file.c 53 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330
  1. /*
  2. * fs/f2fs/file.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/stat.h>
  14. #include <linux/buffer_head.h>
  15. #include <linux/writeback.h>
  16. #include <linux/blkdev.h>
  17. #include <linux/falloc.h>
  18. #include <linux/types.h>
  19. #include <linux/compat.h>
  20. #include <linux/uaccess.h>
  21. #include <linux/mount.h>
  22. #include <linux/pagevec.h>
  23. #include <linux/uio.h>
  24. #include <linux/uuid.h>
  25. #include <linux/file.h>
  26. #include "f2fs.h"
  27. #include "node.h"
  28. #include "segment.h"
  29. #include "xattr.h"
  30. #include "acl.h"
  31. #include "gc.h"
  32. #include "trace.h"
  33. #include <trace/events/f2fs.h>
  34. static int f2fs_vm_page_mkwrite(struct vm_fault *vmf)
  35. {
  36. struct page *page = vmf->page;
  37. struct inode *inode = file_inode(vmf->vma->vm_file);
  38. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  39. struct dnode_of_data dn;
  40. int err;
  41. sb_start_pagefault(inode->i_sb);
  42. f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
  43. /* block allocation */
  44. f2fs_lock_op(sbi);
  45. set_new_dnode(&dn, inode, NULL, NULL, 0);
  46. err = f2fs_reserve_block(&dn, page->index);
  47. if (err) {
  48. f2fs_unlock_op(sbi);
  49. goto out;
  50. }
  51. f2fs_put_dnode(&dn);
  52. f2fs_unlock_op(sbi);
  53. f2fs_balance_fs(sbi, dn.node_changed);
  54. file_update_time(vmf->vma->vm_file);
  55. lock_page(page);
  56. if (unlikely(page->mapping != inode->i_mapping ||
  57. page_offset(page) > i_size_read(inode) ||
  58. !PageUptodate(page))) {
  59. unlock_page(page);
  60. err = -EFAULT;
  61. goto out;
  62. }
  63. /*
  64. * check to see if the page is mapped already (no holes)
  65. */
  66. if (PageMappedToDisk(page))
  67. goto mapped;
  68. /* page is wholly or partially inside EOF */
  69. if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
  70. i_size_read(inode)) {
  71. unsigned offset;
  72. offset = i_size_read(inode) & ~PAGE_MASK;
  73. zero_user_segment(page, offset, PAGE_SIZE);
  74. }
  75. set_page_dirty(page);
  76. if (!PageUptodate(page))
  77. SetPageUptodate(page);
  78. trace_f2fs_vm_page_mkwrite(page, DATA);
  79. mapped:
  80. /* fill the page */
  81. f2fs_wait_on_page_writeback(page, DATA, false);
  82. /* wait for GCed encrypted page writeback */
  83. if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
  84. f2fs_wait_on_encrypted_page_writeback(sbi, dn.data_blkaddr);
  85. out:
  86. sb_end_pagefault(inode->i_sb);
  87. f2fs_update_time(sbi, REQ_TIME);
  88. return block_page_mkwrite_return(err);
  89. }
  90. static const struct vm_operations_struct f2fs_file_vm_ops = {
  91. .fault = filemap_fault,
  92. .map_pages = filemap_map_pages,
  93. .page_mkwrite = f2fs_vm_page_mkwrite,
  94. };
  95. static int get_parent_ino(struct inode *inode, nid_t *pino)
  96. {
  97. struct dentry *dentry;
  98. inode = igrab(inode);
  99. dentry = d_find_any_alias(inode);
  100. iput(inode);
  101. if (!dentry)
  102. return 0;
  103. if (update_dent_inode(inode, inode, &dentry->d_name)) {
  104. dput(dentry);
  105. return 0;
  106. }
  107. *pino = parent_ino(dentry);
  108. dput(dentry);
  109. return 1;
  110. }
  111. static inline bool need_do_checkpoint(struct inode *inode)
  112. {
  113. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  114. bool need_cp = false;
  115. if (!S_ISREG(inode->i_mode) || inode->i_nlink != 1)
  116. need_cp = true;
  117. else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
  118. need_cp = true;
  119. else if (file_wrong_pino(inode))
  120. need_cp = true;
  121. else if (!space_for_roll_forward(sbi))
  122. need_cp = true;
  123. else if (!is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
  124. need_cp = true;
  125. else if (test_opt(sbi, FASTBOOT))
  126. need_cp = true;
  127. else if (sbi->active_logs == 2)
  128. need_cp = true;
  129. return need_cp;
  130. }
  131. static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
  132. {
  133. struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
  134. bool ret = false;
  135. /* But we need to avoid that there are some inode updates */
  136. if ((i && PageDirty(i)) || need_inode_block_update(sbi, ino))
  137. ret = true;
  138. f2fs_put_page(i, 0);
  139. return ret;
  140. }
  141. static void try_to_fix_pino(struct inode *inode)
  142. {
  143. struct f2fs_inode_info *fi = F2FS_I(inode);
  144. nid_t pino;
  145. down_write(&fi->i_sem);
  146. if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
  147. get_parent_ino(inode, &pino)) {
  148. f2fs_i_pino_write(inode, pino);
  149. file_got_pino(inode);
  150. }
  151. up_write(&fi->i_sem);
  152. }
  153. static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
  154. int datasync, bool atomic)
  155. {
  156. struct inode *inode = file->f_mapping->host;
  157. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  158. nid_t ino = inode->i_ino;
  159. int ret = 0;
  160. bool need_cp = false;
  161. struct writeback_control wbc = {
  162. .sync_mode = WB_SYNC_ALL,
  163. .nr_to_write = LONG_MAX,
  164. .for_reclaim = 0,
  165. };
  166. if (unlikely(f2fs_readonly(inode->i_sb)))
  167. return 0;
  168. trace_f2fs_sync_file_enter(inode);
  169. /* if fdatasync is triggered, let's do in-place-update */
  170. if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
  171. set_inode_flag(inode, FI_NEED_IPU);
  172. ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
  173. clear_inode_flag(inode, FI_NEED_IPU);
  174. if (ret) {
  175. trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
  176. return ret;
  177. }
  178. /* if the inode is dirty, let's recover all the time */
  179. if (!f2fs_skip_inode_update(inode, datasync)) {
  180. f2fs_write_inode(inode, NULL);
  181. goto go_write;
  182. }
  183. /*
  184. * if there is no written data, don't waste time to write recovery info.
  185. */
  186. if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
  187. !exist_written_data(sbi, ino, APPEND_INO)) {
  188. /* it may call write_inode just prior to fsync */
  189. if (need_inode_page_update(sbi, ino))
  190. goto go_write;
  191. if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
  192. exist_written_data(sbi, ino, UPDATE_INO))
  193. goto flush_out;
  194. goto out;
  195. }
  196. go_write:
  197. /*
  198. * Both of fdatasync() and fsync() are able to be recovered from
  199. * sudden-power-off.
  200. */
  201. down_read(&F2FS_I(inode)->i_sem);
  202. need_cp = need_do_checkpoint(inode);
  203. up_read(&F2FS_I(inode)->i_sem);
  204. if (need_cp) {
  205. /* all the dirty node pages should be flushed for POR */
  206. ret = f2fs_sync_fs(inode->i_sb, 1);
  207. /*
  208. * We've secured consistency through sync_fs. Following pino
  209. * will be used only for fsynced inodes after checkpoint.
