mmc.c 58 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222
  1. /*
  2. * linux/drivers/mmc/core/mmc.c
  3. *
  4. * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
  5. * Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved.
  6. * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License version 2 as
  10. * published by the Free Software Foundation.
  11. */
  12. #include <linux/err.h>
  13. #include <linux/of.h>
  14. #include <linux/slab.h>
  15. #include <linux/stat.h>
  16. #include <linux/pm_runtime.h>
  17. #include <linux/mmc/host.h>
  18. #include <linux/mmc/card.h>
  19. #include <linux/mmc/mmc.h>
  20. #include "core.h"
  21. #include "card.h"
  22. #include "host.h"
  23. #include "bus.h"
  24. #include "mmc_ops.h"
  25. #include "quirks.h"
  26. #include "sd_ops.h"
  27. #include "pwrseq.h"
  28. #define DEFAULT_CMD6_TIMEOUT_MS 500
  29. static const unsigned int tran_exp[] = {
  30. 10000, 100000, 1000000, 10000000,
  31. 0, 0, 0, 0
  32. };
  33. static const unsigned char tran_mant[] = {
  34. 0, 10, 12, 13, 15, 20, 25, 30,
  35. 35, 40, 45, 50, 55, 60, 70, 80,
  36. };
  37. static const unsigned int taac_exp[] = {
  38. 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000,
  39. };
  40. static const unsigned int taac_mant[] = {
  41. 0, 10, 12, 13, 15, 20, 25, 30,
  42. 35, 40, 45, 50, 55, 60, 70, 80,
  43. };
  44. #define UNSTUFF_BITS(resp,start,size) \
  45. ({ \
  46. const int __size = size; \
  47. const u32 __mask = (__size < 32 ? 1 << __size : 0) - 1; \
  48. const int __off = 3 - ((start) / 32); \
  49. const int __shft = (start) & 31; \
  50. u32 __res; \
  51. \
  52. __res = resp[__off] >> __shft; \
  53. if (__size + __shft > 32) \
  54. __res |= resp[__off-1] << ((32 - __shft) % 32); \
  55. __res & __mask; \
  56. })
  57. /*
  58. * Given the decoded CSD structure, decode the raw CID to our CID structure.
  59. */
  60. static int mmc_decode_cid(struct mmc_card *card)
  61. {
  62. u32 *resp = card->raw_cid;
  63. /*
  64. * The selection of the format here is based upon published
  65. * specs from sandisk and from what people have reported.
  66. */
  67. switch (card->csd.mmca_vsn) {
  68. case 0: /* MMC v1.0 - v1.2 */
  69. case 1: /* MMC v1.4 */
  70. card->cid.manfid = UNSTUFF_BITS(resp, 104, 24);
  71. card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8);
  72. card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8);
  73. card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8);
  74. card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8);
  75. card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8);
  76. card->cid.prod_name[5] = UNSTUFF_BITS(resp, 56, 8);
  77. card->cid.prod_name[6] = UNSTUFF_BITS(resp, 48, 8);
  78. card->cid.hwrev = UNSTUFF_BITS(resp, 44, 4);
  79. card->cid.fwrev = UNSTUFF_BITS(resp, 40, 4);
  80. card->cid.serial = UNSTUFF_BITS(resp, 16, 24);
  81. card->cid.month = UNSTUFF_BITS(resp, 12, 4);
  82. card->cid.year = UNSTUFF_BITS(resp, 8, 4) + 1997;
  83. break;
  84. case 2: /* MMC v2.0 - v2.2 */
  85. case 3: /* MMC v3.1 - v3.3 */
  86. case 4: /* MMC v4 */
  87. card->cid.manfid = UNSTUFF_BITS(resp, 120, 8);
  88. card->cid.oemid = UNSTUFF_BITS(resp, 104, 16);
  89. card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8);
  90. card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8);
  91. card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8);
  92. card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8);
  93. card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8);
  94. card->cid.prod_name[5] = UNSTUFF_BITS(resp, 56, 8);
  95. card->cid.prv = UNSTUFF_BITS(resp, 48, 8);
  96. card->cid.serial = UNSTUFF_BITS(resp, 16, 32);
  97. card->cid.month = UNSTUFF_BITS(resp, 12, 4);
  98. card->cid.year = UNSTUFF_BITS(resp, 8, 4) + 1997;
  99. break;
  100. default:
  101. pr_err("%s: card has unknown MMCA version %d\n",
  102. mmc_hostname(card->host), card->csd.mmca_vsn);
  103. return -EINVAL;
  104. }
  105. return 0;
  106. }
  107. static void mmc_set_erase_size(struct mmc_card *card)
  108. {
  109. if (card->ext_csd.erase_group_def & 1)
  110. card->erase_size = card->ext_csd.hc_erase_size;
  111. else
  112. card->erase_size = card->csd.erase_size;
  113. mmc_init_erase(card);
  114. }
  115. /*
  116. * Given a 128-bit response, decode to our card CSD structure.
  117. */
  118. static int mmc_decode_csd(struct mmc_card *card)
  119. {
  120. struct mmc_csd *csd = &card->csd;
  121. unsigned int e, m, a, b;
  122. u32 *resp = card->raw_csd;
  123. /*
  124. * We only understand CSD structure v1.1 and v1.2.
  125. * v1.2 has extra information in bits 15, 11 and 10.
  126. * We also support eMMC v4.4 & v4.41.
  127. */
  128. csd->structure = UNSTUFF_BITS(resp, 126, 2);
  129. if (csd->structure == 0) {
  130. pr_err("%s: unrecognised CSD structure version %d\n",
  131. mmc_hostname(card->host), csd->structure);
  132. return -EINVAL;
  133. }
  134. csd->mmca_vsn = UNSTUFF_BITS(resp, 122, 4);
  135. m = UNSTUFF_BITS(resp, 115, 4);
  136. e = UNSTUFF_BITS(resp, 112, 3);
  137. csd->taac_ns = (taac_exp[e] * taac_mant[m] + 9) / 10;
  138. csd->taac_clks = UNSTUFF_BITS(resp, 104, 8) * 100;
  139. m = UNSTUFF_BITS(resp, 99, 4);
  140. e = UNSTUFF_BITS(resp, 96, 3);
  141. csd->max_dtr = tran_exp[e] * tran_mant[m];
  142. csd->cmdclass = UNSTUFF_BITS(resp, 84, 12);
  143. e = UNSTUFF_BITS(resp, 47, 3);
  144. m = UNSTUFF_BITS(resp, 62, 12);
  145. csd->capacity = (1 + m) << (e + 2);
  146. csd->read_blkbits = UNSTUFF_BITS(resp, 80, 4);
  147. csd->read_partial = UNSTUFF_BITS(resp, 79, 1);
  148. csd->write_misalign = UNSTUFF_BITS(resp, 78, 1);
  149. csd->read_misalign = UNSTUFF_BITS(resp, 77, 1);
  150. csd->dsr_imp = UNSTUFF_BITS(resp, 76, 1);
  151. csd->r2w_factor = UNSTUFF_BITS(resp, 26, 3);
  152. csd->write_blkbits = UNSTUFF_BITS(resp, 22, 4);
  153. csd->write_partial = UNSTUFF_BITS(resp, 21, 1);
  154. if (csd->write_blkbits >= 9) {
  155. a = UNSTUFF_BITS(resp, 42, 5);
  156. b = UNSTUFF_BITS(resp, 37, 5);
  157. csd->erase_size = (a + 1) * (b + 1);
  158. csd->erase_size <<= csd->write_blkbits - 9;
  159. }
  160. return 0;
  161. }
  162. static void mmc_select_card_type(struct mmc_card *card)
  163. {
  164. struct mmc_host *host = card->host;
  165. u8 card_type = card->ext_csd.raw_card_type;
  166. u32 caps = host->caps, caps2 = host->caps2;
  167. unsigned int hs_max_dtr = 0, hs200_max_dtr = 0;
  168. unsigned int avail_type = 0;
  169. if (caps & MMC_CAP_MMC_HIGHSPEED &&
  170. card_type & EXT_CSD_CARD_TYPE_HS_26) {
  171. hs_max_dtr = MMC_HIGH_26_MAX_DTR;
  172. avail_type |= EXT_CSD_CARD_TYPE_HS_26;
  173. }
  174. if (caps & MMC_CAP_MMC_HIGHSPEED &&
  175. card_type & EXT_CSD_CARD_TYPE_HS_52) {
  176. hs_max_dtr = MMC_HIGH_52_MAX_DTR;
  177. avail_type |= EXT_CSD_CARD_TYPE_HS_52;
  178. }
  179. if (caps & (MMC_CAP_1_8V_DDR | MMC_CAP_3_3V_DDR) &&
  180. card_type & EXT_CSD_CARD_TYPE_DDR_1_8V) {
  181. hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
  182. avail_type |= EXT_CSD_CARD_TYPE_DDR_1_8V;
  183. }
  184. if (caps & MMC_CAP_1_2V_DDR &&
  185. card_type & EXT_CSD_CARD_TYPE_DDR_1_2V) {
  186. hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
  187. avail_type |= EXT_CSD_CARD_TYPE_DDR_1_2V;
  188. }
  189. if (caps2 & MMC_CAP2_HS200_1_8V_SDR &&
  190. card_type & EXT_CSD_CARD_TYPE_HS200_1_8V) {
  191. hs200_max_dtr = MMC_HS200_MAX_DTR;
  192. avail_type |= EXT_CSD_CARD_TYPE_HS200_1_8V;
  193. }
  194. if (caps2 & MMC_CAP2_HS200_1_2V_SDR &&
  195. card_type & EXT_CSD_CARD_TYPE_HS200_1_2V) {
  196. hs200_max_dtr = MMC_HS200_MAX_DTR;
  197. avail_type |= EXT_CSD_CARD_TYPE_HS200_1_2V;
  198. }
  199. if (caps2 & MMC_CAP2_HS400_1_8V &&
  200. card_type & EXT_CSD_CARD_TYPE_HS400_1_8V) {
  201. hs200_max_dtr = MMC_HS200_MAX_DTR;
  202. avail_type |= EXT_CSD_CARD_TYPE_HS400_1_8V;
  203. }
  204. if (caps2 & MMC_CAP2_HS400_1_2V &&
  205. card_type & EXT_CSD_CARD_TYPE_HS400_1_2V) {
  206. hs200_max_dtr = MMC_HS200_MAX_DTR;
  207. avail_type |= EXT_CSD_CARD_TYPE_HS400_1_2V;
  208. }
  209. if ((caps2 & MMC_CAP2_HS400_ES) &&
  210. card->ext_csd.strobe_support &&
  211. (avail_type & EXT_CSD_CARD_TYPE_HS400))
  212. avail_type |= EXT_CSD_CARD_TYPE_HS400ES;
  213. card->ext_csd.hs_max_dtr = hs_max_dtr;
  214. card->ext_csd.hs200_max_dtr = hs200_max_dtr;
  215. card->mmc_avail_type = avail_type;
  216. }
  217. static void mmc_manage_enhanced_area(struct mmc_card *card, u8 *ext_csd)
  218. {
  219. u8 hc_erase_grp_sz, hc_wp_grp_sz;
  220. /*
  221. * Disable these attributes by default
  222. */
  223. card->ext_csd.enhanced_area_offset = -EINVAL;
  224. card->ext_csd.enhanced_area_size = -EINVAL;
  225. /*
  226. * Enhanced area feature support -- check whether the eMMC
  227. * card has the Enhanced area enabled. If so, export enhanced
  228. * area offset and size to user by adding sysfs interface.
