sdma_v3_0.c 49 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742
  1. /*
  2. * Copyright 2014 Advanced Micro Devices, Inc.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice shall be included in
  12. * all copies or substantial portions of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  17. * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20. * OTHER DEALINGS IN THE SOFTWARE.
  21. *
  22. * Authors: Alex Deucher
  23. */
  24. #include <linux/firmware.h>
  25. #include <drm/drmP.h>
  26. #include "amdgpu.h"
  27. #include "amdgpu_ucode.h"
  28. #include "amdgpu_trace.h"
  29. #include "vi.h"
  30. #include "vid.h"
  31. #include "oss/oss_3_0_d.h"
  32. #include "oss/oss_3_0_sh_mask.h"
  33. #include "gmc/gmc_8_1_d.h"
  34. #include "gmc/gmc_8_1_sh_mask.h"
  35. #include "gca/gfx_8_0_d.h"
  36. #include "gca/gfx_8_0_enum.h"
  37. #include "gca/gfx_8_0_sh_mask.h"
  38. #include "bif/bif_5_0_d.h"
  39. #include "bif/bif_5_0_sh_mask.h"
  40. #include "tonga_sdma_pkt_open.h"
  41. static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev);
  42. static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev);
  43. static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev);
  44. static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev);
  45. MODULE_FIRMWARE("amdgpu/tonga_sdma.bin");
  46. MODULE_FIRMWARE("amdgpu/tonga_sdma1.bin");
  47. MODULE_FIRMWARE("amdgpu/carrizo_sdma.bin");
  48. MODULE_FIRMWARE("amdgpu/carrizo_sdma1.bin");
  49. MODULE_FIRMWARE("amdgpu/fiji_sdma.bin");
  50. MODULE_FIRMWARE("amdgpu/fiji_sdma1.bin");
  51. MODULE_FIRMWARE("amdgpu/stoney_sdma.bin");
  52. MODULE_FIRMWARE("amdgpu/ellesmere_sdma.bin");
  53. MODULE_FIRMWARE("amdgpu/ellesmere_sdma1.bin");
  54. MODULE_FIRMWARE("amdgpu/baffin_sdma.bin");
  55. MODULE_FIRMWARE("amdgpu/baffin_sdma1.bin");
  56. static const u32 sdma_offsets[SDMA_MAX_INSTANCE] =
  57. {
  58. SDMA0_REGISTER_OFFSET,
  59. SDMA1_REGISTER_OFFSET
  60. };
  61. static const u32 golden_settings_tonga_a11[] =
  62. {
  63. mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  64. mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
  65. mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  66. mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  67. mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  68. mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
  69. mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
  70. mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  71. mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  72. mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  73. };
  74. static const u32 tonga_mgcg_cgcg_init[] =
  75. {
  76. mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
  77. mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
  78. };
  79. static const u32 golden_settings_fiji_a10[] =
  80. {
  81. mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  82. mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  83. mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  84. mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  85. mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
  86. mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  87. mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  88. mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  89. };
  90. static const u32 fiji_mgcg_cgcg_init[] =
  91. {
  92. mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
  93. mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
  94. };
  95. static const u32 golden_settings_baffin_a11[] =
  96. {
  97. mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  98. mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  99. mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  100. mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  101. mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
  102. mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  103. mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  104. mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  105. };
  106. static const u32 golden_settings_ellesmere_a11[] =
  107. {
  108. mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  109. mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
  110. mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  111. mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  112. mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  113. mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
  114. mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
  115. mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  116. mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  117. mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  118. };
  119. static const u32 cz_golden_settings_a11[] =
  120. {
  121. mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  122. mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
  123. mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
  124. mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
  125. mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
  126. mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
  127. mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
  128. mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
  129. mmSDMA1_GFX_IB_CNTL, 0x00000100, 0x00000100,
  130. mmSDMA1_POWER_CNTL, 0x00000800, 0x0003c800,
  131. mmSDMA1_RLC0_IB_CNTL, 0x00000100, 0x00000100,
  132. mmSDMA1_RLC1_IB_CNTL, 0x00000100, 0x00000100,
  133. };
  134. static const u32 cz_mgcg_cgcg_init[] =
  135. {
  136. mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
  137. mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
  138. };
  139. static const u32 stoney_golden_settings_a11[] =
  140. {
  141. mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
  142. mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
  143. mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
  144. mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
  145. };
  146. static const u32 stoney_mgcg_cgcg_init[] =
  147. {
  148. mmSDMA0_CLK_CTRL, 0xffffffff, 0x00000100,
  149. };
  150. /*
  151. * sDMA - System DMA
  152. * Starting with CIK, the GPU has new asynchronous
  153. * DMA engines. These engines are used for compute
  154. * and gfx. There are two DMA engines (SDMA0, SDMA1)
  155. * and each one supports 1 ring buffer used for gfx
  156. * and 2 queues used for compute.
  157. *
  158. * The programming model is very similar to the CP
  159. * (ring buffer, IBs, etc.), but sDMA has it's own
  160. * packet format that is different from the PM4 format
  161. * used by the CP. sDMA supports copying data, writing
  162. * embedded data, solid fills, and a number of other
  163. * things. It also has support for tiling/detiling of
  164. * buffers.
  165. */
  166. static void sdma_v3_0_init_golden_registers(struct amdgpu_device *adev)
  167. {
  168. switch (adev->asic_type) {
  169. case CHIP_FIJI:
  170. amdgpu_program_register_sequence(adev,
  171. fiji_mgcg_cgcg_init,
  172. (const u32)ARRAY_SIZE(fiji_mgcg_cgcg_init));
  173. amdgpu_program_register_sequence(adev,
  174. golden_settings_fiji_a10,
  175. (const u32)ARRAY_SIZE(golden_settings_fiji_a10));
  176. break;
  177. case CHIP_TONGA:
  178. amdgpu_program_register_sequence(adev,
  179. tonga_mgcg_cgcg_init,
  180. (const u32)ARRAY_SIZE(tonga_mgcg_cgcg_init));
  181. amdgpu_program_register_sequence(adev,
  182. golden_settings_tonga_a11,
  183. (const u32)ARRAY_SIZE(golden_settings_tonga_a11));
  184. break;
  185. case CHIP_BAFFIN:
  186. amdgpu_program_register_sequence(adev,
  187. golden_settings_baffin_a11,
  188. (const u32)ARRAY_SIZE(golden_settings_baffin_a11));
  189. break;
  190. case CHIP_ELLESMERE:
  191. amdgpu_program_register_sequence(adev,
  192. golden_settings_ellesmere_a11,
  193. (const u32)ARRAY_SIZE(golden_settings_ellesmere_a11));
  194. break;
  195. case CHIP_CARRIZO:
  196. amdgpu_program_register_sequence(adev,
  197. cz_mgcg_cgcg_init,
  198. (const u32)ARRAY_SIZE(cz_mgcg_cgcg_init));
  199. amdgpu_program_register_sequence(adev,
  200. cz_golden_settings_a11,
  201. (const u32)ARRAY_SIZE(cz_golden_settings_a11));
  202. break;
  203. case CHIP_STONEY:
  204. amdgpu_program_register_sequence(adev,
  205. stoney_mgcg_cgcg_init,
  206. (const u32)ARRAY_SIZE(stoney_mgcg_cgcg_init));
  207. amdgpu_program_register_sequence(adev,
  208. stoney_golden_settings_a11,
  209. (const u32)ARRAY_SIZE(stoney_golden_settings_a11));
  210. break;
  211. default:
  212. break;
  213. }
  214. }
  215. /**
  216. * sdma_v3_0_init_microcode - load ucode images from disk
  217. *
  218. * @adev: amdgpu_device pointer
  219. *
  220. * Use the firmware interface to load the ucode images into
  221. * the driver (not loaded into hw).
