amd_iommu.c 101 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384
  1. /*
  2. * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
  3. * Author: Joerg Roedel <jroedel@suse.de>
  4. * Leo Duran <leo.duran@amd.com>
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of the GNU General Public License version 2 as published
  8. * by the Free Software Foundation.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18. */
  19. #include <linux/ratelimit.h>
  20. #include <linux/pci.h>
  21. #include <linux/acpi.h>
  22. #include <linux/amba/bus.h>
  23. #include <linux/platform_device.h>
  24. #include <linux/pci-ats.h>
  25. #include <linux/bitmap.h>
  26. #include <linux/slab.h>
  27. #include <linux/debugfs.h>
  28. #include <linux/scatterlist.h>
  29. #include <linux/dma-mapping.h>
  30. #include <linux/iommu-helper.h>
  31. #include <linux/iommu.h>
  32. #include <linux/delay.h>
  33. #include <linux/amd-iommu.h>
  34. #include <linux/notifier.h>
  35. #include <linux/export.h>
  36. #include <linux/irq.h>
  37. #include <linux/msi.h>
  38. #include <linux/dma-contiguous.h>
  39. #include <linux/irqdomain.h>
  40. #include <linux/percpu.h>
  41. #include <linux/iova.h>
  42. #include <asm/irq_remapping.h>
  43. #include <asm/io_apic.h>
  44. #include <asm/apic.h>
  45. #include <asm/hw_irq.h>
  46. #include <asm/msidef.h>
  47. #include <asm/proto.h>
  48. #include <asm/iommu.h>
  49. #include <asm/gart.h>
  50. #include <asm/dma.h>
  51. #include "amd_iommu_proto.h"
  52. #include "amd_iommu_types.h"
  53. #include "irq_remapping.h"
  54. #define AMD_IOMMU_MAPPING_ERROR 0
  55. #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
  56. #define LOOP_TIMEOUT 100000
  57. /* IO virtual address start page frame number */
  58. #define IOVA_START_PFN (1)
  59. #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
  60. /* Reserved IOVA ranges */
  61. #define MSI_RANGE_START (0xfee00000)
  62. #define MSI_RANGE_END (0xfeefffff)
  63. #define HT_RANGE_START (0xfd00000000ULL)
  64. #define HT_RANGE_END (0xffffffffffULL)
  65. /*
  66. * This bitmap is used to advertise the page sizes our hardware support
  67. * to the IOMMU core, which will then use this information to split
  68. * physically contiguous memory regions it is mapping into page sizes
  69. * that we support.
  70. *
  71. * 512GB Pages are not supported due to a hardware bug
  72. */
  73. #define AMD_IOMMU_PGSIZES ((~0xFFFUL) & ~(2ULL << 38))
  74. static DEFINE_RWLOCK(amd_iommu_devtable_lock);
  75. /* List of all available dev_data structures */
  76. static LIST_HEAD(dev_data_list);
  77. static DEFINE_SPINLOCK(dev_data_list_lock);
  78. LIST_HEAD(ioapic_map);
  79. LIST_HEAD(hpet_map);
  80. LIST_HEAD(acpihid_map);
  81. /*
  82. * Domain for untranslated devices - only allocated
  83. * if iommu=pt passed on kernel cmd line.
  84. */
  85. const struct iommu_ops amd_iommu_ops;
  86. static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
  87. int amd_iommu_max_glx_val = -1;
  88. static const struct dma_map_ops amd_iommu_dma_ops;
  89. /*
  90. * general struct to manage commands send to an IOMMU
  91. */
  92. struct iommu_cmd {
  93. u32 data[4];
  94. };
  95. struct kmem_cache *amd_iommu_irq_cache;
  96. static void update_domain(struct protection_domain *domain);
  97. static int protection_domain_init(struct protection_domain *domain);
  98. static void detach_device(struct device *dev);
  99. static void iova_domain_flush_tlb(struct iova_domain *iovad);
  100. /*
  101. * Data container for a dma_ops specific protection domain
  102. */
  103. struct dma_ops_domain {
  104. /* generic protection domain information */
  105. struct protection_domain domain;
  106. /* IOVA RB-Tree */
  107. struct iova_domain iovad;
  108. };
  109. static struct iova_domain reserved_iova_ranges;
  110. static struct lock_class_key reserved_rbtree_key;
  111. /****************************************************************************
  112. *
  113. * Helper functions
  114. *
  115. ****************************************************************************/
  116. static inline int match_hid_uid(struct device *dev,
  117. struct acpihid_map_entry *entry)
  118. {
  119. const char *hid, *uid;
  120. hid = acpi_device_hid(ACPI_COMPANION(dev));
  121. uid = acpi_device_uid(ACPI_COMPANION(dev));
  122. if (!hid || !(*hid))
  123. return -ENODEV;
  124. if (!uid || !(*uid))
  125. return strcmp(hid, entry->hid);
  126. if (!(*entry->uid))
  127. return strcmp(hid, entry->hid);
  128. return (strcmp(hid, entry->hid) || strcmp(uid, entry->uid));
  129. }
  130. static inline u16 get_pci_device_id(struct device *dev)
  131. {
  132. struct pci_dev *pdev = to_pci_dev(dev);
  133. return PCI_DEVID(pdev->bus->number, pdev->devfn);
  134. }
  135. static inline int get_acpihid_device_id(struct device *dev,
  136. struct acpihid_map_entry **entry)
  137. {
  138. struct acpihid_map_entry *p;
  139. list_for_each_entry(p, &acpihid_map, list) {
  140. if (!match_hid_uid(dev, p)) {
  141. if (entry)
  142. *entry = p;
  143. return p->devid;
  144. }
  145. }
  146. return -EINVAL;
  147. }
  148. static inline int get_device_id(struct device *dev)
  149. {
  150. int devid;
  151. if (dev_is_pci(dev))
  152. devid = get_pci_device_id(dev);
  153. else
  154. devid = get_acpihid_device_id(dev, NULL);
  155. return devid;
  156. }
  157. static struct protection_domain *to_pdomain(struct iommu_domain *dom)
  158. {
  159. return container_of(dom, struct protection_domain, domain);
  160. }
  161. static struct dma_ops_domain* to_dma_ops_domain(struct protection_domain *domain)
  162. {
  163. BUG_ON(domain->flags != PD_DMA_OPS_MASK);
  164. return container_of(domain, struct dma_ops_domain, domain);
  165. }
  166. static struct iommu_dev_data *alloc_dev_data(u16 devid)
  167. {
  168. struct iommu_dev_data *dev_data;
  169. unsigned long flags;
  170. dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
  171. if (!dev_data)
  172. return NULL;
  173. dev_data->devid = devid;
  174. spin_lock_irqsave(&dev_data_list_lock, flags);
  175. list_add_tail(&dev_data->dev_data_list, &dev_data_list);
  176. spin_unlock_irqrestore(&dev_data_list_lock, flags);
  177. ratelimit_default_init(&dev_data->rs);
  178. return dev_data;
  179. }
  180. static struct iommu_dev_data *search_dev_data(u16 devid)
  181. {
  182. struct iommu_dev_data *dev_data;
  183. unsigned long flags;
  184. spin_lock_irqsave(&dev_data_list_lock, flags);
  185. list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
  186. if (dev_data->devid == devid)
  187. goto out_unlock;
  188. }
  189. dev_data = NULL;
  190. out_unlock:
  191. spin_unlock_irqrestore(&dev_data_list_lock, flags);
  192. return dev_data;
  193. }
  194. static int __last_alias(struct pci_dev *pdev, u16 alias, void *data)
  195. {
  196. *(u16 *)data = alias;
  197. return 0;
  198. }
  199. static u16 get_alias(struct device *dev)
  200. {
  201. struct pci_dev *pdev = to_pci_dev(dev);
  202. u16 devid, ivrs_alias, pci_alias;
  203. /* The callers make sure that get_device_id() does not fail here */
  204. devid = get_device_id(dev);
  205. ivrs_alias = amd_iommu_alias_table[devid];
  206. pci_for_each_dma_alias(pdev, __last_alias, &pci_alias);
  207. if (ivrs_alias == pci_alias)
  208. return ivrs_alias;
  209. /*
  210. * DMA alias showdown
  211. *
  212. * The IVRS is fairly reliable in telling us about aliases, but it
  213. * can't know about every screwy device. If we don't have an IVRS
  214. * reported alias, use the PCI reported alias. In that case we may
  215. * still need to initialize the rlookup and dev_table entries if the
  216. * alias is to a non-existent device.
  217. */
  218. if (ivrs_alias == devid) {
  219. if (!amd_iommu_rlookup_table[pci_alias]) {
  220. amd_iommu_rlookup_table[pci_alias] =
  221. amd_iommu_rlookup_table[devid];
  222. memcpy(amd_iommu_dev_table[pci_alias].data,
  223. amd_iommu_dev_table[devid].data,
  224. sizeof(amd_iommu_dev_table[pci_alias].data));
  225. }
  226. return pci_alias;
  227. }
  228. pr_info("AMD-Vi: Using IVRS reported alias %02x:%02x.%d "
  229. "for device %s[%04x:%04x], kernel reported alias "
  230. "%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias), PCI_SLOT(ivrs_alias),
  231. PCI_FUNC(ivrs_alias), dev_name(dev), pdev->vendor, pdev->device,
  232. PCI_BUS_NUM(pci_alias), PCI_SLOT(pci_alias),
  233. PCI_FUNC(pci_alias));
  234. /*
  235. * If we don't have a PCI DMA alias and the IVRS alias is on the same
  236. * bus, then the IVRS table may know about a quirk that we don't.
  237. */
  238. if (pci_alias == devid &&
  239. PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) {
  240. pci_add_dma_alias(pdev, ivrs_alias & 0xff);
  241. pr_info("AMD-Vi: Added PCI DMA alias %02x.%d for %s\n",
  242. PCI_SLOT(ivrs_alias), PCI_FUNC(ivrs_alias),
  243. dev_name(dev));
  244. }
  245. return ivrs_alias;
  246. }
  247. static struct iommu_dev_data *find_dev_data(u16 devid)
  248. {
  249. struct iommu_dev_data *dev_data;
  250. struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
  251. dev_data = search_dev_data(devid);
  252. if (dev_data == NULL) {
  253. dev_data = alloc_dev_data(devid);
  254. if (translation_pre_enabled(iommu))
  255. dev_data->defer_attach = true;
  256. }
  257. return dev_data;
  258. }
  259. struct iommu_dev_data *get_dev_data(struct device *dev)
  260. {
  261. return dev->archdata.iommu;
  262. }
  263. EXPORT_SYMBOL(get_dev_data);
  264. /*
  265. * Find or create an IOMMU group for a acpihid device.
  266. */
  267. static struct iommu_group *acpihid_device_group(struct device *dev)
  268. {
  269. struct acpihid_map_entry *p, *entry = NULL;
  270. int devid;
  271. devid = get_acpihid_device_id(dev, &entry);
  272. if (devid < 0)
  273. return ERR_PTR(devid);
  274. list_for_each_entry(p, &acpihid_map, list) {
  275. if ((devid == p->devid) && p->group)
  276. entry->group = p->group;
  277. }
  278. if (!entry->group)
  279. entry->group = generic_device_group(dev);
  280. else
  281. iommu_group_ref_get(entry->group);
  282. return entry->group;
  283. }
  284. static bool pci_iommuv2_capable(struct pci_dev *pdev)
  285. {
  286. static const int caps[] = {
  287. PCI_EXT_CAP_ID_ATS,
  288. PCI_EXT_CAP_ID_PRI,
  289. PCI_EXT_CAP_ID_PASID,
  290. };
  291. int i, pos;
  292. for (i = 0; i < 3; ++i) {
  293. pos = pci_find_ext_capability(pdev, caps[i]);
  294. if (pos == 0)
  295. return false;
  296. }
  297. return true;
  298. }
  299. static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
  300. {
  301. struct iommu_dev_data *dev_data;
  302. dev_data = get_dev_data(&pdev->dev);
  303. return dev_data->errata & (1 << erratum) ? true : false;
  304. }
  305. /*
  306. * This function checks if the driver got a valid device from the caller to
  307. * avoid dereferencing invalid pointers.
  308. */
  309. static bool check_device(struct device *dev)
  310. {
  311. int devid;
  312. if (!dev || !dev->dma_mask)
  313. return false;
  314. devid = get_device_id(dev);
  315. if (devid < 0)
  316. return false;
  317. /* Out of our scope? */
  318. if (devid > amd_iommu_last_bdf)
  319. return false;
  320. if (amd_iommu_rlookup_table[devid] == NULL)
  321. return false;
  322. return true;
  323. }
  324. static void init_iommu_group(struct device *dev)
  325. {
  326. struct iommu_group *group;
  327. group = iommu_group_get_for_dev(dev);
  328. if (IS_ERR(group))
  329. return;
  330. iommu_group_put(group);
  331. }
  332. static int iommu_init_device(struct device *dev)
  333. {
  334. struct iommu_dev_data *dev_data;
  335. struct amd_iommu *iommu;
  336. int devid;
  337. if (dev->archdata.iommu)
  338. return 0;
  339. devid = get_device_id(dev);
  340. if (devid < 0)
  341. return devid;
  342. iommu = amd_iommu_rlookup_table[devid];
  343. dev_data = find_dev_data(devid);
  344. if (!dev_data)
  345. return -ENOMEM;
  346. dev_data->alias = get_alias(dev);
  347. if (dev_is_pci(dev) && pci_iommuv2_capable(to_pci_dev(dev))) {
  348. struct amd_iommu *iommu;
  349. iommu = amd_iommu_rlookup_table[dev_data->devid];
  350. dev_data->iommu_v2 = iommu->is_iommu_v2;
  351. }
  352. dev->archdata.iommu = dev_data;
  353. iommu_device_link(&iommu->iommu, dev);
  354. return 0;
  355. }
  356. static void iommu_ignore_device(struct device *dev)
  357. {
  358. u16 alias;
  359. int devid;
  360. devid = get_device_id(dev);
  361. if (devid < 0)
  362. return;
  363. alias = get_alias(dev);
  364. memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
  365. memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));
  366. amd_iommu_rlookup_table[devid] = NULL;
  367. amd_iommu_rlookup_table[alias] = NULL;
  368. }
  369. static void iommu_uninit_device(struct device *dev)
  370. {
  371. struct iommu_dev_data *dev_data;
  372. struct amd_iommu *iommu;
  373. int devid;
  374. devid = get_device_id(dev);
  375. if (devid < 0)
  376. return;
  377. iommu = amd_iommu_rlookup_table[devid];
  378. dev_data = search_dev_data(devid);
  379. if (!dev_data)
  380. return;
  381. if (dev_data->domain)
  382. detach_device(dev);
  383. iommu_device_unlink(&iommu->iommu, dev);
  384. iommu_group_remove_device(dev);
  385. /* Remove dma-ops */
  386. dev->dma_ops = NULL;
  387. /*
  388. * We keep dev_data around for unplugged devices and reuse it when the
  389. * device is re-plugged - not doing so would introduce a ton of races.
