mips.c 44 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804
  1. /*
  2. * This file is subject to the terms and conditions of the GNU General Public
  3. * License. See the file "COPYING" in the main directory of this archive
  4. * for more details.
  5. *
  6. * KVM/MIPS: MIPS specific KVM APIs
  7. *
  8. * Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved.
  9. * Authors: Sanjay Lal <sanjayl@kymasys.com>
  10. */
  11. #include <linux/bitops.h>
  12. #include <linux/errno.h>
  13. #include <linux/err.h>
  14. #include <linux/kdebug.h>
  15. #include <linux/module.h>
  16. #include <linux/uaccess.h>
  17. #include <linux/vmalloc.h>
  18. #include <linux/fs.h>
  19. #include <linux/bootmem.h>
  20. #include <asm/fpu.h>
  21. #include <asm/page.h>
  22. #include <asm/cacheflush.h>
  23. #include <asm/mmu_context.h>
  24. #include <asm/pgtable.h>
  25. #include <linux/kvm_host.h>
  26. #include "interrupt.h"
  27. #include "commpage.h"
  28. #define CREATE_TRACE_POINTS
  29. #include "trace.h"
  30. #ifndef VECTORSPACING
  31. #define VECTORSPACING 0x100 /* for EI/VI mode */
  32. #endif
  33. #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x)
  34. struct kvm_stats_debugfs_item debugfs_entries[] = {
  35. { "wait", VCPU_STAT(wait_exits), KVM_STAT_VCPU },
  36. { "cache", VCPU_STAT(cache_exits), KVM_STAT_VCPU },
  37. { "signal", VCPU_STAT(signal_exits), KVM_STAT_VCPU },
  38. { "interrupt", VCPU_STAT(int_exits), KVM_STAT_VCPU },
  39. { "cop_unsuable", VCPU_STAT(cop_unusable_exits), KVM_STAT_VCPU },
  40. { "tlbmod", VCPU_STAT(tlbmod_exits), KVM_STAT_VCPU },
  41. { "tlbmiss_ld", VCPU_STAT(tlbmiss_ld_exits), KVM_STAT_VCPU },
  42. { "tlbmiss_st", VCPU_STAT(tlbmiss_st_exits), KVM_STAT_VCPU },
  43. { "addrerr_st", VCPU_STAT(addrerr_st_exits), KVM_STAT_VCPU },
  44. { "addrerr_ld", VCPU_STAT(addrerr_ld_exits), KVM_STAT_VCPU },
  45. { "syscall", VCPU_STAT(syscall_exits), KVM_STAT_VCPU },
  46. { "resvd_inst", VCPU_STAT(resvd_inst_exits), KVM_STAT_VCPU },
  47. { "break_inst", VCPU_STAT(break_inst_exits), KVM_STAT_VCPU },
  48. { "trap_inst", VCPU_STAT(trap_inst_exits), KVM_STAT_VCPU },
  49. { "msa_fpe", VCPU_STAT(msa_fpe_exits), KVM_STAT_VCPU },
  50. { "fpe", VCPU_STAT(fpe_exits), KVM_STAT_VCPU },
  51. { "msa_disabled", VCPU_STAT(msa_disabled_exits), KVM_STAT_VCPU },
  52. { "flush_dcache", VCPU_STAT(flush_dcache_exits), KVM_STAT_VCPU },
  53. { "halt_successful_poll", VCPU_STAT(halt_successful_poll), KVM_STAT_VCPU },
  54. { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll), KVM_STAT_VCPU },
  55. { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid), KVM_STAT_VCPU },
  56. { "halt_wakeup", VCPU_STAT(halt_wakeup), KVM_STAT_VCPU },
  57. {NULL}
  58. };
  59. /*
  60. * XXXKYMA: We are simulatoring a processor that has the WII bit set in
  61. * Config7, so we are "runnable" if interrupts are pending
  62. */
  63. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  64. {
  65. return !!(vcpu->arch.pending_exceptions);
  66. }
  67. int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
  68. {
  69. return 1;
  70. }
  71. int kvm_arch_hardware_enable(void)
  72. {
  73. return 0;
  74. }
  75. int kvm_arch_hardware_setup(void)
  76. {
  77. return 0;
  78. }
  79. void kvm_arch_check_processor_compat(void *rtn)
  80. {
  81. *(int *)rtn = 0;
  82. }
  83. static void kvm_mips_init_tlbs(struct kvm *kvm)
  84. {
  85. unsigned long wired;
  86. /*
  87. * Add a wired entry to the TLB, it is used to map the commpage to
  88. * the Guest kernel
  89. */
  90. wired = read_c0_wired();
  91. write_c0_wired(wired + 1);
  92. mtc0_tlbw_hazard();
  93. kvm->arch.commpage_tlb = wired;
  94. kvm_debug("[%d] commpage TLB: %d\n", smp_processor_id(),
  95. kvm->arch.commpage_tlb);
  96. }
  97. static void kvm_mips_init_vm_percpu(void *arg)
  98. {
  99. struct kvm *kvm = (struct kvm *)arg;
  100. kvm_mips_init_tlbs(kvm);
  101. kvm_mips_callbacks->vm_init(kvm);
  102. }
  103. int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
  104. {
  105. if (atomic_inc_return(&kvm_mips_instance) == 1) {
  106. kvm_debug("%s: 1st KVM instance, setup host TLB parameters\n",
  107. __func__);
  108. on_each_cpu(kvm_mips_init_vm_percpu, kvm, 1);
  109. }
  110. return 0;
  111. }
  112. bool kvm_arch_has_vcpu_debugfs(void)
  113. {
  114. return false;
  115. }
  116. int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
  117. {
  118. return 0;
  119. }
  120. void kvm_mips_free_vcpus(struct kvm *kvm)
  121. {
  122. unsigned int i;
  123. struct kvm_vcpu *vcpu;
  124. /* Put the pages we reserved for the guest pmap */
  125. for (i = 0; i < kvm->arch.guest_pmap_npages; i++) {
  126. if (kvm->arch.guest_pmap[i] != KVM_INVALID_PAGE)
  127. kvm_release_pfn_clean(kvm->arch.guest_pmap[i]);
  128. }
  129. kfree(kvm->arch.guest_pmap);
  130. kvm_for_each_vcpu(i, vcpu, kvm) {
  131. kvm_arch_vcpu_free(vcpu);
  132. }
  133. mutex_lock(&kvm->lock);
  134. for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
  135. kvm->vcpus[i] = NULL;
  136. atomic_set(&kvm->online_vcpus, 0);
  137. mutex_unlock(&kvm->lock);
  138. }
  139. static void kvm_mips_uninit_tlbs(void *arg)
  140. {
  141. /* Restore wired count */
  142. write_c0_wired(0);
  143. mtc0_tlbw_hazard();
  144. /* Clear out all the TLBs */
  145. kvm_local_flush_tlb_all();
  146. }
  147. void kvm_arch_destroy_vm(struct kvm *kvm)
  148. {
  149. kvm_mips_free_vcpus(kvm);
  150. /* If this is the last instance, restore wired count */
  151. if (atomic_dec_return(&kvm_mips_instance) == 0) {
  152. kvm_debug("%s: last KVM instance, restoring TLB parameters\n",
  153. __func__);
  154. on_each_cpu(kvm_mips_uninit_tlbs, NULL, 1);
  155. }
  156. }
  157. long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl,
  158. unsigned long arg)
  159. {
  160. return -ENOIOCTLCMD;
  161. }
  162. int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
  163. unsigned long npages)
  164. {
  165. return 0;
  166. }
  167. int kvm_arch_prepare_memory_region(struct kvm *kvm,
  168. struct kvm_memory_slot *memslot,
  169. const struct kvm_userspace_memory_region *mem,
  170. enum kvm_mr_change change)
  171. {
  172. return 0;
  173. }
  174. void kvm_arch_commit_memory_region(struct kvm *kvm,
  175. const struct kvm_userspace_memory_region *mem,
  176. const struct kvm_memory_slot *old,
  177. const struct kvm_memory_slot *new,
  178. enum kvm_mr_change change)
  179. {
  180. unsigned long npages = 0;
  181. int i;
