. * number within a given test. The rcutorture_testseq is incremented
  158. * on every rcutorture module load and unload, so has an odd value
  159. * when a test is running. The rcutorture_vernum is set to zero
  160. * when rcutorture starts and is incremented on each rcutorture update.
  161. * These variables enable correlating rcutorture output with the
  162. * RCU tracing information.
  163. */
  164. unsigned long rcutorture_testseq;
  165. unsigned long rcutorture_vernum;
  166. /*
  167. * Compute the mask of online CPUs for the specified rcu_node structure.
  168. * This will not be stable unless the rcu_node structure's ->lock is
  169. * held, but the bit corresponding to the current CPU will be stable
  170. * in most contexts.
  171. */
  172. unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
  173. {
  174. return ACCESS_ONCE(rnp->qsmaskinitnext);
  175. }
  176. /*
  177. * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
  178. * permit this function to be invoked without holding the root rcu_node
  179. * structure's ->lock, but of course results can be subject to change.
  180. */
  181. static int rcu_gp_in_progress(struct rcu_state *rsp)
  182. {
  183. return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
  184. }
  185. /*
  186. * Note a quiescent state. Because we do not need to know
  187. * how many quiescent states passed, just if there was at least
  188. * one since the start of the grace period, this just sets a flag.
  189. * The caller must have disabled preemption.
  190. */
  191. void rcu_sched_qs(void)
  192. {
  193. if (!__this_cpu_read(rcu_sched_data.passed_quiesce)) {
  194. trace_rcu_grace_period(TPS("rcu_sched"),
  195. __this_cpu_read(rcu_sched_data.gpnum),
  196. TPS("cpuqs"));
  197. __this_cpu_write(rcu_sched_data.passed_quiesce, 1);
  198. }
  199. }
  200. void rcu_bh_qs(void)
  201. {
  202. if (!__this_cpu_read(rcu_bh_data.passed_quiesce)) {
  203. trace_rcu_grace_period(TPS("rcu_bh"),
  204. __this_cpu_read(rcu_bh_data.gpnum),
  205. TPS("cpuqs"));
  206. __this_cpu_write(rcu_bh_data.passed_quiesce, 1);
  207. }
  208. }
  209. static DEFINE_PER_CPU(int, rcu_sched_qs_mask);
  210. static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
  211. .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
  212. .dynticks = ATOMIC_INIT(1),
  213. #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
  214. .dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
  215. .dynticks_idle = ATOMIC_INIT(1),
  216. #endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
  217. };
  218. DEFINE_PER_CPU_SHARED_ALIGNED(unsigned long, rcu_qs_ctr);
  219. EXPORT_PER_CPU_SYMBOL_GPL(rcu_qs_ctr);
  220. /*
  221. * Let the RCU core know that this CPU has gone through the scheduler,
  222. * which is a quiescent state. This is called when the need for a
  223. * quiescent state is urgent, so we burn an atomic operation and full
  224. * memory barriers to let the RCU core know about it, regardless of what
  225. * this CPU might (or might not) do in the near future.
  226. *
  227. * We inform the RCU core by emulating a zero-duration dyntick-idle
  228. * period, which we in turn do by incrementing the ->dynticks counter
  229. * by two.
  230. */
  231. static void rcu_momentary_dyntick_idle(void)
  232. {
  233. unsigned long flags;
  234. struct rcu_data *rdp;
  235. struct rcu_dynticks *rdtp;
  236. int resched_mask;
  237. struct rcu_state *rsp;
  238. local_irq_save(flags);
  239. /*
  240. * Yes, we can lose flag-setting operations. This is OK, because
  241. * the flag will be set again after some delay.
  242. */
  243. resched_mask = raw_cpu_read(rcu_sched_qs_mask);
  244. raw_cpu_write(rcu_sched_qs_mask, 0);
  245. /* Find the flavor that needs a quiescent state. */
  246. for_each_rcu_flavor(rsp) {
  247. rdp = raw_cpu_ptr(rsp->rda);
  248. if (!(resched_mask & rsp->flavor_mask))
  249. continue;
  250. smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */
  251. if (ACCESS_ONCE(rdp->mynode->completed) !=
  252. ACCESS_ONCE(rdp->cond_resched_completed))
  253. continue;
  254. /*
  255. * Pretend to be momentarily idle for the quiescent state.
  256. * This allows the grace-period kthread to record the
  257. * quiescent state, with no need for this CPU to do anything
  258. * further.
  259. */
  260. rdtp = this_cpu_ptr(&rcu_dynticks);
  261. smp_mb__before_atomic(); /* Earlier stuff before QS. */
  262. atomic_add(2, &rdtp->dynticks); /* QS. */
  263. smp_mb__after_atomic(); /* Later stuff after QS. */
  264. break;
  265. }
  266. local_irq_restore(flags);
  267. }
  268. /*
  269. * Note a context switch. This is a quiescent state for RCU-sched,
  270. * and requires special handling for preemptible RCU.
  271. * The caller must have disabled preemption.
  272. */
  273. void rcu_note_context_switch(void)
  274. {
  275. trace_rcu_utilization(TPS("Start context switch"));
  276. rcu_sched_qs();
  277. rcu_preempt_note_context_switch();
  278. if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
  279. rcu_momentary_dyntick_idle();
  280. trace_rcu_utilization(TPS("End context switch"));
  281. }
  282. EXPORT_SYMBOL_GPL(rcu_note_context_switch);
  283. /*
  284. * Register a quiesecent state for all RCU flavors. If there is an
  285. * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
  286. * dyntick-idle quiescent state visible to other CPUs (but only for those
  287. * RCU flavors in desparate need of a quiescent state, which will normally
  288. * be none of them). Either way, do a lightweight quiescent state for
  289. * all RCU flavors.
  290. */
  291. void rcu_all_qs(void)
  292. {
  293. if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
  294. rcu_momentary_dyntick_idle();
  295. this_cpu_inc(rcu_qs_ctr);
  296. }
  297. EXPORT_SYMBOL_GPL(rcu_all_qs);
  298. static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */
  299. static long qhimark = 10000; /* If this many pending, ignore blimit. */
  300. static long qlowmark = 100; /* Once only this many pending, use blimit. */
  301. module_param(blimit, long, 0444);
  302. module_param(qhimark, long, 0444);
  303. module_param(qlowmark, long, 0444);
  304. static ulong jiffies_till_first_fqs = ULONG_MAX;
  305. static ulong jiffies_till_next_fqs = ULONG_MAX;
  306. module_param(jiffies_till_first_fqs, ulong, 0644);
  307. module_param(jiffies_till_next_fqs, ulong, 0644);
  308. /*
  309. * How long the grace period must be before we start recruiting
  310. * quiescent-state help from rcu_note_context_switch().
  311. */
  312. static ulong jiffies_till_sched_qs = HZ / 20;
  313. module_param(jiffies_till_sched_qs, ulong, 0644);
  314. static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
  315. struct rcu_data *rdp);
  316. static void force_qs_rnp(struct rcu_state *rsp,
  317. int (*f)(struct rcu_data *rsp, bool *isidle,
  318. unsigned long *maxj),
  319. bool *isidle, unsigned long *maxj);
  320. static void force_quiescent_state(struct rcu_state *rsp);
  321. static int rcu_pending(void);
  322. /*
  323. * Return the number of RCU batches started thus far for debug & stats.
  324. */
  325. unsigned long rcu_batches_started(void)
  326. {
  327. return rcu_state_p->gpnum;
  328. }
  329. EXPORT_SYMBOL_GPL(rcu_batches_started);
  330. /*
  331. * Return the number of RCU-sched batches started thus far for debug & stats.
  332. */
  333. unsigned long rcu_batches_started_sched(void)
  334. {
  335. return rcu_sched_state.gpnum;
  336. }
  337. EXPORT_SYMBOL_GPL(rcu_batches_started_sched);
  338. /*
  339. * Return the number of RCU BH batches started thus far for debug & stats.
  340. */
  341. unsigned long rcu_batches_started_bh(void)
  342. {
  343. return rcu_bh_state.gpnum;
  344. }
  345. EXPORT_SYMBOL_GPL(rcu_batches_started_bh);
  346. /*
  347. * Return the number of RCU batches completed thus far for debug & stats.
  348. */
  349. unsigned long rcu_batches_completed(void)
  350. {
  351. return rcu_state_p->completed;
  352. }
  353. EXPORT_SYMBOL_GPL(rcu_batches_completed);
  354. /*
  355. * Return the number of RCU-sched batches completed thus far for debug & stats.
  356. */
  357. unsigned long rcu_batches_completed_sched(void)
  358. {
  359. return rcu_sched_state.completed;
  360. }
  361. EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
  362. /*
  363. * Return the number of RCU BH batches completed thus far for debug & stats.
  364. */
  365. unsigned long rcu_batches_completed_bh(void)
  366. {
  367. return rcu_bh_state.completed;
  368. }
  369. EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
  370. /*
  371. * Force a quiescent state.
  372. */
  373. void rcu_force_quiescent_state(void)
  374. {
  375. force_quiescent_state(rcu_state_p);
  376. }
  377. EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
  378. /*
  379. * Force a quiescent state for RCU BH.
  380. */
  381. void rcu_bh_force_quiescent_state(void)
  382. {
  383. force_quiescent_state(&rcu_bh_state);
  384. }
  385. EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
  386. /*
  387. * Show the state of the grace-period kthreads.
  388. */
  389. void show_rcu_gp_kthreads(void)
  390. {
  391. struct rcu_state *rsp;
  392. for_each_rcu_flavor(rsp) {
  393. pr_info("%s: wait state: %d ->state: %#lx\n",
  394. rsp->name, rsp->gp_state, rsp->gp_kthread->state);
  395. /* sched_show_task(rsp->gp_kthread); */
  396. }
  397. }
  398. EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
  399. /*
  400. * Record the number of times rcutorture tests have been initiated and
  401. * terminated. This information allows the debugfs tracing stats to be
  402. * correlated to the rcutorture messages, even when the rcutorture module
  403. * is being repeatedly loaded and unloaded. In other words, we cannot
  404. * store this state in rcutorture itself.
  405. */
  406. void rcutorture_record_test_transition(void)
  407. {
  408. rcutorture_testseq++;
  409. rcutorture_vernum = 0;
  410. }
  411. EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
  412. /*
  413. * Send along grace-period-related data for rcutorture diagnostics.
  414. */
  415. void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
  416. unsigned long *gpnum, unsigned long *completed)
  417. {
  418. struct rcu_state *rsp = NULL;
  419. switch (test_type) {
  420. case RCU_FLAVOR:
  421. rsp = rcu_state_p;
  422. break;
  423. case RCU_BH_FLAVOR:
  424. rsp = &rcu_bh_state;
  425. break;
  426. case RCU_SCHED_FLAVOR:
  427. rsp = &rcu_sched_state;
  428. break;
  429. default:
  430. break;
  431. }
  432. if (rsp != NULL) {
  433. *flags = ACCESS_ONCE(rsp->gp_flags);
  434. *gpnum = ACCESS_ONCE(rsp->gpnum);
  435. *completed = ACCESS_ONCE(rsp->completed);
  436. return;
  437. }
  438. *flags = 0;
  439. *gpnum = 0;
  440. *completed = 0;
  441. }
  442. EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
  443. /*
  444. * Record the number of writer passes through the current rcutorture test.
  445. * This is also used to correlate debugfs tracing stats with the rcutorture
  446. * messages.
  447. */
  448. void rcutorture_record_progress(unsigned long vernum)
  449. {
  450. rcutorture_vernum++;
  451. }
  452. EXPORT_SYMBOL_GPL(rcutorture_record_progress);
  453. /*
  454. * Force a quiescent state for RCU-sched.
  455. */
  456. void rcu_sched_force_quiescent_state(void)
  457. {
  458. force_quiescent_state(&rcu_sched_state);
  459. }
  460. EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
  461. /*
  462. * Does the CPU have callbacks ready to be invoked?
  463. */
  464. static int
  465. cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
  466. {
  467. return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
  468. rdp->nxttail[RCU_DONE_TAIL] != NULL;
  469. }
  470. /*
  471. * Return the root node of the specified rcu_state structure.
  472. */
  473. static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
  474. {
  475. return &rsp->node[0];
  476. }
  477. /*
  478. * Is there any need for future grace periods?
  479. * Interrupts must be disabled. If the caller does not hold the root
  480. * rnp_node structure's ->lock, the results are advisory only.
  481. */
  482. static int rcu_future_needs_gp(struct rcu_state *rsp)
  483. {
  484. struct rcu_node *rnp = rcu_get_root(rsp);
  485. int idx = (ACCESS_ONCE(rnp->completed) + 1) & 0x1;
  486. int *fp = &rnp->need_future_gp[idx];
  487. return ACCESS_ONCE(*fp);
  488. }
  489. /*
  490. * Does the current CPU require a not-yet-started grace period?
  491. * The caller must have disabled interrupts to prevent races with
  492. * normal callback registry.
  493. */
  494. static int
  495. cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
  496. {
  497. int i;
  498. if (rcu_gp_in_progress(rsp))
  499. return 0; /* No, a grace period is already in progress. */
  500. if (rcu_future_needs_gp(rsp))
  501. return 1; /* Yes, a no-CBs CPU needs one. */
  502. if (!rdp->nxttail[RCU_NEXT_TAIL])
  503. return 0; /* No, this is a no-CBs (or offline) CPU. */
  504. if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
  505. return 1; /* Yes, this CPU has newly registered callbacks. */
  506. for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
  507. if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
  508. ULONG_CMP_LT(ACCESS_ONCE(rsp->completed),
  509. rdp->nxtcompleted[i]))
  510. return 1; /* Yes, CBs for future grace period. */
  511. return 0; /* No grace period needed. */
  512. }
  513. /*
  514. * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
  515. *
  516. * If the new value of the ->dynticks_nesting counter now is zero,
  517. * we really have entered idle, and must do the appropriate accounting.
  518. * The caller must have disabled interrupts.
  519. */
  520. static void rcu_eqs_enter_common(long long oldval, bool user)
  521. {
  522. struct rcu_state *rsp;
  523. struct rcu_data *rdp;
  524. struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
  525. trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
  526. if (!user && !is_idle_task(current)) {
  527. struct task_struct *idle __maybe_unused =
  528. idle_task(smp_processor_id());
  529. trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
  530. ftrace_dump(DUMP_ORIG);
  531. WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
  532. current->pid, current->comm,
  533. idle->pid, idle->comm); /* must be idle task! */
  534. }
  535. for_each_rcu_flavor(rsp) {
  536. rdp = this_cpu_ptr(rsp->rda);
  537. do_nocb_deferred_wakeup(rdp);
  538. }
  539. rcu_prepare_for_idle();
  540. /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
  541. smp_mb__before_atomic(); /* See above. */
  542. atomic_inc(&rdtp->dynticks);
  543. smp_mb__after_atomic(); /* Force ordering with next sojourn. */
  544. WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
  545. rcu_dynticks_task_enter();
  546. /*
  547. * It is illegal to enter an extended quiescent state while
  548. * in an RCU read-side critical section.
  549. */
  550. rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
  551. "Illegal idle entry in RCU read-side critical section.");
  552. rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
  553. "Illegal idle entry in RCU-bh read-side critical section.");
  554. rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
  555. "Illegal idle entry in RCU-sched read-side critical section.");
  556. }
  557. /*
  558. * Enter an RCU extended quiescent state, which can be either the
  559. * idle loop or adaptive-tickless usermode execution.
  560. */
  561. static void rcu_eqs_enter(bool user)
  562. {
  563. long long oldval;
  564. struct rcu_dynticks *rdtp;
  565. rdtp = this_cpu_ptr(&rcu_dynticks);
  566. oldval = rdtp->dynticks_nesting;
  567. WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
  568. if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
  569. rdtp->dynticks_nesting = 0;
  570. rcu_eqs_enter_common(oldval, user);
  571. } else {
  572. rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
  573. }
  574. }
  575. /**
  576. * rcu_idle_enter - inform RCU that current CPU is entering idle
  577. *
  578. * Enter idle mode, in other words, -leave- the mode in which RCU
  579. * read-side critical sections can occur. (Though RCU read-side
  580. * critical sections can occur in irq handlers in idle, a possibility
  581. * handled by irq_enter() and irq_exit().)
  582. *
  583. * We crowbar the ->dynticks_nesting field to zero to allow for
  584. * the possibility of usermode upcalls having messed up our count
  585. * of interrupt nesting level during the prior busy period.
  586. */
  587. void rcu_idle_enter(void)
  588. {
  589. unsigned long flags;
  590. local_irq_save(flags);
  591. rcu_eqs_enter(false);
  592. rcu_sysidle_enter(0);
  593. local_irq_restore(flags);
  594. }
  595. EXPORT_SYMBOL_GPL(rcu_idle_enter);
  596. #ifdef CONFIG_RCU_USER_QS
  597. /**
  598. * rcu_user_enter - inform RCU that we are resuming userspace.
  599. *
  600. * Enter RCU idle mode right before resuming userspace. No use of RCU
  601. * is permitted between this call and rcu_user_exit(). This way the
  602. * CPU doesn't need to maintain the tick for RCU maintenance purposes
  603. * when the CPU runs in userspace.
  604. */
  605. void rcu_user_enter(void)
  606. {
  607. rcu_eqs_enter(1);
  608. }
  609. #endif /* CONFIG_RCU_USER_QS */
  610. /**
  611. * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
  612. *
  613. * Exit from an interrupt handler, which might possibly result in entering
  614. * idle mode, in other words, leaving the mode in which read-side critical
  615. * sections can occur.
  616. *
  617. * This code assumes that the idle loop never does anything that might
  618. * result in unbalanced calls to irq_enter() and irq_exit(). If your
  619. * architecture violates this assumption, RCU will give you what you
  620. * deserve, good and hard. But very infrequently and irreproducibly.
  621. *
  622. * Use things like work queues to work around this limitation.
  623. *
  624. * You have been warned.
