intel_pm.c 176 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326
  1. /*
  2. * Copyright © 2012 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eugeni Dodonov <eugeni.dodonov@intel.com>
  25. *
  26. */
  27. #include <linux/cpufreq.h>
  28. #include "i915_drv.h"
  29. #include "intel_drv.h"
  30. #include "../../../platform/x86/intel_ips.h"
  31. #include <linux/module.h>
  32. #include <linux/vgaarb.h>
  33. #include <drm/i915_powerwell.h>
  34. #include <linux/pm_runtime.h>
  35. /**
  36. * RC6 is a special power stage which allows the GPU to enter an very
  37. * low-voltage mode when idle, using down to 0V while at this stage. This
  38. * stage is entered automatically when the GPU is idle when RC6 support is
  39. * enabled, and as soon as new workload arises GPU wakes up automatically as well.
  40. *
  41. * There are different RC6 modes available in Intel GPU, which differentiate
  42. * among each other with the latency required to enter and leave RC6 and
  43. * voltage consumed by the GPU in different states.
  44. *
  45. * The combination of the following flags define which states GPU is allowed
  46. * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
  47. * RC6pp is deepest RC6. Their support by hardware varies according to the
  48. * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
  49. * which brings the most power savings; deeper states save more power, but
  50. * require higher latency to switch to and wake up.
  51. */
  52. #define INTEL_RC6_ENABLE (1<<0)
  53. #define INTEL_RC6p_ENABLE (1<<1)
  54. #define INTEL_RC6pp_ENABLE (1<<2)
  55. /* FBC, or Frame Buffer Compression, is a technique employed to compress the
  56. * framebuffer contents in-memory, aiming at reducing the required bandwidth
  57. * during in-memory transfers and, therefore, reduce the power packet.
  58. *
  59. * The benefits of FBC are mostly visible with solid backgrounds and
  60. * variation-less patterns.
  61. *
  62. * FBC-related functionality can be enabled by the means of the
  63. * i915.i915_enable_fbc parameter
  64. */
  65. static void i8xx_disable_fbc(struct drm_device *dev)
  66. {
  67. struct drm_i915_private *dev_priv = dev->dev_private;
  68. u32 fbc_ctl;
  69. /* Disable compression */
  70. fbc_ctl = I915_READ(FBC_CONTROL);
  71. if ((fbc_ctl & FBC_CTL_EN) == 0)
  72. return;
  73. fbc_ctl &= ~FBC_CTL_EN;
  74. I915_WRITE(FBC_CONTROL, fbc_ctl);
  75. /* Wait for compressing bit to clear */
  76. if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
  77. DRM_DEBUG_KMS("FBC idle timed out\n");
  78. return;
  79. }
  80. DRM_DEBUG_KMS("disabled FBC\n");
  81. }
  82. static void i8xx_enable_fbc(struct drm_crtc *crtc)
  83. {
  84. struct drm_device *dev = crtc->dev;
  85. struct drm_i915_private *dev_priv = dev->dev_private;
  86. struct drm_framebuffer *fb = crtc->fb;
  87. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  88. struct drm_i915_gem_object *obj = intel_fb->obj;
  89. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  90. int cfb_pitch;
  91. int plane, i;
  92. u32 fbc_ctl;
  93. cfb_pitch = dev_priv->fbc.size / FBC_LL_SIZE;
  94. if (fb->pitches[0] < cfb_pitch)
  95. cfb_pitch = fb->pitches[0];
  96. /* FBC_CTL wants 32B or 64B units */
  97. if (IS_GEN2(dev))
  98. cfb_pitch = (cfb_pitch / 32) - 1;
  99. else
  100. cfb_pitch = (cfb_pitch / 64) - 1;
  101. plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
  102. /* Clear old tags */
  103. for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
  104. I915_WRITE(FBC_TAG + (i * 4), 0);
  105. if (IS_GEN4(dev)) {
  106. u32 fbc_ctl2;
  107. /* Set it up... */
  108. fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
  109. fbc_ctl2 |= plane;
  110. I915_WRITE(FBC_CONTROL2, fbc_ctl2);
  111. I915_WRITE(FBC_FENCE_OFF, crtc->y);
  112. }
  113. /* enable it... */
  114. fbc_ctl = I915_READ(FBC_CONTROL);
  115. fbc_ctl &= 0x3fff << FBC_CTL_INTERVAL_SHIFT;
  116. fbc_ctl |= FBC_CTL_EN | FBC_CTL_PERIODIC;
  117. if (IS_I945GM(dev))
  118. fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
  119. fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
  120. fbc_ctl |= obj->fence_reg;
  121. I915_WRITE(FBC_CONTROL, fbc_ctl);
  122. DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c, ",
  123. cfb_pitch, crtc->y, plane_name(intel_crtc->plane));
  124. }
  125. static bool i8xx_fbc_enabled(struct drm_device *dev)
  126. {
  127. struct drm_i915_private *dev_priv = dev->dev_private;
  128. return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
  129. }
  130. static void g4x_enable_fbc(struct drm_crtc *crtc)
  131. {
  132. struct drm_device *dev = crtc->dev;
  133. struct drm_i915_private *dev_priv = dev->dev_private;
  134. struct drm_framebuffer *fb = crtc->fb;
  135. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  136. struct drm_i915_gem_object *obj = intel_fb->obj;
  137. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  138. int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
  139. u32 dpfc_ctl;
  140. dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
  141. dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
  142. I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
  143. I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
  144. /* enable it... */
  145. I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
  146. DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
  147. }
  148. static void g4x_disable_fbc(struct drm_device *dev)
  149. {
  150. struct drm_i915_private *dev_priv = dev->dev_private;
  151. u32 dpfc_ctl;
  152. /* Disable compression */
  153. dpfc_ctl = I915_READ(DPFC_CONTROL);
  154. if (dpfc_ctl & DPFC_CTL_EN) {
  155. dpfc_ctl &= ~DPFC_CTL_EN;
  156. I915_WRITE(DPFC_CONTROL, dpfc_ctl);
  157. DRM_DEBUG_KMS("disabled FBC\n");
  158. }
  159. }
  160. static bool g4x_fbc_enabled(struct drm_device *dev)
  161. {
  162. struct drm_i915_private *dev_priv = dev->dev_private;
  163. return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
  164. }
  165. static void sandybridge_blit_fbc_update(struct drm_device *dev)
  166. {
  167. struct drm_i915_private *dev_priv = dev->dev_private;
  168. u32 blt_ecoskpd;
  169. /* Make sure blitter notifies FBC of writes */
  170. /* Blitter is part of Media powerwell on VLV. No impact of
  171. * his param in other platforms for now */
  172. gen6_gt_force_wake_get(dev_priv, FORCEWAKE_MEDIA);
  173. blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
  174. blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
  175. GEN6_BLITTER_LOCK_SHIFT;
  176. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  177. blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
  178. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  179. blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
  180. GEN6_BLITTER_LOCK_SHIFT);
  181. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  182. POSTING_READ(GEN6_BLITTER_ECOSKPD);
  183. gen6_gt_force_wake_put(dev_priv, FORCEWAKE_MEDIA);
  184. }
  185. static void ironlake_enable_fbc(struct drm_crtc *crtc)
  186. {
  187. struct drm_device *dev = crtc->dev;
  188. struct drm_i915_private *dev_priv = dev->dev_private;
  189. struct drm_framebuffer *fb = crtc->fb;
  190. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  191. struct drm_i915_gem_object *obj = intel_fb->obj;
  192. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  193. int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
  194. u32 dpfc_ctl;
  195. dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
  196. dpfc_ctl &= DPFC_RESERVED;
  197. dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
  198. /* Set persistent mode for front-buffer rendering, ala X. */
  199. dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
  200. dpfc_ctl |= DPFC_CTL_FENCE_EN;
  201. if (IS_GEN5(dev))
  202. dpfc_ctl |= obj->fence_reg;
  203. I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
  204. I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
  205. I915_WRITE(ILK_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj) | ILK_FBC_RT_VALID);
  206. /* enable it... */
  207. I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
  208. if (IS_GEN6(dev)) {
  209. I915_WRITE(SNB_DPFC_CTL_SA,
  210. SNB_CPU_FENCE_ENABLE | obj->fence_reg);
  211. I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
  212. sandybridge_blit_fbc_update(dev);
  213. }
  214. DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
  215. }
  216. static void ironlake_disable_fbc(struct drm_device *dev)
  217. {
  218. struct drm_i915_private *dev_priv = dev->dev_private;
  219. u32 dpfc_ctl;
  220. /* Disable compression */
  221. dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
  222. if (dpfc_ctl & DPFC_CTL_EN) {
  223. dpfc_ctl &= ~DPFC_CTL_EN;
  224. I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
  225. DRM_DEBUG_KMS("disabled FBC\n");
  226. }
  227. }
  228. static bool ironlake_fbc_enabled(struct drm_device *dev)
  229. {
  230. struct drm_i915_private *dev_priv = dev->dev_private;
  231. return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
  232. }
  233. static void gen7_enable_fbc(struct drm_crtc *crtc)
  234. {
  235. struct drm_device *dev = crtc->dev;
  236. struct drm_i915_private *dev_priv = dev->dev_private;
  237. struct drm_framebuffer *fb = crtc->fb;
  238. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  239. struct drm_i915_gem_object *obj = intel_fb->obj;
  240. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  241. I915_WRITE(IVB_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj));
  242. I915_WRITE(ILK_DPFC_CONTROL, DPFC_CTL_EN | DPFC_CTL_LIMIT_1X |
  243. IVB_DPFC_CTL_FENCE_EN |
  244. intel_crtc->plane << IVB_DPFC_CTL_PLANE_SHIFT);
  245. if (IS_IVYBRIDGE(dev)) {
  246. /* WaFbcAsynchFlipDisableFbcQueue:ivb */
  247. I915_WRITE(ILK_DISPLAY_CHICKEN1, ILK_FBCQ_DIS);
  248. } else {
  249. /* WaFbcAsynchFlipDisableFbcQueue:hsw */
  250. I915_WRITE(HSW_PIPE_SLICE_CHICKEN_1(intel_crtc->pipe),
  251. HSW_BYPASS_FBC_QUEUE);
  252. }
  253. I915_WRITE(SNB_DPFC_CTL_SA,
  254. SNB_CPU_FENCE_ENABLE | obj->fence_reg);
  255. I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
  256. sandybridge_blit_fbc_update(dev);
  257. DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
  258. }
  259. bool intel_fbc_enabled(struct drm_device *dev)
  260. {
  261. struct drm_i915_private *dev_priv = dev->dev_private;
  262. if (!dev_priv->display.fbc_enabled)
  263. return false;
  264. return dev_priv->display.fbc_enabled(dev);
  265. }
  266. static void intel_fbc_work_fn(struct work_struct *__work)
  267. {
  268. struct intel_fbc_work *work =
  269. container_of(to_delayed_work(__work),
  270. struct intel_fbc_work, work);
  271. struct drm_device *dev = work->crtc->dev;
  272. struct drm_i915_private *dev_priv = dev->dev_private;
  273. mutex_lock(&dev->struct_mutex);
  274. if (work == dev_priv->fbc.fbc_work) {
  275. /* Double check that we haven't switched fb without cancelling
  276. * the prior work.
  277. */
  278. if (work->crtc->fb == work->fb) {
  279. dev_priv->display.enable_fbc(work->crtc);
  280. dev_priv->fbc.plane = to_intel_crtc(work->crtc)->plane;
  281. dev_priv->fbc.fb_id = work->crtc->fb->base.id;
  282. dev_priv->fbc.y = work->crtc->y;
  283. }
  284. dev_priv->fbc.fbc_work = NULL;
  285. }
  286. mutex_unlock(&dev->struct_mutex);
  287. kfree(work);
  288. }
  289. static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
  290. {
  291. if (dev_priv->fbc.fbc_work == NULL)
  292. return;
  293. DRM_DEBUG_KMS("cancelling pending FBC enable\n");
  294. /* Synchronisation is provided by struct_mutex and checking of
  295. * dev_priv->fbc.fbc_work, so we can perform the cancellation
  296. * entirely asynchronously.
  297. */
  298. if (cancel_delayed_work(&dev_priv->fbc.fbc_work->work))
  299. /* tasklet was killed before being run, clean up */
  300. kfree(dev_priv->fbc.fbc_work);
  301. /* Mark the work as no longer wanted so that if it does
  302. * wake-up (because the work was already running and waiting
  303. * for our mutex), it will discover that is no longer
  304. * necessary to run.
  305. */
  306. dev_priv->fbc.fbc_work = NULL;
  307. }
  308. static void intel_enable_fbc(struct drm_crtc *crtc)
  309. {
  310. struct intel_fbc_work *work;
  311. struct drm_device *dev = crtc->dev;
  312. struct drm_i915_private *dev_priv = dev->dev_private;
  313. if (!dev_priv->display.enable_fbc)
  314. return;
  315. intel_cancel_fbc_work(dev_priv);
  316. work = kzalloc(sizeof(*work), GFP_KERNEL);
  317. if (work == NULL) {
  318. DRM_ERROR("Failed to allocate FBC work structure\n");
  319. dev_priv->display.enable_fbc(crtc);
  320. return;
  321. }
  322. work->crtc = crtc;
  323. work->fb = crtc->fb;
  324. INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
  325. dev_priv->fbc.fbc_work = work;
  326. /* Delay the actual enabling to let pageflipping cease and the
  327. * display to settle before starting the compression. Note that
  328. * this delay also serves a second purpose: it allows for a
  329. * vblank to pass after disabling the FBC before we attempt
  330. * to modify the control registers.
  331. *
  332. * A more complicated solution would involve tracking vblanks
  333. * following the termination of the page-flipping sequence
  334. * and indeed performing the enable as a co-routine and not
  335. * waiting synchronously upon the vblank.
  336. *
  337. * WaFbcWaitForVBlankBeforeEnable:ilk,snb
  338. */
  339. schedule_delayed_work(&work->work, msecs_to_jiffies(50));
  340. }
  341. void intel_disable_fbc(struct drm_device *dev)
  342. {
  343. struct drm_i915_private *dev_priv = dev->dev_private;
  344. intel_cancel_fbc_work(dev_priv);
  345. if (!dev_priv->display.disable_fbc)
  346. return;
  347. dev_priv->display.disable_fbc(dev);
  348. dev_priv->fbc.plane = -1;
  349. }
  350. static bool set_no_fbc_reason(struct drm_i915_private *dev_priv,
  351. enum no_fbc_reason reason)
  352. {
  353. if (dev_priv->fbc.no_fbc_reason == reason)
  354. return false;
  355. dev_priv->fbc.no_fbc_reason = reason;
  356. return true;
  357. }
  358. /**
  359. * intel_update_fbc - enable/disable FBC as needed
  360. * @dev: the drm_device
  361. *
  362. * Set up the framebuffer compression hardware at mode set time. We
  363. * enable it if possible:
  364. * - plane A only (on pre-965)
  365. * - no pixel mulitply/line duplication
  366. * - no alpha buffer discard
  367. * - no dual wide
  368. * - framebuffer <= max_hdisplay in width, max_vdisplay in height
  369. *
  370. * We can't assume that any compression will take place (worst case),
  371. * so the compressed buffer has to be the same size as the uncompressed
  372. * one. It also must reside (along with the line length buffer) in
  373. * stolen memory.
  374. *
  375. * We need to enable/disable FBC on a global basis.
  376. */
  377. void intel_update_fbc(struct drm_device *dev)
  378. {
  379. struct drm_i915_private *dev_priv = dev->dev_private;
  380. struct drm_crtc *crtc = NULL, *tmp_crtc;
  381. struct intel_crtc *intel_crtc;
  382. struct drm_framebuffer *fb;
  383. struct intel_framebuffer *intel_fb;
  384. struct drm_i915_gem_object *obj;
  385. const struct drm_display_mode *adjusted_mode;
  386. unsigned int max_width, max_height;
  387. if (!I915_HAS_FBC(dev)) {
  388. set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED);
  389. return;
  390. }
  391. if (!i915_powersave) {
  392. if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
  393. DRM_DEBUG_KMS("fbc disabled per module param\n");
  394. return;
  395. }
  396. /*
  397. * If FBC is already on, we just have to verify that we can
  398. * keep it that way...
  399. * Need to disable if:
  400. * - more than one pipe is active
  401. * - changing FBC params (stride, fence, mode)
  402. * - new fb is too large to fit in compressed buffer
  403. * - going to an unsupported config (interlace, pixel multiply, etc.)
  404. */
  405. list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
  406. if (intel_crtc_active(tmp_crtc) &&
  407. to_intel_crtc(tmp_crtc)->primary_enabled) {
  408. if (crtc) {
  409. if (set_no_fbc_reason(dev_priv, FBC_MULTIPLE_PIPES))
  410. DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
  411. goto out_disable;
  412. }
  413. crtc = tmp_crtc;
  414. }
  415. }
  416. if (!crtc || crtc->fb == NULL) {
  417. if (set_no_fbc_reason(dev_priv, FBC_NO_OUTPUT))
  418. DRM_DEBUG_KMS("no output, disabling\n");
  419. goto out_disable;
  420. }
  421. intel_crtc = to_intel_crtc(crtc);
  422. fb = crtc->fb;
  423. intel_fb = to_intel_framebuffer(fb);
  424. obj = intel_fb->obj;
  425. adjusted_mode = &intel_crtc->config.adjusted_mode;
  426. if (i915_enable_fbc < 0 &&
  427. INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev)) {
  428. if (set_no_fbc_reason(dev_priv, FBC_CHIP_DEFAULT))
  429. DRM_DEBUG_KMS("disabled per chip default\n");
  430. goto out_disable;
  431. }
  432. if (!i915_enable_fbc) {
  433. if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
  434. DRM_DEBUG_KMS("fbc disabled per module param\n");
  435. goto out_disable;
  436. }
  437. if ((adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) ||
  438. (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
  439. if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
  440. DRM_DEBUG_KMS("mode incompatible with compression, "
  441. "disabling\n");
  442. goto out_disable;
  443. }
  444. if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
  445. max_width = 4096;
  446. max_height = 2048;
  447. } else {
  448. max_width = 2048;
  449. max_height = 1536;
  450. }
  451. if (intel_crtc->config.pipe_src_w > max_width ||
  452. intel_crtc->config.pipe_src_h > max_height) {
  453. if (set_no_fbc_reason(dev_priv, FBC_MODE_TOO_LARGE))
  454. DRM_DEBUG_KMS("mode too large for compression, disabling\n");
  455. goto out_disable;
  456. }
  457. if ((INTEL_INFO(dev)->gen < 4 || IS_HASWELL(dev)) &&
  458. intel_crtc->plane != PLANE_A) {
  459. if (set_no_fbc_reason(dev_priv, FBC_BAD_PLANE))
  460. DRM_DEBUG_KMS("plane not A, disabling compression\n");
  461. goto out_disable;
  462. }
  463. /* The use of a CPU fence is mandatory in order to detect writes
  464. * by the CPU to the scanout and trigger updates to the FBC.
  465. */
  466. if (obj->tiling_mode != I915_TILING_X ||
  467. obj->fence_reg == I915_FENCE_REG_NONE) {
  468. if (set_no_fbc_reason(dev_priv, FBC_NOT_TILED))
  469. DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
  470. goto out_disable;
  471. }
  472. /* If the kernel debugger is active, always disable compression */
  473. if (in_dbg_master())
  474. goto out_disable;
  475. if (i915_gem_stolen_setup_compression(dev, intel_fb->obj->base.size)) {
  476. if (set_no_fbc_reason(dev_priv, FBC_STOLEN_TOO_SMALL))
  477. DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
  478. goto out_disable;
  479. }
  480. /* If the scanout has not changed, don't modify the FBC settings.
  481. * Note that we make the fundamental assumption that the fb->obj
  482. * cannot be unpinned (and have its GTT offset and fence revoked)
  483. * without first being decoupled from the scanout and FBC disabled.
  484. */
  485. if (dev_priv->fbc.plane == intel_crtc->plane &&
  486. dev_priv->fbc.fb_id == fb->base.id &&
  487. dev_priv->fbc.y == crtc->y)
  488. return;
  489. if (intel_fbc_enabled(dev)) {
  490. /* We update FBC along two paths, after changing fb/crtc
  491. * configuration (modeswitching) and after page-flipping
  492. * finishes. For the latter, we know that not only did
  493. * we disable the FBC at the start of the page-flip
  494. * sequence, but also more than one vblank has passed.
  495. *
  496. * For the former case of modeswitching, it is possible
  497. * to switch between two FBC valid configurations
  498. * instantaneously so we do need to disable the FBC
  499. * before we can modify its control registers. We also
  500. * have to wait for the next vblank for that to take
  501. * effect. However, since we delay enabling FBC we can
  502. * assume that a vblank has passed since disabling and
  503. * that we can safely alter the registers in the deferred
  504. * callback.
  505. *
  506. * In the scenario that we go from a valid to invalid
  507. * and then back to valid FBC configuration we have
  508. * no strict enforcement that a vblank occurred since
  509. * disabling the FBC. However, along all current pipe
  510. * disabling paths we do need to wait for a vblank at
  511. * some point. And we wait before enabling FBC anyway.
  512. */
  513. DRM_DEBUG_KMS("disabling active FBC for update\n");
  514. intel_disable_fbc(dev);
  515. }
  516. intel_enable_fbc(crtc);
  517. dev_priv->fbc.no_fbc_reason = FBC_OK;
  518. return;
  519. out_disable:
  520. /* Multiple disables should be harmless */
  521. if (intel_fbc_enabled(dev)) {
  522. DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
  523. intel_disable_fbc(dev);
  524. }
  525. i915_gem_stolen_cleanup_compression(dev);
  526. }
  527. static void i915_pineview_get_mem_freq(struct drm_device *dev)
  528. {
  529. drm_i915_private_t *dev_priv = dev->dev_private;
  530. u32 tmp;
  531. tmp = I915_READ(CLKCFG);
  532. switch (tmp & CLKCFG_FSB_MASK) {
  533. case CLKCFG_FSB_533:
  534. dev_priv->fsb_freq = 533; /* 133*4 */
  535. break;
  536. case CLKCFG_FSB_800:
  537. dev_priv->fsb_freq = 800; /* 200*4 */
  538. break;
  539. case CLKCFG_FSB_667:
  540. dev_priv->fsb_freq = 667; /* 167*4 */
  541. break;
  542. case CLKCFG_FSB_400:
  543. dev_priv->fsb_freq = 400; /* 100*4 */
  544. break;
  545. }
  546. switch (tmp & CLKCFG_MEM_MASK) {
  547. case CLKCFG_MEM_533:
  548. dev_priv->mem_freq = 533;
  549. break;
  550. case CLKCFG_MEM_667:
  551. dev_priv->mem_freq = 667;
  552. break;
  553. case CLKCFG_MEM_800:
  554. dev_priv->mem_freq = 800;
  555. break;
  556. }
  557. /* detect pineview DDR3 setting */
  558. tmp = I915_READ(CSHRDDR3CTL);
  559. dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
  560. }
  561. static void i915_ironlake_get_mem_freq(struct drm_device *dev)
  562. {
  563. drm_i915_private_t *dev_priv = dev->dev_private;
  564. u16 ddrpll, csipll;
  565. ddrpll = I915_READ16(DDRMPLL1);
  566. csipll = I915_READ16(CSIPLL0);
  567. switch (ddrpll & 0xff) {
  568. case 0xc:
  569. dev_priv->mem_freq = 800;
  570. break;
  571. case 0x10:
  572. dev_priv->mem_freq = 1066;
  573. break;
  574. case 0x14:
  575. dev_priv->mem_freq = 1333;
  576. break;
  577. case 0x18:
  578. dev_priv->mem_freq = 1600;
  579. break;
  580. default:
  581. DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
  582. ddrpll & 0xff);
  583. dev_priv->mem_freq = 0;
  584. break;
  585. }
  586. dev_priv->ips.r_t = dev_priv->mem_freq;
  587. switch (csipll & 0x3ff) {
  588. case 0x00c:
  589. dev_priv->fsb_freq = 3200;
  590. break;
  591. case 0x00e:
  592. dev_priv->fsb_freq = 3733;
  593. break;
  594. case 0x010:
  595. dev_priv->fsb_freq = 4266;
  596. break;
  597. case 0x012:
  598. dev_priv->fsb_freq = 4800;
  599. break;
  600. case 0x014:
  601. dev_priv->fsb_freq = 5333;
  602. break;
  603. case 0x016:
  604. dev_priv->fsb_freq = 5866;
  605. break;
  606. case 0x018:
  607. dev_priv->fsb_freq = 6400;
  608. break;
  609. default:
  610. DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
  611. csipll & 0x3ff);
  612. dev_priv->fsb_freq = 0;
  613. break;
  614. }
  615. if (dev_priv->fsb_freq == 3200) {
  616. dev_priv->ips.c_m = 0;
  617. } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
  618. dev_priv->ips.c_m = 1;
  619. } else {
  620. dev_priv->ips.c_m = 2;
  621. }
  622. }
  623. static const struct cxsr_latency cxsr_latency_table[] = {
  624. {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
  625. {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
  626. {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
  627. {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
  628. {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
  629. {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
  630. {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
  631. {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
  632. {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
  633. {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
  634. {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
  635. {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
  636. {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
  637. {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
  638. {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
  639. {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
  640. {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
  641. {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
  642. {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
  643. {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
  644. {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
  645. {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
  646. {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
  647. {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
  648. {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
  649. {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
  650. {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
  651. {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
  652. {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
  653. {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
  654. };
  655. static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
  656. int is_ddr3,
  657. int fsb,
  658. int mem)
  659. {
  660. const struct cxsr_latency *latency;
  661. int i;
  662. if (fsb == 0 || mem == 0)
  663. return NULL;
  664. for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
  665. latency = &cxsr_latency_table[i];
  666. if (is_desktop == latency->is_desktop &&
  667. is_ddr3 == latency->is_ddr3 &&
  668. fsb == latency->fsb_freq && mem == latency->mem_freq)
  669. return latency;
  670. }
  671. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  672. return NULL;
  673. }
  674. static void pineview_disable_cxsr(struct drm_device *dev)
  675. {
  676. struct drm_i915_private *dev_priv = dev->dev_private;
  677. /* deactivate cxsr */
  678. I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
  679. }
  680. /*
  681. * Latency for FIFO fetches is dependent on several factors:
  682. * - memory configuration (speed, channels)
  683. * - chipset
  684. * - current MCH state
  685. * It can be fairly high in some situations, so here we assume a fairly
  686. * pessimal value. It's a tradeoff between extra memory fetches (if we
  687. * set this value too high, the FIFO will fetch frequently to stay full)
  688. * and power consumption (set it too low to save power and we might see
  689. * FIFO underruns and display "flicker").
  690. *
  691. * A value of 5us seems to be a good balance; safe for very low end
  692. * platforms but not overly aggressive on lower latency configs.