  210. */
  211. try_to_fix_pino(inode);
  212. clear_inode_flag(inode, FI_APPEND_WRITE);
  213. clear_inode_flag(inode, FI_UPDATE_WRITE);
  214. goto out;
  215. }
  216. sync_nodes:
  217. ret = fsync_node_pages(sbi, inode, &wbc, atomic);
  218. if (ret)
  219. goto out;
  220. /* if cp_error was enabled, we should avoid infinite loop */
  221. if (unlikely(f2fs_cp_error(sbi))) {
  222. ret = -EIO;
  223. goto out;
  224. }
  225. if (need_inode_block_update(sbi, ino)) {
  226. f2fs_mark_inode_dirty_sync(inode, true);
  227. f2fs_write_inode(inode, NULL);
  228. goto sync_nodes;
  229. }
  230. ret = wait_on_node_pages_writeback(sbi, ino);
  231. if (ret)
  232. goto out;
  233. /* once recovery info is written, don't need to tack this */
  234. remove_ino_entry(sbi, ino, APPEND_INO);
  235. clear_inode_flag(inode, FI_APPEND_WRITE);
  236. flush_out:
  237. remove_ino_entry(sbi, ino, UPDATE_INO);
  238. clear_inode_flag(inode, FI_UPDATE_WRITE);
  239. if (!atomic)
  240. ret = f2fs_issue_flush(sbi);
  241. f2fs_update_time(sbi, REQ_TIME);
  242. out:
  243. trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
  244. f2fs_trace_ios(NULL, 1);
  245. return ret;
  246. }
  247. int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
  248. {
  249. return f2fs_do_sync_file(file, start, end, datasync, false);
  250. }
  251. static pgoff_t __get_first_dirty_index(struct address_space *mapping,
  252. pgoff_t pgofs, int whence)
  253. {
  254. struct pagevec pvec;
  255. int nr_pages;
  256. if (whence != SEEK_DATA)
  257. return 0;
  258. /* find first dirty page index */
  259. pagevec_init(&pvec, 0);
  260. nr_pages = pagevec_lookup_tag(&pvec, mapping, &pgofs,
  261. PAGECACHE_TAG_DIRTY, 1);
  262. pgofs = nr_pages ? pvec.pages[0]->index : ULONG_MAX;
  263. pagevec_release(&pvec);
  264. return pgofs;
  265. }
  266. static bool __found_offset(block_t blkaddr, pgoff_t dirty, pgoff_t pgofs,
  267. int whence)
  268. {
  269. switch (whence) {
  270. case SEEK_DATA:
  271. if ((blkaddr == NEW_ADDR && dirty == pgofs) ||
  272. (blkaddr != NEW_ADDR && blkaddr != NULL_ADDR))
  273. return true;
  274. break;
  275. case SEEK_HOLE:
  276. if (blkaddr == NULL_ADDR)
  277. return true;
  278. break;
  279. }
  280. return false;
  281. }
  282. static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
  283. {
  284. struct inode *inode = file->f_mapping->host;
  285. loff_t maxbytes = inode->i_sb->s_maxbytes;
  286. struct dnode_of_data dn;
  287. pgoff_t pgofs, end_offset, dirty;
  288. loff_t data_ofs = offset;
  289. loff_t isize;
  290. int err = 0;
  291. inode_lock(inode);
  292. isize = i_size_read(inode);
  293. if (offset >= isize)
  294. goto fail;
  295. /* handle inline data case */
  296. if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
  297. if (whence == SEEK_HOLE)
  298. data_ofs = isize;
  299. goto found;
  300. }
  301. pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
  302. dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence);
  303. for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
  304. set_new_dnode(&dn, inode, NULL, NULL, 0);
  305. err = get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
  306. if (err && err != -ENOENT) {
  307. goto fail;
  308. } else if (err == -ENOENT) {
  309. /* direct node does not exists */
  310. if (whence == SEEK_DATA) {
  311. pgofs = get_next_page_offset(&dn, pgofs);
  312. continue;
  313. } else {
  314. goto found;
  315. }
  316. }
  317. end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
  318. /* find data/hole in dnode block */
  319. for (; dn.ofs_in_node < end_offset;
  320. dn.ofs_in_node++, pgofs++,
  321. data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
  322. block_t blkaddr;
  323. blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
  324. if (__found_offset(blkaddr, dirty, pgofs, whence)) {
  325. f2fs_put_dnode(&dn);
  326. goto found;
  327. }
  328. }
  329. f2fs_put_dnode(&dn);
  330. }
  331. if (whence == SEEK_DATA)
  332. goto fail;
  333. found:
  334. if (whence == SEEK_HOLE && data_ofs > isize)
  335. data_ofs = isize;
  336. inode_unlock(inode);
  337. return vfs_setpos(file, data_ofs, maxbytes);
  338. fail:
  339. inode_unlock(inode);
  340. return -ENXIO;
  341. }
  342. static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
  343. {
  344. struct inode *inode = file->f_mapping->host;
  345. loff_t maxbytes = inode->i_sb->s_maxbytes;
  346. switch (whence) {
  347. case SEEK_SET:
  348. case SEEK_CUR:
  349. case SEEK_END:
  350. return generic_file_llseek_size(file, offset, whence,
  351. maxbytes, i_size_read(inode));
  352. case SEEK_DATA:
  353. case SEEK_HOLE:
  354. if (offset < 0)
  355. return -ENXIO;
  356. return f2fs_seek_block(file, offset, whence);
  357. }
  358. return -EINVAL;
  359. }
  360. static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
  361. {
  362. struct inode *inode = file_inode(file);
  363. int err;
  364. if (f2fs_encrypted_inode(inode)) {
  365. err = fscrypt_get_encryption_info(inode);
  366. if (err)
  367. return 0;
  368. if (!f2fs_encrypted_inode(inode))
  369. return -ENOKEY;
  370. }
  371. /* we don't need to use inline_data strictly */
  372. err = f2fs_convert_inline_inode(inode);
  373. if (err)
  374. return err;
  375. file_accessed(file);
  376. vma->vm_ops = &f2fs_file_vm_ops;
  377. return 0;
  378. }
  379. static int f2fs_file_open(struct inode *inode, struct file *filp)
  380. {
  381. int ret = generic_file_open(inode, filp);
  382. struct dentry *dir;
  383. if (!ret && f2fs_encrypted_inode(inode)) {
  384. ret = fscrypt_get_encryption_info(inode);
  385. if (ret)
  386. return -EACCES;
  387. if (!fscrypt_has_encryption_key(inode))
  388. return -ENOKEY;
  389. }
  390. dir = dget_parent(file_dentry(filp));
  391. if (f2fs_encrypted_inode(d_inode(dir)) &&
  392. !fscrypt_has_permitted_context(d_inode(dir), inode)) {
  393. dput(dir);
  394. return -EPERM;
  395. }
  396. dput(dir);
  397. return ret;
  398. }
  399. int truncate_data_blocks_range(struct dnode_of_data *dn, int count)
  400. {
  401. struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
  402. struct f2fs_node *raw_node;
  403. int nr_free = 0, ofs = dn->ofs_in_node, len = count;
  404. __le32 *addr;
  405. raw_node = F2FS_NODE(dn->node_page);
  406. addr = blkaddr_in_node(raw_node) + ofs;
  407. for (; count > 0; count--, addr++, dn->ofs_in_node++) {
  408. block_t blkaddr = le32_to_cpu(*addr);
  409. if (blkaddr == NULL_ADDR)
  410. continue;
  411. dn->data_blkaddr = NULL_ADDR;
  412. set_data_blkaddr(dn);
  413. invalidate_blocks(sbi, blkaddr);
  414. if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
  415. clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN);
  416. nr_free++;
  417. }
  418. if (nr_free) {
  419. pgoff_t fofs;
  420. /*
  421. * once we invalidate valid blkaddr in range [ofs, ofs + count],
  422. * we will invalidate all blkaddr in the whole range.
  423. */
  424. fofs = start_bidx_of_node(ofs_of_node(dn->node_page),
  425. dn->inode) + ofs;
  426. f2fs_update_extent_cache_range(dn, fofs, 0, len);
  427. dec_valid_block_count(sbi, dn->inode, nr_free);
  428. }
  429. dn->ofs_in_node = ofs;
  430. f2fs_update_time(sbi, REQ_TIME);
  431. trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
  432. dn->ofs_in_node, nr_free);
  433. return nr_free;
  434. }
  435. void truncate_data_blocks(struct dnode_of_data *dn)
  436. {
  437. truncate_data_blocks_range(dn, ADDRS_PER_BLOCK);
  438. }
  439. static int truncate_partial_data_page(struct inode *inode, u64 from,
  440. bool cache_only)
  441. {
  442. unsigned offset = from & (PAGE_SIZE - 1);
  443. pgoff_t index = from >> PAGE_SHIFT;
  444. struct address_space *mapping = inode->i_mapping;
  445. struct page *page;
  446. if (!offset && !cache_only)
  447. return 0;
  448. if (cache_only) {
  449. page = find_lock_page(mapping, index);
  450. if (page && PageUptodate(page))
  451. goto truncate_out;
  452. f2fs_put_page(page, 1);
  453. return 0;
  454. }
  455. page = get_lock_data_page(inode, index, true);
  456. if (IS_ERR(page))
  457. return 0;
  458. truncate_out:
  459. f2fs_wait_on_page_writeback(page, DATA, true);
