sdma_v3_0.c 48 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708
  1. /*
  2. * Copyright 2014 Advanced Micro Devices, Inc.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice shall be included in
  12. * all copies or substantial portions of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  17. * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20. * OTHER DEALINGS IN THE SOFTWARE.
  21. *
  22. * Authors: Alex Deucher
  23. */
  24. #include <linux/firmware.h>
  25. #include <drm/drmP.h>
  26. #include "amdgpu.h"
  27. #include "amdgpu_ucode.h"
  28. #include "amdgpu_trace.h"
  29. #include "vi.h"
  30. #include "vid.h"
  31. #include "oss/oss_3_0_d.h"
  32. #include "oss/oss_3_0_sh_mask.h"
  33. #include "gmc/gmc_8_1_d.h"
  34. #include "gmc/gmc_8_1_sh_mask.h"
  35. #include "gca/gfx_8_0_d.h"
  36. #include "gca/gfx_8_0_enum.h"
  37. #include "gca/gfx_8_0_sh_mask.h"
  38. #include "bif/bif_5_0_d.h"
  39. #include "bif/bif_5_0_sh_mask.h"
  40. #include "tonga_sdma_pkt_open.h"
  41. static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev);
  42. static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev);
  43. static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev);
  44. static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev);
  45. MODULE_FIRMWARE("amdgpu/tonga_sdma.bin");
  46. MODULE_FIRMWARE("amdgpu/tonga_sdma1.bin");
  47. MODULE_FIRMWARE("amdgpu/carrizo_sdma.bin");
  48. MODULE_FIRMWARE("amdgpu/carrizo_sdma1.bin");
  49. MODULE_FIRMWARE("amdgpu/fiji_sdma.bin");
  50. MODULE_FIRMWARE("amdgpu/fiji_sdma1.bin");
  51. MODULE_FIRMWARE("amdgpu/stoney_sdma.bin");
  52. MODULE_FIRMWARE("amdgpu/polaris10_sdma.bin");
  53. MODULE_FIRMWARE("amdgpu/polaris10_sdma1.bin");
  54. MODULE_FIRMWARE("amdgpu/polaris11_sdma.bin");
  55. MODULE_FIRMWARE("amdgpu/polaris11_sdma1.bin");
  56. static const u32 sdma_offsets[SDMA_MAX_INSTANCE] =
  57. {
  58. SDMA0_REGISTER_OFFSET,
  59. SDMA1_REGISTER_OFFSET
  60. };
  61. static const u32 golden_settings_tonga_a11[] =
  62. {
  63. mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  64. mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
  65. mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  66. mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  67. mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  68. mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
  69. mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
  70. mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  71. mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  72. mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  73. };
  74. static const u32 tonga_mgcg_cgcg_init[] =
  75. {
  76. mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
  77. mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
  78. };
  79. static const u32 golden_settings_fiji_a10[] =
  80. {
  81. mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  82. mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  83. mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  84. mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  85. mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
  86. mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  87. mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  88. mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  89. };
  90. static const u32 fiji_mgcg_cgcg_init[] =
  91. {
  92. mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
  93. mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
  94. };
  95. static const u32 golden_settings_polaris11_a11[] =
  96. {
  97. mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  98. mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
  99. mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  100. mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  101. mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  102. mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
  103. mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
  104. mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  105. mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  106. mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  107. };
  108. static const u32 golden_settings_polaris10_a11[] =
  109. {
  110. mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  111. mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
  112. mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  113. mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  114. mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  115. mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
  116. mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
  117. mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  118. mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  119. mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  120. };
  121. static const u32 cz_golden_settings_a11[] =
  122. {
  123. mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  124. mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
  125. mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
  126. mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
  127. mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
  128. mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
  129. mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
  130. mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
  131. mmSDMA1_GFX_IB_CNTL, 0x00000100, 0x00000100,
  132. mmSDMA1_POWER_CNTL, 0x00000800, 0x0003c800,
  133. mmSDMA1_RLC0_IB_CNTL, 0x00000100, 0x00000100,
  134. mmSDMA1_RLC1_IB_CNTL, 0x00000100, 0x00000100,
  135. };
  136. static const u32 cz_mgcg_cgcg_init[] =
  137. {
  138. mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
  139. mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
  140. };
  141. static const u32 stoney_golden_settings_a11[] =
  142. {
  143. mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
  144. mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
  145. mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
  146. mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
  147. };
  148. static const u32 stoney_mgcg_cgcg_init[] =
  149. {
  150. mmSDMA0_CLK_CTRL, 0xffffffff, 0x00000100,
  151. };
  152. /*
  153. * sDMA - System DMA
  154. * Starting with CIK, the GPU has new asynchronous
  155. * DMA engines. These engines are used for compute
  156. * and gfx. There are two DMA engines (SDMA0, SDMA1)
  157. * and each one supports 1 ring buffer used for gfx
  158. * and 2 queues used for compute.
  159. *
  160. * The programming model is very similar to the CP
  161. * (ring buffer, IBs, etc.), but sDMA has it's own
  162. * packet format that is different from the PM4 format
  163. * used by the CP. sDMA supports copying data, writing
  164. * embedded data, solid fills, and a number of other
  165. * things. It also has support for tiling/detiling of
  166. * buffers.
  167. */
  168. static void sdma_v3_0_init_golden_registers(struct amdgpu_device *adev)
  169. {
  170. switch (adev->asic_type) {
  171. case CHIP_FIJI:
  172. amdgpu_program_register_sequence(adev,
  173. fiji_mgcg_cgcg_init,
  174. (const u32)ARRAY_SIZE(fiji_mgcg_cgcg_init));
  175. amdgpu_program_register_sequence(adev,
  176. golden_settings_fiji_a10,
  177. (const u32)ARRAY_SIZE(golden_settings_fiji_a10));
  178. break;
  179. case CHIP_TONGA:
  180. amdgpu_program_register_sequence(adev,
  181. tonga_mgcg_cgcg_init,
  182. (const u32)ARRAY_SIZE(tonga_mgcg_cgcg_init));
  183. amdgpu_program_register_sequence(adev,
  184. golden_settings_tonga_a11,
  185. (const u32)ARRAY_SIZE(golden_settings_tonga_a11));
  186. break;
  187. case CHIP_POLARIS11:
  188. amdgpu_program_register_sequence(adev,
  189. golden_settings_polaris11_a11,
  190. (const u32)ARRAY_SIZE(golden_settings_polaris11_a11));
  191. break;
  192. case CHIP_POLARIS10:
  193. amdgpu_program_register_sequence(adev,
  194. golden_settings_polaris10_a11,
  195. (const u32)ARRAY_SIZE(golden_settings_polaris10_a11));
  196. break;
  197. case CHIP_CARRIZO:
  198. amdgpu_program_register_sequence(adev,
  199. cz_mgcg_cgcg_init,
  200. (const u32)ARRAY_SIZE(cz_mgcg_cgcg_init));
  201. amdgpu_program_register_sequence(adev,
  202. cz_golden_settings_a11,
  203. (const u32)ARRAY_SIZE(cz_golden_settings_a11));
  204. break;
  205. case CHIP_STONEY:
  206. amdgpu_program_register_sequence(adev,
  207. stoney_mgcg_cgcg_init,
  208. (const u32)ARRAY_SIZE(stoney_mgcg_cgcg_init));
  209. amdgpu_program_register_sequence(adev,
  210. stoney_golden_settings_a11,
  211. (const u32)ARRAY_SIZE(stoney_golden_settings_a11));
  212. break;
  213. default:
  214. break;
  215. }
  216. }
  217. static void sdma_v3_0_free_microcode(struct amdgpu_device *adev)
  218. {
  219. int i;
  220. for (i = 0; i < adev->sdma.num_instances; i++) {
  221. release_firmware(adev->sdma.instance[i].fw);
  222. adev->sdma.instance[i].fw = NULL;
  223. }
  224. }
  225. /**
  226. * sdma_v3_0_init_microcode - load ucode images from disk
  227. *
  228. * @adev: amdgpu_device pointer
  229. *
  230. * Use the firmware interface to load the ucode images into
  231. * the driver (not loaded into hw).