  390. */
  391. }
  392. /****************************************************************************
  393. *
  394. * Interrupt handling functions
  395. *
  396. ****************************************************************************/
  397. static void dump_dte_entry(u16 devid)
  398. {
  399. int i;
  400. for (i = 0; i < 4; ++i)
  401. pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
  402. amd_iommu_dev_table[devid].data[i]);
  403. }
  404. static void dump_command(unsigned long phys_addr)
  405. {
  406. struct iommu_cmd *cmd = iommu_phys_to_virt(phys_addr);
  407. int i;
  408. for (i = 0; i < 4; ++i)
  409. pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
  410. }
  411. static void amd_iommu_report_page_fault(u16 devid, u16 domain_id,
  412. u64 address, int flags)
  413. {
  414. struct iommu_dev_data *dev_data = NULL;
  415. struct pci_dev *pdev;
  416. pdev = pci_get_bus_and_slot(PCI_BUS_NUM(devid), devid & 0xff);
  417. if (pdev)
  418. dev_data = get_dev_data(&pdev->dev);
  419. if (dev_data && __ratelimit(&dev_data->rs)) {
  420. dev_err(&pdev->dev, "AMD-Vi: Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%016llx flags=0x%04x]\n",
  421. domain_id, address, flags);
  422. } else if (printk_ratelimit()) {
  423. pr_err("AMD-Vi: Event logged [IO_PAGE_FAULT device=%02x:%02x.%x domain=0x%04x address=0x%016llx flags=0x%04x]\n",
  424. PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  425. domain_id, address, flags);
  426. }
  427. if (pdev)
  428. pci_dev_put(pdev);
  429. }
  430. static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
  431. {
  432. int type, devid, domid, flags;
  433. volatile u32 *event = __evt;
  434. int count = 0;
  435. u64 address;
  436. retry:
  437. type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
  438. devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
  439. domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
  440. flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
  441. address = (u64)(((u64)event[3]) << 32) | event[2];
  442. if (type == 0) {
  443. /* Did we hit the erratum? */
  444. if (++count == LOOP_TIMEOUT) {
  445. pr_err("AMD-Vi: No event written to event log\n");
  446. return;
  447. }
  448. udelay(1);
  449. goto retry;
  450. }
  451. if (type == EVENT_TYPE_IO_FAULT) {
  452. amd_iommu_report_page_fault(devid, domid, address, flags);
  453. return;
  454. } else {
  455. printk(KERN_ERR "AMD-Vi: Event logged [");
  456. }
  457. switch (type) {
  458. case EVENT_TYPE_ILL_DEV:
  459. printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
  460. "address=0x%016llx flags=0x%04x]\n",
  461. PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  462. address, flags);
  463. dump_dte_entry(devid);
  464. break;
  465. case EVENT_TYPE_DEV_TAB_ERR:
  466. printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
  467. "address=0x%016llx flags=0x%04x]\n",
  468. PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  469. address, flags);
  470. break;
  471. case EVENT_TYPE_PAGE_TAB_ERR:
  472. printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
  473. "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
  474. PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  475. domid, address, flags);
  476. break;
  477. case EVENT_TYPE_ILL_CMD:
  478. printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
  479. dump_command(address);
  480. break;
  481. case EVENT_TYPE_CMD_HARD_ERR:
  482. printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
  483. "flags=0x%04x]\n", address, flags);
  484. break;
  485. case EVENT_TYPE_IOTLB_INV_TO:
  486. printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
  487. "address=0x%016llx]\n",
  488. PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  489. address);
  490. break;
  491. case EVENT_TYPE_INV_DEV_REQ:
  492. printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
  493. "address=0x%016llx flags=0x%04x]\n",
  494. PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  495. address, flags);
  496. break;
  497. default:
  498. printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
  499. }
  500. memset(__evt, 0, 4 * sizeof(u32));
  501. }
  502. static void iommu_poll_events(struct amd_iommu *iommu)
  503. {
  504. u32 head, tail;
  505. head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
  506. tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
  507. while (head != tail) {
  508. iommu_print_event(iommu, iommu->evt_buf + head);
  509. head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
  510. }
  511. writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
  512. }
  513. static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
  514. {
  515. struct amd_iommu_fault fault;
  516. if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
  517. pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
  518. return;
  519. }
  520. fault.address = raw[1];
  521. fault.pasid = PPR_PASID(raw[0]);
  522. fault.device_id = PPR_DEVID(raw[0]);
  523. fault.tag = PPR_TAG(raw[0]);
  524. fault.flags = PPR_FLAGS(raw[0]);
  525. atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
  526. }
  527. static void iommu_poll_ppr_log(struct amd_iommu *iommu)
  528. {
  529. u32 head, tail;
  530. if (iommu->ppr_log == NULL)
  531. return;
  532. head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
  533. tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
  534. while (head != tail) {
  535. volatile u64 *raw;
  536. u64 entry[2];
  537. int i;
  538. raw = (u64 *)(iommu->ppr_log + head);
  539. /*
  540. * Hardware bug: Interrupt may arrive before the entry is
  541. * written to memory. If this happens we need to wait for the
  542. * entry to arrive.
  543. */
  544. for (i = 0; i < LOOP_TIMEOUT; ++i) {
  545. if (PPR_REQ_TYPE(raw[0]) != 0)
  546. break;
  547. udelay(1);
  548. }
  549. /* Avoid memcpy function-call overhead */
  550. entry[0] = raw[0];
  551. entry[1] = raw[1];
  552. /*
  553. * To detect the hardware bug we need to clear the entry
  554. * back to zero.
  555. */
  556. raw[0] = raw[1] = 0UL;
  557. /* Update head pointer of hardware ring-buffer */
  558. head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
  559. writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
  560. /* Handle PPR entry */
  561. iommu_handle_ppr_entry(iommu, entry);
  562. /* Refresh ring-buffer information */
  563. head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
  564. tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
  565. }
  566. }
  567. #ifdef CONFIG_IRQ_REMAP
  568. static int (*iommu_ga_log_notifier)(u32);
  569. int amd_iommu_register_ga_log_notifier(int (*notifier)(u32))
  570. {
  571. iommu_ga_log_notifier = notifier;
  572. return 0;
  573. }
  574. EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier);
  575. static void iommu_poll_ga_log(struct amd_iommu *iommu)
  576. {
  577. u32 head, tail, cnt = 0;
  578. if (iommu->ga_log == NULL)
  579. return;
  580. head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
  581. tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET);
  582. while (head != tail) {
  583. volatile u64 *raw;
  584. u64 log_entry;
  585. raw = (u64 *)(iommu->ga_log + head);
  586. cnt++;
  587. /* Avoid memcpy function-call overhead */
  588. log_entry = *raw;
  589. /* Update head pointer of hardware ring-buffer */
  590. head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE;
  591. writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
  592. /* Handle GA entry */
  593. switch (GA_REQ_TYPE(log_entry)) {
  594. case GA_GUEST_NR:
  595. if (!iommu_ga_log_notifier)
  596. break;
  597. pr_debug("AMD-Vi: %s: devid=%#x, ga_tag=%#x\n",
  598. __func__, GA_DEVID(log_entry),
  599. GA_TAG(log_entry));
  600. if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0)
  601. pr_err("AMD-Vi: GA log notifier failed.\n");
  602. break;
  603. default:
  604. break;
  605. }
  606. }
  607. }
  608. #endif /* CONFIG_IRQ_REMAP */
  609. #define AMD_IOMMU_INT_MASK \
  610. (MMIO_STATUS_EVT_INT_MASK | \
  611. MMIO_STATUS_PPR_INT_MASK | \
  612. MMIO_STATUS_GALOG_INT_MASK)
  613. irqreturn_t amd_iommu_int_thread(int irq, void *data)
  614. {
  615. struct amd_iommu *iommu = (struct amd_iommu *) data;
  616. u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
  617. while (status & AMD_IOMMU_INT_MASK) {
  618. /* Enable EVT and PPR and GA interrupts again */
  619. writel(AMD_IOMMU_INT_MASK,
  620. iommu->mmio_base + MMIO_STATUS_OFFSET);
  621. if (status & MMIO_STATUS_EVT_INT_MASK) {
  622. pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
  623. iommu_poll_events(iommu);
  624. }
  625. if (status & MMIO_STATUS_PPR_INT_MASK) {
  626. pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
  627. iommu_poll_ppr_log(iommu);
  628. }
  629. #ifdef CONFIG_IRQ_REMAP
  630. if (status & MMIO_STATUS_GALOG_INT_MASK) {
  631. pr_devel("AMD-Vi: Processing IOMMU GA Log\n");
  632. iommu_poll_ga_log(iommu);
  633. }
  634. #endif
  635. /*
  636. * Hardware bug: ERBT1312
  637. * When re-enabling interrupt (by writing 1
  638. * to clear the bit), the hardware might also try to set
  639. * the interrupt bit in the event status register.
  640. * In this scenario, the bit will be set, and disable
  641. * subsequent interrupts.
  642. *
  643. * Workaround: The IOMMU driver should read back the
  644. * status register and check if the interrupt bits are cleared.
  645. * If not, driver will need to go through the interrupt handler
  646. * again and re-clear the bits
  647. */
  648. status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
  649. }
  650. return IRQ_HANDLED;
  651. }
  652. irqreturn_t amd_iommu_int_handler(int irq, void *data)
  653. {
  654. return IRQ_WAKE_THREAD;
  655. }
  656. /****************************************************************************
  657. *
  658. * IOMMU command queuing functions
  659. *
  660. ****************************************************************************/
  661. static int wait_on_sem(volatile u64 *sem)
  662. {
  663. int i = 0;
  664. while (*sem == 0 && i < LOOP_TIMEOUT) {
  665. udelay(1);
  666. i += 1;
  667. }
  668. if (i == LOOP_TIMEOUT) {
  669. pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
  670. return -EIO;
  671. }
  672. return 0;
  673. }
  674. static void copy_cmd_to_buffer(struct amd_iommu *iommu,
  675. struct iommu_cmd *cmd)
  676. {
  677. u8 *target;
  678. target = iommu->cmd_buf + iommu->cmd_buf_tail;
  679. iommu->cmd_buf_tail += sizeof(*cmd);
  680. iommu->cmd_buf_tail %= CMD_BUFFER_SIZE;
  681. /* Copy command to buffer */
  682. memcpy(target, cmd, sizeof(*cmd));
  683. /* Tell the IOMMU about it */
  684. writel(iommu->cmd_buf_tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
  685. }
  686. static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
  687. {
  688. u64 paddr = iommu_virt_to_phys((void *)address);
  689. WARN_ON(address & 0x7ULL);
  690. memset(cmd, 0, sizeof(*cmd));
  691. cmd->data[0] = lower_32_bits(paddr) | CMD_COMPL_WAIT_STORE_MASK;
  692. cmd->data[1] = upper_32_bits(paddr);
  693. cmd->data[2] = 1;
  694. CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
  695. }
  696. static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
  697. {
  698. memset(cmd, 0, sizeof(*cmd));
  699. cmd->data[0] = devid;
  700. CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
  701. }
  702. static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
  703. size_t size, u16 domid, int pde)
  704. {
  705. u64 pages;
  706. bool s;
  707. pages = iommu_num_pages(address, size, PAGE_SIZE);
  708. s = false;
  709. if (pages > 1) {
  710. /*
  711. * If we have to flush more than one page, flush all
  712. * TLB entries for this domain
  713. */
  714. address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
  715. s = true;
  716. }
  717. address &= PAGE_MASK;
  718. memset(cmd, 0, sizeof(*cmd));
  719. cmd->data[1] |= domid;
  720. cmd->data[2] = lower_32_bits(address);
  721. cmd->data[3] = upper_32_bits(address);
  722. CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
  723. if (s) /* size bit - we flush more than one 4kb page */
  724. cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
  725. if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
  726. cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
  727. }
  728. static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
  729. u64 address, size_t size)
  730. {
  731. u64 pages;
  732. bool s;
  733. pages = iommu_num_pages(address, size, PAGE_SIZE);
  734. s = false;
  735. if (pages > 1) {
  736. /*
  737. * If we have to flush more than one page, flush all
  738. * TLB entries for this domain
  739. */
  740. address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
  741. s = true;
  742. }
  743. address &= PAGE_MASK;
  744. memset(cmd, 0, sizeof(*cmd));
  745. cmd->data[0] = devid;
  746. cmd->data[0] |= (qdep & 0xff) << 24;
  747. cmd->data[1] = devid;
  748. cmd->data[2] = lower_32_bits(address);
  749. cmd->data[3] = upper_32_bits(address);
  750. CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
  751. if (s)
  752. cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
  753. }
  754. static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
  755. u64 address, bool size)
  756. {
  757. memset(cmd, 0, sizeof(*cmd));
  758. address &= ~(0xfffULL);
  759. cmd->data[0] = pasid;
  760. cmd->data[1] = domid;
  761. cmd->data[2] = lower_32_bits(address);
  762. cmd->data[3] = upper_32_bits(address);
  763. cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
  764. cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
  765. if (size)
  766. cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
  767. CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
  768. }
  769. static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
  770. int qdep, u64 address, bool size)
  771. {
  772. memset(cmd, 0, sizeof(*cmd));
  773. address &= ~(0xfffULL);
  774. cmd->data[0] = devid;
  775. cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
  776. cmd->data[0] |= (qdep & 0xff) << 24;
  777. cmd->data[1] = devid;
  778. cmd->data[1] |= (pasid & 0xff) << 16;
  779. cmd->data[2] = lower_32_bits(address);
  780. cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
  781. cmd->data[3] = upper_32_bits(address);
  782. if (size)
  783. cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
  784. CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
  785. }
  786. static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
  787. int status, int tag, bool gn)
  788. {
  789. memset(cmd, 0, sizeof(*cmd));
  790. cmd->data[0] = devid;
  791. if (gn) {
  792. cmd->data[1] = pasid;
  793. cmd->data[2] = CMD_INV_IOMMU_PAGES_GN_MASK;
  794. }
  795. cmd->data[3] = tag & 0x1ff;
  796. cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
  797. CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
  798. }
  799. static void build_inv_all(struct iommu_cmd *cmd)
  800. {
  801. memset(cmd, 0, sizeof(*cmd));
  802. CMD_SET_TYPE(cmd, CMD_INV_ALL);
  803. }
  804. static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
  805. {
  806. memset(cmd, 0, sizeof(*cmd));
  807. cmd->data[0] = devid;
  808. CMD_SET_TYPE(cmd, CMD_INV_IRT);
  809. }
  810. /*
  811. * Writes the command to the IOMMUs command buffer and informs the
  812. * hardware about the new command.
  813. */
  814. static int __iommu_queue_command_sync(struct amd_iommu *iommu,
  815. struct iommu_cmd *cmd,
  816. bool sync)
  817. {
  818. unsigned int count = 0;
  819. u32 left, next_tail;
  820. next_tail = (iommu->cmd_buf_tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
  821. again:
  822. left = (iommu->cmd_buf_head - next_tail) % CMD_BUFFER_SIZE;
  823. if (left <= 0x20) {
  824. /* Skip udelay() the first time around */
  825. if (count++) {
  826. if (count == LOOP_TIMEOUT) {
  827. pr_err("AMD-Vi: Command buffer timeout\n");
  828. return -EIO;
  829. }
  830. udelay(1);
  831. }
  832. /* Update head and recheck remaining space */
  833. iommu->cmd_buf_head = readl(iommu->mmio_base +
  834. MMIO_CMD_HEAD_OFFSET);
  835. goto again;
  836. }
  837. copy_cmd_to_buffer(iommu, cmd);
  838. /* Do we need to make sure all commands are processed? */
  839. iommu->need_sync = sync;
  840. return 0;
  841. }
  842. static int iommu_queue_command_sync(struct amd_iommu *iommu,
  843. struct iommu_cmd *cmd,
  844. bool sync)
  845. {
  846. unsigned long flags;
  847. int ret;
  848. spin_lock_irqsave(&iommu->lock, flags);
  849. ret = __iommu_queue_command_sync(iommu, cmd, sync);
  850. spin_unlock_irqrestore(&iommu->lock, flags);
  851. return ret;
  852. }
  853. static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
  854. {
  855. return iommu_queue_command_sync(iommu, cmd, true);
  856. }
  857. /*
  858. * This function queues a completion wait command into the command
  859. * buffer of an IOMMU
  860. */
  861. static int iommu_completion_wait(struct amd_iommu *iommu)
  862. {
  863. struct iommu_cmd cmd;
  864. unsigned long flags;
  865. int ret;
  866. if (!iommu->need_sync)
  867. return 0;
  868. build_completion_wait(&cmd, (u64)&iommu->cmd_sem);
  869. spin_lock_irqsave(&iommu->lock, flags);
  870. iommu->cmd_sem = 0;
  871. ret = __iommu_queue_command_sync(iommu, &cmd, false);
  872. if (ret)
  873. goto out_unlock;
  874. ret = wait_on_sem(&iommu->cmd_sem);
  875. out_unlock:
  876. spin_unlock_irqrestore(&iommu->lock, flags);
  877. return ret;
  878. }
  879. static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
  880. {
  881. struct iommu_cmd cmd;
  882. build_inv_dte(&cmd, devid);
  883. return iommu_queue_command(iommu, &cmd);
  884. }
  885. static void amd_iommu_flush_dte_all(struct amd_iommu *iommu)
  886. {
  887. u32 devid;
  888. for (devid = 0; devid <= 0xffff; ++devid)
  889. iommu_flush_dte(iommu, devid);
  890. iommu_completion_wait(iommu);
  891. }
  892. /*
  893. * This function uses heavy locking and may disable irqs for some time. But
  894. * this is no issue because it is only called during resume.
  895. */
  896. static void amd_iommu_flush_tlb_all(struct amd_iommu *iommu)
  897. {
  898. u32 dom_id;
  899. for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
  900. struct iommu_cmd cmd;
  901. build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
  902. dom_id, 1);
  903. iommu_queue_command(iommu, &cmd);
  904. }
  905. iommu_completion_wait(iommu);
  906. }
  907. static void amd_iommu_flush_all(struct amd_iommu *iommu)
  908. {
  909. struct iommu_cmd cmd;
  910. build_inv_all(&cmd);
  911. iommu_queue_command(iommu, &cmd);
  912. iommu_completion_wait(iommu);
  913. }
  914. static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
  915. {
  916. struct iommu_cmd cmd;
  917. build_inv_irt(&cmd, devid);
  918. iommu_queue_command(iommu, &cmd);
  919. }
  920. static void amd_iommu_flush_irt_all(struct amd_iommu *iommu)
  921. {
  922. u32 devid;
  923. for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
  924. iommu_flush_irt(iommu, devid);
  925. iommu_completion_wait(iommu);
  926. }
  927. void iommu_flush_all_caches(struct amd_iommu *iommu)
  928. {
  929. if (iommu_feature(iommu, FEATURE_IA)) {
  930. amd_iommu_flush_all(iommu);
  931. } else {
  932. amd_iommu_flush_dte_all(iommu);
  933. amd_iommu_flush_irt_all(iommu);
  934. amd_iommu_flush_tlb_all(iommu);
  935. }
  936. }
  937. /*
  938. * Command send function for flushing on-device TLB
  939. */
  940. static int device_flush_iotlb(struct iommu_dev_data *dev_data,
  941. u64 address, size_t size)
  942. {
  943. struct amd_iommu *iommu;
  944. struct iommu_cmd cmd;
  945. int qdep;
  946. qdep = dev_data->ats.qdep;
  947. iommu = amd_iommu_rlookup_table[dev_data->devid];
  948. build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
  949. return iommu_queue_command(iommu, &cmd);
  950. }
  951. /*
  952. * Command send function for invalidating a device table entry
  953. */
  954. static int device_flush_dte(struct iommu_dev_data *dev_data)
  955. {
  956. struct amd_iommu *iommu;
  957. u16 alias;
  958. int ret;
  959. iommu = amd_iommu_rlookup_table[dev_data->devid];
  960. alias = dev_data->alias;
  961. ret = iommu_flush_dte(iommu, dev_data->devid);
  962. if (!ret && alias != dev_data->devid)
  963. ret = iommu_flush_dte(iommu, alias);
  964. if (ret)
  965. return ret;
  966. if (dev_data->ats.enabled)
  967. ret = device_flush_iotlb(dev_data, 0, ~0UL);
  968. return ret;
  969. }
  970. /*
  971. * TLB invalidation function which is called from the mapping functions.