  229. */
  230. if ((ext_csd[EXT_CSD_PARTITION_SUPPORT] & 0x2) &&
  231. (ext_csd[EXT_CSD_PARTITION_ATTRIBUTE] & 0x1)) {
  232. if (card->ext_csd.partition_setting_completed) {
  233. hc_erase_grp_sz =
  234. ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
  235. hc_wp_grp_sz =
  236. ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
  237. /*
  238. * calculate the enhanced data area offset, in bytes
  239. */
  240. card->ext_csd.enhanced_area_offset =
  241. (((unsigned long long)ext_csd[139]) << 24) +
  242. (((unsigned long long)ext_csd[138]) << 16) +
  243. (((unsigned long long)ext_csd[137]) << 8) +
  244. (((unsigned long long)ext_csd[136]));
  245. if (mmc_card_blockaddr(card))
  246. card->ext_csd.enhanced_area_offset <<= 9;
  247. /*
  248. * calculate the enhanced data area size, in kilobytes
  249. */
  250. card->ext_csd.enhanced_area_size =
  251. (ext_csd[142] << 16) + (ext_csd[141] << 8) +
  252. ext_csd[140];
  253. card->ext_csd.enhanced_area_size *=
  254. (size_t)(hc_erase_grp_sz * hc_wp_grp_sz);
  255. card->ext_csd.enhanced_area_size <<= 9;
  256. } else {
  257. pr_warn("%s: defines enhanced area without partition setting complete\n",
  258. mmc_hostname(card->host));
  259. }
  260. }
  261. }
  262. static void mmc_part_add(struct mmc_card *card, unsigned int size,
  263. unsigned int part_cfg, char *name, int idx, bool ro,
  264. int area_type)
  265. {
  266. card->part[card->nr_parts].size = size;
  267. card->part[card->nr_parts].part_cfg = part_cfg;
  268. sprintf(card->part[card->nr_parts].name, name, idx);
  269. card->part[card->nr_parts].force_ro = ro;
  270. card->part[card->nr_parts].area_type = area_type;
  271. card->nr_parts++;
  272. }
  273. static void mmc_manage_gp_partitions(struct mmc_card *card, u8 *ext_csd)
  274. {
  275. int idx;
  276. u8 hc_erase_grp_sz, hc_wp_grp_sz;
  277. unsigned int part_size;
  278. /*
  279. * General purpose partition feature support --
  280. * If ext_csd has the size of general purpose partitions,
  281. * set size, part_cfg, partition name in mmc_part.
  282. */
  283. if (ext_csd[EXT_CSD_PARTITION_SUPPORT] &
  284. EXT_CSD_PART_SUPPORT_PART_EN) {
  285. hc_erase_grp_sz =
  286. ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
  287. hc_wp_grp_sz =
  288. ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
  289. for (idx = 0; idx < MMC_NUM_GP_PARTITION; idx++) {
  290. if (!ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3] &&
  291. !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1] &&
  292. !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2])
  293. continue;
  294. if (card->ext_csd.partition_setting_completed == 0) {
  295. pr_warn("%s: has partition size defined without partition complete\n",
  296. mmc_hostname(card->host));
  297. break;
  298. }
  299. part_size =
  300. (ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2]
  301. << 16) +
  302. (ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1]
  303. << 8) +
  304. ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3];
  305. part_size *= (size_t)(hc_erase_grp_sz *
  306. hc_wp_grp_sz);
  307. mmc_part_add(card, part_size << 19,
  308. EXT_CSD_PART_CONFIG_ACC_GP0 + idx,
  309. "gp%d", idx, false,
  310. MMC_BLK_DATA_AREA_GP);
  311. }
  312. }
  313. }
  314. /* Minimum partition switch timeout in milliseconds */
  315. #define MMC_MIN_PART_SWITCH_TIME 300
  316. /*
  317. * Decode extended CSD.
  318. */
  319. static int mmc_decode_ext_csd(struct mmc_card *card, u8 *ext_csd)
  320. {
  321. int err = 0, idx;
  322. unsigned int part_size;
  323. struct device_node *np;
  324. bool broken_hpi = false;
  325. /* Version is coded in the CSD_STRUCTURE byte in the EXT_CSD register */
  326. card->ext_csd.raw_ext_csd_structure = ext_csd[EXT_CSD_STRUCTURE];
  327. if (card->csd.structure == 3) {
  328. if (card->ext_csd.raw_ext_csd_structure > 2) {
  329. pr_err("%s: unrecognised EXT_CSD structure "
  330. "version %d\n", mmc_hostname(card->host),
  331. card->ext_csd.raw_ext_csd_structure);
  332. err = -EINVAL;
  333. goto out;
  334. }
  335. }
  336. np = mmc_of_find_child_device(card->host, 0);
  337. if (np && of_device_is_compatible(np, "mmc-card"))
  338. broken_hpi = of_property_read_bool(np, "broken-hpi");
  339. of_node_put(np);
  340. /*
  341. * The EXT_CSD format is meant to be forward compatible. As long
  342. * as CSD_STRUCTURE does not change, all values for EXT_CSD_REV
  343. * are authorized, see JEDEC JESD84-B50 section B.8.
  344. */
  345. card->ext_csd.rev = ext_csd[EXT_CSD_REV];
  346. /* fixup device after ext_csd revision field is updated */
  347. mmc_fixup_device(card, mmc_ext_csd_fixups);
  348. card->ext_csd.raw_sectors[0] = ext_csd[EXT_CSD_SEC_CNT + 0];
  349. card->ext_csd.raw_sectors[1] = ext_csd[EXT_CSD_SEC_CNT + 1];
  350. card->ext_csd.raw_sectors[2] = ext_csd[EXT_CSD_SEC_CNT + 2];
  351. card->ext_csd.raw_sectors[3] = ext_csd[EXT_CSD_SEC_CNT + 3];
  352. if (card->ext_csd.rev >= 2) {
  353. card->ext_csd.sectors =
  354. ext_csd[EXT_CSD_SEC_CNT + 0] << 0 |
  355. ext_csd[EXT_CSD_SEC_CNT + 1] << 8 |
  356. ext_csd[EXT_CSD_SEC_CNT + 2] << 16 |
  357. ext_csd[EXT_CSD_SEC_CNT + 3] << 24;
  358. /* Cards with density > 2GiB are sector addressed */
  359. if (card->ext_csd.sectors > (2u * 1024 * 1024 * 1024) / 512)
  360. mmc_card_set_blockaddr(card);
  361. }
  362. card->ext_csd.strobe_support = ext_csd[EXT_CSD_STROBE_SUPPORT];
  363. card->ext_csd.raw_card_type = ext_csd[EXT_CSD_CARD_TYPE];
  364. mmc_select_card_type(card);
  365. card->ext_csd.raw_s_a_timeout = ext_csd[EXT_CSD_S_A_TIMEOUT];
  366. card->ext_csd.raw_erase_timeout_mult =
  367. ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
  368. card->ext_csd.raw_hc_erase_grp_size =
  369. ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
  370. if (card->ext_csd.rev >= 3) {
  371. u8 sa_shift = ext_csd[EXT_CSD_S_A_TIMEOUT];
  372. card->ext_csd.part_config = ext_csd[EXT_CSD_PART_CONFIG];
  373. /* EXT_CSD value is in units of 10ms, but we store in ms */
  374. card->ext_csd.part_time = 10 * ext_csd[EXT_CSD_PART_SWITCH_TIME];
  375. /* Some eMMC set the value too low so set a minimum */
  376. if (card->ext_csd.part_time &&
  377. card->ext_csd.part_time < MMC_MIN_PART_SWITCH_TIME)
  378. card->ext_csd.part_time = MMC_MIN_PART_SWITCH_TIME;
  379. /* Sleep / awake timeout in 100ns units */
  380. if (sa_shift > 0 && sa_shift <= 0x17)
  381. card->ext_csd.sa_timeout =
  382. 1 << ext_csd[EXT_CSD_S_A_TIMEOUT];
  383. card->ext_csd.erase_group_def =
  384. ext_csd[EXT_CSD_ERASE_GROUP_DEF];
  385. card->ext_csd.hc_erase_timeout = 300 *
  386. ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
  387. card->ext_csd.hc_erase_size =
  388. ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] << 10;
  389. card->ext_csd.rel_sectors = ext_csd[EXT_CSD_REL_WR_SEC_C];
  390. /*
  391. * There are two boot regions of equal size, defined in
  392. * multiples of 128K.
  393. */
  394. if (ext_csd[EXT_CSD_BOOT_MULT] && mmc_boot_partition_access(card->host)) {
  395. for (idx = 0; idx < MMC_NUM_BOOT_PARTITION; idx++) {
  396. part_size = ext_csd[EXT_CSD_BOOT_MULT] << 17;
  397. mmc_part_add(card, part_size,
  398. EXT_CSD_PART_CONFIG_ACC_BOOT0 + idx,
  399. "boot%d", idx, true,
  400. MMC_BLK_DATA_AREA_BOOT);
  401. }
  402. }
  403. }
  404. card->ext_csd.raw_hc_erase_gap_size =
  405. ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
  406. card->ext_csd.raw_sec_trim_mult =
  407. ext_csd[EXT_CSD_SEC_TRIM_MULT];
  408. card->ext_csd.raw_sec_erase_mult =
  409. ext_csd[EXT_CSD_SEC_ERASE_MULT];
  410. card->ext_csd.raw_sec_feature_support =
  411. ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
  412. card->ext_csd.raw_trim_mult =
  413. ext_csd[EXT_CSD_TRIM_MULT];
  414. card->ext_csd.raw_partition_support = ext_csd[EXT_CSD_PARTITION_SUPPORT];
  415. card->ext_csd.raw_driver_strength = ext_csd[EXT_CSD_DRIVER_STRENGTH];
  416. if (card->ext_csd.rev >= 4) {
  417. if (ext_csd[EXT_CSD_PARTITION_SETTING_COMPLETED] &
  418. EXT_CSD_PART_SETTING_COMPLETED)
  419. card->ext_csd.partition_setting_completed = 1;
  420. else
  421. card->ext_csd.partition_setting_completed = 0;
  422. mmc_manage_enhanced_area(card, ext_csd);
  423. mmc_manage_gp_partitions(card, ext_csd);
  424. card->ext_csd.sec_trim_mult =
  425. ext_csd[EXT_CSD_SEC_TRIM_MULT];
  426. card->ext_csd.sec_erase_mult =
  427. ext_csd[EXT_CSD_SEC_ERASE_MULT];
  428. card->ext_csd.sec_feature_support =
  429. ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
  430. card->ext_csd.trim_timeout = 300 *
  431. ext_csd[EXT_CSD_TRIM_MULT];
  432. /*
  433. * Note that the call to mmc_part_add above defaults to read
  434. * only. If this default assumption is changed, the call must
  435. * take into account the value of boot_locked below.