  232. * Returns 0 on success, error on failure.
  233. */
  234. static int sdma_v3_0_init_microcode(struct amdgpu_device *adev)
  235. {
  236. const char *chip_name;
  237. char fw_name[30];
  238. int err = 0, i;
  239. struct amdgpu_firmware_info *info = NULL;
  240. const struct common_firmware_header *header = NULL;
  241. const struct sdma_firmware_header_v1_0 *hdr;
  242. DRM_DEBUG("\n");
  243. switch (adev->asic_type) {
  244. case CHIP_TONGA:
  245. chip_name = "tonga";
  246. break;
  247. case CHIP_FIJI:
  248. chip_name = "fiji";
  249. break;
  250. case CHIP_POLARIS11:
  251. chip_name = "polaris11";
  252. break;
  253. case CHIP_POLARIS10:
  254. chip_name = "polaris10";
  255. break;
  256. case CHIP_CARRIZO:
  257. chip_name = "carrizo";
  258. break;
  259. case CHIP_STONEY:
  260. chip_name = "stoney";
  261. break;
  262. default: BUG();
  263. }
  264. for (i = 0; i < adev->sdma.num_instances; i++) {
  265. if (i == 0)
  266. snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
  267. else
  268. snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name);
  269. err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
  270. if (err)
  271. goto out;
  272. err = amdgpu_ucode_validate(adev->sdma.instance[i].fw);
  273. if (err)
  274. goto out;
  275. hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
  276. adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
  277. adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version);
  278. if (adev->sdma.instance[i].feature_version >= 20)
  279. adev->sdma.instance[i].burst_nop = true;
  280. if (adev->firmware.smu_load) {
  281. info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
  282. info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
  283. info->fw = adev->sdma.instance[i].fw;
  284. header = (const struct common_firmware_header *)info->fw->data;
  285. adev->firmware.fw_size +=
  286. ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
  287. }
  288. }
  289. out:
  290. if (err) {
  291. printk(KERN_ERR
  292. "sdma_v3_0: Failed to load firmware \"%s\"\n",
  293. fw_name);
  294. for (i = 0; i < adev->sdma.num_instances; i++) {
  295. release_firmware(adev->sdma.instance[i].fw);
  296. adev->sdma.instance[i].fw = NULL;
  297. }
  298. }
  299. return err;
  300. }
  301. /**
  302. * sdma_v3_0_ring_get_rptr - get the current read pointer
  303. *
  304. * @ring: amdgpu ring pointer
  305. *
  306. * Get the current rptr from the hardware (VI+).
  307. */
  308. static uint32_t sdma_v3_0_ring_get_rptr(struct amdgpu_ring *ring)
  309. {
  310. u32 rptr;
  311. /* XXX check if swapping is necessary on BE */
  312. rptr = ring->adev->wb.wb[ring->rptr_offs] >> 2;
  313. return rptr;
  314. }
  315. /**
  316. * sdma_v3_0_ring_get_wptr - get the current write pointer
  317. *
  318. * @ring: amdgpu ring pointer
  319. *
  320. * Get the current wptr from the hardware (VI+).
  321. */
  322. static uint32_t sdma_v3_0_ring_get_wptr(struct amdgpu_ring *ring)
  323. {
  324. struct amdgpu_device *adev = ring->adev;
  325. u32 wptr;
  326. if (ring->use_doorbell) {
  327. /* XXX check if swapping is necessary on BE */
  328. wptr = ring->adev->wb.wb[ring->wptr_offs] >> 2;
  329. } else {
  330. int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
  331. wptr = RREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me]) >> 2;
  332. }
  333. return wptr;
  334. }
  335. /**
  336. * sdma_v3_0_ring_set_wptr - commit the write pointer
  337. *
  338. * @ring: amdgpu ring pointer
  339. *
  340. * Write the wptr back to the hardware (VI+).
  341. */
  342. static void sdma_v3_0_ring_set_wptr(struct amdgpu_ring *ring)
  343. {
  344. struct amdgpu_device *adev = ring->adev;
  345. if (ring->use_doorbell) {
  346. /* XXX check if swapping is necessary on BE */
  347. adev->wb.wb[ring->wptr_offs] = ring->wptr << 2;
  348. WDOORBELL32(ring->doorbell_index, ring->wptr << 2);
  349. } else {
  350. int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
  351. WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me], ring->wptr << 2);
  352. }
  353. }
  354. static void sdma_v3_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
  355. {
  356. struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
  357. int i;
  358. for (i = 0; i < count; i++)
  359. if (sdma && sdma->burst_nop && (i == 0))
  360. amdgpu_ring_write(ring, ring->nop |
  361. SDMA_PKT_NOP_HEADER_COUNT(count - 1));
  362. else
  363. amdgpu_ring_write(ring, ring->nop);
  364. }
  365. /**
  366. * sdma_v3_0_ring_emit_ib - Schedule an IB on the DMA engine
  367. *
  368. * @ring: amdgpu ring pointer
  369. * @ib: IB object to schedule
  370. *
  371. * Schedule an IB in the DMA ring (VI).
  372. */
  373. static void sdma_v3_0_ring_emit_ib(struct amdgpu_ring *ring,
  374. struct amdgpu_ib *ib,
  375. unsigned vm_id, bool ctx_switch)
  376. {
  377. u32 vmid = vm_id & 0xf;
  378. /* IB packet must end on a 8 DW boundary */
  379. sdma_v3_0_ring_insert_nop(ring, (10 - (ring->wptr & 7)) % 8);
  380. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
  381. SDMA_PKT_INDIRECT_HEADER_VMID(vmid));
  382. /* base must be 32 byte aligned */
  383. amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
  384. amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
  385. amdgpu_ring_write(ring, ib->length_dw);
  386. amdgpu_ring_write(ring, 0);
  387. amdgpu_ring_write(ring, 0);
  388. }
  389. /**
  390. * sdma_v3_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
  391. *
  392. * @ring: amdgpu ring pointer
  393. *
  394. * Emit an hdp flush packet on the requested DMA ring.