  972. * It invalidates a single PTE if the range to flush is within a single
  973. * page. Otherwise it flushes the whole TLB of the IOMMU.
  974. */
  975. static void __domain_flush_pages(struct protection_domain *domain,
  976. u64 address, size_t size, int pde)
  977. {
  978. struct iommu_dev_data *dev_data;
  979. struct iommu_cmd cmd;
  980. int ret = 0, i;
  981. build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
  982. for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
  983. if (!domain->dev_iommu[i])
  984. continue;
  985. /*
  986. * Devices of this domain are behind this IOMMU
  987. * We need a TLB flush
  988. */
  989. ret |= iommu_queue_command(amd_iommus[i], &cmd);
  990. }
  991. list_for_each_entry(dev_data, &domain->dev_list, list) {
  992. if (!dev_data->ats.enabled)
  993. continue;
  994. ret |= device_flush_iotlb(dev_data, address, size);
  995. }
  996. WARN_ON(ret);
  997. }
  998. static void domain_flush_pages(struct protection_domain *domain,
  999. u64 address, size_t size)
  1000. {
  1001. __domain_flush_pages(domain, address, size, 0);
  1002. }
  1003. /* Flush the whole IO/TLB for a given protection domain */
  1004. static void domain_flush_tlb(struct protection_domain *domain)
  1005. {
  1006. __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
  1007. }
  1008. /* Flush the whole IO/TLB for a given protection domain - including PDE */
  1009. static void domain_flush_tlb_pde(struct protection_domain *domain)
  1010. {
  1011. __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
  1012. }
  1013. static void domain_flush_complete(struct protection_domain *domain)
  1014. {
  1015. int i;
  1016. for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
  1017. if (domain && !domain->dev_iommu[i])
  1018. continue;
  1019. /*
  1020. * Devices of this domain are behind this IOMMU
  1021. * We need to wait for completion of all commands.
  1022. */
  1023. iommu_completion_wait(amd_iommus[i]);
  1024. }
  1025. }
  1026. /*
  1027. * This function flushes the DTEs for all devices in domain
  1028. */
  1029. static void domain_flush_devices(struct protection_domain *domain)
  1030. {
  1031. struct iommu_dev_data *dev_data;
  1032. list_for_each_entry(dev_data, &domain->dev_list, list)
  1033. device_flush_dte(dev_data);
  1034. }
  1035. /****************************************************************************
  1036. *
  1037. * The functions below are used the create the page table mappings for
  1038. * unity mapped regions.
  1039. *
  1040. ****************************************************************************/
  1041. /*
  1042. * This function is used to add another level to an IO page table. Adding
  1043. * another level increases the size of the address space by 9 bits to a size up
  1044. * to 64 bits.
  1045. */
  1046. static bool increase_address_space(struct protection_domain *domain,
  1047. gfp_t gfp)
  1048. {
  1049. u64 *pte;
  1050. if (domain->mode == PAGE_MODE_6_LEVEL)
  1051. /* address space already 64 bit large */
  1052. return false;
  1053. pte = (void *)get_zeroed_page(gfp);
  1054. if (!pte)
  1055. return false;
  1056. *pte = PM_LEVEL_PDE(domain->mode,
  1057. iommu_virt_to_phys(domain->pt_root));
  1058. domain->pt_root = pte;
  1059. domain->mode += 1;
  1060. domain->updated = true;
  1061. return true;
  1062. }
  1063. static u64 *alloc_pte(struct protection_domain *domain,
  1064. unsigned long address,
  1065. unsigned long page_size,
  1066. u64 **pte_page,
  1067. gfp_t gfp)
  1068. {
  1069. int level, end_lvl;
  1070. u64 *pte, *page;
  1071. BUG_ON(!is_power_of_2(page_size));
  1072. while (address > PM_LEVEL_SIZE(domain->mode))
  1073. increase_address_space(domain, gfp);
  1074. level = domain->mode - 1;
  1075. pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
  1076. address = PAGE_SIZE_ALIGN(address, page_size);
  1077. end_lvl = PAGE_SIZE_LEVEL(page_size);
  1078. while (level > end_lvl) {
  1079. u64 __pte, __npte;
  1080. __pte = *pte;
  1081. if (!IOMMU_PTE_PRESENT(__pte)) {
  1082. page = (u64 *)get_zeroed_page(gfp);
  1083. if (!page)
  1084. return NULL;
  1085. __npte = PM_LEVEL_PDE(level, iommu_virt_to_phys(page));
  1086. /* pte could have been changed somewhere. */
  1087. if (cmpxchg64(pte, __pte, __npte) != __pte) {
  1088. free_page((unsigned long)page);
  1089. continue;
  1090. }
  1091. }
  1092. /* No level skipping support yet */
  1093. if (PM_PTE_LEVEL(*pte) != level)
  1094. return NULL;
  1095. level -= 1;
  1096. pte = IOMMU_PTE_PAGE(*pte);
  1097. if (pte_page && level == end_lvl)
  1098. *pte_page = pte;
  1099. pte = &pte[PM_LEVEL_INDEX(level, address)];
  1100. }
  1101. return pte;
  1102. }
  1103. /*
  1104. * This function checks if there is a PTE for a given dma address. If
  1105. * there is one, it returns the pointer to it.
  1106. */
  1107. static u64 *fetch_pte(struct protection_domain *domain,
  1108. unsigned long address,
  1109. unsigned long *page_size)
  1110. {
  1111. int level;
  1112. u64 *pte;
  1113. if (address > PM_LEVEL_SIZE(domain->mode))
  1114. return NULL;
  1115. level = domain->mode - 1;
  1116. pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
  1117. *page_size = PTE_LEVEL_PAGE_SIZE(level);
  1118. while (level > 0) {
  1119. /* Not Present */
  1120. if (!IOMMU_PTE_PRESENT(*pte))
  1121. return NULL;
  1122. /* Large PTE */
  1123. if (PM_PTE_LEVEL(*pte) == 7 ||
  1124. PM_PTE_LEVEL(*pte) == 0)
  1125. break;
  1126. /* No level skipping support yet */
  1127. if (PM_PTE_LEVEL(*pte) != level)
  1128. return NULL;
  1129. level -= 1;
  1130. /* Walk to the next level */
  1131. pte = IOMMU_PTE_PAGE(*pte);
  1132. pte = &pte[PM_LEVEL_INDEX(level, address)];
  1133. *page_size = PTE_LEVEL_PAGE_SIZE(level);
  1134. }
  1135. if (PM_PTE_LEVEL(*pte) == 0x07) {
  1136. unsigned long pte_mask;
  1137. /*
  1138. * If we have a series of large PTEs, make
  1139. * sure to return a pointer to the first one.
  1140. */
  1141. *page_size = pte_mask = PTE_PAGE_SIZE(*pte);
  1142. pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
  1143. pte = (u64 *)(((unsigned long)pte) & pte_mask);
  1144. }
  1145. return pte;
  1146. }
  1147. /*
  1148. * Generic mapping functions. It maps a physical address into a DMA
  1149. * address space. It allocates the page table pages if necessary.
  1150. * In the future it can be extended to a generic mapping function
  1151. * supporting all features of AMD IOMMU page tables like level skipping
  1152. * and full 64 bit address spaces.
  1153. */
  1154. static int iommu_map_page(struct protection_domain *dom,
  1155. unsigned long bus_addr,
  1156. unsigned long phys_addr,
  1157. unsigned long page_size,
  1158. int prot,
  1159. gfp_t gfp)
  1160. {
  1161. u64 __pte, *pte;
  1162. int i, count;
  1163. BUG_ON(!IS_ALIGNED(bus_addr, page_size));
  1164. BUG_ON(!IS_ALIGNED(phys_addr, page_size));
  1165. if (!(prot & IOMMU_PROT_MASK))
  1166. return -EINVAL;
  1167. count = PAGE_SIZE_PTE_COUNT(page_size);
  1168. pte = alloc_pte(dom, bus_addr, page_size, NULL, gfp);
  1169. if (!pte)
  1170. return -ENOMEM;
  1171. for (i = 0; i < count; ++i)
  1172. if (IOMMU_PTE_PRESENT(pte[i]))
  1173. return -EBUSY;
  1174. if (count > 1) {
  1175. __pte = PAGE_SIZE_PTE(__sme_set(phys_addr), page_size);
  1176. __pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_PR | IOMMU_PTE_FC;
  1177. } else
  1178. __pte = __sme_set(phys_addr) | IOMMU_PTE_PR | IOMMU_PTE_FC;
  1179. if (prot & IOMMU_PROT_IR)
  1180. __pte |= IOMMU_PTE_IR;
  1181. if (prot & IOMMU_PROT_IW)
  1182. __pte |= IOMMU_PTE_IW;
  1183. for (i = 0; i < count; ++i)
  1184. pte[i] = __pte;
  1185. update_domain(dom);
  1186. return 0;
  1187. }
  1188. static unsigned long iommu_unmap_page(struct protection_domain *dom,
  1189. unsigned long bus_addr,
  1190. unsigned long page_size)
  1191. {
  1192. unsigned long long unmapped;
  1193. unsigned long unmap_size;
  1194. u64 *pte;
  1195. BUG_ON(!is_power_of_2(page_size));
  1196. unmapped = 0;
  1197. while (unmapped < page_size) {
  1198. pte = fetch_pte(dom, bus_addr, &unmap_size);
  1199. if (pte) {
  1200. int i, count;
  1201. count = PAGE_SIZE_PTE_COUNT(unmap_size);
  1202. for (i = 0; i < count; i++)
  1203. pte[i] = 0ULL;
  1204. }
  1205. bus_addr = (bus_addr & ~(unmap_size - 1)) + unmap_size;
  1206. unmapped += unmap_size;
  1207. }
  1208. BUG_ON(unmapped && !is_power_of_2(unmapped));
  1209. return unmapped;
  1210. }
  1211. /****************************************************************************
  1212. *
  1213. * The next functions belong to the address allocator for the dma_ops
  1214. * interface functions.
  1215. *
  1216. ****************************************************************************/
  1217. static unsigned long dma_ops_alloc_iova(struct device *dev,
  1218. struct dma_ops_domain *dma_dom,
  1219. unsigned int pages, u64 dma_mask)
  1220. {
  1221. unsigned long pfn = 0;
  1222. pages = __roundup_pow_of_two(pages);
  1223. if (dma_mask > DMA_BIT_MASK(32))
  1224. pfn = alloc_iova_fast(&dma_dom->iovad, pages,
  1225. IOVA_PFN(DMA_BIT_MASK(32)), false);
  1226. if (!pfn)
  1227. pfn = alloc_iova_fast(&dma_dom->iovad, pages,
  1228. IOVA_PFN(dma_mask), true);
  1229. return (pfn << PAGE_SHIFT);
  1230. }
  1231. static void dma_ops_free_iova(struct dma_ops_domain *dma_dom,
  1232. unsigned long address,
  1233. unsigned int pages)
  1234. {
  1235. pages = __roundup_pow_of_two(pages);
  1236. address >>= PAGE_SHIFT;
  1237. free_iova_fast(&dma_dom->iovad, address, pages);
  1238. }
  1239. /****************************************************************************
  1240. *
  1241. * The next functions belong to the domain allocation. A domain is
  1242. * allocated for every IOMMU as the default domain. If device isolation
  1243. * is enabled, every device get its own domain. The most important thing
  1244. * about domains is the page table mapping the DMA address space they
  1245. * contain.
  1246. *
  1247. ****************************************************************************/
  1248. /*
  1249. * This function adds a protection domain to the global protection domain list
  1250. */
  1251. static void add_domain_to_list(struct protection_domain *domain)
  1252. {
  1253. unsigned long flags;
  1254. spin_lock_irqsave(&amd_iommu_pd_lock, flags);
  1255. list_add(&domain->list, &amd_iommu_pd_list);
  1256. spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
  1257. }
  1258. /*
  1259. * This function removes a protection domain to the global
  1260. * protection domain list
  1261. */
  1262. static void del_domain_from_list(struct protection_domain *domain)
  1263. {
  1264. unsigned long flags;
  1265. spin_lock_irqsave(&amd_iommu_pd_lock, flags);
  1266. list_del(&domain->list);
  1267. spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
  1268. }
  1269. static u16 domain_id_alloc(void)
  1270. {
  1271. unsigned long flags;
  1272. int id;
  1273. write_lock_irqsave(&amd_iommu_devtable_lock, flags);
  1274. id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
  1275. BUG_ON(id == 0);
  1276. if (id > 0 && id < MAX_DOMAIN_ID)
  1277. __set_bit(id, amd_iommu_pd_alloc_bitmap);
  1278. else
  1279. id = 0;
  1280. write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  1281. return id;
  1282. }
  1283. static void domain_id_free(int id)
  1284. {
  1285. unsigned long flags;
  1286. write_lock_irqsave(&amd_iommu_devtable_lock, flags);
  1287. if (id > 0 && id < MAX_DOMAIN_ID)
  1288. __clear_bit(id, amd_iommu_pd_alloc_bitmap);
  1289. write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  1290. }
  1291. #define DEFINE_FREE_PT_FN(LVL, FN) \
  1292. static void free_pt_##LVL (unsigned long __pt) \
  1293. { \
  1294. unsigned long p; \
  1295. u64 *pt; \
  1296. int i; \
  1297. \
  1298. pt = (u64 *)__pt; \
  1299. \
  1300. for (i = 0; i < 512; ++i) { \
  1301. /* PTE present? */ \
  1302. if (!IOMMU_PTE_PRESENT(pt[i])) \
  1303. continue; \
  1304. \
  1305. /* Large PTE? */ \
  1306. if (PM_PTE_LEVEL(pt[i]) == 0 || \
  1307. PM_PTE_LEVEL(pt[i]) == 7) \
  1308. continue; \
  1309. \
  1310. p = (unsigned long)IOMMU_PTE_PAGE(pt[i]); \
  1311. FN(p); \
  1312. } \
  1313. free_page((unsigned long)pt); \
  1314. }
  1315. DEFINE_FREE_PT_FN(l2, free_page)
  1316. DEFINE_FREE_PT_FN(l3, free_pt_l2)
  1317. DEFINE_FREE_PT_FN(l4, free_pt_l3)
  1318. DEFINE_FREE_PT_FN(l5, free_pt_l4)
  1319. DEFINE_FREE_PT_FN(l6, free_pt_l5)
  1320. static void free_pagetable(struct protection_domain *domain)
  1321. {
  1322. unsigned long root = (unsigned long)domain->pt_root;
  1323. switch (domain->mode) {
  1324. case PAGE_MODE_NONE:
  1325. break;
  1326. case PAGE_MODE_1_LEVEL:
  1327. free_page(root);
  1328. break;
  1329. case PAGE_MODE_2_LEVEL:
  1330. free_pt_l2(root);
  1331. break;
  1332. case PAGE_MODE_3_LEVEL:
  1333. free_pt_l3(root);
  1334. break;
  1335. case PAGE_MODE_4_LEVEL:
  1336. free_pt_l4(root);
  1337. break;
  1338. case PAGE_MODE_5_LEVEL:
  1339. free_pt_l5(root);
  1340. break;
  1341. case PAGE_MODE_6_LEVEL:
  1342. free_pt_l6(root);
  1343. break;
  1344. default:
  1345. BUG();
  1346. }
  1347. }
  1348. static void free_gcr3_tbl_level1(u64 *tbl)
  1349. {
  1350. u64 *ptr;
  1351. int i;
  1352. for (i = 0; i < 512; ++i) {
  1353. if (!(tbl[i] & GCR3_VALID))
  1354. continue;
  1355. ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
  1356. free_page((unsigned long)ptr);
  1357. }
  1358. }
  1359. static void free_gcr3_tbl_level2(u64 *tbl)
  1360. {
  1361. u64 *ptr;
  1362. int i;
  1363. for (i = 0; i < 512; ++i) {
  1364. if (!(tbl[i] & GCR3_VALID))
  1365. continue;
  1366. ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
  1367. free_gcr3_tbl_level1(ptr);
  1368. }
  1369. }
  1370. static void free_gcr3_table(struct protection_domain *domain)
  1371. {
  1372. if (domain->glx == 2)
  1373. free_gcr3_tbl_level2(domain->gcr3_tbl);
  1374. else if (domain->glx == 1)
  1375. free_gcr3_tbl_level1(domain->gcr3_tbl);
  1376. else
  1377. BUG_ON(domain->glx != 0);
  1378. free_page((unsigned long)domain->gcr3_tbl);
  1379. }
  1380. static void dma_ops_domain_flush_tlb(struct dma_ops_domain *dom)
  1381. {
  1382. domain_flush_tlb(&dom->domain);
  1383. domain_flush_complete(&dom->domain);
  1384. }
  1385. static void iova_domain_flush_tlb(struct iova_domain *iovad)
  1386. {
  1387. struct dma_ops_domain *dom;
  1388. dom = container_of(iovad, struct dma_ops_domain, iovad);
  1389. dma_ops_domain_flush_tlb(dom);
  1390. }
  1391. /*
  1392. * Free a domain, only used if something went wrong in the
  1393. * allocation path and we need to free an already allocated page table
  1394. */
  1395. static void dma_ops_domain_free(struct dma_ops_domain *dom)
  1396. {
  1397. if (!dom)
  1398. return;
  1399. del_domain_from_list(&dom->domain);
  1400. put_iova_domain(&dom->iovad);
  1401. free_pagetable(&dom->domain);
  1402. if (dom->domain.id)
  1403. domain_id_free(dom->domain.id);
  1404. kfree(dom);
  1405. }
  1406. /*
  1407. * Allocates a new protection domain usable for the dma_ops functions.