  693. */
  694. static const int latency_ns = 5000;
  695. static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
  696. {
  697. struct drm_i915_private *dev_priv = dev->dev_private;
  698. uint32_t dsparb = I915_READ(DSPARB);
  699. int size;
  700. size = dsparb & 0x7f;
  701. if (plane)
  702. size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
  703. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  704. plane ? "B" : "A", size);
  705. return size;
  706. }
  707. static int i85x_get_fifo_size(struct drm_device *dev, int plane)
  708. {
  709. struct drm_i915_private *dev_priv = dev->dev_private;
  710. uint32_t dsparb = I915_READ(DSPARB);
  711. int size;
  712. size = dsparb & 0x1ff;
  713. if (plane)
  714. size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
  715. size >>= 1; /* Convert to cachelines */
  716. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  717. plane ? "B" : "A", size);
  718. return size;
  719. }
  720. static int i845_get_fifo_size(struct drm_device *dev, int plane)
  721. {
  722. struct drm_i915_private *dev_priv = dev->dev_private;
  723. uint32_t dsparb = I915_READ(DSPARB);
  724. int size;
  725. size = dsparb & 0x7f;
  726. size >>= 2; /* Convert to cachelines */
  727. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  728. plane ? "B" : "A",
  729. size);
  730. return size;
  731. }
  732. static int i830_get_fifo_size(struct drm_device *dev, int plane)
  733. {
  734. struct drm_i915_private *dev_priv = dev->dev_private;
  735. uint32_t dsparb = I915_READ(DSPARB);
  736. int size;
  737. size = dsparb & 0x7f;
  738. size >>= 1; /* Convert to cachelines */
  739. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  740. plane ? "B" : "A", size);
  741. return size;
  742. }
  743. /* Pineview has different values for various configs */
  744. static const struct intel_watermark_params pineview_display_wm = {
  745. PINEVIEW_DISPLAY_FIFO,
  746. PINEVIEW_MAX_WM,
  747. PINEVIEW_DFT_WM,
  748. PINEVIEW_GUARD_WM,
  749. PINEVIEW_FIFO_LINE_SIZE
  750. };
  751. static const struct intel_watermark_params pineview_display_hplloff_wm = {
  752. PINEVIEW_DISPLAY_FIFO,
  753. PINEVIEW_MAX_WM,
  754. PINEVIEW_DFT_HPLLOFF_WM,
  755. PINEVIEW_GUARD_WM,
  756. PINEVIEW_FIFO_LINE_SIZE
  757. };
  758. static const struct intel_watermark_params pineview_cursor_wm = {
  759. PINEVIEW_CURSOR_FIFO,
  760. PINEVIEW_CURSOR_MAX_WM,
  761. PINEVIEW_CURSOR_DFT_WM,
  762. PINEVIEW_CURSOR_GUARD_WM,
  763. PINEVIEW_FIFO_LINE_SIZE,
  764. };
  765. static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
  766. PINEVIEW_CURSOR_FIFO,
  767. PINEVIEW_CURSOR_MAX_WM,
  768. PINEVIEW_CURSOR_DFT_WM,
  769. PINEVIEW_CURSOR_GUARD_WM,
  770. PINEVIEW_FIFO_LINE_SIZE
  771. };
  772. static const struct intel_watermark_params g4x_wm_info = {
  773. G4X_FIFO_SIZE,
  774. G4X_MAX_WM,
  775. G4X_MAX_WM,
  776. 2,
  777. G4X_FIFO_LINE_SIZE,
  778. };
  779. static const struct intel_watermark_params g4x_cursor_wm_info = {
  780. I965_CURSOR_FIFO,
  781. I965_CURSOR_MAX_WM,
  782. I965_CURSOR_DFT_WM,
  783. 2,
  784. G4X_FIFO_LINE_SIZE,
  785. };
  786. static const struct intel_watermark_params valleyview_wm_info = {
  787. VALLEYVIEW_FIFO_SIZE,
  788. VALLEYVIEW_MAX_WM,
  789. VALLEYVIEW_MAX_WM,
  790. 2,
  791. G4X_FIFO_LINE_SIZE,
  792. };
  793. static const struct intel_watermark_params valleyview_cursor_wm_info = {
  794. I965_CURSOR_FIFO,
  795. VALLEYVIEW_CURSOR_MAX_WM,
  796. I965_CURSOR_DFT_WM,
  797. 2,
  798. G4X_FIFO_LINE_SIZE,
  799. };
  800. static const struct intel_watermark_params i965_cursor_wm_info = {
  801. I965_CURSOR_FIFO,
  802. I965_CURSOR_MAX_WM,
  803. I965_CURSOR_DFT_WM,
  804. 2,
  805. I915_FIFO_LINE_SIZE,
  806. };
  807. static const struct intel_watermark_params i945_wm_info = {
  808. I945_FIFO_SIZE,
  809. I915_MAX_WM,
  810. 1,
  811. 2,
  812. I915_FIFO_LINE_SIZE
  813. };
  814. static const struct intel_watermark_params i915_wm_info = {
  815. I915_FIFO_SIZE,
  816. I915_MAX_WM,
  817. 1,
  818. 2,
  819. I915_FIFO_LINE_SIZE
  820. };
  821. static const struct intel_watermark_params i855_wm_info = {
  822. I855GM_FIFO_SIZE,
  823. I915_MAX_WM,
  824. 1,
  825. 2,
  826. I830_FIFO_LINE_SIZE
  827. };
  828. static const struct intel_watermark_params i830_wm_info = {
  829. I830_FIFO_SIZE,
  830. I915_MAX_WM,
  831. 1,
  832. 2,
  833. I830_FIFO_LINE_SIZE
  834. };
  835. static const struct intel_watermark_params ironlake_display_wm_info = {
  836. ILK_DISPLAY_FIFO,
  837. ILK_DISPLAY_MAXWM,
  838. ILK_DISPLAY_DFTWM,
  839. 2,
  840. ILK_FIFO_LINE_SIZE
  841. };
  842. static const struct intel_watermark_params ironlake_cursor_wm_info = {
  843. ILK_CURSOR_FIFO,
  844. ILK_CURSOR_MAXWM,
  845. ILK_CURSOR_DFTWM,
  846. 2,
  847. ILK_FIFO_LINE_SIZE
  848. };
  849. static const struct intel_watermark_params ironlake_display_srwm_info = {
  850. ILK_DISPLAY_SR_FIFO,
  851. ILK_DISPLAY_MAX_SRWM,
  852. ILK_DISPLAY_DFT_SRWM,
  853. 2,
  854. ILK_FIFO_LINE_SIZE
  855. };
  856. static const struct intel_watermark_params ironlake_cursor_srwm_info = {
  857. ILK_CURSOR_SR_FIFO,
  858. ILK_CURSOR_MAX_SRWM,
  859. ILK_CURSOR_DFT_SRWM,
  860. 2,
  861. ILK_FIFO_LINE_SIZE
  862. };
  863. static const struct intel_watermark_params sandybridge_display_wm_info = {
  864. SNB_DISPLAY_FIFO,
  865. SNB_DISPLAY_MAXWM,
  866. SNB_DISPLAY_DFTWM,
  867. 2,
  868. SNB_FIFO_LINE_SIZE
  869. };
  870. static const struct intel_watermark_params sandybridge_cursor_wm_info = {
  871. SNB_CURSOR_FIFO,
  872. SNB_CURSOR_MAXWM,
  873. SNB_CURSOR_DFTWM,
  874. 2,
  875. SNB_FIFO_LINE_SIZE
  876. };
  877. static const struct intel_watermark_params sandybridge_display_srwm_info = {
  878. SNB_DISPLAY_SR_FIFO,
  879. SNB_DISPLAY_MAX_SRWM,
  880. SNB_DISPLAY_DFT_SRWM,
  881. 2,
  882. SNB_FIFO_LINE_SIZE
  883. };
  884. static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
  885. SNB_CURSOR_SR_FIFO,
  886. SNB_CURSOR_MAX_SRWM,
  887. SNB_CURSOR_DFT_SRWM,
  888. 2,
  889. SNB_FIFO_LINE_SIZE
  890. };
  891. /**
  892. * intel_calculate_wm - calculate watermark level
  893. * @clock_in_khz: pixel clock
  894. * @wm: chip FIFO params
  895. * @pixel_size: display pixel size
  896. * @latency_ns: memory latency for the platform
  897. *
  898. * Calculate the watermark level (the level at which the display plane will
  899. * start fetching from memory again). Each chip has a different display
  900. * FIFO size and allocation, so the caller needs to figure that out and pass
  901. * in the correct intel_watermark_params structure.
  902. *
  903. * As the pixel clock runs, the FIFO will be drained at a rate that depends
  904. * on the pixel size. When it reaches the watermark level, it'll start
  905. * fetching FIFO line sized based chunks from memory until the FIFO fills
  906. * past the watermark point. If the FIFO drains completely, a FIFO underrun
  907. * will occur, and a display engine hang could result.
  908. */
  909. static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
  910. const struct intel_watermark_params *wm,
  911. int fifo_size,
  912. int pixel_size,
  913. unsigned long latency_ns)
  914. {
  915. long entries_required, wm_size;
  916. /*
  917. * Note: we need to make sure we don't overflow for various clock &
  918. * latency values.
  919. * clocks go from a few thousand to several hundred thousand.
  920. * latency is usually a few thousand
  921. */
  922. entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
  923. 1000;
  924. entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
  925. DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
  926. wm_size = fifo_size - (entries_required + wm->guard_size);
  927. DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
  928. /* Don't promote wm_size to unsigned... */
  929. if (wm_size > (long)wm->max_wm)
  930. wm_size = wm->max_wm;
  931. if (wm_size <= 0)
  932. wm_size = wm->default_wm;
  933. return wm_size;
  934. }
  935. static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
  936. {
  937. struct drm_crtc *crtc, *enabled = NULL;
  938. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  939. if (intel_crtc_active(crtc)) {
  940. if (enabled)
  941. return NULL;
  942. enabled = crtc;
  943. }
  944. }
  945. return enabled;
  946. }
  947. static void pineview_update_wm(struct drm_crtc *unused_crtc)
  948. {
  949. struct drm_device *dev = unused_crtc->dev;
  950. struct drm_i915_private *dev_priv = dev->dev_private;
  951. struct drm_crtc *crtc;
  952. const struct cxsr_latency *latency;
  953. u32 reg;
  954. unsigned long wm;
  955. latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
  956. dev_priv->fsb_freq, dev_priv->mem_freq);
  957. if (!latency) {
  958. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  959. pineview_disable_cxsr(dev);
  960. return;
  961. }
  962. crtc = single_enabled_crtc(dev);
  963. if (crtc) {
  964. const struct drm_display_mode *adjusted_mode;
  965. int pixel_size = crtc->fb->bits_per_pixel / 8;
  966. int clock;
  967. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  968. clock = adjusted_mode->crtc_clock;
  969. /* Display SR */
  970. wm = intel_calculate_wm(clock, &pineview_display_wm,
  971. pineview_display_wm.fifo_size,
  972. pixel_size, latency->display_sr);
  973. reg = I915_READ(DSPFW1);
  974. reg &= ~DSPFW_SR_MASK;
  975. reg |= wm << DSPFW_SR_SHIFT;
  976. I915_WRITE(DSPFW1, reg);
  977. DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
  978. /* cursor SR */
  979. wm = intel_calculate_wm(clock, &pineview_cursor_wm,
  980. pineview_display_wm.fifo_size,
  981. pixel_size, latency->cursor_sr);
  982. reg = I915_READ(DSPFW3);
  983. reg &= ~DSPFW_CURSOR_SR_MASK;
  984. reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
  985. I915_WRITE(DSPFW3, reg);
  986. /* Display HPLL off SR */
  987. wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
  988. pineview_display_hplloff_wm.fifo_size,
  989. pixel_size, latency->display_hpll_disable);
  990. reg = I915_READ(DSPFW3);
  991. reg &= ~DSPFW_HPLL_SR_MASK;
  992. reg |= wm & DSPFW_HPLL_SR_MASK;
  993. I915_WRITE(DSPFW3, reg);
  994. /* cursor HPLL off SR */
  995. wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
  996. pineview_display_hplloff_wm.fifo_size,
  997. pixel_size, latency->cursor_hpll_disable);
  998. reg = I915_READ(DSPFW3);
  999. reg &= ~DSPFW_HPLL_CURSOR_MASK;
  1000. reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
  1001. I915_WRITE(DSPFW3, reg);
  1002. DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
  1003. /* activate cxsr */
  1004. I915_WRITE(DSPFW3,
  1005. I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
  1006. DRM_DEBUG_KMS("Self-refresh is enabled\n");
  1007. } else {
  1008. pineview_disable_cxsr(dev);
  1009. DRM_DEBUG_KMS("Self-refresh is disabled\n");
  1010. }
  1011. }
  1012. static bool g4x_compute_wm0(struct drm_device *dev,
  1013. int plane,
  1014. const struct intel_watermark_params *display,
  1015. int display_latency_ns,
  1016. const struct intel_watermark_params *cursor,
  1017. int cursor_latency_ns,
  1018. int *plane_wm,
  1019. int *cursor_wm)
  1020. {
  1021. struct drm_crtc *crtc;
  1022. const struct drm_display_mode *adjusted_mode;
  1023. int htotal, hdisplay, clock, pixel_size;
  1024. int line_time_us, line_count;
  1025. int entries, tlb_miss;
  1026. crtc = intel_get_crtc_for_plane(dev, plane);
  1027. if (!intel_crtc_active(crtc)) {
  1028. *cursor_wm = cursor->guard_size;
  1029. *plane_wm = display->guard_size;
  1030. return false;
  1031. }
  1032. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  1033. clock = adjusted_mode->crtc_clock;
  1034. htotal = adjusted_mode->htotal;
  1035. hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
  1036. pixel_size = crtc->fb->bits_per_pixel / 8;
  1037. /* Use the small buffer method to calculate plane watermark */
  1038. entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
  1039. tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
  1040. if (tlb_miss > 0)
  1041. entries += tlb_miss;
  1042. entries = DIV_ROUND_UP(entries, display->cacheline_size);
  1043. *plane_wm = entries + display->guard_size;
  1044. if (*plane_wm > (int)display->max_wm)
  1045. *plane_wm = display->max_wm;
  1046. /* Use the large buffer method to calculate cursor watermark */
  1047. line_time_us = ((htotal * 1000) / clock);
  1048. line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
  1049. entries = line_count * 64 * pixel_size;
  1050. tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
  1051. if (tlb_miss > 0)
  1052. entries += tlb_miss;
  1053. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  1054. *cursor_wm = entries + cursor->guard_size;
  1055. if (*cursor_wm > (int)cursor->max_wm)
  1056. *cursor_wm = (int)cursor->max_wm;
  1057. return true;
  1058. }
  1059. /*
  1060. * Check the wm result.
  1061. *
  1062. * If any calculated watermark values is larger than the maximum value that
  1063. * can be programmed into the associated watermark register, that watermark
  1064. * must be disabled.
  1065. */
  1066. static bool g4x_check_srwm(struct drm_device *dev,
  1067. int display_wm, int cursor_wm,
  1068. const struct intel_watermark_params *display,
  1069. const struct intel_watermark_params *cursor)
  1070. {
  1071. DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
  1072. display_wm, cursor_wm);
  1073. if (display_wm > display->max_wm) {
  1074. DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
  1075. display_wm, display->max_wm);
  1076. return false;
  1077. }
  1078. if (cursor_wm > cursor->max_wm) {
  1079. DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
  1080. cursor_wm, cursor->max_wm);
  1081. return false;
  1082. }
  1083. if (!(display_wm || cursor_wm)) {
  1084. DRM_DEBUG_KMS("SR latency is 0, disabling\n");
  1085. return false;
  1086. }
  1087. return true;
  1088. }
  1089. static bool g4x_compute_srwm(struct drm_device *dev,
  1090. int plane,
  1091. int latency_ns,
  1092. const struct intel_watermark_params *display,
  1093. const struct intel_watermark_params *cursor,
  1094. int *display_wm, int *cursor_wm)
  1095. {
  1096. struct drm_crtc *crtc;
  1097. const struct drm_display_mode *adjusted_mode;
  1098. int hdisplay, htotal, pixel_size, clock;
  1099. unsigned long line_time_us;
  1100. int line_count, line_size;
  1101. int small, large;
  1102. int entries;
  1103. if (!latency_ns) {
  1104. *display_wm = *cursor_wm = 0;
  1105. return false;
  1106. }
  1107. crtc = intel_get_crtc_for_plane(dev, plane);
  1108. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  1109. clock = adjusted_mode->crtc_clock;
  1110. htotal = adjusted_mode->htotal;
  1111. hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
  1112. pixel_size = crtc->fb->bits_per_pixel / 8;
  1113. line_time_us = (htotal * 1000) / clock;
  1114. line_count = (latency_ns / line_time_us + 1000) / 1000;
  1115. line_size = hdisplay * pixel_size;
  1116. /* Use the minimum of the small and large buffer method for primary */
  1117. small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
  1118. large = line_count * line_size;
  1119. entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
  1120. *display_wm = entries + display->guard_size;
  1121. /* calculate the self-refresh watermark for display cursor */
  1122. entries = line_count * pixel_size * 64;
  1123. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  1124. *cursor_wm = entries + cursor->guard_size;
  1125. return g4x_check_srwm(dev,
  1126. *display_wm, *cursor_wm,
  1127. display, cursor);
  1128. }
  1129. static bool vlv_compute_drain_latency(struct drm_device *dev,
  1130. int plane,
  1131. int *plane_prec_mult,
  1132. int *plane_dl,
  1133. int *cursor_prec_mult,
  1134. int *cursor_dl)
  1135. {
  1136. struct drm_crtc *crtc;
  1137. int clock, pixel_size;
  1138. int entries;
  1139. crtc = intel_get_crtc_for_plane(dev, plane);
  1140. if (!intel_crtc_active(crtc))
  1141. return false;
  1142. clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
  1143. pixel_size = crtc->fb->bits_per_pixel / 8; /* BPP */
  1144. entries = (clock / 1000) * pixel_size;
  1145. *plane_prec_mult = (entries > 256) ?
  1146. DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
  1147. *plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
  1148. pixel_size);
  1149. entries = (clock / 1000) * 4; /* BPP is always 4 for cursor */
  1150. *cursor_prec_mult = (entries > 256) ?
  1151. DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
  1152. *cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
  1153. return true;
  1154. }
  1155. /*
  1156. * Update drain latency registers of memory arbiter
  1157. *
  1158. * Valleyview SoC has a new memory arbiter and needs drain latency registers
  1159. * to be programmed. Each plane has a drain latency multiplier and a drain
  1160. * latency value.
  1161. */
  1162. static void vlv_update_drain_latency(struct drm_device *dev)
  1163. {
  1164. struct drm_i915_private *dev_priv = dev->dev_private;
  1165. int planea_prec, planea_dl, planeb_prec, planeb_dl;
  1166. int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
  1167. int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
  1168. either 16 or 32 */
  1169. /* For plane A, Cursor A */
  1170. if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
  1171. &cursor_prec_mult, &cursora_dl)) {
  1172. cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
  1173. DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
  1174. planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
  1175. DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
  1176. I915_WRITE(VLV_DDL1, cursora_prec |
  1177. (cursora_dl << DDL_CURSORA_SHIFT) |
  1178. planea_prec | planea_dl);
  1179. }
  1180. /* For plane B, Cursor B */
  1181. if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
  1182. &cursor_prec_mult, &cursorb_dl)) {
  1183. cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
  1184. DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
  1185. planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
  1186. DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
  1187. I915_WRITE(VLV_DDL2, cursorb_prec |
  1188. (cursorb_dl << DDL_CURSORB_SHIFT) |
  1189. planeb_prec | planeb_dl);
  1190. }
  1191. }
  1192. #define single_plane_enabled(mask) is_power_of_2(mask)
  1193. static void valleyview_update_wm(struct drm_crtc *crtc)
  1194. {
  1195. struct drm_device *dev = crtc->dev;
  1196. static const int sr_latency_ns = 12000;
  1197. struct drm_i915_private *dev_priv = dev->dev_private;
  1198. int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
  1199. int plane_sr, cursor_sr;
  1200. int ignore_plane_sr, ignore_cursor_sr;
  1201. unsigned int enabled = 0;
  1202. vlv_update_drain_latency(dev);
  1203. if (g4x_compute_wm0(dev, PIPE_A,
  1204. &valleyview_wm_info, latency_ns,
  1205. &valleyview_cursor_wm_info, latency_ns,
  1206. &planea_wm, &cursora_wm))
  1207. enabled |= 1 << PIPE_A;
  1208. if (g4x_compute_wm0(dev, PIPE_B,
  1209. &valleyview_wm_info, latency_ns,
  1210. &valleyview_cursor_wm_info, latency_ns,
  1211. &planeb_wm, &cursorb_wm))
  1212. enabled |= 1 << PIPE_B;
  1213. if (single_plane_enabled(enabled) &&
  1214. g4x_compute_srwm(dev, ffs(enabled) - 1,
  1215. sr_latency_ns,
  1216. &valleyview_wm_info,
  1217. &valleyview_cursor_wm_info,
  1218. &plane_sr, &ignore_cursor_sr) &&
  1219. g4x_compute_srwm(dev, ffs(enabled) - 1,
  1220. 2*sr_latency_ns,
  1221. &valleyview_wm_info,
  1222. &valleyview_cursor_wm_info,
  1223. &ignore_plane_sr, &cursor_sr)) {
  1224. I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
  1225. } else {
  1226. I915_WRITE(FW_BLC_SELF_VLV,
  1227. I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
  1228. plane_sr = cursor_sr = 0;
  1229. }
  1230. DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
  1231. planea_wm, cursora_wm,
  1232. planeb_wm, cursorb_wm,
  1233. plane_sr, cursor_sr);
  1234. I915_WRITE(DSPFW1,
  1235. (plane_sr << DSPFW_SR_SHIFT) |
  1236. (cursorb_wm << DSPFW_CURSORB_SHIFT) |
  1237. (planeb_wm << DSPFW_PLANEB_SHIFT) |
  1238. planea_wm);
  1239. I915_WRITE(DSPFW2,
  1240. (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
  1241. (cursora_wm << DSPFW_CURSORA_SHIFT));
  1242. I915_WRITE(DSPFW3,
  1243. (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
  1244. (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  1245. }
  1246. static void g4x_update_wm(struct drm_crtc *crtc)
  1247. {
  1248. struct drm_device *dev = crtc->dev;
  1249. static const int sr_latency_ns = 12000;
  1250. struct drm_i915_private *dev_priv = dev->dev_private;
  1251. int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
  1252. int plane_sr, cursor_sr;
  1253. unsigned int enabled = 0;
  1254. if (g4x_compute_wm0(dev, PIPE_A,
  1255. &g4x_wm_info, latency_ns,
  1256. &g4x_cursor_wm_info, latency_ns,
  1257. &planea_wm, &cursora_wm))
  1258. enabled |= 1 << PIPE_A;
  1259. if (g4x_compute_wm0(dev, PIPE_B,
  1260. &g4x_wm_info, latency_ns,
  1261. &g4x_cursor_wm_info, latency_ns,
  1262. &planeb_wm, &cursorb_wm))
  1263. enabled |= 1 << PIPE_B;
  1264. if (single_plane_enabled(enabled) &&
  1265. g4x_compute_srwm(dev, ffs(enabled) - 1,
  1266. sr_latency_ns,
  1267. &g4x_wm_info,
  1268. &g4x_cursor_wm_info,
  1269. &plane_sr, &cursor_sr)) {
  1270. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
  1271. } else {
  1272. I915_WRITE(FW_BLC_SELF,
  1273. I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
  1274. plane_sr = cursor_sr = 0;
  1275. }
  1276. DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
  1277. planea_wm, cursora_wm,
  1278. planeb_wm, cursorb_wm,
  1279. plane_sr, cursor_sr);
  1280. I915_WRITE(DSPFW1,
  1281. (plane_sr << DSPFW_SR_SHIFT) |
  1282. (cursorb_wm << DSPFW_CURSORB_SHIFT) |
  1283. (planeb_wm << DSPFW_PLANEB_SHIFT) |
  1284. planea_wm);
  1285. I915_WRITE(DSPFW2,
  1286. (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
  1287. (cursora_wm << DSPFW_CURSORA_SHIFT));
  1288. /* HPLL off in SR has some issues on G4x... disable it */
  1289. I915_WRITE(DSPFW3,
  1290. (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
  1291. (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  1292. }
  1293. static void i965_update_wm(struct drm_crtc *unused_crtc)
  1294. {
  1295. struct drm_device *dev = unused_crtc->dev;
  1296. struct drm_i915_private *dev_priv = dev->dev_private;
  1297. struct drm_crtc *crtc;
  1298. int srwm = 1;
  1299. int cursor_sr = 16;
  1300. /* Calc sr entries for one plane configs */
  1301. crtc = single_enabled_crtc(dev);
  1302. if (crtc) {
  1303. /* self-refresh has much higher latency */
  1304. static const int sr_latency_ns = 12000;
  1305. const struct drm_display_mode *adjusted_mode =
  1306. &to_intel_crtc(crtc)->config.adjusted_mode;
  1307. int clock = adjusted_mode->crtc_clock;
  1308. int htotal = adjusted_mode->htotal;
  1309. int hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
  1310. int pixel_size = crtc->fb->bits_per_pixel / 8;
  1311. unsigned long line_time_us;
  1312. int entries;
  1313. line_time_us = ((htotal * 1000) / clock);
  1314. /* Use ns/us then divide to preserve precision */
  1315. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1316. pixel_size * hdisplay;
  1317. entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
  1318. srwm = I965_FIFO_SIZE - entries;
  1319. if (srwm < 0)
  1320. srwm = 1;
  1321. srwm &= 0x1ff;
  1322. DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
  1323. entries, srwm);
  1324. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1325. pixel_size * 64;
  1326. entries = DIV_ROUND_UP(entries,
  1327. i965_cursor_wm_info.cacheline_size);
  1328. cursor_sr = i965_cursor_wm_info.fifo_size -
  1329. (entries + i965_cursor_wm_info.guard_size);
  1330. if (cursor_sr > i965_cursor_wm_info.max_wm)
  1331. cursor_sr = i965_cursor_wm_info.max_wm;
  1332. DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
  1333. "cursor %d\n", srwm, cursor_sr);
  1334. if (IS_CRESTLINE(dev))
  1335. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
  1336. } else {
  1337. /* Turn off self refresh if both pipes are enabled */
  1338. if (IS_CRESTLINE(dev))
  1339. I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
  1340. & ~FW_BLC_SELF_EN);
  1341. }
  1342. DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
  1343. srwm);
  1344. /* 965 has limitations... */
  1345. I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
  1346. (8 << 16) | (8 << 8) | (8 << 0));
  1347. I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
  1348. /* update cursor SR watermark */
  1349. I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  1350. }
  1351. static void i9xx_update_wm(struct drm_crtc *unused_crtc)
  1352. {
  1353. struct drm_device *dev = unused_crtc->dev;
  1354. struct drm_i915_private *dev_priv = dev->dev_private;
  1355. const struct intel_watermark_params *wm_info;
  1356. uint32_t fwater_lo;
  1357. uint32_t fwater_hi;
  1358. int cwm, srwm = 1;
  1359. int fifo_size;
  1360. int planea_wm, planeb_wm;
  1361. struct drm_crtc *crtc, *enabled = NULL;
  1362. if (IS_I945GM(dev))
  1363. wm_info = &i945_wm_info;
  1364. else if (!IS_GEN2(dev))
  1365. wm_info = &i915_wm_info;
  1366. else
  1367. wm_info = &i855_wm_info;
  1368. fifo_size = dev_priv->display.get_fifo_size(dev, 0);
  1369. crtc = intel_get_crtc_for_plane(dev, 0);
  1370. if (intel_crtc_active(crtc)) {
  1371. const struct drm_display_mode *adjusted_mode;
  1372. int cpp = crtc->fb->bits_per_pixel / 8;
  1373. if (IS_GEN2(dev))
  1374. cpp = 4;
  1375. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  1376. planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
  1377. wm_info, fifo_size, cpp,
  1378. latency_ns);
  1379. enabled = crtc;
  1380. } else
  1381. planea_wm = fifo_size - wm_info->guard_size;
  1382. fifo_size = dev_priv->display.get_fifo_size(dev, 1);
  1383. crtc = intel_get_crtc_for_plane(dev, 1);
  1384. if (intel_crtc_active(crtc)) {
  1385. const struct drm_display_mode *adjusted_mode;
  1386. int cpp = crtc->fb->bits_per_pixel / 8;
  1387. if (IS_GEN2(dev))
  1388. cpp = 4;
  1389. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  1390. planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
  1391. wm_info, fifo_size, cpp,
  1392. latency_ns);
  1393. if (enabled == NULL)
  1394. enabled = crtc;
  1395. else
  1396. enabled = NULL;
  1397. } else
  1398. planeb_wm = fifo_size - wm_info->guard_size;
  1399. DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
  1400. /*
  1401. * Overlay gets an aggressive default since video jitter is bad.