  182. kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n",
  183. __func__, kvm, mem->slot, mem->guest_phys_addr,
  184. mem->memory_size, mem->userspace_addr);
  185. /* Setup Guest PMAP table */
  186. if (!kvm->arch.guest_pmap) {
  187. if (mem->slot == 0)
  188. npages = mem->memory_size >> PAGE_SHIFT;
  189. if (npages) {
  190. kvm->arch.guest_pmap_npages = npages;
  191. kvm->arch.guest_pmap =
  192. kzalloc(npages * sizeof(unsigned long), GFP_KERNEL);
  193. if (!kvm->arch.guest_pmap) {
  194. kvm_err("Failed to allocate guest PMAP\n");
  195. return;
  196. }
  197. kvm_debug("Allocated space for Guest PMAP Table (%ld pages) @ %p\n",
  198. npages, kvm->arch.guest_pmap);
  199. /* Now setup the page table */
  200. for (i = 0; i < npages; i++)
  201. kvm->arch.guest_pmap[i] = KVM_INVALID_PAGE;
  202. }
  203. }
  204. }
  205. static inline void dump_handler(const char *symbol, void *start, void *end)
  206. {
  207. u32 *p;
  208. pr_debug("LEAF(%s)\n", symbol);
  209. pr_debug("\t.set push\n");
  210. pr_debug("\t.set noreorder\n");
  211. for (p = start; p < (u32 *)end; ++p)
  212. pr_debug("\t.word\t0x%08x\t\t# %p\n", *p, p);
  213. pr_debug("\t.set\tpop\n");
  214. pr_debug("\tEND(%s)\n", symbol);
  215. }
  216. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
  217. {
  218. int err, size;
  219. void *gebase, *p, *handler;
  220. int i;
  221. struct kvm_vcpu *vcpu = kzalloc(sizeof(struct kvm_vcpu), GFP_KERNEL);
  222. if (!vcpu) {
  223. err = -ENOMEM;
  224. goto out;
  225. }
  226. err = kvm_vcpu_init(vcpu, kvm, id);
  227. if (err)
  228. goto out_free_cpu;
  229. kvm_debug("kvm @ %p: create cpu %d at %p\n", kvm, id, vcpu);
  230. /*
  231. * Allocate space for host mode exception handlers that handle
  232. * guest mode exits
  233. */
  234. if (cpu_has_veic || cpu_has_vint)
  235. size = 0x200 + VECTORSPACING * 64;
  236. else
  237. size = 0x4000;
  238. gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);
  239. if (!gebase) {
  240. err = -ENOMEM;
  241. goto out_uninit_cpu;
  242. }
  243. kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
  244. ALIGN(size, PAGE_SIZE), gebase);
  245. /*
  246. * Check new ebase actually fits in CP0_EBase. The lack of a write gate
  247. * limits us to the low 512MB of physical address space. If the memory
  248. * we allocate is out of range, just give up now.
  249. */
  250. if (!cpu_has_ebase_wg && virt_to_phys(gebase) >= 0x20000000) {
  251. kvm_err("CP0_EBase.WG required for guest exception base %pK\n",
  252. gebase);
  253. err = -ENOMEM;
  254. goto out_free_gebase;
  255. }
  256. /* Save new ebase */
  257. vcpu->arch.guest_ebase = gebase;
  258. /* Build guest exception vectors dynamically in unmapped memory */
  259. handler = gebase + 0x2000;
  260. /* TLB Refill, EXL = 0 */
  261. kvm_mips_build_exception(gebase, handler);
  262. /* General Exception Entry point */
  263. kvm_mips_build_exception(gebase + 0x180, handler);
  264. /* For vectored interrupts poke the exception code @ all offsets 0-7 */
  265. for (i = 0; i < 8; i++) {
  266. kvm_debug("L1 Vectored handler @ %p\n",
  267. gebase + 0x200 + (i * VECTORSPACING));
  268. kvm_mips_build_exception(gebase + 0x200 + i * VECTORSPACING,
  269. handler);
  270. }
  271. /* General exit handler */
  272. p = handler;
  273. p = kvm_mips_build_exit(p);
  274. /* Guest entry routine */
  275. vcpu->arch.vcpu_run = p;
  276. p = kvm_mips_build_vcpu_run(p);
  277. /* Dump the generated code */
  278. pr_debug("#include <asm/asm.h>\n");
  279. pr_debug("#include <asm/regdef.h>\n");
  280. pr_debug("\n");
  281. dump_handler("kvm_vcpu_run", vcpu->arch.vcpu_run, p);
  282. dump_handler("kvm_gen_exc", gebase + 0x180, gebase + 0x200);
  283. dump_handler("kvm_exit", gebase + 0x2000, vcpu->arch.vcpu_run);
  284. /* Invalidate the icache for these ranges */
  285. flush_icache_range((unsigned long)gebase,
  286. (unsigned long)gebase + ALIGN(size, PAGE_SIZE));
  287. /*
  288. * Allocate comm page for guest kernel, a TLB will be reserved for
  289. * mapping GVA @ 0xFFFF8000 to this page
  290. */
  291. vcpu->arch.kseg0_commpage = kzalloc(PAGE_SIZE << 1, GFP_KERNEL);
  292. if (!vcpu->arch.kseg0_commpage) {
  293. err = -ENOMEM;
  294. goto out_free_gebase;
  295. }
  296. kvm_debug("Allocated COMM page @ %p\n", vcpu->arch.kseg0_commpage);
  297. kvm_mips_commpage_init(vcpu);
  298. /* Init */
  299. vcpu->arch.last_sched_cpu = -1;
  300. /* Start off the timer */
  301. kvm_mips_init_count(vcpu);
  302. return vcpu;
  303. out_free_gebase:
  304. kfree(gebase);
  305. out_uninit_cpu:
  306. kvm_vcpu_uninit(vcpu);
  307. out_free_cpu:
  308. kfree(vcpu);
  309. out:
  310. return ERR_PTR(err);
  311. }
  312. void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
  313. {
  314. hrtimer_cancel(&vcpu->arch.comparecount_timer);
  315. kvm_vcpu_uninit(vcpu);
  316. kvm_mips_dump_stats(vcpu);
  317. kfree(vcpu->arch.guest_ebase);
  318. kfree(vcpu->arch.kseg0_commpage);
  319. kfree(vcpu);
  320. }
  321. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  322. {
  323. kvm_arch_vcpu_free(vcpu);
  324. }
  325. int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
  326. struct kvm_guest_debug *dbg)
  327. {
  328. return -ENOIOCTLCMD;
  329. }
  330. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
  331. {
  332. int r = 0;
  333. sigset_t sigsaved;
  334. if (vcpu->sigset_active)
  335. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  336. if (vcpu->mmio_needed) {
  337. if (!vcpu->mmio_is_write)
  338. kvm_mips_complete_mmio_load(vcpu, run);
  339. vcpu->mmio_needed = 0;
  340. }
  341. lose_fpu(1);
  342. local_irq_disable();
  343. guest_enter_irqoff();
  344. trace_kvm_enter(vcpu);
  345. r = kvm_mips_callbacks->vcpu_run(run, vcpu);
  346. trace_kvm_out(vcpu);
  347. guest_exit_irqoff();
  348. local_irq_enable();
  349. if (vcpu->sigset_active)
  350. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  351. return r;
  352. }
  353. int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  354. struct kvm_mips_interrupt *irq)
  355. {
  356. int intr = (int)irq->irq;
  357. struct kvm_vcpu *dvcpu = NULL;
  358. if (intr == 3 || intr == -3 || intr == 4 || intr == -4)
  359. kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
  360. (int)intr);
  361. if (irq->cpu == -1)
  362. dvcpu = vcpu;
  363. else
  364. dvcpu = vcpu->kvm->vcpus[irq->cpu];
  365. if (intr == 2 || intr == 3 || intr == 4) {
  366. kvm_mips_callbacks->queue_io_int(dvcpu, irq);