  625. */
  626. void rcu_irq_exit(void)
  627. {
  628. unsigned long flags;
  629. long long oldval;
  630. struct rcu_dynticks *rdtp;
  631. local_irq_save(flags);
  632. rdtp = this_cpu_ptr(&rcu_dynticks);
  633. oldval = rdtp->dynticks_nesting;
  634. rdtp->dynticks_nesting--;
  635. WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
  636. if (rdtp->dynticks_nesting)
  637. trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
  638. else
  639. rcu_eqs_enter_common(oldval, true);
  640. rcu_sysidle_enter(1);
  641. local_irq_restore(flags);
  642. }
  643. /*
  644. * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
  645. *
  646. * If the new value of the ->dynticks_nesting counter was previously zero,
  647. * we really have exited idle, and must do the appropriate accounting.
  648. * The caller must have disabled interrupts.
  649. */
  650. static void rcu_eqs_exit_common(long long oldval, int user)
  651. {
  652. struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
  653. rcu_dynticks_task_exit();
  654. smp_mb__before_atomic(); /* Force ordering w/previous sojourn. */
  655. atomic_inc(&rdtp->dynticks);
  656. /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
  657. smp_mb__after_atomic(); /* See above. */
  658. WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
  659. rcu_cleanup_after_idle();
  660. trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
  661. if (!user && !is_idle_task(current)) {
  662. struct task_struct *idle __maybe_unused =
  663. idle_task(smp_processor_id());
  664. trace_rcu_dyntick(TPS("Error on exit: not idle task"),
  665. oldval, rdtp->dynticks_nesting);
  666. ftrace_dump(DUMP_ORIG);
  667. WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
  668. current->pid, current->comm,
  669. idle->pid, idle->comm); /* must be idle task! */
  670. }
  671. }
  672. /*
  673. * Exit an RCU extended quiescent state, which can be either the
  674. * idle loop or adaptive-tickless usermode execution.
  675. */
  676. static void rcu_eqs_exit(bool user)
  677. {
  678. struct rcu_dynticks *rdtp;
  679. long long oldval;
  680. rdtp = this_cpu_ptr(&rcu_dynticks);
  681. oldval = rdtp->dynticks_nesting;
  682. WARN_ON_ONCE(oldval < 0);
  683. if (oldval & DYNTICK_TASK_NEST_MASK) {
  684. rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
  685. } else {
  686. rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
  687. rcu_eqs_exit_common(oldval, user);
  688. }
  689. }
  690. /**
  691. * rcu_idle_exit - inform RCU that current CPU is leaving idle
  692. *
  693. * Exit idle mode, in other words, -enter- the mode in which RCU
  694. * read-side critical sections can occur.
  695. *
  696. * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
  697. * allow for the possibility of usermode upcalls messing up our count
  698. * of interrupt nesting level during the busy period that is just
  699. * now starting.
  700. */
  701. void rcu_idle_exit(void)
  702. {
  703. unsigned long flags;
  704. local_irq_save(flags);
  705. rcu_eqs_exit(false);
  706. rcu_sysidle_exit(0);
  707. local_irq_restore(flags);
  708. }
  709. EXPORT_SYMBOL_GPL(rcu_idle_exit);
  710. #ifdef CONFIG_RCU_USER_QS
  711. /**
  712. * rcu_user_exit - inform RCU that we are exiting userspace.
  713. *
  714. * Exit RCU idle mode while entering the kernel because it can
  715. * run a RCU read side critical section anytime.
  716. */
  717. void rcu_user_exit(void)
  718. {
  719. rcu_eqs_exit(1);
  720. }
  721. #endif /* CONFIG_RCU_USER_QS */
  722. /**
  723. * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
  724. *
  725. * Enter an interrupt handler, which might possibly result in exiting
  726. * idle mode, in other words, entering the mode in which read-side critical
  727. * sections can occur.
  728. *
  729. * Note that the Linux kernel is fully capable of entering an interrupt
  730. * handler that it never exits, for example when doing upcalls to
  731. * user mode! This code assumes that the idle loop never does upcalls to
  732. * user mode. If your architecture does do upcalls from the idle loop (or
  733. * does anything else that results in unbalanced calls to the irq_enter()
  734. * and irq_exit() functions), RCU will give you what you deserve, good
  735. * and hard. But very infrequently and irreproducibly.
  736. *
  737. * Use things like work queues to work around this limitation.
  738. *
  739. * You have been warned.
  740. */
  741. void rcu_irq_enter(void)
  742. {
  743. unsigned long flags;
  744. struct rcu_dynticks *rdtp;
  745. long long oldval;
  746. local_irq_save(flags);
  747. rdtp = this_cpu_ptr(&rcu_dynticks);
  748. oldval = rdtp->dynticks_nesting;
  749. rdtp->dynticks_nesting++;
  750. WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
  751. if (oldval)
  752. trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
  753. else
  754. rcu_eqs_exit_common(oldval, true);
  755. rcu_sysidle_exit(1);
  756. local_irq_restore(flags);
  757. }
  758. /**
  759. * rcu_nmi_enter - inform RCU of entry to NMI context
  760. *
  761. * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
  762. * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
  763. * that the CPU is active. This implementation permits nested NMIs, as
  764. * long as the nesting level does not overflow an int. (You will probably
  765. * run out of stack space first.)
  766. */
  767. void rcu_nmi_enter(void)
  768. {
  769. struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
  770. int incby = 2;
  771. /* Complain about underflow. */
  772. WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);
  773. /*
  774. * If idle from RCU viewpoint, atomically increment ->dynticks
  775. * to mark non-idle and increment ->dynticks_nmi_nesting by one.
  776. * Otherwise, increment ->dynticks_nmi_nesting by two. This means
  777. * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
  778. * to be in the outermost NMI handler that interrupted an RCU-idle
  779. * period (observation due to Andy Lutomirski).
  780. */
  781. if (!(atomic_read(&rdtp->dynticks) & 0x1)) {
  782. smp_mb__before_atomic(); /* Force delay from prior write. */
  783. atomic_inc(&rdtp->dynticks);
  784. /* atomic_inc() before later RCU read-side crit sects */
  785. smp_mb__after_atomic(); /* See above. */
  786. WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
  787. incby = 1;
  788. }
  789. rdtp->dynticks_nmi_nesting += incby;
  790. barrier();
  791. }
  792. /**
  793. * rcu_nmi_exit - inform RCU of exit from NMI context
  794. *
  795. * If we are returning from the outermost NMI handler that interrupted an
  796. * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
  797. * to let the RCU grace-period handling know that the CPU is back to
  798. * being RCU-idle.
  799. */
  800. void rcu_nmi_exit(void)
  801. {
  802. struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
  803. /*
  804. * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
  805. * (We are exiting an NMI handler, so RCU better be paying attention
  806. * to us!)
  807. */
  808. WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
  809. WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
  810. /*
  811. * If the nesting level is not 1, the CPU wasn't RCU-idle, so
  812. * leave it in non-RCU-idle state.
  813. */
  814. if (rdtp->dynticks_nmi_nesting != 1) {
  815. rdtp->dynticks_nmi_nesting -= 2;
  816. return;
  817. }
  818. /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
  819. rdtp->dynticks_nmi_nesting = 0;
  820. /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
  821. smp_mb__before_atomic(); /* See above. */
  822. atomic_inc(&rdtp->dynticks);
  823. smp_mb__after_atomic(); /* Force delay to next write. */
  824. WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
  825. }
  826. /**
  827. * __rcu_is_watching - are RCU read-side critical sections safe?
  828. *
  829. * Return true if RCU is watching the running CPU, which means that
  830. * this CPU can safely enter RCU read-side critical sections. Unlike
  831. * rcu_is_watching(), the caller of __rcu_is_watching() must have at
  832. * least disabled preemption.
  833. */
  834. bool notrace __rcu_is_watching(void)
  835. {
  836. return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
  837. }
  838. /**
  839. * rcu_is_watching - see if RCU thinks that the current CPU is idle
  840. *
  841. * If the current CPU is in its idle loop and is neither in an interrupt
  842. * or NMI handler, return true.
  843. */
  844. bool notrace rcu_is_watching(void)
  845. {
  846. bool ret;
  847. preempt_disable();
  848. ret = __rcu_is_watching();
  849. preempt_enable();
  850. return ret;
  851. }
  852. EXPORT_SYMBOL_GPL(rcu_is_watching);
  853. #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
  854. /*
  855. * Is the current CPU online? Disable preemption to avoid false positives
  856. * that could otherwise happen due to the current CPU number being sampled,
  857. * this task being preempted, its old CPU being taken offline, resuming
  858. * on some other CPU, then determining that its old CPU is now offline.
  859. * It is OK to use RCU on an offline processor during initial boot, hence
  860. * the check for rcu_scheduler_fully_active. Note also that it is OK
  861. * for a CPU coming online to use RCU for one jiffy prior to marking itself
  862. * online in the cpu_online_mask. Similarly, it is OK for a CPU going
  863. * offline to continue to use RCU for one jiffy after marking itself
  864. * offline in the cpu_online_mask. This leniency is necessary given the
  865. * non-atomic nature of the online and offline processing, for example,
  866. * the fact that a CPU enters the scheduler after completing the CPU_DYING
  867. * notifiers.
  868. *
  869. * This is also why RCU internally marks CPUs online during the
  870. * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
  871. *
  872. * Disable checking if in an NMI handler because we cannot safely report
  873. * errors from NMI handlers anyway.
  874. */
  875. bool rcu_lockdep_current_cpu_online(void)
  876. {
  877. struct rcu_data *rdp;
  878. struct rcu_node *rnp;
  879. bool ret;
  880. if (in_nmi())
  881. return true;
  882. preempt_disable();
  883. rdp = this_cpu_ptr(&rcu_sched_data);
  884. rnp = rdp->mynode;
  885. ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
  886. !rcu_scheduler_fully_active;
  887. preempt_enable();
  888. return ret;
  889. }
  890. EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
  891. #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
  892. /**
  893. * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
  894. *
  895. * If the current CPU is idle or running at a first-level (not nested)
  896. * interrupt from idle, return true. The caller must have at least
  897. * disabled preemption.
  898. */
  899. static int rcu_is_cpu_rrupt_from_idle(void)
  900. {
  901. return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
  902. }
  903. /*
  904. * Snapshot the specified CPU's dynticks counter so that we can later
  905. * credit them with an implicit quiescent state. Return 1 if this CPU
  906. * is in dynticks idle mode, which is an extended quiescent state.
  907. */
  908. static int dyntick_save_progress_counter(struct rcu_data *rdp,
  909. bool *isidle, unsigned long *maxj)
  910. {
  911. rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
  912. rcu_sysidle_check_cpu(rdp, isidle, maxj);
  913. if ((rdp->dynticks_snap & 0x1) == 0) {
  914. trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
  915. return 1;
  916. } else {
  917. if (ULONG_CMP_LT(ACCESS_ONCE(rdp->gpnum) + ULONG_MAX / 4,
  918. rdp->mynode->gpnum))
  919. ACCESS_ONCE(rdp->gpwrap) = true;
  920. return 0;
  921. }
  922. }
  923. /*
  924. * Return true if the specified CPU has passed through a quiescent
  925. * state by virtue of being in or having passed through an dynticks
  926. * idle state since the last call to dyntick_save_progress_counter()
  927. * for this same CPU, or by virtue of having been offline.
  928. */
  929. static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
  930. bool *isidle, unsigned long *maxj)
  931. {
  932. unsigned int curr;
  933. int *rcrmp;
  934. unsigned int snap;
  935. curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
  936. snap = (unsigned int)rdp->dynticks_snap;
  937. /*
  938. * If the CPU passed through or entered a dynticks idle phase with
  939. * no active irq/NMI handlers, then we can safely pretend that the CPU
  940. * already acknowledged the request to pass through a quiescent
  941. * state. Either way, that CPU cannot possibly be in an RCU
  942. * read-side critical section that started before the beginning
  943. * of the current RCU grace period.
  944. */
  945. if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
  946. trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
  947. rdp->dynticks_fqs++;
  948. return 1;
  949. }
  950. /*
  951. * Check for the CPU being offline, but only if the grace period
  952. * is old enough. We don't need to worry about the CPU changing
  953. * state: If we see it offline even once, it has been through a
  954. * quiescent state.
  955. *
  956. * The reason for insisting that the grace period be at least
  957. * one jiffy old is that CPUs that are not quite online and that
  958. * have just gone offline can still execute RCU read-side critical
  959. * sections.
  960. */
  961. if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
  962. return 0; /* Grace period is not old enough. */
  963. barrier();
  964. if (cpu_is_offline(rdp->cpu)) {
  965. trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
  966. rdp->offline_fqs++;
  967. return 1;
  968. }
  969. /*
  970. * A CPU running for an extended time within the kernel can
  971. * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode,
  972. * even context-switching back and forth between a pair of
  973. * in-kernel CPU-bound tasks cannot advance grace periods.
  974. * So if the grace period is old enough, make the CPU pay attention.
  975. * Note that the unsynchronized assignments to the per-CPU
  976. * rcu_sched_qs_mask variable are safe. Yes, setting of
  977. * bits can be lost, but they will be set again on the next
  978. * force-quiescent-state pass. So lost bit sets do not result
  979. * in incorrect behavior, merely in a grace period lasting
  980. * a few jiffies longer than it might otherwise. Because
  981. * there are at most four threads involved, and because the
  982. * updates are only once every few jiffies, the probability of
  983. * lossage (and thus of slight grace-period extension) is
  984. * quite low.
  985. *
  986. * Note that if the jiffies_till_sched_qs boot/sysfs parameter
  987. * is set too high, we override with half of the RCU CPU stall
  988. * warning delay.
  989. */
  990. rcrmp = &per_cpu(rcu_sched_qs_mask, rdp->cpu);
  991. if (ULONG_CMP_GE(jiffies,
  992. rdp->rsp->gp_start + jiffies_till_sched_qs) ||
  993. ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
  994. if (!(ACCESS_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) {
  995. ACCESS_ONCE(rdp->cond_resched_completed) =
  996. ACCESS_ONCE(rdp->mynode->completed);
  997. smp_mb(); /* ->cond_resched_completed before *rcrmp. */
  998. ACCESS_ONCE(*rcrmp) =
  999. ACCESS_ONCE(*rcrmp) + rdp->rsp->flavor_mask;
  1000. resched_cpu(rdp->cpu); /* Force CPU into scheduler. */
  1001. rdp->rsp->jiffies_resched += 5; /* Enable beating. */
  1002. } else if (ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
  1003. /* Time to beat on that CPU again! */
  1004. resched_cpu(rdp->cpu); /* Force CPU into scheduler. */
  1005. rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
  1006. }
  1007. }
  1008. return 0;
  1009. }
  1010. static void record_gp_stall_check_time(struct rcu_state *rsp)
  1011. {
  1012. unsigned long j = jiffies;
  1013. unsigned long j1;
  1014. rsp->gp_start = j;
  1015. smp_wmb(); /* Record start time before stall time. */
  1016. j1 = rcu_jiffies_till_stall_check();
  1017. ACCESS_ONCE(rsp->jiffies_stall) = j + j1;
  1018. rsp->jiffies_resched = j + j1 / 2;
  1019. rsp->n_force_qs_gpstart = ACCESS_ONCE(rsp->n_force_qs);
  1020. }
  1021. /*
  1022. * Complain about starvation of grace-period kthread.
  1023. */
  1024. static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
  1025. {
  1026. unsigned long gpa;
  1027. unsigned long j;
  1028. j = jiffies;
  1029. gpa = ACCESS_ONCE(rsp->gp_activity);
  1030. if (j - gpa > 2 * HZ)
  1031. pr_err("%s kthread starved for %ld jiffies!\n",
  1032. rsp->name, j - gpa);
  1033. }
  1034. /*
  1035. * Dump stacks of all tasks running on stalled CPUs.
  1036. */
  1037. static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
  1038. {
  1039. int cpu;
  1040. unsigned long flags;
  1041. struct rcu_node *rnp;
  1042. rcu_for_each_leaf_node(rsp, rnp) {
  1043. raw_spin_lock_irqsave(&rnp->lock, flags);
  1044. if (rnp->qsmask != 0) {
  1045. for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
  1046. if (rnp->qsmask & (1UL << cpu))
  1047. dump_cpu_task(rnp->grplo + cpu);
  1048. }
  1049. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1050. }
  1051. }
  1052. static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
  1053. {
  1054. int cpu;
  1055. long delta;
  1056. unsigned long flags;
  1057. unsigned long gpa;
  1058. unsigned long j;
  1059. int ndetected = 0;
  1060. struct rcu_node *rnp = rcu_get_root(rsp);
  1061. long totqlen = 0;
  1062. /* Only let one CPU complain about others per time interval. */
  1063. raw_spin_lock_irqsave(&rnp->lock, flags);
  1064. delta = jiffies - ACCESS_ONCE(rsp->jiffies_stall);
  1065. if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
  1066. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1067. return;
  1068. }
  1069. ACCESS_ONCE(rsp->jiffies_stall) = jiffies + 3 * rcu_jiffies_till_stall_check() + 3;
  1070. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1071. /*
  1072. * OK, time to rat on our buddy...
  1073. * See Documentation/RCU/stallwarn.txt for info on how to debug
  1074. * RCU CPU stall warnings.
  1075. */
  1076. pr_err("INFO: %s detected stalls on CPUs/tasks:",
  1077. rsp->name);
  1078. print_cpu_stall_info_begin();
  1079. rcu_for_each_leaf_node(rsp, rnp) {
  1080. raw_spin_lock_irqsave(&rnp->lock, flags);
  1081. ndetected += rcu_print_task_stall(rnp);
  1082. if (rnp->qsmask != 0) {
  1083. for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
  1084. if (rnp->qsmask & (1UL << cpu)) {
  1085. print_cpu_stall_info(rsp,
  1086. rnp->grplo + cpu);
  1087. ndetected++;
  1088. }
  1089. }
  1090. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1091. }
  1092. print_cpu_stall_info_end();
  1093. for_each_possible_cpu(cpu)
  1094. totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
  1095. pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
  1096. smp_processor_id(), (long)(jiffies - rsp->gp_start),
  1097. (long)rsp->gpnum, (long)rsp->completed, totqlen);
  1098. if (ndetected) {
  1099. rcu_dump_cpu_stacks(rsp);
  1100. } else {
  1101. if (ACCESS_ONCE(rsp->gpnum) != gpnum ||
  1102. ACCESS_ONCE(rsp->completed) == gpnum) {
  1103. pr_err("INFO: Stall ended before state dump start\n");
  1104. } else {
  1105. j = jiffies;
  1106. gpa = ACCESS_ONCE(rsp->gp_activity);
  1107. pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
  1108. rsp->name, j - gpa, j, gpa,
  1109. jiffies_till_next_fqs,
  1110. rcu_get_root(rsp)->qsmask);
  1111. /* In this case, the current CPU might be at fault. */
  1112. sched_show_task(current);
  1113. }
  1114. }
  1115. /* Complain about tasks blocking the grace period. */
  1116. rcu_print_detail_task_stall(rsp);
  1117. rcu_check_gp_kthread_starvation(rsp);
  1118. force_quiescent_state(rsp); /* Kick them all. */
  1119. }
  1120. static void print_cpu_stall(struct rcu_state *rsp)
  1121. {
  1122. int cpu;
  1123. unsigned long flags;
  1124. struct rcu_node *rnp = rcu_get_root(rsp);
  1125. long totqlen = 0;
  1126. /*
  1127. * OK, time to rat on ourselves...