  1408. * It also initializes the page table and the address allocator data
  1409. * structures required for the dma_ops interface
  1410. */
  1411. static struct dma_ops_domain *dma_ops_domain_alloc(void)
  1412. {
  1413. struct dma_ops_domain *dma_dom;
  1414. dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
  1415. if (!dma_dom)
  1416. return NULL;
  1417. if (protection_domain_init(&dma_dom->domain))
  1418. goto free_dma_dom;
  1419. dma_dom->domain.mode = PAGE_MODE_3_LEVEL;
  1420. dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
  1421. dma_dom->domain.flags = PD_DMA_OPS_MASK;
  1422. if (!dma_dom->domain.pt_root)
  1423. goto free_dma_dom;
  1424. init_iova_domain(&dma_dom->iovad, PAGE_SIZE, IOVA_START_PFN);
  1425. if (init_iova_flush_queue(&dma_dom->iovad, iova_domain_flush_tlb, NULL))
  1426. goto free_dma_dom;
  1427. /* Initialize reserved ranges */
  1428. copy_reserved_iova(&reserved_iova_ranges, &dma_dom->iovad);
  1429. add_domain_to_list(&dma_dom->domain);
  1430. return dma_dom;
  1431. free_dma_dom:
  1432. dma_ops_domain_free(dma_dom);
  1433. return NULL;
  1434. }
  1435. /*
  1436. * little helper function to check whether a given protection domain is a
  1437. * dma_ops domain
  1438. */
  1439. static bool dma_ops_domain(struct protection_domain *domain)
  1440. {
  1441. return domain->flags & PD_DMA_OPS_MASK;
  1442. }
  1443. static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
  1444. {
  1445. u64 pte_root = 0;
  1446. u64 flags = 0;
  1447. if (domain->mode != PAGE_MODE_NONE)
  1448. pte_root = iommu_virt_to_phys(domain->pt_root);
  1449. pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
  1450. << DEV_ENTRY_MODE_SHIFT;
  1451. pte_root |= DTE_FLAG_IR | DTE_FLAG_IW | DTE_FLAG_V | DTE_FLAG_TV;
  1452. flags = amd_iommu_dev_table[devid].data[1];
  1453. if (ats)
  1454. flags |= DTE_FLAG_IOTLB;
  1455. if (domain->flags & PD_IOMMUV2_MASK) {
  1456. u64 gcr3 = iommu_virt_to_phys(domain->gcr3_tbl);
  1457. u64 glx = domain->glx;
  1458. u64 tmp;
  1459. pte_root |= DTE_FLAG_GV;
  1460. pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
  1461. /* First mask out possible old values for GCR3 table */
  1462. tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
  1463. flags &= ~tmp;
  1464. tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
  1465. flags &= ~tmp;
  1466. /* Encode GCR3 table into DTE */
  1467. tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
  1468. pte_root |= tmp;
  1469. tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
  1470. flags |= tmp;
  1471. tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
  1472. flags |= tmp;
  1473. }
  1474. flags &= ~DEV_DOMID_MASK;
  1475. flags |= domain->id;
  1476. amd_iommu_dev_table[devid].data[1] = flags;
  1477. amd_iommu_dev_table[devid].data[0] = pte_root;
  1478. }
  1479. static void clear_dte_entry(u16 devid)
  1480. {
  1481. /* remove entry from the device table seen by the hardware */
  1482. amd_iommu_dev_table[devid].data[0] = DTE_FLAG_V | DTE_FLAG_TV;
  1483. amd_iommu_dev_table[devid].data[1] &= DTE_FLAG_MASK;
  1484. amd_iommu_apply_erratum_63(devid);
  1485. }
  1486. static void do_attach(struct iommu_dev_data *dev_data,
  1487. struct protection_domain *domain)
  1488. {
  1489. struct amd_iommu *iommu;
  1490. u16 alias;
  1491. bool ats;
  1492. iommu = amd_iommu_rlookup_table[dev_data->devid];
  1493. alias = dev_data->alias;
  1494. ats = dev_data->ats.enabled;
  1495. /* Update data structures */
  1496. dev_data->domain = domain;
  1497. list_add(&dev_data->list, &domain->dev_list);
  1498. /* Do reference counting */
  1499. domain->dev_iommu[iommu->index] += 1;
  1500. domain->dev_cnt += 1;
  1501. /* Update device table */
  1502. set_dte_entry(dev_data->devid, domain, ats);
  1503. if (alias != dev_data->devid)
  1504. set_dte_entry(alias, domain, ats);
  1505. device_flush_dte(dev_data);
  1506. }
  1507. static void do_detach(struct iommu_dev_data *dev_data)
  1508. {
  1509. struct amd_iommu *iommu;
  1510. u16 alias;
  1511. /*
  1512. * First check if the device is still attached. It might already
  1513. * be detached from its domain because the generic
  1514. * iommu_detach_group code detached it and we try again here in
  1515. * our alias handling.
  1516. */
  1517. if (!dev_data->domain)
  1518. return;
  1519. iommu = amd_iommu_rlookup_table[dev_data->devid];
  1520. alias = dev_data->alias;
  1521. /* decrease reference counters */
  1522. dev_data->domain->dev_iommu[iommu->index] -= 1;
  1523. dev_data->domain->dev_cnt -= 1;
  1524. /* Update data structures */
  1525. dev_data->domain = NULL;
  1526. list_del(&dev_data->list);
  1527. clear_dte_entry(dev_data->devid);
  1528. if (alias != dev_data->devid)
  1529. clear_dte_entry(alias);
  1530. /* Flush the DTE entry */
  1531. device_flush_dte(dev_data);
  1532. }
  1533. /*
  1534. * If a device is not yet associated with a domain, this function does
  1535. * assigns it visible for the hardware
  1536. */
  1537. static int __attach_device(struct iommu_dev_data *dev_data,
  1538. struct protection_domain *domain)
  1539. {
  1540. int ret;
  1541. /*
  1542. * Must be called with IRQs disabled. Warn here to detect early
  1543. * when its not.
  1544. */
  1545. WARN_ON(!irqs_disabled());
  1546. /* lock domain */
  1547. spin_lock(&domain->lock);
  1548. ret = -EBUSY;
  1549. if (dev_data->domain != NULL)
  1550. goto out_unlock;
  1551. /* Attach alias group root */
  1552. do_attach(dev_data, domain);
  1553. ret = 0;
  1554. out_unlock:
  1555. /* ready */
  1556. spin_unlock(&domain->lock);
  1557. return ret;
  1558. }
  1559. static void pdev_iommuv2_disable(struct pci_dev *pdev)
  1560. {
  1561. pci_disable_ats(pdev);
  1562. pci_disable_pri(pdev);
  1563. pci_disable_pasid(pdev);
  1564. }
  1565. /* FIXME: Change generic reset-function to do the same */
  1566. static int pri_reset_while_enabled(struct pci_dev *pdev)
  1567. {
  1568. u16 control;
  1569. int pos;
  1570. pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
  1571. if (!pos)
  1572. return -EINVAL;
  1573. pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
  1574. control |= PCI_PRI_CTRL_RESET;
  1575. pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
  1576. return 0;
  1577. }
  1578. static int pdev_iommuv2_enable(struct pci_dev *pdev)
  1579. {
  1580. bool reset_enable;
  1581. int reqs, ret;
  1582. /* FIXME: Hardcode number of outstanding requests for now */
  1583. reqs = 32;
  1584. if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
  1585. reqs = 1;
  1586. reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
  1587. /* Only allow access to user-accessible pages */
  1588. ret = pci_enable_pasid(pdev, 0);
  1589. if (ret)
  1590. goto out_err;
  1591. /* First reset the PRI state of the device */
  1592. ret = pci_reset_pri(pdev);
  1593. if (ret)
  1594. goto out_err;
  1595. /* Enable PRI */
  1596. ret = pci_enable_pri(pdev, reqs);
  1597. if (ret)
  1598. goto out_err;
  1599. if (reset_enable) {
  1600. ret = pri_reset_while_enabled(pdev);
  1601. if (ret)
  1602. goto out_err;
  1603. }
  1604. ret = pci_enable_ats(pdev, PAGE_SHIFT);
  1605. if (ret)
  1606. goto out_err;
  1607. return 0;
  1608. out_err:
  1609. pci_disable_pri(pdev);
  1610. pci_disable_pasid(pdev);
  1611. return ret;
  1612. }
  1613. /* FIXME: Move this to PCI code */
  1614. #define PCI_PRI_TLP_OFF (1 << 15)
  1615. static bool pci_pri_tlp_required(struct pci_dev *pdev)
  1616. {
  1617. u16 status;
  1618. int pos;
  1619. pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
  1620. if (!pos)
  1621. return false;
  1622. pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
  1623. return (status & PCI_PRI_TLP_OFF) ? true : false;
  1624. }
  1625. /*
  1626. * If a device is not yet associated with a domain, this function
  1627. * assigns it visible for the hardware
  1628. */
  1629. static int attach_device(struct device *dev,
  1630. struct protection_domain *domain)
  1631. {
  1632. struct pci_dev *pdev;
  1633. struct iommu_dev_data *dev_data;
  1634. unsigned long flags;
  1635. int ret;
  1636. dev_data = get_dev_data(dev);
  1637. if (!dev_is_pci(dev))
  1638. goto skip_ats_check;
  1639. pdev = to_pci_dev(dev);
  1640. if (domain->flags & PD_IOMMUV2_MASK) {
  1641. if (!dev_data->passthrough)
  1642. return -EINVAL;
  1643. if (dev_data->iommu_v2) {
  1644. if (pdev_iommuv2_enable(pdev) != 0)
  1645. return -EINVAL;
  1646. dev_data->ats.enabled = true;
  1647. dev_data->ats.qdep = pci_ats_queue_depth(pdev);
  1648. dev_data->pri_tlp = pci_pri_tlp_required(pdev);
  1649. }
  1650. } else if (amd_iommu_iotlb_sup &&
  1651. pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
  1652. dev_data->ats.enabled = true;
  1653. dev_data->ats.qdep = pci_ats_queue_depth(pdev);
  1654. }
  1655. skip_ats_check:
  1656. write_lock_irqsave(&amd_iommu_devtable_lock, flags);
  1657. ret = __attach_device(dev_data, domain);
  1658. write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  1659. /*
  1660. * We might boot into a crash-kernel here. The crashed kernel
  1661. * left the caches in the IOMMU dirty. So we have to flush
  1662. * here to evict all dirty stuff.
  1663. */
  1664. domain_flush_tlb_pde(domain);
  1665. return ret;
  1666. }
  1667. /*
  1668. * Removes a device from a protection domain (unlocked)
  1669. */
  1670. static void __detach_device(struct iommu_dev_data *dev_data)
  1671. {
  1672. struct protection_domain *domain;
  1673. /*
  1674. * Must be called with IRQs disabled. Warn here to detect early
  1675. * when its not.
  1676. */
  1677. WARN_ON(!irqs_disabled());
  1678. if (WARN_ON(!dev_data->domain))
  1679. return;
  1680. domain = dev_data->domain;
  1681. spin_lock(&domain->lock);
  1682. do_detach(dev_data);
  1683. spin_unlock(&domain->lock);
  1684. }
  1685. /*
  1686. * Removes a device from a protection domain (with devtable_lock held)
  1687. */
  1688. static void detach_device(struct device *dev)
  1689. {
  1690. struct protection_domain *domain;
  1691. struct iommu_dev_data *dev_data;
  1692. unsigned long flags;
  1693. dev_data = get_dev_data(dev);
  1694. domain = dev_data->domain;
  1695. /* lock device table */
  1696. write_lock_irqsave(&amd_iommu_devtable_lock, flags);
  1697. __detach_device(dev_data);
  1698. write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  1699. if (!dev_is_pci(dev))
  1700. return;
  1701. if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
  1702. pdev_iommuv2_disable(to_pci_dev(dev));
  1703. else if (dev_data->ats.enabled)
  1704. pci_disable_ats(to_pci_dev(dev));
  1705. dev_data->ats.enabled = false;
  1706. }
  1707. static int amd_iommu_add_device(struct device *dev)
  1708. {
  1709. struct iommu_dev_data *dev_data;
  1710. struct iommu_domain *domain;
  1711. struct amd_iommu *iommu;
  1712. int ret, devid;
  1713. if (!check_device(dev) || get_dev_data(dev))
  1714. return 0;
  1715. devid = get_device_id(dev);
  1716. if (devid < 0)
  1717. return devid;
  1718. iommu = amd_iommu_rlookup_table[devid];
  1719. ret = iommu_init_device(dev);
  1720. if (ret) {
  1721. if (ret != -ENOTSUPP)
  1722. pr_err("Failed to initialize device %s - trying to proceed anyway\n",
  1723. dev_name(dev));
  1724. iommu_ignore_device(dev);
  1725. dev->dma_ops = &nommu_dma_ops;
  1726. goto out;
  1727. }
  1728. init_iommu_group(dev);
  1729. dev_data = get_dev_data(dev);
  1730. BUG_ON(!dev_data);
  1731. if (iommu_pass_through || dev_data->iommu_v2)
  1732. iommu_request_dm_for_dev(dev);
  1733. /* Domains are initialized for this device - have a look what we ended up with */
  1734. domain = iommu_get_domain_for_dev(dev);
  1735. if (domain->type == IOMMU_DOMAIN_IDENTITY)
  1736. dev_data->passthrough = true;
  1737. else
  1738. dev->dma_ops = &amd_iommu_dma_ops;
  1739. out:
  1740. iommu_completion_wait(iommu);
  1741. return 0;
  1742. }
  1743. static void amd_iommu_remove_device(struct device *dev)
  1744. {
  1745. struct amd_iommu *iommu;
  1746. int devid;
  1747. if (!check_device(dev))
  1748. return;
  1749. devid = get_device_id(dev);
  1750. if (devid < 0)
  1751. return;
  1752. iommu = amd_iommu_rlookup_table[devid];
  1753. iommu_uninit_device(dev);
  1754. iommu_completion_wait(iommu);
  1755. }
  1756. static struct iommu_group *amd_iommu_device_group(struct device *dev)
  1757. {
  1758. if (dev_is_pci(dev))
  1759. return pci_device_group(dev);
  1760. return acpihid_device_group(dev);
  1761. }
  1762. /*****************************************************************************
  1763. *
  1764. * The next functions belong to the dma_ops mapping/unmapping code.
  1765. *
  1766. *****************************************************************************/
  1767. /*
  1768. * In the dma_ops path we only have the struct device. This function
  1769. * finds the corresponding IOMMU, the protection domain and the
  1770. * requestor id for a given device.
  1771. * If the device is not yet associated with a domain this is also done
  1772. * in this function.
  1773. */
  1774. static struct protection_domain *get_domain(struct device *dev)
  1775. {
  1776. struct protection_domain *domain;
  1777. struct iommu_domain *io_domain;
  1778. if (!check_device(dev))
  1779. return ERR_PTR(-EINVAL);
  1780. domain = get_dev_data(dev)->domain;
  1781. if (domain == NULL && get_dev_data(dev)->defer_attach) {
  1782. get_dev_data(dev)->defer_attach = false;
  1783. io_domain = iommu_get_domain_for_dev(dev);
  1784. domain = to_pdomain(io_domain);
  1785. attach_device(dev, domain);
  1786. }
  1787. if (domain == NULL)
  1788. return ERR_PTR(-EBUSY);
  1789. if (!dma_ops_domain(domain))
  1790. return ERR_PTR(-EBUSY);
  1791. return domain;
  1792. }
  1793. static void update_device_table(struct protection_domain *domain)
  1794. {
  1795. struct iommu_dev_data *dev_data;
  1796. list_for_each_entry(dev_data, &domain->dev_list, list) {
  1797. set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
  1798. if (dev_data->devid == dev_data->alias)
  1799. continue;
  1800. /* There is an alias, update device table entry for it */
  1801. set_dte_entry(dev_data->alias, domain, dev_data->ats.enabled);
  1802. }
  1803. }
  1804. static void update_domain(struct protection_domain *domain)
  1805. {
  1806. if (!domain->updated)
  1807. return;
  1808. update_device_table(domain);
  1809. domain_flush_devices(domain);
  1810. domain_flush_tlb_pde(domain);
  1811. domain->updated = false;
  1812. }
  1813. static int dir2prot(enum dma_data_direction direction)
  1814. {
  1815. if (direction == DMA_TO_DEVICE)
  1816. return IOMMU_PROT_IR;
  1817. else if (direction == DMA_FROM_DEVICE)
  1818. return IOMMU_PROT_IW;
  1819. else if (direction == DMA_BIDIRECTIONAL)
  1820. return IOMMU_PROT_IW | IOMMU_PROT_IR;
  1821. else
  1822. return 0;
  1823. }
  1824. /*
  1825. * This function contains common code for mapping of a physically
  1826. * contiguous memory region into DMA address space. It is used by all
  1827. * mapping functions provided with this IOMMU driver.