  395. */
  396. static void sdma_v3_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
  397. {
  398. u32 ref_and_mask = 0;
  399. if (ring == &ring->adev->sdma.instance[0].ring)
  400. ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA0, 1);
  401. else
  402. ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA1, 1);
  403. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  404. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) |
  405. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
  406. amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_DONE << 2);
  407. amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_REQ << 2);
  408. amdgpu_ring_write(ring, ref_and_mask); /* reference */
  409. amdgpu_ring_write(ring, ref_and_mask); /* mask */
  410. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  411. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
  412. }
  413. static void sdma_v3_0_ring_emit_hdp_invalidate(struct amdgpu_ring *ring)
  414. {
  415. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  416. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  417. amdgpu_ring_write(ring, mmHDP_DEBUG0);
  418. amdgpu_ring_write(ring, 1);
  419. }
  420. /**
  421. * sdma_v3_0_ring_emit_fence - emit a fence on the DMA ring
  422. *
  423. * @ring: amdgpu ring pointer
  424. * @fence: amdgpu fence object
  425. *
  426. * Add a DMA fence packet to the ring to write
  427. * the fence seq number and DMA trap packet to generate
  428. * an interrupt if needed (VI).
  429. */
  430. static void sdma_v3_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
  431. unsigned flags)
  432. {
  433. bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
  434. /* write the fence */
  435. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
  436. amdgpu_ring_write(ring, lower_32_bits(addr));
  437. amdgpu_ring_write(ring, upper_32_bits(addr));
  438. amdgpu_ring_write(ring, lower_32_bits(seq));
  439. /* optionally write high bits as well */
  440. if (write64bit) {
  441. addr += 4;
  442. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
  443. amdgpu_ring_write(ring, lower_32_bits(addr));
  444. amdgpu_ring_write(ring, upper_32_bits(addr));
  445. amdgpu_ring_write(ring, upper_32_bits(seq));
  446. }
  447. /* generate an interrupt */
  448. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
  449. amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
  450. }
  451. unsigned init_cond_exec(struct amdgpu_ring *ring)
  452. {
  453. unsigned ret;
  454. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_COND_EXE));
  455. amdgpu_ring_write(ring, lower_32_bits(ring->cond_exe_gpu_addr));
  456. amdgpu_ring_write(ring, upper_32_bits(ring->cond_exe_gpu_addr));
  457. amdgpu_ring_write(ring, 1);
  458. ret = ring->wptr;/* this is the offset we need patch later */
  459. amdgpu_ring_write(ring, 0x55aa55aa);/* insert dummy here and patch it later */
  460. return ret;
  461. }
  462. void patch_cond_exec(struct amdgpu_ring *ring, unsigned offset)
  463. {
  464. unsigned cur;
  465. BUG_ON(ring->ring[offset] != 0x55aa55aa);
  466. cur = ring->wptr - 1;
  467. if (likely(cur > offset))
  468. ring->ring[offset] = cur - offset;
  469. else
  470. ring->ring[offset] = (ring->ring_size>>2) - offset + cur;
  471. }
  472. /**
  473. * sdma_v3_0_gfx_stop - stop the gfx async dma engines
  474. *
  475. * @adev: amdgpu_device pointer
  476. *
  477. * Stop the gfx async dma ring buffers (VI).
  478. */
  479. static void sdma_v3_0_gfx_stop(struct amdgpu_device *adev)
  480. {
  481. struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring;
  482. struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring;
  483. u32 rb_cntl, ib_cntl;
  484. int i;
  485. if ((adev->mman.buffer_funcs_ring == sdma0) ||
  486. (adev->mman.buffer_funcs_ring == sdma1))
  487. amdgpu_ttm_set_active_vram_size(adev, adev->mc.visible_vram_size);
  488. for (i = 0; i < adev->sdma.num_instances; i++) {
  489. rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
  490. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
  491. WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
  492. ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
  493. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
  494. WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
  495. }
  496. sdma0->ready = false;
  497. sdma1->ready = false;
  498. }
  499. /**
  500. * sdma_v3_0_rlc_stop - stop the compute async dma engines
  501. *
  502. * @adev: amdgpu_device pointer
  503. *
  504. * Stop the compute async dma queues (VI).
  505. */
  506. static void sdma_v3_0_rlc_stop(struct amdgpu_device *adev)
  507. {
  508. /* XXX todo */
  509. }
  510. /**
  511. * sdma_v3_0_ctx_switch_enable - stop the async dma engines context switch
  512. *
  513. * @adev: amdgpu_device pointer
  514. * @enable: enable/disable the DMA MEs context switch.
  515. *
  516. * Halt or unhalt the async dma engines context switch (VI).
  517. */
  518. static void sdma_v3_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
  519. {
  520. u32 f32_cntl;
  521. int i;
  522. for (i = 0; i < adev->sdma.num_instances; i++) {
  523. f32_cntl = RREG32(mmSDMA0_CNTL + sdma_offsets[i]);
  524. if (enable)
  525. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
  526. AUTO_CTXSW_ENABLE, 1);
  527. else
  528. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
  529. AUTO_CTXSW_ENABLE, 0);
  530. WREG32(mmSDMA0_CNTL + sdma_offsets[i], f32_cntl);
  531. }
  532. }
  533. /**
  534. * sdma_v3_0_enable - stop the async dma engines
  535. *
  536. * @adev: amdgpu_device pointer
  537. * @enable: enable/disable the DMA MEs.
  538. *
  539. * Halt or unhalt the async dma engines (VI).
  540. */
  541. static void sdma_v3_0_enable(struct amdgpu_device *adev, bool enable)
  542. {
  543. u32 f32_cntl;
  544. int i;
  545. if (!enable) {
  546. sdma_v3_0_gfx_stop(adev);
  547. sdma_v3_0_rlc_stop(adev);
  548. }
  549. for (i = 0; i < adev->sdma.num_instances; i++) {
  550. f32_cntl = RREG32(mmSDMA0_F32_CNTL + sdma_offsets[i]);
  551. if (enable)
  552. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 0);
  553. else
  554. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 1);
  555. WREG32(mmSDMA0_F32_CNTL + sdma_offsets[i], f32_cntl);
  556. }
  557. }
  558. /**
  559. * sdma_v3_0_gfx_resume - setup and start the async dma engines
  560. *
  561. * @adev: amdgpu_device pointer
  562. *
  563. * Set up the gfx DMA ring buffers and enable them (VI).
  564. * Returns 0 for success, error for failure.