  460. zero_user(page, offset, PAGE_SIZE - offset);
  461. if (!cache_only || !f2fs_encrypted_inode(inode) ||
  462. !S_ISREG(inode->i_mode))
  463. set_page_dirty(page);
  464. f2fs_put_page(page, 1);
  465. return 0;
  466. }
  467. int truncate_blocks(struct inode *inode, u64 from, bool lock)
  468. {
  469. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  470. unsigned int blocksize = inode->i_sb->s_blocksize;
  471. struct dnode_of_data dn;
  472. pgoff_t free_from;
  473. int count = 0, err = 0;
  474. struct page *ipage;
  475. bool truncate_page = false;
  476. trace_f2fs_truncate_blocks_enter(inode, from);
  477. free_from = (pgoff_t)F2FS_BYTES_TO_BLK(from + blocksize - 1);
  478. if (free_from >= sbi->max_file_blocks)
  479. goto free_partial;
  480. if (lock)
  481. f2fs_lock_op(sbi);
  482. ipage = get_node_page(sbi, inode->i_ino);
  483. if (IS_ERR(ipage)) {
  484. err = PTR_ERR(ipage);
  485. goto out;
  486. }
  487. if (f2fs_has_inline_data(inode)) {
  488. truncate_inline_inode(ipage, from);
  489. if (from == 0)
  490. clear_inode_flag(inode, FI_DATA_EXIST);
  491. f2fs_put_page(ipage, 1);
  492. truncate_page = true;
  493. goto out;
  494. }
  495. set_new_dnode(&dn, inode, ipage, NULL, 0);
  496. err = get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
  497. if (err) {
  498. if (err == -ENOENT)
  499. goto free_next;
  500. goto out;
  501. }
  502. count = ADDRS_PER_PAGE(dn.node_page, inode);
  503. count -= dn.ofs_in_node;
  504. f2fs_bug_on(sbi, count < 0);
  505. if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
  506. truncate_data_blocks_range(&dn, count);
  507. free_from += count;
  508. }
  509. f2fs_put_dnode(&dn);
  510. free_next:
  511. err = truncate_inode_blocks(inode, free_from);
  512. out:
  513. if (lock)
  514. f2fs_unlock_op(sbi);
  515. free_partial:
  516. /* lastly zero out the first data page */
  517. if (!err)
  518. err = truncate_partial_data_page(inode, from, truncate_page);
  519. trace_f2fs_truncate_blocks_exit(inode, err);
  520. return err;
  521. }
  522. int f2fs_truncate(struct inode *inode)
  523. {
  524. int err;
  525. if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
  526. S_ISLNK(inode->i_mode)))
  527. return 0;
  528. trace_f2fs_truncate(inode);
  529. /* we should check inline_data size */
  530. if (!f2fs_may_inline_data(inode)) {
  531. err = f2fs_convert_inline_inode(inode);
  532. if (err)
  533. return err;
  534. }
  535. err = truncate_blocks(inode, i_size_read(inode), true);
  536. if (err)
  537. return err;
  538. inode->i_mtime = inode->i_ctime = current_time(inode);
  539. f2fs_mark_inode_dirty_sync(inode, false);
  540. return 0;
  541. }
  542. int f2fs_getattr(const struct path *path, struct kstat *stat,
  543. u32 request_mask, unsigned int flags)
  544. {
  545. struct inode *inode = d_inode(path->dentry);
  546. generic_fillattr(inode, stat);
  547. stat->blocks <<= 3;
  548. return 0;
  549. }
  550. #ifdef CONFIG_F2FS_FS_POSIX_ACL
  551. static void __setattr_copy(struct inode *inode, const struct iattr *attr)
  552. {
  553. unsigned int ia_valid = attr->ia_valid;
  554. if (ia_valid & ATTR_UID)
  555. inode->i_uid = attr->ia_uid;
  556. if (ia_valid & ATTR_GID)
  557. inode->i_gid = attr->ia_gid;
  558. if (ia_valid & ATTR_ATIME)
  559. inode->i_atime = timespec_trunc(attr->ia_atime,
  560. inode->i_sb->s_time_gran);
  561. if (ia_valid & ATTR_MTIME)
  562. inode->i_mtime = timespec_trunc(attr->ia_mtime,
  563. inode->i_sb->s_time_gran);
  564. if (ia_valid & ATTR_CTIME)
  565. inode->i_ctime = timespec_trunc(attr->ia_ctime,
  566. inode->i_sb->s_time_gran);
  567. if (ia_valid & ATTR_MODE) {
  568. umode_t mode = attr->ia_mode;
  569. if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
  570. mode &= ~S_ISGID;
  571. set_acl_inode(inode, mode);
  572. }
  573. }
  574. #else
  575. #define __setattr_copy setattr_copy
  576. #endif
  577. int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
  578. {
  579. struct inode *inode = d_inode(dentry);
  580. int err;
  581. bool size_changed = false;
  582. err = setattr_prepare(dentry, attr);
  583. if (err)
  584. return err;
  585. if (attr->ia_valid & ATTR_SIZE) {
  586. if (f2fs_encrypted_inode(inode) &&
  587. fscrypt_get_encryption_info(inode))
  588. return -EACCES;
  589. if (attr->ia_size <= i_size_read(inode)) {
  590. truncate_setsize(inode, attr->ia_size);
  591. err = f2fs_truncate(inode);
  592. if (err)
  593. return err;
  594. } else {
  595. /*
  596. * do not trim all blocks after i_size if target size is
  597. * larger than i_size.
  598. */
  599. truncate_setsize(inode, attr->ia_size);
  600. /* should convert inline inode here */
  601. if (!f2fs_may_inline_data(inode)) {
  602. err = f2fs_convert_inline_inode(inode);
  603. if (err)
  604. return err;
  605. }
  606. inode->i_mtime = inode->i_ctime = current_time(inode);
  607. }
  608. size_changed = true;
  609. }
  610. __setattr_copy(inode, attr);
  611. if (attr->ia_valid & ATTR_MODE) {
  612. err = posix_acl_chmod(inode, get_inode_mode(inode));
  613. if (err || is_inode_flag_set(inode, FI_ACL_MODE)) {
  614. inode->i_mode = F2FS_I(inode)->i_acl_mode;
  615. clear_inode_flag(inode, FI_ACL_MODE);
  616. }
  617. }
  618. /* file size may changed here */
  619. f2fs_mark_inode_dirty_sync(inode, size_changed);
  620. /* inode change will produce dirty node pages flushed by checkpoint */
  621. f2fs_balance_fs(F2FS_I_SB(inode), true);
  622. return err;
  623. }
  624. const struct inode_operations f2fs_file_inode_operations = {
  625. .getattr = f2fs_getattr,
  626. .setattr = f2fs_setattr,
  627. .get_acl = f2fs_get_acl,
  628. .set_acl = f2fs_set_acl,
  629. #ifdef CONFIG_F2FS_FS_XATTR
  630. .listxattr = f2fs_listxattr,
  631. #endif
  632. .fiemap = f2fs_fiemap,
  633. };
  634. static int fill_zero(struct inode *inode, pgoff_t index,
  635. loff_t start, loff_t len)
  636. {
  637. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  638. struct page *page;
  639. if (!len)
  640. return 0;
  641. f2fs_balance_fs(sbi, true);
  642. f2fs_lock_op(sbi);
  643. page = get_new_data_page(inode, NULL, index, false);
  644. f2fs_unlock_op(sbi);
  645. if (IS_ERR(page))
  646. return PTR_ERR(page);
  647. f2fs_wait_on_page_writeback(page, DATA, true);
  648. zero_user(page, start, len);
  649. set_page_dirty(page);
  650. f2fs_put_page(page, 1);
  651. return 0;
  652. }
  653. int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
  654. {
  655. int err;
  656. while (pg_start < pg_end) {
  657. struct dnode_of_data dn;
  658. pgoff_t end_offset, count;
  659. set_new_dnode(&dn, inode, NULL, NULL, 0);
  660. err = get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
  661. if (err) {
  662. if (err == -ENOENT) {
  663. pg_start++;
  664. continue;
  665. }
  666. return err;
  667. }
  668. end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
  669. count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
  670. f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
  671. truncate_data_blocks_range(&dn, count);
  672. f2fs_put_dnode(&dn);
  673. pg_start += count;
  674. }
  675. return 0;
  676. }
  677. static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
  678. {
  679. pgoff_t pg_start, pg_end;
  680. loff_t off_start, off_end;
  681. int ret;
  682. ret = f2fs_convert_inline_inode(inode);
  683. if (ret)
  684. return ret;
  685. pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
  686. pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
  687. off_start = offset & (PAGE_SIZE - 1);
  688. off_end = (offset + len) & (PAGE_SIZE - 1);
  689. if (pg_start == pg_end) {
  690. ret = fill_zero(inode, pg_start, off_start,
  691. off_end - off_start);
  692. if (ret)
  693. return ret;
  694. } else {
  695. if (off_start) {
  696. ret = fill_zero(inode, pg_start++, off_start,
  697. PAGE_SIZE - off_start);
  698. if (ret)
  699. return ret;
  700. }
  701. if (off_end) {
  702. ret = fill_zero(inode, pg_end, 0, off_end);
  703. if (ret)
  704. return ret;
  705. }
  706. if (pg_start < pg_end) {
  707. struct address_space *mapping = inode->i_mapping;
  708. loff_t blk_start, blk_end;
  709. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  710. f2fs_balance_fs(sbi, true);
