sstep.c 67 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070
  1. /*
  2. * Single-step support.
  3. *
  4. * Copyright (C) 2004 Paul Mackerras <paulus@au.ibm.com>, IBM
  5. *
  6. * This program is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU General Public License
  8. * as published by the Free Software Foundation; either version
  9. * 2 of the License, or (at your option) any later version.
  10. */
  11. #include <linux/kernel.h>
  12. #include <linux/kprobes.h>
  13. #include <linux/ptrace.h>
  14. #include <linux/prefetch.h>
  15. #include <asm/sstep.h>
  16. #include <asm/processor.h>
  17. #include <linux/uaccess.h>
  18. #include <asm/cpu_has_feature.h>
  19. #include <asm/cputable.h>
  20. extern char system_call_common[];
  21. #ifdef CONFIG_PPC64
  22. /* Bits in SRR1 that are copied from MSR */
  23. #define MSR_MASK 0xffffffff87c0ffffUL
  24. #else
  25. #define MSR_MASK 0x87c0ffff
  26. #endif
  27. /* Bits in XER */
  28. #define XER_SO 0x80000000U
  29. #define XER_OV 0x40000000U
  30. #define XER_CA 0x20000000U
  31. #ifdef CONFIG_PPC_FPU
  32. /*
  33. * Functions in ldstfp.S
  34. */
  35. extern void get_fpr(int rn, double *p);
  36. extern void put_fpr(int rn, const double *p);
  37. extern void get_vr(int rn, __vector128 *p);
  38. extern void put_vr(int rn, __vector128 *p);
  39. extern void load_vsrn(int vsr, const void *p);
  40. extern void store_vsrn(int vsr, void *p);
  41. extern void conv_sp_to_dp(const float *sp, double *dp);
  42. extern void conv_dp_to_sp(const double *dp, float *sp);
  43. #endif
  44. #ifdef __powerpc64__
  45. /*
  46. * Functions in quad.S
  47. */
  48. extern int do_lq(unsigned long ea, unsigned long *regs);
  49. extern int do_stq(unsigned long ea, unsigned long val0, unsigned long val1);
  50. extern int do_lqarx(unsigned long ea, unsigned long *regs);
  51. extern int do_stqcx(unsigned long ea, unsigned long val0, unsigned long val1,
  52. unsigned int *crp);
  53. #endif
  54. #ifdef __LITTLE_ENDIAN__
  55. #define IS_LE 1
  56. #define IS_BE 0
  57. #else
  58. #define IS_LE 0
  59. #define IS_BE 1
  60. #endif
  61. /*
  62. * Emulate the truncation of 64 bit values in 32-bit mode.
  63. */
  64. static nokprobe_inline unsigned long truncate_if_32bit(unsigned long msr,
  65. unsigned long val)
  66. {
  67. #ifdef __powerpc64__
  68. if ((msr & MSR_64BIT) == 0)
  69. val &= 0xffffffffUL;
  70. #endif
  71. return val;
  72. }
  73. /*
  74. * Determine whether a conditional branch instruction would branch.
  75. */
  76. static nokprobe_inline int branch_taken(unsigned int instr,
  77. const struct pt_regs *regs,
  78. struct instruction_op *op)
  79. {
  80. unsigned int bo = (instr >> 21) & 0x1f;
  81. unsigned int bi;
  82. if ((bo & 4) == 0) {
  83. /* decrement counter */
  84. op->type |= DECCTR;
  85. if (((bo >> 1) & 1) ^ (regs->ctr == 1))
  86. return 0;
  87. }
  88. if ((bo & 0x10) == 0) {
  89. /* check bit from CR */
  90. bi = (instr >> 16) & 0x1f;
  91. if (((regs->ccr >> (31 - bi)) & 1) != ((bo >> 3) & 1))
  92. return 0;
  93. }
  94. return 1;
  95. }
  96. static nokprobe_inline long address_ok(struct pt_regs *regs,
  97. unsigned long ea, int nb)
  98. {
  99. if (!user_mode(regs))
  100. return 1;
  101. if (__access_ok(ea, nb, USER_DS))
  102. return 1;
  103. if (__access_ok(ea, 1, USER_DS))
  104. /* Access overlaps the end of the user region */
  105. regs->dar = USER_DS.seg;
  106. else
  107. regs->dar = ea;
  108. return 0;
  109. }
  110. /*
  111. * Calculate effective address for a D-form instruction
  112. */
  113. static nokprobe_inline unsigned long dform_ea(unsigned int instr,
  114. const struct pt_regs *regs)
  115. {
  116. int ra;
  117. unsigned long ea;
  118. ra = (instr >> 16) & 0x1f;
  119. ea = (signed short) instr; /* sign-extend */
  120. if (ra)
  121. ea += regs->gpr[ra];
  122. return ea;
  123. }
  124. #ifdef __powerpc64__
  125. /*
  126. * Calculate effective address for a DS-form instruction
  127. */
  128. static nokprobe_inline unsigned long dsform_ea(unsigned int instr,
  129. const struct pt_regs *regs)
  130. {
  131. int ra;
  132. unsigned long ea;
  133. ra = (instr >> 16) & 0x1f;
  134. ea = (signed short) (instr & ~3); /* sign-extend */
  135. if (ra)
  136. ea += regs->gpr[ra];
  137. return ea;
  138. }
  139. /*
  140. * Calculate effective address for a DQ-form instruction
  141. */
  142. static nokprobe_inline unsigned long dqform_ea(unsigned int instr,
  143. const struct pt_regs *regs)
  144. {
  145. int ra;
  146. unsigned long ea;
  147. ra = (instr >> 16) & 0x1f;
  148. ea = (signed short) (instr & ~0xf); /* sign-extend */
  149. if (ra)
  150. ea += regs->gpr[ra];
  151. return ea;
  152. }
  153. #endif /* __powerpc64 */
  154. /*
  155. * Calculate effective address for an X-form instruction
  156. */
  157. static nokprobe_inline unsigned long xform_ea(unsigned int instr,
  158. const struct pt_regs *regs)
  159. {
  160. int ra, rb;
  161. unsigned long ea;
  162. ra = (instr >> 16) & 0x1f;
  163. rb = (instr >> 11) & 0x1f;
  164. ea = regs->gpr[rb];
  165. if (ra)
  166. ea += regs->gpr[ra];
  167. return ea;
  168. }
  169. /*
  170. * Return the largest power of 2, not greater than sizeof(unsigned long),
  171. * such that x is a multiple of it.
  172. */
  173. static nokprobe_inline unsigned long max_align(unsigned long x)
  174. {
  175. x |= sizeof(unsigned long);
  176. return x & -x; /* isolates rightmost bit */
  177. }
  178. static nokprobe_inline unsigned long byterev_2(unsigned long x)
  179. {
  180. return ((x >> 8) & 0xff) | ((x & 0xff) << 8);
  181. }
  182. static nokprobe_inline unsigned long byterev_4(unsigned long x)
  183. {
  184. return ((x >> 24) & 0xff) | ((x >> 8) & 0xff00) |
  185. ((x & 0xff00) << 8) | ((x & 0xff) << 24);
  186. }
  187. #ifdef __powerpc64__
  188. static nokprobe_inline unsigned long byterev_8(unsigned long x)
  189. {
  190. return (byterev_4(x) << 32) | byterev_4(x >> 32);
  191. }
  192. #endif
  193. static nokprobe_inline void do_byte_reverse(void *ptr, int nb)
  194. {
  195. switch (nb) {
  196. case 2:
  197. *(u16 *)ptr = byterev_2(*(u16 *)ptr);
  198. break;
  199. case 4:
  200. *(u32 *)ptr = byterev_4(*(u32 *)ptr);
  201. break;
  202. #ifdef __powerpc64__
  203. case 8:
  204. *(unsigned long *)ptr = byterev_8(*(unsigned long *)ptr);
  205. break;
  206. case 16: {
  207. unsigned long *up = (unsigned long *)ptr;
  208. unsigned long tmp;
  209. tmp = byterev_8(up[0]);
  210. up[0] = byterev_8(up[1]);
  211. up[1] = tmp;
  212. break;
  213. }
  214. #endif
  215. default:
  216. WARN_ON_ONCE(1);
  217. }
  218. }
  219. static nokprobe_inline int read_mem_aligned(unsigned long *dest,
  220. unsigned long ea, int nb,
  221. struct pt_regs *regs)
  222. {
  223. int err = 0;
  224. unsigned long x = 0;
  225. switch (nb) {
  226. case 1:
  227. err = __get_user(x, (unsigned char __user *) ea);
  228. break;
  229. case 2:
  230. err = __get_user(x, (unsigned short __user *) ea);
  231. break;
  232. case 4:
  233. err = __get_user(x, (unsigned int __user *) ea);
  234. break;
  235. #ifdef __powerpc64__
  236. case 8:
  237. err = __get_user(x, (unsigned long __user *) ea);
  238. break;
  239. #endif
  240. }
  241. if (!err)
  242. *dest = x;
  243. else
  244. regs->dar = ea;
  245. return err;
  246. }
  247. /*
  248. * Copy from userspace to a buffer, using the largest possible
  249. * aligned accesses, up to sizeof(long).
  250. */
  251. static int nokprobe_inline copy_mem_in(u8 *dest, unsigned long ea, int nb,
  252. struct pt_regs *regs)
  253. {
  254. int err = 0;
  255. int c;
  256. for (; nb > 0; nb -= c) {
  257. c = max_align(ea);
  258. if (c > nb)
  259. c = max_align(nb);
  260. switch (c) {
  261. case 1:
  262. err = __get_user(*dest, (unsigned char __user *) ea);
  263. break;
  264. case 2:
  265. err = __get_user(*(u16 *)dest,
  266. (unsigned short __user *) ea);
  267. break;
  268. case 4:
  269. err = __get_user(*(u32 *)dest,
  270. (unsigned int __user *) ea);
  271. break;
  272. #ifdef __powerpc64__
  273. case 8:
  274. err = __get_user(*(unsigned long *)dest,
  275. (unsigned long __user *) ea);
  276. break;
  277. #endif
  278. }
  279. if (err) {
  280. regs->dar = ea;
  281. return err;
  282. }
  283. dest += c;
  284. ea += c;
  285. }
  286. return 0;
  287. }
  288. static nokprobe_inline int read_mem_unaligned(unsigned long *dest,
  289. unsigned long ea, int nb,
  290. struct pt_regs *regs)
  291. {
  292. union {
  293. unsigned long ul;
  294. u8 b[sizeof(unsigned long)];
  295. } u;
  296. int i;
  297. int err;
  298. u.ul = 0;
  299. i = IS_BE ? sizeof(unsigned long) - nb : 0;
  300. err = copy_mem_in(&u.b[i], ea, nb, regs);
  301. if (!err)
  302. *dest = u.ul;
  303. return err;
  304. }
  305. /*
  306. * Read memory at address ea for nb bytes, return 0 for success
  307. * or -EFAULT if an error occurred. N.B. nb must be 1, 2, 4 or 8.
  308. * If nb < sizeof(long), the result is right-justified on BE systems.
  309. */
  310. static int read_mem(unsigned long *dest, unsigned long ea, int nb,
  311. struct pt_regs *regs)
  312. {
  313. if (!address_ok(regs, ea, nb))
  314. return -EFAULT;
  315. if ((ea & (nb - 1)) == 0)
  316. return read_mem_aligned(dest, ea, nb, regs);
  317. return read_mem_unaligned(dest, ea, nb, regs);
  318. }
  319. NOKPROBE_SYMBOL(read_mem);
  320. static nokprobe_inline int write_mem_aligned(unsigned long val,
  321. unsigned long ea, int nb,
  322. struct pt_regs *regs)
  323. {
  324. int err = 0;
  325. switch (nb) {
  326. case 1:
  327. err = __put_user(val, (unsigned char __user *) ea);
  328. break;
  329. case 2:
  330. err = __put_user(val, (unsigned short __user *) ea);
  331. break;
  332. case 4:
  333. err = __put_user(val, (unsigned int __user *) ea);
  334. break;
  335. #ifdef __powerpc64__
  336. case 8:
  337. err = __put_user(val, (unsigned long __user *) ea);
  338. break;
  339. #endif
  340. }
  341. if (err)
  342. regs->dar = ea;
  343. return err;
  344. }
  345. /*
  346. * Copy from a buffer to userspace, using the largest possible
  347. * aligned accesses, up to sizeof(long).
  348. */
  349. static int nokprobe_inline copy_mem_out(u8 *dest, unsigned long ea, int nb,
  350. struct pt_regs *regs)
  351. {
  352. int err = 0;
  353. int c;
  354. for (; nb > 0; nb -= c) {
  355. c = max_align(ea);
  356. if (c > nb)
  357. c = max_align(nb);
  358. switch (c) {
  359. case 1:
  360. err = __put_user(*dest, (unsigned char __user *) ea);
  361. break;
  362. case 2:
  363. err = __put_user(*(u16 *)dest,
  364. (unsigned short __user *) ea);
  365. break;
  366. case 4:
  367. err = __put_user(*(u32 *)dest,
  368. (unsigned int __user *) ea);
  369. break;
  370. #ifdef __powerpc64__
  371. case 8:
  372. err = __put_user(*(unsigned long *)dest,
  373. (unsigned long __user *) ea);
  374. break;
  375. #endif
  376. }
  377. if (err) {
  378. regs->dar = ea;
  379. return err;
  380. }
  381. dest += c;
  382. ea += c;
  383. }
  384. return 0;
  385. }
  386. static nokprobe_inline int write_mem_unaligned(unsigned long val,
  387. unsigned long ea, int nb,
  388. struct pt_regs *regs)
  389. {
  390. union {
  391. unsigned long ul;
  392. u8 b[sizeof(unsigned long)];
  393. } u;
  394. int i;
  395. u.ul = val;
  396. i = IS_BE ? sizeof(unsigned long) - nb : 0;
  397. return copy_mem_out(&u.b[i], ea, nb, regs);
  398. }
  399. /*
  400. * Write memory at address ea for nb bytes, return 0 for success
  401. * or -EFAULT if an error occurred. N.B. nb must be 1, 2, 4 or 8.
