kv_dpm.c 90 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293
  1. /*
  2. * Copyright 2013 Advanced Micro Devices, Inc.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice shall be included in
  12. * all copies or substantial portions of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  17. * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20. * OTHER DEALINGS IN THE SOFTWARE.
  21. *
  22. */
  23. #include "drmP.h"
  24. #include "amdgpu.h"
  25. #include "amdgpu_pm.h"
  26. #include "cikd.h"
  27. #include "atom.h"
  28. #include "amdgpu_atombios.h"
  29. #include "amdgpu_dpm.h"
  30. #include "kv_dpm.h"
  31. #include "gfx_v7_0.h"
  32. #include <linux/seq_file.h>
  33. #include "smu/smu_7_0_0_d.h"
  34. #include "smu/smu_7_0_0_sh_mask.h"
  35. #include "gca/gfx_7_2_d.h"
  36. #include "gca/gfx_7_2_sh_mask.h"
  37. #define KV_MAX_DEEPSLEEP_DIVIDER_ID 5
  38. #define KV_MINIMUM_ENGINE_CLOCK 800
  39. #define SMC_RAM_END 0x40000
  40. static void kv_dpm_set_dpm_funcs(struct amdgpu_device *adev);
  41. static void kv_dpm_set_irq_funcs(struct amdgpu_device *adev);
  42. static int kv_enable_nb_dpm(struct amdgpu_device *adev,
  43. bool enable);
  44. static void kv_init_graphics_levels(struct amdgpu_device *adev);
  45. static int kv_calculate_ds_divider(struct amdgpu_device *adev);
  46. static int kv_calculate_nbps_level_settings(struct amdgpu_device *adev);
  47. static int kv_calculate_dpm_settings(struct amdgpu_device *adev);
  48. static void kv_enable_new_levels(struct amdgpu_device *adev);
  49. static void kv_program_nbps_index_settings(struct amdgpu_device *adev,
  50. struct amdgpu_ps *new_rps);
  51. static int kv_set_enabled_level(struct amdgpu_device *adev, u32 level);
  52. static int kv_set_enabled_levels(struct amdgpu_device *adev);
  53. static int kv_force_dpm_highest(struct amdgpu_device *adev);
  54. static int kv_force_dpm_lowest(struct amdgpu_device *adev);
  55. static void kv_apply_state_adjust_rules(struct amdgpu_device *adev,
  56. struct amdgpu_ps *new_rps,
  57. struct amdgpu_ps *old_rps);
  58. static int kv_set_thermal_temperature_range(struct amdgpu_device *adev,
  59. int min_temp, int max_temp);
  60. static int kv_init_fps_limits(struct amdgpu_device *adev);
  61. static void kv_dpm_powergate_uvd(struct amdgpu_device *adev, bool gate);
  62. static void kv_dpm_powergate_vce(struct amdgpu_device *adev, bool gate);
  63. static void kv_dpm_powergate_samu(struct amdgpu_device *adev, bool gate);
  64. static void kv_dpm_powergate_acp(struct amdgpu_device *adev, bool gate);
  65. static u32 kv_convert_vid2_to_vid7(struct amdgpu_device *adev,
  66. struct sumo_vid_mapping_table *vid_mapping_table,
  67. u32 vid_2bit)
  68. {
  69. struct amdgpu_clock_voltage_dependency_table *vddc_sclk_table =
  70. &adev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
  71. u32 i;
  72. if (vddc_sclk_table && vddc_sclk_table->count) {
  73. if (vid_2bit < vddc_sclk_table->count)
  74. return vddc_sclk_table->entries[vid_2bit].v;
  75. else
  76. return vddc_sclk_table->entries[vddc_sclk_table->count - 1].v;
  77. } else {
  78. for (i = 0; i < vid_mapping_table->num_entries; i++) {
  79. if (vid_mapping_table->entries[i].vid_2bit == vid_2bit)
  80. return vid_mapping_table->entries[i].vid_7bit;
  81. }
  82. return vid_mapping_table->entries[vid_mapping_table->num_entries - 1].vid_7bit;
  83. }
  84. }
  85. static u32 kv_convert_vid7_to_vid2(struct amdgpu_device *adev,
  86. struct sumo_vid_mapping_table *vid_mapping_table,
  87. u32 vid_7bit)
  88. {
  89. struct amdgpu_clock_voltage_dependency_table *vddc_sclk_table =
  90. &adev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
  91. u32 i;
  92. if (vddc_sclk_table && vddc_sclk_table->count) {
  93. for (i = 0; i < vddc_sclk_table->count; i++) {
  94. if (vddc_sclk_table->entries[i].v == vid_7bit)
  95. return i;
  96. }
  97. return vddc_sclk_table->count - 1;
  98. } else {
  99. for (i = 0; i < vid_mapping_table->num_entries; i++) {
  100. if (vid_mapping_table->entries[i].vid_7bit == vid_7bit)
  101. return vid_mapping_table->entries[i].vid_2bit;
  102. }
  103. return vid_mapping_table->entries[vid_mapping_table->num_entries - 1].vid_2bit;
  104. }
  105. }
  106. static void sumo_take_smu_control(struct amdgpu_device *adev, bool enable)
  107. {
  108. /* This bit selects who handles display phy powergating.
  109. * Clear the bit to let atom handle it.
  110. * Set it to let the driver handle it.
  111. * For now we just let atom handle it.
  112. */
  113. #if 0
  114. u32 v = RREG32(mmDOUT_SCRATCH3);
  115. if (enable)
  116. v |= 0x4;
  117. else
  118. v &= 0xFFFFFFFB;
  119. WREG32(mmDOUT_SCRATCH3, v);
  120. #endif
  121. }
  122. static void sumo_construct_sclk_voltage_mapping_table(struct amdgpu_device *adev,
  123. struct sumo_sclk_voltage_mapping_table *sclk_voltage_mapping_table,
  124. ATOM_AVAILABLE_SCLK_LIST *table)
  125. {
  126. u32 i;
  127. u32 n = 0;
  128. u32 prev_sclk = 0;
  129. for (i = 0; i < SUMO_MAX_HARDWARE_POWERLEVELS; i++) {
  130. if (table[i].ulSupportedSCLK > prev_sclk) {
  131. sclk_voltage_mapping_table->entries[n].sclk_frequency =
  132. table[i].ulSupportedSCLK;
  133. sclk_voltage_mapping_table->entries[n].vid_2bit =
  134. table[i].usVoltageIndex;
  135. prev_sclk = table[i].ulSupportedSCLK;
  136. n++;
  137. }
  138. }
  139. sclk_voltage_mapping_table->num_max_dpm_entries = n;
  140. }
  141. static void sumo_construct_vid_mapping_table(struct amdgpu_device *adev,
  142. struct sumo_vid_mapping_table *vid_mapping_table,
  143. ATOM_AVAILABLE_SCLK_LIST *table)
  144. {
  145. u32 i, j;
  146. for (i = 0; i < SUMO_MAX_HARDWARE_POWERLEVELS; i++) {
  147. if (table[i].ulSupportedSCLK != 0) {
  148. vid_mapping_table->entries[table[i].usVoltageIndex].vid_7bit =
  149. table[i].usVoltageID;
  150. vid_mapping_table->entries[table[i].usVoltageIndex].vid_2bit =
  151. table[i].usVoltageIndex;
  152. }
  153. }
  154. for (i = 0; i < SUMO_MAX_NUMBER_VOLTAGES; i++) {
  155. if (vid_mapping_table->entries[i].vid_7bit == 0) {
  156. for (j = i + 1; j < SUMO_MAX_NUMBER_VOLTAGES; j++) {
  157. if (vid_mapping_table->entries[j].vid_7bit != 0) {
  158. vid_mapping_table->entries[i] =
  159. vid_mapping_table->entries[j];
  160. vid_mapping_table->entries[j].vid_7bit = 0;
  161. break;
  162. }
  163. }
  164. if (j == SUMO_MAX_NUMBER_VOLTAGES)
  165. break;
  166. }
  167. }
  168. vid_mapping_table->num_entries = i;
  169. }
  170. #if 0
  171. static const struct kv_lcac_config_values sx_local_cac_cfg_kv[] =
  172. {
  173. { 0, 4, 1 },
  174. { 1, 4, 1 },
  175. { 2, 5, 1 },
  176. { 3, 4, 2 },
  177. { 4, 1, 1 },
  178. { 5, 5, 2 },
  179. { 6, 6, 1 },
  180. { 7, 9, 2 },
  181. { 0xffffffff }
  182. };
  183. static const struct kv_lcac_config_values mc0_local_cac_cfg_kv[] =
  184. {
  185. { 0, 4, 1 },
  186. { 0xffffffff }
  187. };
  188. static const struct kv_lcac_config_values mc1_local_cac_cfg_kv[] =
  189. {
  190. { 0, 4, 1 },
  191. { 0xffffffff }
  192. };
  193. static const struct kv_lcac_config_values mc2_local_cac_cfg_kv[] =
  194. {
  195. { 0, 4, 1 },
  196. { 0xffffffff }
  197. };
  198. static const struct kv_lcac_config_values mc3_local_cac_cfg_kv[] =
  199. {
  200. { 0, 4, 1 },
  201. { 0xffffffff }
  202. };
  203. static const struct kv_lcac_config_values cpl_local_cac_cfg_kv[] =
  204. {
  205. { 0, 4, 1 },
  206. { 1, 4, 1 },
  207. { 2, 5, 1 },
  208. { 3, 4, 1 },
  209. { 4, 1, 1 },
  210. { 5, 5, 1 },
  211. { 6, 6, 1 },
  212. { 7, 9, 1 },
  213. { 8, 4, 1 },
  214. { 9, 2, 1 },
  215. { 10, 3, 1 },
  216. { 11, 6, 1 },
  217. { 12, 8, 2 },
  218. { 13, 1, 1 },
  219. { 14, 2, 1 },
  220. { 15, 3, 1 },
  221. { 16, 1, 1 },
  222. { 17, 4, 1 },
  223. { 18, 3, 1 },
  224. { 19, 1, 1 },
  225. { 20, 8, 1 },
  226. { 21, 5, 1 },
  227. { 22, 1, 1 },
  228. { 23, 1, 1 },
  229. { 24, 4, 1 },
  230. { 27, 6, 1 },
  231. { 28, 1, 1 },
  232. { 0xffffffff }
  233. };
  234. static const struct kv_lcac_config_reg sx0_cac_config_reg[] =
  235. {
  236. { 0xc0400d00, 0x003e0000, 17, 0x3fc00000, 22, 0x0001fffe, 1, 0x00000001, 0 }
  237. };
  238. static const struct kv_lcac_config_reg mc0_cac_config_reg[] =
  239. {
  240. { 0xc0400d30, 0x003e0000, 17, 0x3fc00000, 22, 0x0001fffe, 1, 0x00000001, 0 }
  241. };
  242. static const struct kv_lcac_config_reg mc1_cac_config_reg[] =
  243. {
  244. { 0xc0400d3c, 0x003e0000, 17, 0x3fc00000, 22, 0x0001fffe, 1, 0x00000001, 0 }
  245. };
  246. static const struct kv_lcac_config_reg mc2_cac_config_reg[] =
  247. {
  248. { 0xc0400d48, 0x003e0000, 17, 0x3fc00000, 22, 0x0001fffe, 1, 0x00000001, 0 }
  249. };
  250. static const struct kv_lcac_config_reg mc3_cac_config_reg[] =
  251. {
  252. { 0xc0400d54, 0x003e0000, 17, 0x3fc00000, 22, 0x0001fffe, 1, 0x00000001, 0 }
  253. };
  254. static const struct kv_lcac_config_reg cpl_cac_config_reg[] =
  255. {
  256. { 0xc0400d80, 0x003e0000, 17, 0x3fc00000, 22, 0x0001fffe, 1, 0x00000001, 0 }
  257. };
  258. #endif
  259. static const struct kv_pt_config_reg didt_config_kv[] =
  260. {
  261. { 0x10, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  262. { 0x10, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  263. { 0x10, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  264. { 0x10, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  265. { 0x11, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  266. { 0x11, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  267. { 0x11, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  268. { 0x11, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  269. { 0x12, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  270. { 0x12, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  271. { 0x12, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  272. { 0x12, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  273. { 0x2, 0x00003fff, 0, 0x4, KV_CONFIGREG_DIDT_IND },
  274. { 0x2, 0x03ff0000, 16, 0x80, KV_CONFIGREG_DIDT_IND },
  275. { 0x2, 0x78000000, 27, 0x3, KV_CONFIGREG_DIDT_IND },
  276. { 0x1, 0x0000ffff, 0, 0x3FFF, KV_CONFIGREG_DIDT_IND },
  277. { 0x1, 0xffff0000, 16, 0x3FFF, KV_CONFIGREG_DIDT_IND },
  278. { 0x0, 0x00000001, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  279. { 0x30, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  280. { 0x30, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  281. { 0x30, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  282. { 0x30, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  283. { 0x31, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  284. { 0x31, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  285. { 0x31, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  286. { 0x31, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  287. { 0x32, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  288. { 0x32, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  289. { 0x32, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  290. { 0x32, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  291. { 0x22, 0x00003fff, 0, 0x4, KV_CONFIGREG_DIDT_IND },
  292. { 0x22, 0x03ff0000, 16, 0x80, KV_CONFIGREG_DIDT_IND },
  293. { 0x22, 0x78000000, 27, 0x3, KV_CONFIGREG_DIDT_IND },
  294. { 0x21, 0x0000ffff, 0, 0x3FFF, KV_CONFIGREG_DIDT_IND },
  295. { 0x21, 0xffff0000, 16, 0x3FFF, KV_CONFIGREG_DIDT_IND },
  296. { 0x20, 0x00000001, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  297. { 0x50, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  298. { 0x50, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  299. { 0x50, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  300. { 0x50, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  301. { 0x51, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  302. { 0x51, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  303. { 0x51, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  304. { 0x51, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  305. { 0x52, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  306. { 0x52, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  307. { 0x52, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  308. { 0x52, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  309. { 0x42, 0x00003fff, 0, 0x4, KV_CONFIGREG_DIDT_IND },
  310. { 0x42, 0x03ff0000, 16, 0x80, KV_CONFIGREG_DIDT_IND },
  311. { 0x42, 0x78000000, 27, 0x3, KV_CONFIGREG_DIDT_IND },
  312. { 0x41, 0x0000ffff, 0, 0x3FFF, KV_CONFIGREG_DIDT_IND },
  313. { 0x41, 0xffff0000, 16, 0x3FFF, KV_CONFIGREG_DIDT_IND },