  711. blk_start = (loff_t)pg_start << PAGE_SHIFT;
  712. blk_end = (loff_t)pg_end << PAGE_SHIFT;
  713. truncate_inode_pages_range(mapping, blk_start,
  714. blk_end - 1);
  715. f2fs_lock_op(sbi);
  716. ret = truncate_hole(inode, pg_start, pg_end);
  717. f2fs_unlock_op(sbi);
  718. }
  719. }
  720. return ret;
  721. }
  722. static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
  723. int *do_replace, pgoff_t off, pgoff_t len)
  724. {
  725. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  726. struct dnode_of_data dn;
  727. int ret, done, i;
  728. next_dnode:
  729. set_new_dnode(&dn, inode, NULL, NULL, 0);
  730. ret = get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
  731. if (ret && ret != -ENOENT) {
  732. return ret;
  733. } else if (ret == -ENOENT) {
  734. if (dn.max_level == 0)
  735. return -ENOENT;
  736. done = min((pgoff_t)ADDRS_PER_BLOCK - dn.ofs_in_node, len);
  737. blkaddr += done;
  738. do_replace += done;
  739. goto next;
  740. }
  741. done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
  742. dn.ofs_in_node, len);
  743. for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
  744. *blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
  745. if (!is_checkpointed_data(sbi, *blkaddr)) {
  746. if (test_opt(sbi, LFS)) {
  747. f2fs_put_dnode(&dn);
  748. return -ENOTSUPP;
  749. }
  750. /* do not invalidate this block address */
  751. f2fs_update_data_blkaddr(&dn, NULL_ADDR);
  752. *do_replace = 1;
  753. }
  754. }
  755. f2fs_put_dnode(&dn);
  756. next:
  757. len -= done;
  758. off += done;
  759. if (len)
  760. goto next_dnode;
  761. return 0;
  762. }
  763. static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
  764. int *do_replace, pgoff_t off, int len)
  765. {
  766. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  767. struct dnode_of_data dn;
  768. int ret, i;
  769. for (i = 0; i < len; i++, do_replace++, blkaddr++) {
  770. if (*do_replace == 0)
  771. continue;
  772. set_new_dnode(&dn, inode, NULL, NULL, 0);
  773. ret = get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
  774. if (ret) {
  775. dec_valid_block_count(sbi, inode, 1);
  776. invalidate_blocks(sbi, *blkaddr);
  777. } else {
  778. f2fs_update_data_blkaddr(&dn, *blkaddr);
  779. }
  780. f2fs_put_dnode(&dn);
  781. }
  782. return 0;
  783. }
  784. static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
  785. block_t *blkaddr, int *do_replace,
  786. pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
  787. {
  788. struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
  789. pgoff_t i = 0;
  790. int ret;
  791. while (i < len) {
  792. if (blkaddr[i] == NULL_ADDR && !full) {
  793. i++;
  794. continue;
  795. }
  796. if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
  797. struct dnode_of_data dn;
  798. struct node_info ni;
  799. size_t new_size;
  800. pgoff_t ilen;
  801. set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
  802. ret = get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
  803. if (ret)
  804. return ret;
  805. get_node_info(sbi, dn.nid, &ni);
  806. ilen = min((pgoff_t)
  807. ADDRS_PER_PAGE(dn.node_page, dst_inode) -
  808. dn.ofs_in_node, len - i);
  809. do {
  810. dn.data_blkaddr = datablock_addr(dn.node_page,
  811. dn.ofs_in_node);
  812. truncate_data_blocks_range(&dn, 1);
  813. if (do_replace[i]) {
  814. f2fs_i_blocks_write(src_inode,
  815. 1, false);
  816. f2fs_i_blocks_write(dst_inode,
  817. 1, true);
  818. f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
  819. blkaddr[i], ni.version, true, false);
  820. do_replace[i] = 0;
  821. }
  822. dn.ofs_in_node++;
  823. i++;
  824. new_size = (dst + i) << PAGE_SHIFT;
  825. if (dst_inode->i_size < new_size)
  826. f2fs_i_size_write(dst_inode, new_size);
  827. } while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
  828. f2fs_put_dnode(&dn);
  829. } else {
  830. struct page *psrc, *pdst;
  831. psrc = get_lock_data_page(src_inode, src + i, true);
  832. if (IS_ERR(psrc))
  833. return PTR_ERR(psrc);
  834. pdst = get_new_data_page(dst_inode, NULL, dst + i,
  835. true);
  836. if (IS_ERR(pdst)) {
  837. f2fs_put_page(psrc, 1);
  838. return PTR_ERR(pdst);
  839. }
  840. f2fs_copy_page(psrc, pdst);
  841. set_page_dirty(pdst);
  842. f2fs_put_page(pdst, 1);
  843. f2fs_put_page(psrc, 1);
  844. ret = truncate_hole(src_inode, src + i, src + i + 1);
  845. if (ret)
  846. return ret;
  847. i++;
  848. }
  849. }
  850. return 0;
  851. }
  852. static int __exchange_data_block(struct inode *src_inode,
  853. struct inode *dst_inode, pgoff_t src, pgoff_t dst,
  854. pgoff_t len, bool full)
  855. {
  856. block_t *src_blkaddr;
  857. int *do_replace;
  858. pgoff_t olen;
  859. int ret;
  860. while (len) {
  861. olen = min((pgoff_t)4 * ADDRS_PER_BLOCK, len);
  862. src_blkaddr = f2fs_kvzalloc(sizeof(block_t) * olen, GFP_KERNEL);
  863. if (!src_blkaddr)
  864. return -ENOMEM;
  865. do_replace = f2fs_kvzalloc(sizeof(int) * olen, GFP_KERNEL);
  866. if (!do_replace) {
  867. kvfree(src_blkaddr);
  868. return -ENOMEM;
  869. }
  870. ret = __read_out_blkaddrs(src_inode, src_blkaddr,
  871. do_replace, src, olen);
  872. if (ret)
  873. goto roll_back;
  874. ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
  875. do_replace, src, dst, olen, full);
  876. if (ret)
  877. goto roll_back;
  878. src += olen;
  879. dst += olen;
  880. len -= olen;
  881. kvfree(src_blkaddr);
  882. kvfree(do_replace);
  883. }
  884. return 0;
  885. roll_back:
  886. __roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, len);
  887. kvfree(src_blkaddr);
  888. kvfree(do_replace);
  889. return ret;
  890. }
  891. static int f2fs_do_collapse(struct inode *inode, pgoff_t start, pgoff_t end)
  892. {
  893. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  894. pgoff_t nrpages = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
  895. int ret;
  896. f2fs_balance_fs(sbi, true);
  897. f2fs_lock_op(sbi);
  898. f2fs_drop_extent_tree(inode);
  899. ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
  900. f2fs_unlock_op(sbi);
  901. return ret;
  902. }
  903. static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
  904. {
  905. pgoff_t pg_start, pg_end;
  906. loff_t new_size;
  907. int ret;
  908. if (offset + len >= i_size_read(inode))
  909. return -EINVAL;
  910. /* collapse range should be aligned to block size of f2fs. */
  911. if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
  912. return -EINVAL;
  913. ret = f2fs_convert_inline_inode(inode);
  914. if (ret)
  915. return ret;
  916. pg_start = offset >> PAGE_SHIFT;
  917. pg_end = (offset + len) >> PAGE_SHIFT;
  918. /* write out all dirty pages from offset */
  919. ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
  920. if (ret)
  921. return ret;
  922. truncate_pagecache(inode, offset);
  923. ret = f2fs_do_collapse(inode, pg_start, pg_end);
  924. if (ret)
  925. return ret;
  926. /* write out all moved pages, if possible */
  927. filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
  928. truncate_pagecache(inode, offset);
  929. new_size = i_size_read(inode) - len;
  930. truncate_pagecache(inode, new_size);
  931. ret = truncate_blocks(inode, new_size, true);
  932. if (!ret)
  933. f2fs_i_size_write(inode, new_size);
  934. return ret;
  935. }
  936. static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
  937. pgoff_t end)
  938. {
  939. struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
  940. pgoff_t index = start;
  941. unsigned int ofs_in_node = dn->ofs_in_node;
  942. blkcnt_t count = 0;
  943. int ret;
  944. for (; index < end; index++, dn->ofs_in_node++) {
  945. if (datablock_addr(dn->node_page, dn->ofs_in_node) == NULL_ADDR)
  946. count++;
  947. }
  948. dn->ofs_in_node = ofs_in_node;
  949. ret = reserve_new_blocks(dn, count);
  950. if (ret)
  951. return ret;
  952. dn->ofs_in_node = ofs_in_node;
  953. for (index = start; index < end; index++, dn->ofs_in_node++) {
  954. dn->data_blkaddr =
  955. datablock_addr(dn->node_page, dn->ofs_in_node);
  956. /*
  957. * reserve_new_blocks will not guarantee entire block
  958. * allocation.