  402. */
  403. static int write_mem(unsigned long val, unsigned long ea, int nb,
  404. struct pt_regs *regs)
  405. {
  406. if (!address_ok(regs, ea, nb))
  407. return -EFAULT;
  408. if ((ea & (nb - 1)) == 0)
  409. return write_mem_aligned(val, ea, nb, regs);
  410. return write_mem_unaligned(val, ea, nb, regs);
  411. }
  412. NOKPROBE_SYMBOL(write_mem);
  413. #ifdef CONFIG_PPC_FPU
  414. /*
  415. * These access either the real FP register or the image in the
  416. * thread_struct, depending on regs->msr & MSR_FP.
  417. */
  418. static int do_fp_load(struct instruction_op *op, unsigned long ea,
  419. struct pt_regs *regs, bool cross_endian)
  420. {
  421. int err, rn, nb;
  422. union {
  423. int i;
  424. unsigned int u;
  425. float f;
  426. double d[2];
  427. unsigned long l[2];
  428. u8 b[2 * sizeof(double)];
  429. } u;
  430. nb = GETSIZE(op->type);
  431. if (!address_ok(regs, ea, nb))
  432. return -EFAULT;
  433. rn = op->reg;
  434. err = copy_mem_in(u.b, ea, nb, regs);
  435. if (err)
  436. return err;
  437. if (unlikely(cross_endian)) {
  438. do_byte_reverse(u.b, min(nb, 8));
  439. if (nb == 16)
  440. do_byte_reverse(&u.b[8], 8);
  441. }
  442. preempt_disable();
  443. if (nb == 4) {
  444. if (op->type & FPCONV)
  445. conv_sp_to_dp(&u.f, &u.d[0]);
  446. else if (op->type & SIGNEXT)
  447. u.l[0] = u.i;
  448. else
  449. u.l[0] = u.u;
  450. }
  451. if (regs->msr & MSR_FP)
  452. put_fpr(rn, &u.d[0]);
  453. else
  454. current->thread.TS_FPR(rn) = u.l[0];
  455. if (nb == 16) {
  456. /* lfdp */
  457. rn |= 1;
  458. if (regs->msr & MSR_FP)
  459. put_fpr(rn, &u.d[1]);
  460. else
  461. current->thread.TS_FPR(rn) = u.l[1];
  462. }
  463. preempt_enable();
  464. return 0;
  465. }
  466. NOKPROBE_SYMBOL(do_fp_load);
  467. static int do_fp_store(struct instruction_op *op, unsigned long ea,
  468. struct pt_regs *regs, bool cross_endian)
  469. {
  470. int rn, nb;
  471. union {
  472. unsigned int u;
  473. float f;
  474. double d[2];
  475. unsigned long l[2];
  476. u8 b[2 * sizeof(double)];
  477. } u;
  478. nb = GETSIZE(op->type);
  479. if (!address_ok(regs, ea, nb))
  480. return -EFAULT;
  481. rn = op->reg;
  482. preempt_disable();
  483. if (regs->msr & MSR_FP)
  484. get_fpr(rn, &u.d[0]);
  485. else
  486. u.l[0] = current->thread.TS_FPR(rn);
  487. if (nb == 4) {
  488. if (op->type & FPCONV)
  489. conv_dp_to_sp(&u.d[0], &u.f);
  490. else
  491. u.u = u.l[0];
  492. }
  493. if (nb == 16) {
  494. rn |= 1;
  495. if (regs->msr & MSR_FP)
  496. get_fpr(rn, &u.d[1]);
  497. else
  498. u.l[1] = current->thread.TS_FPR(rn);
  499. }
  500. preempt_enable();
  501. if (unlikely(cross_endian)) {
  502. do_byte_reverse(u.b, min(nb, 8));
  503. if (nb == 16)
  504. do_byte_reverse(&u.b[8], 8);
  505. }
  506. return copy_mem_out(u.b, ea, nb, regs);
  507. }
  508. NOKPROBE_SYMBOL(do_fp_store);
  509. #endif
  510. #ifdef CONFIG_ALTIVEC
  511. /* For Altivec/VMX, no need to worry about alignment */
  512. static nokprobe_inline int do_vec_load(int rn, unsigned long ea,
  513. int size, struct pt_regs *regs,
  514. bool cross_endian)
  515. {
  516. int err;
  517. union {
  518. __vector128 v;
  519. u8 b[sizeof(__vector128)];
  520. } u = {};
  521. if (!address_ok(regs, ea & ~0xfUL, 16))
  522. return -EFAULT;
  523. /* align to multiple of size */
  524. ea &= ~(size - 1);
  525. err = copy_mem_in(&u.b[ea & 0xf], ea, size, regs);
  526. if (err)
  527. return err;
  528. if (unlikely(cross_endian))
  529. do_byte_reverse(&u.b[ea & 0xf], size);
  530. preempt_disable();
  531. if (regs->msr & MSR_VEC)
  532. put_vr(rn, &u.v);
  533. else
  534. current->thread.vr_state.vr[rn] = u.v;
  535. preempt_enable();
  536. return 0;
  537. }
  538. static nokprobe_inline int do_vec_store(int rn, unsigned long ea,
  539. int size, struct pt_regs *regs,
  540. bool cross_endian)
  541. {
  542. union {
  543. __vector128 v;
  544. u8 b[sizeof(__vector128)];
  545. } u;
  546. if (!address_ok(regs, ea & ~0xfUL, 16))
  547. return -EFAULT;
  548. /* align to multiple of size */
  549. ea &= ~(size - 1);
  550. preempt_disable();
  551. if (regs->msr & MSR_VEC)
  552. get_vr(rn, &u.v);
  553. else
  554. u.v = current->thread.vr_state.vr[rn];
  555. preempt_enable();
  556. if (unlikely(cross_endian))
  557. do_byte_reverse(&u.b[ea & 0xf], size);
  558. return copy_mem_out(&u.b[ea & 0xf], ea, size, regs);
  559. }
  560. #endif /* CONFIG_ALTIVEC */
  561. #ifdef __powerpc64__
  562. static nokprobe_inline int emulate_lq(struct pt_regs *regs, unsigned long ea,
  563. int reg, bool cross_endian)
  564. {
  565. int err;
  566. if (!address_ok(regs, ea, 16))
  567. return -EFAULT;
  568. /* if aligned, should be atomic */
  569. if ((ea & 0xf) == 0) {
  570. err = do_lq(ea, &regs->gpr[reg]);
  571. } else {
  572. err = read_mem(&regs->gpr[reg + IS_LE], ea, 8, regs);
  573. if (!err)
  574. err = read_mem(&regs->gpr[reg + IS_BE], ea + 8, 8, regs);
  575. }
  576. if (!err && unlikely(cross_endian))
  577. do_byte_reverse(&regs->gpr[reg], 16);
  578. return err;
  579. }
  580. static nokprobe_inline int emulate_stq(struct pt_regs *regs, unsigned long ea,
  581. int reg, bool cross_endian)
  582. {
  583. int err;
  584. unsigned long vals[2];
  585. if (!address_ok(regs, ea, 16))
  586. return -EFAULT;
  587. vals[0] = regs->gpr[reg];
  588. vals[1] = regs->gpr[reg + 1];
  589. if (unlikely(cross_endian))
  590. do_byte_reverse(vals, 16);
  591. /* if aligned, should be atomic */
  592. if ((ea & 0xf) == 0)
  593. return do_stq(ea, vals[0], vals[1]);
  594. err = write_mem(vals[IS_LE], ea, 8, regs);
  595. if (!err)
  596. err = write_mem(vals[IS_BE], ea + 8, 8, regs);
  597. return err;
  598. }
  599. #endif /* __powerpc64 */
  600. #ifdef CONFIG_VSX
  601. void emulate_vsx_load(struct instruction_op *op, union vsx_reg *reg,
  602. const void *mem, bool rev)
  603. {
  604. int size, read_size;
  605. int i, j;
  606. const unsigned int *wp;
  607. const unsigned short *hp;
  608. const unsigned char *bp;
  609. size = GETSIZE(op->type);
  610. reg->d[0] = reg->d[1] = 0;
  611. switch (op->element_size) {
  612. case 16:
  613. /* whole vector; lxv[x] or lxvl[l] */
  614. if (size == 0)
  615. break;
  616. memcpy(reg, mem, size);
  617. if (IS_LE && (op->vsx_flags & VSX_LDLEFT))
  618. rev = !rev;
  619. if (rev)
  620. do_byte_reverse(reg, 16);
  621. break;
  622. case 8:
  623. /* scalar loads, lxvd2x, lxvdsx */
  624. read_size = (size >= 8) ? 8 : size;
  625. i = IS_LE ? 8 : 8 - read_size;
  626. memcpy(&reg->b[i], mem, read_size);
  627. if (rev)
  628. do_byte_reverse(&reg->b[i], 8);
  629. if (size < 8) {
  630. if (op->type & SIGNEXT) {
  631. /* size == 4 is the only case here */
  632. reg->d[IS_LE] = (signed int) reg->d[IS_LE];
  633. } else if (op->vsx_flags & VSX_FPCONV) {
  634. preempt_disable();
  635. conv_sp_to_dp(&reg->fp[1 + IS_LE],
  636. &reg->dp[IS_LE]);
  637. preempt_enable();
  638. }
  639. } else {
  640. if (size == 16) {
  641. unsigned long v = *(unsigned long *)(mem + 8);
  642. reg->d[IS_BE] = !rev ? v : byterev_8(v);
  643. } else if (op->vsx_flags & VSX_SPLAT)
  644. reg->d[IS_BE] = reg->d[IS_LE];
  645. }
  646. break;
  647. case 4:
  648. /* lxvw4x, lxvwsx */
  649. wp = mem;
  650. for (j = 0; j < size / 4; ++j) {
  651. i = IS_LE ? 3 - j : j;
  652. reg->w[i] = !rev ? *wp++ : byterev_4(*wp++);
  653. }
  654. if (op->vsx_flags & VSX_SPLAT) {
  655. u32 val = reg->w[IS_LE ? 3 : 0];
  656. for (; j < 4; ++j) {
  657. i = IS_LE ? 3 - j : j;
  658. reg->w[i] = val;
  659. }
  660. }
  661. break;
  662. case 2:
  663. /* lxvh8x */
  664. hp = mem;
  665. for (j = 0; j < size / 2; ++j) {
  666. i = IS_LE ? 7 - j : j;
  667. reg->h[i] = !rev ? *hp++ : byterev_2(*hp++);
  668. }
  669. break;
  670. case 1:
  671. /* lxvb16x */
  672. bp = mem;
  673. for (j = 0; j < size; ++j) {
  674. i = IS_LE ? 15 - j : j;
  675. reg->b[i] = *bp++;
  676. }
  677. break;
  678. }
  679. }
  680. EXPORT_SYMBOL_GPL(emulate_vsx_load);
  681. NOKPROBE_SYMBOL(emulate_vsx_load);
  682. void emulate_vsx_store(struct instruction_op *op, const union vsx_reg *reg,
  683. void *mem, bool rev)
  684. {
  685. int size, write_size;
  686. int i, j;
  687. union vsx_reg buf;
  688. unsigned int *wp;
  689. unsigned short *hp;
  690. unsigned char *bp;
  691. size = GETSIZE(op->type);
  692. switch (op->element_size) {
  693. case 16:
  694. /* stxv, stxvx, stxvl, stxvll */
  695. if (size == 0)
  696. break;
  697. if (IS_LE && (op->vsx_flags & VSX_LDLEFT))
  698. rev = !rev;
  699. if (rev) {
  700. /* reverse 16 bytes */
  701. buf.d[0] = byterev_8(reg->d[1]);
  702. buf.d[1] = byterev_8(reg->d[0]);
  703. reg = &buf;
  704. }
  705. memcpy(mem, reg, size);
  706. break;
  707. case 8:
  708. /* scalar stores, stxvd2x */
  709. write_size = (size >= 8) ? 8 : size;
  710. i = IS_LE ? 8 : 8 - write_size;
  711. if (size < 8 && op->vsx_flags & VSX_FPCONV) {
  712. buf.d[0] = buf.d[1] = 0;
  713. preempt_disable();
  714. conv_dp_to_sp(&reg->dp[IS_LE], &buf.fp[1 + IS_LE]);
  715. preempt_enable();
  716. reg = &buf;
  717. }
  718. memcpy(mem, &reg->b[i], write_size);
  719. if (size == 16)
  720. memcpy(mem + 8, &reg->d[IS_BE], 8);
  721. if (unlikely(rev)) {
  722. do_byte_reverse(mem, write_size);
  723. if (size == 16)
  724. do_byte_reverse(mem + 8, 8);
  725. }
  726. break;
  727. case 4:
  728. /* stxvw4x */
  729. wp = mem;
  730. for (j = 0; j < size / 4; ++j) {
  731. i = IS_LE ? 3 - j : j;
  732. *wp++ = !rev ? reg->w[i] : byterev_4(reg->w[i]);
  733. }
  734. break;
  735. case 2:
  736. /* stxvh8x */
  737. hp = mem;
  738. for (j = 0; j < size / 2; ++j) {
  739. i = IS_LE ? 7 - j : j;
  740. *hp++ = !rev ? reg->h[i] : byterev_2(reg->h[i]);
  741. }
  742. break;
  743. case 1:
