page_alloc.c 156 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696
  1. /*
  2. * linux/mm/page_alloc.c
  3. *
  4. * Manages the free list, the system allocates free pages here.
  5. * Note that kmalloc() lives in slab.c
  6. *
  7. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  8. * Swap reorganised 29.12.95, Stephen Tweedie
  9. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10. * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12. * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13. * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14. * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15. */
  16. #include <linux/stddef.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/jiffies.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/memblock.h>
  24. #include <linux/compiler.h>
  25. #include <linux/kernel.h>
  26. #include <linux/kmemcheck.h>
  27. #include <linux/module.h>
  28. #include <linux/suspend.h>
  29. #include <linux/pagevec.h>
  30. #include <linux/blkdev.h>
  31. #include <linux/slab.h>
  32. #include <linux/ratelimit.h>
  33. #include <linux/oom.h>
  34. #include <linux/notifier.h>
  35. #include <linux/topology.h>
  36. #include <linux/sysctl.h>
  37. #include <linux/cpu.h>
  38. #include <linux/cpuset.h>
  39. #include <linux/memory_hotplug.h>
  40. #include <linux/nodemask.h>
  41. #include <linux/vmalloc.h>
  42. #include <linux/vmstat.h>
  43. #include <linux/mempolicy.h>
  44. #include <linux/stop_machine.h>
  45. #include <linux/sort.h>
  46. #include <linux/pfn.h>
  47. #include <linux/backing-dev.h>
  48. #include <linux/fault-inject.h>
  49. #include <linux/page-isolation.h>
  50. #include <linux/page_cgroup.h>
  51. #include <linux/debugobjects.h>
  52. #include <linux/kmemleak.h>
  53. #include <linux/memory.h>
  54. #include <linux/compaction.h>
  55. #include <trace/events/kmem.h>
  56. #include <linux/ftrace_event.h>
  57. #include <linux/memcontrol.h>
  58. #include <linux/prefetch.h>
  59. #include <asm/tlbflush.h>
  60. #include <asm/div64.h>
  61. #include "internal.h"
  62. #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
  63. DEFINE_PER_CPU(int, numa_node);
  64. EXPORT_PER_CPU_SYMBOL(numa_node);
  65. #endif
  66. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  67. /*
  68. * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
  69. * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
  70. * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
  71. * defined in <linux/topology.h>.
  72. */
  73. DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
  74. EXPORT_PER_CPU_SYMBOL(_numa_mem_);
  75. #endif
  76. /*
  77. * Array of node states.
  78. */
  79. nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
  80. [N_POSSIBLE] = NODE_MASK_ALL,
  81. [N_ONLINE] = { { [0] = 1UL } },
  82. #ifndef CONFIG_NUMA
  83. [N_NORMAL_MEMORY] = { { [0] = 1UL } },
  84. #ifdef CONFIG_HIGHMEM
  85. [N_HIGH_MEMORY] = { { [0] = 1UL } },
  86. #endif
  87. [N_CPU] = { { [0] = 1UL } },
  88. #endif /* NUMA */
  89. };
  90. EXPORT_SYMBOL(node_states);
  91. unsigned long totalram_pages __read_mostly;
  92. unsigned long totalreserve_pages __read_mostly;
  93. int percpu_pagelist_fraction;
  94. gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
  95. #ifdef CONFIG_PM_SLEEP
  96. /*
  97. * The following functions are used by the suspend/hibernate code to temporarily
  98. * change gfp_allowed_mask in order to avoid using I/O during memory allocations
  99. * while devices are suspended. To avoid races with the suspend/hibernate code,
  100. * they should always be called with pm_mutex held (gfp_allowed_mask also should
  101. * only be modified with pm_mutex held, unless the suspend/hibernate code is
  102. * guaranteed not to run in parallel with that modification).