  314. { 0x40, 0x00000001, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  315. { 0x70, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  316. { 0x70, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  317. { 0x70, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  318. { 0x70, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  319. { 0x71, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  320. { 0x71, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  321. { 0x71, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  322. { 0x71, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  323. { 0x72, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  324. { 0x72, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  325. { 0x72, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  326. { 0x72, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  327. { 0x62, 0x00003fff, 0, 0x4, KV_CONFIGREG_DIDT_IND },
  328. { 0x62, 0x03ff0000, 16, 0x80, KV_CONFIGREG_DIDT_IND },
  329. { 0x62, 0x78000000, 27, 0x3, KV_CONFIGREG_DIDT_IND },
  330. { 0x61, 0x0000ffff, 0, 0x3FFF, KV_CONFIGREG_DIDT_IND },
  331. { 0x61, 0xffff0000, 16, 0x3FFF, KV_CONFIGREG_DIDT_IND },
  332. { 0x60, 0x00000001, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  333. { 0xFFFFFFFF }
  334. };
  335. static struct kv_ps *kv_get_ps(struct amdgpu_ps *rps)
  336. {
  337. struct kv_ps *ps = rps->ps_priv;
  338. return ps;
  339. }
  340. static struct kv_power_info *kv_get_pi(struct amdgpu_device *adev)
  341. {
  342. struct kv_power_info *pi = adev->pm.dpm.priv;
  343. return pi;
  344. }
  345. #if 0
  346. static void kv_program_local_cac_table(struct amdgpu_device *adev,
  347. const struct kv_lcac_config_values *local_cac_table,
  348. const struct kv_lcac_config_reg *local_cac_reg)
  349. {
  350. u32 i, count, data;
  351. const struct kv_lcac_config_values *values = local_cac_table;
  352. while (values->block_id != 0xffffffff) {
  353. count = values->signal_id;
  354. for (i = 0; i < count; i++) {
  355. data = ((values->block_id << local_cac_reg->block_shift) &
  356. local_cac_reg->block_mask);
  357. data |= ((i << local_cac_reg->signal_shift) &
  358. local_cac_reg->signal_mask);
  359. data |= ((values->t << local_cac_reg->t_shift) &
  360. local_cac_reg->t_mask);
  361. data |= ((1 << local_cac_reg->enable_shift) &
  362. local_cac_reg->enable_mask);
  363. WREG32_SMC(local_cac_reg->cntl, data);
  364. }
  365. values++;
  366. }
  367. }
  368. #endif
  369. static int kv_program_pt_config_registers(struct amdgpu_device *adev,
  370. const struct kv_pt_config_reg *cac_config_regs)
  371. {
  372. const struct kv_pt_config_reg *config_regs = cac_config_regs;
  373. u32 data;
  374. u32 cache = 0;
  375. if (config_regs == NULL)
  376. return -EINVAL;
  377. while (config_regs->offset != 0xFFFFFFFF) {
  378. if (config_regs->type == KV_CONFIGREG_CACHE) {
  379. cache |= ((config_regs->value << config_regs->shift) & config_regs->mask);
  380. } else {
  381. switch (config_regs->type) {
  382. case KV_CONFIGREG_SMC_IND:
  383. data = RREG32_SMC(config_regs->offset);
  384. break;
  385. case KV_CONFIGREG_DIDT_IND:
  386. data = RREG32_DIDT(config_regs->offset);
  387. break;
  388. default:
  389. data = RREG32(config_regs->offset);
  390. break;
  391. }
  392. data &= ~config_regs->mask;
  393. data |= ((config_regs->value << config_regs->shift) & config_regs->mask);
  394. data |= cache;
  395. cache = 0;
  396. switch (config_regs->type) {
  397. case KV_CONFIGREG_SMC_IND:
  398. WREG32_SMC(config_regs->offset, data);
  399. break;
  400. case KV_CONFIGREG_DIDT_IND:
  401. WREG32_DIDT(config_regs->offset, data);
  402. break;
  403. default:
  404. WREG32(config_regs->offset, data);
  405. break;
  406. }
  407. }
  408. config_regs++;
  409. }
  410. return 0;
  411. }
  412. static void kv_do_enable_didt(struct amdgpu_device *adev, bool enable)
  413. {
  414. struct kv_power_info *pi = kv_get_pi(adev);
  415. u32 data;
  416. if (pi->caps_sq_ramping) {
  417. data = RREG32_DIDT(ixDIDT_SQ_CTRL0);
  418. if (enable)
  419. data |= DIDT_SQ_CTRL0__DIDT_CTRL_EN_MASK;
  420. else
  421. data &= ~DIDT_SQ_CTRL0__DIDT_CTRL_EN_MASK;
  422. WREG32_DIDT(ixDIDT_SQ_CTRL0, data);
  423. }
  424. if (pi->caps_db_ramping) {
  425. data = RREG32_DIDT(ixDIDT_DB_CTRL0);
  426. if (enable)
  427. data |= DIDT_DB_CTRL0__DIDT_CTRL_EN_MASK;
  428. else
  429. data &= ~DIDT_DB_CTRL0__DIDT_CTRL_EN_MASK;
  430. WREG32_DIDT(ixDIDT_DB_CTRL0, data);
  431. }
  432. if (pi->caps_td_ramping) {
  433. data = RREG32_DIDT(ixDIDT_TD_CTRL0);
  434. if (enable)
  435. data |= DIDT_TD_CTRL0__DIDT_CTRL_EN_MASK;
  436. else
  437. data &= ~DIDT_TD_CTRL0__DIDT_CTRL_EN_MASK;
  438. WREG32_DIDT(ixDIDT_TD_CTRL0, data);
  439. }
  440. if (pi->caps_tcp_ramping) {
  441. data = RREG32_DIDT(ixDIDT_TCP_CTRL0);
  442. if (enable)
  443. data |= DIDT_TCP_CTRL0__DIDT_CTRL_EN_MASK;
  444. else
  445. data &= ~DIDT_TCP_CTRL0__DIDT_CTRL_EN_MASK;
  446. WREG32_DIDT(ixDIDT_TCP_CTRL0, data);
  447. }
  448. }
  449. static int kv_enable_didt(struct amdgpu_device *adev, bool enable)
  450. {
  451. struct kv_power_info *pi = kv_get_pi(adev);
  452. int ret;
  453. if (pi->caps_sq_ramping ||
  454. pi->caps_db_ramping ||
  455. pi->caps_td_ramping ||
  456. pi->caps_tcp_ramping) {
  457. adev->gfx.rlc.funcs->enter_safe_mode(adev);
  458. if (enable) {
  459. ret = kv_program_pt_config_registers(adev, didt_config_kv);
  460. if (ret) {
  461. adev->gfx.rlc.funcs->exit_safe_mode(adev);
  462. return ret;
  463. }
  464. }
  465. kv_do_enable_didt(adev, enable);
  466. adev->gfx.rlc.funcs->exit_safe_mode(adev);
  467. }
  468. return 0;
  469. }
  470. #if 0
  471. static void kv_initialize_hardware_cac_manager(struct amdgpu_device *adev)
  472. {
  473. struct kv_power_info *pi = kv_get_pi(adev);
  474. if (pi->caps_cac) {
  475. WREG32_SMC(ixLCAC_SX0_OVR_SEL, 0);
  476. WREG32_SMC(ixLCAC_SX0_OVR_VAL, 0);
  477. kv_program_local_cac_table(adev, sx_local_cac_cfg_kv, sx0_cac_config_reg);
  478. WREG32_SMC(ixLCAC_MC0_OVR_SEL, 0);
  479. WREG32_SMC(ixLCAC_MC0_OVR_VAL, 0);
  480. kv_program_local_cac_table(adev, mc0_local_cac_cfg_kv, mc0_cac_config_reg);
  481. WREG32_SMC(ixLCAC_MC1_OVR_SEL, 0);
  482. WREG32_SMC(ixLCAC_MC1_OVR_VAL, 0);
  483. kv_program_local_cac_table(adev, mc1_local_cac_cfg_kv, mc1_cac_config_reg);
  484. WREG32_SMC(ixLCAC_MC2_OVR_SEL, 0);
  485. WREG32_SMC(ixLCAC_MC2_OVR_VAL, 0);
  486. kv_program_local_cac_table(adev, mc2_local_cac_cfg_kv, mc2_cac_config_reg);
  487. WREG32_SMC(ixLCAC_MC3_OVR_SEL, 0);
  488. WREG32_SMC(ixLCAC_MC3_OVR_VAL, 0);
  489. kv_program_local_cac_table(adev, mc3_local_cac_cfg_kv, mc3_cac_config_reg);
  490. WREG32_SMC(ixLCAC_CPL_OVR_SEL, 0);
  491. WREG32_SMC(ixLCAC_CPL_OVR_VAL, 0);
  492. kv_program_local_cac_table(adev, cpl_local_cac_cfg_kv, cpl_cac_config_reg);
  493. }
  494. }
  495. #endif
  496. static int kv_enable_smc_cac(struct amdgpu_device *adev, bool enable)
  497. {
  498. struct kv_power_info *pi = kv_get_pi(adev);
  499. int ret = 0;
  500. if (pi->caps_cac) {
  501. if (enable) {
  502. ret = amdgpu_kv_notify_message_to_smu(adev, PPSMC_MSG_EnableCac);
  503. if (ret)
  504. pi->cac_enabled = false;
  505. else
  506. pi->cac_enabled = true;
  507. } else if (pi->cac_enabled) {
  508. amdgpu_kv_notify_message_to_smu(adev, PPSMC_MSG_DisableCac);
  509. pi->cac_enabled = false;
  510. }
  511. }
  512. return ret;
  513. }
  514. static int kv_process_firmware_header(struct amdgpu_device *adev)
  515. {
  516. struct kv_power_info *pi = kv_get_pi(adev);
  517. u32 tmp;
  518. int ret;
  519. ret = amdgpu_kv_read_smc_sram_dword(adev, SMU7_FIRMWARE_HEADER_LOCATION +
  520. offsetof(SMU7_Firmware_Header, DpmTable),
  521. &tmp, pi->sram_end);
  522. if (ret == 0)
  523. pi->dpm_table_start = tmp;
  524. ret = amdgpu_kv_read_smc_sram_dword(adev, SMU7_FIRMWARE_HEADER_LOCATION +
  525. offsetof(SMU7_Firmware_Header, SoftRegisters),
  526. &tmp, pi->sram_end);
  527. if (ret == 0)
  528. pi->soft_regs_start = tmp;
  529. return ret;
  530. }
  531. static int kv_enable_dpm_voltage_scaling(struct amdgpu_device *adev)
  532. {
  533. struct kv_power_info *pi = kv_get_pi(adev);
  534. int ret;
  535. pi->graphics_voltage_change_enable = 1;
  536. ret = amdgpu_kv_copy_bytes_to_smc(adev,
  537. pi->dpm_table_start +
  538. offsetof(SMU7_Fusion_DpmTable, GraphicsVoltageChangeEnable),
  539. &pi->graphics_voltage_change_enable,
  540. sizeof(u8), pi->sram_end);
  541. return ret;
  542. }
  543. static int kv_set_dpm_interval(struct amdgpu_device *adev)
  544. {
  545. struct kv_power_info *pi = kv_get_pi(adev);
  546. int ret;
  547. pi->graphics_interval = 1;
  548. ret = amdgpu_kv_copy_bytes_to_smc(adev,
  549. pi->dpm_table_start +
  550. offsetof(SMU7_Fusion_DpmTable, GraphicsInterval),
  551. &pi->graphics_interval,
  552. sizeof(u8), pi->sram_end);
  553. return ret;
  554. }
  555. static int kv_set_dpm_boot_state(struct amdgpu_device *adev)
  556. {
  557. struct kv_power_info *pi = kv_get_pi(adev);
  558. int ret;
  559. ret = amdgpu_kv_copy_bytes_to_smc(adev,
  560. pi->dpm_table_start +
  561. offsetof(SMU7_Fusion_DpmTable, GraphicsBootLevel),
  562. &pi->graphics_boot_level,
  563. sizeof(u8), pi->sram_end);
  564. return ret;
  565. }
  566. static void kv_program_vc(struct amdgpu_device *adev)
  567. {
  568. WREG32_SMC(ixCG_FREQ_TRAN_VOTING_0, 0x3FFFC100);
  569. }
  570. static void kv_clear_vc(struct amdgpu_device *adev)
  571. {
  572. WREG32_SMC(ixCG_FREQ_TRAN_VOTING_0, 0);
  573. }
  574. static int kv_set_divider_value(struct amdgpu_device *adev,
  575. u32 index, u32 sclk)
  576. {
  577. struct kv_power_info *pi = kv_get_pi(adev);
  578. struct atom_clock_dividers dividers;
  579. int ret;
  580. ret = amdgpu_atombios_get_clock_dividers(adev, COMPUTE_ENGINE_PLL_PARAM,
  581. sclk, false, &dividers);
  582. if (ret)
  583. return ret;
  584. pi->graphics_level[index].SclkDid = (u8)dividers.post_div;
  585. pi->graphics_level[index].SclkFrequency = cpu_to_be32(sclk);
  586. return 0;
  587. }
  588. static u16 kv_convert_8bit_index_to_voltage(struct amdgpu_device *adev,
  589. u16 voltage)
  590. {
  591. return 6200 - (voltage * 25);
  592. }
  593. static u16 kv_convert_2bit_index_to_voltage(struct amdgpu_device *adev,
  594. u32 vid_2bit)
  595. {
  596. struct kv_power_info *pi = kv_get_pi(adev);
  597. u32 vid_8bit = kv_convert_vid2_to_vid7(adev,
  598. &pi->sys_info.vid_mapping_table,
  599. vid_2bit);
  600. return kv_convert_8bit_index_to_voltage(adev, (u16)vid_8bit);
  601. }
  602. static int kv_set_vid(struct amdgpu_device *adev, u32 index, u32 vid)
  603. {
  604. struct kv_power_info *pi = kv_get_pi(adev);
  605. pi->graphics_level[index].VoltageDownH = (u8)pi->voltage_drop_t;
  606. pi->graphics_level[index].MinVddNb =
  607. cpu_to_be32(kv_convert_2bit_index_to_voltage(adev, vid));
  608. return 0;
  609. }
  610. static int kv_set_at(struct amdgpu_device *adev, u32 index, u32 at)
  611. {
  612. struct kv_power_info *pi = kv_get_pi(adev);
  613. pi->graphics_level[index].AT = cpu_to_be16((u16)at);
  614. return 0;
  615. }
  616. static void kv_dpm_power_level_enable(struct amdgpu_device *adev,
  617. u32 index, bool enable)
  618. {
  619. struct kv_power_info *pi = kv_get_pi(adev);
  620. pi->graphics_level[index].EnabledForActivity = enable ? 1 : 0;
  621. }
  622. static void kv_start_dpm(struct amdgpu_device *adev)
  623. {
  624. u32 tmp = RREG32_SMC(ixGENERAL_PWRMGT);
  625. tmp |= GENERAL_PWRMGT__GLOBAL_PWRMGT_EN_MASK;
  626. WREG32_SMC(ixGENERAL_PWRMGT, tmp);
  627. amdgpu_kv_smc_dpm_enable(adev, true);
  628. }
  629. static void kv_stop_dpm(struct amdgpu_device *adev)
  630. {
  631. amdgpu_kv_smc_dpm_enable(adev, false);
  632. }
  633. static void kv_start_am(struct amdgpu_device *adev)
  634. {
  635. u32 sclk_pwrmgt_cntl = RREG32_SMC(ixSCLK_PWRMGT_CNTL);
  636. sclk_pwrmgt_cntl &= ~(SCLK_PWRMGT_CNTL__RESET_SCLK_CNT_MASK |
  637. SCLK_PWRMGT_CNTL__RESET_BUSY_CNT_MASK);
  638. sclk_pwrmgt_cntl |= SCLK_PWRMGT_CNTL__DYNAMIC_PM_EN_MASK;
  639. WREG32_SMC(ixSCLK_PWRMGT_CNTL, sclk_pwrmgt_cntl);
  640. }
  641. static void kv_reset_am(struct amdgpu_device *adev)
  642. {
  643. u32 sclk_pwrmgt_cntl = RREG32_SMC(ixSCLK_PWRMGT_CNTL);
  644. sclk_pwrmgt_cntl |= (SCLK_PWRMGT_CNTL__RESET_SCLK_CNT_MASK |
  645. SCLK_PWRMGT_CNTL__RESET_BUSY_CNT_MASK);
  646. WREG32_SMC(ixSCLK_PWRMGT_CNTL, sclk_pwrmgt_cntl);
  647. }
  648. static int kv_freeze_sclk_dpm(struct amdgpu_device *adev, bool freeze)
  649. {
  650. return amdgpu_kv_notify_message_to_smu(adev, freeze ?