  1402. */
  1403. cwm = 2;
  1404. /* Play safe and disable self-refresh before adjusting watermarks. */
  1405. if (IS_I945G(dev) || IS_I945GM(dev))
  1406. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
  1407. else if (IS_I915GM(dev))
  1408. I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
  1409. /* Calc sr entries for one plane configs */
  1410. if (HAS_FW_BLC(dev) && enabled) {
  1411. /* self-refresh has much higher latency */
  1412. static const int sr_latency_ns = 6000;
  1413. const struct drm_display_mode *adjusted_mode =
  1414. &to_intel_crtc(enabled)->config.adjusted_mode;
  1415. int clock = adjusted_mode->crtc_clock;
  1416. int htotal = adjusted_mode->htotal;
  1417. int hdisplay = to_intel_crtc(enabled)->config.pipe_src_w;
  1418. int pixel_size = enabled->fb->bits_per_pixel / 8;
  1419. unsigned long line_time_us;
  1420. int entries;
  1421. line_time_us = (htotal * 1000) / clock;
  1422. /* Use ns/us then divide to preserve precision */
  1423. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1424. pixel_size * hdisplay;
  1425. entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
  1426. DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
  1427. srwm = wm_info->fifo_size - entries;
  1428. if (srwm < 0)
  1429. srwm = 1;
  1430. if (IS_I945G(dev) || IS_I945GM(dev))
  1431. I915_WRITE(FW_BLC_SELF,
  1432. FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
  1433. else if (IS_I915GM(dev))
  1434. I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
  1435. }
  1436. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
  1437. planea_wm, planeb_wm, cwm, srwm);
  1438. fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
  1439. fwater_hi = (cwm & 0x1f);
  1440. /* Set request length to 8 cachelines per fetch */
  1441. fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
  1442. fwater_hi = fwater_hi | (1 << 8);
  1443. I915_WRITE(FW_BLC, fwater_lo);
  1444. I915_WRITE(FW_BLC2, fwater_hi);
  1445. if (HAS_FW_BLC(dev)) {
  1446. if (enabled) {
  1447. if (IS_I945G(dev) || IS_I945GM(dev))
  1448. I915_WRITE(FW_BLC_SELF,
  1449. FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
  1450. else if (IS_I915GM(dev))
  1451. I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
  1452. DRM_DEBUG_KMS("memory self refresh enabled\n");
  1453. } else
  1454. DRM_DEBUG_KMS("memory self refresh disabled\n");
  1455. }
  1456. }
  1457. static void i830_update_wm(struct drm_crtc *unused_crtc)
  1458. {
  1459. struct drm_device *dev = unused_crtc->dev;
  1460. struct drm_i915_private *dev_priv = dev->dev_private;
  1461. struct drm_crtc *crtc;
  1462. const struct drm_display_mode *adjusted_mode;
  1463. uint32_t fwater_lo;
  1464. int planea_wm;
  1465. crtc = single_enabled_crtc(dev);
  1466. if (crtc == NULL)
  1467. return;
  1468. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  1469. planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
  1470. &i830_wm_info,
  1471. dev_priv->display.get_fifo_size(dev, 0),
  1472. 4, latency_ns);
  1473. fwater_lo = I915_READ(FW_BLC) & ~0xfff;
  1474. fwater_lo |= (3<<8) | planea_wm;
  1475. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
  1476. I915_WRITE(FW_BLC, fwater_lo);
  1477. }
  1478. /*
  1479. * Check the wm result.
  1480. *
  1481. * If any calculated watermark values is larger than the maximum value that
  1482. * can be programmed into the associated watermark register, that watermark
  1483. * must be disabled.
  1484. */
  1485. static bool ironlake_check_srwm(struct drm_device *dev, int level,
  1486. int fbc_wm, int display_wm, int cursor_wm,
  1487. const struct intel_watermark_params *display,
  1488. const struct intel_watermark_params *cursor)
  1489. {
  1490. struct drm_i915_private *dev_priv = dev->dev_private;
  1491. DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
  1492. " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
  1493. if (fbc_wm > SNB_FBC_MAX_SRWM) {
  1494. DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
  1495. fbc_wm, SNB_FBC_MAX_SRWM, level);
  1496. /* fbc has it's own way to disable FBC WM */
  1497. I915_WRITE(DISP_ARB_CTL,
  1498. I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
  1499. return false;
  1500. } else if (INTEL_INFO(dev)->gen >= 6) {
  1501. /* enable FBC WM (except on ILK, where it must remain off) */
  1502. I915_WRITE(DISP_ARB_CTL,
  1503. I915_READ(DISP_ARB_CTL) & ~DISP_FBC_WM_DIS);
  1504. }
  1505. if (display_wm > display->max_wm) {
  1506. DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
  1507. display_wm, SNB_DISPLAY_MAX_SRWM, level);
  1508. return false;
  1509. }
  1510. if (cursor_wm > cursor->max_wm) {
  1511. DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
  1512. cursor_wm, SNB_CURSOR_MAX_SRWM, level);
  1513. return false;
  1514. }
  1515. if (!(fbc_wm || display_wm || cursor_wm)) {
  1516. DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
  1517. return false;
  1518. }
  1519. return true;
  1520. }
  1521. /*
  1522. * Compute watermark values of WM[1-3],
  1523. */
  1524. static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
  1525. int latency_ns,
  1526. const struct intel_watermark_params *display,
  1527. const struct intel_watermark_params *cursor,
  1528. int *fbc_wm, int *display_wm, int *cursor_wm)
  1529. {
  1530. struct drm_crtc *crtc;
  1531. const struct drm_display_mode *adjusted_mode;
  1532. unsigned long line_time_us;
  1533. int hdisplay, htotal, pixel_size, clock;
  1534. int line_count, line_size;
  1535. int small, large;
  1536. int entries;
  1537. if (!latency_ns) {
  1538. *fbc_wm = *display_wm = *cursor_wm = 0;
  1539. return false;
  1540. }
  1541. crtc = intel_get_crtc_for_plane(dev, plane);
  1542. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  1543. clock = adjusted_mode->crtc_clock;
  1544. htotal = adjusted_mode->htotal;
  1545. hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
  1546. pixel_size = crtc->fb->bits_per_pixel / 8;
  1547. line_time_us = (htotal * 1000) / clock;
  1548. line_count = (latency_ns / line_time_us + 1000) / 1000;
  1549. line_size = hdisplay * pixel_size;
  1550. /* Use the minimum of the small and large buffer method for primary */
  1551. small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
  1552. large = line_count * line_size;
  1553. entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
  1554. *display_wm = entries + display->guard_size;
  1555. /*
  1556. * Spec says:
  1557. * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
  1558. */
  1559. *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
  1560. /* calculate the self-refresh watermark for display cursor */
  1561. entries = line_count * pixel_size * 64;
  1562. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  1563. *cursor_wm = entries + cursor->guard_size;
  1564. return ironlake_check_srwm(dev, level,
  1565. *fbc_wm, *display_wm, *cursor_wm,
  1566. display, cursor);
  1567. }
  1568. static void ironlake_update_wm(struct drm_crtc *crtc)
  1569. {
  1570. struct drm_device *dev = crtc->dev;
  1571. struct drm_i915_private *dev_priv = dev->dev_private;
  1572. int fbc_wm, plane_wm, cursor_wm;
  1573. unsigned int enabled;
  1574. enabled = 0;
  1575. if (g4x_compute_wm0(dev, PIPE_A,
  1576. &ironlake_display_wm_info,
  1577. dev_priv->wm.pri_latency[0] * 100,
  1578. &ironlake_cursor_wm_info,
  1579. dev_priv->wm.cur_latency[0] * 100,
  1580. &plane_wm, &cursor_wm)) {
  1581. I915_WRITE(WM0_PIPEA_ILK,
  1582. (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
  1583. DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
  1584. " plane %d, " "cursor: %d\n",
  1585. plane_wm, cursor_wm);
  1586. enabled |= 1 << PIPE_A;
  1587. }
  1588. if (g4x_compute_wm0(dev, PIPE_B,
  1589. &ironlake_display_wm_info,
  1590. dev_priv->wm.pri_latency[0] * 100,
  1591. &ironlake_cursor_wm_info,
  1592. dev_priv->wm.cur_latency[0] * 100,
  1593. &plane_wm, &cursor_wm)) {
  1594. I915_WRITE(WM0_PIPEB_ILK,
  1595. (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
  1596. DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
  1597. " plane %d, cursor: %d\n",
  1598. plane_wm, cursor_wm);
  1599. enabled |= 1 << PIPE_B;
  1600. }
  1601. /*
  1602. * Calculate and update the self-refresh watermark only when one
  1603. * display plane is used.
  1604. */
  1605. I915_WRITE(WM3_LP_ILK, 0);
  1606. I915_WRITE(WM2_LP_ILK, 0);
  1607. I915_WRITE(WM1_LP_ILK, 0);
  1608. if (!single_plane_enabled(enabled))
  1609. return;
  1610. enabled = ffs(enabled) - 1;
  1611. /* WM1 */
  1612. if (!ironlake_compute_srwm(dev, 1, enabled,
  1613. dev_priv->wm.pri_latency[1] * 500,
  1614. &ironlake_display_srwm_info,
  1615. &ironlake_cursor_srwm_info,
  1616. &fbc_wm, &plane_wm, &cursor_wm))
  1617. return;
  1618. I915_WRITE(WM1_LP_ILK,
  1619. WM1_LP_SR_EN |
  1620. (dev_priv->wm.pri_latency[1] << WM1_LP_LATENCY_SHIFT) |
  1621. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1622. (plane_wm << WM1_LP_SR_SHIFT) |
  1623. cursor_wm);
  1624. /* WM2 */
  1625. if (!ironlake_compute_srwm(dev, 2, enabled,
  1626. dev_priv->wm.pri_latency[2] * 500,
  1627. &ironlake_display_srwm_info,
  1628. &ironlake_cursor_srwm_info,
  1629. &fbc_wm, &plane_wm, &cursor_wm))
  1630. return;
  1631. I915_WRITE(WM2_LP_ILK,
  1632. WM2_LP_EN |
  1633. (dev_priv->wm.pri_latency[2] << WM1_LP_LATENCY_SHIFT) |
  1634. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1635. (plane_wm << WM1_LP_SR_SHIFT) |
  1636. cursor_wm);
  1637. /*
  1638. * WM3 is unsupported on ILK, probably because we don't have latency
  1639. * data for that power state
  1640. */
  1641. }
  1642. static void sandybridge_update_wm(struct drm_crtc *crtc)
  1643. {
  1644. struct drm_device *dev = crtc->dev;
  1645. struct drm_i915_private *dev_priv = dev->dev_private;
  1646. int latency = dev_priv->wm.pri_latency[0] * 100; /* In unit 0.1us */
  1647. u32 val;
  1648. int fbc_wm, plane_wm, cursor_wm;
  1649. unsigned int enabled;
  1650. enabled = 0;
  1651. if (g4x_compute_wm0(dev, PIPE_A,
  1652. &sandybridge_display_wm_info, latency,
  1653. &sandybridge_cursor_wm_info, latency,
  1654. &plane_wm, &cursor_wm)) {
  1655. val = I915_READ(WM0_PIPEA_ILK);
  1656. val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  1657. I915_WRITE(WM0_PIPEA_ILK, val |
  1658. ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
  1659. DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
  1660. " plane %d, " "cursor: %d\n",
  1661. plane_wm, cursor_wm);
  1662. enabled |= 1 << PIPE_A;
  1663. }
  1664. if (g4x_compute_wm0(dev, PIPE_B,
  1665. &sandybridge_display_wm_info, latency,
  1666. &sandybridge_cursor_wm_info, latency,
  1667. &plane_wm, &cursor_wm)) {
  1668. val = I915_READ(WM0_PIPEB_ILK);
  1669. val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  1670. I915_WRITE(WM0_PIPEB_ILK, val |
  1671. ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
  1672. DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
  1673. " plane %d, cursor: %d\n",
  1674. plane_wm, cursor_wm);
  1675. enabled |= 1 << PIPE_B;
  1676. }
  1677. /*
  1678. * Calculate and update the self-refresh watermark only when one
  1679. * display plane is used.
  1680. *
  1681. * SNB support 3 levels of watermark.
  1682. *
  1683. * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
  1684. * and disabled in the descending order
  1685. *
  1686. */
  1687. I915_WRITE(WM3_LP_ILK, 0);
  1688. I915_WRITE(WM2_LP_ILK, 0);
  1689. I915_WRITE(WM1_LP_ILK, 0);
  1690. if (!single_plane_enabled(enabled) ||
  1691. dev_priv->sprite_scaling_enabled)
  1692. return;
  1693. enabled = ffs(enabled) - 1;
  1694. /* WM1 */
  1695. if (!ironlake_compute_srwm(dev, 1, enabled,
  1696. dev_priv->wm.pri_latency[1] * 500,
  1697. &sandybridge_display_srwm_info,
  1698. &sandybridge_cursor_srwm_info,
  1699. &fbc_wm, &plane_wm, &cursor_wm))
  1700. return;
  1701. I915_WRITE(WM1_LP_ILK,
  1702. WM1_LP_SR_EN |
  1703. (dev_priv->wm.pri_latency[1] << WM1_LP_LATENCY_SHIFT) |
  1704. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1705. (plane_wm << WM1_LP_SR_SHIFT) |
  1706. cursor_wm);
  1707. /* WM2 */
  1708. if (!ironlake_compute_srwm(dev, 2, enabled,
  1709. dev_priv->wm.pri_latency[2] * 500,
  1710. &sandybridge_display_srwm_info,
  1711. &sandybridge_cursor_srwm_info,
  1712. &fbc_wm, &plane_wm, &cursor_wm))
  1713. return;
  1714. I915_WRITE(WM2_LP_ILK,
  1715. WM2_LP_EN |
  1716. (dev_priv->wm.pri_latency[2] << WM1_LP_LATENCY_SHIFT) |
  1717. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1718. (plane_wm << WM1_LP_SR_SHIFT) |
  1719. cursor_wm);
  1720. /* WM3 */
  1721. if (!ironlake_compute_srwm(dev, 3, enabled,
  1722. dev_priv->wm.pri_latency[3] * 500,
  1723. &sandybridge_display_srwm_info,
  1724. &sandybridge_cursor_srwm_info,
  1725. &fbc_wm, &plane_wm, &cursor_wm))
  1726. return;
  1727. I915_WRITE(WM3_LP_ILK,
  1728. WM3_LP_EN |
  1729. (dev_priv->wm.pri_latency[3] << WM1_LP_LATENCY_SHIFT) |
  1730. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1731. (plane_wm << WM1_LP_SR_SHIFT) |
  1732. cursor_wm);
  1733. }
  1734. static void ivybridge_update_wm(struct drm_crtc *crtc)
  1735. {
  1736. struct drm_device *dev = crtc->dev;
  1737. struct drm_i915_private *dev_priv = dev->dev_private;
  1738. int latency = dev_priv->wm.pri_latency[0] * 100; /* In unit 0.1us */
  1739. u32 val;
  1740. int fbc_wm, plane_wm, cursor_wm;
  1741. int ignore_fbc_wm, ignore_plane_wm, ignore_cursor_wm;
  1742. unsigned int enabled;
  1743. enabled = 0;
  1744. if (g4x_compute_wm0(dev, PIPE_A,
  1745. &sandybridge_display_wm_info, latency,
  1746. &sandybridge_cursor_wm_info, latency,
  1747. &plane_wm, &cursor_wm)) {
  1748. val = I915_READ(WM0_PIPEA_ILK);
  1749. val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  1750. I915_WRITE(WM0_PIPEA_ILK, val |
  1751. ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
  1752. DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
  1753. " plane %d, " "cursor: %d\n",
  1754. plane_wm, cursor_wm);
  1755. enabled |= 1 << PIPE_A;
  1756. }
  1757. if (g4x_compute_wm0(dev, PIPE_B,
  1758. &sandybridge_display_wm_info, latency,
  1759. &sandybridge_cursor_wm_info, latency,
  1760. &plane_wm, &cursor_wm)) {
  1761. val = I915_READ(WM0_PIPEB_ILK);
  1762. val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  1763. I915_WRITE(WM0_PIPEB_ILK, val |
  1764. ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
  1765. DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
  1766. " plane %d, cursor: %d\n",
  1767. plane_wm, cursor_wm);
  1768. enabled |= 1 << PIPE_B;
  1769. }
  1770. if (g4x_compute_wm0(dev, PIPE_C,
  1771. &sandybridge_display_wm_info, latency,
  1772. &sandybridge_cursor_wm_info, latency,
  1773. &plane_wm, &cursor_wm)) {
  1774. val = I915_READ(WM0_PIPEC_IVB);
  1775. val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  1776. I915_WRITE(WM0_PIPEC_IVB, val |
  1777. ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
  1778. DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
  1779. " plane %d, cursor: %d\n",
  1780. plane_wm, cursor_wm);
  1781. enabled |= 1 << PIPE_C;
  1782. }
  1783. /*
  1784. * Calculate and update the self-refresh watermark only when one
  1785. * display plane is used.
  1786. *
  1787. * SNB support 3 levels of watermark.
  1788. *
  1789. * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
  1790. * and disabled in the descending order
  1791. *
  1792. */
  1793. I915_WRITE(WM3_LP_ILK, 0);
  1794. I915_WRITE(WM2_LP_ILK, 0);
  1795. I915_WRITE(WM1_LP_ILK, 0);
  1796. if (!single_plane_enabled(enabled) ||
  1797. dev_priv->sprite_scaling_enabled)
  1798. return;
  1799. enabled = ffs(enabled) - 1;
  1800. /* WM1 */
  1801. if (!ironlake_compute_srwm(dev, 1, enabled,
  1802. dev_priv->wm.pri_latency[1] * 500,
  1803. &sandybridge_display_srwm_info,
  1804. &sandybridge_cursor_srwm_info,
  1805. &fbc_wm, &plane_wm, &cursor_wm))
  1806. return;
  1807. I915_WRITE(WM1_LP_ILK,
  1808. WM1_LP_SR_EN |
  1809. (dev_priv->wm.pri_latency[1] << WM1_LP_LATENCY_SHIFT) |
  1810. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1811. (plane_wm << WM1_LP_SR_SHIFT) |
  1812. cursor_wm);
  1813. /* WM2 */
  1814. if (!ironlake_compute_srwm(dev, 2, enabled,
  1815. dev_priv->wm.pri_latency[2] * 500,
  1816. &sandybridge_display_srwm_info,
  1817. &sandybridge_cursor_srwm_info,
  1818. &fbc_wm, &plane_wm, &cursor_wm))
  1819. return;
  1820. I915_WRITE(WM2_LP_ILK,
  1821. WM2_LP_EN |
  1822. (dev_priv->wm.pri_latency[2] << WM1_LP_LATENCY_SHIFT) |
  1823. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1824. (plane_wm << WM1_LP_SR_SHIFT) |
  1825. cursor_wm);
  1826. /* WM3, note we have to correct the cursor latency */
  1827. if (!ironlake_compute_srwm(dev, 3, enabled,
  1828. dev_priv->wm.pri_latency[3] * 500,
  1829. &sandybridge_display_srwm_info,
  1830. &sandybridge_cursor_srwm_info,
  1831. &fbc_wm, &plane_wm, &ignore_cursor_wm) ||
  1832. !ironlake_compute_srwm(dev, 3, enabled,
  1833. dev_priv->wm.cur_latency[3] * 500,
  1834. &sandybridge_display_srwm_info,
  1835. &sandybridge_cursor_srwm_info,
  1836. &ignore_fbc_wm, &ignore_plane_wm, &cursor_wm))
  1837. return;
  1838. I915_WRITE(WM3_LP_ILK,
  1839. WM3_LP_EN |
  1840. (dev_priv->wm.pri_latency[3] << WM1_LP_LATENCY_SHIFT) |
  1841. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1842. (plane_wm << WM1_LP_SR_SHIFT) |
  1843. cursor_wm);
  1844. }
  1845. static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
  1846. struct drm_crtc *crtc)
  1847. {
  1848. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1849. uint32_t pixel_rate;
  1850. pixel_rate = intel_crtc->config.adjusted_mode.crtc_clock;
  1851. /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
  1852. * adjust the pixel_rate here. */
  1853. if (intel_crtc->config.pch_pfit.enabled) {
  1854. uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
  1855. uint32_t pfit_size = intel_crtc->config.pch_pfit.size;
  1856. pipe_w = intel_crtc->config.pipe_src_w;
  1857. pipe_h = intel_crtc->config.pipe_src_h;
  1858. pfit_w = (pfit_size >> 16) & 0xFFFF;
  1859. pfit_h = pfit_size & 0xFFFF;
  1860. if (pipe_w < pfit_w)
  1861. pipe_w = pfit_w;
  1862. if (pipe_h < pfit_h)
  1863. pipe_h = pfit_h;
  1864. pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
  1865. pfit_w * pfit_h);
  1866. }
  1867. return pixel_rate;
  1868. }
  1869. /* latency must be in 0.1us units. */
  1870. static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
  1871. uint32_t latency)
  1872. {
  1873. uint64_t ret;
  1874. if (WARN(latency == 0, "Latency value missing\n"))
  1875. return UINT_MAX;
  1876. ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
  1877. ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
  1878. return ret;
  1879. }
  1880. /* latency must be in 0.1us units. */
  1881. static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
  1882. uint32_t horiz_pixels, uint8_t bytes_per_pixel,
  1883. uint32_t latency)
  1884. {
  1885. uint32_t ret;
  1886. if (WARN(latency == 0, "Latency value missing\n"))
  1887. return UINT_MAX;
  1888. ret = (latency * pixel_rate) / (pipe_htotal * 10000);
  1889. ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
  1890. ret = DIV_ROUND_UP(ret, 64) + 2;
  1891. return ret;
  1892. }
  1893. static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
  1894. uint8_t bytes_per_pixel)
  1895. {
  1896. return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
  1897. }
  1898. struct hsw_pipe_wm_parameters {
  1899. bool active;
  1900. uint32_t pipe_htotal;
  1901. uint32_t pixel_rate;
  1902. struct intel_plane_wm_parameters pri;
  1903. struct intel_plane_wm_parameters spr;
  1904. struct intel_plane_wm_parameters cur;
  1905. };
  1906. struct hsw_wm_maximums {
  1907. uint16_t pri;
  1908. uint16_t spr;
  1909. uint16_t cur;
  1910. uint16_t fbc;
  1911. };
  1912. /* used in computing the new watermarks state */
  1913. struct intel_wm_config {
  1914. unsigned int num_pipes_active;
  1915. bool sprites_enabled;
  1916. bool sprites_scaled;
  1917. };
  1918. /*
  1919. * For both WM_PIPE and WM_LP.
  1920. * mem_value must be in 0.1us units.
  1921. */
  1922. static uint32_t ilk_compute_pri_wm(const struct hsw_pipe_wm_parameters *params,
  1923. uint32_t mem_value,
  1924. bool is_lp)
  1925. {
  1926. uint32_t method1, method2;
  1927. if (!params->active || !params->pri.enabled)
  1928. return 0;
  1929. method1 = ilk_wm_method1(params->pixel_rate,
  1930. params->pri.bytes_per_pixel,
  1931. mem_value);
  1932. if (!is_lp)
  1933. return method1;
  1934. method2 = ilk_wm_method2(params->pixel_rate,
  1935. params->pipe_htotal,
  1936. params->pri.horiz_pixels,
  1937. params->pri.bytes_per_pixel,
  1938. mem_value);
  1939. return min(method1, method2);
  1940. }
  1941. /*
  1942. * For both WM_PIPE and WM_LP.
  1943. * mem_value must be in 0.1us units.
  1944. */
  1945. static uint32_t ilk_compute_spr_wm(const struct hsw_pipe_wm_parameters *params,
  1946. uint32_t mem_value)
  1947. {
  1948. uint32_t method1, method2;
  1949. if (!params->active || !params->spr.enabled)
  1950. return 0;
  1951. method1 = ilk_wm_method1(params->pixel_rate,
  1952. params->spr.bytes_per_pixel,
  1953. mem_value);
  1954. method2 = ilk_wm_method2(params->pixel_rate,
  1955. params->pipe_htotal,
  1956. params->spr.horiz_pixels,
  1957. params->spr.bytes_per_pixel,
  1958. mem_value);
  1959. return min(method1, method2);
  1960. }
  1961. /*
  1962. * For both WM_PIPE and WM_LP.
  1963. * mem_value must be in 0.1us units.
  1964. */
  1965. static uint32_t ilk_compute_cur_wm(const struct hsw_pipe_wm_parameters *params,
  1966. uint32_t mem_value)
  1967. {
  1968. if (!params->active || !params->cur.enabled)
  1969. return 0;
  1970. return ilk_wm_method2(params->pixel_rate,
  1971. params->pipe_htotal,
  1972. params->cur.horiz_pixels,
  1973. params->cur.bytes_per_pixel,
  1974. mem_value);
  1975. }
  1976. /* Only for WM_LP. */
  1977. static uint32_t ilk_compute_fbc_wm(const struct hsw_pipe_wm_parameters *params,
  1978. uint32_t pri_val)
  1979. {
  1980. if (!params->active || !params->pri.enabled)
  1981. return 0;
  1982. return ilk_wm_fbc(pri_val,
  1983. params->pri.horiz_pixels,
  1984. params->pri.bytes_per_pixel);
  1985. }
  1986. static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
  1987. {
  1988. if (INTEL_INFO(dev)->gen >= 8)
  1989. return 3072;
  1990. else if (INTEL_INFO(dev)->gen >= 7)
  1991. return 768;
  1992. else
  1993. return 512;
  1994. }
  1995. /* Calculate the maximum primary/sprite plane watermark */
  1996. static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
  1997. int level,
  1998. const struct intel_wm_config *config,
  1999. enum intel_ddb_partitioning ddb_partitioning,
  2000. bool is_sprite)
  2001. {
  2002. unsigned int fifo_size = ilk_display_fifo_size(dev);
  2003. unsigned int max;
  2004. /* if sprites aren't enabled, sprites get nothing */
  2005. if (is_sprite && !config->sprites_enabled)
  2006. return 0;
  2007. /* HSW allows LP1+ watermarks even with multiple pipes */
  2008. if (level == 0 || config->num_pipes_active > 1) {
  2009. fifo_size /= INTEL_INFO(dev)->num_pipes;
  2010. /*
  2011. * For some reason the non self refresh
  2012. * FIFO size is only half of the self
  2013. * refresh FIFO size on ILK/SNB.
  2014. */
  2015. if (INTEL_INFO(dev)->gen <= 6)
  2016. fifo_size /= 2;
  2017. }
  2018. if (config->sprites_enabled) {
  2019. /* level 0 is always calculated with 1:1 split */
  2020. if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
  2021. if (is_sprite)
  2022. fifo_size *= 5;
  2023. fifo_size /= 6;
  2024. } else {
  2025. fifo_size /= 2;
  2026. }
  2027. }
  2028. /* clamp to max that the registers can hold */
  2029. if (INTEL_INFO(dev)->gen >= 8)
  2030. max = level == 0 ? 255 : 2047;
  2031. else if (INTEL_INFO(dev)->gen >= 7)
  2032. /* IVB/HSW primary/sprite plane watermarks */
  2033. max = level == 0 ? 127 : 1023;
  2034. else if (!is_sprite)
  2035. /* ILK/SNB primary plane watermarks */
  2036. max = level == 0 ? 127 : 511;
  2037. else
  2038. /* ILK/SNB sprite plane watermarks */
  2039. max = level == 0 ? 63 : 255;
  2040. return min(fifo_size, max);
  2041. }
  2042. /* Calculate the maximum cursor plane watermark */
  2043. static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
  2044. int level,
  2045. const struct intel_wm_config *config)
  2046. {
  2047. /* HSW LP1+ watermarks w/ multiple pipes */
  2048. if (level > 0 && config->num_pipes_active > 1)
  2049. return 64;
  2050. /* otherwise just report max that registers can hold */
  2051. if (INTEL_INFO(dev)->gen >= 7)
  2052. return level == 0 ? 63 : 255;
  2053. else
  2054. return level == 0 ? 31 : 63;
  2055. }
  2056. /* Calculate the maximum FBC watermark */
  2057. static unsigned int ilk_fbc_wm_max(struct drm_device *dev)
  2058. {
  2059. /* max that registers can hold */
  2060. if (INTEL_INFO(dev)->gen >= 8)
  2061. return 31;
  2062. else
  2063. return 15;
  2064. }
  2065. static void ilk_compute_wm_maximums(struct drm_device *dev,
  2066. int level,
  2067. const struct intel_wm_config *config,
  2068. enum intel_ddb_partitioning ddb_partitioning,
  2069. struct hsw_wm_maximums *max)
  2070. {
  2071. max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
  2072. max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
  2073. max->cur = ilk_cursor_wm_max(dev, level, config);
  2074. max->fbc = ilk_fbc_wm_max(dev);
  2075. }
  2076. static bool ilk_validate_wm_level(int level,
  2077. const struct hsw_wm_maximums *max,
  2078. struct intel_wm_level *result)
  2079. {
  2080. bool ret;
  2081. /* already determined to be invalid? */
  2082. if (!result->enable)
  2083. return false;
  2084. result->enable = result->pri_val <= max->pri &&
  2085. result->spr_val <= max->spr &&
  2086. result->cur_val <= max->cur;
  2087. ret = result->enable;
  2088. /*
  2089. * HACK until we can pre-compute everything,
  2090. * and thus fail gracefully if LP0 watermarks
  2091. * are exceeded...