  103. */
  104. static gfp_t saved_gfp_mask;
  105. void pm_restore_gfp_mask(void)
  106. {
  107. WARN_ON(!mutex_is_locked(&pm_mutex));
  108. if (saved_gfp_mask) {
  109. gfp_allowed_mask = saved_gfp_mask;
  110. saved_gfp_mask = 0;
  111. }
  112. }
  113. void pm_restrict_gfp_mask(void)
  114. {
  115. WARN_ON(!mutex_is_locked(&pm_mutex));
  116. WARN_ON(saved_gfp_mask);
  117. saved_gfp_mask = gfp_allowed_mask;
  118. gfp_allowed_mask &= ~GFP_IOFS;
  119. }
  120. #endif /* CONFIG_PM_SLEEP */
  121. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  122. int pageblock_order __read_mostly;
  123. #endif
  124. static void __free_pages_ok(struct page *page, unsigned int order);
  125. /*
  126. * results with 256, 32 in the lowmem_reserve sysctl:
  127. * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
  128. * 1G machine -> (16M dma, 784M normal, 224M high)
  129. * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
  130. * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
  131. * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
  132. *
  133. * TBD: should special case ZONE_DMA32 machines here - in those we normally
  134. * don't need any ZONE_NORMAL reservation
  135. */
  136. int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
  137. #ifdef CONFIG_ZONE_DMA
  138. 256,
  139. #endif
  140. #ifdef CONFIG_ZONE_DMA32
  141. 256,
  142. #endif
  143. #ifdef CONFIG_HIGHMEM
  144. 32,
  145. #endif
  146. 32,
  147. };
  148. EXPORT_SYMBOL(totalram_pages);
  149. static char * const zone_names[MAX_NR_ZONES] = {
  150. #ifdef CONFIG_ZONE_DMA
  151. "DMA",
  152. #endif
  153. #ifdef CONFIG_ZONE_DMA32
  154. "DMA32",
  155. #endif
  156. "Normal",
  157. #ifdef CONFIG_HIGHMEM
  158. "HighMem",
  159. #endif
  160. "Movable",
  161. };
  162. int min_free_kbytes = 1024;
  163. static unsigned long __meminitdata nr_kernel_pages;
  164. static unsigned long __meminitdata nr_all_pages;
  165. static unsigned long __meminitdata dma_reserve;
  166. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  167. #ifndef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  168. /*
  169. * MAX_ACTIVE_REGIONS determines the maximum number of distinct ranges
  170. * of memory (RAM) that may be registered with add_active_range().
  171. * Ranges passed to add_active_range() will be merged if possible so
  172. * the number of times add_active_range() can be called is related to
  173. * the number of nodes and the number of holes
  174. */
  175. #ifdef CONFIG_MAX_ACTIVE_REGIONS
  176. /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
  177. #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
  178. #else
  179. #if MAX_NUMNODES >= 32
  180. /* If there can be many nodes, allow up to 50 holes per node */
  181. #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
  182. #else
  183. /* By default, allow up to 256 distinct regions */
  184. #define MAX_ACTIVE_REGIONS 256
  185. #endif
  186. #endif
  187. static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
  188. static int __meminitdata nr_nodemap_entries;
  189. #endif /* !CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  190. static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
  191. static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
  192. static unsigned long __initdata required_kernelcore;
  193. static unsigned long __initdata required_movablecore;
  194. static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
  195. /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
  196. int movable_zone;
  197. EXPORT_SYMBOL(movable_zone);
  198. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  199. #if MAX_NUMNODES > 1
  200. int nr_node_ids __read_mostly = MAX_NUMNODES;
  201. int nr_online_nodes __read_mostly = 1;
  202. EXPORT_SYMBOL(nr_node_ids);
  203. EXPORT_SYMBOL(nr_online_nodes);
  204. #endif
  205. int page_group_by_mobility_disabled __read_mostly;
  206. static void set_pageblock_migratetype(struct page *page, int migratetype)
  207. {
  208. if (unlikely(page_group_by_mobility_disabled))
  209. migratetype = MIGRATE_UNMOVABLE;
  210. set_pageblock_flags_group(page, (unsigned long)migratetype,
  211. PB_migrate, PB_migrate_end);
  212. }
  213. bool oom_killer_disabled __read_mostly;
  214. #ifdef CONFIG_DEBUG_VM
  215. static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
  216. {
  217. int ret = 0;
  218. unsigned seq;
  219. unsigned long pfn = page_to_pfn(page);
  220. do {
  221. seq = zone_span_seqbegin(zone);
  222. if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
  223. ret = 1;
  224. else if (pfn < zone->zone_start_pfn)
  225. ret = 1;
  226. } while (zone_span_seqretry(zone, seq));
  227. return ret;
  228. }
  229. static int page_is_consistent(struct zone *zone, struct page *page)
  230. {
  231. if (!pfn_valid_within(page_to_pfn(page)))
  232. return 0;
  233. if (zone != page_zone(page))
  234. return 0;
  235. return 1;
  236. }
  237. /*
  238. * Temporary debugging check for pages not lying within a given zone.
  239. */
  240. static int bad_range(struct zone *zone, struct page *page)
  241. {
  242. if (page_outside_zone_boundaries(zone, page))
  243. return 1;
  244. if (!page_is_consistent(zone, page))
  245. return 1;
  246. return 0;
  247. }
  248. #else
  249. static inline int bad_range(struct zone *zone, struct page *page)
  250. {
  251. return 0;
  252. }
  253. #endif
  254. static void bad_page(struct page *page)
  255. {
  256. static unsigned long resume;
  257. static unsigned long nr_shown;
  258. static unsigned long nr_unshown;
  259. /* Don't complain about poisoned pages */
  260. if (PageHWPoison(page)) {
  261. reset_page_mapcount(page); /* remove PageBuddy */
  262. return;
  263. }
  264. /*
  265. * Allow a burst of 60 reports, then keep quiet for that minute;
  266. * or allow a steady drip of one report per second.