  651. PPSMC_MSG_SCLKDPM_FreezeLevel : PPSMC_MSG_SCLKDPM_UnfreezeLevel);
  652. }
  653. static int kv_force_lowest_valid(struct amdgpu_device *adev)
  654. {
  655. return kv_force_dpm_lowest(adev);
  656. }
  657. static int kv_unforce_levels(struct amdgpu_device *adev)
  658. {
  659. if (adev->asic_type == CHIP_KABINI || adev->asic_type == CHIP_MULLINS)
  660. return amdgpu_kv_notify_message_to_smu(adev, PPSMC_MSG_NoForcedLevel);
  661. else
  662. return kv_set_enabled_levels(adev);
  663. }
  664. static int kv_update_sclk_t(struct amdgpu_device *adev)
  665. {
  666. struct kv_power_info *pi = kv_get_pi(adev);
  667. u32 low_sclk_interrupt_t = 0;
  668. int ret = 0;
  669. if (pi->caps_sclk_throttle_low_notification) {
  670. low_sclk_interrupt_t = cpu_to_be32(pi->low_sclk_interrupt_t);
  671. ret = amdgpu_kv_copy_bytes_to_smc(adev,
  672. pi->dpm_table_start +
  673. offsetof(SMU7_Fusion_DpmTable, LowSclkInterruptT),
  674. (u8 *)&low_sclk_interrupt_t,
  675. sizeof(u32), pi->sram_end);
  676. }
  677. return ret;
  678. }
  679. static int kv_program_bootup_state(struct amdgpu_device *adev)
  680. {
  681. struct kv_power_info *pi = kv_get_pi(adev);
  682. u32 i;
  683. struct amdgpu_clock_voltage_dependency_table *table =
  684. &adev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
  685. if (table && table->count) {
  686. for (i = pi->graphics_dpm_level_count - 1; i > 0; i--) {
  687. if (table->entries[i].clk == pi->boot_pl.sclk)
  688. break;
  689. }
  690. pi->graphics_boot_level = (u8)i;
  691. kv_dpm_power_level_enable(adev, i, true);
  692. } else {
  693. struct sumo_sclk_voltage_mapping_table *table =
  694. &pi->sys_info.sclk_voltage_mapping_table;
  695. if (table->num_max_dpm_entries == 0)
  696. return -EINVAL;
  697. for (i = pi->graphics_dpm_level_count - 1; i > 0; i--) {
  698. if (table->entries[i].sclk_frequency == pi->boot_pl.sclk)
  699. break;
  700. }
  701. pi->graphics_boot_level = (u8)i;
  702. kv_dpm_power_level_enable(adev, i, true);
  703. }
  704. return 0;
  705. }
  706. static int kv_enable_auto_thermal_throttling(struct amdgpu_device *adev)
  707. {
  708. struct kv_power_info *pi = kv_get_pi(adev);
  709. int ret;
  710. pi->graphics_therm_throttle_enable = 1;
  711. ret = amdgpu_kv_copy_bytes_to_smc(adev,
  712. pi->dpm_table_start +
  713. offsetof(SMU7_Fusion_DpmTable, GraphicsThermThrottleEnable),
  714. &pi->graphics_therm_throttle_enable,
  715. sizeof(u8), pi->sram_end);
  716. return ret;
  717. }
  718. static int kv_upload_dpm_settings(struct amdgpu_device *adev)
  719. {
  720. struct kv_power_info *pi = kv_get_pi(adev);
  721. int ret;
  722. ret = amdgpu_kv_copy_bytes_to_smc(adev,
  723. pi->dpm_table_start +
  724. offsetof(SMU7_Fusion_DpmTable, GraphicsLevel),
  725. (u8 *)&pi->graphics_level,
  726. sizeof(SMU7_Fusion_GraphicsLevel) * SMU7_MAX_LEVELS_GRAPHICS,
  727. pi->sram_end);
  728. if (ret)
  729. return ret;
  730. ret = amdgpu_kv_copy_bytes_to_smc(adev,
  731. pi->dpm_table_start +
  732. offsetof(SMU7_Fusion_DpmTable, GraphicsDpmLevelCount),
  733. &pi->graphics_dpm_level_count,
  734. sizeof(u8), pi->sram_end);
  735. return ret;
  736. }
  737. static u32 kv_get_clock_difference(u32 a, u32 b)
  738. {
  739. return (a >= b) ? a - b : b - a;
  740. }
  741. static u32 kv_get_clk_bypass(struct amdgpu_device *adev, u32 clk)
  742. {
  743. struct kv_power_info *pi = kv_get_pi(adev);
  744. u32 value;
  745. if (pi->caps_enable_dfs_bypass) {
  746. if (kv_get_clock_difference(clk, 40000) < 200)
  747. value = 3;
  748. else if (kv_get_clock_difference(clk, 30000) < 200)
  749. value = 2;
  750. else if (kv_get_clock_difference(clk, 20000) < 200)
  751. value = 7;
  752. else if (kv_get_clock_difference(clk, 15000) < 200)
  753. value = 6;
  754. else if (kv_get_clock_difference(clk, 10000) < 200)
  755. value = 8;
  756. else
  757. value = 0;
  758. } else {
  759. value = 0;
  760. }
  761. return value;
  762. }
  763. static int kv_populate_uvd_table(struct amdgpu_device *adev)
  764. {
  765. struct kv_power_info *pi = kv_get_pi(adev);
  766. struct amdgpu_uvd_clock_voltage_dependency_table *table =
  767. &adev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table;
  768. struct atom_clock_dividers dividers;
  769. int ret;
  770. u32 i;
  771. if (table == NULL || table->count == 0)
  772. return 0;
  773. pi->uvd_level_count = 0;
  774. for (i = 0; i < table->count; i++) {
  775. if (pi->high_voltage_t &&
  776. (pi->high_voltage_t < table->entries[i].v))
  777. break;
  778. pi->uvd_level[i].VclkFrequency = cpu_to_be32(table->entries[i].vclk);
  779. pi->uvd_level[i].DclkFrequency = cpu_to_be32(table->entries[i].dclk);
  780. pi->uvd_level[i].MinVddNb = cpu_to_be16(table->entries[i].v);
  781. pi->uvd_level[i].VClkBypassCntl =
  782. (u8)kv_get_clk_bypass(adev, table->entries[i].vclk);
  783. pi->uvd_level[i].DClkBypassCntl =
  784. (u8)kv_get_clk_bypass(adev, table->entries[i].dclk);
  785. ret = amdgpu_atombios_get_clock_dividers(adev, COMPUTE_ENGINE_PLL_PARAM,
  786. table->entries[i].vclk, false, &dividers);
  787. if (ret)
  788. return ret;
  789. pi->uvd_level[i].VclkDivider = (u8)dividers.post_div;
  790. ret = amdgpu_atombios_get_clock_dividers(adev, COMPUTE_ENGINE_PLL_PARAM,
  791. table->entries[i].dclk, false, &dividers);
  792. if (ret)
  793. return ret;
  794. pi->uvd_level[i].DclkDivider = (u8)dividers.post_div;
  795. pi->uvd_level_count++;
  796. }
  797. ret = amdgpu_kv_copy_bytes_to_smc(adev,
  798. pi->dpm_table_start +
  799. offsetof(SMU7_Fusion_DpmTable, UvdLevelCount),
  800. (u8 *)&pi->uvd_level_count,
  801. sizeof(u8), pi->sram_end);
  802. if (ret)
  803. return ret;
  804. pi->uvd_interval = 1;
  805. ret = amdgpu_kv_copy_bytes_to_smc(adev,
  806. pi->dpm_table_start +
  807. offsetof(SMU7_Fusion_DpmTable, UVDInterval),
  808. &pi->uvd_interval,
  809. sizeof(u8), pi->sram_end);
  810. if (ret)
  811. return ret;
  812. ret = amdgpu_kv_copy_bytes_to_smc(adev,
  813. pi->dpm_table_start +
  814. offsetof(SMU7_Fusion_DpmTable, UvdLevel),
  815. (u8 *)&pi->uvd_level,
  816. sizeof(SMU7_Fusion_UvdLevel) * SMU7_MAX_LEVELS_UVD,
  817. pi->sram_end);
  818. return ret;
  819. }
  820. static int kv_populate_vce_table(struct amdgpu_device *adev)
  821. {
  822. struct kv_power_info *pi = kv_get_pi(adev);
  823. int ret;
  824. u32 i;
  825. struct amdgpu_vce_clock_voltage_dependency_table *table =
  826. &adev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table;
  827. struct atom_clock_dividers dividers;
  828. if (table == NULL || table->count == 0)
  829. return 0;
  830. pi->vce_level_count = 0;
  831. for (i = 0; i < table->count; i++) {
  832. if (pi->high_voltage_t &&
  833. pi->high_voltage_t < table->entries[i].v)
  834. break;
  835. pi->vce_level[i].Frequency = cpu_to_be32(table->entries[i].evclk);
  836. pi->vce_level[i].MinVoltage = cpu_to_be16(table->entries[i].v);
  837. pi->vce_level[i].ClkBypassCntl =
  838. (u8)kv_get_clk_bypass(adev, table->entries[i].evclk);
  839. ret = amdgpu_atombios_get_clock_dividers(adev, COMPUTE_ENGINE_PLL_PARAM,
  840. table->entries[i].evclk, false, &dividers);
  841. if (ret)
  842. return ret;
  843. pi->vce_level[i].Divider = (u8)dividers.post_div;
  844. pi->vce_level_count++;
  845. }
  846. ret = amdgpu_kv_copy_bytes_to_smc(adev,
  847. pi->dpm_table_start +
  848. offsetof(SMU7_Fusion_DpmTable, VceLevelCount),
  849. (u8 *)&pi->vce_level_count,
  850. sizeof(u8),
  851. pi->sram_end);
  852. if (ret)
  853. return ret;
  854. pi->vce_interval = 1;
  855. ret = amdgpu_kv_copy_bytes_to_smc(adev,
  856. pi->dpm_table_start +
  857. offsetof(SMU7_Fusion_DpmTable, VCEInterval),
  858. (u8 *)&pi->vce_interval,
  859. sizeof(u8),
  860. pi->sram_end);
  861. if (ret)
  862. return ret;
  863. ret = amdgpu_kv_copy_bytes_to_smc(adev,
  864. pi->dpm_table_start +
  865. offsetof(SMU7_Fusion_DpmTable, VceLevel),
  866. (u8 *)&pi->vce_level,
  867. sizeof(SMU7_Fusion_ExtClkLevel) * SMU7_MAX_LEVELS_VCE,
  868. pi->sram_end);
  869. return ret;
  870. }
  871. static int kv_populate_samu_table(struct amdgpu_device *adev)
  872. {
  873. struct kv_power_info *pi = kv_get_pi(adev);
  874. struct amdgpu_clock_voltage_dependency_table *table =
  875. &adev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table;
  876. struct atom_clock_dividers dividers;
  877. int ret;
  878. u32 i;
  879. if (table == NULL || table->count == 0)
  880. return 0;
  881. pi->samu_level_count = 0;
  882. for (i = 0; i < table->count; i++) {
  883. if (pi->high_voltage_t &&
  884. pi->high_voltage_t < table->entries[i].v)
  885. break;
  886. pi->samu_level[i].Frequency = cpu_to_be32(table->entries[i].clk);
  887. pi->samu_level[i].MinVoltage = cpu_to_be16(table->entries[i].v);
  888. pi->samu_level[i].ClkBypassCntl =
  889. (u8)kv_get_clk_bypass(adev, table->entries[i].clk);
  890. ret = amdgpu_atombios_get_clock_dividers(adev, COMPUTE_ENGINE_PLL_PARAM,
  891. table->entries[i].clk, false, &dividers);
  892. if (ret)
  893. return ret;
  894. pi->samu_level[i].Divider = (u8)dividers.post_div;
  895. pi->samu_level_count++;
  896. }
  897. ret = amdgpu_kv_copy_bytes_to_smc(adev,
  898. pi->dpm_table_start +
  899. offsetof(SMU7_Fusion_DpmTable, SamuLevelCount),
  900. (u8 *)&pi->samu_level_count,
  901. sizeof(u8),
  902. pi->sram_end);
  903. if (ret)
  904. return ret;
  905. pi->samu_interval = 1;
  906. ret = amdgpu_kv_copy_bytes_to_smc(adev,
  907. pi->dpm_table_start +
  908. offsetof(SMU7_Fusion_DpmTable, SAMUInterval),
  909. (u8 *)&pi->samu_interval,
  910. sizeof(u8),
  911. pi->sram_end);
  912. if (ret)
  913. return ret;
  914. ret = amdgpu_kv_copy_bytes_to_smc(adev,
  915. pi->dpm_table_start +
  916. offsetof(SMU7_Fusion_DpmTable, SamuLevel),
  917. (u8 *)&pi->samu_level,
  918. sizeof(SMU7_Fusion_ExtClkLevel) * SMU7_MAX_LEVELS_SAMU,
  919. pi->sram_end);
  920. if (ret)
  921. return ret;
  922. return ret;
  923. }
  924. static int kv_populate_acp_table(struct amdgpu_device *adev)
  925. {
  926. struct kv_power_info *pi = kv_get_pi(adev);
  927. struct amdgpu_clock_voltage_dependency_table *table =
  928. &adev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table;
  929. struct atom_clock_dividers dividers;
  930. int ret;
  931. u32 i;
  932. if (table == NULL || table->count == 0)
  933. return 0;
  934. pi->acp_level_count = 0;
  935. for (i = 0; i < table->count; i++) {
  936. pi->acp_level[i].Frequency = cpu_to_be32(table->entries[i].clk);
  937. pi->acp_level[i].MinVoltage = cpu_to_be16(table->entries[i].v);
  938. ret = amdgpu_atombios_get_clock_dividers(adev, COMPUTE_ENGINE_PLL_PARAM,
  939. table->entries[i].clk, false, &dividers);
  940. if (ret)
  941. return ret;
  942. pi->acp_level[i].Divider = (u8)dividers.post_div;
  943. pi->acp_level_count++;
  944. }
  945. ret = amdgpu_kv_copy_bytes_to_smc(adev,
  946. pi->dpm_table_start +
  947. offsetof(SMU7_Fusion_DpmTable, AcpLevelCount),
  948. (u8 *)&pi->acp_level_count,
  949. sizeof(u8),
  950. pi->sram_end);
  951. if (ret)
  952. return ret;
  953. pi->acp_interval = 1;
  954. ret = amdgpu_kv_copy_bytes_to_smc(adev,
  955. pi->dpm_table_start +
  956. offsetof(SMU7_Fusion_DpmTable, ACPInterval),
  957. (u8 *)&pi->acp_interval,
  958. sizeof(u8),
  959. pi->sram_end);
  960. if (ret)
  961. return ret;
  962. ret = amdgpu_kv_copy_bytes_to_smc(adev,
  963. pi->dpm_table_start +
  964. offsetof(SMU7_Fusion_DpmTable, AcpLevel),
  965. (u8 *)&pi->acp_level,
  966. sizeof(SMU7_Fusion_ExtClkLevel) * SMU7_MAX_LEVELS_ACP,
  967. pi->sram_end);
  968. if (ret)
  969. return ret;
  970. return ret;
  971. }
  972. static void kv_calculate_dfs_bypass_settings(struct amdgpu_device *adev)
  973. {
  974. struct kv_power_info *pi = kv_get_pi(adev);
  975. u32 i;
  976. struct amdgpu_clock_voltage_dependency_table *table =
  977. &adev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
  978. if (table && table->count) {
  979. for (i = 0; i < pi->graphics_dpm_level_count; i++) {
  980. if (pi->caps_enable_dfs_bypass) {
  981. if (kv_get_clock_difference(table->entries[i].clk, 40000) < 200)
  982. pi->graphics_level[i].ClkBypassCntl = 3;
  983. else if (kv_get_clock_difference(table->entries[i].clk, 30000) < 200)
  984. pi->graphics_level[i].ClkBypassCntl = 2;
  985. else if (kv_get_clock_difference(table->entries[i].clk, 26600) < 200)
  986. pi->graphics_level[i].ClkBypassCntl = 7;
  987. else if (kv_get_clock_difference(table->entries[i].clk , 20000) < 200)
  988. pi->graphics_level[i].ClkBypassCntl = 6;
  989. else if (kv_get_clock_difference(table->entries[i].clk , 10000) < 200)
  990. pi->graphics_level[i].ClkBypassCntl = 8;
  991. else
  992. pi->graphics_level[i].ClkBypassCntl = 0;
  993. } else {
  994. pi->graphics_level[i].ClkBypassCntl = 0;
  995. }
  996. }
  997. } else {
  998. struct sumo_sclk_voltage_mapping_table *table =
  999. &pi->sys_info.sclk_voltage_mapping_table;
  1000. for (i = 0; i < pi->graphics_dpm_level_count; i++) {
  1001. if (pi->caps_enable_dfs_bypass) {
  1002. if (kv_get_clock_difference(table->entries[i].sclk_frequency, 40000) < 200)
  1003. pi->graphics_level[i].ClkBypassCntl = 3;
  1004. else if (kv_get_clock_difference(table->entries[i].sclk_frequency, 30000) < 200)
  1005. pi->graphics_level[i].ClkBypassCntl = 2;
  1006. else if (kv_get_clock_difference(table->entries[i].sclk_frequency, 26600) < 200)
  1007. pi->graphics_level[i].ClkBypassCntl = 7;
  1008. else if (kv_get_clock_difference(table->entries[i].sclk_frequency, 20000) < 200)
  1009. pi->graphics_level[i].ClkBypassCntl = 6;
  1010. else if (kv_get_clock_difference(table->entries[i].sclk_frequency, 10000) < 200)
  1011. pi->graphics_level[i].ClkBypassCntl = 8;
  1012. else
  1013. pi->graphics_level[i].ClkBypassCntl = 0;
  1014. } else {
  1015. pi->graphics_level[i].ClkBypassCntl = 0;
  1016. }
  1017. }
  1018. }
  1019. }
  1020. static int kv_enable_ulv(struct amdgpu_device *adev, bool enable)
  1021. {
  1022. return amdgpu_kv_notify_message_to_smu(adev, enable ?