  1128. * See Documentation/RCU/stallwarn.txt for info on how to debug
  1129. * RCU CPU stall warnings.
  1130. */
  1131. pr_err("INFO: %s self-detected stall on CPU", rsp->name);
  1132. print_cpu_stall_info_begin();
  1133. print_cpu_stall_info(rsp, smp_processor_id());
  1134. print_cpu_stall_info_end();
  1135. for_each_possible_cpu(cpu)
  1136. totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
  1137. pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
  1138. jiffies - rsp->gp_start,
  1139. (long)rsp->gpnum, (long)rsp->completed, totqlen);
  1140. rcu_check_gp_kthread_starvation(rsp);
  1141. rcu_dump_cpu_stacks(rsp);
  1142. raw_spin_lock_irqsave(&rnp->lock, flags);
  1143. if (ULONG_CMP_GE(jiffies, ACCESS_ONCE(rsp->jiffies_stall)))
  1144. ACCESS_ONCE(rsp->jiffies_stall) = jiffies +
  1145. 3 * rcu_jiffies_till_stall_check() + 3;
  1146. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1147. /*
  1148. * Attempt to revive the RCU machinery by forcing a context switch.
  1149. *
  1150. * A context switch would normally allow the RCU state machine to make
  1151. * progress and it could be we're stuck in kernel space without context
  1152. * switches for an entirely unreasonable amount of time.
  1153. */
  1154. resched_cpu(smp_processor_id());
  1155. }
  1156. static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
  1157. {
  1158. unsigned long completed;
  1159. unsigned long gpnum;
  1160. unsigned long gps;
  1161. unsigned long j;
  1162. unsigned long js;
  1163. struct rcu_node *rnp;
  1164. if (rcu_cpu_stall_suppress || !rcu_gp_in_progress(rsp))
  1165. return;
  1166. j = jiffies;
  1167. /*
  1168. * Lots of memory barriers to reject false positives.
  1169. *
  1170. * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
  1171. * then rsp->gp_start, and finally rsp->completed. These values
  1172. * are updated in the opposite order with memory barriers (or
  1173. * equivalent) during grace-period initialization and cleanup.
  1174. * Now, a false positive can occur if we get an new value of
  1175. * rsp->gp_start and a old value of rsp->jiffies_stall. But given
  1176. * the memory barriers, the only way that this can happen is if one
  1177. * grace period ends and another starts between these two fetches.
  1178. * Detect this by comparing rsp->completed with the previous fetch
  1179. * from rsp->gpnum.
  1180. *
  1181. * Given this check, comparisons of jiffies, rsp->jiffies_stall,
  1182. * and rsp->gp_start suffice to forestall false positives.
  1183. */
  1184. gpnum = ACCESS_ONCE(rsp->gpnum);
  1185. smp_rmb(); /* Pick up ->gpnum first... */
  1186. js = ACCESS_ONCE(rsp->jiffies_stall);
  1187. smp_rmb(); /* ...then ->jiffies_stall before the rest... */
  1188. gps = ACCESS_ONCE(rsp->gp_start);
  1189. smp_rmb(); /* ...and finally ->gp_start before ->completed. */
  1190. completed = ACCESS_ONCE(rsp->completed);
  1191. if (ULONG_CMP_GE(completed, gpnum) ||
  1192. ULONG_CMP_LT(j, js) ||
  1193. ULONG_CMP_GE(gps, js))
  1194. return; /* No stall or GP completed since entering function. */
  1195. rnp = rdp->mynode;
  1196. if (rcu_gp_in_progress(rsp) &&
  1197. (ACCESS_ONCE(rnp->qsmask) & rdp->grpmask)) {
  1198. /* We haven't checked in, so go dump stack. */
  1199. print_cpu_stall(rsp);
  1200. } else if (rcu_gp_in_progress(rsp) &&
  1201. ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
  1202. /* They had a few time units to dump stack, so complain. */
  1203. print_other_cpu_stall(rsp, gpnum);
  1204. }
  1205. }
  1206. /**
  1207. * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
  1208. *
  1209. * Set the stall-warning timeout way off into the future, thus preventing
  1210. * any RCU CPU stall-warning messages from appearing in the current set of
  1211. * RCU grace periods.
  1212. *
  1213. * The caller must disable hard irqs.
  1214. */
  1215. void rcu_cpu_stall_reset(void)
  1216. {
  1217. struct rcu_state *rsp;
  1218. for_each_rcu_flavor(rsp)
  1219. ACCESS_ONCE(rsp->jiffies_stall) = jiffies + ULONG_MAX / 2;
  1220. }
  1221. /*
  1222. * Initialize the specified rcu_data structure's callback list to empty.
  1223. */
  1224. static void init_callback_list(struct rcu_data *rdp)
  1225. {
  1226. int i;
  1227. if (init_nocb_callback_list(rdp))
  1228. return;
  1229. rdp->nxtlist = NULL;
  1230. for (i = 0; i < RCU_NEXT_SIZE; i++)
  1231. rdp->nxttail[i] = &rdp->nxtlist;
  1232. }
  1233. /*
  1234. * Determine the value that ->completed will have at the end of the
  1235. * next subsequent grace period. This is used to tag callbacks so that
  1236. * a CPU can invoke callbacks in a timely fashion even if that CPU has
  1237. * been dyntick-idle for an extended period with callbacks under the
  1238. * influence of RCU_FAST_NO_HZ.
  1239. *
  1240. * The caller must hold rnp->lock with interrupts disabled.
  1241. */
  1242. static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
  1243. struct rcu_node *rnp)
  1244. {
  1245. /*
  1246. * If RCU is idle, we just wait for the next grace period.
  1247. * But we can only be sure that RCU is idle if we are looking
  1248. * at the root rcu_node structure -- otherwise, a new grace
  1249. * period might have started, but just not yet gotten around
  1250. * to initializing the current non-root rcu_node structure.
  1251. */
  1252. if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
  1253. return rnp->completed + 1;
  1254. /*
  1255. * Otherwise, wait for a possible partial grace period and
  1256. * then the subsequent full grace period.
  1257. */
  1258. return rnp->completed + 2;
  1259. }
  1260. /*
  1261. * Trace-event helper function for rcu_start_future_gp() and
  1262. * rcu_nocb_wait_gp().
  1263. */
  1264. static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
  1265. unsigned long c, const char *s)
  1266. {
  1267. trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
  1268. rnp->completed, c, rnp->level,
  1269. rnp->grplo, rnp->grphi, s);
  1270. }
  1271. /*
  1272. * Start some future grace period, as needed to handle newly arrived
  1273. * callbacks. The required future grace periods are recorded in each
  1274. * rcu_node structure's ->need_future_gp field. Returns true if there
  1275. * is reason to awaken the grace-period kthread.
  1276. *
  1277. * The caller must hold the specified rcu_node structure's ->lock.
  1278. */
  1279. static bool __maybe_unused
  1280. rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
  1281. unsigned long *c_out)
  1282. {
  1283. unsigned long c;
  1284. int i;
  1285. bool ret = false;
  1286. struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
  1287. /*
  1288. * Pick up grace-period number for new callbacks. If this
  1289. * grace period is already marked as needed, return to the caller.
  1290. */
  1291. c = rcu_cbs_completed(rdp->rsp, rnp);
  1292. trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
  1293. if (rnp->need_future_gp[c & 0x1]) {
  1294. trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
  1295. goto out;
  1296. }
  1297. /*
  1298. * If either this rcu_node structure or the root rcu_node structure
  1299. * believe that a grace period is in progress, then we must wait
  1300. * for the one following, which is in "c". Because our request
  1301. * will be noticed at the end of the current grace period, we don't
  1302. * need to explicitly start one. We only do the lockless check
  1303. * of rnp_root's fields if the current rcu_node structure thinks
  1304. * there is no grace period in flight, and because we hold rnp->lock,
  1305. * the only possible change is when rnp_root's two fields are
  1306. * equal, in which case rnp_root->gpnum might be concurrently
  1307. * incremented. But that is OK, as it will just result in our
  1308. * doing some extra useless work.
  1309. */
  1310. if (rnp->gpnum != rnp->completed ||
  1311. ACCESS_ONCE(rnp_root->gpnum) != ACCESS_ONCE(rnp_root->completed)) {
  1312. rnp->need_future_gp[c & 0x1]++;
  1313. trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
  1314. goto out;
  1315. }
  1316. /*
  1317. * There might be no grace period in progress. If we don't already
  1318. * hold it, acquire the root rcu_node structure's lock in order to
  1319. * start one (if needed).
  1320. */
  1321. if (rnp != rnp_root) {
  1322. raw_spin_lock(&rnp_root->lock);
  1323. smp_mb__after_unlock_lock();
  1324. }
  1325. /*
  1326. * Get a new grace-period number. If there really is no grace
  1327. * period in progress, it will be smaller than the one we obtained
  1328. * earlier. Adjust callbacks as needed. Note that even no-CBs
  1329. * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
  1330. */
  1331. c = rcu_cbs_completed(rdp->rsp, rnp_root);
  1332. for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
  1333. if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
  1334. rdp->nxtcompleted[i] = c;
  1335. /*
  1336. * If the needed for the required grace period is already
  1337. * recorded, trace and leave.
  1338. */
  1339. if (rnp_root->need_future_gp[c & 0x1]) {
  1340. trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
  1341. goto unlock_out;
  1342. }
  1343. /* Record the need for the future grace period. */
  1344. rnp_root->need_future_gp[c & 0x1]++;
  1345. /* If a grace period is not already in progress, start one. */
  1346. if (rnp_root->gpnum != rnp_root->completed) {
  1347. trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
  1348. } else {
  1349. trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
  1350. ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
  1351. }
  1352. unlock_out:
  1353. if (rnp != rnp_root)
  1354. raw_spin_unlock(&rnp_root->lock);
  1355. out:
  1356. if (c_out != NULL)
  1357. *c_out = c;
  1358. return ret;
  1359. }
  1360. /*
  1361. * Clean up any old requests for the just-ended grace period. Also return
  1362. * whether any additional grace periods have been requested. Also invoke
  1363. * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
  1364. * waiting for this grace period to complete.
  1365. */
  1366. static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
  1367. {
  1368. int c = rnp->completed;
  1369. int needmore;
  1370. struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
  1371. rcu_nocb_gp_cleanup(rsp, rnp);
  1372. rnp->need_future_gp[c & 0x1] = 0;
  1373. needmore = rnp->need_future_gp[(c + 1) & 0x1];
  1374. trace_rcu_future_gp(rnp, rdp, c,
  1375. needmore ? TPS("CleanupMore") : TPS("Cleanup"));
  1376. return needmore;
  1377. }
  1378. /*
  1379. * Awaken the grace-period kthread for the specified flavor of RCU.
  1380. * Don't do a self-awaken, and don't bother awakening when there is
  1381. * nothing for the grace-period kthread to do (as in several CPUs
  1382. * raced to awaken, and we lost), and finally don't try to awaken
  1383. * a kthread that has not yet been created.
  1384. */
  1385. static void rcu_gp_kthread_wake(struct rcu_state *rsp)
  1386. {
  1387. if (current == rsp->gp_kthread ||
  1388. !ACCESS_ONCE(rsp->gp_flags) ||
  1389. !rsp->gp_kthread)
  1390. return;
  1391. wake_up(&rsp->gp_wq);
  1392. }
  1393. /*
  1394. * If there is room, assign a ->completed number to any callbacks on
  1395. * this CPU that have not already been assigned. Also accelerate any
  1396. * callbacks that were previously assigned a ->completed number that has
  1397. * since proven to be too conservative, which can happen if callbacks get
  1398. * assigned a ->completed number while RCU is idle, but with reference to
  1399. * a non-root rcu_node structure. This function is idempotent, so it does
  1400. * not hurt to call it repeatedly. Returns an flag saying that we should
  1401. * awaken the RCU grace-period kthread.
  1402. *
  1403. * The caller must hold rnp->lock with interrupts disabled.
  1404. */
  1405. static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
  1406. struct rcu_data *rdp)
  1407. {
  1408. unsigned long c;
  1409. int i;
  1410. bool ret;
  1411. /* If the CPU has no callbacks, nothing to do. */
  1412. if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
  1413. return false;
  1414. /*
  1415. * Starting from the sublist containing the callbacks most
  1416. * recently assigned a ->completed number and working down, find the
  1417. * first sublist that is not assignable to an upcoming grace period.
  1418. * Such a sublist has something in it (first two tests) and has
  1419. * a ->completed number assigned that will complete sooner than
  1420. * the ->completed number for newly arrived callbacks (last test).
  1421. *
  1422. * The key point is that any later sublist can be assigned the
  1423. * same ->completed number as the newly arrived callbacks, which
  1424. * means that the callbacks in any of these later sublist can be
  1425. * grouped into a single sublist, whether or not they have already
  1426. * been assigned a ->completed number.
  1427. */
  1428. c = rcu_cbs_completed(rsp, rnp);
  1429. for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
  1430. if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
  1431. !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
  1432. break;
  1433. /*
  1434. * If there are no sublist for unassigned callbacks, leave.
  1435. * At the same time, advance "i" one sublist, so that "i" will
  1436. * index into the sublist where all the remaining callbacks should
  1437. * be grouped into.
  1438. */
  1439. if (++i >= RCU_NEXT_TAIL)
  1440. return false;
  1441. /*
  1442. * Assign all subsequent callbacks' ->completed number to the next
  1443. * full grace period and group them all in the sublist initially
  1444. * indexed by "i".
  1445. */
  1446. for (; i <= RCU_NEXT_TAIL; i++) {
  1447. rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
  1448. rdp->nxtcompleted[i] = c;
  1449. }
  1450. /* Record any needed additional grace periods. */
  1451. ret = rcu_start_future_gp(rnp, rdp, NULL);
  1452. /* Trace depending on how much we were able to accelerate. */
  1453. if (!*rdp->nxttail[RCU_WAIT_TAIL])
  1454. trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
  1455. else
  1456. trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
  1457. return ret;
  1458. }
  1459. /*
  1460. * Move any callbacks whose grace period has completed to the
  1461. * RCU_DONE_TAIL sublist, then compact the remaining sublists and
  1462. * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
  1463. * sublist. This function is idempotent, so it does not hurt to
  1464. * invoke it repeatedly. As long as it is not invoked -too- often...
  1465. * Returns true if the RCU grace-period kthread needs to be awakened.
  1466. *
  1467. * The caller must hold rnp->lock with interrupts disabled.
  1468. */
  1469. static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
  1470. struct rcu_data *rdp)
  1471. {
  1472. int i, j;
  1473. /* If the CPU has no callbacks, nothing to do. */
  1474. if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
  1475. return false;
  1476. /*
  1477. * Find all callbacks whose ->completed numbers indicate that they
  1478. * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
  1479. */
  1480. for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
  1481. if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
  1482. break;
  1483. rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
  1484. }
  1485. /* Clean up any sublist tail pointers that were misordered above. */
  1486. for (j = RCU_WAIT_TAIL; j < i; j++)
  1487. rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
  1488. /* Copy down callbacks to fill in empty sublists. */
  1489. for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
  1490. if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
  1491. break;
  1492. rdp->nxttail[j] = rdp->nxttail[i];
  1493. rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
  1494. }
  1495. /* Classify any remaining callbacks. */
  1496. return rcu_accelerate_cbs(rsp, rnp, rdp);
  1497. }
  1498. /*
  1499. * Update CPU-local rcu_data state to record the beginnings and ends of
  1500. * grace periods. The caller must hold the ->lock of the leaf rcu_node
  1501. * structure corresponding to the current CPU, and must have irqs disabled.
  1502. * Returns true if the grace-period kthread needs to be awakened.
  1503. */
  1504. static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
  1505. struct rcu_data *rdp)
  1506. {
  1507. bool ret;
  1508. /* Handle the ends of any preceding grace periods first. */
  1509. if (rdp->completed == rnp->completed &&
  1510. !unlikely(ACCESS_ONCE(rdp->gpwrap))) {
  1511. /* No grace period end, so just accelerate recent callbacks. */
  1512. ret = rcu_accelerate_cbs(rsp, rnp, rdp);
  1513. } else {
  1514. /* Advance callbacks. */
  1515. ret = rcu_advance_cbs(rsp, rnp, rdp);
  1516. /* Remember that we saw this grace-period completion. */
  1517. rdp->completed = rnp->completed;
  1518. trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
  1519. }
  1520. if (rdp->gpnum != rnp->gpnum || unlikely(ACCESS_ONCE(rdp->gpwrap))) {
  1521. /*
  1522. * If the current grace period is waiting for this CPU,
  1523. * set up to detect a quiescent state, otherwise don't
  1524. * go looking for one.
  1525. */
  1526. rdp->gpnum = rnp->gpnum;
  1527. trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
  1528. rdp->passed_quiesce = 0;
  1529. rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
  1530. rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
  1531. zero_cpu_stall_ticks(rdp);
  1532. ACCESS_ONCE(rdp->gpwrap) = false;
  1533. }
  1534. return ret;
  1535. }
  1536. static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
  1537. {
  1538. unsigned long flags;
  1539. bool needwake;
  1540. struct rcu_node *rnp;
  1541. local_irq_save(flags);
  1542. rnp = rdp->mynode;
  1543. if ((rdp->gpnum == ACCESS_ONCE(rnp->gpnum) &&
  1544. rdp->completed == ACCESS_ONCE(rnp->completed) &&
  1545. !unlikely(ACCESS_ONCE(rdp->gpwrap))) || /* w/out lock. */
  1546. !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
  1547. local_irq_restore(flags);
  1548. return;
  1549. }
  1550. smp_mb__after_unlock_lock();
  1551. needwake = __note_gp_changes(rsp, rnp, rdp);
  1552. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1553. if (needwake)
  1554. rcu_gp_kthread_wake(rsp);
  1555. }
  1556. /*
  1557. * Initialize a new grace period. Return 0 if no grace period required.