  267. */
  268. if (nr_shown == 60) {
  269. if (time_before(jiffies, resume)) {
  270. nr_unshown++;
  271. goto out;
  272. }
  273. if (nr_unshown) {
  274. printk(KERN_ALERT
  275. "BUG: Bad page state: %lu messages suppressed\n",
  276. nr_unshown);
  277. nr_unshown = 0;
  278. }
  279. nr_shown = 0;
  280. }
  281. if (nr_shown++ == 0)
  282. resume = jiffies + 60 * HZ;
  283. printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
  284. current->comm, page_to_pfn(page));
  285. dump_page(page);
  286. print_modules();
  287. dump_stack();
  288. out:
  289. /* Leave bad fields for debug, except PageBuddy could make trouble */
  290. reset_page_mapcount(page); /* remove PageBuddy */
  291. add_taint(TAINT_BAD_PAGE);
  292. }
  293. /*
  294. * Higher-order pages are called "compound pages". They are structured thusly:
  295. *
  296. * The first PAGE_SIZE page is called the "head page".
  297. *
  298. * The remaining PAGE_SIZE pages are called "tail pages".
  299. *
  300. * All pages have PG_compound set. All pages have their ->private pointing at
  301. * the head page (even the head page has this).
  302. *
  303. * The first tail page's ->lru.next holds the address of the compound page's
  304. * put_page() function. Its ->lru.prev holds the order of allocation.
  305. * This usage means that zero-order pages may not be compound.
  306. */
  307. static void free_compound_page(struct page *page)
  308. {
  309. __free_pages_ok(page, compound_order(page));
  310. }
  311. void prep_compound_page(struct page *page, unsigned long order)
  312. {
  313. int i;
  314. int nr_pages = 1 << order;
  315. set_compound_page_dtor(page, free_compound_page);
  316. set_compound_order(page, order);
  317. __SetPageHead(page);
  318. for (i = 1; i < nr_pages; i++) {
  319. struct page *p = page + i;
  320. __SetPageTail(p);
  321. p->first_page = page;
  322. }
  323. }
  324. /* update __split_huge_page_refcount if you change this function */
  325. static int destroy_compound_page(struct page *page, unsigned long order)
  326. {
  327. int i;
  328. int nr_pages = 1 << order;
  329. int bad = 0;
  330. if (unlikely(compound_order(page) != order) ||
  331. unlikely(!PageHead(page))) {
  332. bad_page(page);
  333. bad++;
  334. }
  335. __ClearPageHead(page);
  336. for (i = 1; i < nr_pages; i++) {
  337. struct page *p = page + i;
  338. if (unlikely(!PageTail(p) || (p->first_page != page))) {
  339. bad_page(page);
  340. bad++;
  341. }
  342. __ClearPageTail(p);
  343. }
  344. return bad;
  345. }
  346. static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
  347. {
  348. int i;
  349. /*
  350. * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
  351. * and __GFP_HIGHMEM from hard or soft interrupt context.
  352. */
  353. VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
  354. for (i = 0; i < (1 << order); i++)
  355. clear_highpage(page + i);
  356. }
  357. static inline void set_page_order(struct page *page, int order)
  358. {
  359. set_page_private(page, order);
  360. __SetPageBuddy(page);
  361. }
  362. static inline void rmv_page_order(struct page *page)
  363. {
  364. __ClearPageBuddy(page);
  365. set_page_private(page, 0);
  366. }
  367. /*
  368. * Locate the struct page for both the matching buddy in our
  369. * pair (buddy1) and the combined O(n+1) page they form (page).
  370. *
  371. * 1) Any buddy B1 will have an order O twin B2 which satisfies
  372. * the following equation:
  373. * B2 = B1 ^ (1 << O)
  374. * For example, if the starting buddy (buddy2) is #8 its order
  375. * 1 buddy is #10:
  376. * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
  377. *
  378. * 2) Any buddy B will have an order O+1 parent P which
  379. * satisfies the following equation:
  380. * P = B & ~(1 << O)
  381. *
  382. * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
  383. */
  384. static inline unsigned long
  385. __find_buddy_index(unsigned long page_idx, unsigned int order)
  386. {
  387. return page_idx ^ (1 << order);
  388. }
  389. /*
  390. * This function checks whether a page is free && is the buddy
  391. * we can do coalesce a page and its buddy if
  392. * (a) the buddy is not in a hole &&
  393. * (b) the buddy is in the buddy system &&
  394. * (c) a page and its buddy have the same order &&
  395. * (d) a page and its buddy are in the same zone.
  396. *
  397. * For recording whether a page is in the buddy system, we set ->_mapcount -2.
  398. * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
  399. *
  400. * For recording page's order, we use page_private(page).