  367. } else if (intr == -2 || intr == -3 || intr == -4) {
  368. kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
  369. } else {
  370. kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
  371. irq->cpu, irq->irq);
  372. return -EINVAL;
  373. }
  374. dvcpu->arch.wait = 0;
  375. if (swait_active(&dvcpu->wq))
  376. swake_up(&dvcpu->wq);
  377. return 0;
  378. }
  379. int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  380. struct kvm_mp_state *mp_state)
  381. {
  382. return -ENOIOCTLCMD;
  383. }
  384. int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  385. struct kvm_mp_state *mp_state)
  386. {
  387. return -ENOIOCTLCMD;
  388. }
  389. static u64 kvm_mips_get_one_regs[] = {
  390. KVM_REG_MIPS_R0,
  391. KVM_REG_MIPS_R1,
  392. KVM_REG_MIPS_R2,
  393. KVM_REG_MIPS_R3,
  394. KVM_REG_MIPS_R4,
  395. KVM_REG_MIPS_R5,
  396. KVM_REG_MIPS_R6,
  397. KVM_REG_MIPS_R7,
  398. KVM_REG_MIPS_R8,
  399. KVM_REG_MIPS_R9,
  400. KVM_REG_MIPS_R10,
  401. KVM_REG_MIPS_R11,
  402. KVM_REG_MIPS_R12,
  403. KVM_REG_MIPS_R13,
  404. KVM_REG_MIPS_R14,
  405. KVM_REG_MIPS_R15,
  406. KVM_REG_MIPS_R16,
  407. KVM_REG_MIPS_R17,
  408. KVM_REG_MIPS_R18,
  409. KVM_REG_MIPS_R19,
  410. KVM_REG_MIPS_R20,
  411. KVM_REG_MIPS_R21,
  412. KVM_REG_MIPS_R22,
  413. KVM_REG_MIPS_R23,
  414. KVM_REG_MIPS_R24,
  415. KVM_REG_MIPS_R25,
  416. KVM_REG_MIPS_R26,
  417. KVM_REG_MIPS_R27,
  418. KVM_REG_MIPS_R28,
  419. KVM_REG_MIPS_R29,
  420. KVM_REG_MIPS_R30,
  421. KVM_REG_MIPS_R31,
  422. #ifndef CONFIG_CPU_MIPSR6
  423. KVM_REG_MIPS_HI,
  424. KVM_REG_MIPS_LO,
  425. #endif
  426. KVM_REG_MIPS_PC,
  427. KVM_REG_MIPS_CP0_INDEX,
  428. KVM_REG_MIPS_CP0_CONTEXT,
  429. KVM_REG_MIPS_CP0_USERLOCAL,
  430. KVM_REG_MIPS_CP0_PAGEMASK,
  431. KVM_REG_MIPS_CP0_WIRED,
  432. KVM_REG_MIPS_CP0_HWRENA,
  433. KVM_REG_MIPS_CP0_BADVADDR,
  434. KVM_REG_MIPS_CP0_COUNT,
  435. KVM_REG_MIPS_CP0_ENTRYHI,
  436. KVM_REG_MIPS_CP0_COMPARE,
  437. KVM_REG_MIPS_CP0_STATUS,
  438. KVM_REG_MIPS_CP0_CAUSE,
  439. KVM_REG_MIPS_CP0_EPC,
  440. KVM_REG_MIPS_CP0_PRID,
  441. KVM_REG_MIPS_CP0_CONFIG,
  442. KVM_REG_MIPS_CP0_CONFIG1,
  443. KVM_REG_MIPS_CP0_CONFIG2,
  444. KVM_REG_MIPS_CP0_CONFIG3,
  445. KVM_REG_MIPS_CP0_CONFIG4,
  446. KVM_REG_MIPS_CP0_CONFIG5,
  447. KVM_REG_MIPS_CP0_CONFIG7,
  448. KVM_REG_MIPS_CP0_ERROREPC,
  449. KVM_REG_MIPS_COUNT_CTL,
  450. KVM_REG_MIPS_COUNT_RESUME,
  451. KVM_REG_MIPS_COUNT_HZ,
  452. };
  453. static u64 kvm_mips_get_one_regs_fpu[] = {
  454. KVM_REG_MIPS_FCR_IR,
  455. KVM_REG_MIPS_FCR_CSR,
  456. };
  457. static u64 kvm_mips_get_one_regs_msa[] = {
  458. KVM_REG_MIPS_MSA_IR,
  459. KVM_REG_MIPS_MSA_CSR,
  460. };
  461. static u64 kvm_mips_get_one_regs_kscratch[] = {
  462. KVM_REG_MIPS_CP0_KSCRATCH1,
  463. KVM_REG_MIPS_CP0_KSCRATCH2,
  464. KVM_REG_MIPS_CP0_KSCRATCH3,
  465. KVM_REG_MIPS_CP0_KSCRATCH4,
  466. KVM_REG_MIPS_CP0_KSCRATCH5,
  467. KVM_REG_MIPS_CP0_KSCRATCH6,
  468. };
  469. static unsigned long kvm_mips_num_regs(struct kvm_vcpu *vcpu)
  470. {
  471. unsigned long ret;
  472. ret = ARRAY_SIZE(kvm_mips_get_one_regs);
  473. if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
  474. ret += ARRAY_SIZE(kvm_mips_get_one_regs_fpu) + 48;
  475. /* odd doubles */
  476. if (boot_cpu_data.fpu_id & MIPS_FPIR_F64)
  477. ret += 16;
  478. }
  479. if (kvm_mips_guest_can_have_msa(&vcpu->arch))
  480. ret += ARRAY_SIZE(kvm_mips_get_one_regs_msa) + 32;
  481. ret += __arch_hweight8(vcpu->arch.kscratch_enabled);
  482. ret += kvm_mips_callbacks->num_regs(vcpu);
  483. return ret;
  484. }
  485. static int kvm_mips_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices)
  486. {
  487. u64 index;
  488. unsigned int i;
  489. if (copy_to_user(indices, kvm_mips_get_one_regs,
  490. sizeof(kvm_mips_get_one_regs)))
  491. return -EFAULT;
  492. indices += ARRAY_SIZE(kvm_mips_get_one_regs);
  493. if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
  494. if (copy_to_user(indices, kvm_mips_get_one_regs_fpu,
  495. sizeof(kvm_mips_get_one_regs_fpu)))
  496. return -EFAULT;
  497. indices += ARRAY_SIZE(kvm_mips_get_one_regs_fpu);
  498. for (i = 0; i < 32; ++i) {
  499. index = KVM_REG_MIPS_FPR_32(i);
  500. if (copy_to_user(indices, &index, sizeof(index)))
  501. return -EFAULT;
  502. ++indices;
  503. /* skip odd doubles if no F64 */
  504. if (i & 1 && !(boot_cpu_data.fpu_id & MIPS_FPIR_F64))
  505. continue;
  506. index = KVM_REG_MIPS_FPR_64(i);
  507. if (copy_to_user(indices, &index, sizeof(index)))
  508. return -EFAULT;
  509. ++indices;
  510. }
  511. }
  512. if (kvm_mips_guest_can_have_msa(&vcpu->arch)) {
  513. if (copy_to_user(indices, kvm_mips_get_one_regs_msa,
  514. sizeof(kvm_mips_get_one_regs_msa)))
  515. return -EFAULT;
  516. indices += ARRAY_SIZE(kvm_mips_get_one_regs_msa);
  517. for (i = 0; i < 32; ++i) {
  518. index = KVM_REG_MIPS_VEC_128(i);
  519. if (copy_to_user(indices, &index, sizeof(index)))
  520. return -EFAULT;
  521. ++indices;
  522. }
  523. }
  524. for (i = 0; i < 6; ++i) {
  525. if (!(vcpu->arch.kscratch_enabled & BIT(i + 2)))
  526. continue;
  527. if (copy_to_user(indices, &kvm_mips_get_one_regs_kscratch[i],
  528. sizeof(kvm_mips_get_one_regs_kscratch[i])))
  529. return -EFAULT;
  530. ++indices;
  531. }
  532. return kvm_mips_callbacks->copy_reg_indices(vcpu, indices);
  533. }
  534. static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
  535. const struct kvm_one_reg *reg)
  536. {
  537. struct mips_coproc *cop0 = vcpu->arch.cop0;
  538. struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
  539. int ret;
  540. s64 v;
  541. s64 vs[2];
  542. unsigned int idx;
  543. switch (reg->id) {
  544. /* General purpose registers */
  545. case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
  546. v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
  547. break;
  548. #ifndef CONFIG_CPU_MIPSR6
  549. case KVM_REG_MIPS_HI:
  550. v = (long)vcpu->arch.hi;
  551. break;
  552. case KVM_REG_MIPS_LO:
  553. v = (long)vcpu->arch.lo;
  554. break;
  555. #endif
  556. case KVM_REG_MIPS_PC:
  557. v = (long)vcpu->arch.pc;
  558. break;
  559. /* Floating point registers */
  560. case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
  561. if (!kvm_mips_guest_has_fpu(&vcpu->arch))
  562. return -EINVAL;
  563. idx = reg->id - KVM_REG_MIPS_FPR_32(0);
  564. /* Odd singles in top of even double when FR=0 */
  565. if (kvm_read_c0_guest_status(cop0) & ST0_FR)
  566. v = get_fpr32(&fpu->fpr[idx], 0);
  567. else