  222. * Returns 0 on success, error on failure.
  223. */
  224. static int sdma_v3_0_init_microcode(struct amdgpu_device *adev)
  225. {
  226. const char *chip_name;
  227. char fw_name[30];
  228. int err = 0, i;
  229. struct amdgpu_firmware_info *info = NULL;
  230. const struct common_firmware_header *header = NULL;
  231. const struct sdma_firmware_header_v1_0 *hdr;
  232. DRM_DEBUG("\n");
  233. switch (adev->asic_type) {
  234. case CHIP_TONGA:
  235. chip_name = "tonga";
  236. break;
  237. case CHIP_FIJI:
  238. chip_name = "fiji";
  239. break;
  240. case CHIP_BAFFIN:
  241. chip_name = "baffin";
  242. break;
  243. case CHIP_ELLESMERE:
  244. chip_name = "ellesmere";
  245. break;
  246. case CHIP_CARRIZO:
  247. chip_name = "carrizo";
  248. break;
  249. case CHIP_STONEY:
  250. chip_name = "stoney";
  251. break;
  252. default: BUG();
  253. }
  254. for (i = 0; i < adev->sdma.num_instances; i++) {
  255. if (i == 0)
  256. snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
  257. else
  258. snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name);
  259. err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
  260. if (err)
  261. goto out;
  262. err = amdgpu_ucode_validate(adev->sdma.instance[i].fw);
  263. if (err)
  264. goto out;
  265. hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
  266. adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
  267. adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version);
  268. if (adev->sdma.instance[i].feature_version >= 20)
  269. adev->sdma.instance[i].burst_nop = true;
  270. if (adev->firmware.smu_load) {
  271. info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
  272. info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
  273. info->fw = adev->sdma.instance[i].fw;
  274. header = (const struct common_firmware_header *)info->fw->data;
  275. adev->firmware.fw_size +=
  276. ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
  277. }
  278. }
  279. out:
  280. if (err) {
  281. printk(KERN_ERR
  282. "sdma_v3_0: Failed to load firmware \"%s\"\n",
  283. fw_name);
  284. for (i = 0; i < adev->sdma.num_instances; i++) {
  285. release_firmware(adev->sdma.instance[i].fw);
  286. adev->sdma.instance[i].fw = NULL;
  287. }
  288. }
  289. return err;
  290. }
  291. /**
  292. * sdma_v3_0_ring_get_rptr - get the current read pointer
  293. *
  294. * @ring: amdgpu ring pointer
  295. *
  296. * Get the current rptr from the hardware (VI+).
  297. */
  298. static uint32_t sdma_v3_0_ring_get_rptr(struct amdgpu_ring *ring)
  299. {
  300. u32 rptr;
  301. /* XXX check if swapping is necessary on BE */
  302. rptr = ring->adev->wb.wb[ring->rptr_offs] >> 2;
  303. return rptr;
  304. }
  305. /**
  306. * sdma_v3_0_ring_get_wptr - get the current write pointer
  307. *
  308. * @ring: amdgpu ring pointer
  309. *
  310. * Get the current wptr from the hardware (VI+).
  311. */
  312. static uint32_t sdma_v3_0_ring_get_wptr(struct amdgpu_ring *ring)
  313. {
  314. struct amdgpu_device *adev = ring->adev;
  315. u32 wptr;
  316. if (ring->use_doorbell) {
  317. /* XXX check if swapping is necessary on BE */
  318. wptr = ring->adev->wb.wb[ring->wptr_offs] >> 2;
  319. } else {
  320. int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
  321. wptr = RREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me]) >> 2;
  322. }
  323. return wptr;
  324. }
  325. /**
  326. * sdma_v3_0_ring_set_wptr - commit the write pointer
  327. *
  328. * @ring: amdgpu ring pointer
  329. *
  330. * Write the wptr back to the hardware (VI+).
  331. */
  332. static void sdma_v3_0_ring_set_wptr(struct amdgpu_ring *ring)
  333. {
  334. struct amdgpu_device *adev = ring->adev;
  335. if (ring->use_doorbell) {
  336. /* XXX check if swapping is necessary on BE */
  337. adev->wb.wb[ring->wptr_offs] = ring->wptr << 2;
  338. WDOORBELL32(ring->doorbell_index, ring->wptr << 2);
  339. } else {
  340. int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
  341. WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me], ring->wptr << 2);
  342. }
  343. }
  344. static void sdma_v3_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
  345. {
  346. struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
  347. int i;
  348. for (i = 0; i < count; i++)
  349. if (sdma && sdma->burst_nop && (i == 0))
  350. amdgpu_ring_write(ring, ring->nop |
  351. SDMA_PKT_NOP_HEADER_COUNT(count - 1));
  352. else
  353. amdgpu_ring_write(ring, ring->nop);
  354. }
  355. /**
  356. * sdma_v3_0_ring_emit_ib - Schedule an IB on the DMA engine
  357. *
  358. * @ring: amdgpu ring pointer
  359. * @ib: IB object to schedule
  360. *
  361. * Schedule an IB in the DMA ring (VI).
  362. */
  363. static void sdma_v3_0_ring_emit_ib(struct amdgpu_ring *ring,
  364. struct amdgpu_ib *ib)
  365. {
  366. u32 vmid = ib->vm_id & 0xf;
  367. u32 next_rptr = ring->wptr + 5;
  368. while ((next_rptr & 7) != 2)
  369. next_rptr++;
  370. next_rptr += 6;
  371. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  372. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
  373. amdgpu_ring_write(ring, lower_32_bits(ring->next_rptr_gpu_addr) & 0xfffffffc);
  374. amdgpu_ring_write(ring, upper_32_bits(ring->next_rptr_gpu_addr));
  375. amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1));
  376. amdgpu_ring_write(ring, next_rptr);
  377. /* IB packet must end on a 8 DW boundary */
  378. sdma_v3_0_ring_insert_nop(ring, (10 - (ring->wptr & 7)) % 8);
  379. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
  380. SDMA_PKT_INDIRECT_HEADER_VMID(vmid));
  381. /* base must be 32 byte aligned */
  382. amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
  383. amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
  384. amdgpu_ring_write(ring, ib->length_dw);
  385. amdgpu_ring_write(ring, 0);
  386. amdgpu_ring_write(ring, 0);
  387. }
  388. /**
  389. * sdma_v3_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
  390. *
  391. * @ring: amdgpu ring pointer
  392. *
  393. * Emit an hdp flush packet on the requested DMA ring.
  394. */
  395. static void sdma_v3_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
  396. {
  397. u32 ref_and_mask = 0;
  398. if (ring == &ring->adev->sdma.instance[0].ring)
  399. ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA0, 1);
  400. else
  401. ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA1, 1);
  402. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  403. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) |
  404. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
  405. amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_DONE << 2);
  406. amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_REQ << 2);
  407. amdgpu_ring_write(ring, ref_and_mask); /* reference */
  408. amdgpu_ring_write(ring, ref_and_mask); /* mask */
  409. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  410. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
  411. }
  412. static void sdma_v3_0_ring_emit_hdp_invalidate(struct amdgpu_ring *ring)
  413. {
  414. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  415. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  416. amdgpu_ring_write(ring, mmHDP_DEBUG0);
  417. amdgpu_ring_write(ring, 1);
  418. }
  419. /**
  420. * sdma_v3_0_ring_emit_fence - emit a fence on the DMA ring
  421. *
  422. * @ring: amdgpu ring pointer
  423. * @fence: amdgpu fence object
  424. *
  425. * Add a DMA fence packet to the ring to write
  426. * the fence seq number and DMA trap packet to generate
  427. * an interrupt if needed (VI).