  1828. * Must be called with the domain lock held.
  1829. */
  1830. static dma_addr_t __map_single(struct device *dev,
  1831. struct dma_ops_domain *dma_dom,
  1832. phys_addr_t paddr,
  1833. size_t size,
  1834. enum dma_data_direction direction,
  1835. u64 dma_mask)
  1836. {
  1837. dma_addr_t offset = paddr & ~PAGE_MASK;
  1838. dma_addr_t address, start, ret;
  1839. unsigned int pages;
  1840. int prot = 0;
  1841. int i;
  1842. pages = iommu_num_pages(paddr, size, PAGE_SIZE);
  1843. paddr &= PAGE_MASK;
  1844. address = dma_ops_alloc_iova(dev, dma_dom, pages, dma_mask);
  1845. if (address == AMD_IOMMU_MAPPING_ERROR)
  1846. goto out;
  1847. prot = dir2prot(direction);
  1848. start = address;
  1849. for (i = 0; i < pages; ++i) {
  1850. ret = iommu_map_page(&dma_dom->domain, start, paddr,
  1851. PAGE_SIZE, prot, GFP_ATOMIC);
  1852. if (ret)
  1853. goto out_unmap;
  1854. paddr += PAGE_SIZE;
  1855. start += PAGE_SIZE;
  1856. }
  1857. address += offset;
  1858. if (unlikely(amd_iommu_np_cache)) {
  1859. domain_flush_pages(&dma_dom->domain, address, size);
  1860. domain_flush_complete(&dma_dom->domain);
  1861. }
  1862. out:
  1863. return address;
  1864. out_unmap:
  1865. for (--i; i >= 0; --i) {
  1866. start -= PAGE_SIZE;
  1867. iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
  1868. }
  1869. domain_flush_tlb(&dma_dom->domain);
  1870. domain_flush_complete(&dma_dom->domain);
  1871. dma_ops_free_iova(dma_dom, address, pages);
  1872. return AMD_IOMMU_MAPPING_ERROR;
  1873. }
  1874. /*
  1875. * Does the reverse of the __map_single function. Must be called with
  1876. * the domain lock held too
  1877. */
  1878. static void __unmap_single(struct dma_ops_domain *dma_dom,
  1879. dma_addr_t dma_addr,
  1880. size_t size,
  1881. int dir)
  1882. {
  1883. dma_addr_t flush_addr;
  1884. dma_addr_t i, start;
  1885. unsigned int pages;
  1886. flush_addr = dma_addr;
  1887. pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
  1888. dma_addr &= PAGE_MASK;
  1889. start = dma_addr;
  1890. for (i = 0; i < pages; ++i) {
  1891. iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
  1892. start += PAGE_SIZE;
  1893. }
  1894. if (amd_iommu_unmap_flush) {
  1895. dma_ops_free_iova(dma_dom, dma_addr, pages);
  1896. domain_flush_tlb(&dma_dom->domain);
  1897. domain_flush_complete(&dma_dom->domain);
  1898. } else {
  1899. pages = __roundup_pow_of_two(pages);
  1900. queue_iova(&dma_dom->iovad, dma_addr >> PAGE_SHIFT, pages, 0);
  1901. }
  1902. }
  1903. /*
  1904. * The exported map_single function for dma_ops.
  1905. */
  1906. static dma_addr_t map_page(struct device *dev, struct page *page,
  1907. unsigned long offset, size_t size,
  1908. enum dma_data_direction dir,
  1909. unsigned long attrs)
  1910. {
  1911. phys_addr_t paddr = page_to_phys(page) + offset;
  1912. struct protection_domain *domain;
  1913. struct dma_ops_domain *dma_dom;
  1914. u64 dma_mask;
  1915. domain = get_domain(dev);
  1916. if (PTR_ERR(domain) == -EINVAL)
  1917. return (dma_addr_t)paddr;
  1918. else if (IS_ERR(domain))
  1919. return AMD_IOMMU_MAPPING_ERROR;
  1920. dma_mask = *dev->dma_mask;
  1921. dma_dom = to_dma_ops_domain(domain);
  1922. return __map_single(dev, dma_dom, paddr, size, dir, dma_mask);
  1923. }
  1924. /*
  1925. * The exported unmap_single function for dma_ops.
  1926. */
  1927. static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
  1928. enum dma_data_direction dir, unsigned long attrs)
  1929. {
  1930. struct protection_domain *domain;
  1931. struct dma_ops_domain *dma_dom;
  1932. domain = get_domain(dev);
  1933. if (IS_ERR(domain))
  1934. return;
  1935. dma_dom = to_dma_ops_domain(domain);
  1936. __unmap_single(dma_dom, dma_addr, size, dir);
  1937. }
  1938. static int sg_num_pages(struct device *dev,
  1939. struct scatterlist *sglist,
  1940. int nelems)
  1941. {
  1942. unsigned long mask, boundary_size;
  1943. struct scatterlist *s;
  1944. int i, npages = 0;
  1945. mask = dma_get_seg_boundary(dev);
  1946. boundary_size = mask + 1 ? ALIGN(mask + 1, PAGE_SIZE) >> PAGE_SHIFT :
  1947. 1UL << (BITS_PER_LONG - PAGE_SHIFT);
  1948. for_each_sg(sglist, s, nelems, i) {
  1949. int p, n;
  1950. s->dma_address = npages << PAGE_SHIFT;
  1951. p = npages % boundary_size;
  1952. n = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
  1953. if (p + n > boundary_size)
  1954. npages += boundary_size - p;
  1955. npages += n;
  1956. }
  1957. return npages;
  1958. }
  1959. /*
  1960. * The exported map_sg function for dma_ops (handles scatter-gather
  1961. * lists).
  1962. */
  1963. static int map_sg(struct device *dev, struct scatterlist *sglist,
  1964. int nelems, enum dma_data_direction direction,
  1965. unsigned long attrs)
  1966. {
  1967. int mapped_pages = 0, npages = 0, prot = 0, i;
  1968. struct protection_domain *domain;
  1969. struct dma_ops_domain *dma_dom;
  1970. struct scatterlist *s;
  1971. unsigned long address;
  1972. u64 dma_mask;
  1973. domain = get_domain(dev);
  1974. if (IS_ERR(domain))
  1975. return 0;
  1976. dma_dom = to_dma_ops_domain(domain);
  1977. dma_mask = *dev->dma_mask;
  1978. npages = sg_num_pages(dev, sglist, nelems);
  1979. address = dma_ops_alloc_iova(dev, dma_dom, npages, dma_mask);
  1980. if (address == AMD_IOMMU_MAPPING_ERROR)
  1981. goto out_err;
  1982. prot = dir2prot(direction);
  1983. /* Map all sg entries */
  1984. for_each_sg(sglist, s, nelems, i) {
  1985. int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
  1986. for (j = 0; j < pages; ++j) {
  1987. unsigned long bus_addr, phys_addr;
  1988. int ret;
  1989. bus_addr = address + s->dma_address + (j << PAGE_SHIFT);
  1990. phys_addr = (sg_phys(s) & PAGE_MASK) + (j << PAGE_SHIFT);
  1991. ret = iommu_map_page(domain, bus_addr, phys_addr, PAGE_SIZE, prot, GFP_ATOMIC);
  1992. if (ret)
  1993. goto out_unmap;
  1994. mapped_pages += 1;
  1995. }
  1996. }
  1997. /* Everything is mapped - write the right values into s->dma_address */
  1998. for_each_sg(sglist, s, nelems, i) {
  1999. s->dma_address += address + s->offset;
  2000. s->dma_length = s->length;
  2001. }
  2002. return nelems;
  2003. out_unmap:
  2004. pr_err("%s: IOMMU mapping error in map_sg (io-pages: %d)\n",
  2005. dev_name(dev), npages);
  2006. for_each_sg(sglist, s, nelems, i) {
  2007. int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
  2008. for (j = 0; j < pages; ++j) {
  2009. unsigned long bus_addr;
  2010. bus_addr = address + s->dma_address + (j << PAGE_SHIFT);
  2011. iommu_unmap_page(domain, bus_addr, PAGE_SIZE);
  2012. if (--mapped_pages)
  2013. goto out_free_iova;
  2014. }
  2015. }
  2016. out_free_iova:
  2017. free_iova_fast(&dma_dom->iovad, address, npages);
  2018. out_err:
  2019. return 0;
  2020. }
  2021. /*
  2022. * The exported map_sg function for dma_ops (handles scatter-gather
  2023. * lists).
  2024. */
  2025. static void unmap_sg(struct device *dev, struct scatterlist *sglist,
  2026. int nelems, enum dma_data_direction dir,
  2027. unsigned long attrs)
  2028. {
  2029. struct protection_domain *domain;
  2030. struct dma_ops_domain *dma_dom;
  2031. unsigned long startaddr;
  2032. int npages = 2;
  2033. domain = get_domain(dev);
  2034. if (IS_ERR(domain))
  2035. return;
  2036. startaddr = sg_dma_address(sglist) & PAGE_MASK;
  2037. dma_dom = to_dma_ops_domain(domain);
  2038. npages = sg_num_pages(dev, sglist, nelems);
  2039. __unmap_single(dma_dom, startaddr, npages << PAGE_SHIFT, dir);
  2040. }
  2041. /*
  2042. * The exported alloc_coherent function for dma_ops.
  2043. */
  2044. static void *alloc_coherent(struct device *dev, size_t size,
  2045. dma_addr_t *dma_addr, gfp_t flag,
  2046. unsigned long attrs)
  2047. {
  2048. u64 dma_mask = dev->coherent_dma_mask;
  2049. struct protection_domain *domain;
  2050. struct dma_ops_domain *dma_dom;
  2051. struct page *page;
  2052. domain = get_domain(dev);
  2053. if (PTR_ERR(domain) == -EINVAL) {
  2054. page = alloc_pages(flag, get_order(size));
  2055. *dma_addr = page_to_phys(page);
  2056. return page_address(page);
  2057. } else if (IS_ERR(domain))
  2058. return NULL;
  2059. dma_dom = to_dma_ops_domain(domain);
  2060. size = PAGE_ALIGN(size);
  2061. dma_mask = dev->coherent_dma_mask;
  2062. flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
  2063. flag |= __GFP_ZERO;
  2064. page = alloc_pages(flag | __GFP_NOWARN, get_order(size));
  2065. if (!page) {
  2066. if (!gfpflags_allow_blocking(flag))
  2067. return NULL;
  2068. page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
  2069. get_order(size), flag);
  2070. if (!page)
  2071. return NULL;
  2072. }
  2073. if (!dma_mask)
  2074. dma_mask = *dev->dma_mask;
  2075. *dma_addr = __map_single(dev, dma_dom, page_to_phys(page),
  2076. size, DMA_BIDIRECTIONAL, dma_mask);
  2077. if (*dma_addr == AMD_IOMMU_MAPPING_ERROR)
  2078. goto out_free;
  2079. return page_address(page);
  2080. out_free:
  2081. if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
  2082. __free_pages(page, get_order(size));
  2083. return NULL;
  2084. }
  2085. /*
  2086. * The exported free_coherent function for dma_ops.
  2087. */
  2088. static void free_coherent(struct device *dev, size_t size,
  2089. void *virt_addr, dma_addr_t dma_addr,
  2090. unsigned long attrs)
  2091. {
  2092. struct protection_domain *domain;
  2093. struct dma_ops_domain *dma_dom;
  2094. struct page *page;
  2095. page = virt_to_page(virt_addr);
  2096. size = PAGE_ALIGN(size);
  2097. domain = get_domain(dev);
  2098. if (IS_ERR(domain))
  2099. goto free_mem;
  2100. dma_dom = to_dma_ops_domain(domain);
  2101. __unmap_single(dma_dom, dma_addr, size, DMA_BIDIRECTIONAL);
  2102. free_mem:
  2103. if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
  2104. __free_pages(page, get_order(size));
  2105. }
  2106. /*
  2107. * This function is called by the DMA layer to find out if we can handle a
  2108. * particular device. It is part of the dma_ops.
  2109. */
  2110. static int amd_iommu_dma_supported(struct device *dev, u64 mask)
  2111. {
  2112. if (!x86_dma_supported(dev, mask))
  2113. return 0;
  2114. return check_device(dev);
  2115. }
  2116. static int amd_iommu_mapping_error(struct device *dev, dma_addr_t dma_addr)
  2117. {
  2118. return dma_addr == AMD_IOMMU_MAPPING_ERROR;
  2119. }
  2120. static const struct dma_map_ops amd_iommu_dma_ops = {
  2121. .alloc = alloc_coherent,
  2122. .free = free_coherent,
  2123. .map_page = map_page,
  2124. .unmap_page = unmap_page,
  2125. .map_sg = map_sg,
  2126. .unmap_sg = unmap_sg,
  2127. .dma_supported = amd_iommu_dma_supported,
  2128. .mapping_error = amd_iommu_mapping_error,
  2129. };
  2130. static int init_reserved_iova_ranges(void)
  2131. {
  2132. struct pci_dev *pdev = NULL;
  2133. struct iova *val;
  2134. init_iova_domain(&reserved_iova_ranges, PAGE_SIZE, IOVA_START_PFN);
  2135. lockdep_set_class(&reserved_iova_ranges.iova_rbtree_lock,
  2136. &reserved_rbtree_key);
  2137. /* MSI memory range */
  2138. val = reserve_iova(&reserved_iova_ranges,
  2139. IOVA_PFN(MSI_RANGE_START), IOVA_PFN(MSI_RANGE_END));
  2140. if (!val) {
  2141. pr_err("Reserving MSI range failed\n");
  2142. return -ENOMEM;
  2143. }
  2144. /* HT memory range */
  2145. val = reserve_iova(&reserved_iova_ranges,
  2146. IOVA_PFN(HT_RANGE_START), IOVA_PFN(HT_RANGE_END));
  2147. if (!val) {
  2148. pr_err("Reserving HT range failed\n");
  2149. return -ENOMEM;
  2150. }
  2151. /*
  2152. * Memory used for PCI resources
  2153. * FIXME: Check whether we can reserve the PCI-hole completly
  2154. */
  2155. for_each_pci_dev(pdev) {
  2156. int i;
  2157. for (i = 0; i < PCI_NUM_RESOURCES; ++i) {
  2158. struct resource *r = &pdev->resource[i];
  2159. if (!(r->flags & IORESOURCE_MEM))
  2160. continue;
  2161. val = reserve_iova(&reserved_iova_ranges,
  2162. IOVA_PFN(r->start),
  2163. IOVA_PFN(r->end));
  2164. if (!val) {
  2165. pr_err("Reserve pci-resource range failed\n");
  2166. return -ENOMEM;
  2167. }
  2168. }
  2169. }
  2170. return 0;
  2171. }
  2172. int __init amd_iommu_init_api(void)
  2173. {
  2174. int ret, err = 0;
  2175. ret = iova_cache_get();
  2176. if (ret)
  2177. return ret;
  2178. ret = init_reserved_iova_ranges();
  2179. if (ret)
  2180. return ret;
  2181. err = bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
  2182. if (err)
  2183. return err;
  2184. #ifdef CONFIG_ARM_AMBA
  2185. err = bus_set_iommu(&amba_bustype, &amd_iommu_ops);
  2186. if (err)
  2187. return err;
  2188. #endif
  2189. err = bus_set_iommu(&platform_bus_type, &amd_iommu_ops);
  2190. if (err)
  2191. return err;
  2192. return 0;
  2193. }
  2194. int __init amd_iommu_init_dma_ops(void)
  2195. {
  2196. swiotlb = (iommu_pass_through || sme_me_mask) ? 1 : 0;
  2197. iommu_detected = 1;
  2198. /*
  2199. * In case we don't initialize SWIOTLB (actually the common case
  2200. * when AMD IOMMU is enabled and SME is not active), make sure there
  2201. * are global dma_ops set as a fall-back for devices not handled by
  2202. * this driver (for example non-PCI devices). When SME is active,
  2203. * make sure that swiotlb variable remains set so the global dma_ops
  2204. * continue to be SWIOTLB.
  2205. */
  2206. if (!swiotlb)
  2207. dma_ops = &nommu_dma_ops;
  2208. if (amd_iommu_unmap_flush)
  2209. pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
  2210. else
  2211. pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");
  2212. return 0;
  2213. }
  2214. /*****************************************************************************
  2215. *
  2216. * The following functions belong to the exported interface of AMD IOMMU
  2217. *
  2218. * This interface allows access to lower level functions of the IOMMU
  2219. * like protection domain handling and assignement of devices to domains
  2220. * which is not possible with the dma_ops interface.