  744. /* stvxb16x */
  745. bp = mem;
  746. for (j = 0; j < size; ++j) {
  747. i = IS_LE ? 15 - j : j;
  748. *bp++ = reg->b[i];
  749. }
  750. break;
  751. }
  752. }
  753. EXPORT_SYMBOL_GPL(emulate_vsx_store);
  754. NOKPROBE_SYMBOL(emulate_vsx_store);
  755. static nokprobe_inline int do_vsx_load(struct instruction_op *op,
  756. unsigned long ea, struct pt_regs *regs,
  757. bool cross_endian)
  758. {
  759. int reg = op->reg;
  760. u8 mem[16];
  761. union vsx_reg buf;
  762. int size = GETSIZE(op->type);
  763. if (!address_ok(regs, ea, size) || copy_mem_in(mem, ea, size, regs))
  764. return -EFAULT;
  765. emulate_vsx_load(op, &buf, mem, cross_endian);
  766. preempt_disable();
  767. if (reg < 32) {
  768. /* FP regs + extensions */
  769. if (regs->msr & MSR_FP) {
  770. load_vsrn(reg, &buf);
  771. } else {
  772. current->thread.fp_state.fpr[reg][0] = buf.d[0];
  773. current->thread.fp_state.fpr[reg][1] = buf.d[1];
  774. }
  775. } else {
  776. if (regs->msr & MSR_VEC)
  777. load_vsrn(reg, &buf);
  778. else
  779. current->thread.vr_state.vr[reg - 32] = buf.v;
  780. }
  781. preempt_enable();
  782. return 0;
  783. }
  784. static nokprobe_inline int do_vsx_store(struct instruction_op *op,
  785. unsigned long ea, struct pt_regs *regs,
  786. bool cross_endian)
  787. {
  788. int reg = op->reg;
  789. u8 mem[16];
  790. union vsx_reg buf;
  791. int size = GETSIZE(op->type);
  792. if (!address_ok(regs, ea, size))
  793. return -EFAULT;
  794. preempt_disable();
  795. if (reg < 32) {
  796. /* FP regs + extensions */
  797. if (regs->msr & MSR_FP) {
  798. store_vsrn(reg, &buf);
  799. } else {
  800. buf.d[0] = current->thread.fp_state.fpr[reg][0];
  801. buf.d[1] = current->thread.fp_state.fpr[reg][1];
  802. }
  803. } else {
  804. if (regs->msr & MSR_VEC)
  805. store_vsrn(reg, &buf);
  806. else
  807. buf.v = current->thread.vr_state.vr[reg - 32];
  808. }
  809. preempt_enable();
  810. emulate_vsx_store(op, &buf, mem, cross_endian);
  811. return copy_mem_out(mem, ea, size, regs);
  812. }
  813. #endif /* CONFIG_VSX */
  814. int emulate_dcbz(unsigned long ea, struct pt_regs *regs)
  815. {
  816. int err;
  817. unsigned long i, size;
  818. #ifdef __powerpc64__
  819. size = ppc64_caches.l1d.block_size;
  820. if (!(regs->msr & MSR_64BIT))
  821. ea &= 0xffffffffUL;
  822. #else
  823. size = L1_CACHE_BYTES;
  824. #endif
  825. ea &= ~(size - 1);
  826. if (!address_ok(regs, ea, size))
  827. return -EFAULT;
  828. for (i = 0; i < size; i += sizeof(long)) {
  829. err = __put_user(0, (unsigned long __user *) (ea + i));
  830. if (err) {
  831. regs->dar = ea;
  832. return err;
  833. }
  834. }
  835. return 0;
  836. }
  837. NOKPROBE_SYMBOL(emulate_dcbz);
  838. #define __put_user_asmx(x, addr, err, op, cr) \
  839. __asm__ __volatile__( \
  840. "1: " op " %2,0,%3\n" \
  841. " mfcr %1\n" \
  842. "2:\n" \
  843. ".section .fixup,\"ax\"\n" \
  844. "3: li %0,%4\n" \
  845. " b 2b\n" \
  846. ".previous\n" \
  847. EX_TABLE(1b, 3b) \
  848. : "=r" (err), "=r" (cr) \
  849. : "r" (x), "r" (addr), "i" (-EFAULT), "0" (err))
  850. #define __get_user_asmx(x, addr, err, op) \
  851. __asm__ __volatile__( \
  852. "1: "op" %1,0,%2\n" \
  853. "2:\n" \
  854. ".section .fixup,\"ax\"\n" \
  855. "3: li %0,%3\n" \
  856. " b 2b\n" \
  857. ".previous\n" \
  858. EX_TABLE(1b, 3b) \
  859. : "=r" (err), "=r" (x) \
  860. : "r" (addr), "i" (-EFAULT), "0" (err))
  861. #define __cacheop_user_asmx(addr, err, op) \
  862. __asm__ __volatile__( \
  863. "1: "op" 0,%1\n" \
  864. "2:\n" \
  865. ".section .fixup,\"ax\"\n" \
  866. "3: li %0,%3\n" \
  867. " b 2b\n" \
  868. ".previous\n" \
  869. EX_TABLE(1b, 3b) \
  870. : "=r" (err) \
  871. : "r" (addr), "i" (-EFAULT), "0" (err))
  872. static nokprobe_inline void set_cr0(const struct pt_regs *regs,
  873. struct instruction_op *op)
  874. {
  875. long val = op->val;
  876. op->type |= SETCC;
  877. op->ccval = (regs->ccr & 0x0fffffff) | ((regs->xer >> 3) & 0x10000000);
  878. #ifdef __powerpc64__
  879. if (!(regs->msr & MSR_64BIT))
  880. val = (int) val;
  881. #endif
  882. if (val < 0)
  883. op->ccval |= 0x80000000;
  884. else if (val > 0)
  885. op->ccval |= 0x40000000;
  886. else
  887. op->ccval |= 0x20000000;
  888. }
  889. static nokprobe_inline void add_with_carry(const struct pt_regs *regs,
  890. struct instruction_op *op, int rd,
  891. unsigned long val1, unsigned long val2,
  892. unsigned long carry_in)
  893. {
  894. unsigned long val = val1 + val2;
  895. if (carry_in)
  896. ++val;
  897. op->type = COMPUTE + SETREG + SETXER;
  898. op->reg = rd;
  899. op->val = val;
  900. #ifdef __powerpc64__
  901. if (!(regs->msr & MSR_64BIT)) {
  902. val = (unsigned int) val;
  903. val1 = (unsigned int) val1;
  904. }
  905. #endif
  906. op->xerval = regs->xer;
  907. if (val < val1 || (carry_in && val == val1))
  908. op->xerval |= XER_CA;
  909. else
  910. op->xerval &= ~XER_CA;
  911. }
  912. static nokprobe_inline void do_cmp_signed(const struct pt_regs *regs,
  913. struct instruction_op *op,
  914. long v1, long v2, int crfld)
  915. {
  916. unsigned int crval, shift;
  917. op->type = COMPUTE + SETCC;
  918. crval = (regs->xer >> 31) & 1; /* get SO bit */
  919. if (v1 < v2)
  920. crval |= 8;
  921. else if (v1 > v2)
  922. crval |= 4;
  923. else
  924. crval |= 2;
  925. shift = (7 - crfld) * 4;
  926. op->ccval = (regs->ccr & ~(0xf << shift)) | (crval << shift);
  927. }
  928. static nokprobe_inline void do_cmp_unsigned(const struct pt_regs *regs,
  929. struct instruction_op *op,
  930. unsigned long v1,
  931. unsigned long v2, int crfld)
  932. {
  933. unsigned int crval, shift;
  934. op->type = COMPUTE + SETCC;
  935. crval = (regs->xer >> 31) & 1; /* get SO bit */
  936. if (v1 < v2)
  937. crval |= 8;
  938. else if (v1 > v2)
  939. crval |= 4;
  940. else
  941. crval |= 2;
  942. shift = (7 - crfld) * 4;
  943. op->ccval = (regs->ccr & ~(0xf << shift)) | (crval << shift);
  944. }
  945. static nokprobe_inline void do_cmpb(const struct pt_regs *regs,
  946. struct instruction_op *op,
  947. unsigned long v1, unsigned long v2)
  948. {
  949. unsigned long long out_val, mask;
  950. int i;
  951. out_val = 0;
  952. for (i = 0; i < 8; i++) {
  953. mask = 0xffUL << (i * 8);
  954. if ((v1 & mask) == (v2 & mask))
  955. out_val |= mask;
  956. }
  957. op->val = out_val;
  958. }
  959. /*
  960. * The size parameter is used to adjust the equivalent popcnt instruction.
  961. * popcntb = 8, popcntw = 32, popcntd = 64
  962. */
  963. static nokprobe_inline void do_popcnt(const struct pt_regs *regs,
  964. struct instruction_op *op,
  965. unsigned long v1, int size)
  966. {
  967. unsigned long long out = v1;
  968. out -= (out >> 1) & 0x5555555555555555;
  969. out = (0x3333333333333333 & out) + (0x3333333333333333 & (out >> 2));
  970. out = (out + (out >> 4)) & 0x0f0f0f0f0f0f0f0f;
  971. if (size == 8) { /* popcntb */
  972. op->val = out;
  973. return;
  974. }
  975. out += out >> 8;
  976. out += out >> 16;
  977. if (size == 32) { /* popcntw */
  978. op->val = out & 0x0000003f0000003f;
  979. return;
  980. }
  981. out = (out + (out >> 32)) & 0x7f;
  982. op->val = out; /* popcntd */
  983. }
  984. #ifdef CONFIG_PPC64
  985. static nokprobe_inline void do_bpermd(const struct pt_regs *regs,
  986. struct instruction_op *op,
  987. unsigned long v1, unsigned long v2)
  988. {
  989. unsigned char perm, idx;
  990. unsigned int i;
  991. perm = 0;
  992. for (i = 0; i < 8; i++) {
  993. idx = (v1 >> (i * 8)) & 0xff;
  994. if (idx < 64)
  995. if (v2 & PPC_BIT(idx))
  996. perm |= 1 << i;
  997. }
  998. op->val = perm;
  999. }
  1000. #endif /* CONFIG_PPC64 */
  1001. /*
  1002. * The size parameter adjusts the equivalent prty instruction.
  1003. * prtyw = 32, prtyd = 64
  1004. */
  1005. static nokprobe_inline void do_prty(const struct pt_regs *regs,
  1006. struct instruction_op *op,
  1007. unsigned long v, int size)
  1008. {
  1009. unsigned long long res = v ^ (v >> 8);
  1010. res ^= res >> 16;
  1011. if (size == 32) { /* prtyw */
  1012. op->val = res & 0x0000000100000001;
  1013. return;
  1014. }
  1015. res ^= res >> 32;
  1016. op->val = res & 1; /*prtyd */
  1017. }
  1018. static nokprobe_inline int trap_compare(long v1, long v2)
  1019. {
  1020. int ret = 0;
  1021. if (v1 < v2)
  1022. ret |= 0x10;
  1023. else if (v1 > v2)
  1024. ret |= 0x08;
  1025. else
  1026. ret |= 0x04;
  1027. if ((unsigned long)v1 < (unsigned long)v2)
  1028. ret |= 0x02;
  1029. else if ((unsigned long)v1 > (unsigned long)v2)
  1030. ret |= 0x01;
  1031. return ret;
  1032. }
  1033. /*
  1034. * Elements of 32-bit rotate and mask instructions.
  1035. */
  1036. #define MASK32(mb, me) ((0xffffffffUL >> (mb)) + \
  1037. ((signed long)-0x80000000L >> (me)) + ((me) >= (mb)))
  1038. #ifdef __powerpc64__
  1039. #define MASK64_L(mb) (~0UL >> (mb))
  1040. #define MASK64_R(me) ((signed long)-0x8000000000000000L >> (me))
  1041. #define MASK64(mb, me) (MASK64_L(mb) + MASK64_R(me) + ((me) >= (mb)))
  1042. #define DATA32(x) (((x) & 0xffffffffUL) | (((x) & 0xffffffffUL) << 32))
  1043. #else
  1044. #define DATA32(x) (x)
  1045. #endif
  1046. #define ROTATE(x, n) ((n) ? (((x) << (n)) | ((x) >> (8 * sizeof(long) - (n)))) : (x))
  1047. /*
  1048. * Decode an instruction, and return information about it in *op
  1049. * without changing *regs.
  1050. * Integer arithmetic and logical instructions, branches, and barrier
  1051. * instructions can be emulated just using the information in *op.
  1052. *
  1053. * Return value is 1 if the instruction can be emulated just by
  1054. * updating *regs with the information in *op, -1 if we need the
  1055. * GPRs but *regs doesn't contain the full register set, or 0
  1056. * otherwise.