  428. */
  429. static void sdma_v3_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
  430. unsigned flags)
  431. {
  432. bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
  433. /* write the fence */
  434. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
  435. amdgpu_ring_write(ring, lower_32_bits(addr));
  436. amdgpu_ring_write(ring, upper_32_bits(addr));
  437. amdgpu_ring_write(ring, lower_32_bits(seq));
  438. /* optionally write high bits as well */
  439. if (write64bit) {
  440. addr += 4;
  441. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
  442. amdgpu_ring_write(ring, lower_32_bits(addr));
  443. amdgpu_ring_write(ring, upper_32_bits(addr));
  444. amdgpu_ring_write(ring, upper_32_bits(seq));
  445. }
  446. /* generate an interrupt */
  447. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
  448. amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
  449. }
  450. unsigned init_cond_exec(struct amdgpu_ring *ring)
  451. {
  452. unsigned ret;
  453. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_COND_EXE));
  454. amdgpu_ring_write(ring, lower_32_bits(ring->cond_exe_gpu_addr));
  455. amdgpu_ring_write(ring, upper_32_bits(ring->cond_exe_gpu_addr));
  456. amdgpu_ring_write(ring, 1);
  457. ret = ring->wptr;/* this is the offset we need patch later */
  458. amdgpu_ring_write(ring, 0x55aa55aa);/* insert dummy here and patch it later */
  459. return ret;
  460. }
  461. void patch_cond_exec(struct amdgpu_ring *ring, unsigned offset)
  462. {
  463. unsigned cur;
  464. BUG_ON(ring->ring[offset] != 0x55aa55aa);
  465. cur = ring->wptr - 1;
  466. if (likely(cur > offset))
  467. ring->ring[offset] = cur - offset;
  468. else
  469. ring->ring[offset] = (ring->ring_size>>2) - offset + cur;
  470. }
  471. /**
  472. * sdma_v3_0_gfx_stop - stop the gfx async dma engines
  473. *
  474. * @adev: amdgpu_device pointer
  475. *
  476. * Stop the gfx async dma ring buffers (VI).
  477. */
  478. static void sdma_v3_0_gfx_stop(struct amdgpu_device *adev)
  479. {
  480. struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring;
  481. struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring;
  482. u32 rb_cntl, ib_cntl;
  483. int i;
  484. if ((adev->mman.buffer_funcs_ring == sdma0) ||
  485. (adev->mman.buffer_funcs_ring == sdma1))
  486. amdgpu_ttm_set_active_vram_size(adev, adev->mc.visible_vram_size);
  487. for (i = 0; i < adev->sdma.num_instances; i++) {
  488. rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
  489. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
  490. WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
  491. ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
  492. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
  493. WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
  494. }
  495. sdma0->ready = false;
  496. sdma1->ready = false;
  497. }
  498. /**
  499. * sdma_v3_0_rlc_stop - stop the compute async dma engines
  500. *
  501. * @adev: amdgpu_device pointer
  502. *
  503. * Stop the compute async dma queues (VI).
  504. */
  505. static void sdma_v3_0_rlc_stop(struct amdgpu_device *adev)
  506. {
  507. /* XXX todo */
  508. }
  509. /**
  510. * sdma_v3_0_ctx_switch_enable - stop the async dma engines context switch
  511. *
  512. * @adev: amdgpu_device pointer
  513. * @enable: enable/disable the DMA MEs context switch.
  514. *
  515. * Halt or unhalt the async dma engines context switch (VI).
  516. */
  517. static void sdma_v3_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
  518. {
  519. u32 f32_cntl;
  520. int i;
  521. for (i = 0; i < adev->sdma.num_instances; i++) {
  522. f32_cntl = RREG32(mmSDMA0_CNTL + sdma_offsets[i]);
  523. if (enable)
  524. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
  525. AUTO_CTXSW_ENABLE, 1);
  526. else
  527. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
  528. AUTO_CTXSW_ENABLE, 0);
  529. WREG32(mmSDMA0_CNTL + sdma_offsets[i], f32_cntl);
  530. }
  531. }
  532. /**
  533. * sdma_v3_0_enable - stop the async dma engines
  534. *
  535. * @adev: amdgpu_device pointer
  536. * @enable: enable/disable the DMA MEs.
  537. *
  538. * Halt or unhalt the async dma engines (VI).
  539. */
  540. static void sdma_v3_0_enable(struct amdgpu_device *adev, bool enable)
  541. {
  542. u32 f32_cntl;
  543. int i;
  544. if (enable == false) {
  545. sdma_v3_0_gfx_stop(adev);
  546. sdma_v3_0_rlc_stop(adev);
  547. }
  548. for (i = 0; i < adev->sdma.num_instances; i++) {
  549. f32_cntl = RREG32(mmSDMA0_F32_CNTL + sdma_offsets[i]);
  550. if (enable)
  551. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 0);
  552. else
  553. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 1);
  554. WREG32(mmSDMA0_F32_CNTL + sdma_offsets[i], f32_cntl);
  555. }
  556. }
  557. /**
  558. * sdma_v3_0_gfx_resume - setup and start the async dma engines
  559. *
  560. * @adev: amdgpu_device pointer
  561. *
  562. * Set up the gfx DMA ring buffers and enable them (VI).
  563. * Returns 0 for success, error for failure.
  564. */
  565. static int sdma_v3_0_gfx_resume(struct amdgpu_device *adev)
  566. {
  567. struct amdgpu_ring *ring;
  568. u32 rb_cntl, ib_cntl;
  569. u32 rb_bufsz;
  570. u32 wb_offset;
  571. u32 doorbell;
  572. int i, j, r;
  573. for (i = 0; i < adev->sdma.num_instances; i++) {
  574. ring = &adev->sdma.instance[i].ring;
  575. wb_offset = (ring->rptr_offs * 4);
  576. mutex_lock(&adev->srbm_mutex);
  577. for (j = 0; j < 16; j++) {
  578. vi_srbm_select(adev, 0, 0, 0, j);
  579. /* SDMA GFX */
  580. WREG32(mmSDMA0_GFX_VIRTUAL_ADDR + sdma_offsets[i], 0);
  581. WREG32(mmSDMA0_GFX_APE1_CNTL + sdma_offsets[i], 0);
  582. }
  583. vi_srbm_select(adev, 0, 0, 0, 0);
  584. mutex_unlock(&adev->srbm_mutex);
  585. WREG32(mmSDMA0_TILING_CONFIG + sdma_offsets[i],
  586. adev->gfx.config.gb_addr_config & 0x70);
  587. WREG32(mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i], 0);
  588. /* Set ring buffer size in dwords */
  589. rb_bufsz = order_base_2(ring->ring_size / 4);
  590. rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
  591. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
  592. #ifdef __BIG_ENDIAN
  593. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
  594. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
  595. RPTR_WRITEBACK_SWAP_ENABLE, 1);
  596. #endif
  597. WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
  598. /* Initialize the ring buffer's read and write pointers */
  599. WREG32(mmSDMA0_GFX_RB_RPTR + sdma_offsets[i], 0);
  600. WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], 0);
  601. /* set the wb address whether it's enabled or not */
  602. WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_HI + sdma_offsets[i],
  603. upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
  604. WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_LO + sdma_offsets[i],
  605. lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
  606. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1);
  607. WREG32(mmSDMA0_GFX_RB_BASE + sdma_offsets[i], ring->gpu_addr >> 8);
  608. WREG32(mmSDMA0_GFX_RB_BASE_HI + sdma_offsets[i], ring->gpu_addr >> 40);
  609. ring->wptr = 0;
  610. WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], ring->wptr << 2);
  611. doorbell = RREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i]);
  612. if (ring->use_doorbell) {
  613. doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL,
  614. OFFSET, ring->doorbell_index);
  615. doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1);
  616. } else {
  617. doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 0);
  618. }
  619. WREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i], doorbell);
  620. /* enable DMA RB */
  621. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
  622. WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
  623. ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
  624. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
  625. #ifdef __BIG_ENDIAN
  626. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
  627. #endif
  628. /* enable DMA IBs */
  629. WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
  630. ring->ready = true;
  631. r = amdgpu_ring_test_ring(ring);
  632. if (r) {
  633. ring->ready = false;
  634. return r;
  635. }
  636. if (adev->mman.buffer_funcs_ring == ring)
  637. amdgpu_ttm_set_active_vram_size(adev, adev->mc.real_vram_size);
  638. }
  639. return 0;
  640. }
  641. /**
  642. * sdma_v3_0_rlc_resume - setup and start the async dma engines
  643. *
  644. * @adev: amdgpu_device pointer
  645. *
  646. * Set up the compute DMA queues and enable them (VI).