  436. */
  437. card->ext_csd.boot_ro_lock = ext_csd[EXT_CSD_BOOT_WP];
  438. card->ext_csd.boot_ro_lockable = true;
  439. /* Save power class values */
  440. card->ext_csd.raw_pwr_cl_52_195 =
  441. ext_csd[EXT_CSD_PWR_CL_52_195];
  442. card->ext_csd.raw_pwr_cl_26_195 =
  443. ext_csd[EXT_CSD_PWR_CL_26_195];
  444. card->ext_csd.raw_pwr_cl_52_360 =
  445. ext_csd[EXT_CSD_PWR_CL_52_360];
  446. card->ext_csd.raw_pwr_cl_26_360 =
  447. ext_csd[EXT_CSD_PWR_CL_26_360];
  448. card->ext_csd.raw_pwr_cl_200_195 =
  449. ext_csd[EXT_CSD_PWR_CL_200_195];
  450. card->ext_csd.raw_pwr_cl_200_360 =
  451. ext_csd[EXT_CSD_PWR_CL_200_360];
  452. card->ext_csd.raw_pwr_cl_ddr_52_195 =
  453. ext_csd[EXT_CSD_PWR_CL_DDR_52_195];
  454. card->ext_csd.raw_pwr_cl_ddr_52_360 =
  455. ext_csd[EXT_CSD_PWR_CL_DDR_52_360];
  456. card->ext_csd.raw_pwr_cl_ddr_200_360 =
  457. ext_csd[EXT_CSD_PWR_CL_DDR_200_360];
  458. }
  459. if (card->ext_csd.rev >= 5) {
  460. /* Adjust production date as per JEDEC JESD84-B451 */
  461. if (card->cid.year < 2010)
  462. card->cid.year += 16;
  463. /* check whether the eMMC card supports BKOPS */
  464. if (!mmc_card_broken_hpi(card) &&
  465. ext_csd[EXT_CSD_BKOPS_SUPPORT] & 0x1) {
  466. card->ext_csd.bkops = 1;
  467. card->ext_csd.man_bkops_en =
  468. (ext_csd[EXT_CSD_BKOPS_EN] &
  469. EXT_CSD_MANUAL_BKOPS_MASK);
  470. card->ext_csd.raw_bkops_status =
  471. ext_csd[EXT_CSD_BKOPS_STATUS];
  472. if (card->ext_csd.man_bkops_en)
  473. pr_debug("%s: MAN_BKOPS_EN bit is set\n",
  474. mmc_hostname(card->host));
  475. card->ext_csd.auto_bkops_en =
  476. (ext_csd[EXT_CSD_BKOPS_EN] &
  477. EXT_CSD_AUTO_BKOPS_MASK);
  478. if (card->ext_csd.auto_bkops_en)
  479. pr_debug("%s: AUTO_BKOPS_EN bit is set\n",
  480. mmc_hostname(card->host));
  481. }
  482. /* check whether the eMMC card supports HPI */
  483. if (!mmc_card_broken_hpi(card) &&
  484. !broken_hpi && (ext_csd[EXT_CSD_HPI_FEATURES] & 0x1)) {
  485. card->ext_csd.hpi = 1;
  486. if (ext_csd[EXT_CSD_HPI_FEATURES] & 0x2)
  487. card->ext_csd.hpi_cmd = MMC_STOP_TRANSMISSION;
  488. else
  489. card->ext_csd.hpi_cmd = MMC_SEND_STATUS;
  490. /*
  491. * Indicate the maximum timeout to close
  492. * a command interrupted by HPI
  493. */
  494. card->ext_csd.out_of_int_time =
  495. ext_csd[EXT_CSD_OUT_OF_INTERRUPT_TIME] * 10;
  496. }
  497. card->ext_csd.rel_param = ext_csd[EXT_CSD_WR_REL_PARAM];
  498. card->ext_csd.rst_n_function = ext_csd[EXT_CSD_RST_N_FUNCTION];
  499. /*
  500. * RPMB regions are defined in multiples of 128K.
  501. */
  502. card->ext_csd.raw_rpmb_size_mult = ext_csd[EXT_CSD_RPMB_MULT];
  503. if (ext_csd[EXT_CSD_RPMB_MULT] && mmc_host_cmd23(card->host)) {
  504. mmc_part_add(card, ext_csd[EXT_CSD_RPMB_MULT] << 17,
  505. EXT_CSD_PART_CONFIG_ACC_RPMB,
  506. "rpmb", 0, false,
  507. MMC_BLK_DATA_AREA_RPMB);
  508. }
  509. }
  510. card->ext_csd.raw_erased_mem_count = ext_csd[EXT_CSD_ERASED_MEM_CONT];
  511. if (ext_csd[EXT_CSD_ERASED_MEM_CONT])
  512. card->erased_byte = 0xFF;
  513. else
  514. card->erased_byte = 0x0;
  515. /* eMMC v4.5 or later */
  516. card->ext_csd.generic_cmd6_time = DEFAULT_CMD6_TIMEOUT_MS;
  517. if (card->ext_csd.rev >= 6) {
  518. card->ext_csd.feature_support |= MMC_DISCARD_FEATURE;
  519. card->ext_csd.generic_cmd6_time = 10 *
  520. ext_csd[EXT_CSD_GENERIC_CMD6_TIME];
  521. card->ext_csd.power_off_longtime = 10 *
  522. ext_csd[EXT_CSD_POWER_OFF_LONG_TIME];
  523. card->ext_csd.cache_size =
  524. ext_csd[EXT_CSD_CACHE_SIZE + 0] << 0 |
  525. ext_csd[EXT_CSD_CACHE_SIZE + 1] << 8 |
  526. ext_csd[EXT_CSD_CACHE_SIZE + 2] << 16 |
  527. ext_csd[EXT_CSD_CACHE_SIZE + 3] << 24;
  528. if (ext_csd[EXT_CSD_DATA_SECTOR_SIZE] == 1)
  529. card->ext_csd.data_sector_size = 4096;
  530. else
  531. card->ext_csd.data_sector_size = 512;
  532. if ((ext_csd[EXT_CSD_DATA_TAG_SUPPORT] & 1) &&
  533. (ext_csd[EXT_CSD_TAG_UNIT_SIZE] <= 8)) {
  534. card->ext_csd.data_tag_unit_size =
  535. ((unsigned int) 1 << ext_csd[EXT_CSD_TAG_UNIT_SIZE]) *
  536. (card->ext_csd.data_sector_size);
  537. } else {
  538. card->ext_csd.data_tag_unit_size = 0;
  539. }
  540. card->ext_csd.max_packed_writes =
  541. ext_csd[EXT_CSD_MAX_PACKED_WRITES];
  542. card->ext_csd.max_packed_reads =
  543. ext_csd[EXT_CSD_MAX_PACKED_READS];
  544. } else {
  545. card->ext_csd.data_sector_size = 512;
  546. }
  547. /* eMMC v5 or later */
  548. if (card->ext_csd.rev >= 7) {
  549. memcpy(card->ext_csd.fwrev, &ext_csd[EXT_CSD_FIRMWARE_VERSION],
  550. MMC_FIRMWARE_LEN);
  551. card->ext_csd.ffu_capable =
  552. (ext_csd[EXT_CSD_SUPPORTED_MODE] & 0x1) &&
  553. !(ext_csd[EXT_CSD_FW_CONFIG] & 0x1);
  554. card->ext_csd.pre_eol_info = ext_csd[EXT_CSD_PRE_EOL_INFO];
  555. card->ext_csd.device_life_time_est_typ_a =
  556. ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_A];
  557. card->ext_csd.device_life_time_est_typ_b =
  558. ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_B];
  559. }
  560. /* eMMC v5.1 or later */
  561. if (card->ext_csd.rev >= 8) {
  562. card->ext_csd.cmdq_support = ext_csd[EXT_CSD_CMDQ_SUPPORT] &
  563. EXT_CSD_CMDQ_SUPPORTED;
  564. card->ext_csd.cmdq_depth = (ext_csd[EXT_CSD_CMDQ_DEPTH] &
  565. EXT_CSD_CMDQ_DEPTH_MASK) + 1;
  566. /* Exclude inefficiently small queue depths */
  567. if (card->ext_csd.cmdq_depth <= 2) {
  568. card->ext_csd.cmdq_support = false;
  569. card->ext_csd.cmdq_depth = 0;
  570. }
  571. if (card->ext_csd.cmdq_support) {
  572. pr_debug("%s: Command Queue supported depth %u\n",
  573. mmc_hostname(card->host),
  574. card->ext_csd.cmdq_depth);
  575. }
  576. }
  577. out:
  578. return err;
  579. }
  580. static int mmc_read_ext_csd(struct mmc_card *card)
  581. {
  582. u8 *ext_csd;
  583. int err;
  584. if (!mmc_can_ext_csd(card))
  585. return 0;
  586. err = mmc_get_ext_csd(card, &ext_csd);
  587. if (err) {
  588. /* If the host or the card can't do the switch,
  589. * fail more gracefully. */
  590. if ((err != -EINVAL)
  591. && (err != -ENOSYS)
  592. && (err != -EFAULT))
  593. return err;
  594. /*
  595. * High capacity cards should have this "magic" size
  596. * stored in their CSD.