  2092. */
  2093. if (level == 0 && !result->enable) {
  2094. if (result->pri_val > max->pri)
  2095. DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
  2096. level, result->pri_val, max->pri);
  2097. if (result->spr_val > max->spr)
  2098. DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
  2099. level, result->spr_val, max->spr);
  2100. if (result->cur_val > max->cur)
  2101. DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
  2102. level, result->cur_val, max->cur);
  2103. result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
  2104. result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
  2105. result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
  2106. result->enable = true;
  2107. }
  2108. return ret;
  2109. }
  2110. static void ilk_compute_wm_level(struct drm_i915_private *dev_priv,
  2111. int level,
  2112. const struct hsw_pipe_wm_parameters *p,
  2113. struct intel_wm_level *result)
  2114. {
  2115. uint16_t pri_latency = dev_priv->wm.pri_latency[level];
  2116. uint16_t spr_latency = dev_priv->wm.spr_latency[level];
  2117. uint16_t cur_latency = dev_priv->wm.cur_latency[level];
  2118. /* WM1+ latency values stored in 0.5us units */
  2119. if (level > 0) {
  2120. pri_latency *= 5;
  2121. spr_latency *= 5;
  2122. cur_latency *= 5;
  2123. }
  2124. result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
  2125. result->spr_val = ilk_compute_spr_wm(p, spr_latency);
  2126. result->cur_val = ilk_compute_cur_wm(p, cur_latency);
  2127. result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
  2128. result->enable = true;
  2129. }
  2130. static uint32_t
  2131. hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
  2132. {
  2133. struct drm_i915_private *dev_priv = dev->dev_private;
  2134. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2135. struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
  2136. u32 linetime, ips_linetime;
  2137. if (!intel_crtc_active(crtc))
  2138. return 0;
  2139. /* The WM are computed with base on how long it takes to fill a single
  2140. * row at the given clock rate, multiplied by 8.
  2141. * */
  2142. linetime = DIV_ROUND_CLOSEST(mode->htotal * 1000 * 8, mode->clock);
  2143. ips_linetime = DIV_ROUND_CLOSEST(mode->htotal * 1000 * 8,
  2144. intel_ddi_get_cdclk_freq(dev_priv));
  2145. return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
  2146. PIPE_WM_LINETIME_TIME(linetime);
  2147. }
  2148. static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[5])
  2149. {
  2150. struct drm_i915_private *dev_priv = dev->dev_private;
  2151. if (IS_HASWELL(dev)) {
  2152. uint64_t sskpd = I915_READ64(MCH_SSKPD);
  2153. wm[0] = (sskpd >> 56) & 0xFF;
  2154. if (wm[0] == 0)
  2155. wm[0] = sskpd & 0xF;
  2156. wm[1] = (sskpd >> 4) & 0xFF;
  2157. wm[2] = (sskpd >> 12) & 0xFF;
  2158. wm[3] = (sskpd >> 20) & 0x1FF;
  2159. wm[4] = (sskpd >> 32) & 0x1FF;
  2160. } else if (INTEL_INFO(dev)->gen >= 6) {
  2161. uint32_t sskpd = I915_READ(MCH_SSKPD);
  2162. wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
  2163. wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
  2164. wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
  2165. wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
  2166. } else if (INTEL_INFO(dev)->gen >= 5) {
  2167. uint32_t mltr = I915_READ(MLTR_ILK);
  2168. /* ILK primary LP0 latency is 700 ns */
  2169. wm[0] = 7;
  2170. wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
  2171. wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
  2172. }
  2173. }
  2174. static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
  2175. {
  2176. /* ILK sprite LP0 latency is 1300 ns */
  2177. if (INTEL_INFO(dev)->gen == 5)
  2178. wm[0] = 13;
  2179. }
  2180. static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
  2181. {
  2182. /* ILK cursor LP0 latency is 1300 ns */
  2183. if (INTEL_INFO(dev)->gen == 5)
  2184. wm[0] = 13;
  2185. /* WaDoubleCursorLP3Latency:ivb */
  2186. if (IS_IVYBRIDGE(dev))
  2187. wm[3] *= 2;
  2188. }
  2189. static int ilk_wm_max_level(const struct drm_device *dev)
  2190. {
  2191. /* how many WM levels are we expecting */
  2192. if (IS_HASWELL(dev))
  2193. return 4;
  2194. else if (INTEL_INFO(dev)->gen >= 6)
  2195. return 3;
  2196. else
  2197. return 2;
  2198. }
  2199. static void intel_print_wm_latency(struct drm_device *dev,
  2200. const char *name,
  2201. const uint16_t wm[5])
  2202. {
  2203. int level, max_level = ilk_wm_max_level(dev);
  2204. for (level = 0; level <= max_level; level++) {
  2205. unsigned int latency = wm[level];
  2206. if (latency == 0) {
  2207. DRM_ERROR("%s WM%d latency not provided\n",
  2208. name, level);
  2209. continue;
  2210. }
  2211. /* WM1+ latency values in 0.5us units */
  2212. if (level > 0)
  2213. latency *= 5;
  2214. DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
  2215. name, level, wm[level],
  2216. latency / 10, latency % 10);
  2217. }
  2218. }
  2219. static void intel_setup_wm_latency(struct drm_device *dev)
  2220. {
  2221. struct drm_i915_private *dev_priv = dev->dev_private;
  2222. intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
  2223. memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
  2224. sizeof(dev_priv->wm.pri_latency));
  2225. memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
  2226. sizeof(dev_priv->wm.pri_latency));
  2227. intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
  2228. intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
  2229. intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
  2230. intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
  2231. intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
  2232. }
  2233. static void hsw_compute_wm_parameters(struct drm_crtc *crtc,
  2234. struct hsw_pipe_wm_parameters *p,
  2235. struct intel_wm_config *config)
  2236. {
  2237. struct drm_device *dev = crtc->dev;
  2238. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2239. enum pipe pipe = intel_crtc->pipe;
  2240. struct drm_plane *plane;
  2241. p->active = intel_crtc_active(crtc);
  2242. if (p->active) {
  2243. p->pipe_htotal = intel_crtc->config.adjusted_mode.htotal;
  2244. p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
  2245. p->pri.bytes_per_pixel = crtc->fb->bits_per_pixel / 8;
  2246. p->cur.bytes_per_pixel = 4;
  2247. p->pri.horiz_pixels = intel_crtc->config.pipe_src_w;
  2248. p->cur.horiz_pixels = 64;
  2249. /* TODO: for now, assume primary and cursor planes are always enabled. */
  2250. p->pri.enabled = true;
  2251. p->cur.enabled = true;
  2252. }
  2253. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
  2254. config->num_pipes_active += intel_crtc_active(crtc);
  2255. list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
  2256. struct intel_plane *intel_plane = to_intel_plane(plane);
  2257. if (intel_plane->pipe == pipe)
  2258. p->spr = intel_plane->wm;
  2259. config->sprites_enabled |= intel_plane->wm.enabled;
  2260. config->sprites_scaled |= intel_plane->wm.scaled;
  2261. }
  2262. }
  2263. /* Compute new watermarks for the pipe */
  2264. static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
  2265. const struct hsw_pipe_wm_parameters *params,
  2266. struct intel_pipe_wm *pipe_wm)
  2267. {
  2268. struct drm_device *dev = crtc->dev;
  2269. struct drm_i915_private *dev_priv = dev->dev_private;
  2270. int level, max_level = ilk_wm_max_level(dev);
  2271. /* LP0 watermark maximums depend on this pipe alone */
  2272. struct intel_wm_config config = {
  2273. .num_pipes_active = 1,
  2274. .sprites_enabled = params->spr.enabled,
  2275. .sprites_scaled = params->spr.scaled,
  2276. };
  2277. struct hsw_wm_maximums max;
  2278. /* LP0 watermarks always use 1/2 DDB partitioning */
  2279. ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
  2280. for (level = 0; level <= max_level; level++)
  2281. ilk_compute_wm_level(dev_priv, level, params,
  2282. &pipe_wm->wm[level]);
  2283. pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
  2284. /* At least LP0 must be valid */
  2285. return ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]);
  2286. }
  2287. /*
  2288. * Merge the watermarks from all active pipes for a specific level.
  2289. */
  2290. static void ilk_merge_wm_level(struct drm_device *dev,
  2291. int level,
  2292. struct intel_wm_level *ret_wm)
  2293. {
  2294. const struct intel_crtc *intel_crtc;
  2295. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list, base.head) {
  2296. const struct intel_wm_level *wm =
  2297. &intel_crtc->wm.active.wm[level];
  2298. if (!wm->enable)
  2299. return;
  2300. ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
  2301. ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
  2302. ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
  2303. ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
  2304. }
  2305. ret_wm->enable = true;
  2306. }
  2307. /*
  2308. * Merge all low power watermarks for all active pipes.
  2309. */
  2310. static void ilk_wm_merge(struct drm_device *dev,
  2311. const struct hsw_wm_maximums *max,
  2312. struct intel_pipe_wm *merged)
  2313. {
  2314. int level, max_level = ilk_wm_max_level(dev);
  2315. merged->fbc_wm_enabled = true;
  2316. /* merge each WM1+ level */
  2317. for (level = 1; level <= max_level; level++) {
  2318. struct intel_wm_level *wm = &merged->wm[level];
  2319. ilk_merge_wm_level(dev, level, wm);
  2320. if (!ilk_validate_wm_level(level, max, wm))
  2321. break;
  2322. /*
  2323. * The spec says it is preferred to disable
  2324. * FBC WMs instead of disabling a WM level.
  2325. */
  2326. if (wm->fbc_val > max->fbc) {
  2327. merged->fbc_wm_enabled = false;
  2328. wm->fbc_val = 0;
  2329. }
  2330. }
  2331. }
  2332. static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
  2333. {
  2334. /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
  2335. return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
  2336. }
  2337. /* The value we need to program into the WM_LPx latency field */
  2338. static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
  2339. {
  2340. struct drm_i915_private *dev_priv = dev->dev_private;
  2341. if (IS_HASWELL(dev))
  2342. return 2 * level;
  2343. else
  2344. return dev_priv->wm.pri_latency[level];
  2345. }
  2346. static void hsw_compute_wm_results(struct drm_device *dev,
  2347. const struct intel_pipe_wm *merged,
  2348. enum intel_ddb_partitioning partitioning,
  2349. struct hsw_wm_values *results)
  2350. {
  2351. struct intel_crtc *intel_crtc;
  2352. int level, wm_lp;
  2353. results->enable_fbc_wm = merged->fbc_wm_enabled;
  2354. results->partitioning = partitioning;
  2355. /* LP1+ register values */
  2356. for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
  2357. const struct intel_wm_level *r;
  2358. level = ilk_wm_lp_to_level(wm_lp, merged);
  2359. r = &merged->wm[level];
  2360. if (!r->enable)
  2361. break;
  2362. results->wm_lp[wm_lp - 1] = WM3_LP_EN |
  2363. (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
  2364. (r->pri_val << WM1_LP_SR_SHIFT) |
  2365. r->cur_val;
  2366. if (INTEL_INFO(dev)->gen >= 8)
  2367. results->wm_lp[wm_lp - 1] |=
  2368. r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
  2369. else
  2370. results->wm_lp[wm_lp - 1] |=
  2371. r->fbc_val << WM1_LP_FBC_SHIFT;
  2372. results->wm_lp_spr[wm_lp - 1] = r->spr_val;
  2373. }
  2374. /* LP0 register values */
  2375. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list, base.head) {
  2376. enum pipe pipe = intel_crtc->pipe;
  2377. const struct intel_wm_level *r =
  2378. &intel_crtc->wm.active.wm[0];
  2379. if (WARN_ON(!r->enable))
  2380. continue;
  2381. results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
  2382. results->wm_pipe[pipe] =
  2383. (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
  2384. (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
  2385. r->cur_val;
  2386. }
  2387. }
  2388. /* Find the result with the highest level enabled. Check for enable_fbc_wm in
  2389. * case both are at the same level. Prefer r1 in case they're the same. */
  2390. static struct intel_pipe_wm *hsw_find_best_result(struct drm_device *dev,
  2391. struct intel_pipe_wm *r1,
  2392. struct intel_pipe_wm *r2)
  2393. {
  2394. int level, max_level = ilk_wm_max_level(dev);
  2395. int level1 = 0, level2 = 0;
  2396. for (level = 1; level <= max_level; level++) {
  2397. if (r1->wm[level].enable)
  2398. level1 = level;
  2399. if (r2->wm[level].enable)
  2400. level2 = level;
  2401. }
  2402. if (level1 == level2) {
  2403. if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
  2404. return r2;
  2405. else
  2406. return r1;
  2407. } else if (level1 > level2) {
  2408. return r1;
  2409. } else {
  2410. return r2;
  2411. }
  2412. }
  2413. /* dirty bits used to track which watermarks need changes */
  2414. #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
  2415. #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
  2416. #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
  2417. #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
  2418. #define WM_DIRTY_FBC (1 << 24)
  2419. #define WM_DIRTY_DDB (1 << 25)
  2420. static unsigned int ilk_compute_wm_dirty(struct drm_device *dev,
  2421. const struct hsw_wm_values *old,
  2422. const struct hsw_wm_values *new)
  2423. {
  2424. unsigned int dirty = 0;
  2425. enum pipe pipe;
  2426. int wm_lp;
  2427. for_each_pipe(pipe) {
  2428. if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
  2429. dirty |= WM_DIRTY_LINETIME(pipe);
  2430. /* Must disable LP1+ watermarks too */
  2431. dirty |= WM_DIRTY_LP_ALL;
  2432. }
  2433. if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
  2434. dirty |= WM_DIRTY_PIPE(pipe);
  2435. /* Must disable LP1+ watermarks too */
  2436. dirty |= WM_DIRTY_LP_ALL;
  2437. }
  2438. }
  2439. if (old->enable_fbc_wm != new->enable_fbc_wm) {
  2440. dirty |= WM_DIRTY_FBC;
  2441. /* Must disable LP1+ watermarks too */
  2442. dirty |= WM_DIRTY_LP_ALL;
  2443. }
  2444. if (old->partitioning != new->partitioning) {
  2445. dirty |= WM_DIRTY_DDB;
  2446. /* Must disable LP1+ watermarks too */
  2447. dirty |= WM_DIRTY_LP_ALL;
  2448. }
  2449. /* LP1+ watermarks already deemed dirty, no need to continue */
  2450. if (dirty & WM_DIRTY_LP_ALL)
  2451. return dirty;
  2452. /* Find the lowest numbered LP1+ watermark in need of an update... */
  2453. for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
  2454. if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
  2455. old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
  2456. break;
  2457. }
  2458. /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
  2459. for (; wm_lp <= 3; wm_lp++)
  2460. dirty |= WM_DIRTY_LP(wm_lp);
  2461. return dirty;
  2462. }
  2463. /*
  2464. * The spec says we shouldn't write when we don't need, because every write
  2465. * causes WMs to be re-evaluated, expending some power.
  2466. */
  2467. static void hsw_write_wm_values(struct drm_i915_private *dev_priv,
  2468. struct hsw_wm_values *results)
  2469. {
  2470. struct drm_device *dev = dev_priv->dev;
  2471. struct hsw_wm_values *previous = &dev_priv->wm.hw;
  2472. unsigned int dirty;
  2473. uint32_t val;
  2474. dirty = ilk_compute_wm_dirty(dev_priv->dev, previous, results);
  2475. if (!dirty)
  2476. return;
  2477. if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != 0)
  2478. I915_WRITE(WM3_LP_ILK, 0);
  2479. if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != 0)
  2480. I915_WRITE(WM2_LP_ILK, 0);
  2481. if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != 0)
  2482. I915_WRITE(WM1_LP_ILK, 0);
  2483. if (dirty & WM_DIRTY_PIPE(PIPE_A))
  2484. I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
  2485. if (dirty & WM_DIRTY_PIPE(PIPE_B))
  2486. I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
  2487. if (dirty & WM_DIRTY_PIPE(PIPE_C))
  2488. I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
  2489. if (dirty & WM_DIRTY_LINETIME(PIPE_A))
  2490. I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
  2491. if (dirty & WM_DIRTY_LINETIME(PIPE_B))
  2492. I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
  2493. if (dirty & WM_DIRTY_LINETIME(PIPE_C))
  2494. I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
  2495. if (dirty & WM_DIRTY_DDB) {
  2496. if (IS_HASWELL(dev)) {
  2497. val = I915_READ(WM_MISC);
  2498. if (results->partitioning == INTEL_DDB_PART_1_2)
  2499. val &= ~WM_MISC_DATA_PARTITION_5_6;
  2500. else
  2501. val |= WM_MISC_DATA_PARTITION_5_6;
  2502. I915_WRITE(WM_MISC, val);
  2503. } else {
  2504. val = I915_READ(DISP_ARB_CTL2);
  2505. if (results->partitioning == INTEL_DDB_PART_1_2)
  2506. val &= ~DISP_DATA_PARTITION_5_6;
  2507. else
  2508. val |= DISP_DATA_PARTITION_5_6;
  2509. I915_WRITE(DISP_ARB_CTL2, val);
  2510. }
  2511. }
  2512. if (dirty & WM_DIRTY_FBC) {
  2513. val = I915_READ(DISP_ARB_CTL);
  2514. if (results->enable_fbc_wm)
  2515. val &= ~DISP_FBC_WM_DIS;
  2516. else
  2517. val |= DISP_FBC_WM_DIS;
  2518. I915_WRITE(DISP_ARB_CTL, val);
  2519. }
  2520. if (dirty & WM_DIRTY_LP(1) && previous->wm_lp_spr[0] != results->wm_lp_spr[0])
  2521. I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
  2522. if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
  2523. I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
  2524. if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
  2525. I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
  2526. if (dirty & WM_DIRTY_LP(1) && results->wm_lp[0] != 0)
  2527. I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
  2528. if (dirty & WM_DIRTY_LP(2) && results->wm_lp[1] != 0)
  2529. I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
  2530. if (dirty & WM_DIRTY_LP(3) && results->wm_lp[2] != 0)
  2531. I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
  2532. dev_priv->wm.hw = *results;
  2533. }
  2534. static void haswell_update_wm(struct drm_crtc *crtc)
  2535. {
  2536. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2537. struct drm_device *dev = crtc->dev;
  2538. struct drm_i915_private *dev_priv = dev->dev_private;
  2539. struct hsw_wm_maximums max;
  2540. struct hsw_pipe_wm_parameters params = {};
  2541. struct hsw_wm_values results = {};
  2542. enum intel_ddb_partitioning partitioning;
  2543. struct intel_pipe_wm pipe_wm = {};
  2544. struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
  2545. struct intel_wm_config config = {};
  2546. hsw_compute_wm_parameters(crtc, &params, &config);
  2547. intel_compute_pipe_wm(crtc, &params, &pipe_wm);
  2548. if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
  2549. return;
  2550. intel_crtc->wm.active = pipe_wm;
  2551. ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
  2552. ilk_wm_merge(dev, &max, &lp_wm_1_2);
  2553. /* 5/6 split only in single pipe config on IVB+ */
  2554. if (INTEL_INFO(dev)->gen >= 7 &&
  2555. config.num_pipes_active == 1 && config.sprites_enabled) {
  2556. ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
  2557. ilk_wm_merge(dev, &max, &lp_wm_5_6);
  2558. best_lp_wm = hsw_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
  2559. } else {
  2560. best_lp_wm = &lp_wm_1_2;
  2561. }
  2562. partitioning = (best_lp_wm == &lp_wm_1_2) ?
  2563. INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
  2564. hsw_compute_wm_results(dev, best_lp_wm, partitioning, &results);
  2565. hsw_write_wm_values(dev_priv, &results);
  2566. }
  2567. static void haswell_update_sprite_wm(struct drm_plane *plane,
  2568. struct drm_crtc *crtc,
  2569. uint32_t sprite_width, int pixel_size,
  2570. bool enabled, bool scaled)
  2571. {
  2572. struct intel_plane *intel_plane = to_intel_plane(plane);
  2573. intel_plane->wm.enabled = enabled;
  2574. intel_plane->wm.scaled = scaled;
  2575. intel_plane->wm.horiz_pixels = sprite_width;
  2576. intel_plane->wm.bytes_per_pixel = pixel_size;
  2577. haswell_update_wm(crtc);
  2578. }
  2579. static bool
  2580. sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
  2581. uint32_t sprite_width, int pixel_size,
  2582. const struct intel_watermark_params *display,
  2583. int display_latency_ns, int *sprite_wm)
  2584. {
  2585. struct drm_crtc *crtc;
  2586. int clock;
  2587. int entries, tlb_miss;
  2588. crtc = intel_get_crtc_for_plane(dev, plane);
  2589. if (!intel_crtc_active(crtc)) {
  2590. *sprite_wm = display->guard_size;
  2591. return false;
  2592. }
  2593. clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
  2594. /* Use the small buffer method to calculate the sprite watermark */
  2595. entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
  2596. tlb_miss = display->fifo_size*display->cacheline_size -
  2597. sprite_width * 8;
  2598. if (tlb_miss > 0)
  2599. entries += tlb_miss;
  2600. entries = DIV_ROUND_UP(entries, display->cacheline_size);
  2601. *sprite_wm = entries + display->guard_size;
  2602. if (*sprite_wm > (int)display->max_wm)
  2603. *sprite_wm = display->max_wm;
  2604. return true;
  2605. }
  2606. static bool
  2607. sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
  2608. uint32_t sprite_width, int pixel_size,
  2609. const struct intel_watermark_params *display,
  2610. int latency_ns, int *sprite_wm)
  2611. {
  2612. struct drm_crtc *crtc;
  2613. unsigned long line_time_us;
  2614. int clock;
  2615. int line_count, line_size;
  2616. int small, large;
  2617. int entries;
  2618. if (!latency_ns) {
  2619. *sprite_wm = 0;
  2620. return false;
  2621. }
  2622. crtc = intel_get_crtc_for_plane(dev, plane);
  2623. clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
  2624. if (!clock) {
  2625. *sprite_wm = 0;
  2626. return false;
  2627. }
  2628. line_time_us = (sprite_width * 1000) / clock;
  2629. if (!line_time_us) {
  2630. *sprite_wm = 0;
  2631. return false;
  2632. }
  2633. line_count = (latency_ns / line_time_us + 1000) / 1000;
  2634. line_size = sprite_width * pixel_size;
  2635. /* Use the minimum of the small and large buffer method for primary */
  2636. small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
  2637. large = line_count * line_size;
  2638. entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
  2639. *sprite_wm = entries + display->guard_size;
  2640. return *sprite_wm > 0x3ff ? false : true;
  2641. }
  2642. static void sandybridge_update_sprite_wm(struct drm_plane *plane,
  2643. struct drm_crtc *crtc,
  2644. uint32_t sprite_width, int pixel_size,
  2645. bool enabled, bool scaled)
  2646. {
  2647. struct drm_device *dev = plane->dev;
  2648. struct drm_i915_private *dev_priv = dev->dev_private;
  2649. int pipe = to_intel_plane(plane)->pipe;
  2650. int latency = dev_priv->wm.spr_latency[0] * 100; /* In unit 0.1us */
  2651. u32 val;
  2652. int sprite_wm, reg;
  2653. int ret;
  2654. if (!enabled)
  2655. return;
  2656. switch (pipe) {
  2657. case 0:
  2658. reg = WM0_PIPEA_ILK;
  2659. break;
  2660. case 1:
  2661. reg = WM0_PIPEB_ILK;
  2662. break;
  2663. case 2:
  2664. reg = WM0_PIPEC_IVB;
  2665. break;
  2666. default:
  2667. return; /* bad pipe */
  2668. }
  2669. ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
  2670. &sandybridge_display_wm_info,
  2671. latency, &sprite_wm);
  2672. if (!ret) {
  2673. DRM_DEBUG_KMS("failed to compute sprite wm for pipe %c\n",
  2674. pipe_name(pipe));
  2675. return;
  2676. }
  2677. val = I915_READ(reg);
  2678. val &= ~WM0_PIPE_SPRITE_MASK;
  2679. I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
  2680. DRM_DEBUG_KMS("sprite watermarks For pipe %c - %d\n", pipe_name(pipe), sprite_wm);
  2681. ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
  2682. pixel_size,
  2683. &sandybridge_display_srwm_info,
  2684. dev_priv->wm.spr_latency[1] * 500,
  2685. &sprite_wm);
  2686. if (!ret) {
  2687. DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %c\n",
  2688. pipe_name(pipe));
  2689. return;
  2690. }
  2691. I915_WRITE(WM1S_LP_ILK, sprite_wm);
  2692. /* Only IVB has two more LP watermarks for sprite */
  2693. if (!IS_IVYBRIDGE(dev))
  2694. return;
  2695. ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
  2696. pixel_size,
  2697. &sandybridge_display_srwm_info,
  2698. dev_priv->wm.spr_latency[2] * 500,
  2699. &sprite_wm);
  2700. if (!ret) {
  2701. DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %c\n",
  2702. pipe_name(pipe));
  2703. return;
  2704. }
  2705. I915_WRITE(WM2S_LP_IVB, sprite_wm);
  2706. ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
  2707. pixel_size,
  2708. &sandybridge_display_srwm_info,
  2709. dev_priv->wm.spr_latency[3] * 500,
  2710. &sprite_wm);
  2711. if (!ret) {
  2712. DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %c\n",
  2713. pipe_name(pipe));
  2714. return;
  2715. }
  2716. I915_WRITE(WM3S_LP_IVB, sprite_wm);
  2717. }
  2718. static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
  2719. {
  2720. struct drm_device *dev = crtc->dev;
  2721. struct drm_i915_private *dev_priv = dev->dev_private;
  2722. struct hsw_wm_values *hw = &dev_priv->wm.hw;
  2723. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2724. struct intel_pipe_wm *active = &intel_crtc->wm.active;
  2725. enum pipe pipe = intel_crtc->pipe;
  2726. static const unsigned int wm0_pipe_reg[] = {
  2727. [PIPE_A] = WM0_PIPEA_ILK,
  2728. [PIPE_B] = WM0_PIPEB_ILK,
  2729. [PIPE_C] = WM0_PIPEC_IVB,
  2730. };
  2731. hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
  2732. hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
  2733. if (intel_crtc_active(crtc)) {
  2734. u32 tmp = hw->wm_pipe[pipe];
  2735. /*
  2736. * For active pipes LP0 watermark is marked as
  2737. * enabled, and LP1+ watermaks as disabled since
  2738. * we can't really reverse compute them in case
  2739. * multiple pipes are active.