  647. * Returns 0 for success, error for failure.
  648. */
  649. static int sdma_v3_0_rlc_resume(struct amdgpu_device *adev)
  650. {
  651. /* XXX todo */
  652. return 0;
  653. }
  654. /**
  655. * sdma_v3_0_load_microcode - load the sDMA ME ucode
  656. *
  657. * @adev: amdgpu_device pointer
  658. *
  659. * Loads the sDMA0/1 ucode.
  660. * Returns 0 for success, -EINVAL if the ucode is not available.
  661. */
  662. static int sdma_v3_0_load_microcode(struct amdgpu_device *adev)
  663. {
  664. const struct sdma_firmware_header_v1_0 *hdr;
  665. const __le32 *fw_data;
  666. u32 fw_size;
  667. int i, j;
  668. /* halt the MEs */
  669. sdma_v3_0_enable(adev, false);
  670. for (i = 0; i < adev->sdma.num_instances; i++) {
  671. if (!adev->sdma.instance[i].fw)
  672. return -EINVAL;
  673. hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
  674. amdgpu_ucode_print_sdma_hdr(&hdr->header);
  675. fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
  676. fw_data = (const __le32 *)
  677. (adev->sdma.instance[i].fw->data +
  678. le32_to_cpu(hdr->header.ucode_array_offset_bytes));
  679. WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], 0);
  680. for (j = 0; j < fw_size; j++)
  681. WREG32(mmSDMA0_UCODE_DATA + sdma_offsets[i], le32_to_cpup(fw_data++));
  682. WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], adev->sdma.instance[i].fw_version);
  683. }
  684. return 0;
  685. }
  686. /**
  687. * sdma_v3_0_start - setup and start the async dma engines
  688. *
  689. * @adev: amdgpu_device pointer
  690. *
  691. * Set up the DMA engines and enable them (VI).
  692. * Returns 0 for success, error for failure.
  693. */
  694. static int sdma_v3_0_start(struct amdgpu_device *adev)
  695. {
  696. int r, i;
  697. if (!adev->pp_enabled) {
  698. if (!adev->firmware.smu_load) {
  699. r = sdma_v3_0_load_microcode(adev);
  700. if (r)
  701. return r;
  702. } else {
  703. for (i = 0; i < adev->sdma.num_instances; i++) {
  704. r = adev->smu.smumgr_funcs->check_fw_load_finish(adev,
  705. (i == 0) ?
  706. AMDGPU_UCODE_ID_SDMA0 :
  707. AMDGPU_UCODE_ID_SDMA1);
  708. if (r)
  709. return -EINVAL;
  710. }
  711. }
  712. }
  713. /* unhalt the MEs */
  714. sdma_v3_0_enable(adev, true);
  715. /* enable sdma ring preemption */
  716. sdma_v3_0_ctx_switch_enable(adev, true);
  717. /* start the gfx rings and rlc compute queues */
  718. r = sdma_v3_0_gfx_resume(adev);
  719. if (r)
  720. return r;
  721. r = sdma_v3_0_rlc_resume(adev);
  722. if (r)
  723. return r;
  724. return 0;
  725. }
  726. /**
  727. * sdma_v3_0_ring_test_ring - simple async dma engine test
  728. *
  729. * @ring: amdgpu_ring structure holding ring information
  730. *
  731. * Test the DMA engine by writing using it to write an
  732. * value to memory. (VI).
  733. * Returns 0 for success, error for failure.
  734. */
  735. static int sdma_v3_0_ring_test_ring(struct amdgpu_ring *ring)
  736. {
  737. struct amdgpu_device *adev = ring->adev;
  738. unsigned i;
  739. unsigned index;
  740. int r;
  741. u32 tmp;
  742. u64 gpu_addr;
  743. r = amdgpu_wb_get(adev, &index);
  744. if (r) {
  745. dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
  746. return r;
  747. }
  748. gpu_addr = adev->wb.gpu_addr + (index * 4);
  749. tmp = 0xCAFEDEAD;
  750. adev->wb.wb[index] = cpu_to_le32(tmp);
  751. r = amdgpu_ring_alloc(ring, 5);
  752. if (r) {
  753. DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r);
  754. amdgpu_wb_free(adev, index);
  755. return r;
  756. }
  757. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  758. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
  759. amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
  760. amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
  761. amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1));
  762. amdgpu_ring_write(ring, 0xDEADBEEF);
  763. amdgpu_ring_commit(ring);
  764. for (i = 0; i < adev->usec_timeout; i++) {
  765. tmp = le32_to_cpu(adev->wb.wb[index]);
  766. if (tmp == 0xDEADBEEF)
  767. break;
  768. DRM_UDELAY(1);
  769. }
  770. if (i < adev->usec_timeout) {
  771. DRM_INFO("ring test on %d succeeded in %d usecs\n", ring->idx, i);
  772. } else {
  773. DRM_ERROR("amdgpu: ring %d test failed (0x%08X)\n",
  774. ring->idx, tmp);
  775. r = -EINVAL;
  776. }
  777. amdgpu_wb_free(adev, index);
  778. return r;
  779. }
  780. /**
  781. * sdma_v3_0_ring_test_ib - test an IB on the DMA engine
  782. *
  783. * @ring: amdgpu_ring structure holding ring information
  784. *
  785. * Test a simple IB in the DMA ring (VI).
  786. * Returns 0 on success, error on failure.
  787. */
  788. static int sdma_v3_0_ring_test_ib(struct amdgpu_ring *ring)
  789. {
  790. struct amdgpu_device *adev = ring->adev;
  791. struct amdgpu_ib ib;
  792. struct fence *f = NULL;
  793. unsigned i;
  794. unsigned index;
  795. int r;
  796. u32 tmp = 0;
  797. u64 gpu_addr;
  798. r = amdgpu_wb_get(adev, &index);
  799. if (r) {
  800. dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
  801. return r;
  802. }
  803. gpu_addr = adev->wb.gpu_addr + (index * 4);
  804. tmp = 0xCAFEDEAD;
  805. adev->wb.wb[index] = cpu_to_le32(tmp);
  806. memset(&ib, 0, sizeof(ib));
  807. r = amdgpu_ib_get(adev, NULL, 256, &ib);
  808. if (r) {
  809. DRM_ERROR("amdgpu: failed to get ib (%d).\n", r);
  810. goto err0;
  811. }
  812. ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  813. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
  814. ib.ptr[1] = lower_32_bits(gpu_addr);
  815. ib.ptr[2] = upper_32_bits(gpu_addr);
  816. ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1);
  817. ib.ptr[4] = 0xDEADBEEF;
  818. ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  819. ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  820. ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  821. ib.length_dw = 8;
  822. r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
  823. if (r)
  824. goto err1;
  825. r = fence_wait(f, false);
  826. if (r) {
  827. DRM_ERROR("amdgpu: fence wait failed (%d).\n", r);
  828. goto err1;
  829. }
  830. for (i = 0; i < adev->usec_timeout; i++) {
  831. tmp = le32_to_cpu(adev->wb.wb[index]);
  832. if (tmp == 0xDEADBEEF)
  833. break;
  834. DRM_UDELAY(1);
  835. }
  836. if (i < adev->usec_timeout) {
  837. DRM_INFO("ib test on ring %d succeeded in %u usecs\n",
  838. ring->idx, i);
  839. goto err1;
  840. } else {
  841. DRM_ERROR("amdgpu: ib test failed (0x%08X)\n", tmp);
  842. r = -EINVAL;
  843. }
  844. err1:
  845. fence_put(f);
  846. amdgpu_ib_free(adev, &ib, NULL);
  847. fence_put(f);
  848. err0:
  849. amdgpu_wb_free(adev, index);
  850. return r;
  851. }
  852. /**
  853. * sdma_v3_0_vm_copy_pte - update PTEs by copying them from the GART
  854. *
  855. * @ib: indirect buffer to fill with commands
  856. * @pe: addr of the page entry
  857. * @src: src addr to copy from
  858. * @count: number of page entries to update
  859. *
  860. * Update PTEs by copying them from the GART using sDMA (CIK).