  2221. *
  2222. *****************************************************************************/
  2223. static void cleanup_domain(struct protection_domain *domain)
  2224. {
  2225. struct iommu_dev_data *entry;
  2226. unsigned long flags;
  2227. write_lock_irqsave(&amd_iommu_devtable_lock, flags);
  2228. while (!list_empty(&domain->dev_list)) {
  2229. entry = list_first_entry(&domain->dev_list,
  2230. struct iommu_dev_data, list);
  2231. __detach_device(entry);
  2232. }
  2233. write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  2234. }
  2235. static void protection_domain_free(struct protection_domain *domain)
  2236. {
  2237. if (!domain)
  2238. return;
  2239. del_domain_from_list(domain);
  2240. if (domain->id)
  2241. domain_id_free(domain->id);
  2242. kfree(domain);
  2243. }
  2244. static int protection_domain_init(struct protection_domain *domain)
  2245. {
  2246. spin_lock_init(&domain->lock);
  2247. mutex_init(&domain->api_lock);
  2248. domain->id = domain_id_alloc();
  2249. if (!domain->id)
  2250. return -ENOMEM;
  2251. INIT_LIST_HEAD(&domain->dev_list);
  2252. return 0;
  2253. }
  2254. static struct protection_domain *protection_domain_alloc(void)
  2255. {
  2256. struct protection_domain *domain;
  2257. domain = kzalloc(sizeof(*domain), GFP_KERNEL);
  2258. if (!domain)
  2259. return NULL;
  2260. if (protection_domain_init(domain))
  2261. goto out_err;
  2262. add_domain_to_list(domain);
  2263. return domain;
  2264. out_err:
  2265. kfree(domain);
  2266. return NULL;
  2267. }
  2268. static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
  2269. {
  2270. struct protection_domain *pdomain;
  2271. struct dma_ops_domain *dma_domain;
  2272. switch (type) {
  2273. case IOMMU_DOMAIN_UNMANAGED:
  2274. pdomain = protection_domain_alloc();
  2275. if (!pdomain)
  2276. return NULL;
  2277. pdomain->mode = PAGE_MODE_3_LEVEL;
  2278. pdomain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
  2279. if (!pdomain->pt_root) {
  2280. protection_domain_free(pdomain);
  2281. return NULL;
  2282. }
  2283. pdomain->domain.geometry.aperture_start = 0;
  2284. pdomain->domain.geometry.aperture_end = ~0ULL;
  2285. pdomain->domain.geometry.force_aperture = true;
  2286. break;
  2287. case IOMMU_DOMAIN_DMA:
  2288. dma_domain = dma_ops_domain_alloc();
  2289. if (!dma_domain) {
  2290. pr_err("AMD-Vi: Failed to allocate\n");
  2291. return NULL;
  2292. }
  2293. pdomain = &dma_domain->domain;
  2294. break;
  2295. case IOMMU_DOMAIN_IDENTITY:
  2296. pdomain = protection_domain_alloc();
  2297. if (!pdomain)
  2298. return NULL;
  2299. pdomain->mode = PAGE_MODE_NONE;
  2300. break;
  2301. default:
  2302. return NULL;
  2303. }
  2304. return &pdomain->domain;
  2305. }
  2306. static void amd_iommu_domain_free(struct iommu_domain *dom)
  2307. {
  2308. struct protection_domain *domain;
  2309. struct dma_ops_domain *dma_dom;
  2310. domain = to_pdomain(dom);
  2311. if (domain->dev_cnt > 0)
  2312. cleanup_domain(domain);
  2313. BUG_ON(domain->dev_cnt != 0);
  2314. if (!dom)
  2315. return;
  2316. switch (dom->type) {
  2317. case IOMMU_DOMAIN_DMA:
  2318. /* Now release the domain */
  2319. dma_dom = to_dma_ops_domain(domain);
  2320. dma_ops_domain_free(dma_dom);
  2321. break;
  2322. default:
  2323. if (domain->mode != PAGE_MODE_NONE)
  2324. free_pagetable(domain);
  2325. if (domain->flags & PD_IOMMUV2_MASK)
  2326. free_gcr3_table(domain);
  2327. protection_domain_free(domain);
  2328. break;
  2329. }
  2330. }
  2331. static void amd_iommu_detach_device(struct iommu_domain *dom,
  2332. struct device *dev)
  2333. {
  2334. struct iommu_dev_data *dev_data = dev->archdata.iommu;
  2335. struct amd_iommu *iommu;
  2336. int devid;
  2337. if (!check_device(dev))
  2338. return;
  2339. devid = get_device_id(dev);
  2340. if (devid < 0)
  2341. return;
  2342. if (dev_data->domain != NULL)
  2343. detach_device(dev);
  2344. iommu = amd_iommu_rlookup_table[devid];
  2345. if (!iommu)
  2346. return;
  2347. #ifdef CONFIG_IRQ_REMAP
  2348. if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) &&
  2349. (dom->type == IOMMU_DOMAIN_UNMANAGED))
  2350. dev_data->use_vapic = 0;
  2351. #endif
  2352. iommu_completion_wait(iommu);
  2353. }
  2354. static int amd_iommu_attach_device(struct iommu_domain *dom,
  2355. struct device *dev)
  2356. {
  2357. struct protection_domain *domain = to_pdomain(dom);
  2358. struct iommu_dev_data *dev_data;
  2359. struct amd_iommu *iommu;
  2360. int ret;
  2361. if (!check_device(dev))
  2362. return -EINVAL;
  2363. dev_data = dev->archdata.iommu;
  2364. iommu = amd_iommu_rlookup_table[dev_data->devid];
  2365. if (!iommu)
  2366. return -EINVAL;
  2367. if (dev_data->domain)
  2368. detach_device(dev);
  2369. ret = attach_device(dev, domain);
  2370. #ifdef CONFIG_IRQ_REMAP
  2371. if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
  2372. if (dom->type == IOMMU_DOMAIN_UNMANAGED)
  2373. dev_data->use_vapic = 1;
  2374. else
  2375. dev_data->use_vapic = 0;
  2376. }
  2377. #endif
  2378. iommu_completion_wait(iommu);
  2379. return ret;
  2380. }
  2381. static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
  2382. phys_addr_t paddr, size_t page_size, int iommu_prot)
  2383. {
  2384. struct protection_domain *domain = to_pdomain(dom);
  2385. int prot = 0;
  2386. int ret;
  2387. if (domain->mode == PAGE_MODE_NONE)
  2388. return -EINVAL;
  2389. if (iommu_prot & IOMMU_READ)
  2390. prot |= IOMMU_PROT_IR;
  2391. if (iommu_prot & IOMMU_WRITE)
  2392. prot |= IOMMU_PROT_IW;
  2393. mutex_lock(&domain->api_lock);
  2394. ret = iommu_map_page(domain, iova, paddr, page_size, prot, GFP_KERNEL);
  2395. mutex_unlock(&domain->api_lock);
  2396. return ret;
  2397. }
  2398. static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
  2399. size_t page_size)
  2400. {
  2401. struct protection_domain *domain = to_pdomain(dom);
  2402. size_t unmap_size;
  2403. if (domain->mode == PAGE_MODE_NONE)
  2404. return -EINVAL;
  2405. mutex_lock(&domain->api_lock);
  2406. unmap_size = iommu_unmap_page(domain, iova, page_size);
  2407. mutex_unlock(&domain->api_lock);
  2408. domain_flush_tlb_pde(domain);
  2409. domain_flush_complete(domain);
  2410. return unmap_size;
  2411. }
  2412. static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
  2413. dma_addr_t iova)
  2414. {
  2415. struct protection_domain *domain = to_pdomain(dom);
  2416. unsigned long offset_mask, pte_pgsize;
  2417. u64 *pte, __pte;
  2418. if (domain->mode == PAGE_MODE_NONE)
  2419. return iova;
  2420. pte = fetch_pte(domain, iova, &pte_pgsize);
  2421. if (!pte || !IOMMU_PTE_PRESENT(*pte))
  2422. return 0;
  2423. offset_mask = pte_pgsize - 1;
  2424. __pte = *pte & PM_ADDR_MASK;
  2425. return (__pte & ~offset_mask) | (iova & offset_mask);
  2426. }
  2427. static bool amd_iommu_capable(enum iommu_cap cap)
  2428. {
  2429. switch (cap) {
  2430. case IOMMU_CAP_CACHE_COHERENCY:
  2431. return true;
  2432. case IOMMU_CAP_INTR_REMAP:
  2433. return (irq_remapping_enabled == 1);
  2434. case IOMMU_CAP_NOEXEC:
  2435. return false;
  2436. }
  2437. return false;
  2438. }
  2439. static void amd_iommu_get_resv_regions(struct device *dev,
  2440. struct list_head *head)
  2441. {
  2442. struct iommu_resv_region *region;
  2443. struct unity_map_entry *entry;
  2444. int devid;
  2445. devid = get_device_id(dev);
  2446. if (devid < 0)
  2447. return;
  2448. list_for_each_entry(entry, &amd_iommu_unity_map, list) {
  2449. size_t length;
  2450. int prot = 0;
  2451. if (devid < entry->devid_start || devid > entry->devid_end)
  2452. continue;
  2453. length = entry->address_end - entry->address_start;
  2454. if (entry->prot & IOMMU_PROT_IR)
  2455. prot |= IOMMU_READ;
  2456. if (entry->prot & IOMMU_PROT_IW)
  2457. prot |= IOMMU_WRITE;
  2458. region = iommu_alloc_resv_region(entry->address_start,
  2459. length, prot,
  2460. IOMMU_RESV_DIRECT);
  2461. if (!region) {
  2462. pr_err("Out of memory allocating dm-regions for %s\n",
  2463. dev_name(dev));
  2464. return;
  2465. }
  2466. list_add_tail(&region->list, head);
  2467. }
  2468. region = iommu_alloc_resv_region(MSI_RANGE_START,
  2469. MSI_RANGE_END - MSI_RANGE_START + 1,
  2470. 0, IOMMU_RESV_MSI);
  2471. if (!region)
  2472. return;
  2473. list_add_tail(&region->list, head);
  2474. region = iommu_alloc_resv_region(HT_RANGE_START,
  2475. HT_RANGE_END - HT_RANGE_START + 1,
  2476. 0, IOMMU_RESV_RESERVED);
  2477. if (!region)
  2478. return;
  2479. list_add_tail(&region->list, head);
  2480. }
  2481. static void amd_iommu_put_resv_regions(struct device *dev,
  2482. struct list_head *head)
  2483. {
  2484. struct iommu_resv_region *entry, *next;
  2485. list_for_each_entry_safe(entry, next, head, list)
  2486. kfree(entry);
  2487. }
  2488. static void amd_iommu_apply_resv_region(struct device *dev,
  2489. struct iommu_domain *domain,
  2490. struct iommu_resv_region *region)
  2491. {
  2492. struct dma_ops_domain *dma_dom = to_dma_ops_domain(to_pdomain(domain));
  2493. unsigned long start, end;
  2494. start = IOVA_PFN(region->start);
  2495. end = IOVA_PFN(region->start + region->length);
  2496. WARN_ON_ONCE(reserve_iova(&dma_dom->iovad, start, end) == NULL);
  2497. }
  2498. static bool amd_iommu_is_attach_deferred(struct iommu_domain *domain,
  2499. struct device *dev)
  2500. {
  2501. struct iommu_dev_data *dev_data = dev->archdata.iommu;
  2502. return dev_data->defer_attach;
  2503. }
  2504. const struct iommu_ops amd_iommu_ops = {
  2505. .capable = amd_iommu_capable,
  2506. .domain_alloc = amd_iommu_domain_alloc,
  2507. .domain_free = amd_iommu_domain_free,
  2508. .attach_dev = amd_iommu_attach_device,
  2509. .detach_dev = amd_iommu_detach_device,
  2510. .map = amd_iommu_map,
  2511. .unmap = amd_iommu_unmap,
  2512. .map_sg = default_iommu_map_sg,
  2513. .iova_to_phys = amd_iommu_iova_to_phys,
  2514. .add_device = amd_iommu_add_device,
  2515. .remove_device = amd_iommu_remove_device,
  2516. .device_group = amd_iommu_device_group,
  2517. .get_resv_regions = amd_iommu_get_resv_regions,
  2518. .put_resv_regions = amd_iommu_put_resv_regions,
  2519. .apply_resv_region = amd_iommu_apply_resv_region,
  2520. .is_attach_deferred = amd_iommu_is_attach_deferred,
  2521. .pgsize_bitmap = AMD_IOMMU_PGSIZES,
  2522. };
  2523. /*****************************************************************************
  2524. *
  2525. * The next functions do a basic initialization of IOMMU for pass through
  2526. * mode
  2527. *
  2528. * In passthrough mode the IOMMU is initialized and enabled but not used for
  2529. * DMA-API translation.
  2530. *
  2531. *****************************************************************************/
  2532. /* IOMMUv2 specific functions */
  2533. int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
  2534. {
  2535. return atomic_notifier_chain_register(&ppr_notifier, nb);
  2536. }
  2537. EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);
  2538. int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
  2539. {
  2540. return atomic_notifier_chain_unregister(&ppr_notifier, nb);
  2541. }
  2542. EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
  2543. void amd_iommu_domain_direct_map(struct iommu_domain *dom)
  2544. {
  2545. struct protection_domain *domain = to_pdomain(dom);
  2546. unsigned long flags;
  2547. spin_lock_irqsave(&domain->lock, flags);
  2548. /* Update data structure */
  2549. domain->mode = PAGE_MODE_NONE;
  2550. domain->updated = true;
  2551. /* Make changes visible to IOMMUs */
  2552. update_domain(domain);
  2553. /* Page-table is not visible to IOMMU anymore, so free it */
  2554. free_pagetable(domain);
  2555. spin_unlock_irqrestore(&domain->lock, flags);
  2556. }
  2557. EXPORT_SYMBOL(amd_iommu_domain_direct_map);
  2558. int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
  2559. {
  2560. struct protection_domain *domain = to_pdomain(dom);
  2561. unsigned long flags;
  2562. int levels, ret;
  2563. if (pasids <= 0 || pasids > (PASID_MASK + 1))
  2564. return -EINVAL;
  2565. /* Number of GCR3 table levels required */
  2566. for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
  2567. levels += 1;
  2568. if (levels > amd_iommu_max_glx_val)
  2569. return -EINVAL;
  2570. spin_lock_irqsave(&domain->lock, flags);
  2571. /*
  2572. * Save us all sanity checks whether devices already in the
  2573. * domain support IOMMUv2. Just force that the domain has no
  2574. * devices attached when it is switched into IOMMUv2 mode.
  2575. */
  2576. ret = -EBUSY;
  2577. if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
  2578. goto out;
  2579. ret = -ENOMEM;
  2580. domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
  2581. if (domain->gcr3_tbl == NULL)
  2582. goto out;
  2583. domain->glx = levels;
  2584. domain->flags |= PD_IOMMUV2_MASK;
  2585. domain->updated = true;
  2586. update_domain(domain);
  2587. ret = 0;
  2588. out:
  2589. spin_unlock_irqrestore(&domain->lock, flags);
  2590. return ret;
  2591. }
  2592. EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
  2593. static int __flush_pasid(struct protection_domain *domain, int pasid,
  2594. u64 address, bool size)
  2595. {
  2596. struct iommu_dev_data *dev_data;
  2597. struct iommu_cmd cmd;
  2598. int i, ret;
  2599. if (!(domain->flags & PD_IOMMUV2_MASK))
  2600. return -EINVAL;
  2601. build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);
  2602. /*
  2603. * IOMMU TLB needs to be flushed before Device TLB to
  2604. * prevent device TLB refill from IOMMU TLB
  2605. */
  2606. for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
  2607. if (domain->dev_iommu[i] == 0)
  2608. continue;
  2609. ret = iommu_queue_command(amd_iommus[i], &cmd);
  2610. if (ret != 0)
  2611. goto out;
  2612. }
  2613. /* Wait until IOMMU TLB flushes are complete */
  2614. domain_flush_complete(domain);
  2615. /* Now flush device TLBs */
  2616. list_for_each_entry(dev_data, &domain->dev_list, list) {
  2617. struct amd_iommu *iommu;
  2618. int qdep;
  2619. /*
  2620. There might be non-IOMMUv2 capable devices in an IOMMUv2
  2621. * domain.