  1558. */
  1559. static int rcu_gp_init(struct rcu_state *rsp)
  1560. {
  1561. unsigned long oldmask;
  1562. struct rcu_data *rdp;
  1563. struct rcu_node *rnp = rcu_get_root(rsp);
  1564. ACCESS_ONCE(rsp->gp_activity) = jiffies;
  1565. rcu_bind_gp_kthread();
  1566. raw_spin_lock_irq(&rnp->lock);
  1567. smp_mb__after_unlock_lock();
  1568. if (!ACCESS_ONCE(rsp->gp_flags)) {
  1569. /* Spurious wakeup, tell caller to go back to sleep. */
  1570. raw_spin_unlock_irq(&rnp->lock);
  1571. return 0;
  1572. }
  1573. ACCESS_ONCE(rsp->gp_flags) = 0; /* Clear all flags: New grace period. */
  1574. if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
  1575. /*
  1576. * Grace period already in progress, don't start another.
  1577. * Not supposed to be able to happen.
  1578. */
  1579. raw_spin_unlock_irq(&rnp->lock);
  1580. return 0;
  1581. }
  1582. /* Advance to a new grace period and initialize state. */
  1583. record_gp_stall_check_time(rsp);
  1584. /* Record GP times before starting GP, hence smp_store_release(). */
  1585. smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
  1586. trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
  1587. raw_spin_unlock_irq(&rnp->lock);
  1588. /*
  1589. * Apply per-leaf buffered online and offline operations to the
  1590. * rcu_node tree. Note that this new grace period need not wait
  1591. * for subsequent online CPUs, and that quiescent-state forcing
  1592. * will handle subsequent offline CPUs.
  1593. */
  1594. rcu_for_each_leaf_node(rsp, rnp) {
  1595. raw_spin_lock_irq(&rnp->lock);
  1596. smp_mb__after_unlock_lock();
  1597. if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
  1598. !rnp->wait_blkd_tasks) {
  1599. /* Nothing to do on this leaf rcu_node structure. */
  1600. raw_spin_unlock_irq(&rnp->lock);
  1601. continue;
  1602. }
  1603. /* Record old state, apply changes to ->qsmaskinit field. */
  1604. oldmask = rnp->qsmaskinit;
  1605. rnp->qsmaskinit = rnp->qsmaskinitnext;
  1606. /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
  1607. if (!oldmask != !rnp->qsmaskinit) {
  1608. if (!oldmask) /* First online CPU for this rcu_node. */
  1609. rcu_init_new_rnp(rnp);
  1610. else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
  1611. rnp->wait_blkd_tasks = true;
  1612. else /* Last offline CPU and can propagate. */
  1613. rcu_cleanup_dead_rnp(rnp);
  1614. }
  1615. /*
  1616. * If all waited-on tasks from prior grace period are
  1617. * done, and if all this rcu_node structure's CPUs are
  1618. * still offline, propagate up the rcu_node tree and
  1619. * clear ->wait_blkd_tasks. Otherwise, if one of this
  1620. * rcu_node structure's CPUs has since come back online,
  1621. * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
  1622. * checks for this, so just call it unconditionally).
  1623. */
  1624. if (rnp->wait_blkd_tasks &&
  1625. (!rcu_preempt_has_tasks(rnp) ||
  1626. rnp->qsmaskinit)) {
  1627. rnp->wait_blkd_tasks = false;
  1628. rcu_cleanup_dead_rnp(rnp);
  1629. }
  1630. raw_spin_unlock_irq(&rnp->lock);
  1631. }
  1632. /*
  1633. * Set the quiescent-state-needed bits in all the rcu_node
  1634. * structures for all currently online CPUs in breadth-first order,
  1635. * starting from the root rcu_node structure, relying on the layout
  1636. * of the tree within the rsp->node[] array. Note that other CPUs
  1637. * will access only the leaves of the hierarchy, thus seeing that no
  1638. * grace period is in progress, at least until the corresponding
  1639. * leaf node has been initialized. In addition, we have excluded
  1640. * CPU-hotplug operations.
  1641. *
  1642. * The grace period cannot complete until the initialization
  1643. * process finishes, because this kthread handles both.
  1644. */
  1645. rcu_for_each_node_breadth_first(rsp, rnp) {
  1646. raw_spin_lock_irq(&rnp->lock);
  1647. smp_mb__after_unlock_lock();
  1648. rdp = this_cpu_ptr(rsp->rda);
  1649. rcu_preempt_check_blocked_tasks(rnp);
  1650. rnp->qsmask = rnp->qsmaskinit;
  1651. ACCESS_ONCE(rnp->gpnum) = rsp->gpnum;
  1652. WARN_ON_ONCE(rnp->completed != rsp->completed);
  1653. ACCESS_ONCE(rnp->completed) = rsp->completed;
  1654. if (rnp == rdp->mynode)
  1655. (void)__note_gp_changes(rsp, rnp, rdp);
  1656. rcu_preempt_boost_start_gp(rnp);
  1657. trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
  1658. rnp->level, rnp->grplo,
  1659. rnp->grphi, rnp->qsmask);
  1660. raw_spin_unlock_irq(&rnp->lock);
  1661. cond_resched_rcu_qs();
  1662. ACCESS_ONCE(rsp->gp_activity) = jiffies;
  1663. if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST_SLOW_INIT) &&
  1664. gp_init_delay > 0 &&
  1665. !(rsp->gpnum % (rcu_num_nodes * 10)))
  1666. schedule_timeout_uninterruptible(gp_init_delay);
  1667. }
  1668. return 1;
  1669. }
  1670. /*
  1671. * Do one round of quiescent-state forcing.
  1672. */
  1673. static int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
  1674. {
  1675. int fqs_state = fqs_state_in;
  1676. bool isidle = false;
  1677. unsigned long maxj;
  1678. struct rcu_node *rnp = rcu_get_root(rsp);
  1679. ACCESS_ONCE(rsp->gp_activity) = jiffies;
  1680. rsp->n_force_qs++;
  1681. if (fqs_state == RCU_SAVE_DYNTICK) {
  1682. /* Collect dyntick-idle snapshots. */
  1683. if (is_sysidle_rcu_state(rsp)) {
  1684. isidle = true;
  1685. maxj = jiffies - ULONG_MAX / 4;
  1686. }
  1687. force_qs_rnp(rsp, dyntick_save_progress_counter,
  1688. &isidle, &maxj);
  1689. rcu_sysidle_report_gp(rsp, isidle, maxj);
  1690. fqs_state = RCU_FORCE_QS;
  1691. } else {
  1692. /* Handle dyntick-idle and offline CPUs. */
  1693. isidle = false;
  1694. force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
  1695. }
  1696. /* Clear flag to prevent immediate re-entry. */
  1697. if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
  1698. raw_spin_lock_irq(&rnp->lock);
  1699. smp_mb__after_unlock_lock();
  1700. ACCESS_ONCE(rsp->gp_flags) =
  1701. ACCESS_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS;
  1702. raw_spin_unlock_irq(&rnp->lock);
  1703. }
  1704. return fqs_state;
  1705. }
  1706. /*
  1707. * Clean up after the old grace period.
  1708. */
  1709. static void rcu_gp_cleanup(struct rcu_state *rsp)
  1710. {
  1711. unsigned long gp_duration;
  1712. bool needgp = false;
  1713. int nocb = 0;
  1714. struct rcu_data *rdp;
  1715. struct rcu_node *rnp = rcu_get_root(rsp);
  1716. ACCESS_ONCE(rsp->gp_activity) = jiffies;
  1717. raw_spin_lock_irq(&rnp->lock);
  1718. smp_mb__after_unlock_lock();
  1719. gp_duration = jiffies - rsp->gp_start;
  1720. if (gp_duration > rsp->gp_max)
  1721. rsp->gp_max = gp_duration;
  1722. /*
  1723. * We know the grace period is complete, but to everyone else
  1724. * it appears to still be ongoing. But it is also the case
  1725. * that to everyone else it looks like there is nothing that
  1726. * they can do to advance the grace period. It is therefore
  1727. * safe for us to drop the lock in order to mark the grace
  1728. * period as completed in all of the rcu_node structures.
  1729. */
  1730. raw_spin_unlock_irq(&rnp->lock);
  1731. /*
  1732. * Propagate new ->completed value to rcu_node structures so
  1733. * that other CPUs don't have to wait until the start of the next
  1734. * grace period to process their callbacks. This also avoids
  1735. * some nasty RCU grace-period initialization races by forcing
  1736. * the end of the current grace period to be completely recorded in
  1737. * all of the rcu_node structures before the beginning of the next
  1738. * grace period is recorded in any of the rcu_node structures.
  1739. */
  1740. rcu_for_each_node_breadth_first(rsp, rnp) {
  1741. raw_spin_lock_irq(&rnp->lock);
  1742. smp_mb__after_unlock_lock();
  1743. WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
  1744. WARN_ON_ONCE(rnp->qsmask);
  1745. ACCESS_ONCE(rnp->completed) = rsp->gpnum;
  1746. rdp = this_cpu_ptr(rsp->rda);
  1747. if (rnp == rdp->mynode)
  1748. needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
  1749. /* smp_mb() provided by prior unlock-lock pair. */
  1750. nocb += rcu_future_gp_cleanup(rsp, rnp);
  1751. raw_spin_unlock_irq(&rnp->lock);
  1752. cond_resched_rcu_qs();
  1753. ACCESS_ONCE(rsp->gp_activity) = jiffies;
  1754. }
  1755. rnp = rcu_get_root(rsp);
  1756. raw_spin_lock_irq(&rnp->lock);
  1757. smp_mb__after_unlock_lock(); /* Order GP before ->completed update. */
  1758. rcu_nocb_gp_set(rnp, nocb);
  1759. /* Declare grace period done. */
  1760. ACCESS_ONCE(rsp->completed) = rsp->gpnum;
  1761. trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
  1762. rsp->fqs_state = RCU_GP_IDLE;
  1763. rdp = this_cpu_ptr(rsp->rda);
  1764. /* Advance CBs to reduce false positives below. */
  1765. needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
  1766. if (needgp || cpu_needs_another_gp(rsp, rdp)) {
  1767. ACCESS_ONCE(rsp->gp_flags) = RCU_GP_FLAG_INIT;
  1768. trace_rcu_grace_period(rsp->name,
  1769. ACCESS_ONCE(rsp->gpnum),
  1770. TPS("newreq"));
  1771. }
  1772. raw_spin_unlock_irq(&rnp->lock);
  1773. }
  1774. /*
  1775. * Body of kthread that handles grace periods.
  1776. */
  1777. static int __noreturn rcu_gp_kthread(void *arg)
  1778. {
  1779. int fqs_state;
  1780. int gf;
  1781. unsigned long j;
  1782. int ret;
  1783. struct rcu_state *rsp = arg;
  1784. struct rcu_node *rnp = rcu_get_root(rsp);
  1785. for (;;) {
  1786. /* Handle grace-period start. */
  1787. for (;;) {
  1788. trace_rcu_grace_period(rsp->name,
  1789. ACCESS_ONCE(rsp->gpnum),
  1790. TPS("reqwait"));
  1791. rsp->gp_state = RCU_GP_WAIT_GPS;
  1792. wait_event_interruptible(rsp->gp_wq,
  1793. ACCESS_ONCE(rsp->gp_flags) &
  1794. RCU_GP_FLAG_INIT);
  1795. /* Locking provides needed memory barrier. */
  1796. if (rcu_gp_init(rsp))
  1797. break;
  1798. cond_resched_rcu_qs();
  1799. ACCESS_ONCE(rsp->gp_activity) = jiffies;
  1800. WARN_ON(signal_pending(current));
  1801. trace_rcu_grace_period(rsp->name,
  1802. ACCESS_ONCE(rsp->gpnum),
  1803. TPS("reqwaitsig"));
  1804. }
  1805. /* Handle quiescent-state forcing. */
  1806. fqs_state = RCU_SAVE_DYNTICK;
  1807. j = jiffies_till_first_fqs;
  1808. if (j > HZ) {
  1809. j = HZ;
  1810. jiffies_till_first_fqs = HZ;
  1811. }
  1812. ret = 0;
  1813. for (;;) {
  1814. if (!ret)
  1815. rsp->jiffies_force_qs = jiffies + j;
  1816. trace_rcu_grace_period(rsp->name,
  1817. ACCESS_ONCE(rsp->gpnum),
  1818. TPS("fqswait"));
  1819. rsp->gp_state = RCU_GP_WAIT_FQS;
  1820. ret = wait_event_interruptible_timeout(rsp->gp_wq,
  1821. ((gf = ACCESS_ONCE(rsp->gp_flags)) &
  1822. RCU_GP_FLAG_FQS) ||
  1823. (!ACCESS_ONCE(rnp->qsmask) &&
  1824. !rcu_preempt_blocked_readers_cgp(rnp)),
  1825. j);
  1826. /* Locking provides needed memory barriers. */
  1827. /* If grace period done, leave loop. */
  1828. if (!ACCESS_ONCE(rnp->qsmask) &&
  1829. !rcu_preempt_blocked_readers_cgp(rnp))
  1830. break;
  1831. /* If time for quiescent-state forcing, do it. */
  1832. if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
  1833. (gf & RCU_GP_FLAG_FQS)) {
  1834. trace_rcu_grace_period(rsp->name,
  1835. ACCESS_ONCE(rsp->gpnum),
  1836. TPS("fqsstart"));
  1837. fqs_state = rcu_gp_fqs(rsp, fqs_state);
  1838. trace_rcu_grace_period(rsp->name,
  1839. ACCESS_ONCE(rsp->gpnum),
  1840. TPS("fqsend"));
  1841. cond_resched_rcu_qs();
  1842. ACCESS_ONCE(rsp->gp_activity) = jiffies;
  1843. } else {
  1844. /* Deal with stray signal. */
  1845. cond_resched_rcu_qs();
  1846. ACCESS_ONCE(rsp->gp_activity) = jiffies;
  1847. WARN_ON(signal_pending(current));
  1848. trace_rcu_grace_period(rsp->name,
  1849. ACCESS_ONCE(rsp->gpnum),
  1850. TPS("fqswaitsig"));
  1851. }
  1852. j = jiffies_till_next_fqs;
  1853. if (j > HZ) {
  1854. j = HZ;
  1855. jiffies_till_next_fqs = HZ;
  1856. } else if (j < 1) {
  1857. j = 1;
  1858. jiffies_till_next_fqs = 1;
  1859. }
  1860. }
  1861. /* Handle grace-period end. */
  1862. rcu_gp_cleanup(rsp);
  1863. }
  1864. }
  1865. /*
  1866. * Start a new RCU grace period if warranted, re-initializing the hierarchy
  1867. * in preparation for detecting the next grace period. The caller must hold
  1868. * the root node's ->lock and hard irqs must be disabled.
  1869. *
  1870. * Note that it is legal for a dying CPU (which is marked as offline) to
  1871. * invoke this function. This can happen when the dying CPU reports its
  1872. * quiescent state.
  1873. *
  1874. * Returns true if the grace-period kthread must be awakened.
  1875. */
  1876. static bool
  1877. rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
  1878. struct rcu_data *rdp)
  1879. {
  1880. if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
  1881. /*
  1882. * Either we have not yet spawned the grace-period
  1883. * task, this CPU does not need another grace period,
  1884. * or a grace period is already in progress.
  1885. * Either way, don't start a new grace period.
  1886. */
  1887. return false;
  1888. }
  1889. ACCESS_ONCE(rsp->gp_flags) = RCU_GP_FLAG_INIT;
  1890. trace_rcu_grace_period(rsp->name, ACCESS_ONCE(rsp->gpnum),
  1891. TPS("newreq"));
  1892. /*
  1893. * We can't do wakeups while holding the rnp->lock, as that
  1894. * could cause possible deadlocks with the rq->lock. Defer
  1895. * the wakeup to our caller.
  1896. */
  1897. return true;
  1898. }
  1899. /*
  1900. * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
  1901. * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
  1902. * is invoked indirectly from rcu_advance_cbs(), which would result in
  1903. * endless recursion -- or would do so if it wasn't for the self-deadlock
  1904. * that is encountered beforehand.
  1905. *
  1906. * Returns true if the grace-period kthread needs to be awakened.
  1907. */
  1908. static bool rcu_start_gp(struct rcu_state *rsp)
  1909. {
  1910. struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
  1911. struct rcu_node *rnp = rcu_get_root(rsp);
  1912. bool ret = false;
  1913. /*
  1914. * If there is no grace period in progress right now, any
  1915. * callbacks we have up to this point will be satisfied by the
  1916. * next grace period. Also, advancing the callbacks reduces the
  1917. * probability of false positives from cpu_needs_another_gp()
  1918. * resulting in pointless grace periods. So, advance callbacks
  1919. * then start the grace period!
  1920. */
  1921. ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
  1922. ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
  1923. return ret;
  1924. }
  1925. /*
  1926. * Report a full set of quiescent states to the specified rcu_state
  1927. * data structure. This involves cleaning up after the prior grace
  1928. * period and letting rcu_start_gp() start up the next grace period
  1929. * if one is needed. Note that the caller must hold rnp->lock, which
  1930. * is released before return.
  1931. */
  1932. static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
  1933. __releases(rcu_get_root(rsp)->lock)
  1934. {
  1935. WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
  1936. raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
  1937. rcu_gp_kthread_wake(rsp);
  1938. }
  1939. /*
  1940. * Similar to rcu_report_qs_rdp(), for which it is a helper function.
  1941. * Allows quiescent states for a group of CPUs to be reported at one go
  1942. * to the specified rcu_node structure, though all the CPUs in the group
  1943. * must be represented by the same rcu_node structure (which need not be
  1944. * a leaf rcu_node structure, though it often will be). That structure's
  1945. * lock must be held upon entry, and it is released before return.