  861. */
  862. static void sdma_v3_0_vm_copy_pte(struct amdgpu_ib *ib,
  863. uint64_t pe, uint64_t src,
  864. unsigned count)
  865. {
  866. while (count) {
  867. unsigned bytes = count * 8;
  868. if (bytes > 0x1FFFF8)
  869. bytes = 0x1FFFF8;
  870. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
  871. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
  872. ib->ptr[ib->length_dw++] = bytes;
  873. ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
  874. ib->ptr[ib->length_dw++] = lower_32_bits(src);
  875. ib->ptr[ib->length_dw++] = upper_32_bits(src);
  876. ib->ptr[ib->length_dw++] = lower_32_bits(pe);
  877. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  878. pe += bytes;
  879. src += bytes;
  880. count -= bytes / 8;
  881. }
  882. }
  883. /**
  884. * sdma_v3_0_vm_write_pte - update PTEs by writing them manually
  885. *
  886. * @ib: indirect buffer to fill with commands
  887. * @pe: addr of the page entry
  888. * @addr: dst addr to write into pe
  889. * @count: number of page entries to update
  890. * @incr: increase next addr by incr bytes
  891. * @flags: access flags
  892. *
  893. * Update PTEs by writing them manually using sDMA (CIK).
  894. */
  895. static void sdma_v3_0_vm_write_pte(struct amdgpu_ib *ib,
  896. const dma_addr_t *pages_addr, uint64_t pe,
  897. uint64_t addr, unsigned count,
  898. uint32_t incr, uint32_t flags)
  899. {
  900. uint64_t value;
  901. unsigned ndw;
  902. while (count) {
  903. ndw = count * 2;
  904. if (ndw > 0xFFFFE)
  905. ndw = 0xFFFFE;
  906. /* for non-physically contiguous pages (system) */
  907. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  908. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
  909. ib->ptr[ib->length_dw++] = pe;
  910. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  911. ib->ptr[ib->length_dw++] = ndw;
  912. for (; ndw > 0; ndw -= 2, --count, pe += 8) {
  913. value = amdgpu_vm_map_gart(pages_addr, addr);
  914. addr += incr;
  915. value |= flags;
  916. ib->ptr[ib->length_dw++] = value;
  917. ib->ptr[ib->length_dw++] = upper_32_bits(value);
  918. }
  919. }
  920. }
  921. /**
  922. * sdma_v3_0_vm_set_pte_pde - update the page tables using sDMA
  923. *
  924. * @ib: indirect buffer to fill with commands
  925. * @pe: addr of the page entry
  926. * @addr: dst addr to write into pe
  927. * @count: number of page entries to update
  928. * @incr: increase next addr by incr bytes
  929. * @flags: access flags
  930. *
  931. * Update the page tables using sDMA (CIK).
  932. */
  933. static void sdma_v3_0_vm_set_pte_pde(struct amdgpu_ib *ib,
  934. uint64_t pe,
  935. uint64_t addr, unsigned count,
  936. uint32_t incr, uint32_t flags)
  937. {
  938. uint64_t value;
  939. unsigned ndw;
  940. while (count) {
  941. ndw = count;
  942. if (ndw > 0x7FFFF)
  943. ndw = 0x7FFFF;
  944. if (flags & AMDGPU_PTE_VALID)
  945. value = addr;
  946. else
  947. value = 0;
  948. /* for physically contiguous pages (vram) */
  949. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_GEN_PTEPDE);
  950. ib->ptr[ib->length_dw++] = pe; /* dst addr */
  951. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  952. ib->ptr[ib->length_dw++] = flags; /* mask */
  953. ib->ptr[ib->length_dw++] = 0;
  954. ib->ptr[ib->length_dw++] = value; /* value */
  955. ib->ptr[ib->length_dw++] = upper_32_bits(value);
  956. ib->ptr[ib->length_dw++] = incr; /* increment size */
  957. ib->ptr[ib->length_dw++] = 0;
  958. ib->ptr[ib->length_dw++] = ndw; /* number of entries */
  959. pe += ndw * 8;
  960. addr += ndw * incr;
  961. count -= ndw;
  962. }
  963. }
  964. /**
  965. * sdma_v3_0_ring_pad_ib - pad the IB to the required number of dw
  966. *
  967. * @ib: indirect buffer to fill with padding
  968. *
  969. */
  970. static void sdma_v3_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
  971. {
  972. struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
  973. u32 pad_count;
  974. int i;
  975. pad_count = (8 - (ib->length_dw & 0x7)) % 8;
  976. for (i = 0; i < pad_count; i++)
  977. if (sdma && sdma->burst_nop && (i == 0))
  978. ib->ptr[ib->length_dw++] =
  979. SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
  980. SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
  981. else
  982. ib->ptr[ib->length_dw++] =
  983. SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
  984. }
  985. /**
  986. * sdma_v3_0_ring_emit_pipeline_sync - sync the pipeline
  987. *
  988. * @ring: amdgpu_ring pointer
  989. *
  990. * Make sure all previous operations are completed (CIK).
  991. */
  992. static void sdma_v3_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
  993. {
  994. uint32_t seq = ring->fence_drv.sync_seq;
  995. uint64_t addr = ring->fence_drv.gpu_addr;
  996. /* wait for idle */
  997. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  998. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
  999. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3) | /* equal */
  1000. SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(1));
  1001. amdgpu_ring_write(ring, addr & 0xfffffffc);
  1002. amdgpu_ring_write(ring, upper_32_bits(addr) & 0xffffffff);
  1003. amdgpu_ring_write(ring, seq); /* reference */
  1004. amdgpu_ring_write(ring, 0xfffffff); /* mask */
  1005. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  1006. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(4)); /* retry count, poll interval */
  1007. }
  1008. /**
  1009. * sdma_v3_0_ring_emit_vm_flush - cik vm flush using sDMA
  1010. *
  1011. * @ring: amdgpu_ring pointer
  1012. * @vm: amdgpu_vm pointer
  1013. *
  1014. * Update the page table base and flush the VM TLB
  1015. * using sDMA (VI).