  565. */
  566. static int sdma_v3_0_gfx_resume(struct amdgpu_device *adev)
  567. {
  568. struct amdgpu_ring *ring;
  569. u32 rb_cntl, ib_cntl;
  570. u32 rb_bufsz;
  571. u32 wb_offset;
  572. u32 doorbell;
  573. int i, j, r;
  574. for (i = 0; i < adev->sdma.num_instances; i++) {
  575. ring = &adev->sdma.instance[i].ring;
  576. wb_offset = (ring->rptr_offs * 4);
  577. mutex_lock(&adev->srbm_mutex);
  578. for (j = 0; j < 16; j++) {
  579. vi_srbm_select(adev, 0, 0, 0, j);
  580. /* SDMA GFX */
  581. WREG32(mmSDMA0_GFX_VIRTUAL_ADDR + sdma_offsets[i], 0);
  582. WREG32(mmSDMA0_GFX_APE1_CNTL + sdma_offsets[i], 0);
  583. }
  584. vi_srbm_select(adev, 0, 0, 0, 0);
  585. mutex_unlock(&adev->srbm_mutex);
  586. WREG32(mmSDMA0_TILING_CONFIG + sdma_offsets[i],
  587. adev->gfx.config.gb_addr_config & 0x70);
  588. WREG32(mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i], 0);
  589. /* Set ring buffer size in dwords */
  590. rb_bufsz = order_base_2(ring->ring_size / 4);
  591. rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
  592. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
  593. #ifdef __BIG_ENDIAN
  594. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
  595. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
  596. RPTR_WRITEBACK_SWAP_ENABLE, 1);
  597. #endif
  598. WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
  599. /* Initialize the ring buffer's read and write pointers */
  600. WREG32(mmSDMA0_GFX_RB_RPTR + sdma_offsets[i], 0);
  601. WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], 0);
  602. WREG32(mmSDMA0_GFX_IB_RPTR + sdma_offsets[i], 0);
  603. WREG32(mmSDMA0_GFX_IB_OFFSET + sdma_offsets[i], 0);
  604. /* set the wb address whether it's enabled or not */
  605. WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_HI + sdma_offsets[i],
  606. upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
  607. WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_LO + sdma_offsets[i],
  608. lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
  609. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1);
  610. WREG32(mmSDMA0_GFX_RB_BASE + sdma_offsets[i], ring->gpu_addr >> 8);
  611. WREG32(mmSDMA0_GFX_RB_BASE_HI + sdma_offsets[i], ring->gpu_addr >> 40);
  612. ring->wptr = 0;
  613. WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], ring->wptr << 2);
  614. doorbell = RREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i]);
  615. if (ring->use_doorbell) {
  616. doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL,
  617. OFFSET, ring->doorbell_index);
  618. doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1);
  619. } else {
  620. doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 0);
  621. }
  622. WREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i], doorbell);
  623. /* enable DMA RB */
  624. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
  625. WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
  626. ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
  627. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
  628. #ifdef __BIG_ENDIAN
  629. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
  630. #endif
  631. /* enable DMA IBs */
  632. WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
  633. ring->ready = true;
  634. }
  635. /* unhalt the MEs */
  636. sdma_v3_0_enable(adev, true);
  637. /* enable sdma ring preemption */
  638. sdma_v3_0_ctx_switch_enable(adev, true);
  639. for (i = 0; i < adev->sdma.num_instances; i++) {
  640. ring = &adev->sdma.instance[i].ring;
  641. r = amdgpu_ring_test_ring(ring);
  642. if (r) {
  643. ring->ready = false;
  644. return r;
  645. }
  646. if (adev->mman.buffer_funcs_ring == ring)
  647. amdgpu_ttm_set_active_vram_size(adev, adev->mc.real_vram_size);
  648. }
  649. return 0;
  650. }
  651. /**
  652. * sdma_v3_0_rlc_resume - setup and start the async dma engines
  653. *
  654. * @adev: amdgpu_device pointer
  655. *
  656. * Set up the compute DMA queues and enable them (VI).
  657. * Returns 0 for success, error for failure.
  658. */
  659. static int sdma_v3_0_rlc_resume(struct amdgpu_device *adev)
  660. {
  661. /* XXX todo */
  662. return 0;
  663. }
  664. /**
  665. * sdma_v3_0_load_microcode - load the sDMA ME ucode
  666. *
  667. * @adev: amdgpu_device pointer
  668. *
  669. * Loads the sDMA0/1 ucode.
  670. * Returns 0 for success, -EINVAL if the ucode is not available.
  671. */
  672. static int sdma_v3_0_load_microcode(struct amdgpu_device *adev)
  673. {
  674. const struct sdma_firmware_header_v1_0 *hdr;
  675. const __le32 *fw_data;
  676. u32 fw_size;
  677. int i, j;
  678. /* halt the MEs */
  679. sdma_v3_0_enable(adev, false);
  680. for (i = 0; i < adev->sdma.num_instances; i++) {
  681. if (!adev->sdma.instance[i].fw)
  682. return -EINVAL;
  683. hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
  684. amdgpu_ucode_print_sdma_hdr(&hdr->header);
  685. fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
  686. fw_data = (const __le32 *)
  687. (adev->sdma.instance[i].fw->data +
  688. le32_to_cpu(hdr->header.ucode_array_offset_bytes));
  689. WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], 0);
  690. for (j = 0; j < fw_size; j++)
  691. WREG32(mmSDMA0_UCODE_DATA + sdma_offsets[i], le32_to_cpup(fw_data++));
  692. WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], adev->sdma.instance[i].fw_version);
  693. }
  694. return 0;
  695. }
  696. /**
  697. * sdma_v3_0_start - setup and start the async dma engines
  698. *
  699. * @adev: amdgpu_device pointer
  700. *
  701. * Set up the DMA engines and enable them (VI).
  702. * Returns 0 for success, error for failure.
  703. */
  704. static int sdma_v3_0_start(struct amdgpu_device *adev)
  705. {
  706. int r, i;
  707. if (!adev->pp_enabled) {
  708. if (!adev->firmware.smu_load) {
  709. r = sdma_v3_0_load_microcode(adev);
  710. if (r)
  711. return r;
  712. } else {
  713. for (i = 0; i < adev->sdma.num_instances; i++) {
  714. r = adev->smu.smumgr_funcs->check_fw_load_finish(adev,
  715. (i == 0) ?
  716. AMDGPU_UCODE_ID_SDMA0 :
  717. AMDGPU_UCODE_ID_SDMA1);
  718. if (r)
  719. return -EINVAL;
  720. }
  721. }
  722. }
  723. /* disble sdma engine before programing it */
  724. sdma_v3_0_ctx_switch_enable(adev, false);
  725. sdma_v3_0_enable(adev, false);
  726. /* start the gfx rings and rlc compute queues */
  727. r = sdma_v3_0_gfx_resume(adev);
  728. if (r)
  729. return r;
  730. r = sdma_v3_0_rlc_resume(adev);
  731. if (r)
  732. return r;
  733. return 0;
  734. }
  735. /**
  736. * sdma_v3_0_ring_test_ring - simple async dma engine test
  737. *
  738. * @ring: amdgpu_ring structure holding ring information
  739. *
  740. * Test the DMA engine by writing using it to write an
  741. * value to memory. (VI).
  742. * Returns 0 for success, error for failure.
  743. */
  744. static int sdma_v3_0_ring_test_ring(struct amdgpu_ring *ring)
  745. {
  746. struct amdgpu_device *adev = ring->adev;
  747. unsigned i;
  748. unsigned index;
  749. int r;
  750. u32 tmp;
  751. u64 gpu_addr;
  752. r = amdgpu_wb_get(adev, &index);
  753. if (r) {
  754. dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
  755. return r;
  756. }
  757. gpu_addr = adev->wb.gpu_addr + (index * 4);
  758. tmp = 0xCAFEDEAD;
  759. adev->wb.wb[index] = cpu_to_le32(tmp);
  760. r = amdgpu_ring_alloc(ring, 5);
  761. if (r) {
  762. DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r);
  763. amdgpu_wb_free(adev, index);
  764. return r;
  765. }
  766. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  767. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
  768. amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
  769. amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
  770. amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1));
  771. amdgpu_ring_write(ring, 0xDEADBEEF);
  772. amdgpu_ring_commit(ring);
  773. for (i = 0; i < adev->usec_timeout; i++) {
  774. tmp = le32_to_cpu(adev->wb.wb[index]);
  775. if (tmp == 0xDEADBEEF)
  776. break;
  777. DRM_UDELAY(1);
  778. }
  779. if (i < adev->usec_timeout) {
  780. DRM_INFO("ring test on %d succeeded in %d usecs\n", ring->idx, i);
  781. } else {
  782. DRM_ERROR("amdgpu: ring %d test failed (0x%08X)\n",
  783. ring->idx, tmp);
  784. r = -EINVAL;
  785. }
  786. amdgpu_wb_free(adev, index);
  787. return r;
  788. }
  789. /**
  790. * sdma_v3_0_ring_test_ib - test an IB on the DMA engine
  791. *
  792. * @ring: amdgpu_ring structure holding ring information
  793. *
  794. * Test a simple IB in the DMA ring (VI).