  1946. */
  1947. static void
  1948. rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
  1949. struct rcu_node *rnp, unsigned long flags)
  1950. __releases(rnp->lock)
  1951. {
  1952. struct rcu_node *rnp_c;
  1953. /* Walk up the rcu_node hierarchy. */
  1954. for (;;) {
  1955. if (!(rnp->qsmask & mask)) {
  1956. /* Our bit has already been cleared, so done. */
  1957. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1958. return;
  1959. }
  1960. rnp->qsmask &= ~mask;
  1961. trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
  1962. mask, rnp->qsmask, rnp->level,
  1963. rnp->grplo, rnp->grphi,
  1964. !!rnp->gp_tasks);
  1965. if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
  1966. /* Other bits still set at this level, so done. */
  1967. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1968. return;
  1969. }
  1970. mask = rnp->grpmask;
  1971. if (rnp->parent == NULL) {
  1972. /* No more levels. Exit loop holding root lock. */
  1973. break;
  1974. }
  1975. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1976. rnp_c = rnp;
  1977. rnp = rnp->parent;
  1978. raw_spin_lock_irqsave(&rnp->lock, flags);
  1979. smp_mb__after_unlock_lock();
  1980. WARN_ON_ONCE(rnp_c->qsmask);
  1981. }
  1982. /*
  1983. * Get here if we are the last CPU to pass through a quiescent
  1984. * state for this grace period. Invoke rcu_report_qs_rsp()
  1985. * to clean up and start the next grace period if one is needed.
  1986. */
  1987. rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
  1988. }
  1989. /*
  1990. * Record a quiescent state for all tasks that were previously queued
  1991. * on the specified rcu_node structure and that were blocking the current
  1992. * RCU grace period. The caller must hold the specified rnp->lock with
  1993. * irqs disabled, and this lock is released upon return, but irqs remain
  1994. * disabled.
  1995. */
  1996. static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
  1997. struct rcu_node *rnp, unsigned long flags)
  1998. __releases(rnp->lock)
  1999. {
  2000. unsigned long mask;
  2001. struct rcu_node *rnp_p;
  2002. if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
  2003. rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
  2004. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  2005. return; /* Still need more quiescent states! */
  2006. }
  2007. rnp_p = rnp->parent;
  2008. if (rnp_p == NULL) {
  2009. /*
  2010. * Only one rcu_node structure in the tree, so don't
  2011. * try to report up to its nonexistent parent!
  2012. */
  2013. rcu_report_qs_rsp(rsp, flags);
  2014. return;
  2015. }
  2016. /* Report up the rest of the hierarchy. */
  2017. mask = rnp->grpmask;
  2018. raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
  2019. raw_spin_lock(&rnp_p->lock); /* irqs already disabled. */
  2020. smp_mb__after_unlock_lock();
  2021. rcu_report_qs_rnp(mask, rsp, rnp_p, flags);
  2022. }
  2023. /*
  2024. * Record a quiescent state for the specified CPU to that CPU's rcu_data
  2025. * structure. This must be either called from the specified CPU, or
  2026. * called when the specified CPU is known to be offline (and when it is
  2027. * also known that no other CPU is concurrently trying to help the offline
  2028. * CPU). The lastcomp argument is used to make sure we are still in the
  2029. * grace period of interest. We don't want to end the current grace period
  2030. * based on quiescent states detected in an earlier grace period!
  2031. */
  2032. static void
  2033. rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
  2034. {
  2035. unsigned long flags;
  2036. unsigned long mask;
  2037. bool needwake;
  2038. struct rcu_node *rnp;
  2039. rnp = rdp->mynode;
  2040. raw_spin_lock_irqsave(&rnp->lock, flags);
  2041. smp_mb__after_unlock_lock();
  2042. if ((rdp->passed_quiesce == 0 &&
  2043. rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) ||
  2044. rdp->gpnum != rnp->gpnum || rnp->completed == rnp->gpnum ||
  2045. rdp->gpwrap) {
  2046. /*
  2047. * The grace period in which this quiescent state was
  2048. * recorded has ended, so don't report it upwards.
  2049. * We will instead need a new quiescent state that lies
  2050. * within the current grace period.
  2051. */
  2052. rdp->passed_quiesce = 0; /* need qs for new gp. */
  2053. rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
  2054. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  2055. return;
  2056. }
  2057. mask = rdp->grpmask;
  2058. if ((rnp->qsmask & mask) == 0) {
  2059. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  2060. } else {
  2061. rdp->qs_pending = 0;
  2062. /*
  2063. * This GP can't end until cpu checks in, so all of our
  2064. * callbacks can be processed during the next GP.
  2065. */
  2066. needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
  2067. rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
  2068. if (needwake)
  2069. rcu_gp_kthread_wake(rsp);
  2070. }
  2071. }
  2072. /*
  2073. * Check to see if there is a new grace period of which this CPU
  2074. * is not yet aware, and if so, set up local rcu_data state for it.
  2075. * Otherwise, see if this CPU has just passed through its first
  2076. * quiescent state for this grace period, and record that fact if so.
  2077. */
  2078. static void
  2079. rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
  2080. {
  2081. /* Check for grace-period ends and beginnings. */
  2082. note_gp_changes(rsp, rdp);
  2083. /*
  2084. * Does this CPU still need to do its part for current grace period?
  2085. * If no, return and let the other CPUs do their part as well.
  2086. */
  2087. if (!rdp->qs_pending)
  2088. return;
  2089. /*
  2090. * Was there a quiescent state since the beginning of the grace
  2091. * period? If no, then exit and wait for the next call.
  2092. */
  2093. if (!rdp->passed_quiesce &&
  2094. rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr))
  2095. return;
  2096. /*
  2097. * Tell RCU we are done (but rcu_report_qs_rdp() will be the
  2098. * judge of that).
  2099. */
  2100. rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
  2101. }
  2102. #ifdef CONFIG_HOTPLUG_CPU
  2103. /*
  2104. * Send the specified CPU's RCU callbacks to the orphanage. The
  2105. * specified CPU must be offline, and the caller must hold the
  2106. * ->orphan_lock.
  2107. */
  2108. static void
  2109. rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
  2110. struct rcu_node *rnp, struct rcu_data *rdp)
  2111. {
  2112. /* No-CBs CPUs do not have orphanable callbacks. */
  2113. if (rcu_is_nocb_cpu(rdp->cpu))
  2114. return;
  2115. /*
  2116. * Orphan the callbacks. First adjust the counts. This is safe
  2117. * because _rcu_barrier() excludes CPU-hotplug operations, so it
  2118. * cannot be running now. Thus no memory barrier is required.
  2119. */
  2120. if (rdp->nxtlist != NULL) {
  2121. rsp->qlen_lazy += rdp->qlen_lazy;
  2122. rsp->qlen += rdp->qlen;
  2123. rdp->n_cbs_orphaned += rdp->qlen;
  2124. rdp->qlen_lazy = 0;
  2125. ACCESS_ONCE(rdp->qlen) = 0;
  2126. }
  2127. /*
  2128. * Next, move those callbacks still needing a grace period to
  2129. * the orphanage, where some other CPU will pick them up.
  2130. * Some of the callbacks might have gone partway through a grace
  2131. * period, but that is too bad. They get to start over because we
  2132. * cannot assume that grace periods are synchronized across CPUs.
  2133. * We don't bother updating the ->nxttail[] array yet, instead
  2134. * we just reset the whole thing later on.
  2135. */
  2136. if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
  2137. *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
  2138. rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
  2139. *rdp->nxttail[RCU_DONE_TAIL] = NULL;
  2140. }
  2141. /*
  2142. * Then move the ready-to-invoke callbacks to the orphanage,
  2143. * where some other CPU will pick them up. These will not be
  2144. * required to pass though another grace period: They are done.
  2145. */
  2146. if (rdp->nxtlist != NULL) {
  2147. *rsp->orphan_donetail = rdp->nxtlist;
  2148. rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
  2149. }
  2150. /*
  2151. * Finally, initialize the rcu_data structure's list to empty and
  2152. * disallow further callbacks on this CPU.
  2153. */
  2154. init_callback_list(rdp);
  2155. rdp->nxttail[RCU_NEXT_TAIL] = NULL;
  2156. }
  2157. /*
  2158. * Adopt the RCU callbacks from the specified rcu_state structure's
  2159. * orphanage. The caller must hold the ->orphan_lock.
  2160. */
  2161. static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
  2162. {
  2163. int i;
  2164. struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
  2165. /* No-CBs CPUs are handled specially. */
  2166. if (rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
  2167. return;
  2168. /* Do the accounting first. */
  2169. rdp->qlen_lazy += rsp->qlen_lazy;
  2170. rdp->qlen += rsp->qlen;
  2171. rdp->n_cbs_adopted += rsp->qlen;
  2172. if (rsp->qlen_lazy != rsp->qlen)
  2173. rcu_idle_count_callbacks_posted();
  2174. rsp->qlen_lazy = 0;
  2175. rsp->qlen = 0;
  2176. /*
  2177. * We do not need a memory barrier here because the only way we
  2178. * can get here if there is an rcu_barrier() in flight is if
  2179. * we are the task doing the rcu_barrier().
  2180. */
  2181. /* First adopt the ready-to-invoke callbacks. */
  2182. if (rsp->orphan_donelist != NULL) {
  2183. *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
  2184. *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
  2185. for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
  2186. if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
  2187. rdp->nxttail[i] = rsp->orphan_donetail;
  2188. rsp->orphan_donelist = NULL;
  2189. rsp->orphan_donetail = &rsp->orphan_donelist;
  2190. }
  2191. /* And then adopt the callbacks that still need a grace period. */
  2192. if (rsp->orphan_nxtlist != NULL) {
  2193. *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
  2194. rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
  2195. rsp->orphan_nxtlist = NULL;
  2196. rsp->orphan_nxttail = &rsp->orphan_nxtlist;
  2197. }
  2198. }
  2199. /*
  2200. * Trace the fact that this CPU is going offline.
  2201. */
  2202. static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
  2203. {
  2204. RCU_TRACE(unsigned long mask);
  2205. RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
  2206. RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
  2207. RCU_TRACE(mask = rdp->grpmask);
  2208. trace_rcu_grace_period(rsp->name,
  2209. rnp->gpnum + 1 - !!(rnp->qsmask & mask),
  2210. TPS("cpuofl"));
  2211. }
  2212. /*
  2213. * All CPUs for the specified rcu_node structure have gone offline,
  2214. * and all tasks that were preempted within an RCU read-side critical
  2215. * section while running on one of those CPUs have since exited their RCU
  2216. * read-side critical section. Some other CPU is reporting this fact with
  2217. * the specified rcu_node structure's ->lock held and interrupts disabled.
  2218. * This function therefore goes up the tree of rcu_node structures,
  2219. * clearing the corresponding bits in the ->qsmaskinit fields. Note that
  2220. * the leaf rcu_node structure's ->qsmaskinit field has already been
  2221. * updated
  2222. *
  2223. * This function does check that the specified rcu_node structure has
  2224. * all CPUs offline and no blocked tasks, so it is OK to invoke it
  2225. * prematurely. That said, invoking it after the fact will cost you
  2226. * a needless lock acquisition. So once it has done its work, don't
  2227. * invoke it again.
  2228. */
  2229. static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
  2230. {
  2231. long mask;
  2232. struct rcu_node *rnp = rnp_leaf;
  2233. if (rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
  2234. return;
  2235. for (;;) {
  2236. mask = rnp->grpmask;
  2237. rnp = rnp->parent;
  2238. if (!rnp)
  2239. break;
  2240. raw_spin_lock(&rnp->lock); /* irqs already disabled. */
  2241. smp_mb__after_unlock_lock(); /* GP memory ordering. */
  2242. rnp->qsmaskinit &= ~mask;
  2243. rnp->qsmask &= ~mask;
  2244. if (rnp->qsmaskinit) {
  2245. raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
  2246. return;
  2247. }
  2248. raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
  2249. }
  2250. }
  2251. /*
  2252. * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
  2253. * function. We now remove it from the rcu_node tree's ->qsmaskinit
  2254. * bit masks.
  2255. */
  2256. static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
  2257. {
  2258. unsigned long flags;
  2259. unsigned long mask;
  2260. struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
  2261. struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
  2262. /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
  2263. mask = rdp->grpmask;
  2264. raw_spin_lock_irqsave(&rnp->lock, flags);
  2265. smp_mb__after_unlock_lock(); /* Enforce GP memory-order guarantee. */
  2266. rnp->qsmaskinitnext &= ~mask;
  2267. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  2268. }
  2269. /*
  2270. * The CPU has been completely removed, and some other CPU is reporting
  2271. * this fact from process context. Do the remainder of the cleanup,
  2272. * including orphaning the outgoing CPU's RCU callbacks, and also
  2273. * adopting them. There can only be one CPU hotplug operation at a time,
  2274. * so no other CPU can be attempting to update rcu_cpu_kthread_task.
  2275. */
  2276. static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
  2277. {
  2278. unsigned long flags;
  2279. struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
  2280. struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
  2281. /* Adjust any no-longer-needed kthreads. */
  2282. rcu_boost_kthread_setaffinity(rnp, -1);
  2283. /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
  2284. raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
  2285. rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
  2286. rcu_adopt_orphan_cbs(rsp, flags);
  2287. raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags);
  2288. WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
  2289. "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
  2290. cpu, rdp->qlen, rdp->nxtlist);
  2291. }
  2292. #else /* #ifdef CONFIG_HOTPLUG_CPU */
  2293. static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
  2294. {
  2295. }
  2296. static void __maybe_unused rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
  2297. {
  2298. }
  2299. static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
  2300. {
  2301. }
  2302. static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
  2303. {
  2304. }
  2305. #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
  2306. /*
  2307. * Invoke any RCU callbacks that have made it to the end of their grace
  2308. * period. Thottle as specified by rdp->blimit.
  2309. */
  2310. static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
  2311. {
  2312. unsigned long flags;
  2313. struct rcu_head *next, *list, **tail;
  2314. long bl, count, count_lazy;
  2315. int i;
  2316. /* If no callbacks are ready, just return. */
  2317. if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
  2318. trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
  2319. trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
  2320. need_resched(), is_idle_task(current),
  2321. rcu_is_callbacks_kthread());
  2322. return;
  2323. }
  2324. /*
  2325. * Extract the list of ready callbacks, disabling to prevent
  2326. * races with call_rcu() from interrupt handlers.
  2327. */
  2328. local_irq_save(flags);
  2329. WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
  2330. bl = rdp->blimit;
  2331. trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
  2332. list = rdp->nxtlist;
  2333. rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
  2334. *rdp->nxttail[RCU_DONE_TAIL] = NULL;
  2335. tail = rdp->nxttail[RCU_DONE_TAIL];
  2336. for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
  2337. if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
  2338. rdp->nxttail[i] = &rdp->nxtlist;
  2339. local_irq_restore(flags);
  2340. /* Invoke callbacks. */
  2341. count = count_lazy = 0;
  2342. while (list) {
  2343. next = list->next;
  2344. prefetch(next);
  2345. debug_rcu_head_unqueue(list);
  2346. if (__rcu_reclaim(rsp->name, list))
  2347. count_lazy++;
  2348. list = next;
  2349. /* Stop only if limit reached and CPU has something to do. */
  2350. if (++count >= bl &&
  2351. (need_resched() ||
  2352. (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
  2353. break;
  2354. }
  2355. local_irq_save(flags);
  2356. trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
  2357. is_idle_task(current),
  2358. rcu_is_callbacks_kthread());
  2359. /* Update count, and requeue any remaining callbacks. */
  2360. if (list != NULL) {
  2361. *tail = rdp->nxtlist;
  2362. rdp->nxtlist = list;
  2363. for (i = 0; i < RCU_NEXT_SIZE; i++)
  2364. if (&rdp->nxtlist == rdp->nxttail[i])
  2365. rdp->nxttail[i] = tail;
  2366. else
  2367. break;
  2368. }
  2369. smp_mb(); /* List handling before counting for rcu_barrier(). */
  2370. rdp->qlen_lazy -= count_lazy;
  2371. ACCESS_ONCE(rdp->qlen) = rdp->qlen - count;
  2372. rdp->n_cbs_invoked += count;
  2373. /* Reinstate batch limit if we have worked down the excess. */
  2374. if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
  2375. rdp->blimit = blimit;
  2376. /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
  2377. if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
  2378. rdp->qlen_last_fqs_check = 0;
  2379. rdp->n_force_qs_snap = rsp->n_force_qs;
  2380. } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
  2381. rdp->qlen_last_fqs_check = rdp->qlen;
  2382. WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
  2383. local_irq_restore(flags);
  2384. /* Re-invoke RCU core processing if there are callbacks remaining. */
  2385. if (cpu_has_callbacks_ready_to_invoke(rdp))
  2386. invoke_rcu_core();
  2387. }
  2388. /*
  2389. * Check to see if this CPU is in a non-context-switch quiescent state
  2390. * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
  2391. * Also schedule RCU core processing.
  2392. *
  2393. * This function must be called from hardirq context. It is normally
  2394. * invoked from the scheduling-clock interrupt. If rcu_pending returns
  2395. * false, there is no point in invoking rcu_check_callbacks().
  2396. */
  2397. void rcu_check_callbacks(int user)
  2398. {
  2399. trace_rcu_utilization(TPS("Start scheduler-tick"));
  2400. increment_cpu_stall_ticks();
  2401. if (user || rcu_is_cpu_rrupt_from_idle()) {
  2402. /*
  2403. * Get here if this CPU took its interrupt from user
  2404. * mode or from the idle loop, and if this is not a
  2405. * nested interrupt. In this case, the CPU is in
  2406. * a quiescent state, so note it.
  2407. *
  2408. * No memory barrier is required here because both
  2409. * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
  2410. * variables that other CPUs neither access nor modify,
  2411. * at least not while the corresponding CPU is online.
  2412. */
  2413. rcu_sched_qs();
  2414. rcu_bh_qs();
  2415. } else if (!in_softirq()) {
  2416. /*
  2417. * Get here if this CPU did not take its interrupt from
  2418. * softirq, in other words, if it is not interrupting
  2419. * a rcu_bh read-side critical section. This is an _bh
  2420. * critical section, so note it.