  2740. */
  2741. active->wm[0].enable = true;
  2742. active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
  2743. active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
  2744. active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
  2745. active->linetime = hw->wm_linetime[pipe];
  2746. } else {
  2747. int level, max_level = ilk_wm_max_level(dev);
  2748. /*
  2749. * For inactive pipes, all watermark levels
  2750. * should be marked as enabled but zeroed,
  2751. * which is what we'd compute them to.
  2752. */
  2753. for (level = 0; level <= max_level; level++)
  2754. active->wm[level].enable = true;
  2755. }
  2756. }
  2757. void ilk_wm_get_hw_state(struct drm_device *dev)
  2758. {
  2759. struct drm_i915_private *dev_priv = dev->dev_private;
  2760. struct hsw_wm_values *hw = &dev_priv->wm.hw;
  2761. struct drm_crtc *crtc;
  2762. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
  2763. ilk_pipe_wm_get_hw_state(crtc);
  2764. hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
  2765. hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
  2766. hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
  2767. hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
  2768. hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
  2769. hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
  2770. if (IS_HASWELL(dev))
  2771. hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
  2772. INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
  2773. else if (IS_IVYBRIDGE(dev))
  2774. hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
  2775. INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
  2776. hw->enable_fbc_wm =
  2777. !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
  2778. }
  2779. /**
  2780. * intel_update_watermarks - update FIFO watermark values based on current modes
  2781. *
  2782. * Calculate watermark values for the various WM regs based on current mode
  2783. * and plane configuration.
  2784. *
  2785. * There are several cases to deal with here:
  2786. * - normal (i.e. non-self-refresh)
  2787. * - self-refresh (SR) mode
  2788. * - lines are large relative to FIFO size (buffer can hold up to 2)
  2789. * - lines are small relative to FIFO size (buffer can hold more than 2
  2790. * lines), so need to account for TLB latency
  2791. *
  2792. * The normal calculation is:
  2793. * watermark = dotclock * bytes per pixel * latency
  2794. * where latency is platform & configuration dependent (we assume pessimal
  2795. * values here).
  2796. *
  2797. * The SR calculation is:
  2798. * watermark = (trunc(latency/line time)+1) * surface width *
  2799. * bytes per pixel
  2800. * where
  2801. * line time = htotal / dotclock
  2802. * surface width = hdisplay for normal plane and 64 for cursor
  2803. * and latency is assumed to be high, as above.
  2804. *
  2805. * The final value programmed to the register should always be rounded up,
  2806. * and include an extra 2 entries to account for clock crossings.
  2807. *
  2808. * We don't use the sprite, so we can ignore that. And on Crestline we have
  2809. * to set the non-SR watermarks to 8.
  2810. */
  2811. void intel_update_watermarks(struct drm_crtc *crtc)
  2812. {
  2813. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  2814. if (dev_priv->display.update_wm)
  2815. dev_priv->display.update_wm(crtc);
  2816. }
  2817. void intel_update_sprite_watermarks(struct drm_plane *plane,
  2818. struct drm_crtc *crtc,
  2819. uint32_t sprite_width, int pixel_size,
  2820. bool enabled, bool scaled)
  2821. {
  2822. struct drm_i915_private *dev_priv = plane->dev->dev_private;
  2823. if (dev_priv->display.update_sprite_wm)
  2824. dev_priv->display.update_sprite_wm(plane, crtc, sprite_width,
  2825. pixel_size, enabled, scaled);
  2826. }
  2827. static struct drm_i915_gem_object *
  2828. intel_alloc_context_page(struct drm_device *dev)
  2829. {
  2830. struct drm_i915_gem_object *ctx;
  2831. int ret;
  2832. WARN_ON(!mutex_is_locked(&dev->struct_mutex));
  2833. ctx = i915_gem_alloc_object(dev, 4096);
  2834. if (!ctx) {
  2835. DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
  2836. return NULL;
  2837. }
  2838. ret = i915_gem_obj_ggtt_pin(ctx, 4096, true, false);
  2839. if (ret) {
  2840. DRM_ERROR("failed to pin power context: %d\n", ret);
  2841. goto err_unref;
  2842. }
  2843. ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
  2844. if (ret) {
  2845. DRM_ERROR("failed to set-domain on power context: %d\n", ret);
  2846. goto err_unpin;
  2847. }
  2848. return ctx;
  2849. err_unpin:
  2850. i915_gem_object_unpin(ctx);
  2851. err_unref:
  2852. drm_gem_object_unreference(&ctx->base);
  2853. return NULL;
  2854. }
  2855. /**
  2856. * Lock protecting IPS related data structures
  2857. */
  2858. DEFINE_SPINLOCK(mchdev_lock);
  2859. /* Global for IPS driver to get at the current i915 device. Protected by
  2860. * mchdev_lock. */
  2861. static struct drm_i915_private *i915_mch_dev;
  2862. bool ironlake_set_drps(struct drm_device *dev, u8 val)
  2863. {
  2864. struct drm_i915_private *dev_priv = dev->dev_private;
  2865. u16 rgvswctl;
  2866. assert_spin_locked(&mchdev_lock);
  2867. rgvswctl = I915_READ16(MEMSWCTL);
  2868. if (rgvswctl & MEMCTL_CMD_STS) {
  2869. DRM_DEBUG("gpu busy, RCS change rejected\n");
  2870. return false; /* still busy with another command */
  2871. }
  2872. rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
  2873. (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
  2874. I915_WRITE16(MEMSWCTL, rgvswctl);
  2875. POSTING_READ16(MEMSWCTL);
  2876. rgvswctl |= MEMCTL_CMD_STS;
  2877. I915_WRITE16(MEMSWCTL, rgvswctl);
  2878. return true;
  2879. }
  2880. static void ironlake_enable_drps(struct drm_device *dev)
  2881. {
  2882. struct drm_i915_private *dev_priv = dev->dev_private;
  2883. u32 rgvmodectl = I915_READ(MEMMODECTL);
  2884. u8 fmax, fmin, fstart, vstart;
  2885. spin_lock_irq(&mchdev_lock);
  2886. /* Enable temp reporting */
  2887. I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
  2888. I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
  2889. /* 100ms RC evaluation intervals */
  2890. I915_WRITE(RCUPEI, 100000);
  2891. I915_WRITE(RCDNEI, 100000);
  2892. /* Set max/min thresholds to 90ms and 80ms respectively */
  2893. I915_WRITE(RCBMAXAVG, 90000);
  2894. I915_WRITE(RCBMINAVG, 80000);
  2895. I915_WRITE(MEMIHYST, 1);
  2896. /* Set up min, max, and cur for interrupt handling */
  2897. fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
  2898. fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
  2899. fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
  2900. MEMMODE_FSTART_SHIFT;
  2901. vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
  2902. PXVFREQ_PX_SHIFT;
  2903. dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
  2904. dev_priv->ips.fstart = fstart;
  2905. dev_priv->ips.max_delay = fstart;
  2906. dev_priv->ips.min_delay = fmin;
  2907. dev_priv->ips.cur_delay = fstart;
  2908. DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
  2909. fmax, fmin, fstart);
  2910. I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
  2911. /*
  2912. * Interrupts will be enabled in ironlake_irq_postinstall
  2913. */
  2914. I915_WRITE(VIDSTART, vstart);
  2915. POSTING_READ(VIDSTART);
  2916. rgvmodectl |= MEMMODE_SWMODE_EN;
  2917. I915_WRITE(MEMMODECTL, rgvmodectl);
  2918. if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
  2919. DRM_ERROR("stuck trying to change perf mode\n");
  2920. mdelay(1);
  2921. ironlake_set_drps(dev, fstart);
  2922. dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
  2923. I915_READ(0x112e0);
  2924. dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
  2925. dev_priv->ips.last_count2 = I915_READ(0x112f4);
  2926. getrawmonotonic(&dev_priv->ips.last_time2);
  2927. spin_unlock_irq(&mchdev_lock);
  2928. }
  2929. static void ironlake_disable_drps(struct drm_device *dev)
  2930. {
  2931. struct drm_i915_private *dev_priv = dev->dev_private;
  2932. u16 rgvswctl;
  2933. spin_lock_irq(&mchdev_lock);
  2934. rgvswctl = I915_READ16(MEMSWCTL);
  2935. /* Ack interrupts, disable EFC interrupt */
  2936. I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
  2937. I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
  2938. I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
  2939. I915_WRITE(DEIIR, DE_PCU_EVENT);
  2940. I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
  2941. /* Go back to the starting frequency */
  2942. ironlake_set_drps(dev, dev_priv->ips.fstart);
  2943. mdelay(1);
  2944. rgvswctl |= MEMCTL_CMD_STS;
  2945. I915_WRITE(MEMSWCTL, rgvswctl);
  2946. mdelay(1);
  2947. spin_unlock_irq(&mchdev_lock);
  2948. }
  2949. /* There's a funny hw issue where the hw returns all 0 when reading from
  2950. * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
  2951. * ourselves, instead of doing a rmw cycle (which might result in us clearing
  2952. * all limits and the gpu stuck at whatever frequency it is at atm).
  2953. */
  2954. static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 val)
  2955. {
  2956. u32 limits;
  2957. /* Only set the down limit when we've reached the lowest level to avoid
  2958. * getting more interrupts, otherwise leave this clear. This prevents a
  2959. * race in the hw when coming out of rc6: There's a tiny window where
  2960. * the hw runs at the minimal clock before selecting the desired
  2961. * frequency, if the down threshold expires in that window we will not
  2962. * receive a down interrupt. */
  2963. limits = dev_priv->rps.max_delay << 24;
  2964. if (val <= dev_priv->rps.min_delay)
  2965. limits |= dev_priv->rps.min_delay << 16;
  2966. return limits;
  2967. }
  2968. static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
  2969. {
  2970. int new_power;
  2971. new_power = dev_priv->rps.power;
  2972. switch (dev_priv->rps.power) {
  2973. case LOW_POWER:
  2974. if (val > dev_priv->rps.rpe_delay + 1 && val > dev_priv->rps.cur_delay)
  2975. new_power = BETWEEN;
  2976. break;
  2977. case BETWEEN:
  2978. if (val <= dev_priv->rps.rpe_delay && val < dev_priv->rps.cur_delay)
  2979. new_power = LOW_POWER;
  2980. else if (val >= dev_priv->rps.rp0_delay && val > dev_priv->rps.cur_delay)
  2981. new_power = HIGH_POWER;
  2982. break;
  2983. case HIGH_POWER:
  2984. if (val < (dev_priv->rps.rp1_delay + dev_priv->rps.rp0_delay) >> 1 && val < dev_priv->rps.cur_delay)
  2985. new_power = BETWEEN;
  2986. break;
  2987. }
  2988. /* Max/min bins are special */
  2989. if (val == dev_priv->rps.min_delay)
  2990. new_power = LOW_POWER;
  2991. if (val == dev_priv->rps.max_delay)
  2992. new_power = HIGH_POWER;
  2993. if (new_power == dev_priv->rps.power)
  2994. return;
  2995. /* Note the units here are not exactly 1us, but 1280ns. */
  2996. switch (new_power) {
  2997. case LOW_POWER:
  2998. /* Upclock if more than 95% busy over 16ms */
  2999. I915_WRITE(GEN6_RP_UP_EI, 12500);
  3000. I915_WRITE(GEN6_RP_UP_THRESHOLD, 11800);
  3001. /* Downclock if less than 85% busy over 32ms */
  3002. I915_WRITE(GEN6_RP_DOWN_EI, 25000);
  3003. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 21250);
  3004. I915_WRITE(GEN6_RP_CONTROL,
  3005. GEN6_RP_MEDIA_TURBO |
  3006. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  3007. GEN6_RP_MEDIA_IS_GFX |
  3008. GEN6_RP_ENABLE |
  3009. GEN6_RP_UP_BUSY_AVG |
  3010. GEN6_RP_DOWN_IDLE_AVG);
  3011. break;
  3012. case BETWEEN:
  3013. /* Upclock if more than 90% busy over 13ms */
  3014. I915_WRITE(GEN6_RP_UP_EI, 10250);
  3015. I915_WRITE(GEN6_RP_UP_THRESHOLD, 9225);
  3016. /* Downclock if less than 75% busy over 32ms */
  3017. I915_WRITE(GEN6_RP_DOWN_EI, 25000);
  3018. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 18750);
  3019. I915_WRITE(GEN6_RP_CONTROL,
  3020. GEN6_RP_MEDIA_TURBO |
  3021. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  3022. GEN6_RP_MEDIA_IS_GFX |
  3023. GEN6_RP_ENABLE |
  3024. GEN6_RP_UP_BUSY_AVG |
  3025. GEN6_RP_DOWN_IDLE_AVG);
  3026. break;
  3027. case HIGH_POWER:
  3028. /* Upclock if more than 85% busy over 10ms */
  3029. I915_WRITE(GEN6_RP_UP_EI, 8000);
  3030. I915_WRITE(GEN6_RP_UP_THRESHOLD, 6800);
  3031. /* Downclock if less than 60% busy over 32ms */
  3032. I915_WRITE(GEN6_RP_DOWN_EI, 25000);
  3033. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 15000);
  3034. I915_WRITE(GEN6_RP_CONTROL,
  3035. GEN6_RP_MEDIA_TURBO |
  3036. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  3037. GEN6_RP_MEDIA_IS_GFX |
  3038. GEN6_RP_ENABLE |
  3039. GEN6_RP_UP_BUSY_AVG |
  3040. GEN6_RP_DOWN_IDLE_AVG);
  3041. break;
  3042. }
  3043. dev_priv->rps.power = new_power;
  3044. dev_priv->rps.last_adj = 0;
  3045. }
  3046. void gen6_set_rps(struct drm_device *dev, u8 val)
  3047. {
  3048. struct drm_i915_private *dev_priv = dev->dev_private;
  3049. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  3050. WARN_ON(val > dev_priv->rps.max_delay);
  3051. WARN_ON(val < dev_priv->rps.min_delay);
  3052. if (val == dev_priv->rps.cur_delay)
  3053. return;
  3054. gen6_set_rps_thresholds(dev_priv, val);
  3055. if (IS_HASWELL(dev))
  3056. I915_WRITE(GEN6_RPNSWREQ,
  3057. HSW_FREQUENCY(val));
  3058. else
  3059. I915_WRITE(GEN6_RPNSWREQ,
  3060. GEN6_FREQUENCY(val) |
  3061. GEN6_OFFSET(0) |
  3062. GEN6_AGGRESSIVE_TURBO);
  3063. /* Make sure we continue to get interrupts
  3064. * until we hit the minimum or maximum frequencies.
  3065. */
  3066. I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
  3067. gen6_rps_limits(dev_priv, val));
  3068. POSTING_READ(GEN6_RPNSWREQ);
  3069. dev_priv->rps.cur_delay = val;
  3070. trace_intel_gpu_freq_change(val * 50);
  3071. }
  3072. void gen6_rps_idle(struct drm_i915_private *dev_priv)
  3073. {
  3074. struct drm_device *dev = dev_priv->dev;
  3075. mutex_lock(&dev_priv->rps.hw_lock);
  3076. if (dev_priv->rps.enabled) {
  3077. if (IS_VALLEYVIEW(dev))
  3078. valleyview_set_rps(dev_priv->dev, dev_priv->rps.min_delay);
  3079. else
  3080. gen6_set_rps(dev_priv->dev, dev_priv->rps.min_delay);
  3081. dev_priv->rps.last_adj = 0;
  3082. }
  3083. mutex_unlock(&dev_priv->rps.hw_lock);
  3084. }
  3085. void gen6_rps_boost(struct drm_i915_private *dev_priv)
  3086. {
  3087. struct drm_device *dev = dev_priv->dev;
  3088. mutex_lock(&dev_priv->rps.hw_lock);
  3089. if (dev_priv->rps.enabled) {
  3090. if (IS_VALLEYVIEW(dev))
  3091. valleyview_set_rps(dev_priv->dev, dev_priv->rps.max_delay);
  3092. else
  3093. gen6_set_rps(dev_priv->dev, dev_priv->rps.max_delay);
  3094. dev_priv->rps.last_adj = 0;
  3095. }
  3096. mutex_unlock(&dev_priv->rps.hw_lock);
  3097. }
  3098. void valleyview_set_rps(struct drm_device *dev, u8 val)
  3099. {
  3100. struct drm_i915_private *dev_priv = dev->dev_private;
  3101. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  3102. WARN_ON(val > dev_priv->rps.max_delay);
  3103. WARN_ON(val < dev_priv->rps.min_delay);
  3104. DRM_DEBUG_DRIVER("GPU freq request from %d MHz (%u) to %d MHz (%u)\n",
  3105. vlv_gpu_freq(dev_priv, dev_priv->rps.cur_delay),
  3106. dev_priv->rps.cur_delay,
  3107. vlv_gpu_freq(dev_priv, val), val);
  3108. if (val == dev_priv->rps.cur_delay)
  3109. return;
  3110. vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
  3111. dev_priv->rps.cur_delay = val;
  3112. trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv, val));
  3113. }
  3114. static void gen6_disable_rps_interrupts(struct drm_device *dev)
  3115. {
  3116. struct drm_i915_private *dev_priv = dev->dev_private;
  3117. I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
  3118. I915_WRITE(GEN6_PMIER, I915_READ(GEN6_PMIER) & ~GEN6_PM_RPS_EVENTS);
  3119. /* Complete PM interrupt masking here doesn't race with the rps work
  3120. * item again unmasking PM interrupts because that is using a different
  3121. * register (PMIMR) to mask PM interrupts. The only risk is in leaving
  3122. * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
  3123. spin_lock_irq(&dev_priv->irq_lock);
  3124. dev_priv->rps.pm_iir = 0;
  3125. spin_unlock_irq(&dev_priv->irq_lock);
  3126. I915_WRITE(GEN6_PMIIR, GEN6_PM_RPS_EVENTS);
  3127. }
  3128. static void gen6_disable_rps(struct drm_device *dev)
  3129. {
  3130. struct drm_i915_private *dev_priv = dev->dev_private;
  3131. I915_WRITE(GEN6_RC_CONTROL, 0);
  3132. I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
  3133. gen6_disable_rps_interrupts(dev);
  3134. }
  3135. static void valleyview_disable_rps(struct drm_device *dev)
  3136. {
  3137. struct drm_i915_private *dev_priv = dev->dev_private;
  3138. I915_WRITE(GEN6_RC_CONTROL, 0);
  3139. gen6_disable_rps_interrupts(dev);
  3140. if (dev_priv->vlv_pctx) {
  3141. drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
  3142. dev_priv->vlv_pctx = NULL;
  3143. }
  3144. }
  3145. static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
  3146. {
  3147. if (IS_GEN6(dev))
  3148. DRM_DEBUG_DRIVER("Sandybridge: deep RC6 disabled\n");
  3149. if (IS_HASWELL(dev))
  3150. DRM_DEBUG_DRIVER("Haswell: only RC6 available\n");
  3151. DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
  3152. (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
  3153. (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
  3154. (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
  3155. }
  3156. int intel_enable_rc6(const struct drm_device *dev)
  3157. {
  3158. /* No RC6 before Ironlake */
  3159. if (INTEL_INFO(dev)->gen < 5)
  3160. return 0;
  3161. /* Respect the kernel parameter if it is set */
  3162. if (i915_enable_rc6 >= 0)
  3163. return i915_enable_rc6;
  3164. /* Disable RC6 on Ironlake */
  3165. if (INTEL_INFO(dev)->gen == 5)
  3166. return 0;
  3167. if (IS_HASWELL(dev))
  3168. return INTEL_RC6_ENABLE;
  3169. /* snb/ivb have more than one rc6 state. */
  3170. if (INTEL_INFO(dev)->gen == 6)
  3171. return INTEL_RC6_ENABLE;
  3172. return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
  3173. }
  3174. static void gen6_enable_rps_interrupts(struct drm_device *dev)
  3175. {
  3176. struct drm_i915_private *dev_priv = dev->dev_private;
  3177. u32 enabled_intrs;
  3178. spin_lock_irq(&dev_priv->irq_lock);
  3179. WARN_ON(dev_priv->rps.pm_iir);
  3180. snb_enable_pm_irq(dev_priv, GEN6_PM_RPS_EVENTS);
  3181. I915_WRITE(GEN6_PMIIR, GEN6_PM_RPS_EVENTS);
  3182. spin_unlock_irq(&dev_priv->irq_lock);
  3183. /* only unmask PM interrupts we need. Mask all others. */
  3184. enabled_intrs = GEN6_PM_RPS_EVENTS;
  3185. /* IVB and SNB hard hangs on looping batchbuffer
  3186. * if GEN6_PM_UP_EI_EXPIRED is masked.
  3187. */
  3188. if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
  3189. enabled_intrs |= GEN6_PM_RP_UP_EI_EXPIRED;
  3190. I915_WRITE(GEN6_PMINTRMSK, ~enabled_intrs);
  3191. }
  3192. static void gen8_enable_rps(struct drm_device *dev)
  3193. {
  3194. struct drm_i915_private *dev_priv = dev->dev_private;
  3195. struct intel_ring_buffer *ring;
  3196. uint32_t rc6_mask = 0, rp_state_cap;
  3197. int unused;
  3198. /* 1a: Software RC state - RC0 */
  3199. I915_WRITE(GEN6_RC_STATE, 0);
  3200. /* 1c & 1d: Get forcewake during program sequence. Although the driver
  3201. * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
  3202. gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
  3203. /* 2a: Disable RC states. */
  3204. I915_WRITE(GEN6_RC_CONTROL, 0);
  3205. rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  3206. /* 2b: Program RC6 thresholds.*/
  3207. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
  3208. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
  3209. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
  3210. for_each_ring(ring, dev_priv, unused)
  3211. I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
  3212. I915_WRITE(GEN6_RC_SLEEP, 0);
  3213. I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
  3214. /* 3: Enable RC6 */
  3215. if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
  3216. rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
  3217. DRM_INFO("RC6 %s\n", (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off");
  3218. I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
  3219. GEN6_RC_CTL_EI_MODE(1) |
  3220. rc6_mask);
  3221. /* 4 Program defaults and thresholds for RPS*/
  3222. I915_WRITE(GEN6_RPNSWREQ, HSW_FREQUENCY(10)); /* Request 500 MHz */
  3223. I915_WRITE(GEN6_RC_VIDEO_FREQ, HSW_FREQUENCY(12)); /* Request 600 MHz */
  3224. /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
  3225. I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
  3226. /* Docs recommend 900MHz, and 300 MHz respectively */
  3227. I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
  3228. dev_priv->rps.max_delay << 24 |
  3229. dev_priv->rps.min_delay << 16);
  3230. I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
  3231. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
  3232. I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
  3233. I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
  3234. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  3235. /* 5: Enable RPS */
  3236. I915_WRITE(GEN6_RP_CONTROL,
  3237. GEN6_RP_MEDIA_TURBO |
  3238. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  3239. GEN6_RP_MEDIA_IS_GFX |
  3240. GEN6_RP_ENABLE |
  3241. GEN6_RP_UP_BUSY_AVG |
  3242. GEN6_RP_DOWN_IDLE_AVG);
  3243. /* 6: Ring frequency + overclocking (our driver does this later */
  3244. gen6_set_rps(dev, (I915_READ(GEN6_GT_PERF_STATUS) & 0xff00) >> 8);
  3245. gen6_enable_rps_interrupts(dev);
  3246. gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
  3247. }
  3248. static void gen6_enable_rps(struct drm_device *dev)
  3249. {
  3250. struct drm_i915_private *dev_priv = dev->dev_private;
  3251. struct intel_ring_buffer *ring;
  3252. u32 rp_state_cap;
  3253. u32 gt_perf_status;
  3254. u32 rc6vids, pcu_mbox, rc6_mask = 0;
  3255. u32 gtfifodbg;
  3256. int rc6_mode;
  3257. int i, ret;
  3258. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  3259. /* Here begins a magic sequence of register writes to enable
  3260. * auto-downclocking.
  3261. *
  3262. * Perhaps there might be some value in exposing these to
  3263. * userspace...
  3264. */
  3265. I915_WRITE(GEN6_RC_STATE, 0);
  3266. /* Clear the DBG now so we don't confuse earlier errors */
  3267. if ((gtfifodbg = I915_READ(GTFIFODBG))) {
  3268. DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
  3269. I915_WRITE(GTFIFODBG, gtfifodbg);
  3270. }
  3271. gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
  3272. rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  3273. gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
  3274. /* In units of 50MHz */
  3275. dev_priv->rps.hw_max = dev_priv->rps.max_delay = rp_state_cap & 0xff;
  3276. dev_priv->rps.min_delay = (rp_state_cap >> 16) & 0xff;
  3277. dev_priv->rps.rp1_delay = (rp_state_cap >> 8) & 0xff;
  3278. dev_priv->rps.rp0_delay = (rp_state_cap >> 0) & 0xff;
  3279. dev_priv->rps.rpe_delay = dev_priv->rps.rp1_delay;
  3280. dev_priv->rps.cur_delay = 0;
  3281. /* disable the counters and set deterministic thresholds */
  3282. I915_WRITE(GEN6_RC_CONTROL, 0);
  3283. I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
  3284. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
  3285. I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
  3286. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
  3287. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
  3288. for_each_ring(ring, dev_priv, i)
  3289. I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
  3290. I915_WRITE(GEN6_RC_SLEEP, 0);
  3291. I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
  3292. if (IS_IVYBRIDGE(dev))
  3293. I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
  3294. else
  3295. I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
  3296. I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
  3297. I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
  3298. /* Check if we are enabling RC6 */
  3299. rc6_mode = intel_enable_rc6(dev_priv->dev);
  3300. if (rc6_mode & INTEL_RC6_ENABLE)
  3301. rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
  3302. /* We don't use those on Haswell */
  3303. if (!IS_HASWELL(dev)) {
  3304. if (rc6_mode & INTEL_RC6p_ENABLE)
  3305. rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
  3306. if (rc6_mode & INTEL_RC6pp_ENABLE)
  3307. rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
  3308. }
  3309. intel_print_rc6_info(dev, rc6_mask);
  3310. I915_WRITE(GEN6_RC_CONTROL,
  3311. rc6_mask |
  3312. GEN6_RC_CTL_EI_MODE(1) |
  3313. GEN6_RC_CTL_HW_ENABLE);
  3314. /* Power down if completely idle for over 50ms */
  3315. I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
  3316. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  3317. ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
  3318. if (!ret) {
  3319. pcu_mbox = 0;
  3320. ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
  3321. if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
  3322. DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
  3323. (dev_priv->rps.max_delay & 0xff) * 50,
  3324. (pcu_mbox & 0xff) * 50);
  3325. dev_priv->rps.hw_max = pcu_mbox & 0xff;
  3326. }
  3327. } else {
  3328. DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
  3329. }
  3330. dev_priv->rps.power = HIGH_POWER; /* force a reset */
  3331. gen6_set_rps(dev_priv->dev, dev_priv->rps.min_delay);
  3332. gen6_enable_rps_interrupts(dev);
  3333. rc6vids = 0;
  3334. ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
  3335. if (IS_GEN6(dev) && ret) {
  3336. DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
  3337. } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
  3338. DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
  3339. GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
  3340. rc6vids &= 0xffff00;
  3341. rc6vids |= GEN6_ENCODE_RC6_VID(450);
  3342. ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
  3343. if (ret)
  3344. DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
  3345. }
  3346. gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
  3347. }
  3348. void gen6_update_ring_freq(struct drm_device *dev)
  3349. {
  3350. struct drm_i915_private *dev_priv = dev->dev_private;
  3351. int min_freq = 15;
  3352. unsigned int gpu_freq;
  3353. unsigned int max_ia_freq, min_ring_freq;
  3354. int scaling_factor = 180;
  3355. struct cpufreq_policy *policy;
  3356. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  3357. policy = cpufreq_cpu_get(0);
  3358. if (policy) {
  3359. max_ia_freq = policy->cpuinfo.max_freq;
  3360. cpufreq_cpu_put(policy);
  3361. } else {
  3362. /*
  3363. * Default to measured freq if none found, PCU will ensure we
  3364. * don't go over
  3365. */
  3366. max_ia_freq = tsc_khz;
  3367. }
  3368. /* Convert from kHz to MHz */
  3369. max_ia_freq /= 1000;
  3370. min_ring_freq = I915_READ(DCLK) & 0xf;
  3371. /* convert DDR frequency from units of 266.6MHz to bandwidth */
  3372. min_ring_freq = mult_frac(min_ring_freq, 8, 3);
  3373. /*
  3374. * For each potential GPU frequency, load a ring frequency we'd like
  3375. * to use for memory access. We do this by specifying the IA frequency
  3376. * the PCU should use as a reference to determine the ring frequency.