  1023. PPSMC_MSG_EnableULV : PPSMC_MSG_DisableULV);
  1024. }
  1025. static void kv_reset_acp_boot_level(struct amdgpu_device *adev)
  1026. {
  1027. struct kv_power_info *pi = kv_get_pi(adev);
  1028. pi->acp_boot_level = 0xff;
  1029. }
  1030. static void kv_update_current_ps(struct amdgpu_device *adev,
  1031. struct amdgpu_ps *rps)
  1032. {
  1033. struct kv_ps *new_ps = kv_get_ps(rps);
  1034. struct kv_power_info *pi = kv_get_pi(adev);
  1035. pi->current_rps = *rps;
  1036. pi->current_ps = *new_ps;
  1037. pi->current_rps.ps_priv = &pi->current_ps;
  1038. }
  1039. static void kv_update_requested_ps(struct amdgpu_device *adev,
  1040. struct amdgpu_ps *rps)
  1041. {
  1042. struct kv_ps *new_ps = kv_get_ps(rps);
  1043. struct kv_power_info *pi = kv_get_pi(adev);
  1044. pi->requested_rps = *rps;
  1045. pi->requested_ps = *new_ps;
  1046. pi->requested_rps.ps_priv = &pi->requested_ps;
  1047. }
  1048. static void kv_dpm_enable_bapm(struct amdgpu_device *adev, bool enable)
  1049. {
  1050. struct kv_power_info *pi = kv_get_pi(adev);
  1051. int ret;
  1052. if (pi->bapm_enable) {
  1053. ret = amdgpu_kv_smc_bapm_enable(adev, enable);
  1054. if (ret)
  1055. DRM_ERROR("amdgpu_kv_smc_bapm_enable failed\n");
  1056. }
  1057. }
  1058. static int kv_dpm_enable(struct amdgpu_device *adev)
  1059. {
  1060. struct kv_power_info *pi = kv_get_pi(adev);
  1061. int ret;
  1062. ret = kv_process_firmware_header(adev);
  1063. if (ret) {
  1064. DRM_ERROR("kv_process_firmware_header failed\n");
  1065. return ret;
  1066. }
  1067. kv_init_fps_limits(adev);
  1068. kv_init_graphics_levels(adev);
  1069. ret = kv_program_bootup_state(adev);
  1070. if (ret) {
  1071. DRM_ERROR("kv_program_bootup_state failed\n");
  1072. return ret;
  1073. }
  1074. kv_calculate_dfs_bypass_settings(adev);
  1075. ret = kv_upload_dpm_settings(adev);
  1076. if (ret) {
  1077. DRM_ERROR("kv_upload_dpm_settings failed\n");
  1078. return ret;
  1079. }
  1080. ret = kv_populate_uvd_table(adev);
  1081. if (ret) {
  1082. DRM_ERROR("kv_populate_uvd_table failed\n");
  1083. return ret;
  1084. }
  1085. ret = kv_populate_vce_table(adev);
  1086. if (ret) {
  1087. DRM_ERROR("kv_populate_vce_table failed\n");
  1088. return ret;
  1089. }
  1090. ret = kv_populate_samu_table(adev);
  1091. if (ret) {
  1092. DRM_ERROR("kv_populate_samu_table failed\n");
  1093. return ret;
  1094. }
  1095. ret = kv_populate_acp_table(adev);
  1096. if (ret) {
  1097. DRM_ERROR("kv_populate_acp_table failed\n");
  1098. return ret;
  1099. }
  1100. kv_program_vc(adev);
  1101. #if 0
  1102. kv_initialize_hardware_cac_manager(adev);
  1103. #endif
  1104. kv_start_am(adev);
  1105. if (pi->enable_auto_thermal_throttling) {
  1106. ret = kv_enable_auto_thermal_throttling(adev);
  1107. if (ret) {
  1108. DRM_ERROR("kv_enable_auto_thermal_throttling failed\n");
  1109. return ret;
  1110. }
  1111. }
  1112. ret = kv_enable_dpm_voltage_scaling(adev);
  1113. if (ret) {
  1114. DRM_ERROR("kv_enable_dpm_voltage_scaling failed\n");
  1115. return ret;
  1116. }
  1117. ret = kv_set_dpm_interval(adev);
  1118. if (ret) {
  1119. DRM_ERROR("kv_set_dpm_interval failed\n");
  1120. return ret;
  1121. }
  1122. ret = kv_set_dpm_boot_state(adev);
  1123. if (ret) {
  1124. DRM_ERROR("kv_set_dpm_boot_state failed\n");
  1125. return ret;
  1126. }
  1127. ret = kv_enable_ulv(adev, true);
  1128. if (ret) {
  1129. DRM_ERROR("kv_enable_ulv failed\n");
  1130. return ret;
  1131. }
  1132. kv_start_dpm(adev);
  1133. ret = kv_enable_didt(adev, true);
  1134. if (ret) {
  1135. DRM_ERROR("kv_enable_didt failed\n");
  1136. return ret;
  1137. }
  1138. ret = kv_enable_smc_cac(adev, true);
  1139. if (ret) {
  1140. DRM_ERROR("kv_enable_smc_cac failed\n");
  1141. return ret;
  1142. }
  1143. kv_reset_acp_boot_level(adev);
  1144. ret = amdgpu_kv_smc_bapm_enable(adev, false);
  1145. if (ret) {
  1146. DRM_ERROR("amdgpu_kv_smc_bapm_enable failed\n");
  1147. return ret;
  1148. }
  1149. kv_update_current_ps(adev, adev->pm.dpm.boot_ps);
  1150. if (adev->irq.installed &&
  1151. amdgpu_is_internal_thermal_sensor(adev->pm.int_thermal_type)) {
  1152. ret = kv_set_thermal_temperature_range(adev, KV_TEMP_RANGE_MIN, KV_TEMP_RANGE_MAX);
  1153. if (ret) {
  1154. DRM_ERROR("kv_set_thermal_temperature_range failed\n");
  1155. return ret;
  1156. }
  1157. amdgpu_irq_get(adev, &adev->pm.dpm.thermal.irq,
  1158. AMDGPU_THERMAL_IRQ_LOW_TO_HIGH);
  1159. amdgpu_irq_get(adev, &adev->pm.dpm.thermal.irq,
  1160. AMDGPU_THERMAL_IRQ_HIGH_TO_LOW);
  1161. }
  1162. return ret;
  1163. }
  1164. static void kv_dpm_disable(struct amdgpu_device *adev)
  1165. {
  1166. amdgpu_irq_put(adev, &adev->pm.dpm.thermal.irq,
  1167. AMDGPU_THERMAL_IRQ_LOW_TO_HIGH);
  1168. amdgpu_irq_put(adev, &adev->pm.dpm.thermal.irq,
  1169. AMDGPU_THERMAL_IRQ_HIGH_TO_LOW);
  1170. amdgpu_kv_smc_bapm_enable(adev, false);
  1171. if (adev->asic_type == CHIP_MULLINS)
  1172. kv_enable_nb_dpm(adev, false);
  1173. /* powerup blocks */
  1174. kv_dpm_powergate_acp(adev, false);
  1175. kv_dpm_powergate_samu(adev, false);
  1176. kv_dpm_powergate_vce(adev, false);
  1177. kv_dpm_powergate_uvd(adev, false);
  1178. kv_enable_smc_cac(adev, false);
  1179. kv_enable_didt(adev, false);
  1180. kv_clear_vc(adev);
  1181. kv_stop_dpm(adev);
  1182. kv_enable_ulv(adev, false);
  1183. kv_reset_am(adev);
  1184. kv_update_current_ps(adev, adev->pm.dpm.boot_ps);
  1185. }
  1186. #if 0
  1187. static int kv_write_smc_soft_register(struct amdgpu_device *adev,
  1188. u16 reg_offset, u32 value)
  1189. {
  1190. struct kv_power_info *pi = kv_get_pi(adev);
  1191. return amdgpu_kv_copy_bytes_to_smc(adev, pi->soft_regs_start + reg_offset,
  1192. (u8 *)&value, sizeof(u16), pi->sram_end);
  1193. }
  1194. static int kv_read_smc_soft_register(struct amdgpu_device *adev,
  1195. u16 reg_offset, u32 *value)
  1196. {
  1197. struct kv_power_info *pi = kv_get_pi(adev);
  1198. return amdgpu_kv_read_smc_sram_dword(adev, pi->soft_regs_start + reg_offset,
  1199. value, pi->sram_end);
  1200. }
  1201. #endif
  1202. static void kv_init_sclk_t(struct amdgpu_device *adev)
  1203. {
  1204. struct kv_power_info *pi = kv_get_pi(adev);
  1205. pi->low_sclk_interrupt_t = 0;
  1206. }
  1207. static int kv_init_fps_limits(struct amdgpu_device *adev)
  1208. {
  1209. struct kv_power_info *pi = kv_get_pi(adev);
  1210. int ret = 0;
  1211. if (pi->caps_fps) {
  1212. u16 tmp;
  1213. tmp = 45;
  1214. pi->fps_high_t = cpu_to_be16(tmp);
  1215. ret = amdgpu_kv_copy_bytes_to_smc(adev,
  1216. pi->dpm_table_start +
  1217. offsetof(SMU7_Fusion_DpmTable, FpsHighT),
  1218. (u8 *)&pi->fps_high_t,
  1219. sizeof(u16), pi->sram_end);
  1220. tmp = 30;
  1221. pi->fps_low_t = cpu_to_be16(tmp);
  1222. ret = amdgpu_kv_copy_bytes_to_smc(adev,
  1223. pi->dpm_table_start +
  1224. offsetof(SMU7_Fusion_DpmTable, FpsLowT),
  1225. (u8 *)&pi->fps_low_t,
  1226. sizeof(u16), pi->sram_end);
  1227. }
  1228. return ret;
  1229. }
  1230. static void kv_init_powergate_state(struct amdgpu_device *adev)
  1231. {
  1232. struct kv_power_info *pi = kv_get_pi(adev);
  1233. pi->uvd_power_gated = false;
  1234. pi->vce_power_gated = false;
  1235. pi->samu_power_gated = false;
  1236. pi->acp_power_gated = false;
  1237. }
  1238. static int kv_enable_uvd_dpm(struct amdgpu_device *adev, bool enable)
  1239. {
  1240. return amdgpu_kv_notify_message_to_smu(adev, enable ?
  1241. PPSMC_MSG_UVDDPM_Enable : PPSMC_MSG_UVDDPM_Disable);
  1242. }
  1243. static int kv_enable_vce_dpm(struct amdgpu_device *adev, bool enable)
  1244. {
  1245. return amdgpu_kv_notify_message_to_smu(adev, enable ?
  1246. PPSMC_MSG_VCEDPM_Enable : PPSMC_MSG_VCEDPM_Disable);
  1247. }
  1248. static int kv_enable_samu_dpm(struct amdgpu_device *adev, bool enable)
  1249. {
  1250. return amdgpu_kv_notify_message_to_smu(adev, enable ?
  1251. PPSMC_MSG_SAMUDPM_Enable : PPSMC_MSG_SAMUDPM_Disable);
  1252. }
  1253. static int kv_enable_acp_dpm(struct amdgpu_device *adev, bool enable)
  1254. {
  1255. return amdgpu_kv_notify_message_to_smu(adev, enable ?
  1256. PPSMC_MSG_ACPDPM_Enable : PPSMC_MSG_ACPDPM_Disable);
  1257. }
  1258. static int kv_update_uvd_dpm(struct amdgpu_device *adev, bool gate)
  1259. {
  1260. struct kv_power_info *pi = kv_get_pi(adev);
  1261. struct amdgpu_uvd_clock_voltage_dependency_table *table =
  1262. &adev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table;
  1263. int ret;
  1264. u32 mask;
  1265. if (!gate) {
  1266. if (table->count)
  1267. pi->uvd_boot_level = table->count - 1;
  1268. else
  1269. pi->uvd_boot_level = 0;
  1270. if (!pi->caps_uvd_dpm || pi->caps_stable_p_state) {
  1271. mask = 1 << pi->uvd_boot_level;
  1272. } else {
  1273. mask = 0x1f;
  1274. }
  1275. ret = amdgpu_kv_copy_bytes_to_smc(adev,
  1276. pi->dpm_table_start +
  1277. offsetof(SMU7_Fusion_DpmTable, UvdBootLevel),
  1278. (uint8_t *)&pi->uvd_boot_level,
  1279. sizeof(u8), pi->sram_end);
  1280. if (ret)
  1281. return ret;
  1282. amdgpu_kv_send_msg_to_smc_with_parameter(adev,
  1283. PPSMC_MSG_UVDDPM_SetEnabledMask,
  1284. mask);
  1285. }
  1286. return kv_enable_uvd_dpm(adev, !gate);
  1287. }
  1288. static u8 kv_get_vce_boot_level(struct amdgpu_device *adev, u32 evclk)
  1289. {
  1290. u8 i;
  1291. struct amdgpu_vce_clock_voltage_dependency_table *table =
  1292. &adev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table;
  1293. for (i = 0; i < table->count; i++) {
  1294. if (table->entries[i].evclk >= evclk)
  1295. break;
  1296. }
  1297. return i;
  1298. }
  1299. static int kv_update_vce_dpm(struct amdgpu_device *adev,
  1300. struct amdgpu_ps *amdgpu_new_state,
  1301. struct amdgpu_ps *amdgpu_current_state)
  1302. {
  1303. struct kv_power_info *pi = kv_get_pi(adev);
  1304. struct amdgpu_vce_clock_voltage_dependency_table *table =
  1305. &adev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table;
  1306. int ret;
  1307. if (amdgpu_new_state->evclk > 0 && amdgpu_current_state->evclk == 0) {
  1308. kv_dpm_powergate_vce(adev, false);
  1309. /* turn the clocks on when encoding */
  1310. ret = amdgpu_set_clockgating_state(adev, AMD_IP_BLOCK_TYPE_VCE,
  1311. AMD_CG_STATE_UNGATE);
  1312. if (ret)
  1313. return ret;
  1314. if (pi->caps_stable_p_state)
  1315. pi->vce_boot_level = table->count - 1;
  1316. else
  1317. pi->vce_boot_level = kv_get_vce_boot_level(adev, amdgpu_new_state->evclk);
  1318. ret = amdgpu_kv_copy_bytes_to_smc(adev,
  1319. pi->dpm_table_start +
  1320. offsetof(SMU7_Fusion_DpmTable, VceBootLevel),
  1321. (u8 *)&pi->vce_boot_level,
  1322. sizeof(u8),
  1323. pi->sram_end);
  1324. if (ret)
  1325. return ret;
  1326. if (pi->caps_stable_p_state)
  1327. amdgpu_kv_send_msg_to_smc_with_parameter(adev,
  1328. PPSMC_MSG_VCEDPM_SetEnabledMask,
  1329. (1 << pi->vce_boot_level));
  1330. kv_enable_vce_dpm(adev, true);
  1331. } else if (amdgpu_new_state->evclk == 0 && amdgpu_current_state->evclk > 0) {
  1332. kv_enable_vce_dpm(adev, false);
  1333. /* turn the clocks off when not encoding */
  1334. ret = amdgpu_set_clockgating_state(adev, AMD_IP_BLOCK_TYPE_VCE,
  1335. AMD_CG_STATE_GATE);
  1336. if (ret)
  1337. return ret;
  1338. kv_dpm_powergate_vce(adev, true);
  1339. }
  1340. return 0;
  1341. }
  1342. static int kv_update_samu_dpm(struct amdgpu_device *adev, bool gate)
  1343. {
  1344. struct kv_power_info *pi = kv_get_pi(adev);
  1345. struct amdgpu_clock_voltage_dependency_table *table =
  1346. &adev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table;
  1347. int ret;
  1348. if (!gate) {
  1349. if (pi->caps_stable_p_state)
  1350. pi->samu_boot_level = table->count - 1;
  1351. else
  1352. pi->samu_boot_level = 0;
  1353. ret = amdgpu_kv_copy_bytes_to_smc(adev,
  1354. pi->dpm_table_start +
  1355. offsetof(SMU7_Fusion_DpmTable, SamuBootLevel),
  1356. (u8 *)&pi->samu_boot_level,
  1357. sizeof(u8),
  1358. pi->sram_end);
  1359. if (ret)
  1360. return ret;
  1361. if (pi->caps_stable_p_state)
  1362. amdgpu_kv_send_msg_to_smc_with_parameter(adev,
  1363. PPSMC_MSG_SAMUDPM_SetEnabledMask,
  1364. (1 << pi->samu_boot_level));
  1365. }
  1366. return kv_enable_samu_dpm(adev, !gate);
  1367. }
  1368. static u8 kv_get_acp_boot_level(struct amdgpu_device *adev)
  1369. {
  1370. u8 i;
  1371. struct amdgpu_clock_voltage_dependency_table *table =
  1372. &adev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table;
  1373. for (i = 0; i < table->count; i++) {
  1374. if (table->entries[i].clk >= 0) /* XXX */
  1375. break;
  1376. }
  1377. if (i >= table->count)
  1378. i = table->count - 1;
  1379. return i;
  1380. }
  1381. static void kv_update_acp_boot_level(struct amdgpu_device *adev)
  1382. {
  1383. struct kv_power_info *pi = kv_get_pi(adev);
  1384. u8 acp_boot_level;
  1385. if (!pi->caps_stable_p_state) {
  1386. acp_boot_level = kv_get_acp_boot_level(adev);
  1387. if (acp_boot_level != pi->acp_boot_level) {
  1388. pi->acp_boot_level = acp_boot_level;
  1389. amdgpu_kv_send_msg_to_smc_with_parameter(adev,
  1390. PPSMC_MSG_ACPDPM_SetEnabledMask,
  1391. (1 << pi->acp_boot_level));
  1392. }
  1393. }
  1394. }
  1395. static int kv_update_acp_dpm(struct amdgpu_device *adev, bool gate)
  1396. {