  597. */
  598. if (card->csd.capacity == (4096 * 512)) {
  599. pr_err("%s: unable to read EXT_CSD on a possible high capacity card. Card will be ignored.\n",
  600. mmc_hostname(card->host));
  601. } else {
  602. pr_warn("%s: unable to read EXT_CSD, performance might suffer\n",
  603. mmc_hostname(card->host));
  604. err = 0;
  605. }
  606. return err;
  607. }
  608. err = mmc_decode_ext_csd(card, ext_csd);
  609. kfree(ext_csd);
  610. return err;
  611. }
  612. static int mmc_compare_ext_csds(struct mmc_card *card, unsigned bus_width)
  613. {
  614. u8 *bw_ext_csd;
  615. int err;
  616. if (bus_width == MMC_BUS_WIDTH_1)
  617. return 0;
  618. err = mmc_get_ext_csd(card, &bw_ext_csd);
  619. if (err)
  620. return err;
  621. /* only compare read only fields */
  622. err = !((card->ext_csd.raw_partition_support ==
  623. bw_ext_csd[EXT_CSD_PARTITION_SUPPORT]) &&
  624. (card->ext_csd.raw_erased_mem_count ==
  625. bw_ext_csd[EXT_CSD_ERASED_MEM_CONT]) &&
  626. (card->ext_csd.rev ==
  627. bw_ext_csd[EXT_CSD_REV]) &&
  628. (card->ext_csd.raw_ext_csd_structure ==
  629. bw_ext_csd[EXT_CSD_STRUCTURE]) &&
  630. (card->ext_csd.raw_card_type ==
  631. bw_ext_csd[EXT_CSD_CARD_TYPE]) &&
  632. (card->ext_csd.raw_s_a_timeout ==
  633. bw_ext_csd[EXT_CSD_S_A_TIMEOUT]) &&
  634. (card->ext_csd.raw_hc_erase_gap_size ==
  635. bw_ext_csd[EXT_CSD_HC_WP_GRP_SIZE]) &&
  636. (card->ext_csd.raw_erase_timeout_mult ==
  637. bw_ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]) &&
  638. (card->ext_csd.raw_hc_erase_grp_size ==
  639. bw_ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]) &&
  640. (card->ext_csd.raw_sec_trim_mult ==
  641. bw_ext_csd[EXT_CSD_SEC_TRIM_MULT]) &&
  642. (card->ext_csd.raw_sec_erase_mult ==
  643. bw_ext_csd[EXT_CSD_SEC_ERASE_MULT]) &&
  644. (card->ext_csd.raw_sec_feature_support ==
  645. bw_ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]) &&
  646. (card->ext_csd.raw_trim_mult ==
  647. bw_ext_csd[EXT_CSD_TRIM_MULT]) &&
  648. (card->ext_csd.raw_sectors[0] ==
  649. bw_ext_csd[EXT_CSD_SEC_CNT + 0]) &&
  650. (card->ext_csd.raw_sectors[1] ==
  651. bw_ext_csd[EXT_CSD_SEC_CNT + 1]) &&
  652. (card->ext_csd.raw_sectors[2] ==
  653. bw_ext_csd[EXT_CSD_SEC_CNT + 2]) &&
  654. (card->ext_csd.raw_sectors[3] ==
  655. bw_ext_csd[EXT_CSD_SEC_CNT + 3]) &&
  656. (card->ext_csd.raw_pwr_cl_52_195 ==
  657. bw_ext_csd[EXT_CSD_PWR_CL_52_195]) &&
  658. (card->ext_csd.raw_pwr_cl_26_195 ==
  659. bw_ext_csd[EXT_CSD_PWR_CL_26_195]) &&
  660. (card->ext_csd.raw_pwr_cl_52_360 ==
  661. bw_ext_csd[EXT_CSD_PWR_CL_52_360]) &&
  662. (card->ext_csd.raw_pwr_cl_26_360 ==
  663. bw_ext_csd[EXT_CSD_PWR_CL_26_360]) &&
  664. (card->ext_csd.raw_pwr_cl_200_195 ==
  665. bw_ext_csd[EXT_CSD_PWR_CL_200_195]) &&
  666. (card->ext_csd.raw_pwr_cl_200_360 ==
  667. bw_ext_csd[EXT_CSD_PWR_CL_200_360]) &&
  668. (card->ext_csd.raw_pwr_cl_ddr_52_195 ==
  669. bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_195]) &&
  670. (card->ext_csd.raw_pwr_cl_ddr_52_360 ==
  671. bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_360]) &&
  672. (card->ext_csd.raw_pwr_cl_ddr_200_360 ==
  673. bw_ext_csd[EXT_CSD_PWR_CL_DDR_200_360]));
  674. if (err)
  675. err = -EINVAL;
  676. kfree(bw_ext_csd);
  677. return err;
  678. }
  679. MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1],
  680. card->raw_cid[2], card->raw_cid[3]);
  681. MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1],
  682. card->raw_csd[2], card->raw_csd[3]);
  683. MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year);
  684. MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9);
  685. MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9);
  686. MMC_DEV_ATTR(ffu_capable, "%d\n", card->ext_csd.ffu_capable);
  687. MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev);
  688. MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid);
  689. MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name);
  690. MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid);
  691. MMC_DEV_ATTR(prv, "0x%x\n", card->cid.prv);
  692. MMC_DEV_ATTR(rev, "0x%x\n", card->ext_csd.rev);
  693. MMC_DEV_ATTR(pre_eol_info, "0x%02x\n", card->ext_csd.pre_eol_info);
  694. MMC_DEV_ATTR(life_time, "0x%02x 0x%02x\n",
  695. card->ext_csd.device_life_time_est_typ_a,
  696. card->ext_csd.device_life_time_est_typ_b);
  697. MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial);
  698. MMC_DEV_ATTR(enhanced_area_offset, "%llu\n",
  699. card->ext_csd.enhanced_area_offset);
  700. MMC_DEV_ATTR(enhanced_area_size, "%u\n", card->ext_csd.enhanced_area_size);
  701. MMC_DEV_ATTR(raw_rpmb_size_mult, "%#x\n", card->ext_csd.raw_rpmb_size_mult);
  702. MMC_DEV_ATTR(rel_sectors, "%#x\n", card->ext_csd.rel_sectors);
  703. MMC_DEV_ATTR(ocr, "0x%08x\n", card->ocr);
  704. MMC_DEV_ATTR(cmdq_en, "%d\n", card->ext_csd.cmdq_en);
  705. static ssize_t mmc_fwrev_show(struct device *dev,
  706. struct device_attribute *attr,
  707. char *buf)
  708. {
  709. struct mmc_card *card = mmc_dev_to_card(dev);
  710. if (card->ext_csd.rev < 7) {
  711. return sprintf(buf, "0x%x\n", card->cid.fwrev);
  712. } else {
  713. return sprintf(buf, "0x%*phN\n", MMC_FIRMWARE_LEN,
  714. card->ext_csd.fwrev);
  715. }
  716. }
  717. static DEVICE_ATTR(fwrev, S_IRUGO, mmc_fwrev_show, NULL);
  718. static ssize_t mmc_dsr_show(struct device *dev,
  719. struct device_attribute *attr,
  720. char *buf)
  721. {
  722. struct mmc_card *card = mmc_dev_to_card(dev);
  723. struct mmc_host *host = card->host;
  724. if (card->csd.dsr_imp && host->dsr_req)
  725. return sprintf(buf, "0x%x\n", host->dsr);
  726. else
  727. /* return default DSR value */
  728. return sprintf(buf, "0x%x\n", 0x404);
  729. }
  730. static DEVICE_ATTR(dsr, S_IRUGO, mmc_dsr_show, NULL);
  731. static struct attribute *mmc_std_attrs[] = {
  732. &dev_attr_cid.attr,
  733. &dev_attr_csd.attr,
  734. &dev_attr_date.attr,
  735. &dev_attr_erase_size.attr,
  736. &dev_attr_preferred_erase_size.attr,
  737. &dev_attr_fwrev.attr,
  738. &dev_attr_ffu_capable.attr,
  739. &dev_attr_hwrev.attr,
  740. &dev_attr_manfid.attr,
  741. &dev_attr_name.attr,
  742. &dev_attr_oemid.attr,
  743. &dev_attr_prv.attr,
  744. &dev_attr_rev.attr,
  745. &dev_attr_pre_eol_info.attr,
  746. &dev_attr_life_time.attr,
  747. &dev_attr_serial.attr,
  748. &dev_attr_enhanced_area_offset.attr,
  749. &dev_attr_enhanced_area_size.attr,
  750. &dev_attr_raw_rpmb_size_mult.attr,
  751. &dev_attr_rel_sectors.attr,
  752. &dev_attr_ocr.attr,
  753. &dev_attr_dsr.attr,
  754. &dev_attr_cmdq_en.attr,
  755. NULL,
  756. };
  757. ATTRIBUTE_GROUPS(mmc_std);
  758. static struct device_type mmc_type = {
  759. .groups = mmc_std_groups,
  760. };
  761. /*
  762. * Select the PowerClass for the current bus width
  763. * If power class is defined for 4/8 bit bus in the
  764. * extended CSD register, select it by executing the
  765. * mmc_switch command.
  766. */
  767. static int __mmc_select_powerclass(struct mmc_card *card,
  768. unsigned int bus_width)
  769. {
  770. struct mmc_host *host = card->host;
  771. struct mmc_ext_csd *ext_csd = &card->ext_csd;
  772. unsigned int pwrclass_val = 0;
  773. int err = 0;
  774. switch (1 << host->ios.vdd) {
  775. case MMC_VDD_165_195:
  776. if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
  777. pwrclass_val = ext_csd->raw_pwr_cl_26_195;
  778. else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
  779. pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
  780. ext_csd->raw_pwr_cl_52_195 :
  781. ext_csd->raw_pwr_cl_ddr_52_195;
  782. else if (host->ios.clock <= MMC_HS200_MAX_DTR)
  783. pwrclass_val = ext_csd->raw_pwr_cl_200_195;
  784. break;
  785. case MMC_VDD_27_28:
  786. case MMC_VDD_28_29:
  787. case MMC_VDD_29_30:
  788. case MMC_VDD_30_31:
  789. case MMC_VDD_31_32:
  790. case MMC_VDD_32_33:
  791. case MMC_VDD_33_34:
  792. case MMC_VDD_34_35:
  793. case MMC_VDD_35_36:
  794. if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
  795. pwrclass_val = ext_csd->raw_pwr_cl_26_360;
  796. else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
  797. pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
  798. ext_csd->raw_pwr_cl_52_360 :
  799. ext_csd->raw_pwr_cl_ddr_52_360;
  800. else if (host->ios.clock <= MMC_HS200_MAX_DTR)
  801. pwrclass_val = (bus_width == EXT_CSD_DDR_BUS_WIDTH_8) ?