  795. * Returns 0 on success, error on failure.
  796. */
  797. static int sdma_v3_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
  798. {
  799. struct amdgpu_device *adev = ring->adev;
  800. struct amdgpu_ib ib;
  801. struct fence *f = NULL;
  802. unsigned index;
  803. u32 tmp = 0;
  804. u64 gpu_addr;
  805. long r;
  806. r = amdgpu_wb_get(adev, &index);
  807. if (r) {
  808. dev_err(adev->dev, "(%ld) failed to allocate wb slot\n", r);
  809. return r;
  810. }
  811. gpu_addr = adev->wb.gpu_addr + (index * 4);
  812. tmp = 0xCAFEDEAD;
  813. adev->wb.wb[index] = cpu_to_le32(tmp);
  814. memset(&ib, 0, sizeof(ib));
  815. r = amdgpu_ib_get(adev, NULL, 256, &ib);
  816. if (r) {
  817. DRM_ERROR("amdgpu: failed to get ib (%ld).\n", r);
  818. goto err0;
  819. }
  820. ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  821. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
  822. ib.ptr[1] = lower_32_bits(gpu_addr);
  823. ib.ptr[2] = upper_32_bits(gpu_addr);
  824. ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1);
  825. ib.ptr[4] = 0xDEADBEEF;
  826. ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  827. ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  828. ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  829. ib.length_dw = 8;
  830. r = amdgpu_ib_schedule(ring, 1, &ib, NULL, NULL, &f);
  831. if (r)
  832. goto err1;
  833. r = fence_wait_timeout(f, false, timeout);
  834. if (r == 0) {
  835. DRM_ERROR("amdgpu: IB test timed out\n");
  836. r = -ETIMEDOUT;
  837. goto err1;
  838. } else if (r < 0) {
  839. DRM_ERROR("amdgpu: fence wait failed (%ld).\n", r);
  840. goto err1;
  841. }
  842. tmp = le32_to_cpu(adev->wb.wb[index]);
  843. if (tmp == 0xDEADBEEF) {
  844. DRM_INFO("ib test on ring %d succeeded\n", ring->idx);
  845. r = 0;
  846. } else {
  847. DRM_ERROR("amdgpu: ib test failed (0x%08X)\n", tmp);
  848. r = -EINVAL;
  849. }
  850. err1:
  851. amdgpu_ib_free(adev, &ib, NULL);
  852. fence_put(f);
  853. err0:
  854. amdgpu_wb_free(adev, index);
  855. return r;
  856. }
  857. /**
  858. * sdma_v3_0_vm_copy_pte - update PTEs by copying them from the GART
  859. *
  860. * @ib: indirect buffer to fill with commands
  861. * @pe: addr of the page entry
  862. * @src: src addr to copy from
  863. * @count: number of page entries to update
  864. *
  865. * Update PTEs by copying them from the GART using sDMA (CIK).
  866. */
  867. static void sdma_v3_0_vm_copy_pte(struct amdgpu_ib *ib,
  868. uint64_t pe, uint64_t src,
  869. unsigned count)
  870. {
  871. unsigned bytes = count * 8;
  872. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
  873. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
  874. ib->ptr[ib->length_dw++] = bytes;
  875. ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
  876. ib->ptr[ib->length_dw++] = lower_32_bits(src);
  877. ib->ptr[ib->length_dw++] = upper_32_bits(src);
  878. ib->ptr[ib->length_dw++] = lower_32_bits(pe);
  879. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  880. }
  881. /**
  882. * sdma_v3_0_vm_write_pte - update PTEs by writing them manually
  883. *
  884. * @ib: indirect buffer to fill with commands
  885. * @pe: addr of the page entry
  886. * @value: dst addr to write into pe
  887. * @count: number of page entries to update
  888. * @incr: increase next addr by incr bytes
  889. *
  890. * Update PTEs by writing them manually using sDMA (CIK).
  891. */
  892. static void sdma_v3_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
  893. uint64_t value, unsigned count,
  894. uint32_t incr)
  895. {
  896. unsigned ndw = count * 2;
  897. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  898. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
  899. ib->ptr[ib->length_dw++] = lower_32_bits(pe);
  900. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  901. ib->ptr[ib->length_dw++] = ndw;
  902. for (; ndw > 0; ndw -= 2, --count, pe += 8) {
  903. ib->ptr[ib->length_dw++] = lower_32_bits(value);
  904. ib->ptr[ib->length_dw++] = upper_32_bits(value);
  905. value += incr;
  906. }
  907. }
  908. /**
  909. * sdma_v3_0_vm_set_pte_pde - update the page tables using sDMA
  910. *
  911. * @ib: indirect buffer to fill with commands
  912. * @pe: addr of the page entry
  913. * @addr: dst addr to write into pe
  914. * @count: number of page entries to update
  915. * @incr: increase next addr by incr bytes
  916. * @flags: access flags
  917. *
  918. * Update the page tables using sDMA (CIK).
  919. */
  920. static void sdma_v3_0_vm_set_pte_pde(struct amdgpu_ib *ib, uint64_t pe,
  921. uint64_t addr, unsigned count,
  922. uint32_t incr, uint32_t flags)
  923. {
  924. /* for physically contiguous pages (vram) */
  925. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_GEN_PTEPDE);
  926. ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
  927. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  928. ib->ptr[ib->length_dw++] = flags; /* mask */
  929. ib->ptr[ib->length_dw++] = 0;
  930. ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
  931. ib->ptr[ib->length_dw++] = upper_32_bits(addr);
  932. ib->ptr[ib->length_dw++] = incr; /* increment size */
  933. ib->ptr[ib->length_dw++] = 0;
  934. ib->ptr[ib->length_dw++] = count; /* number of entries */
  935. }
  936. /**
  937. * sdma_v3_0_ring_pad_ib - pad the IB to the required number of dw
  938. *
  939. * @ib: indirect buffer to fill with padding
  940. *
  941. */
  942. static void sdma_v3_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
  943. {
  944. struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
  945. u32 pad_count;
  946. int i;
  947. pad_count = (8 - (ib->length_dw & 0x7)) % 8;
  948. for (i = 0; i < pad_count; i++)
  949. if (sdma && sdma->burst_nop && (i == 0))
  950. ib->ptr[ib->length_dw++] =
  951. SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
  952. SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
  953. else
  954. ib->ptr[ib->length_dw++] =
  955. SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
  956. }
  957. /**
  958. * sdma_v3_0_ring_emit_pipeline_sync - sync the pipeline
  959. *
  960. * @ring: amdgpu_ring pointer
  961. *
  962. * Make sure all previous operations are completed (CIK).