  2421. */
  2422. rcu_bh_qs();
  2423. }
  2424. rcu_preempt_check_callbacks();
  2425. if (rcu_pending())
  2426. invoke_rcu_core();
  2427. if (user)
  2428. rcu_note_voluntary_context_switch(current);
  2429. trace_rcu_utilization(TPS("End scheduler-tick"));
  2430. }
  2431. /*
  2432. * Scan the leaf rcu_node structures, processing dyntick state for any that
  2433. * have not yet encountered a quiescent state, using the function specified.
  2434. * Also initiate boosting for any threads blocked on the root rcu_node.
  2435. *
  2436. * The caller must have suppressed start of new grace periods.
  2437. */
  2438. static void force_qs_rnp(struct rcu_state *rsp,
  2439. int (*f)(struct rcu_data *rsp, bool *isidle,
  2440. unsigned long *maxj),
  2441. bool *isidle, unsigned long *maxj)
  2442. {
  2443. unsigned long bit;
  2444. int cpu;
  2445. unsigned long flags;
  2446. unsigned long mask;
  2447. struct rcu_node *rnp;
  2448. rcu_for_each_leaf_node(rsp, rnp) {
  2449. cond_resched_rcu_qs();
  2450. mask = 0;
  2451. raw_spin_lock_irqsave(&rnp->lock, flags);
  2452. smp_mb__after_unlock_lock();
  2453. if (!rcu_gp_in_progress(rsp)) {
  2454. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  2455. return;
  2456. }
  2457. if (rnp->qsmask == 0) {
  2458. if (rcu_state_p == &rcu_sched_state ||
  2459. rsp != rcu_state_p ||
  2460. rcu_preempt_blocked_readers_cgp(rnp)) {
  2461. /*
  2462. * No point in scanning bits because they
  2463. * are all zero. But we might need to
  2464. * priority-boost blocked readers.
  2465. */
  2466. rcu_initiate_boost(rnp, flags);
  2467. /* rcu_initiate_boost() releases rnp->lock */
  2468. continue;
  2469. }
  2470. if (rnp->parent &&
  2471. (rnp->parent->qsmask & rnp->grpmask)) {
  2472. /*
  2473. * Race between grace-period
  2474. * initialization and task exiting RCU
  2475. * read-side critical section: Report.
  2476. */
  2477. rcu_report_unblock_qs_rnp(rsp, rnp, flags);
  2478. /* rcu_report_unblock_qs_rnp() rlses ->lock */
  2479. continue;
  2480. }
  2481. }
  2482. cpu = rnp->grplo;
  2483. bit = 1;
  2484. for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
  2485. if ((rnp->qsmask & bit) != 0) {
  2486. if ((rnp->qsmaskinit & bit) != 0)
  2487. *isidle = false;
  2488. if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
  2489. mask |= bit;
  2490. }
  2491. }
  2492. if (mask != 0) {
  2493. /* Idle/offline CPUs, report. */
  2494. rcu_report_qs_rnp(mask, rsp, rnp, flags);
  2495. } else {
  2496. /* Nothing to do here, so just drop the lock. */
  2497. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  2498. }
  2499. }
  2500. }
  2501. /*
  2502. * Force quiescent states on reluctant CPUs, and also detect which
  2503. * CPUs are in dyntick-idle mode.
  2504. */
  2505. static void force_quiescent_state(struct rcu_state *rsp)
  2506. {
  2507. unsigned long flags;
  2508. bool ret;
  2509. struct rcu_node *rnp;
  2510. struct rcu_node *rnp_old = NULL;
  2511. /* Funnel through hierarchy to reduce memory contention. */
  2512. rnp = __this_cpu_read(rsp->rda->mynode);
  2513. for (; rnp != NULL; rnp = rnp->parent) {
  2514. ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
  2515. !raw_spin_trylock(&rnp->fqslock);
  2516. if (rnp_old != NULL)
  2517. raw_spin_unlock(&rnp_old->fqslock);
  2518. if (ret) {
  2519. rsp->n_force_qs_lh++;
  2520. return;
  2521. }
  2522. rnp_old = rnp;
  2523. }
  2524. /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
  2525. /* Reached the root of the rcu_node tree, acquire lock. */
  2526. raw_spin_lock_irqsave(&rnp_old->lock, flags);
  2527. smp_mb__after_unlock_lock();
  2528. raw_spin_unlock(&rnp_old->fqslock);
  2529. if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
  2530. rsp->n_force_qs_lh++;
  2531. raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
  2532. return; /* Someone beat us to it. */
  2533. }
  2534. ACCESS_ONCE(rsp->gp_flags) =
  2535. ACCESS_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS;
  2536. raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
  2537. rcu_gp_kthread_wake(rsp);
  2538. }
  2539. /*
  2540. * This does the RCU core processing work for the specified rcu_state
  2541. * and rcu_data structures. This may be called only from the CPU to
  2542. * whom the rdp belongs.
  2543. */
  2544. static void
  2545. __rcu_process_callbacks(struct rcu_state *rsp)
  2546. {
  2547. unsigned long flags;
  2548. bool needwake;
  2549. struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
  2550. WARN_ON_ONCE(rdp->beenonline == 0);
  2551. /* Update RCU state based on any recent quiescent states. */
  2552. rcu_check_quiescent_state(rsp, rdp);
  2553. /* Does this CPU require a not-yet-started grace period? */
  2554. local_irq_save(flags);
  2555. if (cpu_needs_another_gp(rsp, rdp)) {
  2556. raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */
  2557. needwake = rcu_start_gp(rsp);
  2558. raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
  2559. if (needwake)
  2560. rcu_gp_kthread_wake(rsp);
  2561. } else {
  2562. local_irq_restore(flags);
  2563. }
  2564. /* If there are callbacks ready, invoke them. */
  2565. if (cpu_has_callbacks_ready_to_invoke(rdp))
  2566. invoke_rcu_callbacks(rsp, rdp);
  2567. /* Do any needed deferred wakeups of rcuo kthreads. */
  2568. do_nocb_deferred_wakeup(rdp);
  2569. }
  2570. /*
  2571. * Do RCU core processing for the current CPU.
  2572. */
  2573. static void rcu_process_callbacks(struct softirq_action *unused)
  2574. {
  2575. struct rcu_state *rsp;
  2576. if (cpu_is_offline(smp_processor_id()))
  2577. return;
  2578. trace_rcu_utilization(TPS("Start RCU core"));
  2579. for_each_rcu_flavor(rsp)
  2580. __rcu_process_callbacks(rsp);
  2581. trace_rcu_utilization(TPS("End RCU core"));
  2582. }
  2583. /*
  2584. * Schedule RCU callback invocation. If the specified type of RCU
  2585. * does not support RCU priority boosting, just do a direct call,
  2586. * otherwise wake up the per-CPU kernel kthread. Note that because we
  2587. * are running on the current CPU with softirqs disabled, the
  2588. * rcu_cpu_kthread_task cannot disappear out from under us.
  2589. */
  2590. static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
  2591. {
  2592. if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
  2593. return;
  2594. if (likely(!rsp->boost)) {
  2595. rcu_do_batch(rsp, rdp);
  2596. return;
  2597. }
  2598. invoke_rcu_callbacks_kthread();
  2599. }
  2600. static void invoke_rcu_core(void)
  2601. {
  2602. if (cpu_online(smp_processor_id()))
  2603. raise_softirq(RCU_SOFTIRQ);
  2604. }
  2605. /*
  2606. * Handle any core-RCU processing required by a call_rcu() invocation.
  2607. */
  2608. static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
  2609. struct rcu_head *head, unsigned long flags)
  2610. {
  2611. bool needwake;
  2612. /*
  2613. * If called from an extended quiescent state, invoke the RCU
  2614. * core in order to force a re-evaluation of RCU's idleness.
  2615. */
  2616. if (!rcu_is_watching() && cpu_online(smp_processor_id()))
  2617. invoke_rcu_core();
  2618. /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
  2619. if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
  2620. return;
  2621. /*
  2622. * Force the grace period if too many callbacks or too long waiting.
  2623. * Enforce hysteresis, and don't invoke force_quiescent_state()
  2624. * if some other CPU has recently done so. Also, don't bother
  2625. * invoking force_quiescent_state() if the newly enqueued callback
  2626. * is the only one waiting for a grace period to complete.
  2627. */
  2628. if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
  2629. /* Are we ignoring a completed grace period? */
  2630. note_gp_changes(rsp, rdp);
  2631. /* Start a new grace period if one not already started. */
  2632. if (!rcu_gp_in_progress(rsp)) {
  2633. struct rcu_node *rnp_root = rcu_get_root(rsp);
  2634. raw_spin_lock(&rnp_root->lock);
  2635. smp_mb__after_unlock_lock();
  2636. needwake = rcu_start_gp(rsp);
  2637. raw_spin_unlock(&rnp_root->lock);
  2638. if (needwake)
  2639. rcu_gp_kthread_wake(rsp);
  2640. } else {
  2641. /* Give the grace period a kick. */
  2642. rdp->blimit = LONG_MAX;
  2643. if (rsp->n_force_qs == rdp->n_force_qs_snap &&
  2644. *rdp->nxttail[RCU_DONE_TAIL] != head)
  2645. force_quiescent_state(rsp);
  2646. rdp->n_force_qs_snap = rsp->n_force_qs;
  2647. rdp->qlen_last_fqs_check = rdp->qlen;
  2648. }
  2649. }
  2650. }
  2651. /*
  2652. * RCU callback function to leak a callback.
  2653. */
  2654. static void rcu_leak_callback(struct rcu_head *rhp)
  2655. {
  2656. }
  2657. /*
  2658. * Helper function for call_rcu() and friends. The cpu argument will
  2659. * normally be -1, indicating "currently running CPU". It may specify
  2660. * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
  2661. * is expected to specify a CPU.
  2662. */
  2663. static void
  2664. __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
  2665. struct rcu_state *rsp, int cpu, bool lazy)
  2666. {
  2667. unsigned long flags;
  2668. struct rcu_data *rdp;
  2669. WARN_ON_ONCE((unsigned long)head & 0x1); /* Misaligned rcu_head! */
  2670. if (debug_rcu_head_queue(head)) {
  2671. /* Probable double call_rcu(), so leak the callback. */
  2672. ACCESS_ONCE(head->func) = rcu_leak_callback;
  2673. WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
  2674. return;
  2675. }
  2676. head->func = func;
  2677. head->next = NULL;
  2678. /*
  2679. * Opportunistically note grace-period endings and beginnings.
  2680. * Note that we might see a beginning right after we see an
  2681. * end, but never vice versa, since this CPU has to pass through
  2682. * a quiescent state betweentimes.
  2683. */
  2684. local_irq_save(flags);
  2685. rdp = this_cpu_ptr(rsp->rda);
  2686. /* Add the callback to our list. */
  2687. if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
  2688. int offline;
  2689. if (cpu != -1)
  2690. rdp = per_cpu_ptr(rsp->rda, cpu);
  2691. offline = !__call_rcu_nocb(rdp, head, lazy, flags);
  2692. WARN_ON_ONCE(offline);
  2693. /* _call_rcu() is illegal on offline CPU; leak the callback. */
  2694. local_irq_restore(flags);
  2695. return;
  2696. }
  2697. ACCESS_ONCE(rdp->qlen) = rdp->qlen + 1;
  2698. if (lazy)
  2699. rdp->qlen_lazy++;
  2700. else
  2701. rcu_idle_count_callbacks_posted();
  2702. smp_mb(); /* Count before adding callback for rcu_barrier(). */
  2703. *rdp->nxttail[RCU_NEXT_TAIL] = head;
  2704. rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
  2705. if (__is_kfree_rcu_offset((unsigned long)func))
  2706. trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
  2707. rdp->qlen_lazy, rdp->qlen);
  2708. else
  2709. trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
  2710. /* Go handle any RCU core processing required. */
  2711. __call_rcu_core(rsp, rdp, head, flags);
  2712. local_irq_restore(flags);
  2713. }
  2714. /*
  2715. * Queue an RCU-sched callback for invocation after a grace period.
  2716. */
  2717. void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
  2718. {
  2719. __call_rcu(head, func, &rcu_sched_state, -1, 0);
  2720. }
  2721. EXPORT_SYMBOL_GPL(call_rcu_sched);
  2722. /*
  2723. * Queue an RCU callback for invocation after a quicker grace period.
  2724. */
  2725. void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
  2726. {
  2727. __call_rcu(head, func, &rcu_bh_state, -1, 0);
  2728. }
  2729. EXPORT_SYMBOL_GPL(call_rcu_bh);
  2730. /*
  2731. * Queue an RCU callback for lazy invocation after a grace period.
  2732. * This will likely be later named something like "call_rcu_lazy()",
  2733. * but this change will require some way of tagging the lazy RCU
  2734. * callbacks in the list of pending callbacks. Until then, this
  2735. * function may only be called from __kfree_rcu().
  2736. */
  2737. void kfree_call_rcu(struct rcu_head *head,
  2738. void (*func)(struct rcu_head *rcu))
  2739. {
  2740. __call_rcu(head, func, rcu_state_p, -1, 1);
  2741. }
  2742. EXPORT_SYMBOL_GPL(kfree_call_rcu);
  2743. /*
  2744. * Because a context switch is a grace period for RCU-sched and RCU-bh,
  2745. * any blocking grace-period wait automatically implies a grace period
  2746. * if there is only one CPU online at any point time during execution
  2747. * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
  2748. * occasionally incorrectly indicate that there are multiple CPUs online
  2749. * when there was in fact only one the whole time, as this just adds
  2750. * some overhead: RCU still operates correctly.
  2751. */
  2752. static inline int rcu_blocking_is_gp(void)
  2753. {
  2754. int ret;
  2755. might_sleep(); /* Check for RCU read-side critical section. */
  2756. preempt_disable();
  2757. ret = num_online_cpus() <= 1;
  2758. preempt_enable();
  2759. return ret;
  2760. }
  2761. /**
  2762. * synchronize_sched - wait until an rcu-sched grace period has elapsed.
  2763. *
  2764. * Control will return to the caller some time after a full rcu-sched
  2765. * grace period has elapsed, in other words after all currently executing
  2766. * rcu-sched read-side critical sections have completed. These read-side
  2767. * critical sections are delimited by rcu_read_lock_sched() and
  2768. * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
  2769. * local_irq_disable(), and so on may be used in place of
  2770. * rcu_read_lock_sched().
  2771. *
  2772. * This means that all preempt_disable code sequences, including NMI and
  2773. * non-threaded hardware-interrupt handlers, in progress on entry will
  2774. * have completed before this primitive returns. However, this does not
  2775. * guarantee that softirq handlers will have completed, since in some
  2776. * kernels, these handlers can run in process context, and can block.
  2777. *
  2778. * Note that this guarantee implies further memory-ordering guarantees.
  2779. * On systems with more than one CPU, when synchronize_sched() returns,
  2780. * each CPU is guaranteed to have executed a full memory barrier since the
  2781. * end of its last RCU-sched read-side critical section whose beginning
  2782. * preceded the call to synchronize_sched(). In addition, each CPU having
  2783. * an RCU read-side critical section that extends beyond the return from
  2784. * synchronize_sched() is guaranteed to have executed a full memory barrier
  2785. * after the beginning of synchronize_sched() and before the beginning of
  2786. * that RCU read-side critical section. Note that these guarantees include
  2787. * CPUs that are offline, idle, or executing in user mode, as well as CPUs
  2788. * that are executing in the kernel.
  2789. *
  2790. * Furthermore, if CPU A invoked synchronize_sched(), which returned
  2791. * to its caller on CPU B, then both CPU A and CPU B are guaranteed
  2792. * to have executed a full memory barrier during the execution of
  2793. * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
  2794. * again only if the system has more than one CPU).
  2795. *
  2796. * This primitive provides the guarantees made by the (now removed)
  2797. * synchronize_kernel() API. In contrast, synchronize_rcu() only
  2798. * guarantees that rcu_read_lock() sections will have completed.
  2799. * In "classic RCU", these two guarantees happen to be one and
  2800. * the same, but can differ in realtime RCU implementations.
  2801. */
  2802. void synchronize_sched(void)
  2803. {
  2804. rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
  2805. !lock_is_held(&rcu_lock_map) &&
  2806. !lock_is_held(&rcu_sched_lock_map),
  2807. "Illegal synchronize_sched() in RCU-sched read-side critical section");
  2808. if (rcu_blocking_is_gp())
  2809. return;
  2810. if (rcu_expedited)
  2811. synchronize_sched_expedited();
  2812. else
  2813. wait_rcu_gp(call_rcu_sched);
  2814. }
  2815. EXPORT_SYMBOL_GPL(synchronize_sched);
  2816. /**
  2817. * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
  2818. *
  2819. * Control will return to the caller some time after a full rcu_bh grace
  2820. * period has elapsed, in other words after all currently executing rcu_bh
  2821. * read-side critical sections have completed. RCU read-side critical
  2822. * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
  2823. * and may be nested.
  2824. *
  2825. * See the description of synchronize_sched() for more detailed information
  2826. * on memory ordering guarantees.
  2827. */
  2828. void synchronize_rcu_bh(void)
  2829. {
  2830. rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
  2831. !lock_is_held(&rcu_lock_map) &&
  2832. !lock_is_held(&rcu_sched_lock_map),
  2833. "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
  2834. if (rcu_blocking_is_gp())
  2835. return;
  2836. if (rcu_expedited)
  2837. synchronize_rcu_bh_expedited();
  2838. else
  2839. wait_rcu_gp(call_rcu_bh);
  2840. }
  2841. EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
  2842. /**
  2843. * get_state_synchronize_rcu - Snapshot current RCU state
  2844. *
  2845. * Returns a cookie that is used by a later call to cond_synchronize_rcu()
  2846. * to determine whether or not a full grace period has elapsed in the
  2847. * meantime.
  2848. */
  2849. unsigned long get_state_synchronize_rcu(void)
  2850. {
  2851. /*
  2852. * Any prior manipulation of RCU-protected data must happen
  2853. * before the load from ->gpnum.
  2854. */
  2855. smp_mb(); /* ^^^ */
  2856. /*
  2857. * Make sure this load happens before the purportedly
  2858. * time-consuming work between get_state_synchronize_rcu()
  2859. * and cond_synchronize_rcu().