  2622. */
  2623. if (!dev_data->ats.enabled)
  2624. continue;
  2625. qdep = dev_data->ats.qdep;
  2626. iommu = amd_iommu_rlookup_table[dev_data->devid];
  2627. build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
  2628. qdep, address, size);
  2629. ret = iommu_queue_command(iommu, &cmd);
  2630. if (ret != 0)
  2631. goto out;
  2632. }
  2633. /* Wait until all device TLBs are flushed */
  2634. domain_flush_complete(domain);
  2635. ret = 0;
  2636. out:
  2637. return ret;
  2638. }
  2639. static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
  2640. u64 address)
  2641. {
  2642. return __flush_pasid(domain, pasid, address, false);
  2643. }
  2644. int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
  2645. u64 address)
  2646. {
  2647. struct protection_domain *domain = to_pdomain(dom);
  2648. unsigned long flags;
  2649. int ret;
  2650. spin_lock_irqsave(&domain->lock, flags);
  2651. ret = __amd_iommu_flush_page(domain, pasid, address);
  2652. spin_unlock_irqrestore(&domain->lock, flags);
  2653. return ret;
  2654. }
  2655. EXPORT_SYMBOL(amd_iommu_flush_page);
  2656. static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
  2657. {
  2658. return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
  2659. true);
  2660. }
  2661. int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
  2662. {
  2663. struct protection_domain *domain = to_pdomain(dom);
  2664. unsigned long flags;
  2665. int ret;
  2666. spin_lock_irqsave(&domain->lock, flags);
  2667. ret = __amd_iommu_flush_tlb(domain, pasid);
  2668. spin_unlock_irqrestore(&domain->lock, flags);
  2669. return ret;
  2670. }
  2671. EXPORT_SYMBOL(amd_iommu_flush_tlb);
  2672. static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
  2673. {
  2674. int index;
  2675. u64 *pte;
  2676. while (true) {
  2677. index = (pasid >> (9 * level)) & 0x1ff;
  2678. pte = &root[index];
  2679. if (level == 0)
  2680. break;
  2681. if (!(*pte & GCR3_VALID)) {
  2682. if (!alloc)
  2683. return NULL;
  2684. root = (void *)get_zeroed_page(GFP_ATOMIC);
  2685. if (root == NULL)
  2686. return NULL;
  2687. *pte = iommu_virt_to_phys(root) | GCR3_VALID;
  2688. }
  2689. root = iommu_phys_to_virt(*pte & PAGE_MASK);
  2690. level -= 1;
  2691. }
  2692. return pte;
  2693. }
  2694. static int __set_gcr3(struct protection_domain *domain, int pasid,
  2695. unsigned long cr3)
  2696. {
  2697. u64 *pte;
  2698. if (domain->mode != PAGE_MODE_NONE)
  2699. return -EINVAL;
  2700. pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
  2701. if (pte == NULL)
  2702. return -ENOMEM;
  2703. *pte = (cr3 & PAGE_MASK) | GCR3_VALID;
  2704. return __amd_iommu_flush_tlb(domain, pasid);
  2705. }
  2706. static int __clear_gcr3(struct protection_domain *domain, int pasid)
  2707. {
  2708. u64 *pte;
  2709. if (domain->mode != PAGE_MODE_NONE)
  2710. return -EINVAL;
  2711. pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
  2712. if (pte == NULL)
  2713. return 0;
  2714. *pte = 0;
  2715. return __amd_iommu_flush_tlb(domain, pasid);
  2716. }
  2717. int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
  2718. unsigned long cr3)
  2719. {
  2720. struct protection_domain *domain = to_pdomain(dom);
  2721. unsigned long flags;
  2722. int ret;
  2723. spin_lock_irqsave(&domain->lock, flags);
  2724. ret = __set_gcr3(domain, pasid, cr3);
  2725. spin_unlock_irqrestore(&domain->lock, flags);
  2726. return ret;
  2727. }
  2728. EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);
  2729. int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
  2730. {
  2731. struct protection_domain *domain = to_pdomain(dom);
  2732. unsigned long flags;
  2733. int ret;
  2734. spin_lock_irqsave(&domain->lock, flags);
  2735. ret = __clear_gcr3(domain, pasid);
  2736. spin_unlock_irqrestore(&domain->lock, flags);
  2737. return ret;
  2738. }
  2739. EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
  2740. int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
  2741. int status, int tag)
  2742. {
  2743. struct iommu_dev_data *dev_data;
  2744. struct amd_iommu *iommu;
  2745. struct iommu_cmd cmd;
  2746. dev_data = get_dev_data(&pdev->dev);
  2747. iommu = amd_iommu_rlookup_table[dev_data->devid];
  2748. build_complete_ppr(&cmd, dev_data->devid, pasid, status,
  2749. tag, dev_data->pri_tlp);
  2750. return iommu_queue_command(iommu, &cmd);
  2751. }
  2752. EXPORT_SYMBOL(amd_iommu_complete_ppr);
  2753. struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
  2754. {
  2755. struct protection_domain *pdomain;
  2756. pdomain = get_domain(&pdev->dev);
  2757. if (IS_ERR(pdomain))
  2758. return NULL;
  2759. /* Only return IOMMUv2 domains */
  2760. if (!(pdomain->flags & PD_IOMMUV2_MASK))
  2761. return NULL;
  2762. return &pdomain->domain;
  2763. }
  2764. EXPORT_SYMBOL(amd_iommu_get_v2_domain);
  2765. void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
  2766. {
  2767. struct iommu_dev_data *dev_data;
  2768. if (!amd_iommu_v2_supported())
  2769. return;
  2770. dev_data = get_dev_data(&pdev->dev);
  2771. dev_data->errata |= (1 << erratum);
  2772. }
  2773. EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
  2774. int amd_iommu_device_info(struct pci_dev *pdev,
  2775. struct amd_iommu_device_info *info)
  2776. {
  2777. int max_pasids;
  2778. int pos;
  2779. if (pdev == NULL || info == NULL)
  2780. return -EINVAL;
  2781. if (!amd_iommu_v2_supported())
  2782. return -EINVAL;
  2783. memset(info, 0, sizeof(*info));
  2784. pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
  2785. if (pos)
  2786. info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
  2787. pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
  2788. if (pos)
  2789. info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
  2790. pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
  2791. if (pos) {
  2792. int features;
  2793. max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
  2794. max_pasids = min(max_pasids, (1 << 20));
  2795. info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
  2796. info->max_pasids = min(pci_max_pasids(pdev), max_pasids);
  2797. features = pci_pasid_features(pdev);
  2798. if (features & PCI_PASID_CAP_EXEC)
  2799. info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
  2800. if (features & PCI_PASID_CAP_PRIV)
  2801. info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
  2802. }
  2803. return 0;
  2804. }
  2805. EXPORT_SYMBOL(amd_iommu_device_info);
  2806. #ifdef CONFIG_IRQ_REMAP
  2807. /*****************************************************************************
  2808. *
  2809. * Interrupt Remapping Implementation
  2810. *
  2811. *****************************************************************************/
  2812. static struct irq_chip amd_ir_chip;
  2813. static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
  2814. {
  2815. u64 dte;
  2816. dte = amd_iommu_dev_table[devid].data[2];
  2817. dte &= ~DTE_IRQ_PHYS_ADDR_MASK;
  2818. dte |= iommu_virt_to_phys(table->table);
  2819. dte |= DTE_IRQ_REMAP_INTCTL;
  2820. dte |= DTE_IRQ_TABLE_LEN;
  2821. dte |= DTE_IRQ_REMAP_ENABLE;
  2822. amd_iommu_dev_table[devid].data[2] = dte;
  2823. }
  2824. static struct irq_remap_table *get_irq_table(u16 devid, bool ioapic)
  2825. {
  2826. struct irq_remap_table *table = NULL;
  2827. struct amd_iommu *iommu;
  2828. unsigned long flags;
  2829. u16 alias;
  2830. write_lock_irqsave(&amd_iommu_devtable_lock, flags);
  2831. iommu = amd_iommu_rlookup_table[devid];
  2832. if (!iommu)
  2833. goto out_unlock;
  2834. table = irq_lookup_table[devid];
  2835. if (table)
  2836. goto out_unlock;
  2837. alias = amd_iommu_alias_table[devid];
  2838. table = irq_lookup_table[alias];
  2839. if (table) {
  2840. irq_lookup_table[devid] = table;
  2841. set_dte_irq_entry(devid, table);
  2842. iommu_flush_dte(iommu, devid);
  2843. goto out;
  2844. }
  2845. /* Nothing there yet, allocate new irq remapping table */
  2846. table = kzalloc(sizeof(*table), GFP_ATOMIC);
  2847. if (!table)
  2848. goto out_unlock;
  2849. /* Initialize table spin-lock */
  2850. spin_lock_init(&table->lock);
  2851. if (ioapic)
  2852. /* Keep the first 32 indexes free for IOAPIC interrupts */
  2853. table->min_index = 32;
  2854. table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC);
  2855. if (!table->table) {
  2856. kfree(table);
  2857. table = NULL;
  2858. goto out_unlock;
  2859. }
  2860. if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
  2861. memset(table->table, 0,
  2862. MAX_IRQS_PER_TABLE * sizeof(u32));
  2863. else
  2864. memset(table->table, 0,
  2865. (MAX_IRQS_PER_TABLE * (sizeof(u64) * 2)));
  2866. if (ioapic) {
  2867. int i;
  2868. for (i = 0; i < 32; ++i)
  2869. iommu->irte_ops->set_allocated(table, i);
  2870. }
  2871. irq_lookup_table[devid] = table;
  2872. set_dte_irq_entry(devid, table);
  2873. iommu_flush_dte(iommu, devid);
  2874. if (devid != alias) {
  2875. irq_lookup_table[alias] = table;
  2876. set_dte_irq_entry(alias, table);
  2877. iommu_flush_dte(iommu, alias);
  2878. }
  2879. out:
  2880. iommu_completion_wait(iommu);
  2881. out_unlock:
  2882. write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  2883. return table;
  2884. }
  2885. static int alloc_irq_index(u16 devid, int count, bool align)
  2886. {
  2887. struct irq_remap_table *table;
  2888. int index, c, alignment = 1;
  2889. unsigned long flags;
  2890. struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
  2891. if (!iommu)
  2892. return -ENODEV;
  2893. table = get_irq_table(devid, false);
  2894. if (!table)
  2895. return -ENODEV;
  2896. if (align)
  2897. alignment = roundup_pow_of_two(count);
  2898. spin_lock_irqsave(&table->lock, flags);
  2899. /* Scan table for free entries */
  2900. for (index = ALIGN(table->min_index, alignment), c = 0;
  2901. index < MAX_IRQS_PER_TABLE;
  2902. index++) {
  2903. if (!iommu->irte_ops->is_allocated(table, index)) {
  2904. c += 1;
  2905. } else {
  2906. c = 0;
  2907. index = ALIGN(index, alignment);
  2908. continue;
  2909. }
  2910. if (c == count) {
  2911. for (; c != 0; --c)
  2912. iommu->irte_ops->set_allocated(table, index - c + 1);
  2913. index -= count - 1;
  2914. goto out;
  2915. }
  2916. }
  2917. index = -ENOSPC;
  2918. out:
  2919. spin_unlock_irqrestore(&table->lock, flags);
  2920. return index;
  2921. }
  2922. static int modify_irte_ga(u16 devid, int index, struct irte_ga *irte,
  2923. struct amd_ir_data *data)
  2924. {
  2925. struct irq_remap_table *table;
  2926. struct amd_iommu *iommu;
  2927. unsigned long flags;
  2928. struct irte_ga *entry;
  2929. iommu = amd_iommu_rlookup_table[devid];
  2930. if (iommu == NULL)
  2931. return -EINVAL;
  2932. table = get_irq_table(devid, false);
  2933. if (!table)
  2934. return -ENOMEM;
  2935. spin_lock_irqsave(&table->lock, flags);
  2936. entry = (struct irte_ga *)table->table;
  2937. entry = &entry[index];
  2938. entry->lo.fields_remap.valid = 0;
  2939. entry->hi.val = irte->hi.val;
  2940. entry->lo.val = irte->lo.val;
  2941. entry->lo.fields_remap.valid = 1;
  2942. if (data)
  2943. data->ref = entry;
  2944. spin_unlock_irqrestore(&table->lock, flags);
  2945. iommu_flush_irt(iommu, devid);
  2946. iommu_completion_wait(iommu);
  2947. return 0;
  2948. }
  2949. static int modify_irte(u16 devid, int index, union irte *irte)
  2950. {
  2951. struct irq_remap_table *table;
  2952. struct amd_iommu *iommu;
  2953. unsigned long flags;
  2954. iommu = amd_iommu_rlookup_table[devid];
  2955. if (iommu == NULL)
  2956. return -EINVAL;
  2957. table = get_irq_table(devid, false);
  2958. if (!table)
  2959. return -ENOMEM;
  2960. spin_lock_irqsave(&table->lock, flags);
  2961. table->table[index] = irte->val;
  2962. spin_unlock_irqrestore(&table->lock, flags);
  2963. iommu_flush_irt(iommu, devid);
  2964. iommu_completion_wait(iommu);
  2965. return 0;
  2966. }
  2967. static void free_irte(u16 devid, int index)
  2968. {
  2969. struct irq_remap_table *table;
  2970. struct amd_iommu *iommu;
  2971. unsigned long flags;
  2972. iommu = amd_iommu_rlookup_table[devid];
  2973. if (iommu == NULL)
  2974. return;
  2975. table = get_irq_table(devid, false);
  2976. if (!table)
  2977. return;
  2978. spin_lock_irqsave(&table->lock, flags);
  2979. iommu->irte_ops->clear_allocated(table, index);
  2980. spin_unlock_irqrestore(&table->lock, flags);
  2981. iommu_flush_irt(iommu, devid);
  2982. iommu_completion_wait(iommu);
  2983. }
  2984. static void irte_prepare(void *entry,
  2985. u32 delivery_mode, u32 dest_mode,
  2986. u8 vector, u32 dest_apicid, int devid)
  2987. {
  2988. union irte *irte = (union irte *) entry;
  2989. irte->val = 0;
  2990. irte->fields.vector = vector;
  2991. irte->fields.int_type = delivery_mode;
  2992. irte->fields.destination = dest_apicid;
  2993. irte->fields.dm = dest_mode;
  2994. irte->fields.valid = 1;
  2995. }
  2996. static void irte_ga_prepare(void *entry,
  2997. u32 delivery_mode, u32 dest_mode,
  2998. u8 vector, u32 dest_apicid, int devid)
  2999. {
  3000. struct irte_ga *irte = (struct irte_ga *) entry;
  3001. irte->lo.val = 0;
  3002. irte->hi.val = 0;
  3003. irte->lo.fields_remap.int_type = delivery_mode;
  3004. irte->lo.fields_remap.dm = dest_mode;
  3005. irte->hi.fields.vector = vector;
  3006. irte->lo.fields_remap.destination = dest_apicid;
  3007. irte->lo.fields_remap.valid = 1;
  3008. }
  3009. static void irte_activate(void *entry, u16 devid, u16 index)
  3010. {
  3011. union irte *irte = (union irte *) entry;
  3012. irte->fields.valid = 1;
  3013. modify_irte(devid, index, irte);
  3014. }
  3015. static void irte_ga_activate(void *entry, u16 devid, u16 index)
  3016. {
  3017. struct irte_ga *irte = (struct irte_ga *) entry;
  3018. irte->lo.fields_remap.valid = 1;
  3019. modify_irte_ga(devid, index, irte, NULL);
  3020. }
  3021. static void irte_deactivate(void *entry, u16 devid, u16 index)
  3022. {
  3023. union irte *irte = (union irte *) entry;
  3024. irte->fields.valid = 0;
  3025. modify_irte(devid, index, irte);
  3026. }
  3027. static void irte_ga_deactivate(void *entry, u16 devid, u16 index)
  3028. {
  3029. struct irte_ga *irte = (struct irte_ga *) entry;
  3030. irte->lo.fields_remap.valid = 0;
  3031. modify_irte_ga(devid, index, irte, NULL);
  3032. }
  3033. static void irte_set_affinity(void *entry, u16 devid, u16 index,
  3034. u8 vector, u32 dest_apicid)
  3035. {
  3036. union irte *irte = (union irte *) entry;
  3037. irte->fields.vector = vector;
  3038. irte->fields.destination = dest_apicid;
  3039. modify_irte(devid, index, irte);
  3040. }
  3041. static void irte_ga_set_affinity(void *entry, u16 devid, u16 index,
  3042. u8 vector, u32 dest_apicid)
  3043. {
  3044. struct irte_ga *irte = (struct irte_ga *) entry;
  3045. struct iommu_dev_data *dev_data = search_dev_data(devid);
  3046. if (!dev_data || !dev_data->use_vapic ||
  3047. !irte->lo.fields_remap.guest_mode) {
  3048. irte->hi.fields.vector = vector;
  3049. irte->lo.fields_remap.destination = dest_apicid;
  3050. modify_irte_ga(devid, index, irte, NULL);
  3051. }
  3052. }
  3053. #define IRTE_ALLOCATED (~1U)
  3054. static void irte_set_allocated(struct irq_remap_table *table, int index)
  3055. {
  3056. table->table[index] = IRTE_ALLOCATED;
  3057. }
  3058. static void irte_ga_set_allocated(struct irq_remap_table *table, int index)