  568. v = get_fpr32(&fpu->fpr[idx & ~1], idx & 1);
  569. break;
  570. case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
  571. if (!kvm_mips_guest_has_fpu(&vcpu->arch))
  572. return -EINVAL;
  573. idx = reg->id - KVM_REG_MIPS_FPR_64(0);
  574. /* Can't access odd doubles in FR=0 mode */
  575. if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
  576. return -EINVAL;
  577. v = get_fpr64(&fpu->fpr[idx], 0);
  578. break;
  579. case KVM_REG_MIPS_FCR_IR:
  580. if (!kvm_mips_guest_has_fpu(&vcpu->arch))
  581. return -EINVAL;
  582. v = boot_cpu_data.fpu_id;
  583. break;
  584. case KVM_REG_MIPS_FCR_CSR:
  585. if (!kvm_mips_guest_has_fpu(&vcpu->arch))
  586. return -EINVAL;
  587. v = fpu->fcr31;
  588. break;
  589. /* MIPS SIMD Architecture (MSA) registers */
  590. case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
  591. if (!kvm_mips_guest_has_msa(&vcpu->arch))
  592. return -EINVAL;
  593. /* Can't access MSA registers in FR=0 mode */
  594. if (!(kvm_read_c0_guest_status(cop0) & ST0_FR))
  595. return -EINVAL;
  596. idx = reg->id - KVM_REG_MIPS_VEC_128(0);
  597. #ifdef CONFIG_CPU_LITTLE_ENDIAN
  598. /* least significant byte first */
  599. vs[0] = get_fpr64(&fpu->fpr[idx], 0);
  600. vs[1] = get_fpr64(&fpu->fpr[idx], 1);
  601. #else
  602. /* most significant byte first */
  603. vs[0] = get_fpr64(&fpu->fpr[idx], 1);
  604. vs[1] = get_fpr64(&fpu->fpr[idx], 0);
  605. #endif
  606. break;
  607. case KVM_REG_MIPS_MSA_IR:
  608. if (!kvm_mips_guest_has_msa(&vcpu->arch))
  609. return -EINVAL;
  610. v = boot_cpu_data.msa_id;
  611. break;
  612. case KVM_REG_MIPS_MSA_CSR:
  613. if (!kvm_mips_guest_has_msa(&vcpu->arch))
  614. return -EINVAL;
  615. v = fpu->msacsr;
  616. break;
  617. /* Co-processor 0 registers */
  618. case KVM_REG_MIPS_CP0_INDEX:
  619. v = (long)kvm_read_c0_guest_index(cop0);
  620. break;
  621. case KVM_REG_MIPS_CP0_CONTEXT:
  622. v = (long)kvm_read_c0_guest_context(cop0);
  623. break;
  624. case KVM_REG_MIPS_CP0_USERLOCAL:
  625. v = (long)kvm_read_c0_guest_userlocal(cop0);
  626. break;
  627. case KVM_REG_MIPS_CP0_PAGEMASK:
  628. v = (long)kvm_read_c0_guest_pagemask(cop0);
  629. break;
  630. case KVM_REG_MIPS_CP0_WIRED:
  631. v = (long)kvm_read_c0_guest_wired(cop0);
  632. break;
  633. case KVM_REG_MIPS_CP0_HWRENA:
  634. v = (long)kvm_read_c0_guest_hwrena(cop0);
  635. break;
  636. case KVM_REG_MIPS_CP0_BADVADDR:
  637. v = (long)kvm_read_c0_guest_badvaddr(cop0);
  638. break;
  639. case KVM_REG_MIPS_CP0_ENTRYHI:
  640. v = (long)kvm_read_c0_guest_entryhi(cop0);
  641. break;
  642. case KVM_REG_MIPS_CP0_COMPARE:
  643. v = (long)kvm_read_c0_guest_compare(cop0);
  644. break;
  645. case KVM_REG_MIPS_CP0_STATUS:
  646. v = (long)kvm_read_c0_guest_status(cop0);
  647. break;
  648. case KVM_REG_MIPS_CP0_CAUSE:
  649. v = (long)kvm_read_c0_guest_cause(cop0);
  650. break;
  651. case KVM_REG_MIPS_CP0_EPC:
  652. v = (long)kvm_read_c0_guest_epc(cop0);
  653. break;
  654. case KVM_REG_MIPS_CP0_PRID:
  655. v = (long)kvm_read_c0_guest_prid(cop0);
  656. break;
  657. case KVM_REG_MIPS_CP0_CONFIG:
  658. v = (long)kvm_read_c0_guest_config(cop0);
  659. break;
  660. case KVM_REG_MIPS_CP0_CONFIG1:
  661. v = (long)kvm_read_c0_guest_config1(cop0);
  662. break;
  663. case KVM_REG_MIPS_CP0_CONFIG2:
  664. v = (long)kvm_read_c0_guest_config2(cop0);
  665. break;
  666. case KVM_REG_MIPS_CP0_CONFIG3:
  667. v = (long)kvm_read_c0_guest_config3(cop0);
  668. break;
  669. case KVM_REG_MIPS_CP0_CONFIG4:
  670. v = (long)kvm_read_c0_guest_config4(cop0);
  671. break;
  672. case KVM_REG_MIPS_CP0_CONFIG5:
  673. v = (long)kvm_read_c0_guest_config5(cop0);
  674. break;
  675. case KVM_REG_MIPS_CP0_CONFIG7:
  676. v = (long)kvm_read_c0_guest_config7(cop0);
  677. break;
  678. case KVM_REG_MIPS_CP0_ERROREPC:
  679. v = (long)kvm_read_c0_guest_errorepc(cop0);
  680. break;
  681. case KVM_REG_MIPS_CP0_KSCRATCH1 ... KVM_REG_MIPS_CP0_KSCRATCH6:
  682. idx = reg->id - KVM_REG_MIPS_CP0_KSCRATCH1 + 2;
  683. if (!(vcpu->arch.kscratch_enabled & BIT(idx)))
  684. return -EINVAL;
  685. switch (idx) {
  686. case 2:
  687. v = (long)kvm_read_c0_guest_kscratch1(cop0);
  688. break;
  689. case 3:
  690. v = (long)kvm_read_c0_guest_kscratch2(cop0);
  691. break;
  692. case 4:
  693. v = (long)kvm_read_c0_guest_kscratch3(cop0);
  694. break;
  695. case 5:
  696. v = (long)kvm_read_c0_guest_kscratch4(cop0);
  697. break;
  698. case 6:
  699. v = (long)kvm_read_c0_guest_kscratch5(cop0);
  700. break;
  701. case 7:
  702. v = (long)kvm_read_c0_guest_kscratch6(cop0);
  703. break;
  704. }
  705. break;
  706. /* registers to be handled specially */
  707. default:
  708. ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
  709. if (ret)
  710. return ret;
  711. break;
  712. }
  713. if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
  714. u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
  715. return put_user(v, uaddr64);
  716. } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
  717. u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
  718. u32 v32 = (u32)v;
  719. return put_user(v32, uaddr32);
  720. } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
  721. void __user *uaddr = (void __user *)(long)reg->addr;
  722. return copy_to_user(uaddr, vs, 16) ? -EFAULT : 0;
  723. } else {
  724. return -EINVAL;
  725. }
  726. }
  727. static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
  728. const struct kvm_one_reg *reg)
  729. {
  730. struct mips_coproc *cop0 = vcpu->arch.cop0;
  731. struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
  732. s64 v;
  733. s64 vs[2];
  734. unsigned int idx;
  735. if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
  736. u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
  737. if (get_user(v, uaddr64) != 0)
  738. return -EFAULT;
  739. } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
  740. u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
  741. s32 v32;
  742. if (get_user(v32, uaddr32) != 0)
  743. return -EFAULT;
  744. v = (s64)v32;
  745. } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
  746. void __user *uaddr = (void __user *)(long)reg->addr;
  747. return copy_from_user(vs, uaddr, 16) ? -EFAULT : 0;
  748. } else {
  749. return -EINVAL;
  750. }
  751. switch (reg->id) {
  752. /* General purpose registers */
  753. case KVM_REG_MIPS_R0:
  754. /* Silently ignore requests to set $0 */
  755. break;
  756. case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