  1057. */
  1058. int analyse_instr(struct instruction_op *op, const struct pt_regs *regs,
  1059. unsigned int instr)
  1060. {
  1061. unsigned int opcode, ra, rb, rd, spr, u;
  1062. unsigned long int imm;
  1063. unsigned long int val, val2;
  1064. unsigned int mb, me, sh;
  1065. long ival;
  1066. op->type = COMPUTE;
  1067. opcode = instr >> 26;
  1068. switch (opcode) {
  1069. case 16: /* bc */
  1070. op->type = BRANCH;
  1071. imm = (signed short)(instr & 0xfffc);
  1072. if ((instr & 2) == 0)
  1073. imm += regs->nip;
  1074. op->val = truncate_if_32bit(regs->msr, imm);
  1075. if (instr & 1)
  1076. op->type |= SETLK;
  1077. if (branch_taken(instr, regs, op))
  1078. op->type |= BRTAKEN;
  1079. return 1;
  1080. #ifdef CONFIG_PPC64
  1081. case 17: /* sc */
  1082. if ((instr & 0xfe2) == 2)
  1083. op->type = SYSCALL;
  1084. else
  1085. op->type = UNKNOWN;
  1086. return 0;
  1087. #endif
  1088. case 18: /* b */
  1089. op->type = BRANCH | BRTAKEN;
  1090. imm = instr & 0x03fffffc;
  1091. if (imm & 0x02000000)
  1092. imm -= 0x04000000;
  1093. if ((instr & 2) == 0)
  1094. imm += regs->nip;
  1095. op->val = truncate_if_32bit(regs->msr, imm);
  1096. if (instr & 1)
  1097. op->type |= SETLK;
  1098. return 1;
  1099. case 19:
  1100. switch ((instr >> 1) & 0x3ff) {
  1101. case 0: /* mcrf */
  1102. op->type = COMPUTE + SETCC;
  1103. rd = 7 - ((instr >> 23) & 0x7);
  1104. ra = 7 - ((instr >> 18) & 0x7);
  1105. rd *= 4;
  1106. ra *= 4;
  1107. val = (regs->ccr >> ra) & 0xf;
  1108. op->ccval = (regs->ccr & ~(0xfUL << rd)) | (val << rd);
  1109. return 1;
  1110. case 16: /* bclr */
  1111. case 528: /* bcctr */
  1112. op->type = BRANCH;
  1113. imm = (instr & 0x400)? regs->ctr: regs->link;
  1114. op->val = truncate_if_32bit(regs->msr, imm);
  1115. if (instr & 1)
  1116. op->type |= SETLK;
  1117. if (branch_taken(instr, regs, op))
  1118. op->type |= BRTAKEN;
  1119. return 1;
  1120. case 18: /* rfid, scary */
  1121. if (regs->msr & MSR_PR)
  1122. goto priv;
  1123. op->type = RFI;
  1124. return 0;
  1125. case 150: /* isync */
  1126. op->type = BARRIER | BARRIER_ISYNC;
  1127. return 1;
  1128. case 33: /* crnor */
  1129. case 129: /* crandc */
  1130. case 193: /* crxor */
  1131. case 225: /* crnand */
  1132. case 257: /* crand */
  1133. case 289: /* creqv */
  1134. case 417: /* crorc */
  1135. case 449: /* cror */
  1136. op->type = COMPUTE + SETCC;
  1137. ra = (instr >> 16) & 0x1f;
  1138. rb = (instr >> 11) & 0x1f;
  1139. rd = (instr >> 21) & 0x1f;
  1140. ra = (regs->ccr >> (31 - ra)) & 1;
  1141. rb = (regs->ccr >> (31 - rb)) & 1;
  1142. val = (instr >> (6 + ra * 2 + rb)) & 1;
  1143. op->ccval = (regs->ccr & ~(1UL << (31 - rd))) |
  1144. (val << (31 - rd));
  1145. return 1;
  1146. }
  1147. break;
  1148. case 31:
  1149. switch ((instr >> 1) & 0x3ff) {
  1150. case 598: /* sync */
  1151. op->type = BARRIER + BARRIER_SYNC;
  1152. #ifdef __powerpc64__
  1153. switch ((instr >> 21) & 3) {
  1154. case 1: /* lwsync */
  1155. op->type = BARRIER + BARRIER_LWSYNC;
  1156. break;
  1157. case 2: /* ptesync */
  1158. op->type = BARRIER + BARRIER_PTESYNC;
  1159. break;
  1160. }
  1161. #endif
  1162. return 1;
  1163. case 854: /* eieio */
  1164. op->type = BARRIER + BARRIER_EIEIO;
  1165. return 1;
  1166. }
  1167. break;
  1168. }
  1169. /* Following cases refer to regs->gpr[], so we need all regs */
  1170. if (!FULL_REGS(regs))
  1171. return -1;
  1172. rd = (instr >> 21) & 0x1f;
  1173. ra = (instr >> 16) & 0x1f;
  1174. rb = (instr >> 11) & 0x1f;
  1175. switch (opcode) {
  1176. #ifdef __powerpc64__
  1177. case 2: /* tdi */
  1178. if (rd & trap_compare(regs->gpr[ra], (short) instr))
  1179. goto trap;
  1180. return 1;
  1181. #endif
  1182. case 3: /* twi */
  1183. if (rd & trap_compare((int)regs->gpr[ra], (short) instr))
  1184. goto trap;
  1185. return 1;
  1186. case 7: /* mulli */
  1187. op->val = regs->gpr[ra] * (short) instr;
  1188. goto compute_done;
  1189. case 8: /* subfic */
  1190. imm = (short) instr;
  1191. add_with_carry(regs, op, rd, ~regs->gpr[ra], imm, 1);
  1192. return 1;
  1193. case 10: /* cmpli */
  1194. imm = (unsigned short) instr;
  1195. val = regs->gpr[ra];
  1196. #ifdef __powerpc64__
  1197. if ((rd & 1) == 0)
  1198. val = (unsigned int) val;
  1199. #endif
  1200. do_cmp_unsigned(regs, op, val, imm, rd >> 2);
  1201. return 1;
  1202. case 11: /* cmpi */
  1203. imm = (short) instr;
  1204. val = regs->gpr[ra];
  1205. #ifdef __powerpc64__
  1206. if ((rd & 1) == 0)
  1207. val = (int) val;
  1208. #endif
  1209. do_cmp_signed(regs, op, val, imm, rd >> 2);
  1210. return 1;
  1211. case 12: /* addic */
  1212. imm = (short) instr;
  1213. add_with_carry(regs, op, rd, regs->gpr[ra], imm, 0);
  1214. return 1;
  1215. case 13: /* addic. */
  1216. imm = (short) instr;
  1217. add_with_carry(regs, op, rd, regs->gpr[ra], imm, 0);
  1218. set_cr0(regs, op);
  1219. return 1;
  1220. case 14: /* addi */
  1221. imm = (short) instr;
  1222. if (ra)
  1223. imm += regs->gpr[ra];
  1224. op->val = imm;
  1225. goto compute_done;
  1226. case 15: /* addis */
  1227. imm = ((short) instr) << 16;
  1228. if (ra)
  1229. imm += regs->gpr[ra];
  1230. op->val = imm;
  1231. goto compute_done;
  1232. case 19:
  1233. if (((instr >> 1) & 0x1f) == 2) {
  1234. /* addpcis */
  1235. imm = (short) (instr & 0xffc1); /* d0 + d2 fields */
  1236. imm |= (instr >> 15) & 0x3e; /* d1 field */
  1237. op->val = regs->nip + (imm << 16) + 4;
  1238. goto compute_done;
  1239. }
  1240. op->type = UNKNOWN;
  1241. return 0;
  1242. case 20: /* rlwimi */
  1243. mb = (instr >> 6) & 0x1f;
  1244. me = (instr >> 1) & 0x1f;
  1245. val = DATA32(regs->gpr[rd]);
  1246. imm = MASK32(mb, me);
  1247. op->val = (regs->gpr[ra] & ~imm) | (ROTATE(val, rb) & imm);
  1248. goto logical_done;
  1249. case 21: /* rlwinm */
  1250. mb = (instr >> 6) & 0x1f;
  1251. me = (instr >> 1) & 0x1f;
  1252. val = DATA32(regs->gpr[rd]);
  1253. op->val = ROTATE(val, rb) & MASK32(mb, me);
  1254. goto logical_done;
  1255. case 23: /* rlwnm */
  1256. mb = (instr >> 6) & 0x1f;
  1257. me = (instr >> 1) & 0x1f;
  1258. rb = regs->gpr[rb] & 0x1f;
  1259. val = DATA32(regs->gpr[rd]);
  1260. op->val = ROTATE(val, rb) & MASK32(mb, me);
  1261. goto logical_done;
  1262. case 24: /* ori */
  1263. op->val = regs->gpr[rd] | (unsigned short) instr;
  1264. goto logical_done_nocc;
  1265. case 25: /* oris */
  1266. imm = (unsigned short) instr;
  1267. op->val = regs->gpr[rd] | (imm << 16);
  1268. goto logical_done_nocc;
  1269. case 26: /* xori */
  1270. op->val = regs->gpr[rd] ^ (unsigned short) instr;
  1271. goto logical_done_nocc;
  1272. case 27: /* xoris */
  1273. imm = (unsigned short) instr;
  1274. op->val = regs->gpr[rd] ^ (imm << 16);
  1275. goto logical_done_nocc;
  1276. case 28: /* andi. */
  1277. op->val = regs->gpr[rd] & (unsigned short) instr;
  1278. set_cr0(regs, op);
  1279. goto logical_done_nocc;
  1280. case 29: /* andis. */
  1281. imm = (unsigned short) instr;
  1282. op->val = regs->gpr[rd] & (imm << 16);
  1283. set_cr0(regs, op);
  1284. goto logical_done_nocc;
  1285. #ifdef __powerpc64__
  1286. case 30: /* rld* */
  1287. mb = ((instr >> 6) & 0x1f) | (instr & 0x20);
  1288. val = regs->gpr[rd];
  1289. if ((instr & 0x10) == 0) {
  1290. sh = rb | ((instr & 2) << 4);
  1291. val = ROTATE(val, sh);
  1292. switch ((instr >> 2) & 3) {
  1293. case 0: /* rldicl */
  1294. val &= MASK64_L(mb);
  1295. break;
  1296. case 1: /* rldicr */
  1297. val &= MASK64_R(mb);
  1298. break;
  1299. case 2: /* rldic */
  1300. val &= MASK64(mb, 63 - sh);
  1301. break;
  1302. case 3: /* rldimi */
  1303. imm = MASK64(mb, 63 - sh);
  1304. val = (regs->gpr[ra] & ~imm) |
  1305. (val & imm);
  1306. }
  1307. op->val = val;
  1308. goto logical_done;
  1309. } else {
  1310. sh = regs->gpr[rb] & 0x3f;
  1311. val = ROTATE(val, sh);
  1312. switch ((instr >> 1) & 7) {
  1313. case 0: /* rldcl */
  1314. op->val = val & MASK64_L(mb);
  1315. goto logical_done;
  1316. case 1: /* rldcr */
  1317. op->val = val & MASK64_R(mb);
  1318. goto logical_done;
  1319. }
  1320. }
  1321. #endif
  1322. op->type = UNKNOWN; /* illegal instruction */
  1323. return 0;
  1324. case 31:
  1325. /* isel occupies 32 minor opcodes */
  1326. if (((instr >> 1) & 0x1f) == 15) {
  1327. mb = (instr >> 6) & 0x1f; /* bc field */
  1328. val = (regs->ccr >> (31 - mb)) & 1;
  1329. val2 = (ra) ? regs->gpr[ra] : 0;
  1330. op->val = (val) ? val2 : regs->gpr[rb];
  1331. goto compute_done;
  1332. }
  1333. switch ((instr >> 1) & 0x3ff) {
  1334. case 4: /* tw */
  1335. if (rd == 0x1f ||
  1336. (rd & trap_compare((int)regs->gpr[ra],
  1337. (int)regs->gpr[rb])))
  1338. goto trap;
  1339. return 1;
  1340. #ifdef __powerpc64__
  1341. case 68: /* td */
  1342. if (rd & trap_compare(regs->gpr[ra], regs->gpr[rb]))
  1343. goto trap;
  1344. return 1;
  1345. #endif
  1346. case 83: /* mfmsr */
  1347. if (regs->msr & MSR_PR)
  1348. goto priv;
  1349. op->type = MFMSR;
  1350. op->reg = rd;
  1351. return 0;
  1352. case 146: /* mtmsr */
  1353. if (regs->msr & MSR_PR)
  1354. goto priv;
  1355. op->type = MTMSR;
  1356. op->reg = rd;
  1357. op->val = 0xffffffff & ~(MSR_ME | MSR_LE);
  1358. return 0;
  1359. #ifdef CONFIG_PPC64
  1360. case 178: /* mtmsrd */
  1361. if (regs->msr & MSR_PR)
  1362. goto priv;
  1363. op->type = MTMSR;
  1364. op->reg = rd;
  1365. /* only MSR_EE and MSR_RI get changed if bit 15 set */
  1366. /* mtmsrd doesn't change MSR_HV, MSR_ME or MSR_LE */
  1367. imm = (instr & 0x10000)? 0x8002: 0xefffffffffffeffeUL;
  1368. op->val = imm;
  1369. return 0;
  1370. #endif
  1371. case 19: /* mfcr */
  1372. imm = 0xffffffffUL;
  1373. if ((instr >> 20) & 1) {
  1374. imm = 0xf0000000UL;
  1375. for (sh = 0; sh < 8; ++sh) {
  1376. if (instr & (0x80000 >> sh))
  1377. break;
  1378. imm >>= 4;
  1379. }
  1380. }
  1381. op->val = regs->ccr & imm;
  1382. goto compute_done;
  1383. case 144: /* mtcrf */
  1384. op->type = COMPUTE + SETCC;
  1385. imm = 0xf0000000UL;
  1386. val = regs->gpr[rd];
  1387. op->ccval = regs->ccr;
  1388. for (sh = 0; sh < 8; ++sh) {
  1389. if (instr & (0x80000 >> sh))
  1390. op->ccval = (op->ccval & ~imm) |
  1391. (val & imm);
  1392. imm >>= 4;
  1393. }