  3377. */
  3378. for (gpu_freq = dev_priv->rps.max_delay; gpu_freq >= dev_priv->rps.min_delay;
  3379. gpu_freq--) {
  3380. int diff = dev_priv->rps.max_delay - gpu_freq;
  3381. unsigned int ia_freq = 0, ring_freq = 0;
  3382. if (INTEL_INFO(dev)->gen >= 8) {
  3383. /* max(2 * GT, DDR). NB: GT is 50MHz units */
  3384. ring_freq = max(min_ring_freq, gpu_freq);
  3385. } else if (IS_HASWELL(dev)) {
  3386. ring_freq = mult_frac(gpu_freq, 5, 4);
  3387. ring_freq = max(min_ring_freq, ring_freq);
  3388. /* leave ia_freq as the default, chosen by cpufreq */
  3389. } else {
  3390. /* On older processors, there is no separate ring
  3391. * clock domain, so in order to boost the bandwidth
  3392. * of the ring, we need to upclock the CPU (ia_freq).
  3393. *
  3394. * For GPU frequencies less than 750MHz,
  3395. * just use the lowest ring freq.
  3396. */
  3397. if (gpu_freq < min_freq)
  3398. ia_freq = 800;
  3399. else
  3400. ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
  3401. ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
  3402. }
  3403. sandybridge_pcode_write(dev_priv,
  3404. GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
  3405. ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
  3406. ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
  3407. gpu_freq);
  3408. }
  3409. }
  3410. int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
  3411. {
  3412. u32 val, rp0;
  3413. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
  3414. rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
  3415. /* Clamp to max */
  3416. rp0 = min_t(u32, rp0, 0xea);
  3417. return rp0;
  3418. }
  3419. static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
  3420. {
  3421. u32 val, rpe;
  3422. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
  3423. rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
  3424. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
  3425. rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
  3426. return rpe;
  3427. }
  3428. int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
  3429. {
  3430. return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
  3431. }
  3432. static void valleyview_setup_pctx(struct drm_device *dev)
  3433. {
  3434. struct drm_i915_private *dev_priv = dev->dev_private;
  3435. struct drm_i915_gem_object *pctx;
  3436. unsigned long pctx_paddr;
  3437. u32 pcbr;
  3438. int pctx_size = 24*1024;
  3439. pcbr = I915_READ(VLV_PCBR);
  3440. if (pcbr) {
  3441. /* BIOS set it up already, grab the pre-alloc'd space */
  3442. int pcbr_offset;
  3443. pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
  3444. pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
  3445. pcbr_offset,
  3446. I915_GTT_OFFSET_NONE,
  3447. pctx_size);
  3448. goto out;
  3449. }
  3450. /*
  3451. * From the Gunit register HAS:
  3452. * The Gfx driver is expected to program this register and ensure
  3453. * proper allocation within Gfx stolen memory. For example, this
  3454. * register should be programmed such than the PCBR range does not
  3455. * overlap with other ranges, such as the frame buffer, protected
  3456. * memory, or any other relevant ranges.
  3457. */
  3458. pctx = i915_gem_object_create_stolen(dev, pctx_size);
  3459. if (!pctx) {
  3460. DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
  3461. return;
  3462. }
  3463. pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
  3464. I915_WRITE(VLV_PCBR, pctx_paddr);
  3465. out:
  3466. dev_priv->vlv_pctx = pctx;
  3467. }
  3468. static void valleyview_enable_rps(struct drm_device *dev)
  3469. {
  3470. struct drm_i915_private *dev_priv = dev->dev_private;
  3471. struct intel_ring_buffer *ring;
  3472. u32 gtfifodbg, val, rc6_mode = 0;
  3473. int i;
  3474. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  3475. if ((gtfifodbg = I915_READ(GTFIFODBG))) {
  3476. DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
  3477. gtfifodbg);
  3478. I915_WRITE(GTFIFODBG, gtfifodbg);
  3479. }
  3480. valleyview_setup_pctx(dev);
  3481. /* If VLV, Forcewake all wells, else re-direct to regular path */
  3482. gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
  3483. I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
  3484. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
  3485. I915_WRITE(GEN6_RP_UP_EI, 66000);
  3486. I915_WRITE(GEN6_RP_DOWN_EI, 350000);
  3487. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  3488. I915_WRITE(GEN6_RP_CONTROL,
  3489. GEN6_RP_MEDIA_TURBO |
  3490. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  3491. GEN6_RP_MEDIA_IS_GFX |
  3492. GEN6_RP_ENABLE |
  3493. GEN6_RP_UP_BUSY_AVG |
  3494. GEN6_RP_DOWN_IDLE_CONT);
  3495. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
  3496. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
  3497. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
  3498. for_each_ring(ring, dev_priv, i)
  3499. I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
  3500. I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
  3501. /* allows RC6 residency counter to work */
  3502. I915_WRITE(VLV_COUNTER_CONTROL,
  3503. _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
  3504. VLV_MEDIA_RC6_COUNT_EN |
  3505. VLV_RENDER_RC6_COUNT_EN));
  3506. if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
  3507. rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
  3508. intel_print_rc6_info(dev, rc6_mode);
  3509. I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
  3510. val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  3511. DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
  3512. DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
  3513. dev_priv->rps.cur_delay = (val >> 8) & 0xff;
  3514. DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
  3515. vlv_gpu_freq(dev_priv, dev_priv->rps.cur_delay),
  3516. dev_priv->rps.cur_delay);
  3517. dev_priv->rps.max_delay = valleyview_rps_max_freq(dev_priv);
  3518. dev_priv->rps.hw_max = dev_priv->rps.max_delay;
  3519. DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
  3520. vlv_gpu_freq(dev_priv, dev_priv->rps.max_delay),
  3521. dev_priv->rps.max_delay);
  3522. dev_priv->rps.rpe_delay = valleyview_rps_rpe_freq(dev_priv);
  3523. DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
  3524. vlv_gpu_freq(dev_priv, dev_priv->rps.rpe_delay),
  3525. dev_priv->rps.rpe_delay);
  3526. dev_priv->rps.min_delay = valleyview_rps_min_freq(dev_priv);
  3527. DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
  3528. vlv_gpu_freq(dev_priv, dev_priv->rps.min_delay),
  3529. dev_priv->rps.min_delay);
  3530. DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
  3531. vlv_gpu_freq(dev_priv, dev_priv->rps.rpe_delay),
  3532. dev_priv->rps.rpe_delay);
  3533. valleyview_set_rps(dev_priv->dev, dev_priv->rps.rpe_delay);
  3534. gen6_enable_rps_interrupts(dev);
  3535. gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
  3536. }
  3537. void ironlake_teardown_rc6(struct drm_device *dev)
  3538. {
  3539. struct drm_i915_private *dev_priv = dev->dev_private;
  3540. if (dev_priv->ips.renderctx) {
  3541. i915_gem_object_unpin(dev_priv->ips.renderctx);
  3542. drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
  3543. dev_priv->ips.renderctx = NULL;
  3544. }
  3545. if (dev_priv->ips.pwrctx) {
  3546. i915_gem_object_unpin(dev_priv->ips.pwrctx);
  3547. drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
  3548. dev_priv->ips.pwrctx = NULL;
  3549. }
  3550. }
  3551. static void ironlake_disable_rc6(struct drm_device *dev)
  3552. {
  3553. struct drm_i915_private *dev_priv = dev->dev_private;
  3554. if (I915_READ(PWRCTXA)) {
  3555. /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
  3556. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
  3557. wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
  3558. 50);
  3559. I915_WRITE(PWRCTXA, 0);
  3560. POSTING_READ(PWRCTXA);
  3561. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
  3562. POSTING_READ(RSTDBYCTL);
  3563. }
  3564. }
  3565. static int ironlake_setup_rc6(struct drm_device *dev)
  3566. {
  3567. struct drm_i915_private *dev_priv = dev->dev_private;
  3568. if (dev_priv->ips.renderctx == NULL)
  3569. dev_priv->ips.renderctx = intel_alloc_context_page(dev);
  3570. if (!dev_priv->ips.renderctx)
  3571. return -ENOMEM;
  3572. if (dev_priv->ips.pwrctx == NULL)
  3573. dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
  3574. if (!dev_priv->ips.pwrctx) {
  3575. ironlake_teardown_rc6(dev);
  3576. return -ENOMEM;
  3577. }
  3578. return 0;
  3579. }
  3580. static void ironlake_enable_rc6(struct drm_device *dev)
  3581. {
  3582. struct drm_i915_private *dev_priv = dev->dev_private;
  3583. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  3584. bool was_interruptible;
  3585. int ret;
  3586. /* rc6 disabled by default due to repeated reports of hanging during
  3587. * boot and resume.
  3588. */
  3589. if (!intel_enable_rc6(dev))
  3590. return;
  3591. WARN_ON(!mutex_is_locked(&dev->struct_mutex));
  3592. ret = ironlake_setup_rc6(dev);
  3593. if (ret)
  3594. return;
  3595. was_interruptible = dev_priv->mm.interruptible;
  3596. dev_priv->mm.interruptible = false;
  3597. /*
  3598. * GPU can automatically power down the render unit if given a page
  3599. * to save state.
  3600. */
  3601. ret = intel_ring_begin(ring, 6);
  3602. if (ret) {
  3603. ironlake_teardown_rc6(dev);
  3604. dev_priv->mm.interruptible = was_interruptible;
  3605. return;
  3606. }
  3607. intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
  3608. intel_ring_emit(ring, MI_SET_CONTEXT);
  3609. intel_ring_emit(ring, i915_gem_obj_ggtt_offset(dev_priv->ips.renderctx) |
  3610. MI_MM_SPACE_GTT |
  3611. MI_SAVE_EXT_STATE_EN |
  3612. MI_RESTORE_EXT_STATE_EN |
  3613. MI_RESTORE_INHIBIT);
  3614. intel_ring_emit(ring, MI_SUSPEND_FLUSH);
  3615. intel_ring_emit(ring, MI_NOOP);
  3616. intel_ring_emit(ring, MI_FLUSH);
  3617. intel_ring_advance(ring);
  3618. /*
  3619. * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
  3620. * does an implicit flush, combined with MI_FLUSH above, it should be
  3621. * safe to assume that renderctx is valid
  3622. */
  3623. ret = intel_ring_idle(ring);
  3624. dev_priv->mm.interruptible = was_interruptible;
  3625. if (ret) {
  3626. DRM_ERROR("failed to enable ironlake power savings\n");
  3627. ironlake_teardown_rc6(dev);
  3628. return;
  3629. }
  3630. I915_WRITE(PWRCTXA, i915_gem_obj_ggtt_offset(dev_priv->ips.pwrctx) | PWRCTX_EN);
  3631. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
  3632. intel_print_rc6_info(dev, INTEL_RC6_ENABLE);
  3633. }
  3634. static unsigned long intel_pxfreq(u32 vidfreq)
  3635. {
  3636. unsigned long freq;
  3637. int div = (vidfreq & 0x3f0000) >> 16;
  3638. int post = (vidfreq & 0x3000) >> 12;
  3639. int pre = (vidfreq & 0x7);
  3640. if (!pre)
  3641. return 0;
  3642. freq = ((div * 133333) / ((1<<post) * pre));
  3643. return freq;
  3644. }
  3645. static const struct cparams {
  3646. u16 i;
  3647. u16 t;
  3648. u16 m;
  3649. u16 c;
  3650. } cparams[] = {
  3651. { 1, 1333, 301, 28664 },
  3652. { 1, 1066, 294, 24460 },
  3653. { 1, 800, 294, 25192 },
  3654. { 0, 1333, 276, 27605 },
  3655. { 0, 1066, 276, 27605 },
  3656. { 0, 800, 231, 23784 },
  3657. };
  3658. static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
  3659. {
  3660. u64 total_count, diff, ret;
  3661. u32 count1, count2, count3, m = 0, c = 0;
  3662. unsigned long now = jiffies_to_msecs(jiffies), diff1;
  3663. int i;
  3664. assert_spin_locked(&mchdev_lock);
  3665. diff1 = now - dev_priv->ips.last_time1;
  3666. /* Prevent division-by-zero if we are asking too fast.
  3667. * Also, we don't get interesting results if we are polling
  3668. * faster than once in 10ms, so just return the saved value
  3669. * in such cases.
  3670. */
  3671. if (diff1 <= 10)
  3672. return dev_priv->ips.chipset_power;
  3673. count1 = I915_READ(DMIEC);
  3674. count2 = I915_READ(DDREC);
  3675. count3 = I915_READ(CSIEC);
  3676. total_count = count1 + count2 + count3;
  3677. /* FIXME: handle per-counter overflow */
  3678. if (total_count < dev_priv->ips.last_count1) {
  3679. diff = ~0UL - dev_priv->ips.last_count1;
  3680. diff += total_count;
  3681. } else {
  3682. diff = total_count - dev_priv->ips.last_count1;
  3683. }
  3684. for (i = 0; i < ARRAY_SIZE(cparams); i++) {
  3685. if (cparams[i].i == dev_priv->ips.c_m &&
  3686. cparams[i].t == dev_priv->ips.r_t) {
  3687. m = cparams[i].m;
  3688. c = cparams[i].c;
  3689. break;
  3690. }
  3691. }
  3692. diff = div_u64(diff, diff1);
  3693. ret = ((m * diff) + c);
  3694. ret = div_u64(ret, 10);
  3695. dev_priv->ips.last_count1 = total_count;
  3696. dev_priv->ips.last_time1 = now;
  3697. dev_priv->ips.chipset_power = ret;
  3698. return ret;
  3699. }
  3700. unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
  3701. {
  3702. unsigned long val;
  3703. if (dev_priv->info->gen != 5)
  3704. return 0;
  3705. spin_lock_irq(&mchdev_lock);
  3706. val = __i915_chipset_val(dev_priv);
  3707. spin_unlock_irq(&mchdev_lock);
  3708. return val;
  3709. }
  3710. unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
  3711. {
  3712. unsigned long m, x, b;
  3713. u32 tsfs;
  3714. tsfs = I915_READ(TSFS);
  3715. m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
  3716. x = I915_READ8(TR1);
  3717. b = tsfs & TSFS_INTR_MASK;
  3718. return ((m * x) / 127) - b;
  3719. }
  3720. static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
  3721. {
  3722. static const struct v_table {
  3723. u16 vd; /* in .1 mil */
  3724. u16 vm; /* in .1 mil */
  3725. } v_table[] = {
  3726. { 0, 0, },
  3727. { 375, 0, },
  3728. { 500, 0, },
  3729. { 625, 0, },
  3730. { 750, 0, },
  3731. { 875, 0, },
  3732. { 1000, 0, },
  3733. { 1125, 0, },
  3734. { 4125, 3000, },
  3735. { 4125, 3000, },
  3736. { 4125, 3000, },
  3737. { 4125, 3000, },
  3738. { 4125, 3000, },
  3739. { 4125, 3000, },
  3740. { 4125, 3000, },
  3741. { 4125, 3000, },
  3742. { 4125, 3000, },
  3743. { 4125, 3000, },
  3744. { 4125, 3000, },
  3745. { 4125, 3000, },
  3746. { 4125, 3000, },
  3747. { 4125, 3000, },
  3748. { 4125, 3000, },
  3749. { 4125, 3000, },
  3750. { 4125, 3000, },
  3751. { 4125, 3000, },
  3752. { 4125, 3000, },
  3753. { 4125, 3000, },
  3754. { 4125, 3000, },
  3755. { 4125, 3000, },
  3756. { 4125, 3000, },
  3757. { 4125, 3000, },
  3758. { 4250, 3125, },
  3759. { 4375, 3250, },
  3760. { 4500, 3375, },
  3761. { 4625, 3500, },
  3762. { 4750, 3625, },
  3763. { 4875, 3750, },
  3764. { 5000, 3875, },
  3765. { 5125, 4000, },
  3766. { 5250, 4125, },
  3767. { 5375, 4250, },
  3768. { 5500, 4375, },
  3769. { 5625, 4500, },
  3770. { 5750, 4625, },
  3771. { 5875, 4750, },
  3772. { 6000, 4875, },
  3773. { 6125, 5000, },
  3774. { 6250, 5125, },
  3775. { 6375, 5250, },
  3776. { 6500, 5375, },
  3777. { 6625, 5500, },
  3778. { 6750, 5625, },
  3779. { 6875, 5750, },
  3780. { 7000, 5875, },
  3781. { 7125, 6000, },
  3782. { 7250, 6125, },
  3783. { 7375, 6250, },
  3784. { 7500, 6375, },
  3785. { 7625, 6500, },
  3786. { 7750, 6625, },
  3787. { 7875, 6750, },
  3788. { 8000, 6875, },
  3789. { 8125, 7000, },
  3790. { 8250, 7125, },
  3791. { 8375, 7250, },
  3792. { 8500, 7375, },
  3793. { 8625, 7500, },
  3794. { 8750, 7625, },
  3795. { 8875, 7750, },
  3796. { 9000, 7875, },
  3797. { 9125, 8000, },
  3798. { 9250, 8125, },
  3799. { 9375, 8250, },
  3800. { 9500, 8375, },
  3801. { 9625, 8500, },
  3802. { 9750, 8625, },
  3803. { 9875, 8750, },
  3804. { 10000, 8875, },
  3805. { 10125, 9000, },
  3806. { 10250, 9125, },
  3807. { 10375, 9250, },
  3808. { 10500, 9375, },
  3809. { 10625, 9500, },
  3810. { 10750, 9625, },
  3811. { 10875, 9750, },
  3812. { 11000, 9875, },
  3813. { 11125, 10000, },
  3814. { 11250, 10125, },
  3815. { 11375, 10250, },
  3816. { 11500, 10375, },
  3817. { 11625, 10500, },
  3818. { 11750, 10625, },
  3819. { 11875, 10750, },
  3820. { 12000, 10875, },
  3821. { 12125, 11000, },
  3822. { 12250, 11125, },
  3823. { 12375, 11250, },
  3824. { 12500, 11375, },
  3825. { 12625, 11500, },
  3826. { 12750, 11625, },
  3827. { 12875, 11750, },
  3828. { 13000, 11875, },
  3829. { 13125, 12000, },
  3830. { 13250, 12125, },
  3831. { 13375, 12250, },
  3832. { 13500, 12375, },
  3833. { 13625, 12500, },
  3834. { 13750, 12625, },
  3835. { 13875, 12750, },
  3836. { 14000, 12875, },
  3837. { 14125, 13000, },
  3838. { 14250, 13125, },
  3839. { 14375, 13250, },
  3840. { 14500, 13375, },
  3841. { 14625, 13500, },
  3842. { 14750, 13625, },
  3843. { 14875, 13750, },
  3844. { 15000, 13875, },
  3845. { 15125, 14000, },
  3846. { 15250, 14125, },
  3847. { 15375, 14250, },
  3848. { 15500, 14375, },
  3849. { 15625, 14500, },
  3850. { 15750, 14625, },
  3851. { 15875, 14750, },
  3852. { 16000, 14875, },
  3853. { 16125, 15000, },
  3854. };
  3855. if (dev_priv->info->is_mobile)
  3856. return v_table[pxvid].vm;
  3857. else
  3858. return v_table[pxvid].vd;
  3859. }
  3860. static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
  3861. {
  3862. struct timespec now, diff1;
  3863. u64 diff;
  3864. unsigned long diffms;
  3865. u32 count;
  3866. assert_spin_locked(&mchdev_lock);
  3867. getrawmonotonic(&now);
  3868. diff1 = timespec_sub(now, dev_priv->ips.last_time2);
  3869. /* Don't divide by 0 */
  3870. diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
  3871. if (!diffms)
  3872. return;
  3873. count = I915_READ(GFXEC);
  3874. if (count < dev_priv->ips.last_count2) {
  3875. diff = ~0UL - dev_priv->ips.last_count2;
  3876. diff += count;
  3877. } else {
  3878. diff = count - dev_priv->ips.last_count2;
  3879. }
  3880. dev_priv->ips.last_count2 = count;
  3881. dev_priv->ips.last_time2 = now;
  3882. /* More magic constants... */
  3883. diff = diff * 1181;
  3884. diff = div_u64(diff, diffms * 10);
  3885. dev_priv->ips.gfx_power = diff;
  3886. }
  3887. void i915_update_gfx_val(struct drm_i915_private *dev_priv)
  3888. {
  3889. if (dev_priv->info->gen != 5)
  3890. return;
  3891. spin_lock_irq(&mchdev_lock);
  3892. __i915_update_gfx_val(dev_priv);
  3893. spin_unlock_irq(&mchdev_lock);
  3894. }
  3895. static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
  3896. {
  3897. unsigned long t, corr, state1, corr2, state2;
  3898. u32 pxvid, ext_v;
  3899. assert_spin_locked(&mchdev_lock);
  3900. pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_delay * 4));
  3901. pxvid = (pxvid >> 24) & 0x7f;
  3902. ext_v = pvid_to_extvid(dev_priv, pxvid);
  3903. state1 = ext_v;
  3904. t = i915_mch_val(dev_priv);
  3905. /* Revel in the empirically derived constants */
  3906. /* Correction factor in 1/100000 units */
  3907. if (t > 80)
  3908. corr = ((t * 2349) + 135940);
  3909. else if (t >= 50)
  3910. corr = ((t * 964) + 29317);
  3911. else /* < 50 */
  3912. corr = ((t * 301) + 1004);
  3913. corr = corr * ((150142 * state1) / 10000 - 78642);
  3914. corr /= 100000;
  3915. corr2 = (corr * dev_priv->ips.corr);
  3916. state2 = (corr2 * state1) / 10000;
  3917. state2 /= 100; /* convert to mW */
  3918. __i915_update_gfx_val(dev_priv);
  3919. return dev_priv->ips.gfx_power + state2;
  3920. }
  3921. unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
  3922. {
  3923. unsigned long val;
  3924. if (dev_priv->info->gen != 5)
  3925. return 0;
  3926. spin_lock_irq(&mchdev_lock);
  3927. val = __i915_gfx_val(dev_priv);
  3928. spin_unlock_irq(&mchdev_lock);
  3929. return val;
  3930. }
  3931. /**
  3932. * i915_read_mch_val - return value for IPS use
  3933. *
  3934. * Calculate and return a value for the IPS driver to use when deciding whether
  3935. * we have thermal and power headroom to increase CPU or GPU power budget.
  3936. */
  3937. unsigned long i915_read_mch_val(void)
  3938. {
  3939. struct drm_i915_private *dev_priv;
  3940. unsigned long chipset_val, graphics_val, ret = 0;
  3941. spin_lock_irq(&mchdev_lock);
  3942. if (!i915_mch_dev)
  3943. goto out_unlock;
  3944. dev_priv = i915_mch_dev;
  3945. chipset_val = __i915_chipset_val(dev_priv);
  3946. graphics_val = __i915_gfx_val(dev_priv);
  3947. ret = chipset_val + graphics_val;
  3948. out_unlock:
  3949. spin_unlock_irq(&mchdev_lock);
  3950. return ret;
  3951. }
  3952. EXPORT_SYMBOL_GPL(i915_read_mch_val);
  3953. /**
  3954. * i915_gpu_raise - raise GPU frequency limit
  3955. *
  3956. * Raise the limit; IPS indicates we have thermal headroom.
  3957. */
  3958. bool i915_gpu_raise(void)
  3959. {
  3960. struct drm_i915_private *dev_priv;
  3961. bool ret = true;
  3962. spin_lock_irq(&mchdev_lock);
  3963. if (!i915_mch_dev) {
  3964. ret = false;
  3965. goto out_unlock;
  3966. }
  3967. dev_priv = i915_mch_dev;
  3968. if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
  3969. dev_priv->ips.max_delay--;
  3970. out_unlock:
  3971. spin_unlock_irq(&mchdev_lock);
  3972. return ret;
  3973. }
  3974. EXPORT_SYMBOL_GPL(i915_gpu_raise);
  3975. /**
  3976. * i915_gpu_lower - lower GPU frequency limit
  3977. *
  3978. * IPS indicates we're close to a thermal limit, so throttle back the GPU
  3979. * frequency maximum.
  3980. */
  3981. bool i915_gpu_lower(void)
  3982. {
  3983. struct drm_i915_private *dev_priv;
  3984. bool ret = true;
  3985. spin_lock_irq(&mchdev_lock);
  3986. if (!i915_mch_dev) {
  3987. ret = false;
  3988. goto out_unlock;
  3989. }
  3990. dev_priv = i915_mch_dev;
  3991. if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
  3992. dev_priv->ips.max_delay++;
  3993. out_unlock:
  3994. spin_unlock_irq(&mchdev_lock);
  3995. return ret;
  3996. }
  3997. EXPORT_SYMBOL_GPL(i915_gpu_lower);
  3998. /**
  3999. * i915_gpu_busy - indicate GPU business to IPS
  4000. *
  4001. * Tell the IPS driver whether or not the GPU is busy.
  4002. */
  4003. bool i915_gpu_busy(void)
  4004. {
  4005. struct drm_i915_private *dev_priv;
  4006. struct intel_ring_buffer *ring;
  4007. bool ret = false;
  4008. int i;
  4009. spin_lock_irq(&mchdev_lock);
  4010. if (!i915_mch_dev)
  4011. goto out_unlock;
  4012. dev_priv = i915_mch_dev;
  4013. for_each_ring(ring, dev_priv, i)
  4014. ret |= !list_empty(&ring->request_list);
  4015. out_unlock:
  4016. spin_unlock_irq(&mchdev_lock);
  4017. return ret;
  4018. }
  4019. EXPORT_SYMBOL_GPL(i915_gpu_busy);
  4020. /**
  4021. * i915_gpu_turbo_disable - disable graphics turbo
  4022. *
  4023. * Disable graphics turbo by resetting the max frequency and setting the
  4024. * current frequency to the default.
  4025. */
  4026. bool i915_gpu_turbo_disable(void)
  4027. {
  4028. struct drm_i915_private *dev_priv;
  4029. bool ret = true;
  4030. spin_lock_irq(&mchdev_lock);
  4031. if (!i915_mch_dev) {
  4032. ret = false;
  4033. goto out_unlock;
  4034. }
  4035. dev_priv = i915_mch_dev;
  4036. dev_priv->ips.max_delay = dev_priv->ips.fstart;
  4037. if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
  4038. ret = false;
  4039. out_unlock:
  4040. spin_unlock_irq(&mchdev_lock);
  4041. return ret;
  4042. }
  4043. EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
  4044. /**
  4045. * Tells the intel_ips driver that the i915 driver is now loaded, if
  4046. * IPS got loaded first.
  4047. *
  4048. * This awkward dance is so that neither module has to depend on the
  4049. * other in order for IPS to do the appropriate communication of
  4050. * GPU turbo limits to i915.