  1016. */
  1017. static void sdma_v3_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
  1018. unsigned vm_id, uint64_t pd_addr)
  1019. {
  1020. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  1021. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  1022. if (vm_id < 8) {
  1023. amdgpu_ring_write(ring, (mmVM_CONTEXT0_PAGE_TABLE_BASE_ADDR + vm_id));
  1024. } else {
  1025. amdgpu_ring_write(ring, (mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vm_id - 8));
  1026. }
  1027. amdgpu_ring_write(ring, pd_addr >> 12);
  1028. /* flush TLB */
  1029. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  1030. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  1031. amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST);
  1032. amdgpu_ring_write(ring, 1 << vm_id);
  1033. /* wait for flush */
  1034. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  1035. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
  1036. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(0)); /* always */
  1037. amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST << 2);
  1038. amdgpu_ring_write(ring, 0);
  1039. amdgpu_ring_write(ring, 0); /* reference */
  1040. amdgpu_ring_write(ring, 0); /* mask */
  1041. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  1042. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
  1043. }
  1044. static int sdma_v3_0_early_init(void *handle)
  1045. {
  1046. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1047. switch (adev->asic_type) {
  1048. case CHIP_STONEY:
  1049. adev->sdma.num_instances = 1;
  1050. break;
  1051. default:
  1052. adev->sdma.num_instances = SDMA_MAX_INSTANCE;
  1053. break;
  1054. }
  1055. sdma_v3_0_set_ring_funcs(adev);
  1056. sdma_v3_0_set_buffer_funcs(adev);
  1057. sdma_v3_0_set_vm_pte_funcs(adev);
  1058. sdma_v3_0_set_irq_funcs(adev);
  1059. return 0;
  1060. }
  1061. static int sdma_v3_0_sw_init(void *handle)
  1062. {
  1063. struct amdgpu_ring *ring;
  1064. int r, i;
  1065. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1066. /* SDMA trap event */
  1067. r = amdgpu_irq_add_id(adev, 224, &adev->sdma.trap_irq);
  1068. if (r)
  1069. return r;
  1070. /* SDMA Privileged inst */
  1071. r = amdgpu_irq_add_id(adev, 241, &adev->sdma.illegal_inst_irq);
  1072. if (r)
  1073. return r;
  1074. /* SDMA Privileged inst */
  1075. r = amdgpu_irq_add_id(adev, 247, &adev->sdma.illegal_inst_irq);
  1076. if (r)
  1077. return r;
  1078. r = sdma_v3_0_init_microcode(adev);
  1079. if (r) {
  1080. DRM_ERROR("Failed to load sdma firmware!\n");
  1081. return r;
  1082. }
  1083. for (i = 0; i < adev->sdma.num_instances; i++) {
  1084. ring = &adev->sdma.instance[i].ring;
  1085. ring->ring_obj = NULL;
  1086. ring->use_doorbell = true;
  1087. ring->doorbell_index = (i == 0) ?
  1088. AMDGPU_DOORBELL_sDMA_ENGINE0 : AMDGPU_DOORBELL_sDMA_ENGINE1;
  1089. sprintf(ring->name, "sdma%d", i);
  1090. r = amdgpu_ring_init(adev, ring, 1024,
  1091. SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP), 0xf,
  1092. &adev->sdma.trap_irq,
  1093. (i == 0) ?
  1094. AMDGPU_SDMA_IRQ_TRAP0 : AMDGPU_SDMA_IRQ_TRAP1,
  1095. AMDGPU_RING_TYPE_SDMA);
  1096. if (r)
  1097. return r;
  1098. }
  1099. return r;
  1100. }
  1101. static int sdma_v3_0_sw_fini(void *handle)
  1102. {
  1103. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1104. int i;
  1105. for (i = 0; i < adev->sdma.num_instances; i++)
  1106. amdgpu_ring_fini(&adev->sdma.instance[i].ring);
  1107. return 0;
  1108. }
  1109. static int sdma_v3_0_hw_init(void *handle)
  1110. {
  1111. int r;
  1112. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1113. sdma_v3_0_init_golden_registers(adev);
  1114. r = sdma_v3_0_start(adev);
  1115. if (r)
  1116. return r;
  1117. return r;
  1118. }
  1119. static int sdma_v3_0_hw_fini(void *handle)
  1120. {
  1121. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1122. sdma_v3_0_ctx_switch_enable(adev, false);
  1123. sdma_v3_0_enable(adev, false);
  1124. return 0;
  1125. }
  1126. static int sdma_v3_0_suspend(void *handle)
  1127. {
  1128. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1129. return sdma_v3_0_hw_fini(adev);
  1130. }
  1131. static int sdma_v3_0_resume(void *handle)
  1132. {
  1133. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1134. return sdma_v3_0_hw_init(adev);
  1135. }
  1136. static bool sdma_v3_0_is_idle(void *handle)
  1137. {
  1138. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1139. u32 tmp = RREG32(mmSRBM_STATUS2);
  1140. if (tmp & (SRBM_STATUS2__SDMA_BUSY_MASK |
  1141. SRBM_STATUS2__SDMA1_BUSY_MASK))
  1142. return false;
  1143. return true;
  1144. }
  1145. static int sdma_v3_0_wait_for_idle(void *handle)
  1146. {
  1147. unsigned i;
  1148. u32 tmp;
  1149. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1150. for (i = 0; i < adev->usec_timeout; i++) {
  1151. tmp = RREG32(mmSRBM_STATUS2) & (SRBM_STATUS2__SDMA_BUSY_MASK |
  1152. SRBM_STATUS2__SDMA1_BUSY_MASK);
  1153. if (!tmp)
  1154. return 0;
  1155. udelay(1);
  1156. }
  1157. return -ETIMEDOUT;
  1158. }
  1159. static void sdma_v3_0_print_status(void *handle)
  1160. {
  1161. int i, j;
  1162. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1163. dev_info(adev->dev, "VI SDMA registers\n");
  1164. dev_info(adev->dev, " SRBM_STATUS2=0x%08X\n",
  1165. RREG32(mmSRBM_STATUS2));
  1166. for (i = 0; i < adev->sdma.num_instances; i++) {
  1167. dev_info(adev->dev, " SDMA%d_STATUS_REG=0x%08X\n",
  1168. i, RREG32(mmSDMA0_STATUS_REG + sdma_offsets[i]));
  1169. dev_info(adev->dev, " SDMA%d_F32_CNTL=0x%08X\n",
  1170. i, RREG32(mmSDMA0_F32_CNTL + sdma_offsets[i]));
  1171. dev_info(adev->dev, " SDMA%d_CNTL=0x%08X\n",
  1172. i, RREG32(mmSDMA0_CNTL + sdma_offsets[i]));
  1173. dev_info(adev->dev, " SDMA%d_SEM_WAIT_FAIL_TIMER_CNTL=0x%08X\n",
  1174. i, RREG32(mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i]));
  1175. dev_info(adev->dev, " SDMA%d_GFX_IB_CNTL=0x%08X\n",
  1176. i, RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]));
  1177. dev_info(adev->dev, " SDMA%d_GFX_RB_CNTL=0x%08X\n",
  1178. i, RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]));
  1179. dev_info(adev->dev, " SDMA%d_GFX_RB_RPTR=0x%08X\n",
  1180. i, RREG32(mmSDMA0_GFX_RB_RPTR + sdma_offsets[i]));
  1181. dev_info(adev->dev, " SDMA%d_GFX_RB_WPTR=0x%08X\n",
  1182. i, RREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i]));
  1183. dev_info(adev->dev, " SDMA%d_GFX_RB_RPTR_ADDR_HI=0x%08X\n",
  1184. i, RREG32(mmSDMA0_GFX_RB_RPTR_ADDR_HI + sdma_offsets[i]));
  1185. dev_info(adev->dev, " SDMA%d_GFX_RB_RPTR_ADDR_LO=0x%08X\n",
  1186. i, RREG32(mmSDMA0_GFX_RB_RPTR_ADDR_LO + sdma_offsets[i]));
  1187. dev_info(adev->dev, " SDMA%d_GFX_RB_BASE=0x%08X\n",
  1188. i, RREG32(mmSDMA0_GFX_RB_BASE + sdma_offsets[i]));
  1189. dev_info(adev->dev, " SDMA%d_GFX_RB_BASE_HI=0x%08X\n",
  1190. i, RREG32(mmSDMA0_GFX_RB_BASE_HI + sdma_offsets[i]));