  1394. return 1;
  1395. case 339: /* mfspr */
  1396. spr = ((instr >> 16) & 0x1f) | ((instr >> 6) & 0x3e0);
  1397. op->type = MFSPR;
  1398. op->reg = rd;
  1399. op->spr = spr;
  1400. if (spr == SPRN_XER || spr == SPRN_LR ||
  1401. spr == SPRN_CTR)
  1402. return 1;
  1403. return 0;
  1404. case 467: /* mtspr */
  1405. spr = ((instr >> 16) & 0x1f) | ((instr >> 6) & 0x3e0);
  1406. op->type = MTSPR;
  1407. op->val = regs->gpr[rd];
  1408. op->spr = spr;
  1409. if (spr == SPRN_XER || spr == SPRN_LR ||
  1410. spr == SPRN_CTR)
  1411. return 1;
  1412. return 0;
  1413. /*
  1414. * Compare instructions
  1415. */
  1416. case 0: /* cmp */
  1417. val = regs->gpr[ra];
  1418. val2 = regs->gpr[rb];
  1419. #ifdef __powerpc64__
  1420. if ((rd & 1) == 0) {
  1421. /* word (32-bit) compare */
  1422. val = (int) val;
  1423. val2 = (int) val2;
  1424. }
  1425. #endif
  1426. do_cmp_signed(regs, op, val, val2, rd >> 2);
  1427. return 1;
  1428. case 32: /* cmpl */
  1429. val = regs->gpr[ra];
  1430. val2 = regs->gpr[rb];
  1431. #ifdef __powerpc64__
  1432. if ((rd & 1) == 0) {
  1433. /* word (32-bit) compare */
  1434. val = (unsigned int) val;
  1435. val2 = (unsigned int) val2;
  1436. }
  1437. #endif
  1438. do_cmp_unsigned(regs, op, val, val2, rd >> 2);
  1439. return 1;
  1440. case 508: /* cmpb */
  1441. do_cmpb(regs, op, regs->gpr[rd], regs->gpr[rb]);
  1442. goto logical_done_nocc;
  1443. /*
  1444. * Arithmetic instructions
  1445. */
  1446. case 8: /* subfc */
  1447. add_with_carry(regs, op, rd, ~regs->gpr[ra],
  1448. regs->gpr[rb], 1);
  1449. goto arith_done;
  1450. #ifdef __powerpc64__
  1451. case 9: /* mulhdu */
  1452. asm("mulhdu %0,%1,%2" : "=r" (op->val) :
  1453. "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
  1454. goto arith_done;
  1455. #endif
  1456. case 10: /* addc */
  1457. add_with_carry(regs, op, rd, regs->gpr[ra],
  1458. regs->gpr[rb], 0);
  1459. goto arith_done;
  1460. case 11: /* mulhwu */
  1461. asm("mulhwu %0,%1,%2" : "=r" (op->val) :
  1462. "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
  1463. goto arith_done;
  1464. case 40: /* subf */
  1465. op->val = regs->gpr[rb] - regs->gpr[ra];
  1466. goto arith_done;
  1467. #ifdef __powerpc64__
  1468. case 73: /* mulhd */
  1469. asm("mulhd %0,%1,%2" : "=r" (op->val) :
  1470. "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
  1471. goto arith_done;
  1472. #endif
  1473. case 75: /* mulhw */
  1474. asm("mulhw %0,%1,%2" : "=r" (op->val) :
  1475. "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
  1476. goto arith_done;
  1477. case 104: /* neg */
  1478. op->val = -regs->gpr[ra];
  1479. goto arith_done;
  1480. case 136: /* subfe */
  1481. add_with_carry(regs, op, rd, ~regs->gpr[ra],
  1482. regs->gpr[rb], regs->xer & XER_CA);
  1483. goto arith_done;
  1484. case 138: /* adde */
  1485. add_with_carry(regs, op, rd, regs->gpr[ra],
  1486. regs->gpr[rb], regs->xer & XER_CA);
  1487. goto arith_done;
  1488. case 200: /* subfze */
  1489. add_with_carry(regs, op, rd, ~regs->gpr[ra], 0L,
  1490. regs->xer & XER_CA);
  1491. goto arith_done;
  1492. case 202: /* addze */
  1493. add_with_carry(regs, op, rd, regs->gpr[ra], 0L,
  1494. regs->xer & XER_CA);
  1495. goto arith_done;
  1496. case 232: /* subfme */
  1497. add_with_carry(regs, op, rd, ~regs->gpr[ra], -1L,
  1498. regs->xer & XER_CA);
  1499. goto arith_done;
  1500. #ifdef __powerpc64__
  1501. case 233: /* mulld */
  1502. op->val = regs->gpr[ra] * regs->gpr[rb];
  1503. goto arith_done;
  1504. #endif
  1505. case 234: /* addme */
  1506. add_with_carry(regs, op, rd, regs->gpr[ra], -1L,
  1507. regs->xer & XER_CA);
  1508. goto arith_done;
  1509. case 235: /* mullw */
  1510. op->val = (long)(int) regs->gpr[ra] *
  1511. (int) regs->gpr[rb];
  1512. goto arith_done;
  1513. case 266: /* add */
  1514. op->val = regs->gpr[ra] + regs->gpr[rb];
  1515. goto arith_done;
  1516. #ifdef __powerpc64__
  1517. case 457: /* divdu */
  1518. op->val = regs->gpr[ra] / regs->gpr[rb];
  1519. goto arith_done;
  1520. #endif
  1521. case 459: /* divwu */
  1522. op->val = (unsigned int) regs->gpr[ra] /
  1523. (unsigned int) regs->gpr[rb];
  1524. goto arith_done;
  1525. #ifdef __powerpc64__
  1526. case 489: /* divd */
  1527. op->val = (long int) regs->gpr[ra] /
  1528. (long int) regs->gpr[rb];
  1529. goto arith_done;
  1530. #endif
  1531. case 491: /* divw */
  1532. op->val = (int) regs->gpr[ra] /
  1533. (int) regs->gpr[rb];
  1534. goto arith_done;
  1535. /*
  1536. * Logical instructions
  1537. */
  1538. case 26: /* cntlzw */
  1539. val = (unsigned int) regs->gpr[rd];
  1540. op->val = ( val ? __builtin_clz(val) : 32 );
  1541. goto logical_done;
  1542. #ifdef __powerpc64__
  1543. case 58: /* cntlzd */
  1544. val = regs->gpr[rd];
  1545. op->val = ( val ? __builtin_clzl(val) : 64 );
  1546. goto logical_done;
  1547. #endif
  1548. case 28: /* and */
  1549. op->val = regs->gpr[rd] & regs->gpr[rb];
  1550. goto logical_done;
  1551. case 60: /* andc */
  1552. op->val = regs->gpr[rd] & ~regs->gpr[rb];
  1553. goto logical_done;
  1554. case 122: /* popcntb */
  1555. do_popcnt(regs, op, regs->gpr[rd], 8);
  1556. goto logical_done_nocc;
  1557. case 124: /* nor */
  1558. op->val = ~(regs->gpr[rd] | regs->gpr[rb]);
  1559. goto logical_done;
  1560. case 154: /* prtyw */
  1561. do_prty(regs, op, regs->gpr[rd], 32);
  1562. goto logical_done_nocc;
  1563. case 186: /* prtyd */
  1564. do_prty(regs, op, regs->gpr[rd], 64);
  1565. goto logical_done_nocc;
  1566. #ifdef CONFIG_PPC64
  1567. case 252: /* bpermd */
  1568. do_bpermd(regs, op, regs->gpr[rd], regs->gpr[rb]);
  1569. goto logical_done_nocc;
  1570. #endif
  1571. case 284: /* xor */
  1572. op->val = ~(regs->gpr[rd] ^ regs->gpr[rb]);
  1573. goto logical_done;
  1574. case 316: /* xor */
  1575. op->val = regs->gpr[rd] ^ regs->gpr[rb];
  1576. goto logical_done;
  1577. case 378: /* popcntw */
  1578. do_popcnt(regs, op, regs->gpr[rd], 32);
  1579. goto logical_done_nocc;
  1580. case 412: /* orc */
  1581. op->val = regs->gpr[rd] | ~regs->gpr[rb];
  1582. goto logical_done;
  1583. case 444: /* or */
  1584. op->val = regs->gpr[rd] | regs->gpr[rb];
  1585. goto logical_done;
  1586. case 476: /* nand */
  1587. op->val = ~(regs->gpr[rd] & regs->gpr[rb]);
  1588. goto logical_done;
  1589. #ifdef CONFIG_PPC64
  1590. case 506: /* popcntd */
  1591. do_popcnt(regs, op, regs->gpr[rd], 64);
  1592. goto logical_done_nocc;
  1593. #endif
  1594. case 922: /* extsh */
  1595. op->val = (signed short) regs->gpr[rd];
  1596. goto logical_done;
  1597. case 954: /* extsb */
  1598. op->val = (signed char) regs->gpr[rd];
  1599. goto logical_done;
  1600. #ifdef __powerpc64__
  1601. case 986: /* extsw */
  1602. op->val = (signed int) regs->gpr[rd];
  1603. goto logical_done;
  1604. #endif
  1605. /*
  1606. * Shift instructions
  1607. */
  1608. case 24: /* slw */
  1609. sh = regs->gpr[rb] & 0x3f;
  1610. if (sh < 32)
  1611. op->val = (regs->gpr[rd] << sh) & 0xffffffffUL;
  1612. else
  1613. op->val = 0;
  1614. goto logical_done;
  1615. case 536: /* srw */
  1616. sh = regs->gpr[rb] & 0x3f;
  1617. if (sh < 32)
  1618. op->val = (regs->gpr[rd] & 0xffffffffUL) >> sh;
  1619. else
  1620. op->val = 0;
  1621. goto logical_done;
  1622. case 792: /* sraw */
  1623. op->type = COMPUTE + SETREG + SETXER;
  1624. sh = regs->gpr[rb] & 0x3f;
  1625. ival = (signed int) regs->gpr[rd];
  1626. op->val = ival >> (sh < 32 ? sh : 31);
  1627. op->xerval = regs->xer;
  1628. if (ival < 0 && (sh >= 32 || (ival & ((1ul << sh) - 1)) != 0))
  1629. op->xerval |= XER_CA;
  1630. else
  1631. op->xerval &= ~XER_CA;
  1632. goto logical_done;
  1633. case 824: /* srawi */
  1634. op->type = COMPUTE + SETREG + SETXER;
  1635. sh = rb;
  1636. ival = (signed int) regs->gpr[rd];
  1637. op->val = ival >> sh;
  1638. op->xerval = regs->xer;
  1639. if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0)
  1640. op->xerval |= XER_CA;
  1641. else
  1642. op->xerval &= ~XER_CA;
  1643. goto logical_done;
  1644. #ifdef __powerpc64__
  1645. case 27: /* sld */
  1646. sh = regs->gpr[rb] & 0x7f;
  1647. if (sh < 64)
  1648. op->val = regs->gpr[rd] << sh;
  1649. else
  1650. op->val = 0;
  1651. goto logical_done;
  1652. case 539: /* srd */
  1653. sh = regs->gpr[rb] & 0x7f;
  1654. if (sh < 64)
  1655. op->val = regs->gpr[rd] >> sh;
  1656. else
  1657. op->val = 0;
  1658. goto logical_done;
  1659. case 794: /* srad */
  1660. op->type = COMPUTE + SETREG + SETXER;
  1661. sh = regs->gpr[rb] & 0x7f;
  1662. ival = (signed long int) regs->gpr[rd];
  1663. op->val = ival >> (sh < 64 ? sh : 63);
  1664. op->xerval = regs->xer;
  1665. if (ival < 0 && (sh >= 64 || (ival & ((1ul << sh) - 1)) != 0))
  1666. op->xerval |= XER_CA;
  1667. else
  1668. op->xerval &= ~XER_CA;
  1669. goto logical_done;
  1670. case 826: /* sradi with sh_5 = 0 */
  1671. case 827: /* sradi with sh_5 = 1 */
  1672. op->type = COMPUTE + SETREG + SETXER;
  1673. sh = rb | ((instr & 2) << 4);
  1674. ival = (signed long int) regs->gpr[rd];
  1675. op->val = ival >> sh;
  1676. op->xerval = regs->xer;
  1677. if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0)
  1678. op->xerval |= XER_CA;
  1679. else
  1680. op->xerval &= ~XER_CA;
  1681. goto logical_done;
  1682. #endif /* __powerpc64__ */
  1683. /*
  1684. * Cache instructions
  1685. */
  1686. case 54: /* dcbst */
  1687. op->type = MKOP(CACHEOP, DCBST, 0);
  1688. op->ea = xform_ea(instr, regs);
  1689. return 0;
  1690. case 86: /* dcbf */
  1691. op->type = MKOP(CACHEOP, DCBF, 0);
  1692. op->ea = xform_ea(instr, regs);
  1693. return 0;
  1694. case 246: /* dcbtst */
  1695. op->type = MKOP(CACHEOP, DCBTST, 0);
  1696. op->ea = xform_ea(instr, regs);
  1697. op->reg = rd;
  1698. return 0;
  1699. case 278: /* dcbt */
  1700. op->type = MKOP(CACHEOP, DCBTST, 0);
  1701. op->ea = xform_ea(instr, regs);
  1702. op->reg = rd;
  1703. return 0;
  1704. case 982: /* icbi */
  1705. op->type = MKOP(CACHEOP, ICBI, 0);
  1706. op->ea = xform_ea(instr, regs);
  1707. return 0;
  1708. case 1014: /* dcbz */
  1709. op->type = MKOP(CACHEOP, DCBZ, 0);
  1710. op->ea = xform_ea(instr, regs);
  1711. return 0;
  1712. }
  1713. break;
  1714. }
  1715. /*
  1716. * Loads and stores.