  963. */
  964. static void sdma_v3_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
  965. {
  966. uint32_t seq = ring->fence_drv.sync_seq;
  967. uint64_t addr = ring->fence_drv.gpu_addr;
  968. /* wait for idle */
  969. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  970. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
  971. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3) | /* equal */
  972. SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(1));
  973. amdgpu_ring_write(ring, addr & 0xfffffffc);
  974. amdgpu_ring_write(ring, upper_32_bits(addr) & 0xffffffff);
  975. amdgpu_ring_write(ring, seq); /* reference */
  976. amdgpu_ring_write(ring, 0xfffffff); /* mask */
  977. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  978. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(4)); /* retry count, poll interval */
  979. }
  980. /**
  981. * sdma_v3_0_ring_emit_vm_flush - cik vm flush using sDMA
  982. *
  983. * @ring: amdgpu_ring pointer
  984. * @vm: amdgpu_vm pointer
  985. *
  986. * Update the page table base and flush the VM TLB
  987. * using sDMA (VI).
  988. */
  989. static void sdma_v3_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
  990. unsigned vm_id, uint64_t pd_addr)
  991. {
  992. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  993. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  994. if (vm_id < 8) {
  995. amdgpu_ring_write(ring, (mmVM_CONTEXT0_PAGE_TABLE_BASE_ADDR + vm_id));
  996. } else {
  997. amdgpu_ring_write(ring, (mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vm_id - 8));
  998. }
  999. amdgpu_ring_write(ring, pd_addr >> 12);
  1000. /* flush TLB */
  1001. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  1002. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  1003. amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST);
  1004. amdgpu_ring_write(ring, 1 << vm_id);
  1005. /* wait for flush */
  1006. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  1007. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
  1008. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(0)); /* always */
  1009. amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST << 2);
  1010. amdgpu_ring_write(ring, 0);
  1011. amdgpu_ring_write(ring, 0); /* reference */
  1012. amdgpu_ring_write(ring, 0); /* mask */
  1013. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  1014. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
  1015. }
  1016. static int sdma_v3_0_early_init(void *handle)
  1017. {
  1018. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1019. switch (adev->asic_type) {
  1020. case CHIP_STONEY:
  1021. adev->sdma.num_instances = 1;
  1022. break;
  1023. default:
  1024. adev->sdma.num_instances = SDMA_MAX_INSTANCE;
  1025. break;
  1026. }
  1027. sdma_v3_0_set_ring_funcs(adev);
  1028. sdma_v3_0_set_buffer_funcs(adev);
  1029. sdma_v3_0_set_vm_pte_funcs(adev);
  1030. sdma_v3_0_set_irq_funcs(adev);
  1031. return 0;
  1032. }
  1033. static int sdma_v3_0_sw_init(void *handle)
  1034. {
  1035. struct amdgpu_ring *ring;
  1036. int r, i;
  1037. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1038. /* SDMA trap event */
  1039. r = amdgpu_irq_add_id(adev, 224, &adev->sdma.trap_irq);
  1040. if (r)
  1041. return r;
  1042. /* SDMA Privileged inst */
  1043. r = amdgpu_irq_add_id(adev, 241, &adev->sdma.illegal_inst_irq);
  1044. if (r)
  1045. return r;
  1046. /* SDMA Privileged inst */
  1047. r = amdgpu_irq_add_id(adev, 247, &adev->sdma.illegal_inst_irq);
  1048. if (r)
  1049. return r;
  1050. r = sdma_v3_0_init_microcode(adev);
  1051. if (r) {
  1052. DRM_ERROR("Failed to load sdma firmware!\n");
  1053. return r;
  1054. }
  1055. for (i = 0; i < adev->sdma.num_instances; i++) {
  1056. ring = &adev->sdma.instance[i].ring;
  1057. ring->ring_obj = NULL;
  1058. ring->use_doorbell = true;
  1059. ring->doorbell_index = (i == 0) ?
  1060. AMDGPU_DOORBELL_sDMA_ENGINE0 : AMDGPU_DOORBELL_sDMA_ENGINE1;
  1061. sprintf(ring->name, "sdma%d", i);
  1062. r = amdgpu_ring_init(adev, ring, 1024,
  1063. SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP), 0xf,
  1064. &adev->sdma.trap_irq,
  1065. (i == 0) ?
  1066. AMDGPU_SDMA_IRQ_TRAP0 : AMDGPU_SDMA_IRQ_TRAP1,
  1067. AMDGPU_RING_TYPE_SDMA);
  1068. if (r)
  1069. return r;
  1070. }
  1071. return r;
  1072. }
  1073. static int sdma_v3_0_sw_fini(void *handle)
  1074. {
  1075. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1076. int i;
  1077. for (i = 0; i < adev->sdma.num_instances; i++)
  1078. amdgpu_ring_fini(&adev->sdma.instance[i].ring);
  1079. sdma_v3_0_free_microcode(adev);
  1080. return 0;
  1081. }
  1082. static int sdma_v3_0_hw_init(void *handle)
  1083. {
  1084. int r;
  1085. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1086. sdma_v3_0_init_golden_registers(adev);
  1087. r = sdma_v3_0_start(adev);
  1088. if (r)
  1089. return r;
  1090. return r;
  1091. }
  1092. static int sdma_v3_0_hw_fini(void *handle)
  1093. {
  1094. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1095. sdma_v3_0_ctx_switch_enable(adev, false);
  1096. sdma_v3_0_enable(adev, false);
  1097. return 0;
  1098. }
  1099. static int sdma_v3_0_suspend(void *handle)
  1100. {
  1101. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1102. return sdma_v3_0_hw_fini(adev);
  1103. }
  1104. static int sdma_v3_0_resume(void *handle)
  1105. {
  1106. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1107. return sdma_v3_0_hw_init(adev);
  1108. }
  1109. static bool sdma_v3_0_is_idle(void *handle)
  1110. {
  1111. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1112. u32 tmp = RREG32(mmSRBM_STATUS2);
  1113. if (tmp & (SRBM_STATUS2__SDMA_BUSY_MASK |
  1114. SRBM_STATUS2__SDMA1_BUSY_MASK))
  1115. return false;
  1116. return true;
  1117. }
  1118. static int sdma_v3_0_wait_for_idle(void *handle)
  1119. {
  1120. unsigned i;
  1121. u32 tmp;
  1122. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1123. for (i = 0; i < adev->usec_timeout; i++) {
  1124. tmp = RREG32(mmSRBM_STATUS2) & (SRBM_STATUS2__SDMA_BUSY_MASK |
  1125. SRBM_STATUS2__SDMA1_BUSY_MASK);
  1126. if (!tmp)
  1127. return 0;
  1128. udelay(1);
  1129. }
  1130. return -ETIMEDOUT;
  1131. }
  1132. static int sdma_v3_0_check_soft_reset(void *handle)
  1133. {
  1134. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1135. u32 srbm_soft_reset = 0;
  1136. u32 tmp = RREG32(mmSRBM_STATUS2);
  1137. if ((tmp & SRBM_STATUS2__SDMA_BUSY_MASK) ||
  1138. (tmp & SRBM_STATUS2__SDMA1_BUSY_MASK)) {
  1139. srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA_MASK;
  1140. srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA1_MASK;
  1141. }
  1142. if (srbm_soft_reset) {
  1143. adev->ip_block_status[AMD_IP_BLOCK_TYPE_SDMA].hang = true;
  1144. adev->sdma.srbm_soft_reset = srbm_soft_reset;
  1145. } else {
  1146. adev->ip_block_status[AMD_IP_BLOCK_TYPE_SDMA].hang = false;