  1191. dev_info(adev->dev, " SDMA%d_GFX_DOORBELL=0x%08X\n",
  1192. i, RREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i]));
  1193. dev_info(adev->dev, " SDMA%d_TILING_CONFIG=0x%08X\n",
  1194. i, RREG32(mmSDMA0_TILING_CONFIG + sdma_offsets[i]));
  1195. mutex_lock(&adev->srbm_mutex);
  1196. for (j = 0; j < 16; j++) {
  1197. vi_srbm_select(adev, 0, 0, 0, j);
  1198. dev_info(adev->dev, " VM %d:\n", j);
  1199. dev_info(adev->dev, " SDMA%d_GFX_VIRTUAL_ADDR=0x%08X\n",
  1200. i, RREG32(mmSDMA0_GFX_VIRTUAL_ADDR + sdma_offsets[i]));
  1201. dev_info(adev->dev, " SDMA%d_GFX_APE1_CNTL=0x%08X\n",
  1202. i, RREG32(mmSDMA0_GFX_APE1_CNTL + sdma_offsets[i]));
  1203. }
  1204. vi_srbm_select(adev, 0, 0, 0, 0);
  1205. mutex_unlock(&adev->srbm_mutex);
  1206. }
  1207. }
  1208. static int sdma_v3_0_soft_reset(void *handle)
  1209. {
  1210. u32 srbm_soft_reset = 0;
  1211. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1212. u32 tmp = RREG32(mmSRBM_STATUS2);
  1213. if (tmp & SRBM_STATUS2__SDMA_BUSY_MASK) {
  1214. /* sdma0 */
  1215. tmp = RREG32(mmSDMA0_F32_CNTL + SDMA0_REGISTER_OFFSET);
  1216. tmp = REG_SET_FIELD(tmp, SDMA0_F32_CNTL, HALT, 0);
  1217. WREG32(mmSDMA0_F32_CNTL + SDMA0_REGISTER_OFFSET, tmp);
  1218. srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA_MASK;
  1219. }
  1220. if (tmp & SRBM_STATUS2__SDMA1_BUSY_MASK) {
  1221. /* sdma1 */
  1222. tmp = RREG32(mmSDMA0_F32_CNTL + SDMA1_REGISTER_OFFSET);
  1223. tmp = REG_SET_FIELD(tmp, SDMA0_F32_CNTL, HALT, 0);
  1224. WREG32(mmSDMA0_F32_CNTL + SDMA1_REGISTER_OFFSET, tmp);
  1225. srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA1_MASK;
  1226. }
  1227. if (srbm_soft_reset) {
  1228. sdma_v3_0_print_status((void *)adev);
  1229. tmp = RREG32(mmSRBM_SOFT_RESET);
  1230. tmp |= srbm_soft_reset;
  1231. dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
  1232. WREG32(mmSRBM_SOFT_RESET, tmp);
  1233. tmp = RREG32(mmSRBM_SOFT_RESET);
  1234. udelay(50);
  1235. tmp &= ~srbm_soft_reset;
  1236. WREG32(mmSRBM_SOFT_RESET, tmp);
  1237. tmp = RREG32(mmSRBM_SOFT_RESET);
  1238. /* Wait a little for things to settle down */
  1239. udelay(50);
  1240. sdma_v3_0_print_status((void *)adev);
  1241. }
  1242. return 0;
  1243. }
  1244. static int sdma_v3_0_set_trap_irq_state(struct amdgpu_device *adev,
  1245. struct amdgpu_irq_src *source,
  1246. unsigned type,
  1247. enum amdgpu_interrupt_state state)
  1248. {
  1249. u32 sdma_cntl;
  1250. switch (type) {
  1251. case AMDGPU_SDMA_IRQ_TRAP0:
  1252. switch (state) {
  1253. case AMDGPU_IRQ_STATE_DISABLE:
  1254. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
  1255. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
  1256. WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
  1257. break;
  1258. case AMDGPU_IRQ_STATE_ENABLE:
  1259. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
  1260. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
  1261. WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
  1262. break;
  1263. default:
  1264. break;
  1265. }
  1266. break;
  1267. case AMDGPU_SDMA_IRQ_TRAP1:
  1268. switch (state) {
  1269. case AMDGPU_IRQ_STATE_DISABLE:
  1270. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
  1271. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
  1272. WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
  1273. break;
  1274. case AMDGPU_IRQ_STATE_ENABLE:
  1275. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
  1276. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
  1277. WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
  1278. break;
  1279. default:
  1280. break;
  1281. }
  1282. break;
  1283. default:
  1284. break;
  1285. }
  1286. return 0;
  1287. }
  1288. static int sdma_v3_0_process_trap_irq(struct amdgpu_device *adev,
  1289. struct amdgpu_irq_src *source,
  1290. struct amdgpu_iv_entry *entry)
  1291. {
  1292. u8 instance_id, queue_id;
  1293. instance_id = (entry->ring_id & 0x3) >> 0;
  1294. queue_id = (entry->ring_id & 0xc) >> 2;
  1295. DRM_DEBUG("IH: SDMA trap\n");
  1296. switch (instance_id) {
  1297. case 0:
  1298. switch (queue_id) {
  1299. case 0:
  1300. amdgpu_fence_process(&adev->sdma.instance[0].ring);
  1301. break;
  1302. case 1:
  1303. /* XXX compute */
  1304. break;
  1305. case 2:
  1306. /* XXX compute */
  1307. break;
  1308. }
  1309. break;
  1310. case 1:
  1311. switch (queue_id) {
  1312. case 0:
  1313. amdgpu_fence_process(&adev->sdma.instance[1].ring);
  1314. break;
  1315. case 1:
  1316. /* XXX compute */
  1317. break;
  1318. case 2:
  1319. /* XXX compute */
  1320. break;
  1321. }
  1322. break;
  1323. }
  1324. return 0;
  1325. }
  1326. static int sdma_v3_0_process_illegal_inst_irq(struct amdgpu_device *adev,
  1327. struct amdgpu_irq_src *source,
  1328. struct amdgpu_iv_entry *entry)
  1329. {
  1330. DRM_ERROR("Illegal instruction in SDMA command stream\n");
  1331. schedule_work(&adev->reset_work);
  1332. return 0;
  1333. }
  1334. static void sdma_v3_0_update_sdma_medium_grain_clock_gating(
  1335. struct amdgpu_device *adev,
  1336. bool enable)
  1337. {
  1338. uint32_t temp, data;
  1339. int i;
  1340. if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
  1341. for (i = 0; i < adev->sdma.num_instances; i++) {
  1342. temp = data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i]);
  1343. data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
  1344. SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
  1345. SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
  1346. SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
  1347. SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
  1348. SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
  1349. SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
  1350. SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
  1351. if (data != temp)
  1352. WREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i], data);
  1353. }
  1354. } else {
  1355. for (i = 0; i < adev->sdma.num_instances; i++) {
  1356. temp = data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i]);
  1357. data |= SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
  1358. SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
  1359. SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
  1360. SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
  1361. SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
  1362. SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
  1363. SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
  1364. SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK;
  1365. if (data != temp)
  1366. WREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i], data);
  1367. }
  1368. }
  1369. }
  1370. static void sdma_v3_0_update_sdma_medium_grain_light_sleep(
  1371. struct amdgpu_device *adev,
  1372. bool enable)
  1373. {
  1374. uint32_t temp, data;
  1375. int i;