  1717. */
  1718. op->type = UNKNOWN;
  1719. op->update_reg = ra;
  1720. op->reg = rd;
  1721. op->val = regs->gpr[rd];
  1722. u = (instr >> 20) & UPDATE;
  1723. op->vsx_flags = 0;
  1724. switch (opcode) {
  1725. case 31:
  1726. u = instr & UPDATE;
  1727. op->ea = xform_ea(instr, regs);
  1728. switch ((instr >> 1) & 0x3ff) {
  1729. case 20: /* lwarx */
  1730. op->type = MKOP(LARX, 0, 4);
  1731. break;
  1732. case 150: /* stwcx. */
  1733. op->type = MKOP(STCX, 0, 4);
  1734. break;
  1735. #ifdef __powerpc64__
  1736. case 84: /* ldarx */
  1737. op->type = MKOP(LARX, 0, 8);
  1738. break;
  1739. case 214: /* stdcx. */
  1740. op->type = MKOP(STCX, 0, 8);
  1741. break;
  1742. case 52: /* lbarx */
  1743. op->type = MKOP(LARX, 0, 1);
  1744. break;
  1745. case 694: /* stbcx. */
  1746. op->type = MKOP(STCX, 0, 1);
  1747. break;
  1748. case 116: /* lharx */
  1749. op->type = MKOP(LARX, 0, 2);
  1750. break;
  1751. case 726: /* sthcx. */
  1752. op->type = MKOP(STCX, 0, 2);
  1753. break;
  1754. case 276: /* lqarx */
  1755. if (!((rd & 1) || rd == ra || rd == rb))
  1756. op->type = MKOP(LARX, 0, 16);
  1757. break;
  1758. case 182: /* stqcx. */
  1759. if (!(rd & 1))
  1760. op->type = MKOP(STCX, 0, 16);
  1761. break;
  1762. #endif
  1763. case 23: /* lwzx */
  1764. case 55: /* lwzux */
  1765. op->type = MKOP(LOAD, u, 4);
  1766. break;
  1767. case 87: /* lbzx */
  1768. case 119: /* lbzux */
  1769. op->type = MKOP(LOAD, u, 1);
  1770. break;
  1771. #ifdef CONFIG_ALTIVEC
  1772. /*
  1773. * Note: for the load/store vector element instructions,
  1774. * bits of the EA say which field of the VMX register to use.
  1775. */
  1776. case 7: /* lvebx */
  1777. op->type = MKOP(LOAD_VMX, 0, 1);
  1778. op->element_size = 1;
  1779. break;
  1780. case 39: /* lvehx */
  1781. op->type = MKOP(LOAD_VMX, 0, 2);
  1782. op->element_size = 2;
  1783. break;
  1784. case 71: /* lvewx */
  1785. op->type = MKOP(LOAD_VMX, 0, 4);
  1786. op->element_size = 4;
  1787. break;
  1788. case 103: /* lvx */
  1789. case 359: /* lvxl */
  1790. op->type = MKOP(LOAD_VMX, 0, 16);
  1791. op->element_size = 16;
  1792. break;
  1793. case 135: /* stvebx */
  1794. op->type = MKOP(STORE_VMX, 0, 1);
  1795. op->element_size = 1;
  1796. break;
  1797. case 167: /* stvehx */
  1798. op->type = MKOP(STORE_VMX, 0, 2);
  1799. op->element_size = 2;
  1800. break;
  1801. case 199: /* stvewx */
  1802. op->type = MKOP(STORE_VMX, 0, 4);
  1803. op->element_size = 4;
  1804. break;
  1805. case 231: /* stvx */
  1806. case 487: /* stvxl */
  1807. op->type = MKOP(STORE_VMX, 0, 16);
  1808. break;
  1809. #endif /* CONFIG_ALTIVEC */
  1810. #ifdef __powerpc64__
  1811. case 21: /* ldx */
  1812. case 53: /* ldux */
  1813. op->type = MKOP(LOAD, u, 8);
  1814. break;
  1815. case 149: /* stdx */
  1816. case 181: /* stdux */
  1817. op->type = MKOP(STORE, u, 8);
  1818. break;
  1819. #endif
  1820. case 151: /* stwx */
  1821. case 183: /* stwux */
  1822. op->type = MKOP(STORE, u, 4);
  1823. break;
  1824. case 215: /* stbx */
  1825. case 247: /* stbux */
  1826. op->type = MKOP(STORE, u, 1);
  1827. break;
  1828. case 279: /* lhzx */
  1829. case 311: /* lhzux */
  1830. op->type = MKOP(LOAD, u, 2);
  1831. break;
  1832. #ifdef __powerpc64__
  1833. case 341: /* lwax */
  1834. case 373: /* lwaux */
  1835. op->type = MKOP(LOAD, SIGNEXT | u, 4);
  1836. break;
  1837. #endif
  1838. case 343: /* lhax */
  1839. case 375: /* lhaux */
  1840. op->type = MKOP(LOAD, SIGNEXT | u, 2);
  1841. break;
  1842. case 407: /* sthx */
  1843. case 439: /* sthux */
  1844. op->type = MKOP(STORE, u, 2);
  1845. break;
  1846. #ifdef __powerpc64__
  1847. case 532: /* ldbrx */
  1848. op->type = MKOP(LOAD, BYTEREV, 8);
  1849. break;
  1850. #endif
  1851. case 533: /* lswx */
  1852. op->type = MKOP(LOAD_MULTI, 0, regs->xer & 0x7f);
  1853. break;
  1854. case 534: /* lwbrx */
  1855. op->type = MKOP(LOAD, BYTEREV, 4);
  1856. break;
  1857. case 597: /* lswi */
  1858. if (rb == 0)
  1859. rb = 32; /* # bytes to load */
  1860. op->type = MKOP(LOAD_MULTI, 0, rb);
  1861. op->ea = ra ? regs->gpr[ra] : 0;
  1862. break;
  1863. #ifdef CONFIG_PPC_FPU
  1864. case 535: /* lfsx */
  1865. case 567: /* lfsux */
  1866. op->type = MKOP(LOAD_FP, u | FPCONV, 4);
  1867. break;
  1868. case 599: /* lfdx */
  1869. case 631: /* lfdux */
  1870. op->type = MKOP(LOAD_FP, u, 8);
  1871. break;
  1872. case 663: /* stfsx */
  1873. case 695: /* stfsux */
  1874. op->type = MKOP(STORE_FP, u | FPCONV, 4);
  1875. break;
  1876. case 727: /* stfdx */
  1877. case 759: /* stfdux */
  1878. op->type = MKOP(STORE_FP, u, 8);
  1879. break;
  1880. #ifdef __powerpc64__
  1881. case 791: /* lfdpx */
  1882. op->type = MKOP(LOAD_FP, 0, 16);
  1883. break;
  1884. case 855: /* lfiwax */
  1885. op->type = MKOP(LOAD_FP, SIGNEXT, 4);
  1886. break;
  1887. case 887: /* lfiwzx */
  1888. op->type = MKOP(LOAD_FP, 0, 4);
  1889. break;
  1890. case 919: /* stfdpx */
  1891. op->type = MKOP(STORE_FP, 0, 16);
  1892. break;
  1893. case 983: /* stfiwx */
  1894. op->type = MKOP(STORE_FP, 0, 4);
  1895. break;
  1896. #endif /* __powerpc64 */
  1897. #endif /* CONFIG_PPC_FPU */
  1898. #ifdef __powerpc64__
  1899. case 660: /* stdbrx */
  1900. op->type = MKOP(STORE, BYTEREV, 8);
  1901. op->val = byterev_8(regs->gpr[rd]);
  1902. break;
  1903. #endif
  1904. case 661: /* stswx */
  1905. op->type = MKOP(STORE_MULTI, 0, regs->xer & 0x7f);
  1906. break;
  1907. case 662: /* stwbrx */
  1908. op->type = MKOP(STORE, BYTEREV, 4);
  1909. op->val = byterev_4(regs->gpr[rd]);
  1910. break;
  1911. case 725: /* stswi */
  1912. if (rb == 0)
  1913. rb = 32; /* # bytes to store */
  1914. op->type = MKOP(STORE_MULTI, 0, rb);
  1915. op->ea = ra ? regs->gpr[ra] : 0;
  1916. break;
  1917. case 790: /* lhbrx */
  1918. op->type = MKOP(LOAD, BYTEREV, 2);
  1919. break;
  1920. case 918: /* sthbrx */
  1921. op->type = MKOP(STORE, BYTEREV, 2);
  1922. op->val = byterev_2(regs->gpr[rd]);
  1923. break;
  1924. #ifdef CONFIG_VSX
  1925. case 12: /* lxsiwzx */
  1926. op->reg = rd | ((instr & 1) << 5);
  1927. op->type = MKOP(LOAD_VSX, 0, 4);
  1928. op->element_size = 8;
  1929. break;
  1930. case 76: /* lxsiwax */
  1931. op->reg = rd | ((instr & 1) << 5);
  1932. op->type = MKOP(LOAD_VSX, SIGNEXT, 4);
  1933. op->element_size = 8;
  1934. break;
  1935. case 140: /* stxsiwx */
  1936. op->reg = rd | ((instr & 1) << 5);
  1937. op->type = MKOP(STORE_VSX, 0, 4);
  1938. op->element_size = 8;
  1939. break;
  1940. case 268: /* lxvx */
  1941. op->reg = rd | ((instr & 1) << 5);
  1942. op->type = MKOP(LOAD_VSX, 0, 16);
  1943. op->element_size = 16;
  1944. op->vsx_flags = VSX_CHECK_VEC;
  1945. break;
  1946. case 269: /* lxvl */
  1947. case 301: { /* lxvll */
  1948. int nb;
  1949. op->reg = rd | ((instr & 1) << 5);
  1950. op->ea = ra ? regs->gpr[ra] : 0;
  1951. nb = regs->gpr[rb] & 0xff;
  1952. if (nb > 16)
  1953. nb = 16;
  1954. op->type = MKOP(LOAD_VSX, 0, nb);
  1955. op->element_size = 16;
  1956. op->vsx_flags = ((instr & 0x20) ? VSX_LDLEFT : 0) |
  1957. VSX_CHECK_VEC;
  1958. break;
  1959. }
  1960. case 332: /* lxvdsx */
  1961. op->reg = rd | ((instr & 1) << 5);
  1962. op->type = MKOP(LOAD_VSX, 0, 8);
  1963. op->element_size = 8;
  1964. op->vsx_flags = VSX_SPLAT;
  1965. break;
  1966. case 364: /* lxvwsx */
  1967. op->reg = rd | ((instr & 1) << 5);
  1968. op->type = MKOP(LOAD_VSX, 0, 4);
  1969. op->element_size = 4;
  1970. op->vsx_flags = VSX_SPLAT | VSX_CHECK_VEC;
  1971. break;
  1972. case 396: /* stxvx */
  1973. op->reg = rd | ((instr & 1) << 5);
  1974. op->type = MKOP(STORE_VSX, 0, 16);
  1975. op->element_size = 16;
  1976. op->vsx_flags = VSX_CHECK_VEC;
  1977. break;
  1978. case 397: /* stxvl */
  1979. case 429: { /* stxvll */
  1980. int nb;
  1981. op->reg = rd | ((instr & 1) << 5);
  1982. op->ea = ra ? regs->gpr[ra] : 0;
  1983. nb = regs->gpr[rb] & 0xff;
  1984. if (nb > 16)
  1985. nb = 16;
  1986. op->type = MKOP(STORE_VSX, 0, nb);
  1987. op->element_size = 16;
  1988. op->vsx_flags = ((instr & 0x20) ? VSX_LDLEFT : 0) |
  1989. VSX_CHECK_VEC;
  1990. break;
  1991. }
  1992. case 524: /* lxsspx */
  1993. op->reg = rd | ((instr & 1) << 5);
  1994. op->type = MKOP(LOAD_VSX, 0, 4);
  1995. op->element_size = 8;
  1996. op->vsx_flags = VSX_FPCONV;
  1997. break;
  1998. case 588: /* lxsdx */
  1999. op->reg = rd | ((instr & 1) << 5);
  2000. op->type = MKOP(LOAD_VSX, 0, 8);
  2001. op->element_size = 8;
  2002. break;
  2003. case 652: /* stxsspx */
  2004. op->reg = rd | ((instr & 1) << 5);
  2005. op->type = MKOP(STORE_VSX, 0, 4);
  2006. op->element_size = 8;
  2007. op->vsx_flags = VSX_FPCONV;
  2008. break;
  2009. case 716: /* stxsdx */
  2010. op->reg = rd | ((instr & 1) << 5);
  2011. op->type = MKOP(STORE_VSX, 0, 8);
  2012. op->element_size = 8;
  2013. break;
  2014. case 780: /* lxvw4x */
  2015. op->reg = rd | ((instr & 1) << 5);
  2016. op->type = MKOP(LOAD_VSX, 0, 16);
  2017. op->element_size = 4;
  2018. break;
  2019. case 781: /* lxsibzx */
  2020. op->reg = rd | ((instr & 1) << 5);
  2021. op->type = MKOP(LOAD_VSX, 0, 1);
  2022. op->element_size = 8;
  2023. op->vsx_flags = VSX_CHECK_VEC;
  2024. break;
  2025. case 812: /* lxvh8x */
  2026. op->reg = rd | ((instr & 1) << 5);
  2027. op->type = MKOP(LOAD_VSX, 0, 16);
  2028. op->element_size = 2;
  2029. op->vsx_flags = VSX_CHECK_VEC;
  2030. break;
  2031. case 813: /* lxsihzx */
  2032. op->reg = rd | ((instr & 1) << 5);
  2033. op->type = MKOP(LOAD_VSX, 0, 2);
  2034. op->element_size = 8;
  2035. op->vsx_flags = VSX_CHECK_VEC;
  2036. break;
  2037. case 844: /* lxvd2x */
  2038. op->reg = rd | ((instr & 1) << 5);
  2039. op->type = MKOP(LOAD_VSX, 0, 16);
  2040. op->element_size = 8;
  2041. break;
  2042. case 876: /* lxvb16x */
  2043. op->reg = rd | ((instr & 1) << 5);
  2044. op->type = MKOP(LOAD_VSX, 0, 16);
  2045. op->element_size = 1;
  2046. op->vsx_flags = VSX_CHECK_VEC;
  2047. break;
  2048. case 908: /* stxvw4x */
  2049. op->reg = rd | ((instr & 1) << 5);
  2050. op->type = MKOP(STORE_VSX, 0, 16);
  2051. op->element_size = 4;
  2052. break;
  2053. case 909: /* stxsibx */
  2054. op->reg = rd | ((instr & 1) << 5);
  2055. op->type = MKOP(STORE_VSX, 0, 1);
  2056. op->element_size = 8;
  2057. op->vsx_flags = VSX_CHECK_VEC;
  2058. break;
  2059. case 940: /* stxvh8x */
  2060. op->reg = rd | ((instr & 1) << 5);
  2061. op->type = MKOP(STORE_VSX, 0, 16);
  2062. op->element_size = 2;