  959. */
  960. if (dn->data_blkaddr == NULL_ADDR) {
  961. ret = -ENOSPC;
  962. break;
  963. }
  964. if (dn->data_blkaddr != NEW_ADDR) {
  965. invalidate_blocks(sbi, dn->data_blkaddr);
  966. dn->data_blkaddr = NEW_ADDR;
  967. set_data_blkaddr(dn);
  968. }
  969. }
  970. f2fs_update_extent_cache_range(dn, start, 0, index - start);
  971. return ret;
  972. }
  973. static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
  974. int mode)
  975. {
  976. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  977. struct address_space *mapping = inode->i_mapping;
  978. pgoff_t index, pg_start, pg_end;
  979. loff_t new_size = i_size_read(inode);
  980. loff_t off_start, off_end;
  981. int ret = 0;
  982. ret = inode_newsize_ok(inode, (len + offset));
  983. if (ret)
  984. return ret;
  985. ret = f2fs_convert_inline_inode(inode);
  986. if (ret)
  987. return ret;
  988. ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
  989. if (ret)
  990. return ret;
  991. truncate_pagecache_range(inode, offset, offset + len - 1);
  992. pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
  993. pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
  994. off_start = offset & (PAGE_SIZE - 1);
  995. off_end = (offset + len) & (PAGE_SIZE - 1);
  996. if (pg_start == pg_end) {
  997. ret = fill_zero(inode, pg_start, off_start,
  998. off_end - off_start);
  999. if (ret)
  1000. return ret;
  1001. if (offset + len > new_size)
  1002. new_size = offset + len;
  1003. new_size = max_t(loff_t, new_size, offset + len);
  1004. } else {
  1005. if (off_start) {
  1006. ret = fill_zero(inode, pg_start++, off_start,
  1007. PAGE_SIZE - off_start);
  1008. if (ret)
  1009. return ret;
  1010. new_size = max_t(loff_t, new_size,
  1011. (loff_t)pg_start << PAGE_SHIFT);
  1012. }
  1013. for (index = pg_start; index < pg_end;) {
  1014. struct dnode_of_data dn;
  1015. unsigned int end_offset;
  1016. pgoff_t end;
  1017. f2fs_lock_op(sbi);
  1018. set_new_dnode(&dn, inode, NULL, NULL, 0);
  1019. ret = get_dnode_of_data(&dn, index, ALLOC_NODE);
  1020. if (ret) {
  1021. f2fs_unlock_op(sbi);
  1022. goto out;
  1023. }
  1024. end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
  1025. end = min(pg_end, end_offset - dn.ofs_in_node + index);
  1026. ret = f2fs_do_zero_range(&dn, index, end);
  1027. f2fs_put_dnode(&dn);
  1028. f2fs_unlock_op(sbi);
  1029. f2fs_balance_fs(sbi, dn.node_changed);
  1030. if (ret)
  1031. goto out;
  1032. index = end;
  1033. new_size = max_t(loff_t, new_size,
  1034. (loff_t)index << PAGE_SHIFT);
  1035. }
  1036. if (off_end) {
  1037. ret = fill_zero(inode, pg_end, 0, off_end);
  1038. if (ret)
  1039. goto out;
  1040. new_size = max_t(loff_t, new_size, offset + len);
  1041. }
  1042. }
  1043. out:
  1044. if (!(mode & FALLOC_FL_KEEP_SIZE) && i_size_read(inode) < new_size)
  1045. f2fs_i_size_write(inode, new_size);
  1046. return ret;
  1047. }
  1048. static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
  1049. {
  1050. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1051. pgoff_t nr, pg_start, pg_end, delta, idx;
  1052. loff_t new_size;
  1053. int ret = 0;
  1054. new_size = i_size_read(inode) + len;
  1055. if (new_size > inode->i_sb->s_maxbytes)
  1056. return -EFBIG;
  1057. if (offset >= i_size_read(inode))
  1058. return -EINVAL;
  1059. /* insert range should be aligned to block size of f2fs. */
  1060. if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
  1061. return -EINVAL;
  1062. ret = f2fs_convert_inline_inode(inode);
  1063. if (ret)
  1064. return ret;
  1065. f2fs_balance_fs(sbi, true);
  1066. ret = truncate_blocks(inode, i_size_read(inode), true);
  1067. if (ret)
  1068. return ret;
  1069. /* write out all dirty pages from offset */
  1070. ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
  1071. if (ret)
  1072. return ret;
  1073. truncate_pagecache(inode, offset);
  1074. pg_start = offset >> PAGE_SHIFT;
  1075. pg_end = (offset + len) >> PAGE_SHIFT;
  1076. delta = pg_end - pg_start;
  1077. idx = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
  1078. while (!ret && idx > pg_start) {
  1079. nr = idx - pg_start;
  1080. if (nr > delta)
  1081. nr = delta;
  1082. idx -= nr;
  1083. f2fs_lock_op(sbi);
  1084. f2fs_drop_extent_tree(inode);
  1085. ret = __exchange_data_block(inode, inode, idx,
  1086. idx + delta, nr, false);
  1087. f2fs_unlock_op(sbi);
  1088. }
  1089. /* write out all moved pages, if possible */
  1090. filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
  1091. truncate_pagecache(inode, offset);
  1092. if (!ret)
  1093. f2fs_i_size_write(inode, new_size);
  1094. return ret;
  1095. }
  1096. static int expand_inode_data(struct inode *inode, loff_t offset,
  1097. loff_t len, int mode)
  1098. {
  1099. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1100. struct f2fs_map_blocks map = { .m_next_pgofs = NULL };
  1101. pgoff_t pg_end;
  1102. loff_t new_size = i_size_read(inode);
  1103. loff_t off_end;
  1104. int err;
  1105. err = inode_newsize_ok(inode, (len + offset));
  1106. if (err)
  1107. return err;
  1108. err = f2fs_convert_inline_inode(inode);
  1109. if (err)
  1110. return err;
  1111. f2fs_balance_fs(sbi, true);
  1112. pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
  1113. off_end = (offset + len) & (PAGE_SIZE - 1);
  1114. map.m_lblk = ((unsigned long long)offset) >> PAGE_SHIFT;
  1115. map.m_len = pg_end - map.m_lblk;
  1116. if (off_end)
  1117. map.m_len++;
  1118. err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
  1119. if (err) {
  1120. pgoff_t last_off;
  1121. if (!map.m_len)
  1122. return err;
  1123. last_off = map.m_lblk + map.m_len - 1;
  1124. /* update new size to the failed position */
  1125. new_size = (last_off == pg_end) ? offset + len:
  1126. (loff_t)(last_off + 1) << PAGE_SHIFT;
  1127. } else {
  1128. new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
  1129. }
  1130. if (!(mode & FALLOC_FL_KEEP_SIZE) && i_size_read(inode) < new_size)
  1131. f2fs_i_size_write(inode, new_size);
  1132. return err;
  1133. }
  1134. static long f2fs_fallocate(struct file *file, int mode,
  1135. loff_t offset, loff_t len)
  1136. {
  1137. struct inode *inode = file_inode(file);
  1138. long ret = 0;
  1139. /* f2fs only support ->fallocate for regular file */
  1140. if (!S_ISREG(inode->i_mode))
  1141. return -EINVAL;
  1142. if (f2fs_encrypted_inode(inode) &&
  1143. (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
  1144. return -EOPNOTSUPP;
  1145. if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
  1146. FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
  1147. FALLOC_FL_INSERT_RANGE))
  1148. return -EOPNOTSUPP;
  1149. inode_lock(inode);
  1150. if (mode & FALLOC_FL_PUNCH_HOLE) {
  1151. if (offset >= inode->i_size)
  1152. goto out;
  1153. ret = punch_hole(inode, offset, len);
  1154. } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
  1155. ret = f2fs_collapse_range(inode, offset, len);
  1156. } else if (mode & FALLOC_FL_ZERO_RANGE) {
  1157. ret = f2fs_zero_range(inode, offset, len, mode);
  1158. } else if (mode & FALLOC_FL_INSERT_RANGE) {
  1159. ret = f2fs_insert_range(inode, offset, len);
  1160. } else {
  1161. ret = expand_inode_data(inode, offset, len, mode);
  1162. }
  1163. if (!ret) {
  1164. inode->i_mtime = inode->i_ctime = current_time(inode);
  1165. f2fs_mark_inode_dirty_sync(inode, false);
  1166. if (mode & FALLOC_FL_KEEP_SIZE)
  1167. file_set_keep_isize(inode);
  1168. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  1169. }
  1170. out:
  1171. inode_unlock(inode);
  1172. trace_f2fs_fallocate(inode, mode, offset, len, ret);
  1173. return ret;
  1174. }
  1175. static int f2fs_release_file(struct inode *inode, struct file *filp)
  1176. {
  1177. /*
  1178. * f2fs_relase_file is called at every close calls. So we should
  1179. * not drop any inmemory pages by close called by other process.