  1147. adev->sdma.srbm_soft_reset = 0;
  1148. }
  1149. return 0;
  1150. }
  1151. static int sdma_v3_0_pre_soft_reset(void *handle)
  1152. {
  1153. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1154. u32 srbm_soft_reset = 0;
  1155. if (!adev->ip_block_status[AMD_IP_BLOCK_TYPE_SDMA].hang)
  1156. return 0;
  1157. srbm_soft_reset = adev->sdma.srbm_soft_reset;
  1158. if (REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA) ||
  1159. REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA1)) {
  1160. sdma_v3_0_ctx_switch_enable(adev, false);
  1161. sdma_v3_0_enable(adev, false);
  1162. }
  1163. return 0;
  1164. }
  1165. static int sdma_v3_0_post_soft_reset(void *handle)
  1166. {
  1167. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1168. u32 srbm_soft_reset = 0;
  1169. if (!adev->ip_block_status[AMD_IP_BLOCK_TYPE_SDMA].hang)
  1170. return 0;
  1171. srbm_soft_reset = adev->sdma.srbm_soft_reset;
  1172. if (REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA) ||
  1173. REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA1)) {
  1174. sdma_v3_0_gfx_resume(adev);
  1175. sdma_v3_0_rlc_resume(adev);
  1176. }
  1177. return 0;
  1178. }
  1179. static int sdma_v3_0_soft_reset(void *handle)
  1180. {
  1181. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1182. u32 srbm_soft_reset = 0;
  1183. u32 tmp;
  1184. if (!adev->ip_block_status[AMD_IP_BLOCK_TYPE_SDMA].hang)
  1185. return 0;
  1186. srbm_soft_reset = adev->sdma.srbm_soft_reset;
  1187. if (srbm_soft_reset) {
  1188. tmp = RREG32(mmSRBM_SOFT_RESET);
  1189. tmp |= srbm_soft_reset;
  1190. dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
  1191. WREG32(mmSRBM_SOFT_RESET, tmp);
  1192. tmp = RREG32(mmSRBM_SOFT_RESET);
  1193. udelay(50);
  1194. tmp &= ~srbm_soft_reset;
  1195. WREG32(mmSRBM_SOFT_RESET, tmp);
  1196. tmp = RREG32(mmSRBM_SOFT_RESET);
  1197. /* Wait a little for things to settle down */
  1198. udelay(50);
  1199. }
  1200. return 0;
  1201. }
  1202. static int sdma_v3_0_set_trap_irq_state(struct amdgpu_device *adev,
  1203. struct amdgpu_irq_src *source,
  1204. unsigned type,
  1205. enum amdgpu_interrupt_state state)
  1206. {
  1207. u32 sdma_cntl;
  1208. switch (type) {
  1209. case AMDGPU_SDMA_IRQ_TRAP0:
  1210. switch (state) {
  1211. case AMDGPU_IRQ_STATE_DISABLE:
  1212. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
  1213. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
  1214. WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
  1215. break;
  1216. case AMDGPU_IRQ_STATE_ENABLE:
  1217. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
  1218. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
  1219. WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
  1220. break;
  1221. default:
  1222. break;
  1223. }
  1224. break;
  1225. case AMDGPU_SDMA_IRQ_TRAP1:
  1226. switch (state) {
  1227. case AMDGPU_IRQ_STATE_DISABLE:
  1228. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
  1229. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
  1230. WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
  1231. break;
  1232. case AMDGPU_IRQ_STATE_ENABLE:
  1233. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
  1234. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
  1235. WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
  1236. break;
  1237. default:
  1238. break;
  1239. }
  1240. break;
  1241. default:
  1242. break;
  1243. }
  1244. return 0;
  1245. }
  1246. static int sdma_v3_0_process_trap_irq(struct amdgpu_device *adev,
  1247. struct amdgpu_irq_src *source,
  1248. struct amdgpu_iv_entry *entry)
  1249. {
  1250. u8 instance_id, queue_id;
  1251. instance_id = (entry->ring_id & 0x3) >> 0;
  1252. queue_id = (entry->ring_id & 0xc) >> 2;
  1253. DRM_DEBUG("IH: SDMA trap\n");
  1254. switch (instance_id) {
  1255. case 0:
  1256. switch (queue_id) {
  1257. case 0:
  1258. amdgpu_fence_process(&adev->sdma.instance[0].ring);
  1259. break;
  1260. case 1:
  1261. /* XXX compute */
  1262. break;
  1263. case 2:
  1264. /* XXX compute */
  1265. break;
  1266. }
  1267. break;
  1268. case 1:
  1269. switch (queue_id) {
  1270. case 0:
  1271. amdgpu_fence_process(&adev->sdma.instance[1].ring);
  1272. break;
  1273. case 1:
  1274. /* XXX compute */
  1275. break;
  1276. case 2:
  1277. /* XXX compute */
  1278. break;
  1279. }
  1280. break;
  1281. }
  1282. return 0;
  1283. }
  1284. static int sdma_v3_0_process_illegal_inst_irq(struct amdgpu_device *adev,
  1285. struct amdgpu_irq_src *source,
  1286. struct amdgpu_iv_entry *entry)
  1287. {
  1288. DRM_ERROR("Illegal instruction in SDMA command stream\n");
  1289. schedule_work(&adev->reset_work);
  1290. return 0;
  1291. }
  1292. static void sdma_v3_0_update_sdma_medium_grain_clock_gating(
  1293. struct amdgpu_device *adev,
  1294. bool enable)
  1295. {
  1296. uint32_t temp, data;
  1297. int i;
  1298. if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
  1299. for (i = 0; i < adev->sdma.num_instances; i++) {
  1300. temp = data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i]);
  1301. data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
  1302. SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
  1303. SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
  1304. SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
  1305. SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
  1306. SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
  1307. SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
  1308. SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
  1309. if (data != temp)
  1310. WREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i], data);
  1311. }
  1312. } else {
  1313. for (i = 0; i < adev->sdma.num_instances; i++) {
  1314. temp = data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i]);
  1315. data |= SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
  1316. SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
  1317. SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
  1318. SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
  1319. SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
  1320. SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
  1321. SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
  1322. SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK;
  1323. if (data != temp)
  1324. WREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i], data);
  1325. }
  1326. }
  1327. }
  1328. static void sdma_v3_0_update_sdma_medium_grain_light_sleep(
  1329. struct amdgpu_device *adev,
  1330. bool enable)
  1331. {
  1332. uint32_t temp, data;
  1333. int i;
  1334. if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
  1335. for (i = 0; i < adev->sdma.num_instances; i++) {
  1336. temp = data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i]);