  2063. op->vsx_flags = VSX_CHECK_VEC;
  2064. break;
  2065. case 941: /* stxsihx */
  2066. op->reg = rd | ((instr & 1) << 5);
  2067. op->type = MKOP(STORE_VSX, 0, 2);
  2068. op->element_size = 8;
  2069. op->vsx_flags = VSX_CHECK_VEC;
  2070. break;
  2071. case 972: /* stxvd2x */
  2072. op->reg = rd | ((instr & 1) << 5);
  2073. op->type = MKOP(STORE_VSX, 0, 16);
  2074. op->element_size = 8;
  2075. break;
  2076. case 1004: /* stxvb16x */
  2077. op->reg = rd | ((instr & 1) << 5);
  2078. op->type = MKOP(STORE_VSX, 0, 16);
  2079. op->element_size = 1;
  2080. op->vsx_flags = VSX_CHECK_VEC;
  2081. break;
  2082. #endif /* CONFIG_VSX */
  2083. }
  2084. break;
  2085. case 32: /* lwz */
  2086. case 33: /* lwzu */
  2087. op->type = MKOP(LOAD, u, 4);
  2088. op->ea = dform_ea(instr, regs);
  2089. break;
  2090. case 34: /* lbz */
  2091. case 35: /* lbzu */
  2092. op->type = MKOP(LOAD, u, 1);
  2093. op->ea = dform_ea(instr, regs);
  2094. break;
  2095. case 36: /* stw */
  2096. case 37: /* stwu */
  2097. op->type = MKOP(STORE, u, 4);
  2098. op->ea = dform_ea(instr, regs);
  2099. break;
  2100. case 38: /* stb */
  2101. case 39: /* stbu */
  2102. op->type = MKOP(STORE, u, 1);
  2103. op->ea = dform_ea(instr, regs);
  2104. break;
  2105. case 40: /* lhz */
  2106. case 41: /* lhzu */
  2107. op->type = MKOP(LOAD, u, 2);
  2108. op->ea = dform_ea(instr, regs);
  2109. break;
  2110. case 42: /* lha */
  2111. case 43: /* lhau */
  2112. op->type = MKOP(LOAD, SIGNEXT | u, 2);
  2113. op->ea = dform_ea(instr, regs);
  2114. break;
  2115. case 44: /* sth */
  2116. case 45: /* sthu */
  2117. op->type = MKOP(STORE, u, 2);
  2118. op->ea = dform_ea(instr, regs);
  2119. break;
  2120. case 46: /* lmw */
  2121. if (ra >= rd)
  2122. break; /* invalid form, ra in range to load */
  2123. op->type = MKOP(LOAD_MULTI, 0, 4 * (32 - rd));
  2124. op->ea = dform_ea(instr, regs);
  2125. break;
  2126. case 47: /* stmw */
  2127. op->type = MKOP(STORE_MULTI, 0, 4 * (32 - rd));
  2128. op->ea = dform_ea(instr, regs);
  2129. break;
  2130. #ifdef CONFIG_PPC_FPU
  2131. case 48: /* lfs */
  2132. case 49: /* lfsu */
  2133. op->type = MKOP(LOAD_FP, u | FPCONV, 4);
  2134. op->ea = dform_ea(instr, regs);
  2135. break;
  2136. case 50: /* lfd */
  2137. case 51: /* lfdu */
  2138. op->type = MKOP(LOAD_FP, u, 8);
  2139. op->ea = dform_ea(instr, regs);
  2140. break;
  2141. case 52: /* stfs */
  2142. case 53: /* stfsu */
  2143. op->type = MKOP(STORE_FP, u | FPCONV, 4);
  2144. op->ea = dform_ea(instr, regs);
  2145. break;
  2146. case 54: /* stfd */
  2147. case 55: /* stfdu */
  2148. op->type = MKOP(STORE_FP, u, 8);
  2149. op->ea = dform_ea(instr, regs);
  2150. break;
  2151. #endif
  2152. #ifdef __powerpc64__
  2153. case 56: /* lq */
  2154. if (!((rd & 1) || (rd == ra)))
  2155. op->type = MKOP(LOAD, 0, 16);
  2156. op->ea = dqform_ea(instr, regs);
  2157. break;
  2158. #endif
  2159. #ifdef CONFIG_VSX
  2160. case 57: /* lfdp, lxsd, lxssp */
  2161. op->ea = dsform_ea(instr, regs);
  2162. switch (instr & 3) {
  2163. case 0: /* lfdp */
  2164. if (rd & 1)
  2165. break; /* reg must be even */
  2166. op->type = MKOP(LOAD_FP, 0, 16);
  2167. break;
  2168. case 2: /* lxsd */
  2169. op->reg = rd + 32;
  2170. op->type = MKOP(LOAD_VSX, 0, 8);
  2171. op->element_size = 8;
  2172. op->vsx_flags = VSX_CHECK_VEC;
  2173. break;
  2174. case 3: /* lxssp */
  2175. op->reg = rd + 32;
  2176. op->type = MKOP(LOAD_VSX, 0, 4);
  2177. op->element_size = 8;
  2178. op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
  2179. break;
  2180. }
  2181. break;
  2182. #endif /* CONFIG_VSX */
  2183. #ifdef __powerpc64__
  2184. case 58: /* ld[u], lwa */
  2185. op->ea = dsform_ea(instr, regs);
  2186. switch (instr & 3) {
  2187. case 0: /* ld */
  2188. op->type = MKOP(LOAD, 0, 8);
  2189. break;
  2190. case 1: /* ldu */
  2191. op->type = MKOP(LOAD, UPDATE, 8);
  2192. break;
  2193. case 2: /* lwa */
  2194. op->type = MKOP(LOAD, SIGNEXT, 4);
  2195. break;
  2196. }
  2197. break;
  2198. #endif
  2199. #ifdef CONFIG_VSX
  2200. case 61: /* stfdp, lxv, stxsd, stxssp, stxv */
  2201. switch (instr & 7) {
  2202. case 0: /* stfdp with LSB of DS field = 0 */
  2203. case 4: /* stfdp with LSB of DS field = 1 */
  2204. op->ea = dsform_ea(instr, regs);
  2205. op->type = MKOP(STORE_FP, 0, 16);
  2206. break;
  2207. case 1: /* lxv */
  2208. op->ea = dqform_ea(instr, regs);
  2209. if (instr & 8)
  2210. op->reg = rd + 32;
  2211. op->type = MKOP(LOAD_VSX, 0, 16);
  2212. op->element_size = 16;
  2213. op->vsx_flags = VSX_CHECK_VEC;
  2214. break;
  2215. case 2: /* stxsd with LSB of DS field = 0 */
  2216. case 6: /* stxsd with LSB of DS field = 1 */
  2217. op->ea = dsform_ea(instr, regs);
  2218. op->reg = rd + 32;
  2219. op->type = MKOP(STORE_VSX, 0, 8);
  2220. op->element_size = 8;
  2221. op->vsx_flags = VSX_CHECK_VEC;
  2222. break;
  2223. case 3: /* stxssp with LSB of DS field = 0 */
  2224. case 7: /* stxssp with LSB of DS field = 1 */
  2225. op->ea = dsform_ea(instr, regs);
  2226. op->reg = rd + 32;
  2227. op->type = MKOP(STORE_VSX, 0, 4);
  2228. op->element_size = 8;
  2229. op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
  2230. break;
  2231. case 5: /* stxv */
  2232. op->ea = dqform_ea(instr, regs);
  2233. if (instr & 8)
  2234. op->reg = rd + 32;
  2235. op->type = MKOP(STORE_VSX, 0, 16);
  2236. op->element_size = 16;
  2237. op->vsx_flags = VSX_CHECK_VEC;
  2238. break;
  2239. }
  2240. break;
  2241. #endif /* CONFIG_VSX */
  2242. #ifdef __powerpc64__
  2243. case 62: /* std[u] */
  2244. op->ea = dsform_ea(instr, regs);
  2245. switch (instr & 3) {
  2246. case 0: /* std */
  2247. op->type = MKOP(STORE, 0, 8);
  2248. break;
  2249. case 1: /* stdu */
  2250. op->type = MKOP(STORE, UPDATE, 8);
  2251. break;
  2252. case 2: /* stq */
  2253. if (!(rd & 1))
  2254. op->type = MKOP(STORE, 0, 16);
  2255. break;
  2256. }
  2257. break;
  2258. #endif /* __powerpc64__ */
  2259. }
  2260. return 0;
  2261. logical_done:
  2262. if (instr & 1)
  2263. set_cr0(regs, op);
  2264. logical_done_nocc:
  2265. op->reg = ra;
  2266. op->type |= SETREG;
  2267. return 1;
  2268. arith_done:
  2269. if (instr & 1)
  2270. set_cr0(regs, op);
  2271. compute_done:
  2272. op->reg = rd;
  2273. op->type |= SETREG;
  2274. return 1;
  2275. priv:
  2276. op->type = INTERRUPT | 0x700;
  2277. op->val = SRR1_PROGPRIV;
  2278. return 0;
  2279. trap:
  2280. op->type = INTERRUPT | 0x700;
  2281. op->val = SRR1_PROGTRAP;
  2282. return 0;
  2283. }
  2284. EXPORT_SYMBOL_GPL(analyse_instr);
  2285. NOKPROBE_SYMBOL(analyse_instr);
  2286. /*
  2287. * For PPC32 we always use stwu with r1 to change the stack pointer.
  2288. * So this emulated store may corrupt the exception frame, now we
  2289. * have to provide the exception frame trampoline, which is pushed
  2290. * below the kprobed function stack. So we only update gpr[1] but
  2291. * don't emulate the real store operation. We will do real store
  2292. * operation safely in exception return code by checking this flag.
  2293. */
  2294. static nokprobe_inline int handle_stack_update(unsigned long ea, struct pt_regs *regs)
  2295. {
  2296. #ifdef CONFIG_PPC32
  2297. /*
  2298. * Check if we will touch kernel stack overflow
  2299. */
  2300. if (ea - STACK_INT_FRAME_SIZE <= current->thread.ksp_limit) {
  2301. printk(KERN_CRIT "Can't kprobe this since kernel stack would overflow.\n");
  2302. return -EINVAL;
  2303. }
  2304. #endif /* CONFIG_PPC32 */
  2305. /*
  2306. * Check if we already set since that means we'll
  2307. * lose the previous value.
  2308. */
  2309. WARN_ON(test_thread_flag(TIF_EMULATE_STACK_STORE));
  2310. set_thread_flag(TIF_EMULATE_STACK_STORE);
  2311. return 0;
  2312. }
  2313. static nokprobe_inline void do_signext(unsigned long *valp, int size)
  2314. {
  2315. switch (size) {
  2316. case 2:
  2317. *valp = (signed short) *valp;
  2318. break;
  2319. case 4:
  2320. *valp = (signed int) *valp;
  2321. break;
  2322. }
  2323. }
  2324. static nokprobe_inline void do_byterev(unsigned long *valp, int size)
  2325. {
  2326. switch (size) {
  2327. case 2:
  2328. *valp = byterev_2(*valp);
  2329. break;
  2330. case 4:
  2331. *valp = byterev_4(*valp);
  2332. break;
  2333. #ifdef __powerpc64__
  2334. case 8:
  2335. *valp = byterev_8(*valp);
  2336. break;
  2337. #endif
  2338. }
  2339. }
  2340. /*
  2341. * Emulate an instruction that can be executed just by updating
  2342. * fields in *regs.
  2343. */
  2344. void emulate_update_regs(struct pt_regs *regs, struct instruction_op *op)
  2345. {
  2346. unsigned long next_pc;
  2347. next_pc = truncate_if_32bit(regs->msr, regs->nip + 4);
  2348. switch (op->type & INSTR_TYPE_MASK) {
  2349. case COMPUTE:
  2350. if (op->type & SETREG)
  2351. regs->gpr[op->reg] = op->val;
  2352. if (op->type & SETCC)
  2353. regs->ccr = op->ccval;
  2354. if (op->type & SETXER)
  2355. regs->xer = op->xerval;
  2356. break;
  2357. case BRANCH:
  2358. if (op->type & SETLK)
  2359. regs->link = next_pc;
  2360. if (op->type & BRTAKEN)
  2361. next_pc = op->val;
  2362. if (op->type & DECCTR)
  2363. --regs->ctr;
  2364. break;
  2365. case BARRIER:
  2366. switch (op->type & BARRIER_MASK) {
  2367. case BARRIER_SYNC:
  2368. mb();
  2369. break;
  2370. case BARRIER_ISYNC:
  2371. isync();
  2372. break;
  2373. case BARRIER_EIEIO:
  2374. eieio();
  2375. break;
  2376. case BARRIER_LWSYNC:
  2377. asm volatile("lwsync" : : : "memory");
  2378. break;
  2379. case BARRIER_PTESYNC:
  2380. asm volatile("ptesync" : : : "memory");
  2381. break;
  2382. }
  2383. break;
  2384. case MFSPR:
  2385. switch (op->spr) {
  2386. case SPRN_XER:
  2387. regs->gpr[op->reg] = regs->xer & 0xffffffffUL;
  2388. break;
  2389. case SPRN_LR:
  2390. regs->gpr[op->reg] = regs->link;
  2391. break;
  2392. case SPRN_CTR:
  2393. regs->gpr[op->reg] = regs->ctr;
  2394. break;
  2395. default:
  2396. WARN_ON_ONCE(1);
  2397. }
  2398. break;
  2399. case MTSPR:
  2400. switch (op->spr) {
  2401. case SPRN_XER:
  2402. regs->xer = op->val & 0xffffffffUL;
  2403. break;
  2404. case SPRN_LR:
  2405. regs->link = op->val;
  2406. break;
  2407. case SPRN_CTR:
  2408. regs->ctr = op->val;
  2409. break;
  2410. default:
  2411. WARN_ON_ONCE(1);
  2412. }
  2413. break;
  2414. default:
  2415. WARN_ON_ONCE(1);
  2416. }
  2417. regs->nip = next_pc;
  2418. }
  2419. /*
  2420. * Emulate a previously-analysed load or store instruction.