  1180. */
  1181. if (!(filp->f_mode & FMODE_WRITE) ||
  1182. atomic_read(&inode->i_writecount) != 1)
  1183. return 0;
  1184. /* some remained atomic pages should discarded */
  1185. if (f2fs_is_atomic_file(inode))
  1186. drop_inmem_pages(inode);
  1187. if (f2fs_is_volatile_file(inode)) {
  1188. clear_inode_flag(inode, FI_VOLATILE_FILE);
  1189. set_inode_flag(inode, FI_DROP_CACHE);
  1190. filemap_fdatawrite(inode->i_mapping);
  1191. clear_inode_flag(inode, FI_DROP_CACHE);
  1192. }
  1193. return 0;
  1194. }
  1195. #define F2FS_REG_FLMASK (~(FS_DIRSYNC_FL | FS_TOPDIR_FL))
  1196. #define F2FS_OTHER_FLMASK (FS_NODUMP_FL | FS_NOATIME_FL)
  1197. static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
  1198. {
  1199. if (S_ISDIR(mode))
  1200. return flags;
  1201. else if (S_ISREG(mode))
  1202. return flags & F2FS_REG_FLMASK;
  1203. else
  1204. return flags & F2FS_OTHER_FLMASK;
  1205. }
  1206. static int f2fs_ioc_getflags(struct file *filp, unsigned long arg)
  1207. {
  1208. struct inode *inode = file_inode(filp);
  1209. struct f2fs_inode_info *fi = F2FS_I(inode);
  1210. unsigned int flags = fi->i_flags & FS_FL_USER_VISIBLE;
  1211. return put_user(flags, (int __user *)arg);
  1212. }
  1213. static int f2fs_ioc_setflags(struct file *filp, unsigned long arg)
  1214. {
  1215. struct inode *inode = file_inode(filp);
  1216. struct f2fs_inode_info *fi = F2FS_I(inode);
  1217. unsigned int flags;
  1218. unsigned int oldflags;
  1219. int ret;
  1220. if (!inode_owner_or_capable(inode))
  1221. return -EACCES;
  1222. if (get_user(flags, (int __user *)arg))
  1223. return -EFAULT;
  1224. ret = mnt_want_write_file(filp);
  1225. if (ret)
  1226. return ret;
  1227. flags = f2fs_mask_flags(inode->i_mode, flags);
  1228. inode_lock(inode);
  1229. oldflags = fi->i_flags;
  1230. if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
  1231. if (!capable(CAP_LINUX_IMMUTABLE)) {
  1232. inode_unlock(inode);
  1233. ret = -EPERM;
  1234. goto out;
  1235. }
  1236. }
  1237. flags = flags & FS_FL_USER_MODIFIABLE;
  1238. flags |= oldflags & ~FS_FL_USER_MODIFIABLE;
  1239. fi->i_flags = flags;
  1240. inode_unlock(inode);
  1241. inode->i_ctime = current_time(inode);
  1242. f2fs_set_inode_flags(inode);
  1243. out:
  1244. mnt_drop_write_file(filp);
  1245. return ret;
  1246. }
  1247. static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
  1248. {
  1249. struct inode *inode = file_inode(filp);
  1250. return put_user(inode->i_generation, (int __user *)arg);
  1251. }
  1252. static int f2fs_ioc_start_atomic_write(struct file *filp)
  1253. {
  1254. struct inode *inode = file_inode(filp);
  1255. int ret;
  1256. if (!inode_owner_or_capable(inode))
  1257. return -EACCES;
  1258. ret = mnt_want_write_file(filp);
  1259. if (ret)
  1260. return ret;
  1261. inode_lock(inode);
  1262. if (f2fs_is_atomic_file(inode))
  1263. goto out;
  1264. ret = f2fs_convert_inline_inode(inode);
  1265. if (ret)
  1266. goto out;
  1267. set_inode_flag(inode, FI_ATOMIC_FILE);
  1268. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  1269. if (!get_dirty_pages(inode))
  1270. goto out;
  1271. f2fs_msg(F2FS_I_SB(inode)->sb, KERN_WARNING,
  1272. "Unexpected flush for atomic writes: ino=%lu, npages=%u",
  1273. inode->i_ino, get_dirty_pages(inode));
  1274. ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
  1275. if (ret)
  1276. clear_inode_flag(inode, FI_ATOMIC_FILE);
  1277. out:
  1278. stat_inc_atomic_write(inode);
  1279. stat_update_max_atomic_write(inode);
  1280. inode_unlock(inode);
  1281. mnt_drop_write_file(filp);
  1282. return ret;
  1283. }
  1284. static int f2fs_ioc_commit_atomic_write(struct file *filp)
  1285. {
  1286. struct inode *inode = file_inode(filp);
  1287. int ret;
  1288. if (!inode_owner_or_capable(inode))
  1289. return -EACCES;
  1290. ret = mnt_want_write_file(filp);
  1291. if (ret)
  1292. return ret;
  1293. inode_lock(inode);
  1294. if (f2fs_is_volatile_file(inode))
  1295. goto err_out;
  1296. if (f2fs_is_atomic_file(inode)) {
  1297. ret = commit_inmem_pages(inode);
  1298. if (ret)
  1299. goto err_out;
  1300. ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
  1301. if (!ret) {
  1302. clear_inode_flag(inode, FI_ATOMIC_FILE);
  1303. stat_dec_atomic_write(inode);
  1304. }
  1305. } else {
  1306. ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
  1307. }
  1308. err_out:
  1309. inode_unlock(inode);
  1310. mnt_drop_write_file(filp);
  1311. return ret;
  1312. }
  1313. static int f2fs_ioc_start_volatile_write(struct file *filp)
  1314. {
  1315. struct inode *inode = file_inode(filp);
  1316. int ret;
  1317. if (!inode_owner_or_capable(inode))
  1318. return -EACCES;
  1319. ret = mnt_want_write_file(filp);
  1320. if (ret)
  1321. return ret;
  1322. inode_lock(inode);
  1323. if (f2fs_is_volatile_file(inode))
  1324. goto out;
  1325. ret = f2fs_convert_inline_inode(inode);
  1326. if (ret)
  1327. goto out;
  1328. set_inode_flag(inode, FI_VOLATILE_FILE);
  1329. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  1330. out:
  1331. inode_unlock(inode);
  1332. mnt_drop_write_file(filp);
  1333. return ret;
  1334. }
  1335. static int f2fs_ioc_release_volatile_write(struct file *filp)
  1336. {
  1337. struct inode *inode = file_inode(filp);
  1338. int ret;
  1339. if (!inode_owner_or_capable(inode))
  1340. return -EACCES;
  1341. ret = mnt_want_write_file(filp);
  1342. if (ret)
  1343. return ret;
  1344. inode_lock(inode);
  1345. if (!f2fs_is_volatile_file(inode))
  1346. goto out;
  1347. if (!f2fs_is_first_block_written(inode)) {
  1348. ret = truncate_partial_data_page(inode, 0, true);
  1349. goto out;
  1350. }
  1351. ret = punch_hole(inode, 0, F2FS_BLKSIZE);
  1352. out:
  1353. inode_unlock(inode);
  1354. mnt_drop_write_file(filp);
  1355. return ret;
  1356. }
  1357. static int f2fs_ioc_abort_volatile_write(struct file *filp)
  1358. {
  1359. struct inode *inode = file_inode(filp);
  1360. int ret;
  1361. if (!inode_owner_or_capable(inode))
  1362. return -EACCES;
  1363. ret = mnt_want_write_file(filp);
  1364. if (ret)
  1365. return ret;
  1366. inode_lock(inode);
  1367. if (f2fs_is_atomic_file(inode))
  1368. drop_inmem_pages(inode);
  1369. if (f2fs_is_volatile_file(inode)) {
  1370. clear_inode_flag(inode, FI_VOLATILE_FILE);
  1371. ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
  1372. }
  1373. inode_unlock(inode);
  1374. mnt_drop_write_file(filp);
  1375. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  1376. return ret;
  1377. }
  1378. static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
  1379. {
  1380. struct inode *inode = file_inode(filp);
  1381. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1382. struct super_block *sb = sbi->sb;
  1383. __u32 in;
  1384. int ret;
  1385. if (!capable(CAP_SYS_ADMIN))
  1386. return -EPERM;
  1387. if (get_user(in, (__u32 __user *)arg))
  1388. return -EFAULT;
  1389. ret = mnt_want_write_file(filp);
  1390. if (ret)
  1391. return ret;
  1392. switch (in) {
  1393. case F2FS_GOING_DOWN_FULLSYNC:
  1394. sb = freeze_bdev(sb->s_bdev);
  1395. if (sb && !IS_ERR(sb)) {
  1396. f2fs_stop_checkpoint(sbi, false);
  1397. thaw_bdev(sb->s_bdev, sb);
  1398. }
  1399. break;
  1400. case F2FS_GOING_DOWN_METASYNC:
  1401. /* do checkpoint only */
  1402. f2fs_sync_fs(sb, 1);
  1403. f2fs_stop_checkpoint(sbi, false);
  1404. break;
  1405. case F2FS_GOING_DOWN_NOSYNC:
  1406. f2fs_stop_checkpoint(sbi, false);
  1407. break;
  1408. case F2FS_GOING_DOWN_METAFLUSH:
  1409. sync_meta_pages(sbi, META, LONG_MAX);
  1410. f2fs_stop_checkpoint(sbi, false);
  1411. break;
  1412. default:
  1413. ret = -EINVAL;
  1414. goto out;
  1415. }
  1416. f2fs_update_time(sbi, REQ_TIME);
  1417. out:
  1418. mnt_drop_write_file(filp);
  1419. return ret;
  1420. }
  1421. static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
  1422. {
  1423. struct inode *inode = file_inode(filp);
  1424. struct super_block *sb = inode->i_sb;
  1425. struct request_queue *q = bdev_get_queue(sb->s_bdev);
  1426. struct fstrim_range range;
  1427. int ret;
  1428. if (!capable(CAP_SYS_ADMIN))
  1429. return -EPERM;
  1430. if (!blk_queue_discard(q))
  1431. return -EOPNOTSUPP;