  802. ext_csd->raw_pwr_cl_ddr_200_360 :
  803. ext_csd->raw_pwr_cl_200_360;
  804. break;
  805. default:
  806. pr_warn("%s: Voltage range not supported for power class\n",
  807. mmc_hostname(host));
  808. return -EINVAL;
  809. }
  810. if (bus_width & (EXT_CSD_BUS_WIDTH_8 | EXT_CSD_DDR_BUS_WIDTH_8))
  811. pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_8BIT_MASK) >>
  812. EXT_CSD_PWR_CL_8BIT_SHIFT;
  813. else
  814. pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_4BIT_MASK) >>
  815. EXT_CSD_PWR_CL_4BIT_SHIFT;
  816. /* If the power class is different from the default value */
  817. if (pwrclass_val > 0) {
  818. err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
  819. EXT_CSD_POWER_CLASS,
  820. pwrclass_val,
  821. card->ext_csd.generic_cmd6_time);
  822. }
  823. return err;
  824. }
  825. static int mmc_select_powerclass(struct mmc_card *card)
  826. {
  827. struct mmc_host *host = card->host;
  828. u32 bus_width, ext_csd_bits;
  829. int err, ddr;
  830. /* Power class selection is supported for versions >= 4.0 */
  831. if (!mmc_can_ext_csd(card))
  832. return 0;
  833. bus_width = host->ios.bus_width;
  834. /* Power class values are defined only for 4/8 bit bus */
  835. if (bus_width == MMC_BUS_WIDTH_1)
  836. return 0;
  837. ddr = card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52;
  838. if (ddr)
  839. ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
  840. EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
  841. else
  842. ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
  843. EXT_CSD_BUS_WIDTH_8 : EXT_CSD_BUS_WIDTH_4;
  844. err = __mmc_select_powerclass(card, ext_csd_bits);
  845. if (err)
  846. pr_warn("%s: power class selection to bus width %d ddr %d failed\n",
  847. mmc_hostname(host), 1 << bus_width, ddr);
  848. return err;
  849. }
  850. /*
  851. * Set the bus speed for the selected speed mode.
  852. */
  853. static void mmc_set_bus_speed(struct mmc_card *card)
  854. {
  855. unsigned int max_dtr = (unsigned int)-1;
  856. if ((mmc_card_hs200(card) || mmc_card_hs400(card)) &&
  857. max_dtr > card->ext_csd.hs200_max_dtr)
  858. max_dtr = card->ext_csd.hs200_max_dtr;
  859. else if (mmc_card_hs(card) && max_dtr > card->ext_csd.hs_max_dtr)
  860. max_dtr = card->ext_csd.hs_max_dtr;
  861. else if (max_dtr > card->csd.max_dtr)
  862. max_dtr = card->csd.max_dtr;
  863. mmc_set_clock(card->host, max_dtr);
  864. }
  865. /*
  866. * Select the bus width amoung 4-bit and 8-bit(SDR).
  867. * If the bus width is changed successfully, return the selected width value.
  868. * Zero is returned instead of error value if the wide width is not supported.
  869. */
  870. static int mmc_select_bus_width(struct mmc_card *card)
  871. {
  872. static unsigned ext_csd_bits[] = {
  873. EXT_CSD_BUS_WIDTH_8,
  874. EXT_CSD_BUS_WIDTH_4,
  875. };
  876. static unsigned bus_widths[] = {
  877. MMC_BUS_WIDTH_8,
  878. MMC_BUS_WIDTH_4,
  879. };
  880. struct mmc_host *host = card->host;
  881. unsigned idx, bus_width = 0;
  882. int err = 0;
  883. if (!mmc_can_ext_csd(card) ||
  884. !(host->caps & (MMC_CAP_4_BIT_DATA | MMC_CAP_8_BIT_DATA)))
  885. return 0;
  886. idx = (host->caps & MMC_CAP_8_BIT_DATA) ? 0 : 1;
  887. /*
  888. * Unlike SD, MMC cards dont have a configuration register to notify
  889. * supported bus width. So bus test command should be run to identify
  890. * the supported bus width or compare the ext csd values of current
  891. * bus width and ext csd values of 1 bit mode read earlier.
  892. */
  893. for (; idx < ARRAY_SIZE(bus_widths); idx++) {
  894. /*
  895. * Host is capable of 8bit transfer, then switch
  896. * the device to work in 8bit transfer mode. If the
  897. * mmc switch command returns error then switch to
  898. * 4bit transfer mode. On success set the corresponding
  899. * bus width on the host.
  900. */
  901. err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
  902. EXT_CSD_BUS_WIDTH,
  903. ext_csd_bits[idx],
  904. card->ext_csd.generic_cmd6_time);
  905. if (err)
  906. continue;
  907. bus_width = bus_widths[idx];
  908. mmc_set_bus_width(host, bus_width);
  909. /*
  910. * If controller can't handle bus width test,
  911. * compare ext_csd previously read in 1 bit mode
  912. * against ext_csd at new bus width
  913. */
  914. if (!(host->caps & MMC_CAP_BUS_WIDTH_TEST))
  915. err = mmc_compare_ext_csds(card, bus_width);
  916. else
  917. err = mmc_bus_test(card, bus_width);
  918. if (!err) {
  919. err = bus_width;
  920. break;
  921. } else {
  922. pr_warn("%s: switch to bus width %d failed\n",
  923. mmc_hostname(host), 1 << bus_width);
  924. }
  925. }
  926. return err;
  927. }
  928. /*
  929. * Switch to the high-speed mode
  930. */
  931. static int mmc_select_hs(struct mmc_card *card)
  932. {
  933. int err;
  934. err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
  935. EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS,
  936. card->ext_csd.generic_cmd6_time, MMC_TIMING_MMC_HS,
  937. true, true, true);
  938. if (err)
  939. pr_warn("%s: switch to high-speed failed, err:%d\n",
  940. mmc_hostname(card->host), err);
  941. return err;
  942. }
  943. /*
  944. * Activate wide bus and DDR if supported.
  945. */
  946. static int mmc_select_hs_ddr(struct mmc_card *card)
  947. {
  948. struct mmc_host *host = card->host;
  949. u32 bus_width, ext_csd_bits;
  950. int err = 0;
  951. if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52))
  952. return 0;
  953. bus_width = host->ios.bus_width;
  954. if (bus_width == MMC_BUS_WIDTH_1)
  955. return 0;
  956. ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
  957. EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
  958. err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
  959. EXT_CSD_BUS_WIDTH,
  960. ext_csd_bits,
  961. card->ext_csd.generic_cmd6_time,
  962. MMC_TIMING_MMC_DDR52,
  963. true, true, true);
  964. if (err) {
  965. pr_err("%s: switch to bus width %d ddr failed\n",
  966. mmc_hostname(host), 1 << bus_width);
  967. return err;
  968. }
  969. /*
  970. * eMMC cards can support 3.3V to 1.2V i/o (vccq)
  971. * signaling.
  972. *
  973. * EXT_CSD_CARD_TYPE_DDR_1_8V means 3.3V or 1.8V vccq.
  974. *
  975. * 1.8V vccq at 3.3V core voltage (vcc) is not required
  976. * in the JEDEC spec for DDR.
  977. *
  978. * Even (e)MMC card can support 3.3v to 1.2v vccq, but not all
  979. * host controller can support this, like some of the SDHCI
  980. * controller which connect to an eMMC device. Some of these
  981. * host controller still needs to use 1.8v vccq for supporting
  982. * DDR mode.
  983. *
  984. * So the sequence will be:
  985. * if (host and device can both support 1.2v IO)
  986. * use 1.2v IO;
  987. * else if (host and device can both support 1.8v IO)
  988. * use 1.8v IO;
  989. * so if host and device can only support 3.3v IO, this is the
  990. * last choice.
  991. *
  992. * WARNING: eMMC rules are NOT the same as SD DDR
  993. */
  994. if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_2V) {
  995. err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
  996. if (!err)
  997. return 0;
  998. }
  999. if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_8V &&
  1000. host->caps & MMC_CAP_1_8V_DDR)
  1001. err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
  1002. /* make sure vccq is 3.3v after switching disaster */
  1003. if (err)
  1004. err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330);
  1005. return err;
  1006. }
  1007. static int mmc_select_hs400(struct mmc_card *card)
  1008. {
  1009. struct mmc_host *host = card->host;
  1010. unsigned int max_dtr;
  1011. int err = 0;
  1012. u8 val;
  1013. /*
  1014. * HS400 mode requires 8-bit bus width
  1015. */
  1016. if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
  1017. host->ios.bus_width == MMC_BUS_WIDTH_8))
  1018. return 0;
  1019. /* Switch card to HS mode */
  1020. val = EXT_CSD_TIMING_HS;
  1021. err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
  1022. EXT_CSD_HS_TIMING, val,
  1023. card->ext_csd.generic_cmd6_time, 0,
  1024. true, false, true);
  1025. if (err) {
  1026. pr_err("%s: switch to high-speed from hs200 failed, err:%d\n",
  1027. mmc_hostname(host), err);
  1028. return err;
  1029. }
  1030. /* Set host controller to HS timing */
  1031. mmc_set_timing(card->host, MMC_TIMING_MMC_HS);
  1032. /* Reduce frequency to HS frequency */
  1033. max_dtr = card->ext_csd.hs_max_dtr;
  1034. mmc_set_clock(host, max_dtr);
  1035. err = mmc_switch_status(card);
  1036. if (err)
  1037. goto out_err;
  1038. /* Switch card to DDR */
  1039. err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
  1040. EXT_CSD_BUS_WIDTH,
  1041. EXT_CSD_DDR_BUS_WIDTH_8,
  1042. card->ext_csd.generic_cmd6_time);
  1043. if (err) {
  1044. pr_err("%s: switch to bus width for hs400 failed, err:%d\n",
  1045. mmc_hostname(host), err);
  1046. return err;
  1047. }
  1048. /* Switch card to HS400 */
  1049. val = EXT_CSD_TIMING_HS400 |
  1050. card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
  1051. err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
  1052. EXT_CSD_HS_TIMING, val,
  1053. card->ext_csd.generic_cmd6_time, 0,
  1054. true, false, true);
  1055. if (err) {
  1056. pr_err("%s: switch to hs400 failed, err:%d\n",
  1057. mmc_hostname(host), err);
  1058. return err;
  1059. }
  1060. /* Set host controller to HS400 timing and frequency */
  1061. mmc_set_timing(host, MMC_TIMING_MMC_HS400);
  1062. mmc_set_bus_speed(card);
  1063. err = mmc_switch_status(card);
  1064. if (err)
  1065. goto out_err;
  1066. return 0;
  1067. out_err:
  1068. pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
  1069. __func__, err);
  1070. return err;
  1071. }
  1072. int mmc_hs200_to_hs400(struct mmc_card *card)
  1073. {
  1074. return mmc_select_hs400(card);
  1075. }
  1076. int mmc_hs400_to_hs200(struct mmc_card *card)
  1077. {
  1078. struct mmc_host *host = card->host;
  1079. unsigned int max_dtr;
  1080. int err;
  1081. u8 val;
  1082. /* Reduce frequency to HS */
  1083. max_dtr = card->ext_csd.hs_max_dtr;
  1084. mmc_set_clock(host, max_dtr);
  1085. /* Switch HS400 to HS DDR */
  1086. val = EXT_CSD_TIMING_HS;
  1087. err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
  1088. val, card->ext_csd.generic_cmd6_time, 0,
  1089. true, false, true);
  1090. if (err)
  1091. goto out_err;
  1092. mmc_set_timing(host, MMC_TIMING_MMC_DDR52);
  1093. err = mmc_switch_status(card);
  1094. if (err)
  1095. goto out_err;
  1096. /* Switch HS DDR to HS */
  1097. err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH,
  1098. EXT_CSD_BUS_WIDTH_8, card->ext_csd.generic_cmd6_time,
  1099. 0, true, false, true);
  1100. if (err)
  1101. goto out_err;
  1102. mmc_set_timing(host, MMC_TIMING_MMC_HS);
  1103. err = mmc_switch_status(card);
  1104. if (err)
  1105. goto out_err;
  1106. /* Switch HS to HS200 */
  1107. val = EXT_CSD_TIMING_HS200 |
  1108. card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
  1109. err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
  1110. val, card->ext_csd.generic_cmd6_time, 0,
  1111. true, false, true);
  1112. if (err)
  1113. goto out_err;
  1114. mmc_set_timing(host, MMC_TIMING_MMC_HS200);
  1115. /*
  1116. * For HS200, CRC errors are not a reliable way to know the switch
  1117. * failed. If there really is a problem, we would expect tuning will
  1118. * fail and the result ends up the same.