  2421. * Return values are:
  2422. * 0 = instruction emulated successfully
  2423. * -EFAULT = address out of range or access faulted (regs->dar
  2424. * contains the faulting address)
  2425. * -EACCES = misaligned access, instruction requires alignment
  2426. * -EINVAL = unknown operation in *op
  2427. */
  2428. int emulate_loadstore(struct pt_regs *regs, struct instruction_op *op)
  2429. {
  2430. int err, size, type;
  2431. int i, rd, nb;
  2432. unsigned int cr;
  2433. unsigned long val;
  2434. unsigned long ea;
  2435. bool cross_endian;
  2436. err = 0;
  2437. size = GETSIZE(op->type);
  2438. type = op->type & INSTR_TYPE_MASK;
  2439. cross_endian = (regs->msr & MSR_LE) != (MSR_KERNEL & MSR_LE);
  2440. ea = truncate_if_32bit(regs->msr, op->ea);
  2441. switch (type) {
  2442. case LARX:
  2443. if (ea & (size - 1))
  2444. return -EACCES; /* can't handle misaligned */
  2445. if (!address_ok(regs, ea, size))
  2446. return -EFAULT;
  2447. err = 0;
  2448. val = 0;
  2449. switch (size) {
  2450. #ifdef __powerpc64__
  2451. case 1:
  2452. __get_user_asmx(val, ea, err, "lbarx");
  2453. break;
  2454. case 2:
  2455. __get_user_asmx(val, ea, err, "lharx");
  2456. break;
  2457. #endif
  2458. case 4:
  2459. __get_user_asmx(val, ea, err, "lwarx");
  2460. break;
  2461. #ifdef __powerpc64__
  2462. case 8:
  2463. __get_user_asmx(val, ea, err, "ldarx");
  2464. break;
  2465. case 16:
  2466. err = do_lqarx(ea, &regs->gpr[op->reg]);
  2467. break;
  2468. #endif
  2469. default:
  2470. return -EINVAL;
  2471. }
  2472. if (err) {
  2473. regs->dar = ea;
  2474. break;
  2475. }
  2476. if (size < 16)
  2477. regs->gpr[op->reg] = val;
  2478. break;
  2479. case STCX:
  2480. if (ea & (size - 1))
  2481. return -EACCES; /* can't handle misaligned */
  2482. if (!address_ok(regs, ea, size))
  2483. return -EFAULT;
  2484. err = 0;
  2485. switch (size) {
  2486. #ifdef __powerpc64__
  2487. case 1:
  2488. __put_user_asmx(op->val, ea, err, "stbcx.", cr);
  2489. break;
  2490. case 2:
  2491. __put_user_asmx(op->val, ea, err, "stbcx.", cr);
  2492. break;
  2493. #endif
  2494. case 4:
  2495. __put_user_asmx(op->val, ea, err, "stwcx.", cr);
  2496. break;
  2497. #ifdef __powerpc64__
  2498. case 8:
  2499. __put_user_asmx(op->val, ea, err, "stdcx.", cr);
  2500. break;
  2501. case 16:
  2502. err = do_stqcx(ea, regs->gpr[op->reg],
  2503. regs->gpr[op->reg + 1], &cr);
  2504. break;
  2505. #endif
  2506. default:
  2507. return -EINVAL;
  2508. }
  2509. if (!err)
  2510. regs->ccr = (regs->ccr & 0x0fffffff) |
  2511. (cr & 0xe0000000) |
  2512. ((regs->xer >> 3) & 0x10000000);
  2513. else
  2514. regs->dar = ea;
  2515. break;
  2516. case LOAD:
  2517. #ifdef __powerpc64__
  2518. if (size == 16) {
  2519. err = emulate_lq(regs, ea, op->reg, cross_endian);
  2520. break;
  2521. }
  2522. #endif
  2523. err = read_mem(&regs->gpr[op->reg], ea, size, regs);
  2524. if (!err) {
  2525. if (op->type & SIGNEXT)
  2526. do_signext(&regs->gpr[op->reg], size);
  2527. if ((op->type & BYTEREV) == (cross_endian ? 0 : BYTEREV))
  2528. do_byterev(&regs->gpr[op->reg], size);
  2529. }
  2530. break;
  2531. #ifdef CONFIG_PPC_FPU
  2532. case LOAD_FP:
  2533. /*
  2534. * If the instruction is in userspace, we can emulate it even
  2535. * if the VMX state is not live, because we have the state
  2536. * stored in the thread_struct. If the instruction is in
  2537. * the kernel, we must not touch the state in the thread_struct.
  2538. */
  2539. if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_FP))
  2540. return 0;
  2541. err = do_fp_load(op, ea, regs, cross_endian);
  2542. break;
  2543. #endif
  2544. #ifdef CONFIG_ALTIVEC
  2545. case LOAD_VMX:
  2546. if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_VEC))
  2547. return 0;
  2548. err = do_vec_load(op->reg, ea, size, regs, cross_endian);
  2549. break;
  2550. #endif
  2551. #ifdef CONFIG_VSX
  2552. case LOAD_VSX: {
  2553. unsigned long msrbit = MSR_VSX;
  2554. /*
  2555. * Some VSX instructions check the MSR_VEC bit rather than MSR_VSX
  2556. * when the target of the instruction is a vector register.
  2557. */
  2558. if (op->reg >= 32 && (op->vsx_flags & VSX_CHECK_VEC))
  2559. msrbit = MSR_VEC;
  2560. if (!(regs->msr & MSR_PR) && !(regs->msr & msrbit))
  2561. return 0;
  2562. err = do_vsx_load(op, ea, regs, cross_endian);
  2563. break;
  2564. }
  2565. #endif
  2566. case LOAD_MULTI:
  2567. if (!address_ok(regs, ea, size))
  2568. return -EFAULT;
  2569. rd = op->reg;
  2570. for (i = 0; i < size; i += 4) {
  2571. unsigned int v32 = 0;
  2572. nb = size - i;
  2573. if (nb > 4)
  2574. nb = 4;
  2575. err = copy_mem_in((u8 *) &v32, ea, nb, regs);
  2576. if (err)
  2577. break;
  2578. if (unlikely(cross_endian))
  2579. v32 = byterev_4(v32);
  2580. regs->gpr[rd] = v32;
  2581. ea += 4;
  2582. /* reg number wraps from 31 to 0 for lsw[ix] */
  2583. rd = (rd + 1) & 0x1f;
  2584. }
  2585. break;
  2586. case STORE:
  2587. #ifdef __powerpc64__
  2588. if (size == 16) {
  2589. err = emulate_stq(regs, ea, op->reg, cross_endian);
  2590. break;
  2591. }
  2592. #endif
  2593. if ((op->type & UPDATE) && size == sizeof(long) &&
  2594. op->reg == 1 && op->update_reg == 1 &&
  2595. !(regs->msr & MSR_PR) &&
  2596. ea >= regs->gpr[1] - STACK_INT_FRAME_SIZE) {
  2597. err = handle_stack_update(ea, regs);
  2598. break;
  2599. }
  2600. if (unlikely(cross_endian))
  2601. do_byterev(&op->val, size);
  2602. err = write_mem(op->val, ea, size, regs);
  2603. break;
  2604. #ifdef CONFIG_PPC_FPU
  2605. case STORE_FP:
  2606. if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_FP))
  2607. return 0;
  2608. err = do_fp_store(op, ea, regs, cross_endian);
  2609. break;
  2610. #endif
  2611. #ifdef CONFIG_ALTIVEC
  2612. case STORE_VMX:
  2613. if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_VEC))
  2614. return 0;
  2615. err = do_vec_store(op->reg, ea, size, regs, cross_endian);
  2616. break;
  2617. #endif
  2618. #ifdef CONFIG_VSX
  2619. case STORE_VSX: {
  2620. unsigned long msrbit = MSR_VSX;
  2621. /*
  2622. * Some VSX instructions check the MSR_VEC bit rather than MSR_VSX
  2623. * when the target of the instruction is a vector register.
  2624. */
  2625. if (op->reg >= 32 && (op->vsx_flags & VSX_CHECK_VEC))
  2626. msrbit = MSR_VEC;
  2627. if (!(regs->msr & MSR_PR) && !(regs->msr & msrbit))
  2628. return 0;
  2629. err = do_vsx_store(op, ea, regs, cross_endian);
  2630. break;
  2631. }
  2632. #endif
  2633. case STORE_MULTI:
  2634. if (!address_ok(regs, ea, size))
  2635. return -EFAULT;
  2636. rd = op->reg;
  2637. for (i = 0; i < size; i += 4) {
  2638. unsigned int v32 = regs->gpr[rd];
  2639. nb = size - i;
  2640. if (nb > 4)
  2641. nb = 4;
  2642. if (unlikely(cross_endian))
  2643. v32 = byterev_4(v32);
  2644. err = copy_mem_out((u8 *) &v32, ea, nb, regs);
  2645. if (err)
  2646. break;
  2647. ea += 4;
  2648. /* reg number wraps from 31 to 0 for stsw[ix] */
  2649. rd = (rd + 1) & 0x1f;
  2650. }
  2651. break;
  2652. default:
  2653. return -EINVAL;
  2654. }
  2655. if (err)
  2656. return err;
  2657. if (op->type & UPDATE)
  2658. regs->gpr[op->update_reg] = op->ea;
  2659. return 0;
  2660. }
  2661. NOKPROBE_SYMBOL(emulate_loadstore);
  2662. /*
  2663. * Emulate instructions that cause a transfer of control,
  2664. * loads and stores, and a few other instructions.
  2665. * Returns 1 if the step was emulated, 0 if not,
  2666. * or -1 if the instruction is one that should not be stepped,
  2667. * such as an rfid, or a mtmsrd that would clear MSR_RI.
  2668. */
  2669. int emulate_step(struct pt_regs *regs, unsigned int instr)
  2670. {
  2671. struct instruction_op op;
  2672. int r, err, type;
  2673. unsigned long val;
  2674. unsigned long ea;
  2675. r = analyse_instr(&op, regs, instr);
  2676. if (r < 0)
  2677. return r;
  2678. if (r > 0) {
  2679. emulate_update_regs(regs, &op);
  2680. return 1;
  2681. }
  2682. err = 0;
  2683. type = op.type & INSTR_TYPE_MASK;
  2684. if (OP_IS_LOAD_STORE(type)) {
  2685. err = emulate_loadstore(regs, &op);
  2686. if (err)
  2687. return 0;
  2688. goto instr_done;
  2689. }
  2690. switch (type) {
  2691. case CACHEOP:
  2692. ea = truncate_if_32bit(regs->msr, op.ea);
  2693. if (!address_ok(regs, ea, 8))
  2694. return 0;
  2695. switch (op.type & CACHEOP_MASK) {
  2696. case DCBST:
  2697. __cacheop_user_asmx(ea, err, "dcbst");
  2698. break;
  2699. case DCBF:
  2700. __cacheop_user_asmx(ea, err, "dcbf");
  2701. break;
  2702. case DCBTST:
  2703. if (op.reg == 0)
  2704. prefetchw((void *) ea);
  2705. break;
  2706. case DCBT:
  2707. if (op.reg == 0)
  2708. prefetch((void *) ea);
  2709. break;
  2710. case ICBI:
  2711. __cacheop_user_asmx(ea, err, "icbi");
  2712. break;
  2713. case DCBZ:
  2714. err = emulate_dcbz(ea, regs);
  2715. break;
  2716. }
  2717. if (err) {
  2718. regs->dar = ea;
  2719. return 0;
  2720. }
  2721. goto instr_done;
  2722. case MFMSR:
  2723. regs->gpr[op.reg] = regs->msr & MSR_MASK;
  2724. goto instr_done;
  2725. case MTMSR:
  2726. val = regs->gpr[op.reg];
  2727. if ((val & MSR_RI) == 0)
  2728. /* can't step mtmsr[d] that would clear MSR_RI */
  2729. return -1;
  2730. /* here op.val is the mask of bits to change */
  2731. regs->msr = (regs->msr & ~op.val) | (val & op.val);
  2732. goto instr_done;
  2733. #ifdef CONFIG_PPC64
  2734. case SYSCALL: /* sc */
  2735. /*
  2736. * N.B. this uses knowledge about how the syscall
  2737. * entry code works. If that is changed, this will
  2738. * need to be changed also.
  2739. */
  2740. if (regs->gpr[0] == 0x1ebe &&
  2741. cpu_has_feature(CPU_FTR_REAL_LE)) {
  2742. regs->msr ^= MSR_LE;
  2743. goto instr_done;
  2744. }
  2745. regs->gpr[9] = regs->gpr[13];
  2746. regs->gpr[10] = MSR_KERNEL;
  2747. regs->gpr[11] = regs->nip + 4;
  2748. regs->gpr[12] = regs->msr & MSR_MASK;
  2749. regs->gpr[13] = (unsigned long) get_paca();
  2750. regs->nip = (unsigned long) &system_call_common;
  2751. regs->msr = MSR_KERNEL;
  2752. return 1;
  2753. case RFI:
  2754. return -1;
  2755. #endif
  2756. }
  2757. return 0;
  2758. instr_done:
  2759. regs->nip = truncate_if_32bit(regs->msr, regs->nip + 4);
  2760. return 1;
  2761. }
  2762. NOKPROBE_SYMBOL(emulate_step);