  4051. */
  4052. static void
  4053. ips_ping_for_i915_load(void)
  4054. {
  4055. void (*link)(void);
  4056. link = symbol_get(ips_link_to_i915_driver);
  4057. if (link) {
  4058. link();
  4059. symbol_put(ips_link_to_i915_driver);
  4060. }
  4061. }
  4062. void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
  4063. {
  4064. /* We only register the i915 ips part with intel-ips once everything is
  4065. * set up, to avoid intel-ips sneaking in and reading bogus values. */
  4066. spin_lock_irq(&mchdev_lock);
  4067. i915_mch_dev = dev_priv;
  4068. spin_unlock_irq(&mchdev_lock);
  4069. ips_ping_for_i915_load();
  4070. }
  4071. void intel_gpu_ips_teardown(void)
  4072. {
  4073. spin_lock_irq(&mchdev_lock);
  4074. i915_mch_dev = NULL;
  4075. spin_unlock_irq(&mchdev_lock);
  4076. }
  4077. static void intel_init_emon(struct drm_device *dev)
  4078. {
  4079. struct drm_i915_private *dev_priv = dev->dev_private;
  4080. u32 lcfuse;
  4081. u8 pxw[16];
  4082. int i;
  4083. /* Disable to program */
  4084. I915_WRITE(ECR, 0);
  4085. POSTING_READ(ECR);
  4086. /* Program energy weights for various events */
  4087. I915_WRITE(SDEW, 0x15040d00);
  4088. I915_WRITE(CSIEW0, 0x007f0000);
  4089. I915_WRITE(CSIEW1, 0x1e220004);
  4090. I915_WRITE(CSIEW2, 0x04000004);
  4091. for (i = 0; i < 5; i++)
  4092. I915_WRITE(PEW + (i * 4), 0);
  4093. for (i = 0; i < 3; i++)
  4094. I915_WRITE(DEW + (i * 4), 0);
  4095. /* Program P-state weights to account for frequency power adjustment */
  4096. for (i = 0; i < 16; i++) {
  4097. u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
  4098. unsigned long freq = intel_pxfreq(pxvidfreq);
  4099. unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
  4100. PXVFREQ_PX_SHIFT;
  4101. unsigned long val;
  4102. val = vid * vid;
  4103. val *= (freq / 1000);
  4104. val *= 255;
  4105. val /= (127*127*900);
  4106. if (val > 0xff)
  4107. DRM_ERROR("bad pxval: %ld\n", val);
  4108. pxw[i] = val;
  4109. }
  4110. /* Render standby states get 0 weight */
  4111. pxw[14] = 0;
  4112. pxw[15] = 0;
  4113. for (i = 0; i < 4; i++) {
  4114. u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
  4115. (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
  4116. I915_WRITE(PXW + (i * 4), val);
  4117. }
  4118. /* Adjust magic regs to magic values (more experimental results) */
  4119. I915_WRITE(OGW0, 0);
  4120. I915_WRITE(OGW1, 0);
  4121. I915_WRITE(EG0, 0x00007f00);
  4122. I915_WRITE(EG1, 0x0000000e);
  4123. I915_WRITE(EG2, 0x000e0000);
  4124. I915_WRITE(EG3, 0x68000300);
  4125. I915_WRITE(EG4, 0x42000000);
  4126. I915_WRITE(EG5, 0x00140031);
  4127. I915_WRITE(EG6, 0);
  4128. I915_WRITE(EG7, 0);
  4129. for (i = 0; i < 8; i++)
  4130. I915_WRITE(PXWL + (i * 4), 0);
  4131. /* Enable PMON + select events */
  4132. I915_WRITE(ECR, 0x80000019);
  4133. lcfuse = I915_READ(LCFUSE02);
  4134. dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
  4135. }
  4136. void intel_disable_gt_powersave(struct drm_device *dev)
  4137. {
  4138. struct drm_i915_private *dev_priv = dev->dev_private;
  4139. /* Interrupts should be disabled already to avoid re-arming. */
  4140. WARN_ON(dev->irq_enabled);
  4141. if (IS_IRONLAKE_M(dev)) {
  4142. ironlake_disable_drps(dev);
  4143. ironlake_disable_rc6(dev);
  4144. } else if (INTEL_INFO(dev)->gen >= 6) {
  4145. cancel_delayed_work_sync(&dev_priv->rps.delayed_resume_work);
  4146. cancel_work_sync(&dev_priv->rps.work);
  4147. mutex_lock(&dev_priv->rps.hw_lock);
  4148. if (IS_VALLEYVIEW(dev))
  4149. valleyview_disable_rps(dev);
  4150. else
  4151. gen6_disable_rps(dev);
  4152. dev_priv->rps.enabled = false;
  4153. mutex_unlock(&dev_priv->rps.hw_lock);
  4154. }
  4155. }
  4156. static void intel_gen6_powersave_work(struct work_struct *work)
  4157. {
  4158. struct drm_i915_private *dev_priv =
  4159. container_of(work, struct drm_i915_private,
  4160. rps.delayed_resume_work.work);
  4161. struct drm_device *dev = dev_priv->dev;
  4162. mutex_lock(&dev_priv->rps.hw_lock);
  4163. if (IS_VALLEYVIEW(dev)) {
  4164. valleyview_enable_rps(dev);
  4165. } else if (IS_BROADWELL(dev)) {
  4166. gen8_enable_rps(dev);
  4167. gen6_update_ring_freq(dev);
  4168. } else {
  4169. gen6_enable_rps(dev);
  4170. gen6_update_ring_freq(dev);
  4171. }
  4172. dev_priv->rps.enabled = true;
  4173. mutex_unlock(&dev_priv->rps.hw_lock);
  4174. }
  4175. void intel_enable_gt_powersave(struct drm_device *dev)
  4176. {
  4177. struct drm_i915_private *dev_priv = dev->dev_private;
  4178. if (IS_IRONLAKE_M(dev)) {
  4179. ironlake_enable_drps(dev);
  4180. ironlake_enable_rc6(dev);
  4181. intel_init_emon(dev);
  4182. } else if (IS_GEN6(dev) || IS_GEN7(dev)) {
  4183. /*
  4184. * PCU communication is slow and this doesn't need to be
  4185. * done at any specific time, so do this out of our fast path
  4186. * to make resume and init faster.
  4187. */
  4188. schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
  4189. round_jiffies_up_relative(HZ));
  4190. }
  4191. }
  4192. static void ibx_init_clock_gating(struct drm_device *dev)
  4193. {
  4194. struct drm_i915_private *dev_priv = dev->dev_private;
  4195. /*
  4196. * On Ibex Peak and Cougar Point, we need to disable clock
  4197. * gating for the panel power sequencer or it will fail to
  4198. * start up when no ports are active.
  4199. */
  4200. I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
  4201. }
  4202. static void g4x_disable_trickle_feed(struct drm_device *dev)
  4203. {
  4204. struct drm_i915_private *dev_priv = dev->dev_private;
  4205. int pipe;
  4206. for_each_pipe(pipe) {
  4207. I915_WRITE(DSPCNTR(pipe),
  4208. I915_READ(DSPCNTR(pipe)) |
  4209. DISPPLANE_TRICKLE_FEED_DISABLE);
  4210. intel_flush_primary_plane(dev_priv, pipe);
  4211. }
  4212. }
  4213. static void ironlake_init_clock_gating(struct drm_device *dev)
  4214. {
  4215. struct drm_i915_private *dev_priv = dev->dev_private;
  4216. uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
  4217. /*
  4218. * Required for FBC
  4219. * WaFbcDisableDpfcClockGating:ilk
  4220. */
  4221. dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
  4222. ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
  4223. ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
  4224. I915_WRITE(PCH_3DCGDIS0,
  4225. MARIUNIT_CLOCK_GATE_DISABLE |
  4226. SVSMUNIT_CLOCK_GATE_DISABLE);
  4227. I915_WRITE(PCH_3DCGDIS1,
  4228. VFMUNIT_CLOCK_GATE_DISABLE);
  4229. /*
  4230. * According to the spec the following bits should be set in
  4231. * order to enable memory self-refresh
  4232. * The bit 22/21 of 0x42004
  4233. * The bit 5 of 0x42020
  4234. * The bit 15 of 0x45000
  4235. */
  4236. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4237. (I915_READ(ILK_DISPLAY_CHICKEN2) |
  4238. ILK_DPARB_GATE | ILK_VSDPFD_FULL));
  4239. dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
  4240. I915_WRITE(DISP_ARB_CTL,
  4241. (I915_READ(DISP_ARB_CTL) |
  4242. DISP_FBC_WM_DIS));
  4243. I915_WRITE(WM3_LP_ILK, 0);
  4244. I915_WRITE(WM2_LP_ILK, 0);
  4245. I915_WRITE(WM1_LP_ILK, 0);
  4246. /*
  4247. * Based on the document from hardware guys the following bits
  4248. * should be set unconditionally in order to enable FBC.
  4249. * The bit 22 of 0x42000
  4250. * The bit 22 of 0x42004
  4251. * The bit 7,8,9 of 0x42020.
  4252. */
  4253. if (IS_IRONLAKE_M(dev)) {
  4254. /* WaFbcAsynchFlipDisableFbcQueue:ilk */
  4255. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  4256. I915_READ(ILK_DISPLAY_CHICKEN1) |
  4257. ILK_FBCQ_DIS);
  4258. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4259. I915_READ(ILK_DISPLAY_CHICKEN2) |
  4260. ILK_DPARB_GATE);
  4261. }
  4262. I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
  4263. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4264. I915_READ(ILK_DISPLAY_CHICKEN2) |
  4265. ILK_ELPIN_409_SELECT);
  4266. I915_WRITE(_3D_CHICKEN2,
  4267. _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
  4268. _3D_CHICKEN2_WM_READ_PIPELINED);
  4269. /* WaDisableRenderCachePipelinedFlush:ilk */
  4270. I915_WRITE(CACHE_MODE_0,
  4271. _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
  4272. g4x_disable_trickle_feed(dev);
  4273. ibx_init_clock_gating(dev);
  4274. }
  4275. static void cpt_init_clock_gating(struct drm_device *dev)
  4276. {
  4277. struct drm_i915_private *dev_priv = dev->dev_private;
  4278. int pipe;
  4279. uint32_t val;
  4280. /*
  4281. * On Ibex Peak and Cougar Point, we need to disable clock
  4282. * gating for the panel power sequencer or it will fail to
  4283. * start up when no ports are active.
  4284. */
  4285. I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
  4286. PCH_DPLUNIT_CLOCK_GATE_DISABLE |
  4287. PCH_CPUNIT_CLOCK_GATE_DISABLE);
  4288. I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
  4289. DPLS_EDP_PPS_FIX_DIS);
  4290. /* The below fixes the weird display corruption, a few pixels shifted
  4291. * downward, on (only) LVDS of some HP laptops with IVY.
  4292. */
  4293. for_each_pipe(pipe) {
  4294. val = I915_READ(TRANS_CHICKEN2(pipe));
  4295. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  4296. val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
  4297. if (dev_priv->vbt.fdi_rx_polarity_inverted)
  4298. val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
  4299. val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
  4300. val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
  4301. val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
  4302. I915_WRITE(TRANS_CHICKEN2(pipe), val);
  4303. }
  4304. /* WADP0ClockGatingDisable */
  4305. for_each_pipe(pipe) {
  4306. I915_WRITE(TRANS_CHICKEN1(pipe),
  4307. TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
  4308. }
  4309. }
  4310. static void gen6_check_mch_setup(struct drm_device *dev)
  4311. {
  4312. struct drm_i915_private *dev_priv = dev->dev_private;
  4313. uint32_t tmp;
  4314. tmp = I915_READ(MCH_SSKPD);
  4315. if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL) {
  4316. DRM_INFO("Wrong MCH_SSKPD value: 0x%08x\n", tmp);
  4317. DRM_INFO("This can cause pipe underruns and display issues.\n");
  4318. DRM_INFO("Please upgrade your BIOS to fix this.\n");
  4319. }
  4320. }
  4321. static void gen6_init_clock_gating(struct drm_device *dev)
  4322. {
  4323. struct drm_i915_private *dev_priv = dev->dev_private;
  4324. uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
  4325. I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
  4326. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4327. I915_READ(ILK_DISPLAY_CHICKEN2) |
  4328. ILK_ELPIN_409_SELECT);
  4329. /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
  4330. I915_WRITE(_3D_CHICKEN,
  4331. _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
  4332. /* WaSetupGtModeTdRowDispatch:snb */
  4333. if (IS_SNB_GT1(dev))
  4334. I915_WRITE(GEN6_GT_MODE,
  4335. _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));
  4336. I915_WRITE(WM3_LP_ILK, 0);
  4337. I915_WRITE(WM2_LP_ILK, 0);
  4338. I915_WRITE(WM1_LP_ILK, 0);
  4339. I915_WRITE(CACHE_MODE_0,
  4340. _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  4341. I915_WRITE(GEN6_UCGCTL1,
  4342. I915_READ(GEN6_UCGCTL1) |
  4343. GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
  4344. GEN6_CSUNIT_CLOCK_GATE_DISABLE);
  4345. /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
  4346. * gating disable must be set. Failure to set it results in
  4347. * flickering pixels due to Z write ordering failures after
  4348. * some amount of runtime in the Mesa "fire" demo, and Unigine
  4349. * Sanctuary and Tropics, and apparently anything else with
  4350. * alpha test or pixel discard.
  4351. *
  4352. * According to the spec, bit 11 (RCCUNIT) must also be set,
  4353. * but we didn't debug actual testcases to find it out.
  4354. *
  4355. * Also apply WaDisableVDSUnitClockGating:snb and
  4356. * WaDisableRCPBUnitClockGating:snb.
  4357. */
  4358. I915_WRITE(GEN6_UCGCTL2,
  4359. GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
  4360. GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
  4361. GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
  4362. /* Bspec says we need to always set all mask bits. */
  4363. I915_WRITE(_3D_CHICKEN3, (0xFFFF << 16) |
  4364. _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL);
  4365. /*
  4366. * According to the spec the following bits should be
  4367. * set in order to enable memory self-refresh and fbc:
  4368. * The bit21 and bit22 of 0x42000
  4369. * The bit21 and bit22 of 0x42004
  4370. * The bit5 and bit7 of 0x42020
  4371. * The bit14 of 0x70180
  4372. * The bit14 of 0x71180
  4373. *
  4374. * WaFbcAsynchFlipDisableFbcQueue:snb
  4375. */
  4376. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  4377. I915_READ(ILK_DISPLAY_CHICKEN1) |
  4378. ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
  4379. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4380. I915_READ(ILK_DISPLAY_CHICKEN2) |
  4381. ILK_DPARB_GATE | ILK_VSDPFD_FULL);
  4382. I915_WRITE(ILK_DSPCLK_GATE_D,
  4383. I915_READ(ILK_DSPCLK_GATE_D) |
  4384. ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
  4385. ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
  4386. g4x_disable_trickle_feed(dev);
  4387. /* The default value should be 0x200 according to docs, but the two
  4388. * platforms I checked have a 0 for this. (Maybe BIOS overrides?) */
  4389. I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_DISABLE(0xffff));
  4390. I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_ENABLE(GEN6_GT_MODE_HI));
  4391. cpt_init_clock_gating(dev);
  4392. gen6_check_mch_setup(dev);
  4393. }
  4394. static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
  4395. {
  4396. uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
  4397. reg &= ~GEN7_FF_SCHED_MASK;
  4398. reg |= GEN7_FF_TS_SCHED_HW;
  4399. reg |= GEN7_FF_VS_SCHED_HW;
  4400. reg |= GEN7_FF_DS_SCHED_HW;
  4401. if (IS_HASWELL(dev_priv->dev))
  4402. reg &= ~GEN7_FF_VS_REF_CNT_FFME;
  4403. I915_WRITE(GEN7_FF_THREAD_MODE, reg);
  4404. }
  4405. static void lpt_init_clock_gating(struct drm_device *dev)
  4406. {
  4407. struct drm_i915_private *dev_priv = dev->dev_private;
  4408. /*
  4409. * TODO: this bit should only be enabled when really needed, then
  4410. * disabled when not needed anymore in order to save power.
  4411. */
  4412. if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
  4413. I915_WRITE(SOUTH_DSPCLK_GATE_D,
  4414. I915_READ(SOUTH_DSPCLK_GATE_D) |
  4415. PCH_LP_PARTITION_LEVEL_DISABLE);
  4416. /* WADPOClockGatingDisable:hsw */
  4417. I915_WRITE(_TRANSA_CHICKEN1,
  4418. I915_READ(_TRANSA_CHICKEN1) |
  4419. TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
  4420. }
  4421. static void lpt_suspend_hw(struct drm_device *dev)
  4422. {
  4423. struct drm_i915_private *dev_priv = dev->dev_private;
  4424. if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
  4425. uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
  4426. val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
  4427. I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
  4428. }
  4429. }
  4430. static void gen8_init_clock_gating(struct drm_device *dev)
  4431. {
  4432. struct drm_i915_private *dev_priv = dev->dev_private;
  4433. enum pipe i;
  4434. I915_WRITE(WM3_LP_ILK, 0);
  4435. I915_WRITE(WM2_LP_ILK, 0);
  4436. I915_WRITE(WM1_LP_ILK, 0);
  4437. /* FIXME(BDW): Check all the w/a, some might only apply to
  4438. * pre-production hw. */
  4439. WARN(!i915_preliminary_hw_support,
  4440. "GEN8_CENTROID_PIXEL_OPT_DIS not be needed for production\n");
  4441. I915_WRITE(HALF_SLICE_CHICKEN3,
  4442. _MASKED_BIT_ENABLE(GEN8_CENTROID_PIXEL_OPT_DIS));
  4443. I915_WRITE(HALF_SLICE_CHICKEN3,
  4444. _MASKED_BIT_ENABLE(GEN8_SAMPLER_POWER_BYPASS_DIS));
  4445. I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_BWGTLB_DISABLE));
  4446. I915_WRITE(_3D_CHICKEN3,
  4447. _3D_CHICKEN_SDE_LIMIT_FIFO_POLY_DEPTH(2));
  4448. I915_WRITE(COMMON_SLICE_CHICKEN2,
  4449. _MASKED_BIT_ENABLE(GEN8_CSC2_SBE_VUE_CACHE_CONSERVATIVE));
  4450. I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
  4451. _MASKED_BIT_ENABLE(GEN7_SINGLE_SUBSCAN_DISPATCH_ENABLE));
  4452. /* WaSwitchSolVfFArbitrationPriority:bdw */
  4453. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
  4454. /* WaPsrDPAMaskVBlankInSRD:bdw */
  4455. I915_WRITE(CHICKEN_PAR1_1,
  4456. I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
  4457. /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
  4458. for_each_pipe(i) {
  4459. I915_WRITE(CHICKEN_PIPESL_1(i),
  4460. I915_READ(CHICKEN_PIPESL_1(i) |
  4461. DPRS_MASK_VBLANK_SRD));
  4462. }
  4463. /* Use Force Non-Coherent whenever executing a 3D context. This is a
  4464. * workaround for for a possible hang in the unlikely event a TLB
  4465. * invalidation occurs during a PSD flush.
  4466. */
  4467. I915_WRITE(HDC_CHICKEN0,
  4468. I915_READ(HDC_CHICKEN0) |
  4469. _MASKED_BIT_ENABLE(HDC_FORCE_NON_COHERENT));
  4470. /* WaVSRefCountFullforceMissDisable:bdw */
  4471. /* WaDSRefCountFullforceMissDisable:bdw */
  4472. I915_WRITE(GEN7_FF_THREAD_MODE,
  4473. I915_READ(GEN7_FF_THREAD_MODE) &
  4474. ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
  4475. }
  4476. static void haswell_init_clock_gating(struct drm_device *dev)
  4477. {
  4478. struct drm_i915_private *dev_priv = dev->dev_private;
  4479. I915_WRITE(WM3_LP_ILK, 0);
  4480. I915_WRITE(WM2_LP_ILK, 0);
  4481. I915_WRITE(WM1_LP_ILK, 0);
  4482. /* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
  4483. * This implements the WaDisableRCZUnitClockGating:hsw workaround.
  4484. */
  4485. I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
  4486. /* Apply the WaDisableRHWOOptimizationForRenderHang:hsw workaround. */
  4487. I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
  4488. GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
  4489. /* WaApplyL3ControlAndL3ChickenMode:hsw */
  4490. I915_WRITE(GEN7_L3CNTLREG1,
  4491. GEN7_WA_FOR_GEN7_L3_CONTROL);
  4492. I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
  4493. GEN7_WA_L3_CHICKEN_MODE);
  4494. /* L3 caching of data atomics doesn't work -- disable it. */
  4495. I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
  4496. I915_WRITE(HSW_ROW_CHICKEN3,
  4497. _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
  4498. /* This is required by WaCatErrorRejectionIssue:hsw */
  4499. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  4500. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  4501. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  4502. /* WaVSRefCountFullforceMissDisable:hsw */
  4503. gen7_setup_fixed_func_scheduler(dev_priv);
  4504. /* WaDisable4x2SubspanOptimization:hsw */
  4505. I915_WRITE(CACHE_MODE_1,
  4506. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  4507. /* WaSwitchSolVfFArbitrationPriority:hsw */
  4508. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
  4509. /* WaRsPkgCStateDisplayPMReq:hsw */
  4510. I915_WRITE(CHICKEN_PAR1_1,
  4511. I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
  4512. lpt_init_clock_gating(dev);
  4513. }
  4514. static void ivybridge_init_clock_gating(struct drm_device *dev)
  4515. {
  4516. struct drm_i915_private *dev_priv = dev->dev_private;
  4517. uint32_t snpcr;
  4518. I915_WRITE(WM3_LP_ILK, 0);
  4519. I915_WRITE(WM2_LP_ILK, 0);
  4520. I915_WRITE(WM1_LP_ILK, 0);
  4521. I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
  4522. /* WaDisableEarlyCull:ivb */
  4523. I915_WRITE(_3D_CHICKEN3,
  4524. _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
  4525. /* WaDisableBackToBackFlipFix:ivb */
  4526. I915_WRITE(IVB_CHICKEN3,
  4527. CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
  4528. CHICKEN3_DGMG_DONE_FIX_DISABLE);
  4529. /* WaDisablePSDDualDispatchEnable:ivb */
  4530. if (IS_IVB_GT1(dev))
  4531. I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
  4532. _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
  4533. else
  4534. I915_WRITE(GEN7_HALF_SLICE_CHICKEN1_GT2,
  4535. _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
  4536. /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
  4537. I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
  4538. GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
  4539. /* WaApplyL3ControlAndL3ChickenMode:ivb */
  4540. I915_WRITE(GEN7_L3CNTLREG1,
  4541. GEN7_WA_FOR_GEN7_L3_CONTROL);
  4542. I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
  4543. GEN7_WA_L3_CHICKEN_MODE);
  4544. if (IS_IVB_GT1(dev))
  4545. I915_WRITE(GEN7_ROW_CHICKEN2,
  4546. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  4547. else
  4548. I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
  4549. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  4550. /* WaForceL3Serialization:ivb */
  4551. I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
  4552. ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
  4553. /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
  4554. * gating disable must be set. Failure to set it results in
  4555. * flickering pixels due to Z write ordering failures after
  4556. * some amount of runtime in the Mesa "fire" demo, and Unigine
  4557. * Sanctuary and Tropics, and apparently anything else with
  4558. * alpha test or pixel discard.
  4559. *
  4560. * According to the spec, bit 11 (RCCUNIT) must also be set,
  4561. * but we didn't debug actual testcases to find it out.
  4562. *
  4563. * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
  4564. * This implements the WaDisableRCZUnitClockGating:ivb workaround.
  4565. */
  4566. I915_WRITE(GEN6_UCGCTL2,
  4567. GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
  4568. GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
  4569. /* This is required by WaCatErrorRejectionIssue:ivb */
  4570. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  4571. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  4572. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  4573. g4x_disable_trickle_feed(dev);
  4574. /* WaVSRefCountFullforceMissDisable:ivb */
  4575. gen7_setup_fixed_func_scheduler(dev_priv);
  4576. /* WaDisable4x2SubspanOptimization:ivb */
  4577. I915_WRITE(CACHE_MODE_1,
  4578. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  4579. snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
  4580. snpcr &= ~GEN6_MBC_SNPCR_MASK;
  4581. snpcr |= GEN6_MBC_SNPCR_MED;
  4582. I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
  4583. if (!HAS_PCH_NOP(dev))
  4584. cpt_init_clock_gating(dev);
  4585. gen6_check_mch_setup(dev);
  4586. }
  4587. static void valleyview_init_clock_gating(struct drm_device *dev)
  4588. {
  4589. struct drm_i915_private *dev_priv = dev->dev_private;
  4590. u32 val;
  4591. mutex_lock(&dev_priv->rps.hw_lock);
  4592. val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  4593. mutex_unlock(&dev_priv->rps.hw_lock);
  4594. switch ((val >> 6) & 3) {
  4595. case 0:
  4596. dev_priv->mem_freq = 800;
  4597. break;
  4598. case 1:
  4599. dev_priv->mem_freq = 1066;
  4600. break;
  4601. case 2:
  4602. dev_priv->mem_freq = 1333;
  4603. break;
  4604. case 3:
  4605. dev_priv->mem_freq = 1333;
  4606. break;
  4607. }
  4608. DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
  4609. I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
  4610. /* WaDisableEarlyCull:vlv */
  4611. I915_WRITE(_3D_CHICKEN3,
  4612. _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
  4613. /* WaDisableBackToBackFlipFix:vlv */
  4614. I915_WRITE(IVB_CHICKEN3,
  4615. CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
  4616. CHICKEN3_DGMG_DONE_FIX_DISABLE);
  4617. /* WaDisablePSDDualDispatchEnable:vlv */
  4618. I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
  4619. _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
  4620. GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
  4621. /* Apply the WaDisableRHWOOptimizationForRenderHang:vlv workaround. */
  4622. I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
  4623. GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
  4624. /* WaApplyL3ControlAndL3ChickenMode:vlv */
  4625. I915_WRITE(GEN7_L3CNTLREG1, I915_READ(GEN7_L3CNTLREG1) | GEN7_L3AGDIS);
  4626. I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
  4627. /* WaForceL3Serialization:vlv */
  4628. I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
  4629. ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
  4630. /* WaDisableDopClockGating:vlv */
  4631. I915_WRITE(GEN7_ROW_CHICKEN2,
  4632. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  4633. /* This is required by WaCatErrorRejectionIssue:vlv */
  4634. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  4635. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  4636. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  4637. /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
  4638. * gating disable must be set. Failure to set it results in
  4639. * flickering pixels due to Z write ordering failures after
  4640. * some amount of runtime in the Mesa "fire" demo, and Unigine
  4641. * Sanctuary and Tropics, and apparently anything else with
  4642. * alpha test or pixel discard.
  4643. *
  4644. * According to the spec, bit 11 (RCCUNIT) must also be set,
  4645. * but we didn't debug actual testcases to find it out.
  4646. *
  4647. * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
  4648. * This implements the WaDisableRCZUnitClockGating:vlv workaround.
  4649. *
  4650. * Also apply WaDisableVDSUnitClockGating:vlv and
  4651. * WaDisableRCPBUnitClockGating:vlv.
  4652. */
  4653. I915_WRITE(GEN6_UCGCTL2,
  4654. GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
  4655. GEN7_TDLUNIT_CLOCK_GATE_DISABLE |
  4656. GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
  4657. GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
  4658. GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
  4659. I915_WRITE(GEN7_UCGCTL4, GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
  4660. I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
  4661. I915_WRITE(CACHE_MODE_1,
  4662. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  4663. /*
  4664. * WaDisableVLVClockGating_VBIIssue:vlv
  4665. * Disable clock gating on th GCFG unit to prevent a delay
  4666. * in the reporting of vblank events.