  1397. struct kv_power_info *pi = kv_get_pi(adev);
  1398. struct amdgpu_clock_voltage_dependency_table *table =
  1399. &adev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table;
  1400. int ret;
  1401. if (!gate) {
  1402. if (pi->caps_stable_p_state)
  1403. pi->acp_boot_level = table->count - 1;
  1404. else
  1405. pi->acp_boot_level = kv_get_acp_boot_level(adev);
  1406. ret = amdgpu_kv_copy_bytes_to_smc(adev,
  1407. pi->dpm_table_start +
  1408. offsetof(SMU7_Fusion_DpmTable, AcpBootLevel),
  1409. (u8 *)&pi->acp_boot_level,
  1410. sizeof(u8),
  1411. pi->sram_end);
  1412. if (ret)
  1413. return ret;
  1414. if (pi->caps_stable_p_state)
  1415. amdgpu_kv_send_msg_to_smc_with_parameter(adev,
  1416. PPSMC_MSG_ACPDPM_SetEnabledMask,
  1417. (1 << pi->acp_boot_level));
  1418. }
  1419. return kv_enable_acp_dpm(adev, !gate);
  1420. }
  1421. static void kv_dpm_powergate_uvd(struct amdgpu_device *adev, bool gate)
  1422. {
  1423. struct kv_power_info *pi = kv_get_pi(adev);
  1424. int ret;
  1425. if (pi->uvd_power_gated == gate)
  1426. return;
  1427. pi->uvd_power_gated = gate;
  1428. if (gate) {
  1429. if (pi->caps_uvd_pg) {
  1430. /* disable clockgating so we can properly shut down the block */
  1431. ret = amdgpu_set_clockgating_state(adev, AMD_IP_BLOCK_TYPE_UVD,
  1432. AMD_CG_STATE_UNGATE);
  1433. /* shutdown the UVD block */
  1434. ret = amdgpu_set_powergating_state(adev, AMD_IP_BLOCK_TYPE_UVD,
  1435. AMD_PG_STATE_GATE);
  1436. /* XXX: check for errors */
  1437. }
  1438. kv_update_uvd_dpm(adev, gate);
  1439. if (pi->caps_uvd_pg)
  1440. /* power off the UVD block */
  1441. amdgpu_kv_notify_message_to_smu(adev, PPSMC_MSG_UVDPowerOFF);
  1442. } else {
  1443. if (pi->caps_uvd_pg) {
  1444. /* power on the UVD block */
  1445. amdgpu_kv_notify_message_to_smu(adev, PPSMC_MSG_UVDPowerON);
  1446. /* re-init the UVD block */
  1447. ret = amdgpu_set_powergating_state(adev, AMD_IP_BLOCK_TYPE_UVD,
  1448. AMD_PG_STATE_UNGATE);
  1449. /* enable clockgating. hw will dynamically gate/ungate clocks on the fly */
  1450. ret = amdgpu_set_clockgating_state(adev, AMD_IP_BLOCK_TYPE_UVD,
  1451. AMD_CG_STATE_GATE);
  1452. /* XXX: check for errors */
  1453. }
  1454. kv_update_uvd_dpm(adev, gate);
  1455. }
  1456. }
  1457. static void kv_dpm_powergate_vce(struct amdgpu_device *adev, bool gate)
  1458. {
  1459. struct kv_power_info *pi = kv_get_pi(adev);
  1460. int ret;
  1461. if (pi->vce_power_gated == gate)
  1462. return;
  1463. pi->vce_power_gated = gate;
  1464. if (gate) {
  1465. if (pi->caps_vce_pg) {
  1466. /* shutdown the VCE block */
  1467. ret = amdgpu_set_powergating_state(adev, AMD_IP_BLOCK_TYPE_VCE,
  1468. AMD_PG_STATE_GATE);
  1469. /* XXX: check for errors */
  1470. /* power off the VCE block */
  1471. amdgpu_kv_notify_message_to_smu(adev, PPSMC_MSG_VCEPowerOFF);
  1472. }
  1473. } else {
  1474. if (pi->caps_vce_pg) {
  1475. /* power on the VCE block */
  1476. amdgpu_kv_notify_message_to_smu(adev, PPSMC_MSG_VCEPowerON);
  1477. /* re-init the VCE block */
  1478. ret = amdgpu_set_powergating_state(adev, AMD_IP_BLOCK_TYPE_VCE,
  1479. AMD_PG_STATE_UNGATE);
  1480. /* XXX: check for errors */
  1481. }
  1482. }
  1483. }
  1484. static void kv_dpm_powergate_samu(struct amdgpu_device *adev, bool gate)
  1485. {
  1486. struct kv_power_info *pi = kv_get_pi(adev);
  1487. if (pi->samu_power_gated == gate)
  1488. return;
  1489. pi->samu_power_gated = gate;
  1490. if (gate) {
  1491. kv_update_samu_dpm(adev, true);
  1492. if (pi->caps_samu_pg)
  1493. amdgpu_kv_notify_message_to_smu(adev, PPSMC_MSG_SAMPowerOFF);
  1494. } else {
  1495. if (pi->caps_samu_pg)
  1496. amdgpu_kv_notify_message_to_smu(adev, PPSMC_MSG_SAMPowerON);
  1497. kv_update_samu_dpm(adev, false);
  1498. }
  1499. }
  1500. static void kv_dpm_powergate_acp(struct amdgpu_device *adev, bool gate)
  1501. {
  1502. struct kv_power_info *pi = kv_get_pi(adev);
  1503. if (pi->acp_power_gated == gate)
  1504. return;
  1505. if (adev->asic_type == CHIP_KABINI || adev->asic_type == CHIP_MULLINS)
  1506. return;
  1507. pi->acp_power_gated = gate;
  1508. if (gate) {
  1509. kv_update_acp_dpm(adev, true);
  1510. if (pi->caps_acp_pg)
  1511. amdgpu_kv_notify_message_to_smu(adev, PPSMC_MSG_ACPPowerOFF);
  1512. } else {
  1513. if (pi->caps_acp_pg)
  1514. amdgpu_kv_notify_message_to_smu(adev, PPSMC_MSG_ACPPowerON);
  1515. kv_update_acp_dpm(adev, false);
  1516. }
  1517. }
  1518. static void kv_set_valid_clock_range(struct amdgpu_device *adev,
  1519. struct amdgpu_ps *new_rps)
  1520. {
  1521. struct kv_ps *new_ps = kv_get_ps(new_rps);
  1522. struct kv_power_info *pi = kv_get_pi(adev);
  1523. u32 i;
  1524. struct amdgpu_clock_voltage_dependency_table *table =
  1525. &adev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
  1526. if (table && table->count) {
  1527. for (i = 0; i < pi->graphics_dpm_level_count; i++) {
  1528. if ((table->entries[i].clk >= new_ps->levels[0].sclk) ||
  1529. (i == (pi->graphics_dpm_level_count - 1))) {
  1530. pi->lowest_valid = i;
  1531. break;
  1532. }
  1533. }
  1534. for (i = pi->graphics_dpm_level_count - 1; i > 0; i--) {
  1535. if (table->entries[i].clk <= new_ps->levels[new_ps->num_levels - 1].sclk)
  1536. break;
  1537. }
  1538. pi->highest_valid = i;
  1539. if (pi->lowest_valid > pi->highest_valid) {
  1540. if ((new_ps->levels[0].sclk - table->entries[pi->highest_valid].clk) >
  1541. (table->entries[pi->lowest_valid].clk - new_ps->levels[new_ps->num_levels - 1].sclk))
  1542. pi->highest_valid = pi->lowest_valid;
  1543. else
  1544. pi->lowest_valid = pi->highest_valid;
  1545. }
  1546. } else {
  1547. struct sumo_sclk_voltage_mapping_table *table =
  1548. &pi->sys_info.sclk_voltage_mapping_table;
  1549. for (i = 0; i < (int)pi->graphics_dpm_level_count; i++) {
  1550. if (table->entries[i].sclk_frequency >= new_ps->levels[0].sclk ||
  1551. i == (int)(pi->graphics_dpm_level_count - 1)) {
  1552. pi->lowest_valid = i;
  1553. break;
  1554. }
  1555. }
  1556. for (i = pi->graphics_dpm_level_count - 1; i > 0; i--) {
  1557. if (table->entries[i].sclk_frequency <=
  1558. new_ps->levels[new_ps->num_levels - 1].sclk)
  1559. break;
  1560. }
  1561. pi->highest_valid = i;
  1562. if (pi->lowest_valid > pi->highest_valid) {
  1563. if ((new_ps->levels[0].sclk -
  1564. table->entries[pi->highest_valid].sclk_frequency) >
  1565. (table->entries[pi->lowest_valid].sclk_frequency -
  1566. new_ps->levels[new_ps->num_levels -1].sclk))
  1567. pi->highest_valid = pi->lowest_valid;
  1568. else
  1569. pi->lowest_valid = pi->highest_valid;
  1570. }
  1571. }
  1572. }
  1573. static int kv_update_dfs_bypass_settings(struct amdgpu_device *adev,
  1574. struct amdgpu_ps *new_rps)
  1575. {
  1576. struct kv_ps *new_ps = kv_get_ps(new_rps);
  1577. struct kv_power_info *pi = kv_get_pi(adev);
  1578. int ret = 0;
  1579. u8 clk_bypass_cntl;
  1580. if (pi->caps_enable_dfs_bypass) {
  1581. clk_bypass_cntl = new_ps->need_dfs_bypass ?
  1582. pi->graphics_level[pi->graphics_boot_level].ClkBypassCntl : 0;
  1583. ret = amdgpu_kv_copy_bytes_to_smc(adev,
  1584. (pi->dpm_table_start +
  1585. offsetof(SMU7_Fusion_DpmTable, GraphicsLevel) +
  1586. (pi->graphics_boot_level * sizeof(SMU7_Fusion_GraphicsLevel)) +
  1587. offsetof(SMU7_Fusion_GraphicsLevel, ClkBypassCntl)),
  1588. &clk_bypass_cntl,
  1589. sizeof(u8), pi->sram_end);
  1590. }
  1591. return ret;
  1592. }
  1593. static int kv_enable_nb_dpm(struct amdgpu_device *adev,
  1594. bool enable)
  1595. {
  1596. struct kv_power_info *pi = kv_get_pi(adev);
  1597. int ret = 0;
  1598. if (enable) {
  1599. if (pi->enable_nb_dpm && !pi->nb_dpm_enabled) {
  1600. ret = amdgpu_kv_notify_message_to_smu(adev, PPSMC_MSG_NBDPM_Enable);
  1601. if (ret == 0)
  1602. pi->nb_dpm_enabled = true;
  1603. }
  1604. } else {
  1605. if (pi->enable_nb_dpm && pi->nb_dpm_enabled) {
  1606. ret = amdgpu_kv_notify_message_to_smu(adev, PPSMC_MSG_NBDPM_Disable);
  1607. if (ret == 0)
  1608. pi->nb_dpm_enabled = false;
  1609. }
  1610. }
  1611. return ret;
  1612. }
  1613. static int kv_dpm_force_performance_level(struct amdgpu_device *adev,
  1614. enum amdgpu_dpm_forced_level level)
  1615. {
  1616. int ret;
  1617. if (level == AMDGPU_DPM_FORCED_LEVEL_HIGH) {
  1618. ret = kv_force_dpm_highest(adev);
  1619. if (ret)
  1620. return ret;
  1621. } else if (level == AMDGPU_DPM_FORCED_LEVEL_LOW) {
  1622. ret = kv_force_dpm_lowest(adev);
  1623. if (ret)
  1624. return ret;
  1625. } else if (level == AMDGPU_DPM_FORCED_LEVEL_AUTO) {
  1626. ret = kv_unforce_levels(adev);
  1627. if (ret)
  1628. return ret;
  1629. }
  1630. adev->pm.dpm.forced_level = level;
  1631. return 0;
  1632. }
  1633. static int kv_dpm_pre_set_power_state(struct amdgpu_device *adev)
  1634. {
  1635. struct kv_power_info *pi = kv_get_pi(adev);
  1636. struct amdgpu_ps requested_ps = *adev->pm.dpm.requested_ps;
  1637. struct amdgpu_ps *new_ps = &requested_ps;
  1638. kv_update_requested_ps(adev, new_ps);
  1639. kv_apply_state_adjust_rules(adev,
  1640. &pi->requested_rps,
  1641. &pi->current_rps);
  1642. return 0;
  1643. }
  1644. static int kv_dpm_set_power_state(struct amdgpu_device *adev)
  1645. {
  1646. struct kv_power_info *pi = kv_get_pi(adev);
  1647. struct amdgpu_ps *new_ps = &pi->requested_rps;
  1648. struct amdgpu_ps *old_ps = &pi->current_rps;
  1649. int ret;
  1650. if (pi->bapm_enable) {
  1651. ret = amdgpu_kv_smc_bapm_enable(adev, adev->pm.dpm.ac_power);
  1652. if (ret) {
  1653. DRM_ERROR("amdgpu_kv_smc_bapm_enable failed\n");
  1654. return ret;
  1655. }
  1656. }
  1657. if (adev->asic_type == CHIP_KABINI || adev->asic_type == CHIP_MULLINS) {
  1658. if (pi->enable_dpm) {
  1659. kv_set_valid_clock_range(adev, new_ps);
  1660. kv_update_dfs_bypass_settings(adev, new_ps);
  1661. ret = kv_calculate_ds_divider(adev);
  1662. if (ret) {
  1663. DRM_ERROR("kv_calculate_ds_divider failed\n");
  1664. return ret;
  1665. }
  1666. kv_calculate_nbps_level_settings(adev);
  1667. kv_calculate_dpm_settings(adev);
  1668. kv_force_lowest_valid(adev);
  1669. kv_enable_new_levels(adev);
  1670. kv_upload_dpm_settings(adev);
  1671. kv_program_nbps_index_settings(adev, new_ps);
  1672. kv_unforce_levels(adev);
  1673. kv_set_enabled_levels(adev);
  1674. kv_force_lowest_valid(adev);
  1675. kv_unforce_levels(adev);
  1676. ret = kv_update_vce_dpm(adev, new_ps, old_ps);
  1677. if (ret) {
  1678. DRM_ERROR("kv_update_vce_dpm failed\n");
  1679. return ret;
  1680. }
  1681. kv_update_sclk_t(adev);
  1682. if (adev->asic_type == CHIP_MULLINS)
  1683. kv_enable_nb_dpm(adev, true);
  1684. }
  1685. } else {
  1686. if (pi->enable_dpm) {
  1687. kv_set_valid_clock_range(adev, new_ps);
  1688. kv_update_dfs_bypass_settings(adev, new_ps);
  1689. ret = kv_calculate_ds_divider(adev);
  1690. if (ret) {
  1691. DRM_ERROR("kv_calculate_ds_divider failed\n");
  1692. return ret;
  1693. }
  1694. kv_calculate_nbps_level_settings(adev);
  1695. kv_calculate_dpm_settings(adev);
  1696. kv_freeze_sclk_dpm(adev, true);
  1697. kv_upload_dpm_settings(adev);
  1698. kv_program_nbps_index_settings(adev, new_ps);
  1699. kv_freeze_sclk_dpm(adev, false);
  1700. kv_set_enabled_levels(adev);
  1701. ret = kv_update_vce_dpm(adev, new_ps, old_ps);
  1702. if (ret) {
  1703. DRM_ERROR("kv_update_vce_dpm failed\n");
  1704. return ret;
  1705. }
  1706. kv_update_acp_boot_level(adev);
  1707. kv_update_sclk_t(adev);
  1708. kv_enable_nb_dpm(adev, true);
  1709. }
  1710. }
  1711. return 0;
  1712. }
  1713. static void kv_dpm_post_set_power_state(struct amdgpu_device *adev)
  1714. {
  1715. struct kv_power_info *pi = kv_get_pi(adev);
  1716. struct amdgpu_ps *new_ps = &pi->requested_rps;
  1717. kv_update_current_ps(adev, new_ps);
  1718. }
  1719. static void kv_dpm_setup_asic(struct amdgpu_device *adev)
  1720. {
  1721. sumo_take_smu_control(adev, true);
  1722. kv_init_powergate_state(adev);
  1723. kv_init_sclk_t(adev);
  1724. }
  1725. #if 0
  1726. static void kv_dpm_reset_asic(struct amdgpu_device *adev)
  1727. {
  1728. struct kv_power_info *pi = kv_get_pi(adev);
  1729. if (adev->asic_type == CHIP_KABINI || adev->asic_type == CHIP_MULLINS) {
  1730. kv_force_lowest_valid(adev);
  1731. kv_init_graphics_levels(adev);
  1732. kv_program_bootup_state(adev);
  1733. kv_upload_dpm_settings(adev);
  1734. kv_force_lowest_valid(adev);
  1735. kv_unforce_levels(adev);
  1736. } else {
  1737. kv_init_graphics_levels(adev);
  1738. kv_program_bootup_state(adev);
  1739. kv_freeze_sclk_dpm(adev, true);
  1740. kv_upload_dpm_settings(adev);
  1741. kv_freeze_sclk_dpm(adev, false);
  1742. kv_set_enabled_level(adev, pi->graphics_boot_level);
  1743. }
  1744. }
  1745. #endif
  1746. static void kv_construct_max_power_limits_table(struct amdgpu_device *adev,
  1747. struct amdgpu_clock_and_voltage_limits *table)
  1748. {
  1749. struct kv_power_info *pi = kv_get_pi(adev);
  1750. if (pi->sys_info.sclk_voltage_mapping_table.num_max_dpm_entries > 0) {
  1751. int idx = pi->sys_info.sclk_voltage_mapping_table.num_max_dpm_entries - 1;
  1752. table->sclk =
  1753. pi->sys_info.sclk_voltage_mapping_table.entries[idx].sclk_frequency;
  1754. table->vddc =
  1755. kv_convert_2bit_index_to_voltage(adev,