  1119. */
  1120. err = __mmc_switch_status(card, false);
  1121. if (err)
  1122. goto out_err;
  1123. mmc_set_bus_speed(card);
  1124. return 0;
  1125. out_err:
  1126. pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
  1127. __func__, err);
  1128. return err;
  1129. }
  1130. static void mmc_select_driver_type(struct mmc_card *card)
  1131. {
  1132. int card_drv_type, drive_strength, drv_type;
  1133. int fixed_drv_type = card->host->fixed_drv_type;
  1134. card_drv_type = card->ext_csd.raw_driver_strength |
  1135. mmc_driver_type_mask(0);
  1136. if (fixed_drv_type >= 0)
  1137. drive_strength = card_drv_type & mmc_driver_type_mask(fixed_drv_type)
  1138. ? fixed_drv_type : 0;
  1139. else
  1140. drive_strength = mmc_select_drive_strength(card,
  1141. card->ext_csd.hs200_max_dtr,
  1142. card_drv_type, &drv_type);
  1143. card->drive_strength = drive_strength;
  1144. if (drv_type)
  1145. mmc_set_driver_type(card->host, drv_type);
  1146. }
  1147. static int mmc_select_hs400es(struct mmc_card *card)
  1148. {
  1149. struct mmc_host *host = card->host;
  1150. int err = -EINVAL;
  1151. u8 val;
  1152. if (!(host->caps & MMC_CAP_8_BIT_DATA)) {
  1153. err = -ENOTSUPP;
  1154. goto out_err;
  1155. }
  1156. if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_2V)
  1157. err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
  1158. if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_8V)
  1159. err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
  1160. /* If fails try again during next card power cycle */
  1161. if (err)
  1162. goto out_err;
  1163. err = mmc_select_bus_width(card);
  1164. if (err < 0)
  1165. goto out_err;
  1166. /* Switch card to HS mode */
  1167. err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
  1168. EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS,
  1169. card->ext_csd.generic_cmd6_time, 0,
  1170. true, false, true);
  1171. if (err) {
  1172. pr_err("%s: switch to hs for hs400es failed, err:%d\n",
  1173. mmc_hostname(host), err);
  1174. goto out_err;
  1175. }
  1176. mmc_set_timing(host, MMC_TIMING_MMC_HS);
  1177. err = mmc_switch_status(card);
  1178. if (err)
  1179. goto out_err;
  1180. mmc_set_clock(host, card->ext_csd.hs_max_dtr);
  1181. /* Switch card to DDR with strobe bit */
  1182. val = EXT_CSD_DDR_BUS_WIDTH_8 | EXT_CSD_BUS_WIDTH_STROBE;
  1183. err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
  1184. EXT_CSD_BUS_WIDTH,
  1185. val,
  1186. card->ext_csd.generic_cmd6_time);
  1187. if (err) {
  1188. pr_err("%s: switch to bus width for hs400es failed, err:%d\n",
  1189. mmc_hostname(host), err);
  1190. goto out_err;
  1191. }
  1192. mmc_select_driver_type(card);
  1193. /* Switch card to HS400 */
  1194. val = EXT_CSD_TIMING_HS400 |
  1195. card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
  1196. err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
  1197. EXT_CSD_HS_TIMING, val,
  1198. card->ext_csd.generic_cmd6_time, 0,
  1199. true, false, true);
  1200. if (err) {
  1201. pr_err("%s: switch to hs400es failed, err:%d\n",
  1202. mmc_hostname(host), err);
  1203. goto out_err;
  1204. }
  1205. /* Set host controller to HS400 timing and frequency */
  1206. mmc_set_timing(host, MMC_TIMING_MMC_HS400);
  1207. /* Controller enable enhanced strobe function */
  1208. host->ios.enhanced_strobe = true;
  1209. if (host->ops->hs400_enhanced_strobe)
  1210. host->ops->hs400_enhanced_strobe(host, &host->ios);
  1211. err = mmc_switch_status(card);
  1212. if (err)
  1213. goto out_err;
  1214. return 0;
  1215. out_err:
  1216. pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
  1217. __func__, err);
  1218. return err;
  1219. }
  1220. /*
  1221. * For device supporting HS200 mode, the following sequence
  1222. * should be done before executing the tuning process.
  1223. * 1. set the desired bus width(4-bit or 8-bit, 1-bit is not supported)
  1224. * 2. switch to HS200 mode
  1225. * 3. set the clock to > 52Mhz and <=200MHz
  1226. */
  1227. static int mmc_select_hs200(struct mmc_card *card)
  1228. {
  1229. struct mmc_host *host = card->host;
  1230. unsigned int old_timing, old_signal_voltage;
  1231. int err = -EINVAL;
  1232. u8 val;
  1233. old_signal_voltage = host->ios.signal_voltage;
  1234. if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_2V)
  1235. err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
  1236. if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_8V)
  1237. err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
  1238. /* If fails try again during next card power cycle */
  1239. if (err)
  1240. return err;
  1241. mmc_select_driver_type(card);
  1242. /*
  1243. * Set the bus width(4 or 8) with host's support and
  1244. * switch to HS200 mode if bus width is set successfully.
  1245. */
  1246. err = mmc_select_bus_width(card);
  1247. if (err > 0) {
  1248. val = EXT_CSD_TIMING_HS200 |
  1249. card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
  1250. err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
  1251. EXT_CSD_HS_TIMING, val,
  1252. card->ext_csd.generic_cmd6_time, 0,
  1253. true, false, true);
  1254. if (err)
  1255. goto err;
  1256. old_timing = host->ios.timing;
  1257. mmc_set_timing(host, MMC_TIMING_MMC_HS200);
  1258. /*
  1259. * For HS200, CRC errors are not a reliable way to know the
  1260. * switch failed. If there really is a problem, we would expect
  1261. * tuning will fail and the result ends up the same.
  1262. */
  1263. err = __mmc_switch_status(card, false);
  1264. /*
  1265. * mmc_select_timing() assumes timing has not changed if
  1266. * it is a switch error.
  1267. */
  1268. if (err == -EBADMSG)
  1269. mmc_set_timing(host, old_timing);
  1270. }
  1271. err:
  1272. if (err) {
  1273. /* fall back to the old signal voltage, if fails report error */
  1274. if (mmc_set_signal_voltage(host, old_signal_voltage))
  1275. err = -EIO;
  1276. pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
  1277. __func__, err);
  1278. }
  1279. return err;
  1280. }
  1281. /*
  1282. * Activate High Speed, HS200 or HS400ES mode if supported.
  1283. */
  1284. static int mmc_select_timing(struct mmc_card *card)
  1285. {
  1286. int err = 0;
  1287. if (!mmc_can_ext_csd(card))
  1288. goto bus_speed;
  1289. if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400ES)
  1290. err = mmc_select_hs400es(card);
  1291. else if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200)
  1292. err = mmc_select_hs200(card);
  1293. else if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS)
  1294. err = mmc_select_hs(card);
  1295. if (err && err != -EBADMSG)
  1296. return err;
  1297. bus_speed:
  1298. /*
  1299. * Set the bus speed to the selected bus timing.
  1300. * If timing is not selected, backward compatible is the default.
  1301. */
  1302. mmc_set_bus_speed(card);
  1303. return 0;
  1304. }
  1305. /*
  1306. * Execute tuning sequence to seek the proper bus operating
  1307. * conditions for HS200 and HS400, which sends CMD21 to the device.
  1308. */
  1309. static int mmc_hs200_tuning(struct mmc_card *card)
  1310. {
  1311. struct mmc_host *host = card->host;
  1312. /*
  1313. * Timing should be adjusted to the HS400 target
  1314. * operation frequency for tuning process
  1315. */
  1316. if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
  1317. host->ios.bus_width == MMC_BUS_WIDTH_8)
  1318. if (host->ops->prepare_hs400_tuning)
  1319. host->ops->prepare_hs400_tuning(host, &host->ios);
  1320. return mmc_execute_tuning(card);
  1321. }
  1322. /*
  1323. * Handle the detection and initialisation of a card.
  1324. *
  1325. * In the case of a resume, "oldcard" will contain the card
  1326. * we're trying to reinitialise.
  1327. */
  1328. static int mmc_init_card(struct mmc_host *host, u32 ocr,
  1329. struct mmc_card *oldcard)
  1330. {
  1331. struct mmc_card *card;
  1332. int err;
  1333. u32 cid[4];
  1334. u32 rocr;
  1335. WARN_ON(!host->claimed);
  1336. /* Set correct bus mode for MMC before attempting init */
  1337. if (!mmc_host_is_spi(host))
  1338. mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
  1339. /*
  1340. * Since we're changing the OCR value, we seem to
  1341. * need to tell some cards to go back to the idle
  1342. * state. We wait 1ms to give cards time to
  1343. * respond.
  1344. * mmc_go_idle is needed for eMMC that are asleep
  1345. */
  1346. mmc_go_idle(host);
  1347. /* The extra bit indicates that we support high capacity */
  1348. err = mmc_send_op_cond(host, ocr | (1 << 30), &rocr);
  1349. if (err)
  1350. goto err;
  1351. /*
  1352. * For SPI, enable CRC as appropriate.