  3059. {
  3060. struct irte_ga *ptr = (struct irte_ga *)table->table;
  3061. struct irte_ga *irte = &ptr[index];
  3062. memset(&irte->lo.val, 0, sizeof(u64));
  3063. memset(&irte->hi.val, 0, sizeof(u64));
  3064. irte->hi.fields.vector = 0xff;
  3065. }
  3066. static bool irte_is_allocated(struct irq_remap_table *table, int index)
  3067. {
  3068. union irte *ptr = (union irte *)table->table;
  3069. union irte *irte = &ptr[index];
  3070. return irte->val != 0;
  3071. }
  3072. static bool irte_ga_is_allocated(struct irq_remap_table *table, int index)
  3073. {
  3074. struct irte_ga *ptr = (struct irte_ga *)table->table;
  3075. struct irte_ga *irte = &ptr[index];
  3076. return irte->hi.fields.vector != 0;
  3077. }
  3078. static void irte_clear_allocated(struct irq_remap_table *table, int index)
  3079. {
  3080. table->table[index] = 0;
  3081. }
  3082. static void irte_ga_clear_allocated(struct irq_remap_table *table, int index)
  3083. {
  3084. struct irte_ga *ptr = (struct irte_ga *)table->table;
  3085. struct irte_ga *irte = &ptr[index];
  3086. memset(&irte->lo.val, 0, sizeof(u64));
  3087. memset(&irte->hi.val, 0, sizeof(u64));
  3088. }
  3089. static int get_devid(struct irq_alloc_info *info)
  3090. {
  3091. int devid = -1;
  3092. switch (info->type) {
  3093. case X86_IRQ_ALLOC_TYPE_IOAPIC:
  3094. devid = get_ioapic_devid(info->ioapic_id);
  3095. break;
  3096. case X86_IRQ_ALLOC_TYPE_HPET:
  3097. devid = get_hpet_devid(info->hpet_id);
  3098. break;
  3099. case X86_IRQ_ALLOC_TYPE_MSI:
  3100. case X86_IRQ_ALLOC_TYPE_MSIX:
  3101. devid = get_device_id(&info->msi_dev->dev);
  3102. break;
  3103. default:
  3104. BUG_ON(1);
  3105. break;
  3106. }
  3107. return devid;
  3108. }
  3109. static struct irq_domain *get_ir_irq_domain(struct irq_alloc_info *info)
  3110. {
  3111. struct amd_iommu *iommu;
  3112. int devid;
  3113. if (!info)
  3114. return NULL;
  3115. devid = get_devid(info);
  3116. if (devid >= 0) {
  3117. iommu = amd_iommu_rlookup_table[devid];
  3118. if (iommu)
  3119. return iommu->ir_domain;
  3120. }
  3121. return NULL;
  3122. }
  3123. static struct irq_domain *get_irq_domain(struct irq_alloc_info *info)
  3124. {
  3125. struct amd_iommu *iommu;
  3126. int devid;
  3127. if (!info)
  3128. return NULL;
  3129. switch (info->type) {
  3130. case X86_IRQ_ALLOC_TYPE_MSI:
  3131. case X86_IRQ_ALLOC_TYPE_MSIX:
  3132. devid = get_device_id(&info->msi_dev->dev);
  3133. if (devid < 0)
  3134. return NULL;
  3135. iommu = amd_iommu_rlookup_table[devid];
  3136. if (iommu)
  3137. return iommu->msi_domain;
  3138. break;
  3139. default:
  3140. break;
  3141. }
  3142. return NULL;
  3143. }
  3144. struct irq_remap_ops amd_iommu_irq_ops = {
  3145. .prepare = amd_iommu_prepare,
  3146. .enable = amd_iommu_enable,
  3147. .disable = amd_iommu_disable,
  3148. .reenable = amd_iommu_reenable,
  3149. .enable_faulting = amd_iommu_enable_faulting,
  3150. .get_ir_irq_domain = get_ir_irq_domain,
  3151. .get_irq_domain = get_irq_domain,
  3152. };
  3153. static void irq_remapping_prepare_irte(struct amd_ir_data *data,
  3154. struct irq_cfg *irq_cfg,
  3155. struct irq_alloc_info *info,
  3156. int devid, int index, int sub_handle)
  3157. {
  3158. struct irq_2_irte *irte_info = &data->irq_2_irte;
  3159. struct msi_msg *msg = &data->msi_entry;
  3160. struct IO_APIC_route_entry *entry;
  3161. struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
  3162. if (!iommu)
  3163. return;
  3164. data->irq_2_irte.devid = devid;
  3165. data->irq_2_irte.index = index + sub_handle;
  3166. iommu->irte_ops->prepare(data->entry, apic->irq_delivery_mode,
  3167. apic->irq_dest_mode, irq_cfg->vector,
  3168. irq_cfg->dest_apicid, devid);
  3169. switch (info->type) {
  3170. case X86_IRQ_ALLOC_TYPE_IOAPIC:
  3171. /* Setup IOAPIC entry */
  3172. entry = info->ioapic_entry;
  3173. info->ioapic_entry = NULL;
  3174. memset(entry, 0, sizeof(*entry));
  3175. entry->vector = index;
  3176. entry->mask = 0;
  3177. entry->trigger = info->ioapic_trigger;
  3178. entry->polarity = info->ioapic_polarity;
  3179. /* Mask level triggered irqs. */
  3180. if (info->ioapic_trigger)
  3181. entry->mask = 1;
  3182. break;
  3183. case X86_IRQ_ALLOC_TYPE_HPET:
  3184. case X86_IRQ_ALLOC_TYPE_MSI:
  3185. case X86_IRQ_ALLOC_TYPE_MSIX:
  3186. msg->address_hi = MSI_ADDR_BASE_HI;
  3187. msg->address_lo = MSI_ADDR_BASE_LO;
  3188. msg->data = irte_info->index;
  3189. break;
  3190. default:
  3191. BUG_ON(1);
  3192. break;
  3193. }
  3194. }
  3195. struct amd_irte_ops irte_32_ops = {
  3196. .prepare = irte_prepare,
  3197. .activate = irte_activate,
  3198. .deactivate = irte_deactivate,
  3199. .set_affinity = irte_set_affinity,
  3200. .set_allocated = irte_set_allocated,
  3201. .is_allocated = irte_is_allocated,
  3202. .clear_allocated = irte_clear_allocated,
  3203. };
  3204. struct amd_irte_ops irte_128_ops = {
  3205. .prepare = irte_ga_prepare,
  3206. .activate = irte_ga_activate,
  3207. .deactivate = irte_ga_deactivate,
  3208. .set_affinity = irte_ga_set_affinity,
  3209. .set_allocated = irte_ga_set_allocated,
  3210. .is_allocated = irte_ga_is_allocated,
  3211. .clear_allocated = irte_ga_clear_allocated,
  3212. };
  3213. static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
  3214. unsigned int nr_irqs, void *arg)
  3215. {
  3216. struct irq_alloc_info *info = arg;
  3217. struct irq_data *irq_data;
  3218. struct amd_ir_data *data = NULL;
  3219. struct irq_cfg *cfg;
  3220. int i, ret, devid;
  3221. int index = -1;
  3222. if (!info)
  3223. return -EINVAL;
  3224. if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
  3225. info->type != X86_IRQ_ALLOC_TYPE_MSIX)
  3226. return -EINVAL;
  3227. /*
  3228. * With IRQ remapping enabled, don't need contiguous CPU vectors
  3229. * to support multiple MSI interrupts.
  3230. */
  3231. if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
  3232. info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
  3233. devid = get_devid(info);
  3234. if (devid < 0)
  3235. return -EINVAL;
  3236. ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
  3237. if (ret < 0)
  3238. return ret;
  3239. if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
  3240. if (get_irq_table(devid, true))
  3241. index = info->ioapic_pin;
  3242. else
  3243. ret = -ENOMEM;
  3244. } else {
  3245. bool align = (info->type == X86_IRQ_ALLOC_TYPE_MSI);
  3246. index = alloc_irq_index(devid, nr_irqs, align);
  3247. }
  3248. if (index < 0) {
  3249. pr_warn("Failed to allocate IRTE\n");
  3250. ret = index;
  3251. goto out_free_parent;
  3252. }
  3253. for (i = 0; i < nr_irqs; i++) {
  3254. irq_data = irq_domain_get_irq_data(domain, virq + i);
  3255. cfg = irqd_cfg(irq_data);
  3256. if (!irq_data || !cfg) {
  3257. ret = -EINVAL;
  3258. goto out_free_data;
  3259. }
  3260. ret = -ENOMEM;
  3261. data = kzalloc(sizeof(*data), GFP_KERNEL);
  3262. if (!data)
  3263. goto out_free_data;
  3264. if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
  3265. data->entry = kzalloc(sizeof(union irte), GFP_KERNEL);
  3266. else
  3267. data->entry = kzalloc(sizeof(struct irte_ga),
  3268. GFP_KERNEL);
  3269. if (!data->entry) {
  3270. kfree(data);
  3271. goto out_free_data;
  3272. }
  3273. irq_data->hwirq = (devid << 16) + i;
  3274. irq_data->chip_data = data;
  3275. irq_data->chip = &amd_ir_chip;
  3276. irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
  3277. irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
  3278. }
  3279. return 0;
  3280. out_free_data:
  3281. for (i--; i >= 0; i--) {
  3282. irq_data = irq_domain_get_irq_data(domain, virq + i);
  3283. if (irq_data)
  3284. kfree(irq_data->chip_data);
  3285. }
  3286. for (i = 0; i < nr_irqs; i++)
  3287. free_irte(devid, index + i);
  3288. out_free_parent:
  3289. irq_domain_free_irqs_common(domain, virq, nr_irqs);
  3290. return ret;
  3291. }
  3292. static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
  3293. unsigned int nr_irqs)
  3294. {
  3295. struct irq_2_irte *irte_info;
  3296. struct irq_data *irq_data;
  3297. struct amd_ir_data *data;
  3298. int i;
  3299. for (i = 0; i < nr_irqs; i++) {
  3300. irq_data = irq_domain_get_irq_data(domain, virq + i);
  3301. if (irq_data && irq_data->chip_data) {
  3302. data = irq_data->chip_data;
  3303. irte_info = &data->irq_2_irte;
  3304. free_irte(irte_info->devid, irte_info->index);
  3305. kfree(data->entry);
  3306. kfree(data);
  3307. }
  3308. }
  3309. irq_domain_free_irqs_common(domain, virq, nr_irqs);
  3310. }
  3311. static void irq_remapping_activate(struct irq_domain *domain,
  3312. struct irq_data *irq_data)
  3313. {
  3314. struct amd_ir_data *data = irq_data->chip_data;
  3315. struct irq_2_irte *irte_info = &data->irq_2_irte;
  3316. struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
  3317. if (iommu)
  3318. iommu->irte_ops->activate(data->entry, irte_info->devid,
  3319. irte_info->index);
  3320. }
  3321. static void irq_remapping_deactivate(struct irq_domain *domain,
  3322. struct irq_data *irq_data)
  3323. {
  3324. struct amd_ir_data *data = irq_data->chip_data;
  3325. struct irq_2_irte *irte_info = &data->irq_2_irte;
  3326. struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
  3327. if (iommu)
  3328. iommu->irte_ops->deactivate(data->entry, irte_info->devid,
  3329. irte_info->index);
  3330. }
  3331. static const struct irq_domain_ops amd_ir_domain_ops = {
  3332. .alloc = irq_remapping_alloc,
  3333. .free = irq_remapping_free,
  3334. .activate = irq_remapping_activate,
  3335. .deactivate = irq_remapping_deactivate,
  3336. };
  3337. static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *vcpu_info)
  3338. {
  3339. struct amd_iommu *iommu;
  3340. struct amd_iommu_pi_data *pi_data = vcpu_info;
  3341. struct vcpu_data *vcpu_pi_info = pi_data->vcpu_data;
  3342. struct amd_ir_data *ir_data = data->chip_data;
  3343. struct irte_ga *irte = (struct irte_ga *) ir_data->entry;
  3344. struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
  3345. struct iommu_dev_data *dev_data = search_dev_data(irte_info->devid);
  3346. /* Note:
  3347. * This device has never been set up for guest mode.
  3348. * we should not modify the IRTE
  3349. */
  3350. if (!dev_data || !dev_data->use_vapic)
  3351. return 0;
  3352. pi_data->ir_data = ir_data;
  3353. /* Note:
  3354. * SVM tries to set up for VAPIC mode, but we are in
  3355. * legacy mode. So, we force legacy mode instead.
  3356. */
  3357. if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
  3358. pr_debug("AMD-Vi: %s: Fall back to using intr legacy remap\n",
  3359. __func__);
  3360. pi_data->is_guest_mode = false;
  3361. }
  3362. iommu = amd_iommu_rlookup_table[irte_info->devid];
  3363. if (iommu == NULL)
  3364. return -EINVAL;
  3365. pi_data->prev_ga_tag = ir_data->cached_ga_tag;
  3366. if (pi_data->is_guest_mode) {
  3367. /* Setting */
  3368. irte->hi.fields.ga_root_ptr = (pi_data->base >> 12);
  3369. irte->hi.fields.vector = vcpu_pi_info->vector;
  3370. irte->lo.fields_vapic.ga_log_intr = 1;
  3371. irte->lo.fields_vapic.guest_mode = 1;
  3372. irte->lo.fields_vapic.ga_tag = pi_data->ga_tag;
  3373. ir_data->cached_ga_tag = pi_data->ga_tag;
  3374. } else {
  3375. /* Un-Setting */
  3376. struct irq_cfg *cfg = irqd_cfg(data);
  3377. irte->hi.val = 0;
  3378. irte->lo.val = 0;
  3379. irte->hi.fields.vector = cfg->vector;
  3380. irte->lo.fields_remap.guest_mode = 0;
  3381. irte->lo.fields_remap.destination = cfg->dest_apicid;
  3382. irte->lo.fields_remap.int_type = apic->irq_delivery_mode;
  3383. irte->lo.fields_remap.dm = apic->irq_dest_mode;
  3384. /*
  3385. * This communicates the ga_tag back to the caller
  3386. * so that it can do all the necessary clean up.
  3387. */
  3388. ir_data->cached_ga_tag = 0;
  3389. }
  3390. return modify_irte_ga(irte_info->devid, irte_info->index, irte, ir_data);
  3391. }
  3392. static int amd_ir_set_affinity(struct irq_data *data,
  3393. const struct cpumask *mask, bool force)
  3394. {
  3395. struct amd_ir_data *ir_data = data->chip_data;
  3396. struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
  3397. struct irq_cfg *cfg = irqd_cfg(data);
  3398. struct irq_data *parent = data->parent_data;
  3399. struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
  3400. int ret;
  3401. if (!iommu)
  3402. return -ENODEV;
  3403. ret = parent->chip->irq_set_affinity(parent, mask, force);
  3404. if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
  3405. return ret;
  3406. /*
  3407. * Atomically updates the IRTE with the new destination, vector
  3408. * and flushes the interrupt entry cache.
  3409. */
  3410. iommu->irte_ops->set_affinity(ir_data->entry, irte_info->devid,
  3411. irte_info->index, cfg->vector, cfg->dest_apicid);
  3412. /*
  3413. * After this point, all the interrupts will start arriving
  3414. * at the new destination. So, time to cleanup the previous
  3415. * vector allocation.
  3416. */
  3417. send_cleanup_vector(cfg);
  3418. return IRQ_SET_MASK_OK_DONE;
  3419. }
  3420. static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
  3421. {
  3422. struct amd_ir_data *ir_data = irq_data->chip_data;
  3423. *msg = ir_data->msi_entry;
  3424. }
  3425. static struct irq_chip amd_ir_chip = {
  3426. .name = "AMD-IR",
  3427. .irq_ack = ir_ack_apic_edge,
  3428. .irq_set_affinity = amd_ir_set_affinity,
  3429. .irq_set_vcpu_affinity = amd_ir_set_vcpu_affinity,
  3430. .irq_compose_msi_msg = ir_compose_msi_msg,
  3431. };
  3432. int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
  3433. {
  3434. struct fwnode_handle *fn;
  3435. fn = irq_domain_alloc_named_id_fwnode("AMD-IR", iommu->index);
  3436. if (!fn)
  3437. return -ENOMEM;
  3438. iommu->ir_domain = irq_domain_create_tree(fn, &amd_ir_domain_ops, iommu);
  3439. irq_domain_free_fwnode(fn);
  3440. if (!iommu->ir_domain)
  3441. return -ENOMEM;
  3442. iommu->ir_domain->parent = arch_get_ir_parent_domain();
  3443. iommu->msi_domain = arch_create_remap_msi_irq_domain(iommu->ir_domain,
  3444. "AMD-IR-MSI",
  3445. iommu->index);
  3446. return 0;
  3447. }
  3448. int amd_iommu_update_ga(int cpu, bool is_run, void *data)
  3449. {
  3450. unsigned long flags;
  3451. struct amd_iommu *iommu;
  3452. struct irq_remap_table *irt;
  3453. struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
  3454. int devid = ir_data->irq_2_irte.devid;
  3455. struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
  3456. struct irte_ga *ref = (struct irte_ga *) ir_data->ref;
  3457. if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
  3458. !ref || !entry || !entry->lo.fields_vapic.guest_mode)
  3459. return 0;
  3460. iommu = amd_iommu_rlookup_table[devid];
  3461. if (!iommu)
  3462. return -ENODEV;
  3463. irt = get_irq_table(devid, false);
  3464. if (!irt)
  3465. return -ENODEV;
  3466. spin_lock_irqsave(&irt->lock, flags);
  3467. if (ref->lo.fields_vapic.guest_mode) {
  3468. if (cpu >= 0)
  3469. ref->lo.fields_vapic.destination = cpu;
  3470. ref->lo.fields_vapic.is_run = is_run;
  3471. barrier();
  3472. }
  3473. spin_unlock_irqrestore(&irt->lock, flags);
  3474. iommu_flush_irt(iommu, devid);
  3475. iommu_completion_wait(iommu);
  3476. return 0;
  3477. }
  3478. EXPORT_SYMBOL(amd_iommu_update_ga);
  3479. #endif