  1432. if (copy_from_user(&range, (struct fstrim_range __user *)arg,
  1433. sizeof(range)))
  1434. return -EFAULT;
  1435. ret = mnt_want_write_file(filp);
  1436. if (ret)
  1437. return ret;
  1438. range.minlen = max((unsigned int)range.minlen,
  1439. q->limits.discard_granularity);
  1440. ret = f2fs_trim_fs(F2FS_SB(sb), &range);
  1441. mnt_drop_write_file(filp);
  1442. if (ret < 0)
  1443. return ret;
  1444. if (copy_to_user((struct fstrim_range __user *)arg, &range,
  1445. sizeof(range)))
  1446. return -EFAULT;
  1447. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  1448. return 0;
  1449. }
  1450. static bool uuid_is_nonzero(__u8 u[16])
  1451. {
  1452. int i;
  1453. for (i = 0; i < 16; i++)
  1454. if (u[i])
  1455. return true;
  1456. return false;
  1457. }
  1458. static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
  1459. {
  1460. struct inode *inode = file_inode(filp);
  1461. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  1462. return fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
  1463. }
  1464. static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
  1465. {
  1466. return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
  1467. }
  1468. static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
  1469. {
  1470. struct inode *inode = file_inode(filp);
  1471. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1472. int err;
  1473. if (!f2fs_sb_has_crypto(inode->i_sb))
  1474. return -EOPNOTSUPP;
  1475. if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
  1476. goto got_it;
  1477. err = mnt_want_write_file(filp);
  1478. if (err)
  1479. return err;
  1480. /* update superblock with uuid */
  1481. generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
  1482. err = f2fs_commit_super(sbi, false);
  1483. if (err) {
  1484. /* undo new data */
  1485. memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
  1486. mnt_drop_write_file(filp);
  1487. return err;
  1488. }
  1489. mnt_drop_write_file(filp);
  1490. got_it:
  1491. if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt,
  1492. 16))
  1493. return -EFAULT;
  1494. return 0;
  1495. }
  1496. static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
  1497. {
  1498. struct inode *inode = file_inode(filp);
  1499. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1500. __u32 sync;
  1501. int ret;
  1502. if (!capable(CAP_SYS_ADMIN))
  1503. return -EPERM;
  1504. if (get_user(sync, (__u32 __user *)arg))
  1505. return -EFAULT;
  1506. if (f2fs_readonly(sbi->sb))
  1507. return -EROFS;
  1508. ret = mnt_want_write_file(filp);
  1509. if (ret)
  1510. return ret;
  1511. if (!sync) {
  1512. if (!mutex_trylock(&sbi->gc_mutex)) {
  1513. ret = -EBUSY;
  1514. goto out;
  1515. }
  1516. } else {
  1517. mutex_lock(&sbi->gc_mutex);
  1518. }
  1519. ret = f2fs_gc(sbi, sync, true);
  1520. out:
  1521. mnt_drop_write_file(filp);
  1522. return ret;
  1523. }
  1524. static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg)
  1525. {
  1526. struct inode *inode = file_inode(filp);
  1527. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1528. int ret;
  1529. if (!capable(CAP_SYS_ADMIN))
  1530. return -EPERM;
  1531. if (f2fs_readonly(sbi->sb))
  1532. return -EROFS;
  1533. ret = mnt_want_write_file(filp);
  1534. if (ret)
  1535. return ret;
  1536. ret = f2fs_sync_fs(sbi->sb, 1);
  1537. mnt_drop_write_file(filp);
  1538. return ret;
  1539. }
  1540. static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
  1541. struct file *filp,
  1542. struct f2fs_defragment *range)
  1543. {
  1544. struct inode *inode = file_inode(filp);
  1545. struct f2fs_map_blocks map = { .m_next_pgofs = NULL };
  1546. struct extent_info ei = {0,0,0};
  1547. pgoff_t pg_start, pg_end;
  1548. unsigned int blk_per_seg = sbi->blocks_per_seg;
  1549. unsigned int total = 0, sec_num;
  1550. unsigned int pages_per_sec = sbi->segs_per_sec * blk_per_seg;
  1551. block_t blk_end = 0;
  1552. bool fragmented = false;
  1553. int err;
  1554. /* if in-place-update policy is enabled, don't waste time here */
  1555. if (need_inplace_update(inode))
  1556. return -EINVAL;
  1557. pg_start = range->start >> PAGE_SHIFT;
  1558. pg_end = (range->start + range->len) >> PAGE_SHIFT;
  1559. f2fs_balance_fs(sbi, true);
  1560. inode_lock(inode);
  1561. /* writeback all dirty pages in the range */
  1562. err = filemap_write_and_wait_range(inode->i_mapping, range->start,
  1563. range->start + range->len - 1);
  1564. if (err)
  1565. goto out;
  1566. /*
  1567. * lookup mapping info in extent cache, skip defragmenting if physical
  1568. * block addresses are continuous.
  1569. */
  1570. if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) {
  1571. if (ei.fofs + ei.len >= pg_end)
  1572. goto out;
  1573. }
  1574. map.m_lblk = pg_start;
  1575. /*
  1576. * lookup mapping info in dnode page cache, skip defragmenting if all
  1577. * physical block addresses are continuous even if there are hole(s)
  1578. * in logical blocks.
  1579. */
  1580. while (map.m_lblk < pg_end) {
  1581. map.m_len = pg_end - map.m_lblk;
  1582. err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_READ);
  1583. if (err)
  1584. goto out;
  1585. if (!(map.m_flags & F2FS_MAP_FLAGS)) {
  1586. map.m_lblk++;
  1587. continue;
  1588. }
  1589. if (blk_end && blk_end != map.m_pblk) {
  1590. fragmented = true;
  1591. break;
  1592. }
  1593. blk_end = map.m_pblk + map.m_len;
  1594. map.m_lblk += map.m_len;
  1595. }
  1596. if (!fragmented)
  1597. goto out;
  1598. map.m_lblk = pg_start;
  1599. map.m_len = pg_end - pg_start;
  1600. sec_num = (map.m_len + pages_per_sec - 1) / pages_per_sec;
  1601. /*
  1602. * make sure there are enough free section for LFS allocation, this can
  1603. * avoid defragment running in SSR mode when free section are allocated
  1604. * intensively
  1605. */
  1606. if (has_not_enough_free_secs(sbi, 0, sec_num)) {
  1607. err = -EAGAIN;
  1608. goto out;
  1609. }
  1610. while (map.m_lblk < pg_end) {
  1611. pgoff_t idx;
  1612. int cnt = 0;
  1613. do_map:
  1614. map.m_len = pg_end - map.m_lblk;
  1615. err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_READ);
  1616. if (err)
  1617. goto clear_out;
  1618. if (!(map.m_flags & F2FS_MAP_FLAGS)) {
  1619. map.m_lblk++;
  1620. continue;
  1621. }
  1622. set_inode_flag(inode, FI_DO_DEFRAG);
  1623. idx = map.m_lblk;
  1624. while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) {
  1625. struct page *page;
  1626. page = get_lock_data_page(inode, idx, true);
  1627. if (IS_ERR(page)) {
  1628. err = PTR_ERR(page);
  1629. goto clear_out;
  1630. }
  1631. set_page_dirty(page);
  1632. f2fs_put_page(page, 1);
  1633. idx++;
  1634. cnt++;
  1635. total++;
  1636. }
  1637. map.m_lblk = idx;
  1638. if (idx < pg_end && cnt < blk_per_seg)
  1639. goto do_map;
  1640. clear_inode_flag(inode, FI_DO_DEFRAG);
  1641. err = filemap_fdatawrite(inode->i_mapping);
  1642. if (err)
  1643. goto out;
  1644. }
  1645. clear_out:
  1646. clear_inode_flag(inode, FI_DO_DEFRAG);
  1647. out:
  1648. inode_unlock(inode);
  1649. if (!err)
  1650. range->len = (u64)total << PAGE_SHIFT;
  1651. return err;
  1652. }
  1653. static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
  1654. {
  1655. struct inode *inode = file_inode(filp);
  1656. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1657. struct f2fs_defragment range;
  1658. int err;
  1659. if (!capable(CAP_SYS_ADMIN))
  1660. return -EPERM;
  1661. if (!S_ISREG(inode->i_mode))
  1662. return -EINVAL;
  1663. err = mnt_want_write_file(filp);
  1664. if (err)
  1665. return err;
  1666. if (f2fs_readonly(sbi->sb)) {
  1667. err = -EROFS;
  1668. goto out;
  1669. }
  1670. if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
  1671. sizeof(range))) {
  1672. err = -EFAULT;
  1673. goto out;
  1674. }
  1675. /* verify alignment of offset & size */
  1676. if (range.start & (F2FS_BLKSIZE - 1) ||
  1677. range.len & (F2FS_BLKSIZE - 1)) {
  1678. err = -EINVAL;
  1679. goto out;
  1680. }
  1681. err = f2fs_defragment_range(sbi, filp, &range);
  1682. f2fs_update_time(sbi, REQ_TIME);
  1683. if (err < 0)
  1684. goto out;
  1685. if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