  4667. */
  4668. I915_WRITE(VLV_GUNIT_CLOCK_GATE, 0xffffffff);
  4669. /* Conservative clock gating settings for now */
  4670. I915_WRITE(0x9400, 0xffffffff);
  4671. I915_WRITE(0x9404, 0xffffffff);
  4672. I915_WRITE(0x9408, 0xffffffff);
  4673. I915_WRITE(0x940c, 0xffffffff);
  4674. I915_WRITE(0x9410, 0xffffffff);
  4675. I915_WRITE(0x9414, 0xffffffff);
  4676. I915_WRITE(0x9418, 0xffffffff);
  4677. }
  4678. static void g4x_init_clock_gating(struct drm_device *dev)
  4679. {
  4680. struct drm_i915_private *dev_priv = dev->dev_private;
  4681. uint32_t dspclk_gate;
  4682. I915_WRITE(RENCLK_GATE_D1, 0);
  4683. I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
  4684. GS_UNIT_CLOCK_GATE_DISABLE |
  4685. CL_UNIT_CLOCK_GATE_DISABLE);
  4686. I915_WRITE(RAMCLK_GATE_D, 0);
  4687. dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
  4688. OVRUNIT_CLOCK_GATE_DISABLE |
  4689. OVCUNIT_CLOCK_GATE_DISABLE;
  4690. if (IS_GM45(dev))
  4691. dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
  4692. I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
  4693. /* WaDisableRenderCachePipelinedFlush */
  4694. I915_WRITE(CACHE_MODE_0,
  4695. _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
  4696. g4x_disable_trickle_feed(dev);
  4697. }
  4698. static void crestline_init_clock_gating(struct drm_device *dev)
  4699. {
  4700. struct drm_i915_private *dev_priv = dev->dev_private;
  4701. I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
  4702. I915_WRITE(RENCLK_GATE_D2, 0);
  4703. I915_WRITE(DSPCLK_GATE_D, 0);
  4704. I915_WRITE(RAMCLK_GATE_D, 0);
  4705. I915_WRITE16(DEUC, 0);
  4706. I915_WRITE(MI_ARB_STATE,
  4707. _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
  4708. }
  4709. static void broadwater_init_clock_gating(struct drm_device *dev)
  4710. {
  4711. struct drm_i915_private *dev_priv = dev->dev_private;
  4712. I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
  4713. I965_RCC_CLOCK_GATE_DISABLE |
  4714. I965_RCPB_CLOCK_GATE_DISABLE |
  4715. I965_ISC_CLOCK_GATE_DISABLE |
  4716. I965_FBC_CLOCK_GATE_DISABLE);
  4717. I915_WRITE(RENCLK_GATE_D2, 0);
  4718. I915_WRITE(MI_ARB_STATE,
  4719. _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
  4720. }
  4721. static void gen3_init_clock_gating(struct drm_device *dev)
  4722. {
  4723. struct drm_i915_private *dev_priv = dev->dev_private;
  4724. u32 dstate = I915_READ(D_STATE);
  4725. dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
  4726. DSTATE_DOT_CLOCK_GATING;
  4727. I915_WRITE(D_STATE, dstate);
  4728. if (IS_PINEVIEW(dev))
  4729. I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
  4730. /* IIR "flip pending" means done if this bit is set */
  4731. I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
  4732. }
  4733. static void i85x_init_clock_gating(struct drm_device *dev)
  4734. {
  4735. struct drm_i915_private *dev_priv = dev->dev_private;
  4736. I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
  4737. }
  4738. static void i830_init_clock_gating(struct drm_device *dev)
  4739. {
  4740. struct drm_i915_private *dev_priv = dev->dev_private;
  4741. I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
  4742. }
  4743. void intel_init_clock_gating(struct drm_device *dev)
  4744. {
  4745. struct drm_i915_private *dev_priv = dev->dev_private;
  4746. dev_priv->display.init_clock_gating(dev);
  4747. }
  4748. void intel_suspend_hw(struct drm_device *dev)
  4749. {
  4750. if (HAS_PCH_LPT(dev))
  4751. lpt_suspend_hw(dev);
  4752. }
  4753. #define for_each_power_well(i, power_well, domain_mask, power_domains) \
  4754. for (i = 0; \
  4755. i < (power_domains)->power_well_count && \
  4756. ((power_well) = &(power_domains)->power_wells[i]); \
  4757. i++) \
  4758. if ((power_well)->domains & (domain_mask))
  4759. #define for_each_power_well_rev(i, power_well, domain_mask, power_domains) \
  4760. for (i = (power_domains)->power_well_count - 1; \
  4761. i >= 0 && ((power_well) = &(power_domains)->power_wells[i]);\
  4762. i--) \
  4763. if ((power_well)->domains & (domain_mask))
  4764. /**
  4765. * We should only use the power well if we explicitly asked the hardware to
  4766. * enable it, so check if it's enabled and also check if we've requested it to
  4767. * be enabled.
  4768. */
  4769. static bool hsw_power_well_enabled(struct drm_device *dev,
  4770. struct i915_power_well *power_well)
  4771. {
  4772. struct drm_i915_private *dev_priv = dev->dev_private;
  4773. return I915_READ(HSW_PWR_WELL_DRIVER) ==
  4774. (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
  4775. }
  4776. bool intel_display_power_enabled_sw(struct drm_device *dev,
  4777. enum intel_display_power_domain domain)
  4778. {
  4779. struct drm_i915_private *dev_priv = dev->dev_private;
  4780. struct i915_power_domains *power_domains;
  4781. power_domains = &dev_priv->power_domains;
  4782. return power_domains->domain_use_count[domain];
  4783. }
  4784. bool intel_display_power_enabled(struct drm_device *dev,
  4785. enum intel_display_power_domain domain)
  4786. {
  4787. struct drm_i915_private *dev_priv = dev->dev_private;
  4788. struct i915_power_domains *power_domains;
  4789. struct i915_power_well *power_well;
  4790. bool is_enabled;
  4791. int i;
  4792. power_domains = &dev_priv->power_domains;
  4793. is_enabled = true;
  4794. mutex_lock(&power_domains->lock);
  4795. for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
  4796. if (power_well->always_on)
  4797. continue;
  4798. if (!power_well->is_enabled(dev, power_well)) {
  4799. is_enabled = false;
  4800. break;
  4801. }
  4802. }
  4803. mutex_unlock(&power_domains->lock);
  4804. return is_enabled;
  4805. }
  4806. static void hsw_power_well_post_enable(struct drm_i915_private *dev_priv)
  4807. {
  4808. struct drm_device *dev = dev_priv->dev;
  4809. unsigned long irqflags;
  4810. /*
  4811. * After we re-enable the power well, if we touch VGA register 0x3d5
  4812. * we'll get unclaimed register interrupts. This stops after we write
  4813. * anything to the VGA MSR register. The vgacon module uses this
  4814. * register all the time, so if we unbind our driver and, as a
  4815. * consequence, bind vgacon, we'll get stuck in an infinite loop at
  4816. * console_unlock(). So make here we touch the VGA MSR register, making
  4817. * sure vgacon can keep working normally without triggering interrupts
  4818. * and error messages.
  4819. */
  4820. vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
  4821. outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
  4822. vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
  4823. if (IS_BROADWELL(dev)) {
  4824. spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
  4825. I915_WRITE(GEN8_DE_PIPE_IMR(PIPE_B),
  4826. dev_priv->de_irq_mask[PIPE_B]);
  4827. I915_WRITE(GEN8_DE_PIPE_IER(PIPE_B),
  4828. ~dev_priv->de_irq_mask[PIPE_B] |
  4829. GEN8_PIPE_VBLANK);
  4830. I915_WRITE(GEN8_DE_PIPE_IMR(PIPE_C),
  4831. dev_priv->de_irq_mask[PIPE_C]);
  4832. I915_WRITE(GEN8_DE_PIPE_IER(PIPE_C),
  4833. ~dev_priv->de_irq_mask[PIPE_C] |
  4834. GEN8_PIPE_VBLANK);
  4835. POSTING_READ(GEN8_DE_PIPE_IER(PIPE_C));
  4836. spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
  4837. }
  4838. }
  4839. static void hsw_power_well_post_disable(struct drm_i915_private *dev_priv)
  4840. {
  4841. struct drm_device *dev = dev_priv->dev;
  4842. enum pipe p;
  4843. unsigned long irqflags;
  4844. /*
  4845. * After this, the registers on the pipes that are part of the power
  4846. * well will become zero, so we have to adjust our counters according to
  4847. * that.
  4848. *
  4849. * FIXME: Should we do this in general in drm_vblank_post_modeset?
  4850. */
  4851. spin_lock_irqsave(&dev->vbl_lock, irqflags);
  4852. for_each_pipe(p)
  4853. if (p != PIPE_A)
  4854. dev->vblank[p].last = 0;
  4855. spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
  4856. }
  4857. static void hsw_set_power_well(struct drm_device *dev,
  4858. struct i915_power_well *power_well, bool enable)
  4859. {
  4860. struct drm_i915_private *dev_priv = dev->dev_private;
  4861. bool is_enabled, enable_requested;
  4862. uint32_t tmp;
  4863. WARN_ON(dev_priv->pc8.enabled);
  4864. tmp = I915_READ(HSW_PWR_WELL_DRIVER);
  4865. is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
  4866. enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
  4867. if (enable) {
  4868. if (!enable_requested)
  4869. I915_WRITE(HSW_PWR_WELL_DRIVER,
  4870. HSW_PWR_WELL_ENABLE_REQUEST);
  4871. if (!is_enabled) {
  4872. DRM_DEBUG_KMS("Enabling power well\n");
  4873. if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
  4874. HSW_PWR_WELL_STATE_ENABLED), 20))
  4875. DRM_ERROR("Timeout enabling power well\n");
  4876. }
  4877. hsw_power_well_post_enable(dev_priv);
  4878. } else {
  4879. if (enable_requested) {
  4880. I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
  4881. POSTING_READ(HSW_PWR_WELL_DRIVER);
  4882. DRM_DEBUG_KMS("Requesting to disable the power well\n");
  4883. hsw_power_well_post_disable(dev_priv);
  4884. }
  4885. }
  4886. }
  4887. static void __intel_power_well_get(struct drm_device *dev,
  4888. struct i915_power_well *power_well)
  4889. {
  4890. struct drm_i915_private *dev_priv = dev->dev_private;
  4891. if (!power_well->count++ && power_well->set) {
  4892. hsw_disable_package_c8(dev_priv);
  4893. power_well->set(dev, power_well, true);
  4894. }
  4895. }
  4896. static void __intel_power_well_put(struct drm_device *dev,
  4897. struct i915_power_well *power_well)
  4898. {
  4899. struct drm_i915_private *dev_priv = dev->dev_private;
  4900. WARN_ON(!power_well->count);
  4901. if (!--power_well->count && power_well->set &&
  4902. i915_disable_power_well) {
  4903. power_well->set(dev, power_well, false);
  4904. hsw_enable_package_c8(dev_priv);
  4905. }
  4906. }
  4907. void intel_display_power_get(struct drm_device *dev,
  4908. enum intel_display_power_domain domain)
  4909. {
  4910. struct drm_i915_private *dev_priv = dev->dev_private;
  4911. struct i915_power_domains *power_domains;
  4912. struct i915_power_well *power_well;
  4913. int i;
  4914. power_domains = &dev_priv->power_domains;
  4915. mutex_lock(&power_domains->lock);
  4916. for_each_power_well(i, power_well, BIT(domain), power_domains)
  4917. __intel_power_well_get(dev, power_well);
  4918. power_domains->domain_use_count[domain]++;
  4919. mutex_unlock(&power_domains->lock);
  4920. }
  4921. void intel_display_power_put(struct drm_device *dev,
  4922. enum intel_display_power_domain domain)
  4923. {
  4924. struct drm_i915_private *dev_priv = dev->dev_private;
  4925. struct i915_power_domains *power_domains;
  4926. struct i915_power_well *power_well;
  4927. int i;
  4928. power_domains = &dev_priv->power_domains;
  4929. mutex_lock(&power_domains->lock);
  4930. WARN_ON(!power_domains->domain_use_count[domain]);
  4931. power_domains->domain_use_count[domain]--;
  4932. for_each_power_well_rev(i, power_well, BIT(domain), power_domains)
  4933. __intel_power_well_put(dev, power_well);
  4934. mutex_unlock(&power_domains->lock);
  4935. }
  4936. static struct i915_power_domains *hsw_pwr;
  4937. /* Display audio driver power well request */
  4938. void i915_request_power_well(void)
  4939. {
  4940. struct drm_i915_private *dev_priv;
  4941. if (WARN_ON(!hsw_pwr))
  4942. return;
  4943. dev_priv = container_of(hsw_pwr, struct drm_i915_private,
  4944. power_domains);
  4945. intel_display_power_get(dev_priv->dev, POWER_DOMAIN_AUDIO);
  4946. }
  4947. EXPORT_SYMBOL_GPL(i915_request_power_well);
  4948. /* Display audio driver power well release */
  4949. void i915_release_power_well(void)
  4950. {
  4951. struct drm_i915_private *dev_priv;
  4952. if (WARN_ON(!hsw_pwr))
  4953. return;
  4954. dev_priv = container_of(hsw_pwr, struct drm_i915_private,
  4955. power_domains);
  4956. intel_display_power_put(dev_priv->dev, POWER_DOMAIN_AUDIO);
  4957. }
  4958. EXPORT_SYMBOL_GPL(i915_release_power_well);
  4959. static struct i915_power_well i9xx_always_on_power_well[] = {
  4960. {
  4961. .name = "always-on",
  4962. .always_on = 1,
  4963. .domains = POWER_DOMAIN_MASK,
  4964. },
  4965. };
  4966. static struct i915_power_well hsw_power_wells[] = {
  4967. {
  4968. .name = "always-on",
  4969. .always_on = 1,
  4970. .domains = HSW_ALWAYS_ON_POWER_DOMAINS,
  4971. },
  4972. {
  4973. .name = "display",
  4974. .domains = POWER_DOMAIN_MASK & ~HSW_ALWAYS_ON_POWER_DOMAINS,
  4975. .is_enabled = hsw_power_well_enabled,
  4976. .set = hsw_set_power_well,
  4977. },
  4978. };
  4979. static struct i915_power_well bdw_power_wells[] = {
  4980. {
  4981. .name = "always-on",
  4982. .always_on = 1,
  4983. .domains = BDW_ALWAYS_ON_POWER_DOMAINS,
  4984. },
  4985. {
  4986. .name = "display",
  4987. .domains = POWER_DOMAIN_MASK & ~BDW_ALWAYS_ON_POWER_DOMAINS,
  4988. .is_enabled = hsw_power_well_enabled,
  4989. .set = hsw_set_power_well,
  4990. },
  4991. };
  4992. #define set_power_wells(power_domains, __power_wells) ({ \
  4993. (power_domains)->power_wells = (__power_wells); \
  4994. (power_domains)->power_well_count = ARRAY_SIZE(__power_wells); \
  4995. })
  4996. int intel_power_domains_init(struct drm_device *dev)
  4997. {
  4998. struct drm_i915_private *dev_priv = dev->dev_private;
  4999. struct i915_power_domains *power_domains = &dev_priv->power_domains;
  5000. mutex_init(&power_domains->lock);
  5001. /*
  5002. * The enabling order will be from lower to higher indexed wells,
  5003. * the disabling order is reversed.
  5004. */
  5005. if (IS_HASWELL(dev)) {
  5006. set_power_wells(power_domains, hsw_power_wells);
  5007. hsw_pwr = power_domains;
  5008. } else if (IS_BROADWELL(dev)) {
  5009. set_power_wells(power_domains, bdw_power_wells);
  5010. hsw_pwr = power_domains;
  5011. } else {
  5012. set_power_wells(power_domains, i9xx_always_on_power_well);
  5013. }
  5014. return 0;
  5015. }
  5016. void intel_power_domains_remove(struct drm_device *dev)
  5017. {
  5018. hsw_pwr = NULL;
  5019. }
  5020. static void intel_power_domains_resume(struct drm_device *dev)
  5021. {
  5022. struct drm_i915_private *dev_priv = dev->dev_private;
  5023. struct i915_power_domains *power_domains = &dev_priv->power_domains;
  5024. struct i915_power_well *power_well;
  5025. int i;
  5026. mutex_lock(&power_domains->lock);
  5027. for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains) {
  5028. if (power_well->set)
  5029. power_well->set(dev, power_well, power_well->count > 0);
  5030. }
  5031. mutex_unlock(&power_domains->lock);
  5032. }
  5033. /*
  5034. * Starting with Haswell, we have a "Power Down Well" that can be turned off
  5035. * when not needed anymore. We have 4 registers that can request the power well
  5036. * to be enabled, and it will only be disabled if none of the registers is
  5037. * requesting it to be enabled.
  5038. */
  5039. void intel_power_domains_init_hw(struct drm_device *dev)
  5040. {
  5041. struct drm_i915_private *dev_priv = dev->dev_private;
  5042. /* For now, we need the power well to be always enabled. */
  5043. intel_display_set_init_power(dev, true);
  5044. intel_power_domains_resume(dev);
  5045. if (!(IS_HASWELL(dev) || IS_BROADWELL(dev)))
  5046. return;
  5047. /* We're taking over the BIOS, so clear any requests made by it since
  5048. * the driver is in charge now. */
  5049. if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
  5050. I915_WRITE(HSW_PWR_WELL_BIOS, 0);
  5051. }
  5052. /* Disables PC8 so we can use the GMBUS and DP AUX interrupts. */
  5053. void intel_aux_display_runtime_get(struct drm_i915_private *dev_priv)
  5054. {
  5055. hsw_disable_package_c8(dev_priv);
  5056. }
  5057. void intel_aux_display_runtime_put(struct drm_i915_private *dev_priv)
  5058. {
  5059. hsw_enable_package_c8(dev_priv);
  5060. }
  5061. void intel_runtime_pm_get(struct drm_i915_private *dev_priv)
  5062. {
  5063. struct drm_device *dev = dev_priv->dev;
  5064. struct device *device = &dev->pdev->dev;
  5065. if (!HAS_RUNTIME_PM(dev))
  5066. return;
  5067. pm_runtime_get_sync(device);
  5068. WARN(dev_priv->pm.suspended, "Device still suspended.\n");
  5069. }
  5070. void intel_runtime_pm_put(struct drm_i915_private *dev_priv)
  5071. {
  5072. struct drm_device *dev = dev_priv->dev;
  5073. struct device *device = &dev->pdev->dev;
  5074. if (!HAS_RUNTIME_PM(dev))
  5075. return;
  5076. pm_runtime_mark_last_busy(device);
  5077. pm_runtime_put_autosuspend(device);
  5078. }
  5079. void intel_init_runtime_pm(struct drm_i915_private *dev_priv)
  5080. {
  5081. struct drm_device *dev = dev_priv->dev;
  5082. struct device *device = &dev->pdev->dev;
  5083. dev_priv->pm.suspended = false;
  5084. if (!HAS_RUNTIME_PM(dev))
  5085. return;
  5086. pm_runtime_set_active(device);
  5087. pm_runtime_set_autosuspend_delay(device, 10000); /* 10s */
  5088. pm_runtime_mark_last_busy(device);
  5089. pm_runtime_use_autosuspend(device);
  5090. }
  5091. void intel_fini_runtime_pm(struct drm_i915_private *dev_priv)
  5092. {
  5093. struct drm_device *dev = dev_priv->dev;
  5094. struct device *device = &dev->pdev->dev;
  5095. if (!HAS_RUNTIME_PM(dev))
  5096. return;
  5097. /* Make sure we're not suspended first. */
  5098. pm_runtime_get_sync(device);
  5099. pm_runtime_disable(device);
  5100. }
  5101. /* Set up chip specific power management-related functions */
  5102. void intel_init_pm(struct drm_device *dev)
  5103. {
  5104. struct drm_i915_private *dev_priv = dev->dev_private;
  5105. if (I915_HAS_FBC(dev)) {
  5106. if (INTEL_INFO(dev)->gen >= 7) {
  5107. dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
  5108. dev_priv->display.enable_fbc = gen7_enable_fbc;
  5109. dev_priv->display.disable_fbc = ironlake_disable_fbc;
  5110. } else if (INTEL_INFO(dev)->gen >= 5) {
  5111. dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
  5112. dev_priv->display.enable_fbc = ironlake_enable_fbc;
  5113. dev_priv->display.disable_fbc = ironlake_disable_fbc;
  5114. } else if (IS_GM45(dev)) {
  5115. dev_priv->display.fbc_enabled = g4x_fbc_enabled;
  5116. dev_priv->display.enable_fbc = g4x_enable_fbc;
  5117. dev_priv->display.disable_fbc = g4x_disable_fbc;
  5118. } else {
  5119. dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
  5120. dev_priv->display.enable_fbc = i8xx_enable_fbc;
  5121. dev_priv->display.disable_fbc = i8xx_disable_fbc;
  5122. /* This value was pulled out of someone's hat */
  5123. I915_WRITE(FBC_CONTROL, 500 << FBC_CTL_INTERVAL_SHIFT);
  5124. }
  5125. }
  5126. /* For cxsr */
  5127. if (IS_PINEVIEW(dev))
  5128. i915_pineview_get_mem_freq(dev);
  5129. else if (IS_GEN5(dev))
  5130. i915_ironlake_get_mem_freq(dev);
  5131. /* For FIFO watermark updates */
  5132. if (HAS_PCH_SPLIT(dev)) {
  5133. intel_setup_wm_latency(dev);
  5134. if (IS_GEN5(dev)) {
  5135. if (dev_priv->wm.pri_latency[1] &&
  5136. dev_priv->wm.spr_latency[1] &&
  5137. dev_priv->wm.cur_latency[1])
  5138. dev_priv->display.update_wm = ironlake_update_wm;
  5139. else {
  5140. DRM_DEBUG_KMS("Failed to get proper latency. "
  5141. "Disable CxSR\n");
  5142. dev_priv->display.update_wm = NULL;
  5143. }
  5144. dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
  5145. } else if (IS_GEN6(dev)) {
  5146. if (dev_priv->wm.pri_latency[0] &&
  5147. dev_priv->wm.spr_latency[0] &&
  5148. dev_priv->wm.cur_latency[0]) {
  5149. dev_priv->display.update_wm = sandybridge_update_wm;
  5150. dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
  5151. } else {
  5152. DRM_DEBUG_KMS("Failed to read display plane latency. "
  5153. "Disable CxSR\n");
  5154. dev_priv->display.update_wm = NULL;
  5155. }
  5156. dev_priv->display.init_clock_gating = gen6_init_clock_gating;
  5157. } else if (IS_IVYBRIDGE(dev)) {
  5158. if (dev_priv->wm.pri_latency[0] &&
  5159. dev_priv->wm.spr_latency[0] &&
  5160. dev_priv->wm.cur_latency[0]) {
  5161. dev_priv->display.update_wm = ivybridge_update_wm;
  5162. dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
  5163. } else {
  5164. DRM_DEBUG_KMS("Failed to read display plane latency. "
  5165. "Disable CxSR\n");
  5166. dev_priv->display.update_wm = NULL;
  5167. }
  5168. dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
  5169. } else if (IS_HASWELL(dev)) {
  5170. if (dev_priv->wm.pri_latency[0] &&
  5171. dev_priv->wm.spr_latency[0] &&
  5172. dev_priv->wm.cur_latency[0]) {
  5173. dev_priv->display.update_wm = haswell_update_wm;
  5174. dev_priv->display.update_sprite_wm =
  5175. haswell_update_sprite_wm;
  5176. } else {
  5177. DRM_DEBUG_KMS("Failed to read display plane latency. "
  5178. "Disable CxSR\n");
  5179. dev_priv->display.update_wm = NULL;
  5180. }
  5181. dev_priv->display.init_clock_gating = haswell_init_clock_gating;
  5182. } else if (INTEL_INFO(dev)->gen == 8) {
  5183. dev_priv->display.init_clock_gating = gen8_init_clock_gating;
  5184. } else
  5185. dev_priv->display.update_wm = NULL;
  5186. } else if (IS_VALLEYVIEW(dev)) {
  5187. dev_priv->display.update_wm = valleyview_update_wm;
  5188. dev_priv->display.init_clock_gating =
  5189. valleyview_init_clock_gating;
  5190. } else if (IS_PINEVIEW(dev)) {
  5191. if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
  5192. dev_priv->is_ddr3,
  5193. dev_priv->fsb_freq,
  5194. dev_priv->mem_freq)) {
  5195. DRM_INFO("failed to find known CxSR latency "
  5196. "(found ddr%s fsb freq %d, mem freq %d), "
  5197. "disabling CxSR\n",
  5198. (dev_priv->is_ddr3 == 1) ? "3" : "2",
  5199. dev_priv->fsb_freq, dev_priv->mem_freq);
  5200. /* Disable CxSR and never update its watermark again */
  5201. pineview_disable_cxsr(dev);
  5202. dev_priv->display.update_wm = NULL;
  5203. } else
  5204. dev_priv->display.update_wm = pineview_update_wm;
  5205. dev_priv->display.init_clock_gating = gen3_init_clock_gating;
  5206. } else if (IS_G4X(dev)) {
  5207. dev_priv->display.update_wm = g4x_update_wm;
  5208. dev_priv->display.init_clock_gating = g4x_init_clock_gating;
  5209. } else if (IS_GEN4(dev)) {
  5210. dev_priv->display.update_wm = i965_update_wm;
  5211. if (IS_CRESTLINE(dev))
  5212. dev_priv->display.init_clock_gating = crestline_init_clock_gating;
  5213. else if (IS_BROADWATER(dev))
  5214. dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
  5215. } else if (IS_GEN3(dev)) {
  5216. dev_priv->display.update_wm = i9xx_update_wm;
  5217. dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
  5218. dev_priv->display.init_clock_gating = gen3_init_clock_gating;
  5219. } else if (IS_I865G(dev)) {
  5220. dev_priv->display.update_wm = i830_update_wm;
  5221. dev_priv->display.init_clock_gating = i85x_init_clock_gating;
  5222. dev_priv->display.get_fifo_size = i830_get_fifo_size;
  5223. } else if (IS_I85X(dev)) {
  5224. dev_priv->display.update_wm = i9xx_update_wm;
  5225. dev_priv->display.get_fifo_size = i85x_get_fifo_size;
  5226. dev_priv->display.init_clock_gating = i85x_init_clock_gating;
  5227. } else {
  5228. dev_priv->display.update_wm = i830_update_wm;
  5229. dev_priv->display.init_clock_gating = i830_init_clock_gating;
  5230. if (IS_845G(dev))
  5231. dev_priv->display.get_fifo_size = i845_get_fifo_size;
  5232. else
  5233. dev_priv->display.get_fifo_size = i830_get_fifo_size;
  5234. }
  5235. }
  5236. int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
  5237. {
  5238. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  5239. if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
  5240. DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
  5241. return -EAGAIN;
  5242. }
  5243. I915_WRITE(GEN6_PCODE_DATA, *val);
  5244. I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
  5245. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  5246. 500)) {
  5247. DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
  5248. return -ETIMEDOUT;
  5249. }
  5250. *val = I915_READ(GEN6_PCODE_DATA);
  5251. I915_WRITE(GEN6_PCODE_DATA, 0);
  5252. return 0;
  5253. }
  5254. int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
  5255. {
  5256. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  5257. if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
  5258. DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
  5259. return -EAGAIN;
  5260. }
  5261. I915_WRITE(GEN6_PCODE_DATA, val);
  5262. I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
  5263. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  5264. 500)) {
  5265. DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
  5266. return -ETIMEDOUT;
  5267. }
  5268. I915_WRITE(GEN6_PCODE_DATA, 0);
  5269. return 0;
  5270. }
  5271. int vlv_gpu_freq(struct drm_i915_private *dev_priv, int val)
  5272. {
  5273. int div;
  5274. /* 4 x czclk */
  5275. switch (dev_priv->mem_freq) {
  5276. case 800:
  5277. div = 10;
  5278. break;
  5279. case 1066:
  5280. div = 12;
  5281. break;
  5282. case 1333:
  5283. div = 16;
  5284. break;
  5285. default:
  5286. return -1;
  5287. }
  5288. return DIV_ROUND_CLOSEST(dev_priv->mem_freq * (val + 6 - 0xbd), 4 * div);
  5289. }
  5290. int vlv_freq_opcode(struct drm_i915_private *dev_priv, int val)
  5291. {
  5292. int mul;
  5293. /* 4 x czclk */
  5294. switch (dev_priv->mem_freq) {
  5295. case 800:
  5296. mul = 10;
  5297. break;
  5298. case 1066:
  5299. mul = 12;
  5300. break;
  5301. case 1333:
  5302. mul = 16;
  5303. break;
  5304. default:
  5305. return -1;
  5306. }
  5307. return DIV_ROUND_CLOSEST(4 * mul * val, dev_priv->mem_freq) + 0xbd - 6;
  5308. }
  5309. void intel_pm_init(struct drm_device *dev)
  5310. {
  5311. struct drm_i915_private *dev_priv = dev->dev_private;
  5312. INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
  5313. intel_gen6_powersave_work);
  5314. }