  1756. pi->sys_info.sclk_voltage_mapping_table.entries[idx].vid_2bit);
  1757. }
  1758. table->mclk = pi->sys_info.nbp_memory_clock[0];
  1759. }
  1760. static void kv_patch_voltage_values(struct amdgpu_device *adev)
  1761. {
  1762. int i;
  1763. struct amdgpu_uvd_clock_voltage_dependency_table *uvd_table =
  1764. &adev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table;
  1765. struct amdgpu_vce_clock_voltage_dependency_table *vce_table =
  1766. &adev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table;
  1767. struct amdgpu_clock_voltage_dependency_table *samu_table =
  1768. &adev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table;
  1769. struct amdgpu_clock_voltage_dependency_table *acp_table =
  1770. &adev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table;
  1771. if (uvd_table->count) {
  1772. for (i = 0; i < uvd_table->count; i++)
  1773. uvd_table->entries[i].v =
  1774. kv_convert_8bit_index_to_voltage(adev,
  1775. uvd_table->entries[i].v);
  1776. }
  1777. if (vce_table->count) {
  1778. for (i = 0; i < vce_table->count; i++)
  1779. vce_table->entries[i].v =
  1780. kv_convert_8bit_index_to_voltage(adev,
  1781. vce_table->entries[i].v);
  1782. }
  1783. if (samu_table->count) {
  1784. for (i = 0; i < samu_table->count; i++)
  1785. samu_table->entries[i].v =
  1786. kv_convert_8bit_index_to_voltage(adev,
  1787. samu_table->entries[i].v);
  1788. }
  1789. if (acp_table->count) {
  1790. for (i = 0; i < acp_table->count; i++)
  1791. acp_table->entries[i].v =
  1792. kv_convert_8bit_index_to_voltage(adev,
  1793. acp_table->entries[i].v);
  1794. }
  1795. }
  1796. static void kv_construct_boot_state(struct amdgpu_device *adev)
  1797. {
  1798. struct kv_power_info *pi = kv_get_pi(adev);
  1799. pi->boot_pl.sclk = pi->sys_info.bootup_sclk;
  1800. pi->boot_pl.vddc_index = pi->sys_info.bootup_nb_voltage_index;
  1801. pi->boot_pl.ds_divider_index = 0;
  1802. pi->boot_pl.ss_divider_index = 0;
  1803. pi->boot_pl.allow_gnb_slow = 1;
  1804. pi->boot_pl.force_nbp_state = 0;
  1805. pi->boot_pl.display_wm = 0;
  1806. pi->boot_pl.vce_wm = 0;
  1807. }
  1808. static int kv_force_dpm_highest(struct amdgpu_device *adev)
  1809. {
  1810. int ret;
  1811. u32 enable_mask, i;
  1812. ret = amdgpu_kv_dpm_get_enable_mask(adev, &enable_mask);
  1813. if (ret)
  1814. return ret;
  1815. for (i = SMU7_MAX_LEVELS_GRAPHICS - 1; i > 0; i--) {
  1816. if (enable_mask & (1 << i))
  1817. break;
  1818. }
  1819. if (adev->asic_type == CHIP_KABINI || adev->asic_type == CHIP_MULLINS)
  1820. return amdgpu_kv_send_msg_to_smc_with_parameter(adev, PPSMC_MSG_DPM_ForceState, i);
  1821. else
  1822. return kv_set_enabled_level(adev, i);
  1823. }
  1824. static int kv_force_dpm_lowest(struct amdgpu_device *adev)
  1825. {
  1826. int ret;
  1827. u32 enable_mask, i;
  1828. ret = amdgpu_kv_dpm_get_enable_mask(adev, &enable_mask);
  1829. if (ret)
  1830. return ret;
  1831. for (i = 0; i < SMU7_MAX_LEVELS_GRAPHICS; i++) {
  1832. if (enable_mask & (1 << i))
  1833. break;
  1834. }
  1835. if (adev->asic_type == CHIP_KABINI || adev->asic_type == CHIP_MULLINS)
  1836. return amdgpu_kv_send_msg_to_smc_with_parameter(adev, PPSMC_MSG_DPM_ForceState, i);
  1837. else
  1838. return kv_set_enabled_level(adev, i);
  1839. }
  1840. static u8 kv_get_sleep_divider_id_from_clock(struct amdgpu_device *adev,
  1841. u32 sclk, u32 min_sclk_in_sr)
  1842. {
  1843. struct kv_power_info *pi = kv_get_pi(adev);
  1844. u32 i;
  1845. u32 temp;
  1846. u32 min = max(min_sclk_in_sr, (u32)KV_MINIMUM_ENGINE_CLOCK);
  1847. if (sclk < min)
  1848. return 0;
  1849. if (!pi->caps_sclk_ds)
  1850. return 0;
  1851. for (i = KV_MAX_DEEPSLEEP_DIVIDER_ID; i > 0; i--) {
  1852. temp = sclk >> i;
  1853. if (temp >= min)
  1854. break;
  1855. }
  1856. return (u8)i;
  1857. }
  1858. static int kv_get_high_voltage_limit(struct amdgpu_device *adev, int *limit)
  1859. {
  1860. struct kv_power_info *pi = kv_get_pi(adev);
  1861. struct amdgpu_clock_voltage_dependency_table *table =
  1862. &adev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
  1863. int i;
  1864. if (table && table->count) {
  1865. for (i = table->count - 1; i >= 0; i--) {
  1866. if (pi->high_voltage_t &&
  1867. (kv_convert_8bit_index_to_voltage(adev, table->entries[i].v) <=
  1868. pi->high_voltage_t)) {
  1869. *limit = i;
  1870. return 0;
  1871. }
  1872. }
  1873. } else {
  1874. struct sumo_sclk_voltage_mapping_table *table =
  1875. &pi->sys_info.sclk_voltage_mapping_table;
  1876. for (i = table->num_max_dpm_entries - 1; i >= 0; i--) {
  1877. if (pi->high_voltage_t &&
  1878. (kv_convert_2bit_index_to_voltage(adev, table->entries[i].vid_2bit) <=
  1879. pi->high_voltage_t)) {
  1880. *limit = i;
  1881. return 0;
  1882. }
  1883. }
  1884. }
  1885. *limit = 0;
  1886. return 0;
  1887. }
  1888. static void kv_apply_state_adjust_rules(struct amdgpu_device *adev,
  1889. struct amdgpu_ps *new_rps,
  1890. struct amdgpu_ps *old_rps)
  1891. {
  1892. struct kv_ps *ps = kv_get_ps(new_rps);
  1893. struct kv_power_info *pi = kv_get_pi(adev);
  1894. u32 min_sclk = 10000; /* ??? */
  1895. u32 sclk, mclk = 0;
  1896. int i, limit;
  1897. bool force_high;
  1898. struct amdgpu_clock_voltage_dependency_table *table =
  1899. &adev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
  1900. u32 stable_p_state_sclk = 0;
  1901. struct amdgpu_clock_and_voltage_limits *max_limits =
  1902. &adev->pm.dpm.dyn_state.max_clock_voltage_on_ac;
  1903. if (new_rps->vce_active) {
  1904. new_rps->evclk = adev->pm.dpm.vce_states[adev->pm.dpm.vce_level].evclk;
  1905. new_rps->ecclk = adev->pm.dpm.vce_states[adev->pm.dpm.vce_level].ecclk;
  1906. } else {
  1907. new_rps->evclk = 0;
  1908. new_rps->ecclk = 0;
  1909. }
  1910. mclk = max_limits->mclk;
  1911. sclk = min_sclk;
  1912. if (pi->caps_stable_p_state) {
  1913. stable_p_state_sclk = (max_limits->sclk * 75) / 100;
  1914. for (i = table->count - 1; i >= 0; i--) {
  1915. if (stable_p_state_sclk >= table->entries[i].clk) {
  1916. stable_p_state_sclk = table->entries[i].clk;
  1917. break;
  1918. }
  1919. }
  1920. if (i > 0)
  1921. stable_p_state_sclk = table->entries[0].clk;
  1922. sclk = stable_p_state_sclk;
  1923. }
  1924. if (new_rps->vce_active) {
  1925. if (sclk < adev->pm.dpm.vce_states[adev->pm.dpm.vce_level].sclk)
  1926. sclk = adev->pm.dpm.vce_states[adev->pm.dpm.vce_level].sclk;
  1927. }
  1928. ps->need_dfs_bypass = true;
  1929. for (i = 0; i < ps->num_levels; i++) {
  1930. if (ps->levels[i].sclk < sclk)
  1931. ps->levels[i].sclk = sclk;
  1932. }
  1933. if (table && table->count) {
  1934. for (i = 0; i < ps->num_levels; i++) {
  1935. if (pi->high_voltage_t &&
  1936. (pi->high_voltage_t <
  1937. kv_convert_8bit_index_to_voltage(adev, ps->levels[i].vddc_index))) {
  1938. kv_get_high_voltage_limit(adev, &limit);
  1939. ps->levels[i].sclk = table->entries[limit].clk;
  1940. }
  1941. }
  1942. } else {
  1943. struct sumo_sclk_voltage_mapping_table *table =
  1944. &pi->sys_info.sclk_voltage_mapping_table;
  1945. for (i = 0; i < ps->num_levels; i++) {
  1946. if (pi->high_voltage_t &&
  1947. (pi->high_voltage_t <
  1948. kv_convert_8bit_index_to_voltage(adev, ps->levels[i].vddc_index))) {
  1949. kv_get_high_voltage_limit(adev, &limit);
  1950. ps->levels[i].sclk = table->entries[limit].sclk_frequency;
  1951. }
  1952. }
  1953. }
  1954. if (pi->caps_stable_p_state) {
  1955. for (i = 0; i < ps->num_levels; i++) {
  1956. ps->levels[i].sclk = stable_p_state_sclk;
  1957. }
  1958. }
  1959. pi->video_start = new_rps->dclk || new_rps->vclk ||
  1960. new_rps->evclk || new_rps->ecclk;
  1961. if ((new_rps->class & ATOM_PPLIB_CLASSIFICATION_UI_MASK) ==
  1962. ATOM_PPLIB_CLASSIFICATION_UI_BATTERY)
  1963. pi->battery_state = true;
  1964. else
  1965. pi->battery_state = false;
  1966. if (adev->asic_type == CHIP_KABINI || adev->asic_type == CHIP_MULLINS) {
  1967. ps->dpm0_pg_nb_ps_lo = 0x1;
  1968. ps->dpm0_pg_nb_ps_hi = 0x0;
  1969. ps->dpmx_nb_ps_lo = 0x1;
  1970. ps->dpmx_nb_ps_hi = 0x0;
  1971. } else {
  1972. ps->dpm0_pg_nb_ps_lo = 0x3;
  1973. ps->dpm0_pg_nb_ps_hi = 0x0;
  1974. ps->dpmx_nb_ps_lo = 0x3;
  1975. ps->dpmx_nb_ps_hi = 0x0;
  1976. if (pi->sys_info.nb_dpm_enable) {
  1977. force_high = (mclk >= pi->sys_info.nbp_memory_clock[3]) ||
  1978. pi->video_start || (adev->pm.dpm.new_active_crtc_count >= 3) ||
  1979. pi->disable_nb_ps3_in_battery;
  1980. ps->dpm0_pg_nb_ps_lo = force_high ? 0x2 : 0x3;
  1981. ps->dpm0_pg_nb_ps_hi = 0x2;
  1982. ps->dpmx_nb_ps_lo = force_high ? 0x2 : 0x3;
  1983. ps->dpmx_nb_ps_hi = 0x2;
  1984. }
  1985. }
  1986. }
  1987. static void kv_dpm_power_level_enabled_for_throttle(struct amdgpu_device *adev,
  1988. u32 index, bool enable)
  1989. {
  1990. struct kv_power_info *pi = kv_get_pi(adev);
  1991. pi->graphics_level[index].EnabledForThrottle = enable ? 1 : 0;
  1992. }
  1993. static int kv_calculate_ds_divider(struct amdgpu_device *adev)
  1994. {
  1995. struct kv_power_info *pi = kv_get_pi(adev);
  1996. u32 sclk_in_sr = 10000; /* ??? */
  1997. u32 i;
  1998. if (pi->lowest_valid > pi->highest_valid)
  1999. return -EINVAL;
  2000. for (i = pi->lowest_valid; i <= pi->highest_valid; i++) {
  2001. pi->graphics_level[i].DeepSleepDivId =
  2002. kv_get_sleep_divider_id_from_clock(adev,
  2003. be32_to_cpu(pi->graphics_level[i].SclkFrequency),
  2004. sclk_in_sr);
  2005. }
  2006. return 0;
  2007. }
  2008. static int kv_calculate_nbps_level_settings(struct amdgpu_device *adev)
  2009. {
  2010. struct kv_power_info *pi = kv_get_pi(adev);
  2011. u32 i;
  2012. bool force_high;
  2013. struct amdgpu_clock_and_voltage_limits *max_limits =
  2014. &adev->pm.dpm.dyn_state.max_clock_voltage_on_ac;
  2015. u32 mclk = max_limits->mclk;
  2016. if (pi->lowest_valid > pi->highest_valid)
  2017. return -EINVAL;
  2018. if (adev->asic_type == CHIP_KABINI || adev->asic_type == CHIP_MULLINS) {
  2019. for (i = pi->lowest_valid; i <= pi->highest_valid; i++) {
  2020. pi->graphics_level[i].GnbSlow = 1;
  2021. pi->graphics_level[i].ForceNbPs1 = 0;
  2022. pi->graphics_level[i].UpH = 0;
  2023. }
  2024. if (!pi->sys_info.nb_dpm_enable)
  2025. return 0;
  2026. force_high = ((mclk >= pi->sys_info.nbp_memory_clock[3]) ||
  2027. (adev->pm.dpm.new_active_crtc_count >= 3) || pi->video_start);
  2028. if (force_high) {
  2029. for (i = pi->lowest_valid; i <= pi->highest_valid; i++)
  2030. pi->graphics_level[i].GnbSlow = 0;
  2031. } else {
  2032. if (pi->battery_state)
  2033. pi->graphics_level[0].ForceNbPs1 = 1;
  2034. pi->graphics_level[1].GnbSlow = 0;
  2035. pi->graphics_level[2].GnbSlow = 0;
  2036. pi->graphics_level[3].GnbSlow = 0;
  2037. pi->graphics_level[4].GnbSlow = 0;
  2038. }
  2039. } else {
  2040. for (i = pi->lowest_valid; i <= pi->highest_valid; i++) {
  2041. pi->graphics_level[i].GnbSlow = 1;
  2042. pi->graphics_level[i].ForceNbPs1 = 0;
  2043. pi->graphics_level[i].UpH = 0;
  2044. }
  2045. if (pi->sys_info.nb_dpm_enable && pi->battery_state) {
  2046. pi->graphics_level[pi->lowest_valid].UpH = 0x28;
  2047. pi->graphics_level[pi->lowest_valid].GnbSlow = 0;
  2048. if (pi->lowest_valid != pi->highest_valid)
  2049. pi->graphics_level[pi->lowest_valid].ForceNbPs1 = 1;
  2050. }
  2051. }
  2052. return 0;
  2053. }
  2054. static int kv_calculate_dpm_settings(struct amdgpu_device *adev)
  2055. {
  2056. struct kv_power_info *pi = kv_get_pi(adev);
  2057. u32 i;
  2058. if (pi->lowest_valid > pi->highest_valid)
  2059. return -EINVAL;
  2060. for (i = pi->lowest_valid; i <= pi->highest_valid; i++)
  2061. pi->graphics_level[i].DisplayWatermark = (i == pi->highest_valid) ? 1 : 0;
  2062. return 0;
  2063. }
  2064. static void kv_init_graphics_levels(struct amdgpu_device *adev)
  2065. {
  2066. struct kv_power_info *pi = kv_get_pi(adev);
  2067. u32 i;
  2068. struct amdgpu_clock_voltage_dependency_table *table =
  2069. &adev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
  2070. if (table && table->count) {
  2071. u32 vid_2bit;
  2072. pi->graphics_dpm_level_count = 0;
  2073. for (i = 0; i < table->count; i++) {
  2074. if (pi->high_voltage_t &&
  2075. (pi->high_voltage_t <
  2076. kv_convert_8bit_index_to_voltage(adev, table->entries[i].v)))
  2077. break;
  2078. kv_set_divider_value(adev, i, table->entries[i].clk);
  2079. vid_2bit = kv_convert_vid7_to_vid2(adev,
  2080. &pi->sys_info.vid_mapping_table,
  2081. table->entries[i].v);
  2082. kv_set_vid(adev, i, vid_2bit);
  2083. kv_set_at(adev, i, pi->at[i]);
  2084. kv_dpm_power_level_enabled_for_throttle(adev, i, true);
  2085. pi->graphics_dpm_level_count++;
  2086. }
  2087. } else {
  2088. struct sumo_sclk_voltage_mapping_table *table =
  2089. &pi->sys_info.sclk_voltage_mapping_table;
  2090. pi->graphics_dpm_level_count = 0;
  2091. for (i = 0; i < table->num_max_dpm_entries; i++) {
  2092. if (pi->high_voltage_t &&
  2093. pi->high_voltage_t <
  2094. kv_convert_2bit_index_to_voltage(adev, table->entries[i].vid_2bit))
  2095. break;
  2096. kv_set_divider_value(adev, i, table->entries[i].sclk_frequency);
  2097. kv_set_vid(adev, i, table->entries[i].vid_2bit);
  2098. kv_set_at(adev, i, pi->at[i]);
  2099. kv_dpm_power_level_enabled_for_throttle(adev, i, true);