  401. */
  402. static inline int page_is_buddy(struct page *page, struct page *buddy,
  403. int order)
  404. {
  405. if (!pfn_valid_within(page_to_pfn(buddy)))
  406. return 0;
  407. if (page_zone_id(page) != page_zone_id(buddy))
  408. return 0;
  409. if (PageBuddy(buddy) && page_order(buddy) == order) {
  410. VM_BUG_ON(page_count(buddy) != 0);
  411. return 1;
  412. }
  413. return 0;
  414. }
  415. /*
  416. * Freeing function for a buddy system allocator.
  417. *
  418. * The concept of a buddy system is to maintain direct-mapped table
  419. * (containing bit values) for memory blocks of various "orders".
  420. * The bottom level table contains the map for the smallest allocatable
  421. * units of memory (here, pages), and each level above it describes
  422. * pairs of units from the levels below, hence, "buddies".
  423. * At a high level, all that happens here is marking the table entry
  424. * at the bottom level available, and propagating the changes upward
  425. * as necessary, plus some accounting needed to play nicely with other
  426. * parts of the VM system.
  427. * At each level, we keep a list of pages, which are heads of continuous
  428. * free pages of length of (1 << order) and marked with _mapcount -2. Page's
  429. * order is recorded in page_private(page) field.
  430. * So when we are allocating or freeing one, we can derive the state of the
  431. * other. That is, if we allocate a small block, and both were
  432. * free, the remainder of the region must be split into blocks.
  433. * If a block is freed, and its buddy is also free, then this
  434. * triggers coalescing into a block of larger size.
  435. *
  436. * -- wli
  437. */
  438. static inline void __free_one_page(struct page *page,
  439. struct zone *zone, unsigned int order,
  440. int migratetype)
  441. {
  442. unsigned long page_idx;
  443. unsigned long combined_idx;
  444. unsigned long uninitialized_var(buddy_idx);
  445. struct page *buddy;
  446. if (unlikely(PageCompound(page)))
  447. if (unlikely(destroy_compound_page(page, order)))
  448. return;
  449. VM_BUG_ON(migratetype == -1);
  450. page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
  451. VM_BUG_ON(page_idx & ((1 << order) - 1));
  452. VM_BUG_ON(bad_range(zone, page));
  453. while (order < MAX_ORDER-1) {
  454. buddy_idx = __find_buddy_index(page_idx, order);
  455. buddy = page + (buddy_idx - page_idx);
  456. if (!page_is_buddy(page, buddy, order))
  457. break;
  458. /* Our buddy is free, merge with it and move up one order. */
  459. list_del(&buddy->lru);
  460. zone->free_area[order].nr_free--;
  461. rmv_page_order(buddy);
  462. combined_idx = buddy_idx & page_idx;
  463. page = page + (combined_idx - page_idx);
  464. page_idx = combined_idx;
  465. order++;
  466. }
  467. set_page_order(page, order);
  468. /*
  469. * If this is not the largest possible page, check if the buddy
  470. * of the next-highest order is free. If it is, it's possible
  471. * that pages are being freed that will coalesce soon. In case,
  472. * that is happening, add the free page to the tail of the list
  473. * so it's less likely to be used soon and more likely to be merged
  474. * as a higher order page
  475. */
  476. if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
  477. struct page *higher_page, *higher_buddy;
  478. combined_idx = buddy_idx & page_idx;
  479. higher_page = page + (combined_idx - page_idx);
  480. buddy_idx = __find_buddy_index(combined_idx, order + 1);
  481. higher_buddy = page + (buddy_idx - combined_idx);
  482. if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
  483. list_add_tail(&page->lru,
  484. &zone->free_area[order].free_list[migratetype]);
  485. goto out;
  486. }
  487. }
  488. list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
  489. out:
  490. zone->free_area[order].nr_free++;
  491. }
  492. /*
  493. * free_page_mlock() -- clean up attempts to free and mlocked() page.
  494. * Page should not be on lru, so no need to fix that up.
  495. * free_pages_check() will verify...
  496. */
  497. static inline void free_page_mlock(struct page *page)
  498. {
  499. __dec_zone_page_state(page, NR_MLOCK);
  500. __count_vm_event(UNEVICTABLE_MLOCKFREED);
  501. }
  502. static inline int free_pages_check(struct page *page)
  503. {
  504. if (unlikely(page_mapcount(page) |
  505. (page->mapping != NULL) |
  506. (atomic_read(&page->_count) != 0) |
  507. (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
  508. (mem_cgroup_bad_page_check(page)))) {
  509. bad_page(page);
  510. return 1;
  511. }
  512. if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
  513. page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  514. return 0;
  515. }
  516. /*
  517. * Frees a number of pages from the PCP lists
  518. * Assumes all pages on list are in same zone, and of same order.
  519. * count is the number of pages to free.
  520. *
  521. * If the zone was previously in an "all pages pinned" state then look to
  522. * see if this freeing clears that state.