  1353. */
  1354. if (mmc_host_is_spi(host)) {
  1355. err = mmc_spi_set_crc(host, use_spi_crc);
  1356. if (err)
  1357. goto err;
  1358. }
  1359. /*
  1360. * Fetch CID from card.
  1361. */
  1362. err = mmc_send_cid(host, cid);
  1363. if (err)
  1364. goto err;
  1365. if (oldcard) {
  1366. if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) {
  1367. err = -ENOENT;
  1368. goto err;
  1369. }
  1370. card = oldcard;
  1371. } else {
  1372. /*
  1373. * Allocate card structure.
  1374. */
  1375. card = mmc_alloc_card(host, &mmc_type);
  1376. if (IS_ERR(card)) {
  1377. err = PTR_ERR(card);
  1378. goto err;
  1379. }
  1380. card->ocr = ocr;
  1381. card->type = MMC_TYPE_MMC;
  1382. card->rca = 1;
  1383. memcpy(card->raw_cid, cid, sizeof(card->raw_cid));
  1384. }
  1385. /*
  1386. * Call the optional HC's init_card function to handle quirks.
  1387. */
  1388. if (host->ops->init_card)
  1389. host->ops->init_card(host, card);
  1390. /*
  1391. * For native busses: set card RCA and quit open drain mode.
  1392. */
  1393. if (!mmc_host_is_spi(host)) {
  1394. err = mmc_set_relative_addr(card);
  1395. if (err)
  1396. goto free_card;
  1397. mmc_set_bus_mode(host, MMC_BUSMODE_PUSHPULL);
  1398. }
  1399. if (!oldcard) {
  1400. /*
  1401. * Fetch CSD from card.
  1402. */
  1403. err = mmc_send_csd(card, card->raw_csd);
  1404. if (err)
  1405. goto free_card;
  1406. err = mmc_decode_csd(card);
  1407. if (err)
  1408. goto free_card;
  1409. err = mmc_decode_cid(card);
  1410. if (err)
  1411. goto free_card;
  1412. }
  1413. /*
  1414. * handling only for cards supporting DSR and hosts requesting
  1415. * DSR configuration
  1416. */
  1417. if (card->csd.dsr_imp && host->dsr_req)
  1418. mmc_set_dsr(host);
  1419. /*
  1420. * Select card, as all following commands rely on that.
  1421. */
  1422. if (!mmc_host_is_spi(host)) {
  1423. err = mmc_select_card(card);
  1424. if (err)
  1425. goto free_card;
  1426. }
  1427. if (!oldcard) {
  1428. /* Read extended CSD. */
  1429. err = mmc_read_ext_csd(card);
  1430. if (err)
  1431. goto free_card;
  1432. /*
  1433. * If doing byte addressing, check if required to do sector
  1434. * addressing. Handle the case of <2GB cards needing sector
  1435. * addressing. See section 8.1 JEDEC Standard JED84-A441;
  1436. * ocr register has bit 30 set for sector addressing.
  1437. */
  1438. if (rocr & BIT(30))
  1439. mmc_card_set_blockaddr(card);
  1440. /* Erase size depends on CSD and Extended CSD */
  1441. mmc_set_erase_size(card);
  1442. }
  1443. /* Enable ERASE_GRP_DEF. This bit is lost after a reset or power off. */
  1444. if (card->ext_csd.rev >= 3) {
  1445. err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
  1446. EXT_CSD_ERASE_GROUP_DEF, 1,
  1447. card->ext_csd.generic_cmd6_time);
  1448. if (err && err != -EBADMSG)
  1449. goto free_card;
  1450. if (err) {
  1451. err = 0;
  1452. /*
  1453. * Just disable enhanced area off & sz
  1454. * will try to enable ERASE_GROUP_DEF
  1455. * during next time reinit
  1456. */
  1457. card->ext_csd.enhanced_area_offset = -EINVAL;
  1458. card->ext_csd.enhanced_area_size = -EINVAL;
  1459. } else {
  1460. card->ext_csd.erase_group_def = 1;
  1461. /*
  1462. * enable ERASE_GRP_DEF successfully.
  1463. * This will affect the erase size, so
  1464. * here need to reset erase size
  1465. */
  1466. mmc_set_erase_size(card);
  1467. }
  1468. }
  1469. /*
  1470. * Ensure eMMC user default partition is enabled
  1471. */
  1472. if (card->ext_csd.part_config & EXT_CSD_PART_CONFIG_ACC_MASK) {
  1473. card->ext_csd.part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
  1474. err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONFIG,
  1475. card->ext_csd.part_config,
  1476. card->ext_csd.part_time);
  1477. if (err && err != -EBADMSG)
  1478. goto free_card;
  1479. }
  1480. /*
  1481. * Enable power_off_notification byte in the ext_csd register
  1482. */
  1483. if (card->ext_csd.rev >= 6) {
  1484. err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
  1485. EXT_CSD_POWER_OFF_NOTIFICATION,
  1486. EXT_CSD_POWER_ON,
  1487. card->ext_csd.generic_cmd6_time);
  1488. if (err && err != -EBADMSG)
  1489. goto free_card;
  1490. /*
  1491. * The err can be -EBADMSG or 0,
  1492. * so check for success and update the flag
  1493. */
  1494. if (!err)
  1495. card->ext_csd.power_off_notification = EXT_CSD_POWER_ON;
  1496. }
  1497. /*
  1498. * Select timing interface
  1499. */
  1500. err = mmc_select_timing(card);
  1501. if (err)
  1502. goto free_card;
  1503. if (mmc_card_hs200(card)) {
  1504. err = mmc_hs200_tuning(card);
  1505. if (err)
  1506. goto free_card;
  1507. err = mmc_select_hs400(card);
  1508. if (err)
  1509. goto free_card;
  1510. } else if (!mmc_card_hs400es(card)) {
  1511. /* Select the desired bus width optionally */
  1512. err = mmc_select_bus_width(card);
  1513. if (err > 0 && mmc_card_hs(card)) {
  1514. err = mmc_select_hs_ddr(card);
  1515. if (err)
  1516. goto free_card;
  1517. }
  1518. }
  1519. /*
  1520. * Choose the power class with selected bus interface
  1521. */
  1522. mmc_select_powerclass(card);
  1523. /*
  1524. * Enable HPI feature (if supported)
  1525. */
  1526. if (card->ext_csd.hpi) {
  1527. err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
  1528. EXT_CSD_HPI_MGMT, 1,
  1529. card->ext_csd.generic_cmd6_time);
  1530. if (err && err != -EBADMSG)
  1531. goto free_card;
  1532. if (err) {
  1533. pr_warn("%s: Enabling HPI failed\n",
  1534. mmc_hostname(card->host));
  1535. err = 0;
  1536. } else
  1537. card->ext_csd.hpi_en = 1;
  1538. }
  1539. /*
  1540. * If cache size is higher than 0, this indicates
  1541. * the existence of cache and it can be turned on.
  1542. */
  1543. if (!mmc_card_broken_hpi(card) &&
  1544. card->ext_csd.cache_size > 0) {
  1545. err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
  1546. EXT_CSD_CACHE_CTRL, 1,
  1547. card->ext_csd.generic_cmd6_time);
  1548. if (err && err != -EBADMSG)
  1549. goto free_card;
  1550. /*
  1551. * Only if no error, cache is turned on successfully.
  1552. */
  1553. if (err) {
  1554. pr_warn("%s: Cache is supported, but failed to turn on (%d)\n",
  1555. mmc_hostname(card->host), err);
  1556. card->ext_csd.cache_ctrl = 0;
  1557. err = 0;
  1558. } else {
  1559. card->ext_csd.cache_ctrl = 1;
  1560. }
  1561. }
  1562. /*
  1563. * Enable Command Queue if supported. Note that Packed Commands cannot
  1564. * be used with Command Queue.
  1565. */
  1566. card->ext_csd.cmdq_en = false;
  1567. if (card->ext_csd.cmdq_support && host->caps2 & MMC_CAP2_CQE) {
  1568. err = mmc_cmdq_enable(card);
  1569. if (err && err != -EBADMSG)
  1570. goto free_card;
  1571. if (err) {
  1572. pr_warn("%s: Enabling CMDQ failed\n",
  1573. mmc_hostname(card->host));
  1574. card->ext_csd.cmdq_support = false;
  1575. card->ext_csd.cmdq_depth = 0;
  1576. err = 0;
  1577. }
  1578. }
  1579. /*
  1580. * In some cases (e.g. RPMB or mmc_test), the Command Queue must be
  1581. * disabled for a time, so a flag is needed to indicate to re-enable the
  1582. * Command Queue.
  1583. */
  1584. card->reenable_cmdq = card->ext_csd.cmdq_en;
  1585. if (card->ext_csd.cmdq_en && !host->cqe_enabled) {
  1586. err = host->cqe_ops->cqe_enable(host, card);
  1587. if (err) {
  1588. pr_err("%s: Failed to enable CQE, error %d\n",
  1589. mmc_hostname(host), err);
  1590. } else {
  1591. host->cqe_enabled = true;
  1592. pr_info("%s: Command Queue Engine enabled\n",
  1593. mmc_hostname(host));
  1594. }
  1595. }
  1596. if (!oldcard)
  1597. host->card = card;
  1598. return 0;
  1599. free_card:
  1600. if (!oldcard)
  1601. mmc_remove_card(card);
  1602. err:
  1603. return err;
  1604. }
  1605. static int mmc_can_sleep(struct mmc_card *card)
  1606. {
  1607. return (card && card->ext_csd.rev >= 3);
  1608. }
  1609. static int mmc_sleep(struct mmc_host *host)
  1610. {
  1611. struct mmc_command cmd = {};
  1612. struct mmc_card *card = host->card;
  1613. unsigned int timeout_ms = DIV_ROUND_UP(card->ext_csd.sa_timeout, 10000);
  1614. int err;
  1615. /* Re-tuning can't be done once the card is deselected */
  1616. mmc_retune_hold(host);
  1617. err = mmc_deselect_cards(host);
  1618. if (err)
  1619. goto out_release;
  1620. cmd.opcode = MMC_SLEEP_AWAKE;
  1621. cmd.arg = card->rca << 16;
  1622. cmd.arg |= 1 << 15;
  1623. /*
  1624. * If the max_busy_timeout of the host is specified, validate it against
  1625. * the sleep cmd timeout. A failure means we need to prevent the host
  1626. * from doing hw busy detection, which is done by converting to a R1
  1627. * response instead of a R1B.