  2100. pi->graphics_dpm_level_count++;
  2101. }
  2102. }
  2103. for (i = 0; i < SMU7_MAX_LEVELS_GRAPHICS; i++)
  2104. kv_dpm_power_level_enable(adev, i, false);
  2105. }
  2106. static void kv_enable_new_levels(struct amdgpu_device *adev)
  2107. {
  2108. struct kv_power_info *pi = kv_get_pi(adev);
  2109. u32 i;
  2110. for (i = 0; i < SMU7_MAX_LEVELS_GRAPHICS; i++) {
  2111. if (i >= pi->lowest_valid && i <= pi->highest_valid)
  2112. kv_dpm_power_level_enable(adev, i, true);
  2113. }
  2114. }
  2115. static int kv_set_enabled_level(struct amdgpu_device *adev, u32 level)
  2116. {
  2117. u32 new_mask = (1 << level);
  2118. return amdgpu_kv_send_msg_to_smc_with_parameter(adev,
  2119. PPSMC_MSG_SCLKDPM_SetEnabledMask,
  2120. new_mask);
  2121. }
  2122. static int kv_set_enabled_levels(struct amdgpu_device *adev)
  2123. {
  2124. struct kv_power_info *pi = kv_get_pi(adev);
  2125. u32 i, new_mask = 0;
  2126. for (i = pi->lowest_valid; i <= pi->highest_valid; i++)
  2127. new_mask |= (1 << i);
  2128. return amdgpu_kv_send_msg_to_smc_with_parameter(adev,
  2129. PPSMC_MSG_SCLKDPM_SetEnabledMask,
  2130. new_mask);
  2131. }
  2132. static void kv_program_nbps_index_settings(struct amdgpu_device *adev,
  2133. struct amdgpu_ps *new_rps)
  2134. {
  2135. struct kv_ps *new_ps = kv_get_ps(new_rps);
  2136. struct kv_power_info *pi = kv_get_pi(adev);
  2137. u32 nbdpmconfig1;
  2138. if (adev->asic_type == CHIP_KABINI || adev->asic_type == CHIP_MULLINS)
  2139. return;
  2140. if (pi->sys_info.nb_dpm_enable) {
  2141. nbdpmconfig1 = RREG32_SMC(ixNB_DPM_CONFIG_1);
  2142. nbdpmconfig1 &= ~(NB_DPM_CONFIG_1__Dpm0PgNbPsLo_MASK |
  2143. NB_DPM_CONFIG_1__Dpm0PgNbPsHi_MASK |
  2144. NB_DPM_CONFIG_1__DpmXNbPsLo_MASK |
  2145. NB_DPM_CONFIG_1__DpmXNbPsHi_MASK);
  2146. nbdpmconfig1 |= (new_ps->dpm0_pg_nb_ps_lo << NB_DPM_CONFIG_1__Dpm0PgNbPsLo__SHIFT) |
  2147. (new_ps->dpm0_pg_nb_ps_hi << NB_DPM_CONFIG_1__Dpm0PgNbPsHi__SHIFT) |
  2148. (new_ps->dpmx_nb_ps_lo << NB_DPM_CONFIG_1__DpmXNbPsLo__SHIFT) |
  2149. (new_ps->dpmx_nb_ps_hi << NB_DPM_CONFIG_1__DpmXNbPsHi__SHIFT);
  2150. WREG32_SMC(ixNB_DPM_CONFIG_1, nbdpmconfig1);
  2151. }
  2152. }
  2153. static int kv_set_thermal_temperature_range(struct amdgpu_device *adev,
  2154. int min_temp, int max_temp)
  2155. {
  2156. int low_temp = 0 * 1000;
  2157. int high_temp = 255 * 1000;
  2158. u32 tmp;
  2159. if (low_temp < min_temp)
  2160. low_temp = min_temp;
  2161. if (high_temp > max_temp)
  2162. high_temp = max_temp;
  2163. if (high_temp < low_temp) {
  2164. DRM_ERROR("invalid thermal range: %d - %d\n", low_temp, high_temp);
  2165. return -EINVAL;
  2166. }
  2167. tmp = RREG32_SMC(ixCG_THERMAL_INT_CTRL);
  2168. tmp &= ~(CG_THERMAL_INT_CTRL__DIG_THERM_INTH_MASK |
  2169. CG_THERMAL_INT_CTRL__DIG_THERM_INTL_MASK);
  2170. tmp |= ((49 + (high_temp / 1000)) << CG_THERMAL_INT_CTRL__DIG_THERM_INTH__SHIFT) |
  2171. ((49 + (low_temp / 1000)) << CG_THERMAL_INT_CTRL__DIG_THERM_INTL__SHIFT);
  2172. WREG32_SMC(ixCG_THERMAL_INT_CTRL, tmp);
  2173. adev->pm.dpm.thermal.min_temp = low_temp;
  2174. adev->pm.dpm.thermal.max_temp = high_temp;
  2175. return 0;
  2176. }
  2177. union igp_info {
  2178. struct _ATOM_INTEGRATED_SYSTEM_INFO info;
  2179. struct _ATOM_INTEGRATED_SYSTEM_INFO_V2 info_2;
  2180. struct _ATOM_INTEGRATED_SYSTEM_INFO_V5 info_5;
  2181. struct _ATOM_INTEGRATED_SYSTEM_INFO_V6 info_6;
  2182. struct _ATOM_INTEGRATED_SYSTEM_INFO_V1_7 info_7;
  2183. struct _ATOM_INTEGRATED_SYSTEM_INFO_V1_8 info_8;
  2184. };
  2185. static int kv_parse_sys_info_table(struct amdgpu_device *adev)
  2186. {
  2187. struct kv_power_info *pi = kv_get_pi(adev);
  2188. struct amdgpu_mode_info *mode_info = &adev->mode_info;
  2189. int index = GetIndexIntoMasterTable(DATA, IntegratedSystemInfo);
  2190. union igp_info *igp_info;
  2191. u8 frev, crev;
  2192. u16 data_offset;
  2193. int i;
  2194. if (amdgpu_atom_parse_data_header(mode_info->atom_context, index, NULL,
  2195. &frev, &crev, &data_offset)) {
  2196. igp_info = (union igp_info *)(mode_info->atom_context->bios +
  2197. data_offset);
  2198. if (crev != 8) {
  2199. DRM_ERROR("Unsupported IGP table: %d %d\n", frev, crev);
  2200. return -EINVAL;
  2201. }
  2202. pi->sys_info.bootup_sclk = le32_to_cpu(igp_info->info_8.ulBootUpEngineClock);
  2203. pi->sys_info.bootup_uma_clk = le32_to_cpu(igp_info->info_8.ulBootUpUMAClock);
  2204. pi->sys_info.bootup_nb_voltage_index =
  2205. le16_to_cpu(igp_info->info_8.usBootUpNBVoltage);
  2206. if (igp_info->info_8.ucHtcTmpLmt == 0)
  2207. pi->sys_info.htc_tmp_lmt = 203;
  2208. else
  2209. pi->sys_info.htc_tmp_lmt = igp_info->info_8.ucHtcTmpLmt;
  2210. if (igp_info->info_8.ucHtcHystLmt == 0)
  2211. pi->sys_info.htc_hyst_lmt = 5;
  2212. else
  2213. pi->sys_info.htc_hyst_lmt = igp_info->info_8.ucHtcHystLmt;
  2214. if (pi->sys_info.htc_tmp_lmt <= pi->sys_info.htc_hyst_lmt) {
  2215. DRM_ERROR("The htcTmpLmt should be larger than htcHystLmt.\n");
  2216. }
  2217. if (le32_to_cpu(igp_info->info_8.ulSystemConfig) & (1 << 3))
  2218. pi->sys_info.nb_dpm_enable = true;
  2219. else
  2220. pi->sys_info.nb_dpm_enable = false;
  2221. for (i = 0; i < KV_NUM_NBPSTATES; i++) {
  2222. pi->sys_info.nbp_memory_clock[i] =
  2223. le32_to_cpu(igp_info->info_8.ulNbpStateMemclkFreq[i]);
  2224. pi->sys_info.nbp_n_clock[i] =
  2225. le32_to_cpu(igp_info->info_8.ulNbpStateNClkFreq[i]);
  2226. }
  2227. if (le32_to_cpu(igp_info->info_8.ulGPUCapInfo) &
  2228. SYS_INFO_GPUCAPS__ENABEL_DFS_BYPASS)
  2229. pi->caps_enable_dfs_bypass = true;
  2230. sumo_construct_sclk_voltage_mapping_table(adev,
  2231. &pi->sys_info.sclk_voltage_mapping_table,
  2232. igp_info->info_8.sAvail_SCLK);
  2233. sumo_construct_vid_mapping_table(adev,
  2234. &pi->sys_info.vid_mapping_table,
  2235. igp_info->info_8.sAvail_SCLK);
  2236. kv_construct_max_power_limits_table(adev,
  2237. &adev->pm.dpm.dyn_state.max_clock_voltage_on_ac);
  2238. }
  2239. return 0;
  2240. }
  2241. union power_info {
  2242. struct _ATOM_POWERPLAY_INFO info;
  2243. struct _ATOM_POWERPLAY_INFO_V2 info_2;
  2244. struct _ATOM_POWERPLAY_INFO_V3 info_3;
  2245. struct _ATOM_PPLIB_POWERPLAYTABLE pplib;
  2246. struct _ATOM_PPLIB_POWERPLAYTABLE2 pplib2;
  2247. struct _ATOM_PPLIB_POWERPLAYTABLE3 pplib3;
  2248. };
  2249. union pplib_clock_info {
  2250. struct _ATOM_PPLIB_R600_CLOCK_INFO r600;
  2251. struct _ATOM_PPLIB_RS780_CLOCK_INFO rs780;
  2252. struct _ATOM_PPLIB_EVERGREEN_CLOCK_INFO evergreen;
  2253. struct _ATOM_PPLIB_SUMO_CLOCK_INFO sumo;
  2254. };
  2255. union pplib_power_state {
  2256. struct _ATOM_PPLIB_STATE v1;
  2257. struct _ATOM_PPLIB_STATE_V2 v2;
  2258. };
  2259. static void kv_patch_boot_state(struct amdgpu_device *adev,
  2260. struct kv_ps *ps)
  2261. {
  2262. struct kv_power_info *pi = kv_get_pi(adev);
  2263. ps->num_levels = 1;
  2264. ps->levels[0] = pi->boot_pl;
  2265. }
  2266. static void kv_parse_pplib_non_clock_info(struct amdgpu_device *adev,
  2267. struct amdgpu_ps *rps,
  2268. struct _ATOM_PPLIB_NONCLOCK_INFO *non_clock_info,
  2269. u8 table_rev)
  2270. {
  2271. struct kv_ps *ps = kv_get_ps(rps);
  2272. rps->caps = le32_to_cpu(non_clock_info->ulCapsAndSettings);
  2273. rps->class = le16_to_cpu(non_clock_info->usClassification);
  2274. rps->class2 = le16_to_cpu(non_clock_info->usClassification2);
  2275. if (ATOM_PPLIB_NONCLOCKINFO_VER1 < table_rev) {
  2276. rps->vclk = le32_to_cpu(non_clock_info->ulVCLK);
  2277. rps->dclk = le32_to_cpu(non_clock_info->ulDCLK);
  2278. } else {
  2279. rps->vclk = 0;
  2280. rps->dclk = 0;
  2281. }
  2282. if (rps->class & ATOM_PPLIB_CLASSIFICATION_BOOT) {
  2283. adev->pm.dpm.boot_ps = rps;
  2284. kv_patch_boot_state(adev, ps);
  2285. }
  2286. if (rps->class & ATOM_PPLIB_CLASSIFICATION_UVDSTATE)
  2287. adev->pm.dpm.uvd_ps = rps;
  2288. }
  2289. static void kv_parse_pplib_clock_info(struct amdgpu_device *adev,
  2290. struct amdgpu_ps *rps, int index,
  2291. union pplib_clock_info *clock_info)
  2292. {
  2293. struct kv_power_info *pi = kv_get_pi(adev);
  2294. struct kv_ps *ps = kv_get_ps(rps);
  2295. struct kv_pl *pl = &ps->levels[index];
  2296. u32 sclk;
  2297. sclk = le16_to_cpu(clock_info->sumo.usEngineClockLow);
  2298. sclk |= clock_info->sumo.ucEngineClockHigh << 16;
  2299. pl->sclk = sclk;
  2300. pl->vddc_index = clock_info->sumo.vddcIndex;
  2301. ps->num_levels = index + 1;
  2302. if (pi->caps_sclk_ds) {
  2303. pl->ds_divider_index = 5;
  2304. pl->ss_divider_index = 5;
  2305. }
  2306. }
  2307. static int kv_parse_power_table(struct amdgpu_device *adev)
  2308. {
  2309. struct amdgpu_mode_info *mode_info = &adev->mode_info;
  2310. struct _ATOM_PPLIB_NONCLOCK_INFO *non_clock_info;
  2311. union pplib_power_state *power_state;
  2312. int i, j, k, non_clock_array_index, clock_array_index;
  2313. union pplib_clock_info *clock_info;
  2314. struct _StateArray *state_array;
  2315. struct _ClockInfoArray *clock_info_array;
  2316. struct _NonClockInfoArray *non_clock_info_array;
  2317. union power_info *power_info;
  2318. int index = GetIndexIntoMasterTable(DATA, PowerPlayInfo);
  2319. u16 data_offset;
  2320. u8 frev, crev;
  2321. u8 *power_state_offset;
  2322. struct kv_ps *ps;
  2323. if (!amdgpu_atom_parse_data_header(mode_info->atom_context, index, NULL,
  2324. &frev, &crev, &data_offset))
  2325. return -EINVAL;
  2326. power_info = (union power_info *)(mode_info->atom_context->bios + data_offset);
  2327. amdgpu_add_thermal_controller(adev);
  2328. state_array = (struct _StateArray *)
  2329. (mode_info->atom_context->bios + data_offset +
  2330. le16_to_cpu(power_info->pplib.usStateArrayOffset));
  2331. clock_info_array = (struct _ClockInfoArray *)
  2332. (mode_info->atom_context->bios + data_offset +
  2333. le16_to_cpu(power_info->pplib.usClockInfoArrayOffset));
  2334. non_clock_info_array = (struct _NonClockInfoArray *)
  2335. (mode_info->atom_context->bios + data_offset +
  2336. le16_to_cpu(power_info->pplib.usNonClockInfoArrayOffset));
  2337. adev->pm.dpm.ps = kzalloc(sizeof(struct amdgpu_ps) *
  2338. state_array->ucNumEntries, GFP_KERNEL);
  2339. if (!adev->pm.dpm.ps)
  2340. return -ENOMEM;
  2341. power_state_offset = (u8 *)state_array->states;
  2342. for (i = 0; i < state_array->ucNumEntries; i++) {
  2343. u8 *idx;
  2344. power_state = (union pplib_power_state *)power_state_offset;
  2345. non_clock_array_index = power_state->v2.nonClockInfoIndex;
  2346. non_clock_info = (struct _ATOM_PPLIB_NONCLOCK_INFO *)
  2347. &non_clock_info_array->nonClockInfo[non_clock_array_index];
  2348. ps = kzalloc(sizeof(struct kv_ps), GFP_KERNEL);
  2349. if (ps == NULL) {
  2350. kfree(adev->pm.dpm.ps);
  2351. return -ENOMEM;
  2352. }
  2353. adev->pm.dpm.ps[i].ps_priv = ps;
  2354. k = 0;
  2355. idx = (u8 *)&power_state->v2.clockInfoIndex[0];
  2356. for (j = 0; j < power_state->v2.ucNumDPMLevels; j++) {
  2357. clock_array_index = idx[j];
  2358. if (clock_array_index >= clock_info_array->ucNumEntries)
  2359. continue;
  2360. if (k >= SUMO_MAX_HARDWARE_POWERLEVELS)
  2361. break;
  2362. clock_info = (union pplib_clock_info *)
  2363. ((u8 *)&clock_info_array->clockInfo[0] +
  2364. (clock_array_index * clock_info_array->ucEntrySize));
  2365. kv_parse_pplib_clock_info(adev,
  2366. &adev->pm.dpm.ps[i], k,
  2367. clock_info);
  2368. k++;
  2369. }
  2370. kv_parse_pplib_non_clock_info(adev, &adev->pm.dpm.ps[i],
  2371. non_clock_info,
  2372. non_clock_info_array->ucEntrySize);
  2373. power_state_offset += 2 + power_state->v2.ucNumDPMLevels;
  2374. }
  2375. adev->pm.dpm.num_ps = state_array->ucNumEntries;
  2376. /* fill in the vce power states */
  2377. for (i = 0; i < AMDGPU_MAX_VCE_LEVELS; i++) {
  2378. u32 sclk;
  2379. clock_array_index = adev->pm.dpm.vce_states[i].clk_idx;
  2380. clock_info = (union pplib_clock_info *)
  2381. &clock_info_array->clockInfo[clock_array_index * clock_info_array->ucEntrySize];
  2382. sclk = le16_to_cpu(clock_info->sumo.usEngineClockLow);
  2383. sclk |= clock_info->sumo.ucEngineClockHigh << 16;
  2384. adev->pm.dpm.vce_states[i].sclk = sclk;
  2385. adev->pm.dpm.vce_states[i].mclk = 0;
  2386. }
  2387. return 0;
  2388. }
  2389. static int kv_dpm_init(struct amdgpu_device *adev)
  2390. {
  2391. struct kv_power_info *pi;
  2392. int ret, i;
  2393. pi = kzalloc(sizeof(struct kv_power_info), GFP_KERNEL);
  2394. if (pi == NULL)
  2395. return -ENOMEM;
  2396. adev->pm.dpm.priv = pi;
  2397. ret = amdgpu_get_platform_caps(adev);
  2398. if (ret)
  2399. return ret;
  2400. ret = amdgpu_parse_extended_power_table(adev);
  2401. if (ret)
  2402. return ret;
  2403. for (i = 0; i < SUMO_MAX_HARDWARE_POWERLEVELS; i++)
  2404. pi->at[i] = TRINITY_AT_DFLT;
  2405. pi->sram_end = SMC_RAM_END;
  2406. pi->enable_nb_dpm = true;
  2407. pi->caps_power_containment = true;
  2408. pi->caps_cac = true;
  2409. pi->enable_didt = false;
  2410. if (pi->enable_didt) {
  2411. pi->caps_sq_ramping = true;
  2412. pi->caps_db_ramping = true;
  2413. pi->caps_td_ramping = true;
  2414. pi->caps_tcp_ramping = true;
  2415. }
  2416. if (amdgpu_sclk_deep_sleep_en)
  2417. pi->caps_sclk_ds = true;
  2418. else
  2419. pi->caps_sclk_ds = false;
  2420. pi->enable_auto_thermal_throttling = true;