  523. *
  524. * And clear the zone's pages_scanned counter, to hold off the "all pages are
  525. * pinned" detection logic.
  526. */
  527. static void free_pcppages_bulk(struct zone *zone, int count,
  528. struct per_cpu_pages *pcp)
  529. {
  530. int migratetype = 0;
  531. int batch_free = 0;
  532. int to_free = count;
  533. spin_lock(&zone->lock);
  534. zone->all_unreclaimable = 0;
  535. zone->pages_scanned = 0;
  536. while (to_free) {
  537. struct page *page;
  538. struct list_head *list;
  539. /*
  540. * Remove pages from lists in a round-robin fashion. A
  541. * batch_free count is maintained that is incremented when an
  542. * empty list is encountered. This is so more pages are freed
  543. * off fuller lists instead of spinning excessively around empty
  544. * lists
  545. */
  546. do {
  547. batch_free++;
  548. if (++migratetype == MIGRATE_PCPTYPES)
  549. migratetype = 0;
  550. list = &pcp->lists[migratetype];
  551. } while (list_empty(list));
  552. /* This is the only non-empty list. Free them all. */
  553. if (batch_free == MIGRATE_PCPTYPES)
  554. batch_free = to_free;
  555. do {
  556. page = list_entry(list->prev, struct page, lru);
  557. /* must delete as __free_one_page list manipulates */
  558. list_del(&page->lru);
  559. /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
  560. __free_one_page(page, zone, 0, page_private(page));
  561. trace_mm_page_pcpu_drain(page, 0, page_private(page));
  562. } while (--to_free && --batch_free && !list_empty(list));
  563. }
  564. __mod_zone_page_state(zone, NR_FREE_PAGES, count);
  565. spin_unlock(&zone->lock);
  566. }
  567. static void free_one_page(struct zone *zone, struct page *page, int order,
  568. int migratetype)
  569. {
  570. spin_lock(&zone->lock);
  571. zone->all_unreclaimable = 0;
  572. zone->pages_scanned = 0;
  573. __free_one_page(page, zone, order, migratetype);
  574. __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
  575. spin_unlock(&zone->lock);
  576. }
  577. static bool free_pages_prepare(struct page *page, unsigned int order)
  578. {
  579. int i;
  580. int bad = 0;
  581. trace_mm_page_free_direct(page, order);
  582. kmemcheck_free_shadow(page, order);
  583. if (PageAnon(page))
  584. page->mapping = NULL;
  585. for (i = 0; i < (1 << order); i++)
  586. bad += free_pages_check(page + i);
  587. if (bad)
  588. return false;
  589. if (!PageHighMem(page)) {
  590. debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
  591. debug_check_no_obj_freed(page_address(page),
  592. PAGE_SIZE << order);
  593. }
  594. arch_free_page(page, order);
  595. kernel_map_pages(page, 1 << order, 0);
  596. return true;
  597. }
  598. static void __free_pages_ok(struct page *page, unsigned int order)
  599. {
  600. unsigned long flags;
  601. int wasMlocked = __TestClearPageMlocked(page);
  602. if (!free_pages_prepare(page, order))
  603. return;
  604. local_irq_save(flags);
  605. if (unlikely(wasMlocked))
  606. free_page_mlock(page);
  607. __count_vm_events(PGFREE, 1 << order);
  608. free_one_page(page_zone(page), page, order,
  609. get_pageblock_migratetype(page));
  610. local_irq_restore(flags);
  611. }
  612. /*
  613. * permit the bootmem allocator to evade page validation on high-order frees
  614. */
  615. void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
  616. {
  617. if (order == 0) {
  618. __ClearPageReserved(page);
  619. set_page_count(page, 0);
  620. set_page_refcounted(page);
  621. __free_page(page);
  622. } else {
  623. int loop;
  624. prefetchw(page);
  625. for (loop = 0; loop < (1 << order); loop++) {
  626. struct page *p = &page[loop];
  627. if (loop + 1 < (1 << order))
  628. prefetchw(p + 1);
  629. __ClearPageReserved(p);
  630. set_page_count(p, 0);
  631. }
  632. set_page_refcounted(page);
  633. __free_pages(page, order);
  634. }
  635. }
  636. /*
  637. * The order of subdivision here is critical for the IO subsystem.
  638. * Please do not alter this order without good reasons and regression
  639. * testing. Specifically, as large blocks of memory are subdivided,
  640. * the order in which smaller blocks are delivered depends on the order
  641. * they're subdivided in this function. This is the primary factor
  642. * influencing the order in which pages are delivered to the IO
  643. * subsystem according to empirical testing, and this is also justified
  644. * by considering the behavior of a buddy system containing a single
  645. * large block of memory acted on by a series of small allocations.
  646. * This behavior is a critical factor in sglist merging's success.