  2860. */
  2861. return smp_load_acquire(&rcu_state_p->gpnum);
  2862. }
  2863. EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
  2864. /**
  2865. * cond_synchronize_rcu - Conditionally wait for an RCU grace period
  2866. *
  2867. * @oldstate: return value from earlier call to get_state_synchronize_rcu()
  2868. *
  2869. * If a full RCU grace period has elapsed since the earlier call to
  2870. * get_state_synchronize_rcu(), just return. Otherwise, invoke
  2871. * synchronize_rcu() to wait for a full grace period.
  2872. *
  2873. * Yes, this function does not take counter wrap into account. But
  2874. * counter wrap is harmless. If the counter wraps, we have waited for
  2875. * more than 2 billion grace periods (and way more on a 64-bit system!),
  2876. * so waiting for one additional grace period should be just fine.
  2877. */
  2878. void cond_synchronize_rcu(unsigned long oldstate)
  2879. {
  2880. unsigned long newstate;
  2881. /*
  2882. * Ensure that this load happens before any RCU-destructive
  2883. * actions the caller might carry out after we return.
  2884. */
  2885. newstate = smp_load_acquire(&rcu_state_p->completed);
  2886. if (ULONG_CMP_GE(oldstate, newstate))
  2887. synchronize_rcu();
  2888. }
  2889. EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
  2890. static int synchronize_sched_expedited_cpu_stop(void *data)
  2891. {
  2892. /*
  2893. * There must be a full memory barrier on each affected CPU
  2894. * between the time that try_stop_cpus() is called and the
  2895. * time that it returns.
  2896. *
  2897. * In the current initial implementation of cpu_stop, the
  2898. * above condition is already met when the control reaches
  2899. * this point and the following smp_mb() is not strictly
  2900. * necessary. Do smp_mb() anyway for documentation and
  2901. * robustness against future implementation changes.
  2902. */
  2903. smp_mb(); /* See above comment block. */
  2904. return 0;
  2905. }
  2906. /**
  2907. * synchronize_sched_expedited - Brute-force RCU-sched grace period
  2908. *
  2909. * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
  2910. * approach to force the grace period to end quickly. This consumes
  2911. * significant time on all CPUs and is unfriendly to real-time workloads,
  2912. * so is thus not recommended for any sort of common-case code. In fact,
  2913. * if you are using synchronize_sched_expedited() in a loop, please
  2914. * restructure your code to batch your updates, and then use a single
  2915. * synchronize_sched() instead.
  2916. *
  2917. * This implementation can be thought of as an application of ticket
  2918. * locking to RCU, with sync_sched_expedited_started and
  2919. * sync_sched_expedited_done taking on the roles of the halves
  2920. * of the ticket-lock word. Each task atomically increments
  2921. * sync_sched_expedited_started upon entry, snapshotting the old value,
  2922. * then attempts to stop all the CPUs. If this succeeds, then each
  2923. * CPU will have executed a context switch, resulting in an RCU-sched
  2924. * grace period. We are then done, so we use atomic_cmpxchg() to
  2925. * update sync_sched_expedited_done to match our snapshot -- but
  2926. * only if someone else has not already advanced past our snapshot.
  2927. *
  2928. * On the other hand, if try_stop_cpus() fails, we check the value
  2929. * of sync_sched_expedited_done. If it has advanced past our
  2930. * initial snapshot, then someone else must have forced a grace period
  2931. * some time after we took our snapshot. In this case, our work is
  2932. * done for us, and we can simply return. Otherwise, we try again,
  2933. * but keep our initial snapshot for purposes of checking for someone
  2934. * doing our work for us.
  2935. *
  2936. * If we fail too many times in a row, we fall back to synchronize_sched().
  2937. */
  2938. void synchronize_sched_expedited(void)
  2939. {
  2940. cpumask_var_t cm;
  2941. bool cma = false;
  2942. int cpu;
  2943. long firstsnap, s, snap;
  2944. int trycount = 0;
  2945. struct rcu_state *rsp = &rcu_sched_state;
  2946. /*
  2947. * If we are in danger of counter wrap, just do synchronize_sched().
  2948. * By allowing sync_sched_expedited_started to advance no more than
  2949. * ULONG_MAX/8 ahead of sync_sched_expedited_done, we are ensuring
  2950. * that more than 3.5 billion CPUs would be required to force a
  2951. * counter wrap on a 32-bit system. Quite a few more CPUs would of
  2952. * course be required on a 64-bit system.
  2953. */
  2954. if (ULONG_CMP_GE((ulong)atomic_long_read(&rsp->expedited_start),
  2955. (ulong)atomic_long_read(&rsp->expedited_done) +
  2956. ULONG_MAX / 8)) {
  2957. synchronize_sched();
  2958. atomic_long_inc(&rsp->expedited_wrap);
  2959. return;
  2960. }
  2961. /*
  2962. * Take a ticket. Note that atomic_inc_return() implies a
  2963. * full memory barrier.
  2964. */
  2965. snap = atomic_long_inc_return(&rsp->expedited_start);
  2966. firstsnap = snap;
  2967. if (!try_get_online_cpus()) {
  2968. /* CPU hotplug operation in flight, fall back to normal GP. */
  2969. wait_rcu_gp(call_rcu_sched);
  2970. atomic_long_inc(&rsp->expedited_normal);
  2971. return;
  2972. }
  2973. WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
  2974. /* Offline CPUs, idle CPUs, and any CPU we run on are quiescent. */
  2975. cma = zalloc_cpumask_var(&cm, GFP_KERNEL);
  2976. if (cma) {
  2977. cpumask_copy(cm, cpu_online_mask);
  2978. cpumask_clear_cpu(raw_smp_processor_id(), cm);
  2979. for_each_cpu(cpu, cm) {
  2980. struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
  2981. if (!(atomic_add_return(0, &rdtp->dynticks) & 0x1))
  2982. cpumask_clear_cpu(cpu, cm);
  2983. }
  2984. if (cpumask_weight(cm) == 0)
  2985. goto all_cpus_idle;
  2986. }
  2987. /*
  2988. * Each pass through the following loop attempts to force a
  2989. * context switch on each CPU.
  2990. */
  2991. while (try_stop_cpus(cma ? cm : cpu_online_mask,
  2992. synchronize_sched_expedited_cpu_stop,
  2993. NULL) == -EAGAIN) {
  2994. put_online_cpus();
  2995. atomic_long_inc(&rsp->expedited_tryfail);
  2996. /* Check to see if someone else did our work for us. */
  2997. s = atomic_long_read(&rsp->expedited_done);
  2998. if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
  2999. /* ensure test happens before caller kfree */
  3000. smp_mb__before_atomic(); /* ^^^ */
  3001. atomic_long_inc(&rsp->expedited_workdone1);
  3002. free_cpumask_var(cm);
  3003. return;
  3004. }
  3005. /* No joy, try again later. Or just synchronize_sched(). */
  3006. if (trycount++ < 10) {
  3007. udelay(trycount * num_online_cpus());
  3008. } else {
  3009. wait_rcu_gp(call_rcu_sched);
  3010. atomic_long_inc(&rsp->expedited_normal);
  3011. free_cpumask_var(cm);
  3012. return;
  3013. }
  3014. /* Recheck to see if someone else did our work for us. */
  3015. s = atomic_long_read(&rsp->expedited_done);
  3016. if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
  3017. /* ensure test happens before caller kfree */
  3018. smp_mb__before_atomic(); /* ^^^ */
  3019. atomic_long_inc(&rsp->expedited_workdone2);
  3020. free_cpumask_var(cm);
  3021. return;
  3022. }
  3023. /*
  3024. * Refetching sync_sched_expedited_started allows later
  3025. * callers to piggyback on our grace period. We retry
  3026. * after they started, so our grace period works for them,
  3027. * and they started after our first try, so their grace
  3028. * period works for us.
  3029. */
  3030. if (!try_get_online_cpus()) {
  3031. /* CPU hotplug operation in flight, use normal GP. */
  3032. wait_rcu_gp(call_rcu_sched);
  3033. atomic_long_inc(&rsp->expedited_normal);
  3034. free_cpumask_var(cm);
  3035. return;
  3036. }
  3037. snap = atomic_long_read(&rsp->expedited_start);
  3038. smp_mb(); /* ensure read is before try_stop_cpus(). */
  3039. }
  3040. atomic_long_inc(&rsp->expedited_stoppedcpus);
  3041. all_cpus_idle:
  3042. free_cpumask_var(cm);
  3043. /*
  3044. * Everyone up to our most recent fetch is covered by our grace
  3045. * period. Update the counter, but only if our work is still
  3046. * relevant -- which it won't be if someone who started later
  3047. * than we did already did their update.
  3048. */
  3049. do {
  3050. atomic_long_inc(&rsp->expedited_done_tries);
  3051. s = atomic_long_read(&rsp->expedited_done);
  3052. if (ULONG_CMP_GE((ulong)s, (ulong)snap)) {
  3053. /* ensure test happens before caller kfree */
  3054. smp_mb__before_atomic(); /* ^^^ */
  3055. atomic_long_inc(&rsp->expedited_done_lost);
  3056. break;
  3057. }
  3058. } while (atomic_long_cmpxchg(&rsp->expedited_done, s, snap) != s);
  3059. atomic_long_inc(&rsp->expedited_done_exit);
  3060. put_online_cpus();
  3061. }
  3062. EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
  3063. /*
  3064. * Check to see if there is any immediate RCU-related work to be done
  3065. * by the current CPU, for the specified type of RCU, returning 1 if so.
  3066. * The checks are in order of increasing expense: checks that can be
  3067. * carried out against CPU-local state are performed first. However,
  3068. * we must check for CPU stalls first, else we might not get a chance.
  3069. */
  3070. static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
  3071. {
  3072. struct rcu_node *rnp = rdp->mynode;
  3073. rdp->n_rcu_pending++;
  3074. /* Check for CPU stalls, if enabled. */
  3075. check_cpu_stall(rsp, rdp);
  3076. /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
  3077. if (rcu_nohz_full_cpu(rsp))
  3078. return 0;
  3079. /* Is the RCU core waiting for a quiescent state from this CPU? */
  3080. if (rcu_scheduler_fully_active &&
  3081. rdp->qs_pending && !rdp->passed_quiesce &&
  3082. rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) {
  3083. rdp->n_rp_qs_pending++;
  3084. } else if (rdp->qs_pending &&
  3085. (rdp->passed_quiesce ||
  3086. rdp->rcu_qs_ctr_snap != __this_cpu_read(rcu_qs_ctr))) {
  3087. rdp->n_rp_report_qs++;
  3088. return 1;
  3089. }
  3090. /* Does this CPU have callbacks ready to invoke? */
  3091. if (cpu_has_callbacks_ready_to_invoke(rdp)) {
  3092. rdp->n_rp_cb_ready++;
  3093. return 1;
  3094. }
  3095. /* Has RCU gone idle with this CPU needing another grace period? */
  3096. if (cpu_needs_another_gp(rsp, rdp)) {
  3097. rdp->n_rp_cpu_needs_gp++;
  3098. return 1;
  3099. }
  3100. /* Has another RCU grace period completed? */
  3101. if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
  3102. rdp->n_rp_gp_completed++;
  3103. return 1;
  3104. }
  3105. /* Has a new RCU grace period started? */
  3106. if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum ||
  3107. unlikely(ACCESS_ONCE(rdp->gpwrap))) { /* outside lock */
  3108. rdp->n_rp_gp_started++;
  3109. return 1;
  3110. }
  3111. /* Does this CPU need a deferred NOCB wakeup? */
  3112. if (rcu_nocb_need_deferred_wakeup(rdp)) {
  3113. rdp->n_rp_nocb_defer_wakeup++;
  3114. return 1;
  3115. }
  3116. /* nothing to do */
  3117. rdp->n_rp_need_nothing++;
  3118. return 0;
  3119. }
  3120. /*
  3121. * Check to see if there is any immediate RCU-related work to be done
  3122. * by the current CPU, returning 1 if so. This function is part of the
  3123. * RCU implementation; it is -not- an exported member of the RCU API.
  3124. */
  3125. static int rcu_pending(void)
  3126. {
  3127. struct rcu_state *rsp;
  3128. for_each_rcu_flavor(rsp)
  3129. if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
  3130. return 1;
  3131. return 0;
  3132. }
  3133. /*
  3134. * Return true if the specified CPU has any callback. If all_lazy is
  3135. * non-NULL, store an indication of whether all callbacks are lazy.
  3136. * (If there are no callbacks, all of them are deemed to be lazy.)
  3137. */
  3138. static int __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
  3139. {
  3140. bool al = true;
  3141. bool hc = false;
  3142. struct rcu_data *rdp;
  3143. struct rcu_state *rsp;
  3144. for_each_rcu_flavor(rsp) {
  3145. rdp = this_cpu_ptr(rsp->rda);
  3146. if (!rdp->nxtlist)
  3147. continue;
  3148. hc = true;
  3149. if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
  3150. al = false;
  3151. break;
  3152. }
  3153. }
  3154. if (all_lazy)
  3155. *all_lazy = al;
  3156. return hc;
  3157. }
  3158. /*
  3159. * Helper function for _rcu_barrier() tracing. If tracing is disabled,
  3160. * the compiler is expected to optimize this away.
  3161. */
  3162. static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
  3163. int cpu, unsigned long done)
  3164. {
  3165. trace_rcu_barrier(rsp->name, s, cpu,
  3166. atomic_read(&rsp->barrier_cpu_count), done);
  3167. }
  3168. /*
  3169. * RCU callback function for _rcu_barrier(). If we are last, wake
  3170. * up the task executing _rcu_barrier().
  3171. */
  3172. static void rcu_barrier_callback(struct rcu_head *rhp)
  3173. {
  3174. struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
  3175. struct rcu_state *rsp = rdp->rsp;
  3176. if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
  3177. _rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
  3178. complete(&rsp->barrier_completion);
  3179. } else {
  3180. _rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
  3181. }
  3182. }
  3183. /*
  3184. * Called with preemption disabled, and from cross-cpu IRQ context.
  3185. */
  3186. static void rcu_barrier_func(void *type)
  3187. {
  3188. struct rcu_state *rsp = type;
  3189. struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
  3190. _rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
  3191. atomic_inc(&rsp->barrier_cpu_count);
  3192. rsp->call(&rdp->barrier_head, rcu_barrier_callback);
  3193. }
  3194. /*
  3195. * Orchestrate the specified type of RCU barrier, waiting for all
  3196. * RCU callbacks of the specified type to complete.
  3197. */
  3198. static void _rcu_barrier(struct rcu_state *rsp)
  3199. {
  3200. int cpu;
  3201. struct rcu_data *rdp;
  3202. unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
  3203. unsigned long snap_done;
  3204. _rcu_barrier_trace(rsp, "Begin", -1, snap);
  3205. /* Take mutex to serialize concurrent rcu_barrier() requests. */
  3206. mutex_lock(&rsp->barrier_mutex);
  3207. /*
  3208. * Ensure that all prior references, including to ->n_barrier_done,
  3209. * are ordered before the _rcu_barrier() machinery.
  3210. */
  3211. smp_mb(); /* See above block comment. */
  3212. /*
  3213. * Recheck ->n_barrier_done to see if others did our work for us.
  3214. * This means checking ->n_barrier_done for an even-to-odd-to-even
  3215. * transition. The "if" expression below therefore rounds the old
  3216. * value up to the next even number and adds two before comparing.
  3217. */
  3218. snap_done = rsp->n_barrier_done;
  3219. _rcu_barrier_trace(rsp, "Check", -1, snap_done);
  3220. /*
  3221. * If the value in snap is odd, we needed to wait for the current
  3222. * rcu_barrier() to complete, then wait for the next one, in other
  3223. * words, we need the value of snap_done to be three larger than
  3224. * the value of snap. On the other hand, if the value in snap is
  3225. * even, we only had to wait for the next rcu_barrier() to complete,
  3226. * in other words, we need the value of snap_done to be only two
  3227. * greater than the value of snap. The "(snap + 3) & ~0x1" computes
  3228. * this for us (thank you, Linus!).
  3229. */
  3230. if (ULONG_CMP_GE(snap_done, (snap + 3) & ~0x1)) {
  3231. _rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
  3232. smp_mb(); /* caller's subsequent code after above check. */
  3233. mutex_unlock(&rsp->barrier_mutex);
  3234. return;
  3235. }
  3236. /*
  3237. * Increment ->n_barrier_done to avoid duplicate work. Use
  3238. * ACCESS_ONCE() to prevent the compiler from speculating
  3239. * the increment to precede the early-exit check.
  3240. */
  3241. ACCESS_ONCE(rsp->n_barrier_done) = rsp->n_barrier_done + 1;
  3242. WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
  3243. _rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
  3244. smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
  3245. /*
  3246. * Initialize the count to one rather than to zero in order to
  3247. * avoid a too-soon return to zero in case of a short grace period
  3248. * (or preemption of this task). Exclude CPU-hotplug operations
  3249. * to ensure that no offline CPU has callbacks queued.
  3250. */
  3251. init_completion(&rsp->barrier_completion);
  3252. atomic_set(&rsp->barrier_cpu_count, 1);
  3253. get_online_cpus();
  3254. /*
  3255. * Force each CPU with callbacks to register a new callback.
  3256. * When that callback is invoked, we will know that all of the
  3257. * corresponding CPU's preceding callbacks have been invoked.
  3258. */
  3259. for_each_possible_cpu(cpu) {
  3260. if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
  3261. continue;
  3262. rdp = per_cpu_ptr(rsp->rda, cpu);
  3263. if (rcu_is_nocb_cpu(cpu)) {
  3264. if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
  3265. _rcu_barrier_trace(rsp, "OfflineNoCB", cpu,
  3266. rsp->n_barrier_done);
  3267. } else {
  3268. _rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
  3269. rsp->n_barrier_done);
  3270. smp_mb__before_atomic();
  3271. atomic_inc(&rsp->barrier_cpu_count);
  3272. __call_rcu(&rdp->barrier_head,
  3273. rcu_barrier_callback, rsp, cpu, 0);
  3274. }
  3275. } else if (ACCESS_ONCE(rdp->qlen)) {
  3276. _rcu_barrier_trace(rsp, "OnlineQ", cpu,
  3277. rsp->n_barrier_done);
  3278. smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
  3279. } else {
  3280. _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
  3281. rsp->n_barrier_done);
  3282. }
  3283. }
  3284. put_online_cpus();
  3285. /*
  3286. * Now that we have an rcu_barrier_callback() callback on each
  3287. * CPU, and thus each counted, remove the initial count.