  1376. if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
  1377. for (i = 0; i < adev->sdma.num_instances; i++) {
  1378. temp = data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i]);
  1379. data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
  1380. if (temp != data)
  1381. WREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i], data);
  1382. }
  1383. } else {
  1384. for (i = 0; i < adev->sdma.num_instances; i++) {
  1385. temp = data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i]);
  1386. data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
  1387. if (temp != data)
  1388. WREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i], data);
  1389. }
  1390. }
  1391. }
  1392. static int sdma_v3_0_set_clockgating_state(void *handle,
  1393. enum amd_clockgating_state state)
  1394. {
  1395. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1396. switch (adev->asic_type) {
  1397. case CHIP_FIJI:
  1398. case CHIP_CARRIZO:
  1399. case CHIP_STONEY:
  1400. sdma_v3_0_update_sdma_medium_grain_clock_gating(adev,
  1401. state == AMD_CG_STATE_GATE ? true : false);
  1402. sdma_v3_0_update_sdma_medium_grain_light_sleep(adev,
  1403. state == AMD_CG_STATE_GATE ? true : false);
  1404. break;
  1405. default:
  1406. break;
  1407. }
  1408. return 0;
  1409. }
  1410. static int sdma_v3_0_set_powergating_state(void *handle,
  1411. enum amd_powergating_state state)
  1412. {
  1413. return 0;
  1414. }
  1415. const struct amd_ip_funcs sdma_v3_0_ip_funcs = {
  1416. .early_init = sdma_v3_0_early_init,
  1417. .late_init = NULL,
  1418. .sw_init = sdma_v3_0_sw_init,
  1419. .sw_fini = sdma_v3_0_sw_fini,
  1420. .hw_init = sdma_v3_0_hw_init,
  1421. .hw_fini = sdma_v3_0_hw_fini,
  1422. .suspend = sdma_v3_0_suspend,
  1423. .resume = sdma_v3_0_resume,
  1424. .is_idle = sdma_v3_0_is_idle,
  1425. .wait_for_idle = sdma_v3_0_wait_for_idle,
  1426. .soft_reset = sdma_v3_0_soft_reset,
  1427. .print_status = sdma_v3_0_print_status,
  1428. .set_clockgating_state = sdma_v3_0_set_clockgating_state,
  1429. .set_powergating_state = sdma_v3_0_set_powergating_state,
  1430. };
  1431. static const struct amdgpu_ring_funcs sdma_v3_0_ring_funcs = {
  1432. .get_rptr = sdma_v3_0_ring_get_rptr,
  1433. .get_wptr = sdma_v3_0_ring_get_wptr,
  1434. .set_wptr = sdma_v3_0_ring_set_wptr,
  1435. .parse_cs = NULL,
  1436. .emit_ib = sdma_v3_0_ring_emit_ib,
  1437. .emit_fence = sdma_v3_0_ring_emit_fence,
  1438. .emit_pipeline_sync = sdma_v3_0_ring_emit_pipeline_sync,
  1439. .emit_vm_flush = sdma_v3_0_ring_emit_vm_flush,
  1440. .emit_hdp_flush = sdma_v3_0_ring_emit_hdp_flush,
  1441. .emit_hdp_invalidate = sdma_v3_0_ring_emit_hdp_invalidate,
  1442. .test_ring = sdma_v3_0_ring_test_ring,
  1443. .test_ib = sdma_v3_0_ring_test_ib,
  1444. .insert_nop = sdma_v3_0_ring_insert_nop,
  1445. .pad_ib = sdma_v3_0_ring_pad_ib,
  1446. };
  1447. static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev)
  1448. {
  1449. int i;
  1450. for (i = 0; i < adev->sdma.num_instances; i++)
  1451. adev->sdma.instance[i].ring.funcs = &sdma_v3_0_ring_funcs;
  1452. }
  1453. static const struct amdgpu_irq_src_funcs sdma_v3_0_trap_irq_funcs = {
  1454. .set = sdma_v3_0_set_trap_irq_state,
  1455. .process = sdma_v3_0_process_trap_irq,
  1456. };
  1457. static const struct amdgpu_irq_src_funcs sdma_v3_0_illegal_inst_irq_funcs = {
  1458. .process = sdma_v3_0_process_illegal_inst_irq,
  1459. };
  1460. static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev)
  1461. {
  1462. adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
  1463. adev->sdma.trap_irq.funcs = &sdma_v3_0_trap_irq_funcs;
  1464. adev->sdma.illegal_inst_irq.funcs = &sdma_v3_0_illegal_inst_irq_funcs;
  1465. }
  1466. /**
  1467. * sdma_v3_0_emit_copy_buffer - copy buffer using the sDMA engine
  1468. *
  1469. * @ring: amdgpu_ring structure holding ring information
  1470. * @src_offset: src GPU address
  1471. * @dst_offset: dst GPU address
  1472. * @byte_count: number of bytes to xfer
  1473. *
  1474. * Copy GPU buffers using the DMA engine (VI).
  1475. * Used by the amdgpu ttm implementation to move pages if
  1476. * registered as the asic copy callback.
  1477. */
  1478. static void sdma_v3_0_emit_copy_buffer(struct amdgpu_ib *ib,
  1479. uint64_t src_offset,
  1480. uint64_t dst_offset,
  1481. uint32_t byte_count)
  1482. {
  1483. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
  1484. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
  1485. ib->ptr[ib->length_dw++] = byte_count;
  1486. ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
  1487. ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
  1488. ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
  1489. ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
  1490. ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
  1491. }
  1492. /**
  1493. * sdma_v3_0_emit_fill_buffer - fill buffer using the sDMA engine
  1494. *
  1495. * @ring: amdgpu_ring structure holding ring information
  1496. * @src_data: value to write to buffer
  1497. * @dst_offset: dst GPU address
  1498. * @byte_count: number of bytes to xfer
  1499. *
  1500. * Fill GPU buffers using the DMA engine (VI).
  1501. */
  1502. static void sdma_v3_0_emit_fill_buffer(struct amdgpu_ib *ib,
  1503. uint32_t src_data,
  1504. uint64_t dst_offset,
  1505. uint32_t byte_count)
  1506. {
  1507. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
  1508. ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
  1509. ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
  1510. ib->ptr[ib->length_dw++] = src_data;
  1511. ib->ptr[ib->length_dw++] = byte_count;
  1512. }
  1513. static const struct amdgpu_buffer_funcs sdma_v3_0_buffer_funcs = {
  1514. .copy_max_bytes = 0x1fffff,
  1515. .copy_num_dw = 7,
  1516. .emit_copy_buffer = sdma_v3_0_emit_copy_buffer,
  1517. .fill_max_bytes = 0x1fffff,
  1518. .fill_num_dw = 5,
  1519. .emit_fill_buffer = sdma_v3_0_emit_fill_buffer,
  1520. };
  1521. static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev)
  1522. {
  1523. if (adev->mman.buffer_funcs == NULL) {
  1524. adev->mman.buffer_funcs = &sdma_v3_0_buffer_funcs;
  1525. adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
  1526. }
  1527. }
  1528. static const struct amdgpu_vm_pte_funcs sdma_v3_0_vm_pte_funcs = {
  1529. .copy_pte = sdma_v3_0_vm_copy_pte,
  1530. .write_pte = sdma_v3_0_vm_write_pte,
  1531. .set_pte_pde = sdma_v3_0_vm_set_pte_pde,
  1532. };
  1533. static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev)
  1534. {
  1535. unsigned i;
  1536. if (adev->vm_manager.vm_pte_funcs == NULL) {
  1537. adev->vm_manager.vm_pte_funcs = &sdma_v3_0_vm_pte_funcs;
  1538. for (i = 0; i < adev->sdma.num_instances; i++)
  1539. adev->vm_manager.vm_pte_rings[i] =
  1540. &adev->sdma.instance[i].ring;
  1541. adev->vm_manager.vm_pte_num_rings = adev->sdma.num_instances;
  1542. }
  1543. }