  647. *
  648. * -- wli
  649. */
  650. static inline void expand(struct zone *zone, struct page *page,
  651. int low, int high, struct free_area *area,
  652. int migratetype)
  653. {
  654. unsigned long size = 1 << high;
  655. while (high > low) {
  656. area--;
  657. high--;
  658. size >>= 1;
  659. VM_BUG_ON(bad_range(zone, &page[size]));
  660. list_add(&page[size].lru, &area->free_list[migratetype]);
  661. area->nr_free++;
  662. set_page_order(&page[size], high);
  663. }
  664. }
  665. /*
  666. * This page is about to be returned from the page allocator
  667. */
  668. static inline int check_new_page(struct page *page)
  669. {
  670. if (unlikely(page_mapcount(page) |
  671. (page->mapping != NULL) |
  672. (atomic_read(&page->_count) != 0) |
  673. (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
  674. (mem_cgroup_bad_page_check(page)))) {
  675. bad_page(page);
  676. return 1;
  677. }
  678. return 0;
  679. }
  680. static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
  681. {
  682. int i;
  683. for (i = 0; i < (1 << order); i++) {
  684. struct page *p = page + i;
  685. if (unlikely(check_new_page(p)))
  686. return 1;
  687. }
  688. set_page_private(page, 0);
  689. set_page_refcounted(page);
  690. arch_alloc_page(page, order);
  691. kernel_map_pages(page, 1 << order, 1);
  692. if (gfp_flags & __GFP_ZERO)
  693. prep_zero_page(page, order, gfp_flags);
  694. if (order && (gfp_flags & __GFP_COMP))
  695. prep_compound_page(page, order);
  696. return 0;
  697. }
  698. /*
  699. * Go through the free lists for the given migratetype and remove
  700. * the smallest available page from the freelists
  701. */
  702. static inline
  703. struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
  704. int migratetype)
  705. {
  706. unsigned int current_order;
  707. struct free_area * area;
  708. struct page *page;
  709. /* Find a page of the appropriate size in the preferred list */
  710. for (current_order = order; current_order < MAX_ORDER; ++current_order) {
  711. area = &(zone->free_area[current_order]);
  712. if (list_empty(&area->free_list[migratetype]))
  713. continue;
  714. page = list_entry(area->free_list[migratetype].next,
  715. struct page, lru);
  716. list_del(&page->lru);
  717. rmv_page_order(page);
  718. area->nr_free--;
  719. expand(zone, page, order, current_order, area, migratetype);
  720. return page;
  721. }
  722. return NULL;
  723. }
  724. /*
  725. * This array describes the order lists are fallen back to when
  726. * the free lists for the desirable migrate type are depleted
  727. */
  728. static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
  729. [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  730. [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  731. [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
  732. [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
  733. };
  734. /*
  735. * Move the free pages in a range to the free lists of the requested type.
  736. * Note that start_page and end_pages are not aligned on a pageblock
  737. * boundary. If alignment is required, use move_freepages_block()
  738. */
  739. static int move_freepages(struct zone *zone,
  740. struct page *start_page, struct page *end_page,
  741. int migratetype)
  742. {
  743. struct page *page;
  744. unsigned long order;
  745. int pages_moved = 0;
  746. #ifndef CONFIG_HOLES_IN_ZONE
  747. /*
  748. * page_zone is not safe to call in this context when
  749. * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
  750. * anyway as we check zone boundaries in move_freepages_block().