  1686. sizeof(range)))
  1687. err = -EFAULT;
  1688. out:
  1689. mnt_drop_write_file(filp);
  1690. return err;
  1691. }
  1692. static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
  1693. struct file *file_out, loff_t pos_out, size_t len)
  1694. {
  1695. struct inode *src = file_inode(file_in);
  1696. struct inode *dst = file_inode(file_out);
  1697. struct f2fs_sb_info *sbi = F2FS_I_SB(src);
  1698. size_t olen = len, dst_max_i_size = 0;
  1699. size_t dst_osize;
  1700. int ret;
  1701. if (file_in->f_path.mnt != file_out->f_path.mnt ||
  1702. src->i_sb != dst->i_sb)
  1703. return -EXDEV;
  1704. if (unlikely(f2fs_readonly(src->i_sb)))
  1705. return -EROFS;
  1706. if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
  1707. return -EINVAL;
  1708. if (f2fs_encrypted_inode(src) || f2fs_encrypted_inode(dst))
  1709. return -EOPNOTSUPP;
  1710. if (src == dst) {
  1711. if (pos_in == pos_out)
  1712. return 0;
  1713. if (pos_out > pos_in && pos_out < pos_in + len)
  1714. return -EINVAL;
  1715. }
  1716. inode_lock(src);
  1717. if (src != dst) {
  1718. if (!inode_trylock(dst)) {
  1719. ret = -EBUSY;
  1720. goto out;
  1721. }
  1722. }
  1723. ret = -EINVAL;
  1724. if (pos_in + len > src->i_size || pos_in + len < pos_in)
  1725. goto out_unlock;
  1726. if (len == 0)
  1727. olen = len = src->i_size - pos_in;
  1728. if (pos_in + len == src->i_size)
  1729. len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
  1730. if (len == 0) {
  1731. ret = 0;
  1732. goto out_unlock;
  1733. }
  1734. dst_osize = dst->i_size;
  1735. if (pos_out + olen > dst->i_size)
  1736. dst_max_i_size = pos_out + olen;
  1737. /* verify the end result is block aligned */
  1738. if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
  1739. !IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
  1740. !IS_ALIGNED(pos_out, F2FS_BLKSIZE))
  1741. goto out_unlock;
  1742. ret = f2fs_convert_inline_inode(src);
  1743. if (ret)
  1744. goto out_unlock;
  1745. ret = f2fs_convert_inline_inode(dst);
  1746. if (ret)
  1747. goto out_unlock;
  1748. /* write out all dirty pages from offset */
  1749. ret = filemap_write_and_wait_range(src->i_mapping,
  1750. pos_in, pos_in + len);
  1751. if (ret)
  1752. goto out_unlock;
  1753. ret = filemap_write_and_wait_range(dst->i_mapping,
  1754. pos_out, pos_out + len);
  1755. if (ret)
  1756. goto out_unlock;
  1757. f2fs_balance_fs(sbi, true);
  1758. f2fs_lock_op(sbi);
  1759. ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS,
  1760. pos_out >> F2FS_BLKSIZE_BITS,
  1761. len >> F2FS_BLKSIZE_BITS, false);
  1762. if (!ret) {
  1763. if (dst_max_i_size)
  1764. f2fs_i_size_write(dst, dst_max_i_size);
  1765. else if (dst_osize != dst->i_size)
  1766. f2fs_i_size_write(dst, dst_osize);
  1767. }
  1768. f2fs_unlock_op(sbi);
  1769. out_unlock:
  1770. if (src != dst)
  1771. inode_unlock(dst);
  1772. out:
  1773. inode_unlock(src);
  1774. return ret;
  1775. }
  1776. static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
  1777. {
  1778. struct f2fs_move_range range;
  1779. struct fd dst;
  1780. int err;
  1781. if (!(filp->f_mode & FMODE_READ) ||
  1782. !(filp->f_mode & FMODE_WRITE))
  1783. return -EBADF;
  1784. if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
  1785. sizeof(range)))
  1786. return -EFAULT;
  1787. dst = fdget(range.dst_fd);
  1788. if (!dst.file)
  1789. return -EBADF;
  1790. if (!(dst.file->f_mode & FMODE_WRITE)) {
  1791. err = -EBADF;
  1792. goto err_out;
  1793. }
  1794. err = mnt_want_write_file(filp);
  1795. if (err)
  1796. goto err_out;
  1797. err = f2fs_move_file_range(filp, range.pos_in, dst.file,
  1798. range.pos_out, range.len);
  1799. mnt_drop_write_file(filp);
  1800. if (copy_to_user((struct f2fs_move_range __user *)arg,
  1801. &range, sizeof(range)))
  1802. err = -EFAULT;
  1803. err_out:
  1804. fdput(dst);
  1805. return err;
  1806. }
  1807. long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
  1808. {
  1809. switch (cmd) {
  1810. case F2FS_IOC_GETFLAGS:
  1811. return f2fs_ioc_getflags(filp, arg);
  1812. case F2FS_IOC_SETFLAGS:
  1813. return f2fs_ioc_setflags(filp, arg);
  1814. case F2FS_IOC_GETVERSION:
  1815. return f2fs_ioc_getversion(filp, arg);
  1816. case F2FS_IOC_START_ATOMIC_WRITE:
  1817. return f2fs_ioc_start_atomic_write(filp);
  1818. case F2FS_IOC_COMMIT_ATOMIC_WRITE:
  1819. return f2fs_ioc_commit_atomic_write(filp);
  1820. case F2FS_IOC_START_VOLATILE_WRITE:
  1821. return f2fs_ioc_start_volatile_write(filp);
  1822. case F2FS_IOC_RELEASE_VOLATILE_WRITE:
  1823. return f2fs_ioc_release_volatile_write(filp);
  1824. case F2FS_IOC_ABORT_VOLATILE_WRITE:
  1825. return f2fs_ioc_abort_volatile_write(filp);
  1826. case F2FS_IOC_SHUTDOWN:
  1827. return f2fs_ioc_shutdown(filp, arg);
  1828. case FITRIM:
  1829. return f2fs_ioc_fitrim(filp, arg);
  1830. case F2FS_IOC_SET_ENCRYPTION_POLICY:
  1831. return f2fs_ioc_set_encryption_policy(filp, arg);
  1832. case F2FS_IOC_GET_ENCRYPTION_POLICY:
  1833. return f2fs_ioc_get_encryption_policy(filp, arg);
  1834. case F2FS_IOC_GET_ENCRYPTION_PWSALT:
  1835. return f2fs_ioc_get_encryption_pwsalt(filp, arg);
  1836. case F2FS_IOC_GARBAGE_COLLECT:
  1837. return f2fs_ioc_gc(filp, arg);
  1838. case F2FS_IOC_WRITE_CHECKPOINT:
  1839. return f2fs_ioc_write_checkpoint(filp, arg);
  1840. case F2FS_IOC_DEFRAGMENT:
  1841. return f2fs_ioc_defragment(filp, arg);
  1842. case F2FS_IOC_MOVE_RANGE:
  1843. return f2fs_ioc_move_range(filp, arg);
  1844. default:
  1845. return -ENOTTY;
  1846. }
  1847. }
  1848. static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
  1849. {
  1850. struct file *file = iocb->ki_filp;
  1851. struct inode *inode = file_inode(file);
  1852. struct blk_plug plug;
  1853. ssize_t ret;
  1854. if (f2fs_encrypted_inode(inode) &&
  1855. !fscrypt_has_encryption_key(inode) &&
  1856. fscrypt_get_encryption_info(inode))
  1857. return -EACCES;
  1858. inode_lock(inode);
  1859. ret = generic_write_checks(iocb, from);
  1860. if (ret > 0) {
  1861. int err;
  1862. if (iov_iter_fault_in_readable(from, iov_iter_count(from)))
  1863. set_inode_flag(inode, FI_NO_PREALLOC);
  1864. err = f2fs_preallocate_blocks(iocb, from);
  1865. if (err) {
  1866. inode_unlock(inode);
  1867. return err;
  1868. }
  1869. blk_start_plug(&plug);
  1870. ret = __generic_file_write_iter(iocb, from);
  1871. blk_finish_plug(&plug);
  1872. clear_inode_flag(inode, FI_NO_PREALLOC);
  1873. }
  1874. inode_unlock(inode);
  1875. if (ret > 0)
  1876. ret = generic_write_sync(iocb, ret);
  1877. return ret;
  1878. }
  1879. #ifdef CONFIG_COMPAT
  1880. long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
  1881. {
  1882. switch (cmd) {
  1883. case F2FS_IOC32_GETFLAGS:
  1884. cmd = F2FS_IOC_GETFLAGS;
  1885. break;
  1886. case F2FS_IOC32_SETFLAGS:
  1887. cmd = F2FS_IOC_SETFLAGS;
  1888. break;
  1889. case F2FS_IOC32_GETVERSION:
  1890. cmd = F2FS_IOC_GETVERSION;
  1891. break;
  1892. case F2FS_IOC_START_ATOMIC_WRITE:
  1893. case F2FS_IOC_COMMIT_ATOMIC_WRITE:
  1894. case F2FS_IOC_START_VOLATILE_WRITE:
  1895. case F2FS_IOC_RELEASE_VOLATILE_WRITE:
  1896. case F2FS_IOC_ABORT_VOLATILE_WRITE:
  1897. case F2FS_IOC_SHUTDOWN:
  1898. case F2FS_IOC_SET_ENCRYPTION_POLICY:
  1899. case F2FS_IOC_GET_ENCRYPTION_PWSALT:
  1900. case F2FS_IOC_GET_ENCRYPTION_POLICY:
  1901. case F2FS_IOC_GARBAGE_COLLECT:
  1902. case F2FS_IOC_WRITE_CHECKPOINT:
  1903. case F2FS_IOC_DEFRAGMENT:
  1904. break;
  1905. case F2FS_IOC_MOVE_RANGE:
  1906. break;
  1907. default:
  1908. return -ENOIOCTLCMD;
  1909. }
  1910. return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
  1911. }
  1912. #endif
  1913. const struct file_operations f2fs_file_operations = {
  1914. .llseek = f2fs_llseek,
  1915. .read_iter = generic_file_read_iter,
  1916. .write_iter = f2fs_file_write_iter,
  1917. .open = f2fs_file_open,
  1918. .release = f2fs_release_file,
  1919. .mmap = f2fs_file_mmap,
  1920. .fsync = f2fs_sync_file,
  1921. .fallocate = f2fs_fallocate,
  1922. .unlocked_ioctl = f2fs_ioctl,
  1923. #ifdef CONFIG_COMPAT
  1924. .compat_ioctl = f2fs_compat_ioctl,
  1925. #endif
  1926. .splice_read = generic_file_splice_read,
  1927. .splice_write = iter_file_splice_write,
  1928. };