  2421. pi->disable_nb_ps3_in_battery = false;
  2422. if (amdgpu_bapm == 0)
  2423. pi->bapm_enable = false;
  2424. else
  2425. pi->bapm_enable = true;
  2426. pi->voltage_drop_t = 0;
  2427. pi->caps_sclk_throttle_low_notification = false;
  2428. pi->caps_fps = false; /* true? */
  2429. pi->caps_uvd_pg = (adev->pg_flags & AMD_PG_SUPPORT_UVD) ? true : false;
  2430. pi->caps_uvd_dpm = true;
  2431. pi->caps_vce_pg = (adev->pg_flags & AMD_PG_SUPPORT_VCE) ? true : false;
  2432. pi->caps_samu_pg = (adev->pg_flags & AMD_PG_SUPPORT_SAMU) ? true : false;
  2433. pi->caps_acp_pg = (adev->pg_flags & AMD_PG_SUPPORT_ACP) ? true : false;
  2434. pi->caps_stable_p_state = false;
  2435. ret = kv_parse_sys_info_table(adev);
  2436. if (ret)
  2437. return ret;
  2438. kv_patch_voltage_values(adev);
  2439. kv_construct_boot_state(adev);
  2440. ret = kv_parse_power_table(adev);
  2441. if (ret)
  2442. return ret;
  2443. pi->enable_dpm = true;
  2444. return 0;
  2445. }
  2446. static void
  2447. kv_dpm_debugfs_print_current_performance_level(struct amdgpu_device *adev,
  2448. struct seq_file *m)
  2449. {
  2450. struct kv_power_info *pi = kv_get_pi(adev);
  2451. u32 current_index =
  2452. (RREG32_SMC(ixTARGET_AND_CURRENT_PROFILE_INDEX) &
  2453. TARGET_AND_CURRENT_PROFILE_INDEX__CURR_SCLK_INDEX_MASK) >>
  2454. TARGET_AND_CURRENT_PROFILE_INDEX__CURR_SCLK_INDEX__SHIFT;
  2455. u32 sclk, tmp;
  2456. u16 vddc;
  2457. if (current_index >= SMU__NUM_SCLK_DPM_STATE) {
  2458. seq_printf(m, "invalid dpm profile %d\n", current_index);
  2459. } else {
  2460. sclk = be32_to_cpu(pi->graphics_level[current_index].SclkFrequency);
  2461. tmp = (RREG32_SMC(ixSMU_VOLTAGE_STATUS) &
  2462. SMU_VOLTAGE_STATUS__SMU_VOLTAGE_CURRENT_LEVEL_MASK) >>
  2463. SMU_VOLTAGE_STATUS__SMU_VOLTAGE_CURRENT_LEVEL__SHIFT;
  2464. vddc = kv_convert_8bit_index_to_voltage(adev, (u16)tmp);
  2465. seq_printf(m, "uvd %sabled\n", pi->uvd_power_gated ? "dis" : "en");
  2466. seq_printf(m, "vce %sabled\n", pi->vce_power_gated ? "dis" : "en");
  2467. seq_printf(m, "power level %d sclk: %u vddc: %u\n",
  2468. current_index, sclk, vddc);
  2469. }
  2470. }
  2471. static void
  2472. kv_dpm_print_power_state(struct amdgpu_device *adev,
  2473. struct amdgpu_ps *rps)
  2474. {
  2475. int i;
  2476. struct kv_ps *ps = kv_get_ps(rps);
  2477. amdgpu_dpm_print_class_info(rps->class, rps->class2);
  2478. amdgpu_dpm_print_cap_info(rps->caps);
  2479. printk("\tuvd vclk: %d dclk: %d\n", rps->vclk, rps->dclk);
  2480. for (i = 0; i < ps->num_levels; i++) {
  2481. struct kv_pl *pl = &ps->levels[i];
  2482. printk("\t\tpower level %d sclk: %u vddc: %u\n",
  2483. i, pl->sclk,
  2484. kv_convert_8bit_index_to_voltage(adev, pl->vddc_index));
  2485. }
  2486. amdgpu_dpm_print_ps_status(adev, rps);
  2487. }
  2488. static void kv_dpm_fini(struct amdgpu_device *adev)
  2489. {
  2490. int i;
  2491. for (i = 0; i < adev->pm.dpm.num_ps; i++) {
  2492. kfree(adev->pm.dpm.ps[i].ps_priv);
  2493. }
  2494. kfree(adev->pm.dpm.ps);
  2495. kfree(adev->pm.dpm.priv);
  2496. amdgpu_free_extended_power_table(adev);
  2497. }
  2498. static void kv_dpm_display_configuration_changed(struct amdgpu_device *adev)
  2499. {
  2500. }
  2501. static u32 kv_dpm_get_sclk(struct amdgpu_device *adev, bool low)
  2502. {
  2503. struct kv_power_info *pi = kv_get_pi(adev);
  2504. struct kv_ps *requested_state = kv_get_ps(&pi->requested_rps);
  2505. if (low)
  2506. return requested_state->levels[0].sclk;
  2507. else
  2508. return requested_state->levels[requested_state->num_levels - 1].sclk;
  2509. }
  2510. static u32 kv_dpm_get_mclk(struct amdgpu_device *adev, bool low)
  2511. {
  2512. struct kv_power_info *pi = kv_get_pi(adev);
  2513. return pi->sys_info.bootup_uma_clk;
  2514. }
  2515. /* get temperature in millidegrees */
  2516. static int kv_dpm_get_temp(struct amdgpu_device *adev)
  2517. {
  2518. u32 temp;
  2519. int actual_temp = 0;
  2520. temp = RREG32_SMC(0xC0300E0C);
  2521. if (temp)
  2522. actual_temp = (temp / 8) - 49;
  2523. else
  2524. actual_temp = 0;
  2525. actual_temp = actual_temp * 1000;
  2526. return actual_temp;
  2527. }
  2528. static int kv_dpm_early_init(void *handle)
  2529. {
  2530. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  2531. kv_dpm_set_dpm_funcs(adev);
  2532. kv_dpm_set_irq_funcs(adev);
  2533. return 0;
  2534. }
  2535. static int kv_dpm_late_init(void *handle)
  2536. {
  2537. /* powerdown unused blocks for now */
  2538. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  2539. int ret;
  2540. if (!amdgpu_dpm)
  2541. return 0;
  2542. /* init the sysfs and debugfs files late */
  2543. ret = amdgpu_pm_sysfs_init(adev);
  2544. if (ret)
  2545. return ret;
  2546. kv_dpm_powergate_acp(adev, true);
  2547. kv_dpm_powergate_samu(adev, true);
  2548. kv_dpm_powergate_vce(adev, true);
  2549. kv_dpm_powergate_uvd(adev, true);
  2550. return 0;
  2551. }
  2552. static int kv_dpm_sw_init(void *handle)
  2553. {
  2554. int ret;
  2555. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  2556. ret = amdgpu_irq_add_id(adev, 230, &adev->pm.dpm.thermal.irq);
  2557. if (ret)
  2558. return ret;
  2559. ret = amdgpu_irq_add_id(adev, 231, &adev->pm.dpm.thermal.irq);
  2560. if (ret)
  2561. return ret;
  2562. /* default to balanced state */
  2563. adev->pm.dpm.state = POWER_STATE_TYPE_BALANCED;
  2564. adev->pm.dpm.user_state = POWER_STATE_TYPE_BALANCED;
  2565. adev->pm.dpm.forced_level = AMDGPU_DPM_FORCED_LEVEL_AUTO;
  2566. adev->pm.default_sclk = adev->clock.default_sclk;
  2567. adev->pm.default_mclk = adev->clock.default_mclk;
  2568. adev->pm.current_sclk = adev->clock.default_sclk;
  2569. adev->pm.current_mclk = adev->clock.default_mclk;
  2570. adev->pm.int_thermal_type = THERMAL_TYPE_NONE;
  2571. if (amdgpu_dpm == 0)
  2572. return 0;
  2573. INIT_WORK(&adev->pm.dpm.thermal.work, amdgpu_dpm_thermal_work_handler);
  2574. mutex_lock(&adev->pm.mutex);
  2575. ret = kv_dpm_init(adev);
  2576. if (ret)
  2577. goto dpm_failed;
  2578. adev->pm.dpm.current_ps = adev->pm.dpm.requested_ps = adev->pm.dpm.boot_ps;
  2579. if (amdgpu_dpm == 1)
  2580. amdgpu_pm_print_power_states(adev);
  2581. mutex_unlock(&adev->pm.mutex);
  2582. DRM_INFO("amdgpu: dpm initialized\n");
  2583. return 0;
  2584. dpm_failed:
  2585. kv_dpm_fini(adev);
  2586. mutex_unlock(&adev->pm.mutex);
  2587. DRM_ERROR("amdgpu: dpm initialization failed\n");
  2588. return ret;
  2589. }
  2590. static int kv_dpm_sw_fini(void *handle)
  2591. {
  2592. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  2593. mutex_lock(&adev->pm.mutex);
  2594. amdgpu_pm_sysfs_fini(adev);
  2595. kv_dpm_fini(adev);
  2596. mutex_unlock(&adev->pm.mutex);
  2597. return 0;
  2598. }
  2599. static int kv_dpm_hw_init(void *handle)
  2600. {
  2601. int ret;
  2602. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  2603. mutex_lock(&adev->pm.mutex);
  2604. kv_dpm_setup_asic(adev);
  2605. ret = kv_dpm_enable(adev);
  2606. if (ret)
  2607. adev->pm.dpm_enabled = false;
  2608. else
  2609. adev->pm.dpm_enabled = true;
  2610. mutex_unlock(&adev->pm.mutex);
  2611. return ret;
  2612. }
  2613. static int kv_dpm_hw_fini(void *handle)
  2614. {
  2615. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  2616. if (adev->pm.dpm_enabled) {
  2617. mutex_lock(&adev->pm.mutex);
  2618. kv_dpm_disable(adev);
  2619. mutex_unlock(&adev->pm.mutex);
  2620. }
  2621. return 0;
  2622. }
  2623. static int kv_dpm_suspend(void *handle)
  2624. {
  2625. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  2626. if (adev->pm.dpm_enabled) {
  2627. mutex_lock(&adev->pm.mutex);
  2628. /* disable dpm */
  2629. kv_dpm_disable(adev);
  2630. /* reset the power state */
  2631. adev->pm.dpm.current_ps = adev->pm.dpm.requested_ps = adev->pm.dpm.boot_ps;
  2632. mutex_unlock(&adev->pm.mutex);
  2633. }
  2634. return 0;
  2635. }
  2636. static int kv_dpm_resume(void *handle)
  2637. {
  2638. int ret;
  2639. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  2640. if (adev->pm.dpm_enabled) {
  2641. /* asic init will reset to the boot state */
  2642. mutex_lock(&adev->pm.mutex);
  2643. kv_dpm_setup_asic(adev);
  2644. ret = kv_dpm_enable(adev);
  2645. if (ret)
  2646. adev->pm.dpm_enabled = false;
  2647. else
  2648. adev->pm.dpm_enabled = true;
  2649. mutex_unlock(&adev->pm.mutex);
  2650. if (adev->pm.dpm_enabled)
  2651. amdgpu_pm_compute_clocks(adev);
  2652. }
  2653. return 0;
  2654. }
  2655. static bool kv_dpm_is_idle(void *handle)
  2656. {
  2657. return true;
  2658. }
  2659. static int kv_dpm_wait_for_idle(void *handle)
  2660. {
  2661. return 0;
  2662. }
  2663. static int kv_dpm_soft_reset(void *handle)
  2664. {
  2665. return 0;
  2666. }
  2667. static int kv_dpm_set_interrupt_state(struct amdgpu_device *adev,
  2668. struct amdgpu_irq_src *src,
  2669. unsigned type,
  2670. enum amdgpu_interrupt_state state)
  2671. {
  2672. u32 cg_thermal_int;
  2673. switch (type) {
  2674. case AMDGPU_THERMAL_IRQ_LOW_TO_HIGH:
  2675. switch (state) {
  2676. case AMDGPU_IRQ_STATE_DISABLE:
  2677. cg_thermal_int = RREG32_SMC(ixCG_THERMAL_INT_CTRL);
  2678. cg_thermal_int &= ~CG_THERMAL_INT_CTRL__THERM_INTH_MASK_MASK;
  2679. WREG32_SMC(ixCG_THERMAL_INT_CTRL, cg_thermal_int);
  2680. break;
  2681. case AMDGPU_IRQ_STATE_ENABLE:
  2682. cg_thermal_int = RREG32_SMC(ixCG_THERMAL_INT_CTRL);
  2683. cg_thermal_int |= CG_THERMAL_INT_CTRL__THERM_INTH_MASK_MASK;
  2684. WREG32_SMC(ixCG_THERMAL_INT_CTRL, cg_thermal_int);
  2685. break;
  2686. default:
  2687. break;
  2688. }
  2689. break;
  2690. case AMDGPU_THERMAL_IRQ_HIGH_TO_LOW:
  2691. switch (state) {
  2692. case AMDGPU_IRQ_STATE_DISABLE:
  2693. cg_thermal_int = RREG32_SMC(ixCG_THERMAL_INT_CTRL);
  2694. cg_thermal_int &= ~CG_THERMAL_INT_CTRL__THERM_INTL_MASK_MASK;
  2695. WREG32_SMC(ixCG_THERMAL_INT_CTRL, cg_thermal_int);
  2696. break;
  2697. case AMDGPU_IRQ_STATE_ENABLE:
  2698. cg_thermal_int = RREG32_SMC(ixCG_THERMAL_INT_CTRL);
  2699. cg_thermal_int |= CG_THERMAL_INT_CTRL__THERM_INTL_MASK_MASK;
  2700. WREG32_SMC(ixCG_THERMAL_INT_CTRL, cg_thermal_int);
  2701. break;
  2702. default:
  2703. break;
  2704. }
  2705. break;
  2706. default:
  2707. break;
  2708. }
  2709. return 0;
  2710. }
  2711. static int kv_dpm_process_interrupt(struct amdgpu_device *adev,
  2712. struct amdgpu_irq_src *source,
  2713. struct amdgpu_iv_entry *entry)
  2714. {
  2715. bool queue_thermal = false;
  2716. if (entry == NULL)
  2717. return -EINVAL;
  2718. switch (entry->src_id) {
  2719. case 230: /* thermal low to high */
  2720. DRM_DEBUG("IH: thermal low to high\n");
  2721. adev->pm.dpm.thermal.high_to_low = false;
  2722. queue_thermal = true;
  2723. break;
  2724. case 231: /* thermal high to low */
  2725. DRM_DEBUG("IH: thermal high to low\n");
  2726. adev->pm.dpm.thermal.high_to_low = true;
  2727. queue_thermal = true;
  2728. break;
  2729. default:
  2730. break;
  2731. }
  2732. if (queue_thermal)
  2733. schedule_work(&adev->pm.dpm.thermal.work);
  2734. return 0;
  2735. }
  2736. static int kv_dpm_set_clockgating_state(void *handle,
  2737. enum amd_clockgating_state state)
  2738. {
  2739. return 0;
  2740. }
  2741. static int kv_dpm_set_powergating_state(void *handle,
  2742. enum amd_powergating_state state)
  2743. {
  2744. return 0;
  2745. }
  2746. const struct amd_ip_funcs kv_dpm_ip_funcs = {
  2747. .name = "kv_dpm",
  2748. .early_init = kv_dpm_early_init,
  2749. .late_init = kv_dpm_late_init,
  2750. .sw_init = kv_dpm_sw_init,
  2751. .sw_fini = kv_dpm_sw_fini,
  2752. .hw_init = kv_dpm_hw_init,
  2753. .hw_fini = kv_dpm_hw_fini,
  2754. .suspend = kv_dpm_suspend,
  2755. .resume = kv_dpm_resume,
  2756. .is_idle = kv_dpm_is_idle,
  2757. .wait_for_idle = kv_dpm_wait_for_idle,
  2758. .soft_reset = kv_dpm_soft_reset,
  2759. .set_clockgating_state = kv_dpm_set_clockgating_state,
  2760. .set_powergating_state = kv_dpm_set_powergating_state,
  2761. };
  2762. static const struct amdgpu_dpm_funcs kv_dpm_funcs = {
  2763. .get_temperature = &kv_dpm_get_temp,
  2764. .pre_set_power_state = &kv_dpm_pre_set_power_state,
  2765. .set_power_state = &kv_dpm_set_power_state,
  2766. .post_set_power_state = &kv_dpm_post_set_power_state,
  2767. .display_configuration_changed = &kv_dpm_display_configuration_changed,
  2768. .get_sclk = &kv_dpm_get_sclk,
  2769. .get_mclk = &kv_dpm_get_mclk,
  2770. .print_power_state = &kv_dpm_print_power_state,
  2771. .debugfs_print_current_performance_level = &kv_dpm_debugfs_print_current_performance_level,
  2772. .force_performance_level = &kv_dpm_force_performance_level,
  2773. .powergate_uvd = &kv_dpm_powergate_uvd,
  2774. .enable_bapm = &kv_dpm_enable_bapm,
  2775. };
  2776. static void kv_dpm_set_dpm_funcs(struct amdgpu_device *adev)
  2777. {
  2778. if (adev->pm.funcs == NULL)
  2779. adev->pm.funcs = &kv_dpm_funcs;
  2780. }
  2781. static const struct amdgpu_irq_src_funcs kv_dpm_irq_funcs = {
  2782. .set = kv_dpm_set_interrupt_state,
  2783. .process = kv_dpm_process_interrupt,
  2784. };
  2785. static void kv_dpm_set_irq_funcs(struct amdgpu_device *adev)
  2786. {
  2787. adev->pm.dpm.thermal.irq.num_types = AMDGPU_THERMAL_IRQ_LAST;
  2788. adev->pm.dpm.thermal.irq.funcs = &kv_dpm_irq_funcs;
  2789. }