  751. * Remove at a later date when no bug reports exist related to
  752. * grouping pages by mobility
  753. */
  754. BUG_ON(page_zone(start_page) != page_zone(end_page));
  755. #endif
  756. for (page = start_page; page <= end_page;) {
  757. /* Make sure we are not inadvertently changing nodes */
  758. VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
  759. if (!pfn_valid_within(page_to_pfn(page))) {
  760. page++;
  761. continue;
  762. }
  763. if (!PageBuddy(page)) {
  764. page++;
  765. continue;
  766. }
  767. order = page_order(page);
  768. list_move(&page->lru,
  769. &zone->free_area[order].free_list[migratetype]);
  770. page += 1 << order;
  771. pages_moved += 1 << order;
  772. }
  773. return pages_moved;
  774. }
  775. static int move_freepages_block(struct zone *zone, struct page *page,
  776. int migratetype)
  777. {
  778. unsigned long start_pfn, end_pfn;
  779. struct page *start_page, *end_page;
  780. start_pfn = page_to_pfn(page);
  781. start_pfn = start_pfn & ~(pageblock_nr_pages-1);
  782. start_page = pfn_to_page(start_pfn);
  783. end_page = start_page + pageblock_nr_pages - 1;
  784. end_pfn = start_pfn + pageblock_nr_pages - 1;
  785. /* Do not cross zone boundaries */
  786. if (start_pfn < zone->zone_start_pfn)
  787. start_page = page;
  788. if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
  789. return 0;
  790. return move_freepages(zone, start_page, end_page, migratetype);
  791. }
  792. static void change_pageblock_range(struct page *pageblock_page,
  793. int start_order, int migratetype)
  794. {
  795. int nr_pageblocks = 1 << (start_order - pageblock_order);
  796. while (nr_pageblocks--) {
  797. set_pageblock_migratetype(pageblock_page, migratetype);
  798. pageblock_page += pageblock_nr_pages;
  799. }
  800. }
  801. /* Remove an element from the buddy allocator from the fallback list */
  802. static inline struct page *
  803. __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
  804. {
  805. struct free_area * area;
  806. int current_order;
  807. struct page *page;
  808. int migratetype, i;
  809. /* Find the largest possible block of pages in the other list */
  810. for (current_order = MAX_ORDER-1; current_order >= order;
  811. --current_order) {
  812. for (i = 0; i < MIGRATE_TYPES - 1; i++) {
  813. migratetype = fallbacks[start_migratetype][i];
  814. /* MIGRATE_RESERVE handled later if necessary */
  815. if (migratetype == MIGRATE_RESERVE)
  816. continue;
  817. area = &(zone->free_area[current_order]);
  818. if (list_empty(&area->free_list[migratetype]))
  819. continue;
  820. page = list_entry(area->free_list[migratetype].next,
  821. struct page, lru);
  822. area->nr_free--;
  823. /*
  824. * If breaking a large block of pages, move all free
  825. * pages to the preferred allocation list. If falling
  826. * back for a reclaimable kernel allocation, be more
  827. * aggressive about taking ownership of free pages
  828. */
  829. if (unlikely(current_order >= (pageblock_order >> 1)) ||
  830. start_migratetype == MIGRATE_RECLAIMABLE ||
  831. page_group_by_mobility_disabled) {
  832. unsigned long pages;
  833. pages = move_freepages_block(zone, page,
  834. start_migratetype);
  835. /* Claim the whole block if over half of it is free */
  836. if (pages >= (1 << (pageblock_order-1)) ||
  837. page_group_by_mobility_disabled)
  838. set_pageblock_migratetype(page,
  839. start_migratetype);
  840. migratetype = start_migratetype;
  841. }
  842. /* Remove the page from the freelists */
  843. list_del(&page->lru);
  844. rmv_page_order(page);
  845. /* Take ownership for orders >= pageblock_order */
  846. if (current_order >= pageblock_order)
  847. change_pageblock_range(page, current_order,
  848. start_migratetype);
  849. expand(zone, page, order, current_order, area, migratetype);
  850. trace_mm_page_alloc_extfrag(page, order, current_order,
  851. start_migratetype, migratetype);
  852. return page;
  853. }
  854. }
  855. return NULL;
  856. }
  857. /*
  858. * Do the hard work of removing an element from the buddy allocator.
  859. * Call me with the zone->lock already held.
  860. */
  861. static struct page *__rmqueue(struct zone *zone, unsigned int order,
  862. int migratetype)
  863. {
  864. struct page *page;
  865. retry_reserve:
  866. page = __rmqueue_smallest(zone, order, migratetype);
  867. if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
  868. page = __rmqueue_fallback(zone, order, migratetype);
  869. /*
  870. * Use MIGRATE_RESERVE rather than fail an allocation. goto
  871. * is used because __rmqueue_smallest is an inline function
  872. * and we want just one call site
  873. */
  874. if (!page) {
  875. migratetype = MIGRATE_RESERVE;
  876. goto retry_reserve;
  877. }
  878. }
  879. trace_mm_page_alloc_zone_locked(page, order, migratetype);
  880. return page;
  881. }
  882. /*
  883. * Obtain a specified number of elements from the buddy allocator, all under
  884. * a single hold of the lock, for efficiency. Add them to the supplied list.
  885. * Returns the number of new pages which were placed at *list.
  886. */
  887. static int rmqueue_bulk(struct zone *zone, unsigned int order,
  888. unsigned long count, struct list_head *list,
  889. int migratetype, int cold)
  890. {
  891. int i;
  892. spin_lock(&zone->lock);
  893. for (i = 0; i < count; ++i) {
  894. struct page *page = __rmqueue(zone, order, migratetype);
  895. if (unlikely(page == NULL))
  896. break;
  897. /*
  898. * Split buddy pages returned by expand() are received here
  899. * in physical page order. The page is added to the callers and
  900. * list and the list head then moves forward. From the callers
  901. * perspective, the linked list is ordered by page number in
  902. * some conditions. This is useful for IO devices that can
  903. * merge IO requests if the physical pages are ordered
  904. * properly.