  757. vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
  758. break;
  759. #ifndef CONFIG_CPU_MIPSR6
  760. case KVM_REG_MIPS_HI:
  761. vcpu->arch.hi = v;
  762. break;
  763. case KVM_REG_MIPS_LO:
  764. vcpu->arch.lo = v;
  765. break;
  766. #endif
  767. case KVM_REG_MIPS_PC:
  768. vcpu->arch.pc = v;
  769. break;
  770. /* Floating point registers */
  771. case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
  772. if (!kvm_mips_guest_has_fpu(&vcpu->arch))
  773. return -EINVAL;
  774. idx = reg->id - KVM_REG_MIPS_FPR_32(0);
  775. /* Odd singles in top of even double when FR=0 */
  776. if (kvm_read_c0_guest_status(cop0) & ST0_FR)
  777. set_fpr32(&fpu->fpr[idx], 0, v);
  778. else
  779. set_fpr32(&fpu->fpr[idx & ~1], idx & 1, v);
  780. break;
  781. case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
  782. if (!kvm_mips_guest_has_fpu(&vcpu->arch))
  783. return -EINVAL;
  784. idx = reg->id - KVM_REG_MIPS_FPR_64(0);
  785. /* Can't access odd doubles in FR=0 mode */
  786. if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
  787. return -EINVAL;
  788. set_fpr64(&fpu->fpr[idx], 0, v);
  789. break;
  790. case KVM_REG_MIPS_FCR_IR:
  791. if (!kvm_mips_guest_has_fpu(&vcpu->arch))
  792. return -EINVAL;
  793. /* Read-only */
  794. break;
  795. case KVM_REG_MIPS_FCR_CSR:
  796. if (!kvm_mips_guest_has_fpu(&vcpu->arch))
  797. return -EINVAL;
  798. fpu->fcr31 = v;
  799. break;
  800. /* MIPS SIMD Architecture (MSA) registers */
  801. case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
  802. if (!kvm_mips_guest_has_msa(&vcpu->arch))
  803. return -EINVAL;
  804. idx = reg->id - KVM_REG_MIPS_VEC_128(0);
  805. #ifdef CONFIG_CPU_LITTLE_ENDIAN
  806. /* least significant byte first */
  807. set_fpr64(&fpu->fpr[idx], 0, vs[0]);
  808. set_fpr64(&fpu->fpr[idx], 1, vs[1]);
  809. #else
  810. /* most significant byte first */
  811. set_fpr64(&fpu->fpr[idx], 1, vs[0]);
  812. set_fpr64(&fpu->fpr[idx], 0, vs[1]);
  813. #endif
  814. break;
  815. case KVM_REG_MIPS_MSA_IR:
  816. if (!kvm_mips_guest_has_msa(&vcpu->arch))
  817. return -EINVAL;
  818. /* Read-only */
  819. break;
  820. case KVM_REG_MIPS_MSA_CSR:
  821. if (!kvm_mips_guest_has_msa(&vcpu->arch))
  822. return -EINVAL;
  823. fpu->msacsr = v;
  824. break;
  825. /* Co-processor 0 registers */
  826. case KVM_REG_MIPS_CP0_INDEX:
  827. kvm_write_c0_guest_index(cop0, v);
  828. break;
  829. case KVM_REG_MIPS_CP0_CONTEXT:
  830. kvm_write_c0_guest_context(cop0, v);
  831. break;
  832. case KVM_REG_MIPS_CP0_USERLOCAL:
  833. kvm_write_c0_guest_userlocal(cop0, v);
  834. break;
  835. case KVM_REG_MIPS_CP0_PAGEMASK:
  836. kvm_write_c0_guest_pagemask(cop0, v);
  837. break;
  838. case KVM_REG_MIPS_CP0_WIRED:
  839. kvm_write_c0_guest_wired(cop0, v);
  840. break;
  841. case KVM_REG_MIPS_CP0_HWRENA:
  842. kvm_write_c0_guest_hwrena(cop0, v);
  843. break;
  844. case KVM_REG_MIPS_CP0_BADVADDR:
  845. kvm_write_c0_guest_badvaddr(cop0, v);
  846. break;
  847. case KVM_REG_MIPS_CP0_ENTRYHI:
  848. kvm_write_c0_guest_entryhi(cop0, v);
  849. break;
  850. case KVM_REG_MIPS_CP0_STATUS:
  851. kvm_write_c0_guest_status(cop0, v);
  852. break;
  853. case KVM_REG_MIPS_CP0_EPC:
  854. kvm_write_c0_guest_epc(cop0, v);
  855. break;
  856. case KVM_REG_MIPS_CP0_PRID:
  857. kvm_write_c0_guest_prid(cop0, v);
  858. break;
  859. case KVM_REG_MIPS_CP0_ERROREPC:
  860. kvm_write_c0_guest_errorepc(cop0, v);
  861. break;
  862. case KVM_REG_MIPS_CP0_KSCRATCH1 ... KVM_REG_MIPS_CP0_KSCRATCH6:
  863. idx = reg->id - KVM_REG_MIPS_CP0_KSCRATCH1 + 2;
  864. if (!(vcpu->arch.kscratch_enabled & BIT(idx)))
  865. return -EINVAL;
  866. switch (idx) {
  867. case 2:
  868. kvm_write_c0_guest_kscratch1(cop0, v);
  869. break;
  870. case 3:
  871. kvm_write_c0_guest_kscratch2(cop0, v);
  872. break;
  873. case 4:
  874. kvm_write_c0_guest_kscratch3(cop0, v);
  875. break;
  876. case 5:
  877. kvm_write_c0_guest_kscratch4(cop0, v);
  878. break;
  879. case 6:
  880. kvm_write_c0_guest_kscratch5(cop0, v);
  881. break;
  882. case 7:
  883. kvm_write_c0_guest_kscratch6(cop0, v);
  884. break;
  885. }
  886. break;
  887. /* registers to be handled specially */
  888. default:
  889. return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
  890. }
  891. return 0;
  892. }
  893. static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
  894. struct kvm_enable_cap *cap)
  895. {
  896. int r = 0;
  897. if (!kvm_vm_ioctl_check_extension(vcpu->kvm, cap->cap))
  898. return -EINVAL;
  899. if (cap->flags)
  900. return -EINVAL;
  901. if (cap->args[0])
  902. return -EINVAL;
  903. switch (cap->cap) {
  904. case KVM_CAP_MIPS_FPU:
  905. vcpu->arch.fpu_enabled = true;
  906. break;
  907. case KVM_CAP_MIPS_MSA:
  908. vcpu->arch.msa_enabled = true;
  909. break;
  910. default:
  911. r = -EINVAL;
  912. break;
  913. }
  914. return r;
  915. }
  916. long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl,
  917. unsigned long arg)
  918. {
  919. struct kvm_vcpu *vcpu = filp->private_data;
  920. void __user *argp = (void __user *)arg;
  921. long r;
  922. switch (ioctl) {
  923. case KVM_SET_ONE_REG:
  924. case KVM_GET_ONE_REG: {
  925. struct kvm_one_reg reg;
  926. if (copy_from_user(&reg, argp, sizeof(reg)))
  927. return -EFAULT;
  928. if (ioctl == KVM_SET_ONE_REG)
  929. return kvm_mips_set_reg(vcpu, &reg);
  930. else
  931. return kvm_mips_get_reg(vcpu, &reg);
  932. }
  933. case KVM_GET_REG_LIST: {
  934. struct kvm_reg_list __user *user_list = argp;
  935. struct kvm_reg_list reg_list;
  936. unsigned n;
  937. if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
  938. return -EFAULT;
  939. n = reg_list.n;
  940. reg_list.n = kvm_mips_num_regs(vcpu);
  941. if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
  942. return -EFAULT;
  943. if (n < reg_list.n)
  944. return -E2BIG;
  945. return kvm_mips_copy_reg_indices(vcpu, user_list->reg);
  946. }
  947. case KVM_INTERRUPT:
  948. {
  949. struct kvm_mips_interrupt irq;
  950. if (copy_from_user(&irq, argp, sizeof(irq)))
  951. return -EFAULT;
  952. kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
  953. irq.irq);
  954. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  955. break;
  956. }
  957. case KVM_ENABLE_CAP: {
  958. struct kvm_enable_cap cap;
  959. if (copy_from_user(&cap, argp, sizeof(cap)))
  960. return -EFAULT;
  961. r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
  962. break;