  1337. data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
  1338. if (temp != data)
  1339. WREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i], data);
  1340. }
  1341. } else {
  1342. for (i = 0; i < adev->sdma.num_instances; i++) {
  1343. temp = data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i]);
  1344. data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
  1345. if (temp != data)
  1346. WREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i], data);
  1347. }
  1348. }
  1349. }
  1350. static int sdma_v3_0_set_clockgating_state(void *handle,
  1351. enum amd_clockgating_state state)
  1352. {
  1353. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1354. switch (adev->asic_type) {
  1355. case CHIP_FIJI:
  1356. case CHIP_CARRIZO:
  1357. case CHIP_STONEY:
  1358. sdma_v3_0_update_sdma_medium_grain_clock_gating(adev,
  1359. state == AMD_CG_STATE_GATE ? true : false);
  1360. sdma_v3_0_update_sdma_medium_grain_light_sleep(adev,
  1361. state == AMD_CG_STATE_GATE ? true : false);
  1362. break;
  1363. default:
  1364. break;
  1365. }
  1366. return 0;
  1367. }
  1368. static int sdma_v3_0_set_powergating_state(void *handle,
  1369. enum amd_powergating_state state)
  1370. {
  1371. return 0;
  1372. }
  1373. const struct amd_ip_funcs sdma_v3_0_ip_funcs = {
  1374. .name = "sdma_v3_0",
  1375. .early_init = sdma_v3_0_early_init,
  1376. .late_init = NULL,
  1377. .sw_init = sdma_v3_0_sw_init,
  1378. .sw_fini = sdma_v3_0_sw_fini,
  1379. .hw_init = sdma_v3_0_hw_init,
  1380. .hw_fini = sdma_v3_0_hw_fini,
  1381. .suspend = sdma_v3_0_suspend,
  1382. .resume = sdma_v3_0_resume,
  1383. .is_idle = sdma_v3_0_is_idle,
  1384. .wait_for_idle = sdma_v3_0_wait_for_idle,
  1385. .check_soft_reset = sdma_v3_0_check_soft_reset,
  1386. .pre_soft_reset = sdma_v3_0_pre_soft_reset,
  1387. .post_soft_reset = sdma_v3_0_post_soft_reset,
  1388. .soft_reset = sdma_v3_0_soft_reset,
  1389. .set_clockgating_state = sdma_v3_0_set_clockgating_state,
  1390. .set_powergating_state = sdma_v3_0_set_powergating_state,
  1391. };
  1392. static const struct amdgpu_ring_funcs sdma_v3_0_ring_funcs = {
  1393. .get_rptr = sdma_v3_0_ring_get_rptr,
  1394. .get_wptr = sdma_v3_0_ring_get_wptr,
  1395. .set_wptr = sdma_v3_0_ring_set_wptr,
  1396. .parse_cs = NULL,
  1397. .emit_ib = sdma_v3_0_ring_emit_ib,
  1398. .emit_fence = sdma_v3_0_ring_emit_fence,
  1399. .emit_pipeline_sync = sdma_v3_0_ring_emit_pipeline_sync,
  1400. .emit_vm_flush = sdma_v3_0_ring_emit_vm_flush,
  1401. .emit_hdp_flush = sdma_v3_0_ring_emit_hdp_flush,
  1402. .emit_hdp_invalidate = sdma_v3_0_ring_emit_hdp_invalidate,
  1403. .test_ring = sdma_v3_0_ring_test_ring,
  1404. .test_ib = sdma_v3_0_ring_test_ib,
  1405. .insert_nop = sdma_v3_0_ring_insert_nop,
  1406. .pad_ib = sdma_v3_0_ring_pad_ib,
  1407. };
  1408. static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev)
  1409. {
  1410. int i;
  1411. for (i = 0; i < adev->sdma.num_instances; i++)
  1412. adev->sdma.instance[i].ring.funcs = &sdma_v3_0_ring_funcs;
  1413. }
  1414. static const struct amdgpu_irq_src_funcs sdma_v3_0_trap_irq_funcs = {
  1415. .set = sdma_v3_0_set_trap_irq_state,
  1416. .process = sdma_v3_0_process_trap_irq,
  1417. };
  1418. static const struct amdgpu_irq_src_funcs sdma_v3_0_illegal_inst_irq_funcs = {
  1419. .process = sdma_v3_0_process_illegal_inst_irq,
  1420. };
  1421. static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev)
  1422. {
  1423. adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
  1424. adev->sdma.trap_irq.funcs = &sdma_v3_0_trap_irq_funcs;
  1425. adev->sdma.illegal_inst_irq.funcs = &sdma_v3_0_illegal_inst_irq_funcs;
  1426. }
  1427. /**
  1428. * sdma_v3_0_emit_copy_buffer - copy buffer using the sDMA engine
  1429. *
  1430. * @ring: amdgpu_ring structure holding ring information
  1431. * @src_offset: src GPU address
  1432. * @dst_offset: dst GPU address
  1433. * @byte_count: number of bytes to xfer
  1434. *
  1435. * Copy GPU buffers using the DMA engine (VI).
  1436. * Used by the amdgpu ttm implementation to move pages if
  1437. * registered as the asic copy callback.
  1438. */
  1439. static void sdma_v3_0_emit_copy_buffer(struct amdgpu_ib *ib,
  1440. uint64_t src_offset,
  1441. uint64_t dst_offset,
  1442. uint32_t byte_count)
  1443. {
  1444. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
  1445. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
  1446. ib->ptr[ib->length_dw++] = byte_count;
  1447. ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
  1448. ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
  1449. ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
  1450. ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
  1451. ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
  1452. }
  1453. /**
  1454. * sdma_v3_0_emit_fill_buffer - fill buffer using the sDMA engine
  1455. *
  1456. * @ring: amdgpu_ring structure holding ring information
  1457. * @src_data: value to write to buffer
  1458. * @dst_offset: dst GPU address
  1459. * @byte_count: number of bytes to xfer
  1460. *
  1461. * Fill GPU buffers using the DMA engine (VI).
  1462. */
  1463. static void sdma_v3_0_emit_fill_buffer(struct amdgpu_ib *ib,
  1464. uint32_t src_data,
  1465. uint64_t dst_offset,
  1466. uint32_t byte_count)
  1467. {
  1468. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
  1469. ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
  1470. ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
  1471. ib->ptr[ib->length_dw++] = src_data;
  1472. ib->ptr[ib->length_dw++] = byte_count;
  1473. }
  1474. static const struct amdgpu_buffer_funcs sdma_v3_0_buffer_funcs = {
  1475. .copy_max_bytes = 0x1fffff,
  1476. .copy_num_dw = 7,
  1477. .emit_copy_buffer = sdma_v3_0_emit_copy_buffer,
  1478. .fill_max_bytes = 0x1fffff,
  1479. .fill_num_dw = 5,
  1480. .emit_fill_buffer = sdma_v3_0_emit_fill_buffer,
  1481. };
  1482. static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev)
  1483. {
  1484. if (adev->mman.buffer_funcs == NULL) {
  1485. adev->mman.buffer_funcs = &sdma_v3_0_buffer_funcs;
  1486. adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
  1487. }
  1488. }
  1489. static const struct amdgpu_vm_pte_funcs sdma_v3_0_vm_pte_funcs = {
  1490. .copy_pte = sdma_v3_0_vm_copy_pte,
  1491. .write_pte = sdma_v3_0_vm_write_pte,
  1492. .set_pte_pde = sdma_v3_0_vm_set_pte_pde,
  1493. };
  1494. static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev)
  1495. {
  1496. unsigned i;
  1497. if (adev->vm_manager.vm_pte_funcs == NULL) {
  1498. adev->vm_manager.vm_pte_funcs = &sdma_v3_0_vm_pte_funcs;
  1499. for (i = 0; i < adev->sdma.num_instances; i++)
  1500. adev->vm_manager.vm_pte_rings[i] =
  1501. &adev->sdma.instance[i].ring;
  1502. adev->vm_manager.vm_pte_num_rings = adev->sdma.num_instances;
  1503. }
  1504. }