  3288. */
  3289. if (atomic_dec_and_test(&rsp->barrier_cpu_count))
  3290. complete(&rsp->barrier_completion);
  3291. /* Increment ->n_barrier_done to prevent duplicate work. */
  3292. smp_mb(); /* Keep increment after above mechanism. */
  3293. ACCESS_ONCE(rsp->n_barrier_done) = rsp->n_barrier_done + 1;
  3294. WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
  3295. _rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
  3296. smp_mb(); /* Keep increment before caller's subsequent code. */
  3297. /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
  3298. wait_for_completion(&rsp->barrier_completion);
  3299. /* Other rcu_barrier() invocations can now safely proceed. */
  3300. mutex_unlock(&rsp->barrier_mutex);
  3301. }
  3302. /**
  3303. * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
  3304. */
  3305. void rcu_barrier_bh(void)
  3306. {
  3307. _rcu_barrier(&rcu_bh_state);
  3308. }
  3309. EXPORT_SYMBOL_GPL(rcu_barrier_bh);
  3310. /**
  3311. * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
  3312. */
  3313. void rcu_barrier_sched(void)
  3314. {
  3315. _rcu_barrier(&rcu_sched_state);
  3316. }
  3317. EXPORT_SYMBOL_GPL(rcu_barrier_sched);
  3318. /*
  3319. * Propagate ->qsinitmask bits up the rcu_node tree to account for the
  3320. * first CPU in a given leaf rcu_node structure coming online. The caller
  3321. * must hold the corresponding leaf rcu_node ->lock with interrrupts
  3322. * disabled.
  3323. */
  3324. static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
  3325. {
  3326. long mask;
  3327. struct rcu_node *rnp = rnp_leaf;
  3328. for (;;) {
  3329. mask = rnp->grpmask;
  3330. rnp = rnp->parent;
  3331. if (rnp == NULL)
  3332. return;
  3333. raw_spin_lock(&rnp->lock); /* Interrupts already disabled. */
  3334. rnp->qsmaskinit |= mask;
  3335. raw_spin_unlock(&rnp->lock); /* Interrupts remain disabled. */
  3336. }
  3337. }
  3338. /*
  3339. * Do boot-time initialization of a CPU's per-CPU RCU data.
  3340. */
  3341. static void __init
  3342. rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
  3343. {
  3344. unsigned long flags;
  3345. struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
  3346. struct rcu_node *rnp = rcu_get_root(rsp);
  3347. /* Set up local state, ensuring consistent view of global state. */
  3348. raw_spin_lock_irqsave(&rnp->lock, flags);
  3349. rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
  3350. rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
  3351. WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
  3352. WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
  3353. rdp->cpu = cpu;
  3354. rdp->rsp = rsp;
  3355. rcu_boot_init_nocb_percpu_data(rdp);
  3356. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  3357. }
  3358. /*
  3359. * Initialize a CPU's per-CPU RCU data. Note that only one online or
  3360. * offline event can be happening at a given time. Note also that we
  3361. * can accept some slop in the rsp->completed access due to the fact
  3362. * that this CPU cannot possibly have any RCU callbacks in flight yet.
  3363. */
  3364. static void
  3365. rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
  3366. {
  3367. unsigned long flags;
  3368. unsigned long mask;
  3369. struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
  3370. struct rcu_node *rnp = rcu_get_root(rsp);
  3371. /* Set up local state, ensuring consistent view of global state. */
  3372. raw_spin_lock_irqsave(&rnp->lock, flags);
  3373. rdp->beenonline = 1; /* We have now been online. */
  3374. rdp->qlen_last_fqs_check = 0;
  3375. rdp->n_force_qs_snap = rsp->n_force_qs;
  3376. rdp->blimit = blimit;
  3377. init_callback_list(rdp); /* Re-enable callbacks on this CPU. */
  3378. rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
  3379. rcu_sysidle_init_percpu_data(rdp->dynticks);
  3380. atomic_set(&rdp->dynticks->dynticks,
  3381. (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
  3382. raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
  3383. /*
  3384. * Add CPU to leaf rcu_node pending-online bitmask. Any needed
  3385. * propagation up the rcu_node tree will happen at the beginning
  3386. * of the next grace period.
  3387. */
  3388. rnp = rdp->mynode;
  3389. mask = rdp->grpmask;
  3390. raw_spin_lock(&rnp->lock); /* irqs already disabled. */
  3391. smp_mb__after_unlock_lock();
  3392. rnp->qsmaskinitnext |= mask;
  3393. rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
  3394. rdp->completed = rnp->completed;
  3395. rdp->passed_quiesce = false;
  3396. rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
  3397. rdp->qs_pending = false;
  3398. trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
  3399. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  3400. }
  3401. static void rcu_prepare_cpu(int cpu)
  3402. {
  3403. struct rcu_state *rsp;
  3404. for_each_rcu_flavor(rsp)
  3405. rcu_init_percpu_data(cpu, rsp);
  3406. }
  3407. /*
  3408. * Handle CPU online/offline notification events.
  3409. */
  3410. int rcu_cpu_notify(struct notifier_block *self,
  3411. unsigned long action, void *hcpu)
  3412. {
  3413. long cpu = (long)hcpu;
  3414. struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
  3415. struct rcu_node *rnp = rdp->mynode;
  3416. struct rcu_state *rsp;
  3417. switch (action) {
  3418. case CPU_UP_PREPARE:
  3419. case CPU_UP_PREPARE_FROZEN:
  3420. rcu_prepare_cpu(cpu);
  3421. rcu_prepare_kthreads(cpu);
  3422. rcu_spawn_all_nocb_kthreads(cpu);
  3423. break;
  3424. case CPU_ONLINE:
  3425. case CPU_DOWN_FAILED:
  3426. rcu_boost_kthread_setaffinity(rnp, -1);
  3427. break;
  3428. case CPU_DOWN_PREPARE:
  3429. rcu_boost_kthread_setaffinity(rnp, cpu);
  3430. break;
  3431. case CPU_DYING:
  3432. case CPU_DYING_FROZEN:
  3433. for_each_rcu_flavor(rsp)
  3434. rcu_cleanup_dying_cpu(rsp);
  3435. break;
  3436. case CPU_DYING_IDLE:
  3437. for_each_rcu_flavor(rsp) {
  3438. rcu_cleanup_dying_idle_cpu(cpu, rsp);
  3439. }
  3440. break;
  3441. case CPU_DEAD:
  3442. case CPU_DEAD_FROZEN:
  3443. case CPU_UP_CANCELED:
  3444. case CPU_UP_CANCELED_FROZEN:
  3445. for_each_rcu_flavor(rsp) {
  3446. rcu_cleanup_dead_cpu(cpu, rsp);
  3447. do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
  3448. }
  3449. break;
  3450. default:
  3451. break;
  3452. }
  3453. return NOTIFY_OK;
  3454. }
  3455. static int rcu_pm_notify(struct notifier_block *self,
  3456. unsigned long action, void *hcpu)
  3457. {
  3458. switch (action) {
  3459. case PM_HIBERNATION_PREPARE:
  3460. case PM_SUSPEND_PREPARE:
  3461. if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
  3462. rcu_expedited = 1;
  3463. break;
  3464. case PM_POST_HIBERNATION:
  3465. case PM_POST_SUSPEND:
  3466. rcu_expedited = 0;
  3467. break;
  3468. default:
  3469. break;
  3470. }
  3471. return NOTIFY_OK;
  3472. }
  3473. /*
  3474. * Spawn the kthreads that handle each RCU flavor's grace periods.
  3475. */
  3476. static int __init rcu_spawn_gp_kthread(void)
  3477. {
  3478. unsigned long flags;
  3479. int kthread_prio_in = kthread_prio;
  3480. struct rcu_node *rnp;
  3481. struct rcu_state *rsp;
  3482. struct sched_param sp;
  3483. struct task_struct *t;
  3484. /* Force priority into range. */
  3485. if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
  3486. kthread_prio = 1;
  3487. else if (kthread_prio < 0)
  3488. kthread_prio = 0;
  3489. else if (kthread_prio > 99)
  3490. kthread_prio = 99;
  3491. if (kthread_prio != kthread_prio_in)
  3492. pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
  3493. kthread_prio, kthread_prio_in);
  3494. rcu_scheduler_fully_active = 1;
  3495. for_each_rcu_flavor(rsp) {
  3496. t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
  3497. BUG_ON(IS_ERR(t));
  3498. rnp = rcu_get_root(rsp);
  3499. raw_spin_lock_irqsave(&rnp->lock, flags);
  3500. rsp->gp_kthread = t;
  3501. if (kthread_prio) {
  3502. sp.sched_priority = kthread_prio;
  3503. sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
  3504. }
  3505. wake_up_process(t);
  3506. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  3507. }
  3508. rcu_spawn_nocb_kthreads();
  3509. rcu_spawn_boost_kthreads();
  3510. return 0;
  3511. }
  3512. early_initcall(rcu_spawn_gp_kthread);
  3513. /*
  3514. * This function is invoked towards the end of the scheduler's initialization
  3515. * process. Before this is called, the idle task might contain
  3516. * RCU read-side critical sections (during which time, this idle
  3517. * task is booting the system). After this function is called, the
  3518. * idle tasks are prohibited from containing RCU read-side critical
  3519. * sections. This function also enables RCU lockdep checking.
  3520. */
  3521. void rcu_scheduler_starting(void)
  3522. {
  3523. WARN_ON(num_online_cpus() != 1);
  3524. WARN_ON(nr_context_switches() > 0);
  3525. rcu_scheduler_active = 1;
  3526. }
  3527. /*
  3528. * Compute the per-level fanout, either using the exact fanout specified
  3529. * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
  3530. */
  3531. #ifdef CONFIG_RCU_FANOUT_EXACT
  3532. static void __init rcu_init_levelspread(struct rcu_state *rsp)
  3533. {
  3534. int i;
  3535. rsp->levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
  3536. for (i = rcu_num_lvls - 2; i >= 0; i--)
  3537. rsp->levelspread[i] = CONFIG_RCU_FANOUT;
  3538. }
  3539. #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
  3540. static void __init rcu_init_levelspread(struct rcu_state *rsp)
  3541. {
  3542. int ccur;
  3543. int cprv;
  3544. int i;
  3545. cprv = nr_cpu_ids;
  3546. for (i = rcu_num_lvls - 1; i >= 0; i--) {
  3547. ccur = rsp->levelcnt[i];
  3548. rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
  3549. cprv = ccur;
  3550. }
  3551. }
  3552. #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
  3553. /*
  3554. * Helper function for rcu_init() that initializes one rcu_state structure.
  3555. */
  3556. static void __init rcu_init_one(struct rcu_state *rsp,
  3557. struct rcu_data __percpu *rda)
  3558. {
  3559. static const char * const buf[] = {
  3560. "rcu_node_0",
  3561. "rcu_node_1",
  3562. "rcu_node_2",
  3563. "rcu_node_3" }; /* Match MAX_RCU_LVLS */
  3564. static const char * const fqs[] = {
  3565. "rcu_node_fqs_0",
  3566. "rcu_node_fqs_1",
  3567. "rcu_node_fqs_2",
  3568. "rcu_node_fqs_3" }; /* Match MAX_RCU_LVLS */
  3569. static u8 fl_mask = 0x1;
  3570. int cpustride = 1;
  3571. int i;
  3572. int j;
  3573. struct rcu_node *rnp;
  3574. BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
  3575. /* Silence gcc 4.8 warning about array index out of range. */
  3576. if (rcu_num_lvls > RCU_NUM_LVLS)
  3577. panic("rcu_init_one: rcu_num_lvls overflow");
  3578. /* Initialize the level-tracking arrays. */
  3579. for (i = 0; i < rcu_num_lvls; i++)
  3580. rsp->levelcnt[i] = num_rcu_lvl[i];
  3581. for (i = 1; i < rcu_num_lvls; i++)
  3582. rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
  3583. rcu_init_levelspread(rsp);
  3584. rsp->flavor_mask = fl_mask;
  3585. fl_mask <<= 1;
  3586. /* Initialize the elements themselves, starting from the leaves. */
  3587. for (i = rcu_num_lvls - 1; i >= 0; i--) {
  3588. cpustride *= rsp->levelspread[i];
  3589. rnp = rsp->level[i];
  3590. for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
  3591. raw_spin_lock_init(&rnp->lock);
  3592. lockdep_set_class_and_name(&rnp->lock,
  3593. &rcu_node_class[i], buf[i]);
  3594. raw_spin_lock_init(&rnp->fqslock);
  3595. lockdep_set_class_and_name(&rnp->fqslock,
  3596. &rcu_fqs_class[i], fqs[i]);
  3597. rnp->gpnum = rsp->gpnum;
  3598. rnp->completed = rsp->completed;
  3599. rnp->qsmask = 0;
  3600. rnp->qsmaskinit = 0;
  3601. rnp->grplo = j * cpustride;
  3602. rnp->grphi = (j + 1) * cpustride - 1;
  3603. if (rnp->grphi >= nr_cpu_ids)
  3604. rnp->grphi = nr_cpu_ids - 1;
  3605. if (i == 0) {
  3606. rnp->grpnum = 0;
  3607. rnp->grpmask = 0;
  3608. rnp->parent = NULL;
  3609. } else {
  3610. rnp->grpnum = j % rsp->levelspread[i - 1];
  3611. rnp->grpmask = 1UL << rnp->grpnum;
  3612. rnp->parent = rsp->level[i - 1] +
  3613. j / rsp->levelspread[i - 1];
  3614. }
  3615. rnp->level = i;
  3616. INIT_LIST_HEAD(&rnp->blkd_tasks);
  3617. rcu_init_one_nocb(rnp);
  3618. }
  3619. }
  3620. rsp->rda = rda;
  3621. init_waitqueue_head(&rsp->gp_wq);
  3622. rnp = rsp->level[rcu_num_lvls - 1];
  3623. for_each_possible_cpu(i) {
  3624. while (i > rnp->grphi)
  3625. rnp++;
  3626. per_cpu_ptr(rsp->rda, i)->mynode = rnp;
  3627. rcu_boot_init_percpu_data(i, rsp);
  3628. }
  3629. list_add(&rsp->flavors, &rcu_struct_flavors);
  3630. }
  3631. /*
  3632. * Compute the rcu_node tree geometry from kernel parameters. This cannot
  3633. * replace the definitions in tree.h because those are needed to size
  3634. * the ->node array in the rcu_state structure.
  3635. */
  3636. static void __init rcu_init_geometry(void)
  3637. {
  3638. ulong d;
  3639. int i;
  3640. int j;
  3641. int n = nr_cpu_ids;
  3642. int rcu_capacity[MAX_RCU_LVLS + 1];
  3643. /*
  3644. * Initialize any unspecified boot parameters.
  3645. * The default values of jiffies_till_first_fqs and
  3646. * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
  3647. * value, which is a function of HZ, then adding one for each
  3648. * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
  3649. */
  3650. d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
  3651. if (jiffies_till_first_fqs == ULONG_MAX)
  3652. jiffies_till_first_fqs = d;
  3653. if (jiffies_till_next_fqs == ULONG_MAX)
  3654. jiffies_till_next_fqs = d;
  3655. /* If the compile-time values are accurate, just leave. */
  3656. if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF &&
  3657. nr_cpu_ids == NR_CPUS)
  3658. return;
  3659. pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
  3660. rcu_fanout_leaf, nr_cpu_ids);
  3661. /*
  3662. * Compute number of nodes that can be handled an rcu_node tree
  3663. * with the given number of levels. Setting rcu_capacity[0] makes
  3664. * some of the arithmetic easier.
  3665. */
  3666. rcu_capacity[0] = 1;
  3667. rcu_capacity[1] = rcu_fanout_leaf;
  3668. for (i = 2; i <= MAX_RCU_LVLS; i++)
  3669. rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;
  3670. /*
  3671. * The boot-time rcu_fanout_leaf parameter is only permitted
  3672. * to increase the leaf-level fanout, not decrease it. Of course,
  3673. * the leaf-level fanout cannot exceed the number of bits in
  3674. * the rcu_node masks. Finally, the tree must be able to accommodate
  3675. * the configured number of CPUs. Complain and fall back to the
  3676. * compile-time values if these limits are exceeded.
  3677. */
  3678. if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
  3679. rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
  3680. n > rcu_capacity[MAX_RCU_LVLS]) {
  3681. WARN_ON(1);
  3682. return;
  3683. }
  3684. /* Calculate the number of rcu_nodes at each level of the tree. */
  3685. for (i = 1; i <= MAX_RCU_LVLS; i++)
  3686. if (n <= rcu_capacity[i]) {
  3687. for (j = 0; j <= i; j++)
  3688. num_rcu_lvl[j] =
  3689. DIV_ROUND_UP(n, rcu_capacity[i - j]);
  3690. rcu_num_lvls = i;
  3691. for (j = i + 1; j <= MAX_RCU_LVLS; j++)
  3692. num_rcu_lvl[j] = 0;
  3693. break;
  3694. }
  3695. /* Calculate the total number of rcu_node structures. */
  3696. rcu_num_nodes = 0;
  3697. for (i = 0; i <= MAX_RCU_LVLS; i++)
  3698. rcu_num_nodes += num_rcu_lvl[i];
  3699. rcu_num_nodes -= n;
  3700. }
  3701. void __init rcu_init(void)
  3702. {
  3703. int cpu;
  3704. rcu_bootup_announce();
  3705. rcu_init_geometry();
  3706. rcu_init_one(&rcu_bh_state, &rcu_bh_data);
  3707. rcu_init_one(&rcu_sched_state, &rcu_sched_data);
  3708. __rcu_init_preempt();
  3709. open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
  3710. /*
  3711. * We don't need protection against CPU-hotplug here because
  3712. * this is called early in boot, before either interrupts
  3713. * or the scheduler are operational.
  3714. */
  3715. cpu_notifier(rcu_cpu_notify, 0);
  3716. pm_notifier(rcu_pm_notify, 0);
  3717. for_each_online_cpu(cpu)
  3718. rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
  3719. rcu_early_boot_tests();
  3720. }
  3721. #include "tree_plugin.h"