  963. }
  964. default:
  965. r = -ENOIOCTLCMD;
  966. }
  967. return r;
  968. }
  969. /* Get (and clear) the dirty memory log for a memory slot. */
  970. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
  971. {
  972. struct kvm_memslots *slots;
  973. struct kvm_memory_slot *memslot;
  974. unsigned long ga, ga_end;
  975. int is_dirty = 0;
  976. int r;
  977. unsigned long n;
  978. mutex_lock(&kvm->slots_lock);
  979. r = kvm_get_dirty_log(kvm, log, &is_dirty);
  980. if (r)
  981. goto out;
  982. /* If nothing is dirty, don't bother messing with page tables. */
  983. if (is_dirty) {
  984. slots = kvm_memslots(kvm);
  985. memslot = id_to_memslot(slots, log->slot);
  986. ga = memslot->base_gfn << PAGE_SHIFT;
  987. ga_end = ga + (memslot->npages << PAGE_SHIFT);
  988. kvm_info("%s: dirty, ga: %#lx, ga_end %#lx\n", __func__, ga,
  989. ga_end);
  990. n = kvm_dirty_bitmap_bytes(memslot);
  991. memset(memslot->dirty_bitmap, 0, n);
  992. }
  993. r = 0;
  994. out:
  995. mutex_unlock(&kvm->slots_lock);
  996. return r;
  997. }
  998. long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
  999. {
  1000. long r;
  1001. switch (ioctl) {
  1002. default:
  1003. r = -ENOIOCTLCMD;
  1004. }
  1005. return r;
  1006. }
  1007. int kvm_arch_init(void *opaque)
  1008. {
  1009. if (kvm_mips_callbacks) {
  1010. kvm_err("kvm: module already exists\n");
  1011. return -EEXIST;
  1012. }
  1013. return kvm_mips_emulation_init(&kvm_mips_callbacks);
  1014. }
  1015. void kvm_arch_exit(void)
  1016. {
  1017. kvm_mips_callbacks = NULL;
  1018. }
  1019. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  1020. struct kvm_sregs *sregs)
  1021. {
  1022. return -ENOIOCTLCMD;
  1023. }
  1024. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  1025. struct kvm_sregs *sregs)
  1026. {
  1027. return -ENOIOCTLCMD;
  1028. }
  1029. void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
  1030. {
  1031. }
  1032. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  1033. {
  1034. return -ENOIOCTLCMD;
  1035. }
  1036. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  1037. {
  1038. return -ENOIOCTLCMD;
  1039. }
  1040. int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
  1041. {
  1042. return VM_FAULT_SIGBUS;
  1043. }
  1044. int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
  1045. {
  1046. int r;
  1047. switch (ext) {
  1048. case KVM_CAP_ONE_REG:
  1049. case KVM_CAP_ENABLE_CAP:
  1050. r = 1;
  1051. break;
  1052. case KVM_CAP_COALESCED_MMIO:
  1053. r = KVM_COALESCED_MMIO_PAGE_OFFSET;
  1054. break;
  1055. case KVM_CAP_MIPS_FPU:
  1056. /* We don't handle systems with inconsistent cpu_has_fpu */
  1057. r = !!raw_cpu_has_fpu;
  1058. break;
  1059. case KVM_CAP_MIPS_MSA:
  1060. /*
  1061. * We don't support MSA vector partitioning yet:
  1062. * 1) It would require explicit support which can't be tested
  1063. * yet due to lack of support in current hardware.
  1064. * 2) It extends the state that would need to be saved/restored
  1065. * by e.g. QEMU for migration.
  1066. *
  1067. * When vector partitioning hardware becomes available, support
  1068. * could be added by requiring a flag when enabling
  1069. * KVM_CAP_MIPS_MSA capability to indicate that userland knows
  1070. * to save/restore the appropriate extra state.
  1071. */
  1072. r = cpu_has_msa && !(boot_cpu_data.msa_id & MSA_IR_WRPF);
  1073. break;
  1074. default:
  1075. r = 0;
  1076. break;
  1077. }
  1078. return r;
  1079. }
  1080. int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
  1081. {
  1082. return kvm_mips_pending_timer(vcpu);
  1083. }
  1084. int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
  1085. {
  1086. int i;
  1087. struct mips_coproc *cop0;
  1088. if (!vcpu)
  1089. return -1;
  1090. kvm_debug("VCPU Register Dump:\n");
  1091. kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc);
  1092. kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
  1093. for (i = 0; i < 32; i += 4) {
  1094. kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
  1095. vcpu->arch.gprs[i],
  1096. vcpu->arch.gprs[i + 1],
  1097. vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
  1098. }
  1099. kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi);
  1100. kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo);
  1101. cop0 = vcpu->arch.cop0;
  1102. kvm_debug("\tStatus: 0x%08lx, Cause: 0x%08lx\n",
  1103. kvm_read_c0_guest_status(cop0),
  1104. kvm_read_c0_guest_cause(cop0));
  1105. kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
  1106. return 0;
  1107. }
  1108. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  1109. {
  1110. int i;
  1111. for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
  1112. vcpu->arch.gprs[i] = regs->gpr[i];
  1113. vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
  1114. vcpu->arch.hi = regs->hi;
  1115. vcpu->arch.lo = regs->lo;
  1116. vcpu->arch.pc = regs->pc;
  1117. return 0;
  1118. }
  1119. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  1120. {
  1121. int i;
  1122. for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
  1123. regs->gpr[i] = vcpu->arch.gprs[i];
  1124. regs->hi = vcpu->arch.hi;
  1125. regs->lo = vcpu->arch.lo;
  1126. regs->pc = vcpu->arch.pc;
  1127. return 0;
  1128. }
  1129. static void kvm_mips_comparecount_func(unsigned long data)
  1130. {
  1131. struct kvm_vcpu *vcpu = (struct kvm_vcpu *)data;
  1132. kvm_mips_callbacks->queue_timer_int(vcpu);
  1133. vcpu->arch.wait = 0;
  1134. if (swait_active(&vcpu->wq))
  1135. swake_up(&vcpu->wq);
  1136. }
  1137. /* low level hrtimer wake routine */
  1138. static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
  1139. {
  1140. struct kvm_vcpu *vcpu;
  1141. vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
  1142. kvm_mips_comparecount_func((unsigned long) vcpu);
  1143. return kvm_mips_count_timeout(vcpu);
  1144. }
  1145. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  1146. {
  1147. kvm_mips_callbacks->vcpu_init(vcpu);
  1148. hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
  1149. HRTIMER_MODE_REL);
  1150. vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
  1151. return 0;
  1152. }
  1153. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  1154. struct kvm_translation *tr)
  1155. {
  1156. return 0;
  1157. }
  1158. /* Initial guest state */
  1159. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  1160. {
  1161. return kvm_mips_callbacks->vcpu_setup(vcpu);