  1628. */
  1629. if (host->max_busy_timeout && (timeout_ms > host->max_busy_timeout)) {
  1630. cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
  1631. } else {
  1632. cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
  1633. cmd.busy_timeout = timeout_ms;
  1634. }
  1635. err = mmc_wait_for_cmd(host, &cmd, 0);
  1636. if (err)
  1637. goto out_release;
  1638. /*
  1639. * If the host does not wait while the card signals busy, then we will
  1640. * will have to wait the sleep/awake timeout. Note, we cannot use the
  1641. * SEND_STATUS command to poll the status because that command (and most
  1642. * others) is invalid while the card sleeps.
  1643. */
  1644. if (!cmd.busy_timeout || !(host->caps & MMC_CAP_WAIT_WHILE_BUSY))
  1645. mmc_delay(timeout_ms);
  1646. out_release:
  1647. mmc_retune_release(host);
  1648. return err;
  1649. }
  1650. static int mmc_can_poweroff_notify(const struct mmc_card *card)
  1651. {
  1652. return card &&
  1653. mmc_card_mmc(card) &&
  1654. (card->ext_csd.power_off_notification == EXT_CSD_POWER_ON);
  1655. }
  1656. static int mmc_poweroff_notify(struct mmc_card *card, unsigned int notify_type)
  1657. {
  1658. unsigned int timeout = card->ext_csd.generic_cmd6_time;
  1659. int err;
  1660. /* Use EXT_CSD_POWER_OFF_SHORT as default notification type. */
  1661. if (notify_type == EXT_CSD_POWER_OFF_LONG)
  1662. timeout = card->ext_csd.power_off_longtime;
  1663. err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
  1664. EXT_CSD_POWER_OFF_NOTIFICATION,
  1665. notify_type, timeout, 0, true, false, false);
  1666. if (err)
  1667. pr_err("%s: Power Off Notification timed out, %u\n",
  1668. mmc_hostname(card->host), timeout);
  1669. /* Disable the power off notification after the switch operation. */
  1670. card->ext_csd.power_off_notification = EXT_CSD_NO_POWER_NOTIFICATION;
  1671. return err;
  1672. }
  1673. /*
  1674. * Host is being removed. Free up the current card.
  1675. */
  1676. static void mmc_remove(struct mmc_host *host)
  1677. {
  1678. mmc_remove_card(host->card);
  1679. host->card = NULL;
  1680. }
  1681. /*
  1682. * Card detection - card is alive.
  1683. */
  1684. static int mmc_alive(struct mmc_host *host)
  1685. {
  1686. return mmc_send_status(host->card, NULL);
  1687. }
  1688. /*
  1689. * Card detection callback from host.
  1690. */
  1691. static void mmc_detect(struct mmc_host *host)
  1692. {
  1693. int err;
  1694. mmc_get_card(host->card, NULL);
  1695. /*
  1696. * Just check if our card has been removed.
  1697. */
  1698. err = _mmc_detect_card_removed(host);
  1699. mmc_put_card(host->card, NULL);
  1700. if (err) {
  1701. mmc_remove(host);
  1702. mmc_claim_host(host);
  1703. mmc_detach_bus(host);
  1704. mmc_power_off(host);
  1705. mmc_release_host(host);
  1706. }
  1707. }
  1708. static int _mmc_suspend(struct mmc_host *host, bool is_suspend)
  1709. {
  1710. int err = 0;
  1711. unsigned int notify_type = is_suspend ? EXT_CSD_POWER_OFF_SHORT :
  1712. EXT_CSD_POWER_OFF_LONG;
  1713. mmc_claim_host(host);
  1714. if (mmc_card_suspended(host->card))
  1715. goto out;
  1716. if (mmc_card_doing_bkops(host->card)) {
  1717. err = mmc_stop_bkops(host->card);
  1718. if (err)
  1719. goto out;
  1720. }
  1721. err = mmc_flush_cache(host->card);
  1722. if (err)
  1723. goto out;
  1724. if (mmc_can_poweroff_notify(host->card) &&
  1725. ((host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) || !is_suspend))
  1726. err = mmc_poweroff_notify(host->card, notify_type);
  1727. else if (mmc_can_sleep(host->card))
  1728. err = mmc_sleep(host);
  1729. else if (!mmc_host_is_spi(host))
  1730. err = mmc_deselect_cards(host);
  1731. if (!err) {
  1732. mmc_power_off(host);
  1733. mmc_card_set_suspended(host->card);
  1734. }
  1735. out:
  1736. mmc_release_host(host);
  1737. return err;
  1738. }
  1739. /*
  1740. * Suspend callback
  1741. */
  1742. static int mmc_suspend(struct mmc_host *host)
  1743. {
  1744. int err;
  1745. err = _mmc_suspend(host, true);
  1746. if (!err) {
  1747. pm_runtime_disable(&host->card->dev);
  1748. pm_runtime_set_suspended(&host->card->dev);
  1749. }
  1750. return err;
  1751. }
  1752. /*
  1753. * This function tries to determine if the same card is still present
  1754. * and, if so, restore all state to it.
  1755. */
  1756. static int _mmc_resume(struct mmc_host *host)
  1757. {
  1758. int err = 0;
  1759. mmc_claim_host(host);
  1760. if (!mmc_card_suspended(host->card))
  1761. goto out;
  1762. mmc_power_up(host, host->card->ocr);
  1763. err = mmc_init_card(host, host->card->ocr, host->card);
  1764. mmc_card_clr_suspended(host->card);
  1765. out:
  1766. mmc_release_host(host);
  1767. return err;
  1768. }
  1769. /*
  1770. * Shutdown callback
  1771. */
  1772. static int mmc_shutdown(struct mmc_host *host)
  1773. {
  1774. int err = 0;
  1775. /*
  1776. * In a specific case for poweroff notify, we need to resume the card
  1777. * before we can shutdown it properly.
  1778. */
  1779. if (mmc_can_poweroff_notify(host->card) &&
  1780. !(host->caps2 & MMC_CAP2_FULL_PWR_CYCLE))
  1781. err = _mmc_resume(host);
  1782. if (!err)
  1783. err = _mmc_suspend(host, false);
  1784. return err;
  1785. }
  1786. /*
  1787. * Callback for resume.
  1788. */
  1789. static int mmc_resume(struct mmc_host *host)
  1790. {
  1791. pm_runtime_enable(&host->card->dev);
  1792. return 0;
  1793. }
  1794. /*
  1795. * Callback for runtime_suspend.
  1796. */
  1797. static int mmc_runtime_suspend(struct mmc_host *host)
  1798. {
  1799. int err;
  1800. if (!(host->caps & MMC_CAP_AGGRESSIVE_PM))
  1801. return 0;
  1802. err = _mmc_suspend(host, true);
  1803. if (err)
  1804. pr_err("%s: error %d doing aggressive suspend\n",
  1805. mmc_hostname(host), err);
  1806. return err;
  1807. }
  1808. /*
  1809. * Callback for runtime_resume.
  1810. */
  1811. static int mmc_runtime_resume(struct mmc_host *host)
  1812. {
  1813. int err;
  1814. err = _mmc_resume(host);
  1815. if (err && err != -ENOMEDIUM)
  1816. pr_err("%s: error %d doing runtime resume\n",
  1817. mmc_hostname(host), err);
  1818. return 0;
  1819. }
  1820. static int mmc_can_reset(struct mmc_card *card)
  1821. {
  1822. u8 rst_n_function;
  1823. rst_n_function = card->ext_csd.rst_n_function;
  1824. if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED)
  1825. return 0;
  1826. return 1;
  1827. }
  1828. static int mmc_reset(struct mmc_host *host)
  1829. {
  1830. struct mmc_card *card = host->card;
  1831. /*
  1832. * In the case of recovery, we can't expect flushing the cache to work
  1833. * always, but we have a go and ignore errors.
  1834. */
  1835. mmc_flush_cache(host->card);
  1836. if ((host->caps & MMC_CAP_HW_RESET) && host->ops->hw_reset &&
  1837. mmc_can_reset(card)) {
  1838. /* If the card accept RST_n signal, send it. */
  1839. mmc_set_clock(host, host->f_init);
  1840. host->ops->hw_reset(host);
  1841. /* Set initial state and call mmc_set_ios */
  1842. mmc_set_initial_state(host);
  1843. } else {
  1844. /* Do a brute force power cycle */
  1845. mmc_power_cycle(host, card->ocr);
  1846. mmc_pwrseq_reset(host);
  1847. }
  1848. return mmc_init_card(host, card->ocr, card);
  1849. }
  1850. static const struct mmc_bus_ops mmc_ops = {
  1851. .remove = mmc_remove,
  1852. .detect = mmc_detect,
  1853. .suspend = mmc_suspend,
  1854. .resume = mmc_resume,
  1855. .runtime_suspend = mmc_runtime_suspend,
  1856. .runtime_resume = mmc_runtime_resume,
  1857. .alive = mmc_alive,
  1858. .shutdown = mmc_shutdown,
  1859. .reset = mmc_reset,
  1860. };
  1861. /*
  1862. * Starting point for MMC card init.
  1863. */
  1864. int mmc_attach_mmc(struct mmc_host *host)
  1865. {
  1866. int err;
  1867. u32 ocr, rocr;
  1868. WARN_ON(!host->claimed);
  1869. /* Set correct bus mode for MMC before attempting attach */
  1870. if (!mmc_host_is_spi(host))
  1871. mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
  1872. err = mmc_send_op_cond(host, 0, &ocr);
  1873. if (err)
  1874. return err;
  1875. mmc_attach_bus(host, &mmc_ops);
  1876. if (host->ocr_avail_mmc)
  1877. host->ocr_avail = host->ocr_avail_mmc;
  1878. /*
  1879. * We need to get OCR a different way for SPI.
  1880. */
  1881. if (mmc_host_is_spi(host)) {
  1882. err = mmc_spi_read_ocr(host, 1, &ocr);
  1883. if (err)
  1884. goto err;
  1885. }
  1886. rocr = mmc_select_voltage(host, ocr);
  1887. /*
  1888. * Can we support the voltage of the card?
  1889. */
  1890. if (!rocr) {
  1891. err = -EINVAL;
  1892. goto err;
  1893. }
  1894. /*
  1895. * Detect and init the card.
  1896. */
  1897. err = mmc_init_card(host, rocr, NULL);
  1898. if (err)
  1899. goto err;
  1900. mmc_release_host(host);
  1901. err = mmc_add_card(host->card);
  1902. if (err)
  1903. goto remove_card;
  1904. mmc_claim_host(host);
  1905. return 0;
  1906. remove_card:
  1907. mmc_remove_card(host->card);
  1908. mmc_claim_host(host);
  1909. host->card = NULL;
  1910. err:
  1911. mmc_detach_bus(host);
  1912. pr_err("%s: error %d whilst initialising MMC card\n",
  1913. mmc_hostname(host), err);
  1914. return err;
  1915. }