  1162. }
  1163. static void kvm_mips_set_c0_status(void)
  1164. {
  1165. u32 status = read_c0_status();
  1166. if (cpu_has_dsp)
  1167. status |= (ST0_MX);
  1168. write_c0_status(status);
  1169. ehb();
  1170. }
  1171. /*
  1172. * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
  1173. */
  1174. int kvm_mips_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
  1175. {
  1176. u32 cause = vcpu->arch.host_cp0_cause;
  1177. u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
  1178. u32 __user *opc = (u32 __user *) vcpu->arch.pc;
  1179. unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
  1180. enum emulation_result er = EMULATE_DONE;
  1181. int ret = RESUME_GUEST;
  1182. /* re-enable HTW before enabling interrupts */
  1183. htw_start();
  1184. /* Set a default exit reason */
  1185. run->exit_reason = KVM_EXIT_UNKNOWN;
  1186. run->ready_for_interrupt_injection = 1;
  1187. /*
  1188. * Set the appropriate status bits based on host CPU features,
  1189. * before we hit the scheduler
  1190. */
  1191. kvm_mips_set_c0_status();
  1192. local_irq_enable();
  1193. kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
  1194. cause, opc, run, vcpu);
  1195. trace_kvm_exit(vcpu, exccode);
  1196. /*
  1197. * Do a privilege check, if in UM most of these exit conditions end up
  1198. * causing an exception to be delivered to the Guest Kernel
  1199. */
  1200. er = kvm_mips_check_privilege(cause, opc, run, vcpu);
  1201. if (er == EMULATE_PRIV_FAIL) {
  1202. goto skip_emul;
  1203. } else if (er == EMULATE_FAIL) {
  1204. run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  1205. ret = RESUME_HOST;
  1206. goto skip_emul;
  1207. }
  1208. switch (exccode) {
  1209. case EXCCODE_INT:
  1210. kvm_debug("[%d]EXCCODE_INT @ %p\n", vcpu->vcpu_id, opc);
  1211. ++vcpu->stat.int_exits;
  1212. if (need_resched())
  1213. cond_resched();
  1214. ret = RESUME_GUEST;
  1215. break;
  1216. case EXCCODE_CPU:
  1217. kvm_debug("EXCCODE_CPU: @ PC: %p\n", opc);
  1218. ++vcpu->stat.cop_unusable_exits;
  1219. ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
  1220. /* XXXKYMA: Might need to return to user space */
  1221. if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN)
  1222. ret = RESUME_HOST;
  1223. break;
  1224. case EXCCODE_MOD:
  1225. ++vcpu->stat.tlbmod_exits;
  1226. ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
  1227. break;
  1228. case EXCCODE_TLBS:
  1229. kvm_debug("TLB ST fault: cause %#x, status %#lx, PC: %p, BadVaddr: %#lx\n",
  1230. cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc,
  1231. badvaddr);
  1232. ++vcpu->stat.tlbmiss_st_exits;
  1233. ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
  1234. break;
  1235. case EXCCODE_TLBL:
  1236. kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
  1237. cause, opc, badvaddr);
  1238. ++vcpu->stat.tlbmiss_ld_exits;
  1239. ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
  1240. break;
  1241. case EXCCODE_ADES:
  1242. ++vcpu->stat.addrerr_st_exits;
  1243. ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
  1244. break;
  1245. case EXCCODE_ADEL:
  1246. ++vcpu->stat.addrerr_ld_exits;
  1247. ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
  1248. break;
  1249. case EXCCODE_SYS:
  1250. ++vcpu->stat.syscall_exits;
  1251. ret = kvm_mips_callbacks->handle_syscall(vcpu);
  1252. break;
  1253. case EXCCODE_RI:
  1254. ++vcpu->stat.resvd_inst_exits;
  1255. ret = kvm_mips_callbacks->handle_res_inst(vcpu);
  1256. break;
  1257. case EXCCODE_BP:
  1258. ++vcpu->stat.break_inst_exits;
  1259. ret = kvm_mips_callbacks->handle_break(vcpu);
  1260. break;
  1261. case EXCCODE_TR:
  1262. ++vcpu->stat.trap_inst_exits;
  1263. ret = kvm_mips_callbacks->handle_trap(vcpu);
  1264. break;
  1265. case EXCCODE_MSAFPE:
  1266. ++vcpu->stat.msa_fpe_exits;
  1267. ret = kvm_mips_callbacks->handle_msa_fpe(vcpu);
  1268. break;
  1269. case EXCCODE_FPE:
  1270. ++vcpu->stat.fpe_exits;
  1271. ret = kvm_mips_callbacks->handle_fpe(vcpu);
  1272. break;
  1273. case EXCCODE_MSADIS:
  1274. ++vcpu->stat.msa_disabled_exits;
  1275. ret = kvm_mips_callbacks->handle_msa_disabled(vcpu);
  1276. break;
  1277. default:
  1278. kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x BadVaddr: %#lx Status: %#lx\n",
  1279. exccode, opc, kvm_get_inst(opc, vcpu), badvaddr,
  1280. kvm_read_c0_guest_status(vcpu->arch.cop0));
  1281. kvm_arch_vcpu_dump_regs(vcpu);
  1282. run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  1283. ret = RESUME_HOST;
  1284. break;
  1285. }
  1286. skip_emul:
  1287. local_irq_disable();
  1288. if (er == EMULATE_DONE && !(ret & RESUME_HOST))
  1289. kvm_mips_deliver_interrupts(vcpu, cause);
  1290. if (!(ret & RESUME_HOST)) {
  1291. /* Only check for signals if not already exiting to userspace */
  1292. if (signal_pending(current)) {
  1293. run->exit_reason = KVM_EXIT_INTR;
  1294. ret = (-EINTR << 2) | RESUME_HOST;
  1295. ++vcpu->stat.signal_exits;
  1296. trace_kvm_exit(vcpu, KVM_TRACE_EXIT_SIGNAL);
  1297. }
  1298. }
  1299. if (ret == RESUME_GUEST) {
  1300. trace_kvm_reenter(vcpu);
  1301. kvm_mips_callbacks->vcpu_reenter(run, vcpu);
  1302. /*
  1303. * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context
  1304. * is live), restore FCR31 / MSACSR.
  1305. *
  1306. * This should be before returning to the guest exception
  1307. * vector, as it may well cause an [MSA] FP exception if there
  1308. * are pending exception bits unmasked. (see
  1309. * kvm_mips_csr_die_notifier() for how that is handled).
  1310. */
  1311. if (kvm_mips_guest_has_fpu(&vcpu->arch) &&
  1312. read_c0_status() & ST0_CU1)
  1313. __kvm_restore_fcsr(&vcpu->arch);
  1314. if (kvm_mips_guest_has_msa(&vcpu->arch) &&
  1315. read_c0_config5() & MIPS_CONF5_MSAEN)
  1316. __kvm_restore_msacsr(&vcpu->arch);
  1317. }
  1318. /* Disable HTW before returning to guest or host */
  1319. htw_stop();
  1320. return ret;
  1321. }
  1322. /* Enable FPU for guest and restore context */
  1323. void kvm_own_fpu(struct kvm_vcpu *vcpu)
  1324. {
  1325. struct mips_coproc *cop0 = vcpu->arch.cop0;
  1326. unsigned int sr, cfg5;
  1327. preempt_disable();
  1328. sr = kvm_read_c0_guest_status(cop0);
  1329. /*
  1330. * If MSA state is already live, it is undefined how it interacts with
  1331. * FR=0 FPU state, and we don't want to hit reserved instruction
  1332. * exceptions trying to save the MSA state later when CU=1 && FR=1, so
  1333. * play it safe and save it first.
  1334. *
  1335. * In theory we shouldn't ever hit this case since kvm_lose_fpu() should
  1336. * get called when guest CU1 is set, however we can't trust the guest
  1337. * not to clobber the status register directly via the commpage.
  1338. */
  1339. if (cpu_has_msa && sr & ST0_CU1 && !(sr & ST0_FR) &&
  1340. vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
  1341. kvm_lose_fpu(vcpu);
  1342. /*
  1343. * Enable FPU for guest
  1344. * We set FR and FRE according to guest context
  1345. */
  1346. change_c0_status(ST0_CU1 | ST0_FR, sr);
  1347. if (cpu_has_fre) {
  1348. cfg5 = kvm_read_c0_guest_config5(cop0);
  1349. change_c0_config5(MIPS_CONF5_FRE, cfg5);
  1350. }
  1351. enable_fpu_hazard();
  1352. /* If guest FPU state not active, restore it now */
  1353. if (!(vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)) {
  1354. __kvm_restore_fpu(&vcpu->arch);
  1355. vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
  1356. trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_FPU);
  1357. } else {
  1358. trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_FPU);
  1359. }
  1360. preempt_enable();
  1361. }
  1362. #ifdef CONFIG_CPU_HAS_MSA
  1363. /* Enable MSA for guest and restore context */
  1364. void kvm_own_msa(struct kvm_vcpu *vcpu)
  1365. {
  1366. struct mips_coproc *cop0 = vcpu->arch.cop0;
  1367. unsigned int sr, cfg5;
  1368. preempt_disable();
  1369. /*
  1370. * Enable FPU if enabled in guest, since we're restoring FPU context
  1371. * anyway. We set FR and FRE according to guest context.
  1372. */
  1373. if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
  1374. sr = kvm_read_c0_guest_status(cop0);
  1375. /*
  1376. * If FR=0 FPU state is already live, it is undefined how it
  1377. * interacts with MSA state, so play it safe and save it first.
  1378. */
  1379. if (!(sr & ST0_FR) &&
  1380. (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU |
  1381. KVM_MIPS_AUX_MSA)) == KVM_MIPS_AUX_FPU)
  1382. kvm_lose_fpu(vcpu);
  1383. change_c0_status(ST0_CU1 | ST0_FR, sr);
  1384. if (sr & ST0_CU1 && cpu_has_fre) {
  1385. cfg5 = kvm_read_c0_guest_config5(cop0);
  1386. change_c0_config5(MIPS_CONF5_FRE, cfg5);
  1387. }
  1388. }
  1389. /* Enable MSA for guest */
  1390. set_c0_config5(MIPS_CONF5_MSAEN);
  1391. enable_fpu_hazard();
  1392. switch (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA)) {
  1393. case KVM_MIPS_AUX_FPU:
  1394. /*
  1395. * Guest FPU state already loaded, only restore upper MSA state
  1396. */
  1397. __kvm_restore_msa_upper(&vcpu->arch);
  1398. vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
  1399. trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_MSA);
  1400. break;
  1401. case 0:
  1402. /* Neither FPU or MSA already active, restore full MSA state */
  1403. __kvm_restore_msa(&vcpu->arch);
  1404. vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
  1405. if (kvm_mips_guest_has_fpu(&vcpu->arch))
  1406. vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
  1407. trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE,
  1408. KVM_TRACE_AUX_FPU_MSA);
  1409. break;
  1410. default:
  1411. trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_MSA);
  1412. break;
  1413. }
  1414. preempt_enable();
  1415. }
  1416. #endif
  1417. /* Drop FPU & MSA without saving it */
  1418. void kvm_drop_fpu(struct kvm_vcpu *vcpu)
  1419. {
  1420. preempt_disable();
  1421. if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
  1422. disable_msa();
  1423. trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_MSA);
  1424. vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_MSA;
  1425. }
  1426. if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
  1427. clear_c0_status(ST0_CU1 | ST0_FR);
  1428. trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_FPU);
  1429. vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
  1430. }
  1431. preempt_enable();
  1432. }
  1433. /* Save and disable FPU & MSA */
  1434. void kvm_lose_fpu(struct kvm_vcpu *vcpu)
  1435. {
  1436. /*
  1437. * FPU & MSA get disabled in root context (hardware) when it is disabled
  1438. * in guest context (software), but the register state in the hardware
  1439. * may still be in use. This is why we explicitly re-enable the hardware
  1440. * before saving.
  1441. */
  1442. preempt_disable();
  1443. if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
  1444. set_c0_config5(MIPS_CONF5_MSAEN);
  1445. enable_fpu_hazard();
  1446. __kvm_save_msa(&vcpu->arch);
  1447. trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU_MSA);
  1448. /* Disable MSA & FPU */
  1449. disable_msa();
  1450. if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
  1451. clear_c0_status(ST0_CU1 | ST0_FR);
  1452. disable_fpu_hazard();
  1453. }
  1454. vcpu->arch.aux_inuse &= ~(KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA);
  1455. } else if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
  1456. set_c0_status(ST0_CU1);
  1457. enable_fpu_hazard();
  1458. __kvm_save_fpu(&vcpu->arch);
  1459. vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
  1460. trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU);
  1461. /* Disable FPU */
  1462. clear_c0_status(ST0_CU1 | ST0_FR);
  1463. disable_fpu_hazard();
  1464. }
  1465. preempt_enable();
  1466. }
  1467. /*
  1468. * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are
  1469. * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP
  1470. * exception if cause bits are set in the value being written.
  1471. */
  1472. static int kvm_mips_csr_die_notify(struct notifier_block *self,
  1473. unsigned long cmd, void *ptr)
  1474. {
  1475. struct die_args *args = (struct die_args *)ptr;
  1476. struct pt_regs *regs = args->regs;
  1477. unsigned long pc;
  1478. /* Only interested in FPE and MSAFPE */
  1479. if (cmd != DIE_FP && cmd != DIE_MSAFP)
  1480. return NOTIFY_DONE;
  1481. /* Return immediately if guest context isn't active */
  1482. if (!(current->flags & PF_VCPU))
  1483. return NOTIFY_DONE;
  1484. /* Should never get here from user mode */
  1485. BUG_ON(user_mode(regs));
  1486. pc = instruction_pointer(regs);
  1487. switch (cmd) {
  1488. case DIE_FP:
  1489. /* match 2nd instruction in __kvm_restore_fcsr */
  1490. if (pc != (unsigned long)&__kvm_restore_fcsr + 4)
  1491. return NOTIFY_DONE;
  1492. break;
  1493. case DIE_MSAFP:
  1494. /* match 2nd/3rd instruction in __kvm_restore_msacsr */
  1495. if (!cpu_has_msa ||
  1496. pc < (unsigned long)&__kvm_restore_msacsr + 4 ||
  1497. pc > (unsigned long)&__kvm_restore_msacsr + 8)
  1498. return NOTIFY_DONE;
  1499. break;
  1500. }
  1501. /* Move PC forward a little and continue executing */
  1502. instruction_pointer(regs) += 4;
  1503. return NOTIFY_STOP;
  1504. }
  1505. static struct notifier_block kvm_mips_csr_die_notifier = {
  1506. .notifier_call = kvm_mips_csr_die_notify,
  1507. };
  1508. static int __init kvm_mips_init(void)
  1509. {
  1510. int ret;
  1511. ret = kvm_mips_entry_setup();
  1512. if (ret)
  1513. return ret;
  1514. ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
  1515. if (ret)
  1516. return ret;
  1517. register_die_notifier(&kvm_mips_csr_die_notifier);
  1518. return 0;
  1519. }
  1520. static void __exit kvm_mips_exit(void)
  1521. {
  1522. kvm_exit();
  1523. unregister_die_notifier(&kvm_mips_csr_die_notifier);
  1524. }
  1525. module_init(kvm_mips_init);
  1526. module_exit(kvm_mips_exit);
  1527. EXPORT_TRACEPOINT_SYMBOL(kvm_exit);