  905. */
  906. if (likely(cold == 0))
  907. list_add(&page->lru, list);
  908. else
  909. list_add_tail(&page->lru, list);
  910. set_page_private(page, migratetype);
  911. list = &page->lru;
  912. }
  913. __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
  914. spin_unlock(&zone->lock);
  915. return i;
  916. }
  917. #ifdef CONFIG_NUMA
  918. /*
  919. * Called from the vmstat counter updater to drain pagesets of this
  920. * currently executing processor on remote nodes after they have
  921. * expired.
  922. *
  923. * Note that this function must be called with the thread pinned to
  924. * a single processor.
  925. */
  926. void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
  927. {
  928. unsigned long flags;
  929. int to_drain;
  930. local_irq_save(flags);
  931. if (pcp->count >= pcp->batch)
  932. to_drain = pcp->batch;
  933. else
  934. to_drain = pcp->count;
  935. free_pcppages_bulk(zone, to_drain, pcp);
  936. pcp->count -= to_drain;
  937. local_irq_restore(flags);
  938. }
  939. #endif
  940. /*
  941. * Drain pages of the indicated processor.
  942. *
  943. * The processor must either be the current processor and the
  944. * thread pinned to the current processor or a processor that
  945. * is not online.
  946. */
  947. static void drain_pages(unsigned int cpu)
  948. {
  949. unsigned long flags;
  950. struct zone *zone;
  951. for_each_populated_zone(zone) {
  952. struct per_cpu_pageset *pset;
  953. struct per_cpu_pages *pcp;
  954. local_irq_save(flags);
  955. pset = per_cpu_ptr(zone->pageset, cpu);
  956. pcp = &pset->pcp;
  957. if (pcp->count) {
  958. free_pcppages_bulk(zone, pcp->count, pcp);
  959. pcp->count = 0;
  960. }
  961. local_irq_restore(flags);
  962. }
  963. }
  964. /*
  965. * Spill all of this CPU's per-cpu pages back into the buddy allocator.
  966. */
  967. void drain_local_pages(void *arg)
  968. {
  969. drain_pages(smp_processor_id());
  970. }
  971. /*
  972. * Spill all the per-cpu pages from all CPUs back into the buddy allocator
  973. */
  974. void drain_all_pages(void)
  975. {
  976. on_each_cpu(drain_local_pages, NULL, 1);
  977. }
  978. #ifdef CONFIG_HIBERNATION
  979. void mark_free_pages(struct zone *zone)
  980. {
  981. unsigned long pfn, max_zone_pfn;
  982. unsigned long flags;
  983. int order, t;
  984. struct list_head *curr;
  985. if (!zone->spanned_pages)
  986. return;
  987. spin_lock_irqsave(&zone->lock, flags);
  988. max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
  989. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  990. if (pfn_valid(pfn)) {
  991. struct page *page = pfn_to_page(pfn);
  992. if (!swsusp_page_is_forbidden(page))
  993. swsusp_unset_page_free(page);
  994. }
  995. for_each_migratetype_order(order, t) {
  996. list_for_each(curr, &zone->free_area[order].free_list[t]) {
  997. unsigned long i;
  998. pfn = page_to_pfn(list_entry(curr, struct page, lru));
  999. for (i = 0; i < (1UL << order); i++)
  1000. swsusp_set_page_free(pfn_to_page(pfn + i));
  1001. }
  1002. }
  1003. spin_unlock_irqrestore(&zone->lock, flags);
  1004. }
  1005. #endif /* CONFIG_PM */
  1006. /*
  1007. * Free a 0-order page
  1008. * cold == 1 ? free a cold page : free a hot page
  1009. */
  1010. void free_hot_cold_page(struct page *page, int cold)
  1011. {
  1012. struct zone *zone = page_zone(page);
  1013. struct per_cpu_pages *pcp;
  1014. unsigned long flags;
  1015. int migratetype;
  1016. int wasMlocked = __TestClearPageMlocked(page);
  1017. if (!free_pages_prepare(page, 0))
  1018. return;
  1019. migratetype = get_pageblock_migratetype(page);
  1020. set_page_private(page, migratetype);
  1021. local_irq_save(flags);
  1022. if (unlikely(wasMlocked))
  1023. free_page_mlock(page);
  1024. __count_vm_event(PGFREE);
  1025. /*
  1026. * We only track unmovable, reclaimable and movable on pcp lists.
  1027. * Free ISOLATE pages back to the allocator because they are being
  1028. * offlined but treat RESERVE as movable pages so we can get those
  1029. * areas back if necessary. Otherwise, we may have to free
  1030. * excessively into the page allocator
  1031. */
  1032. if (migratetype >= MIGRATE_PCPTYPES) {
  1033. if (unlikely(migratetype == MIGRATE_ISOLATE)) {
  1034. free_one_page(zone, page, 0, migratetype);
  1035. goto out;
  1036. }
  1037. migratetype = MIGRATE_MOVABLE;
  1038. }
  1039. pcp = &this_cpu_ptr(zone->pageset)->pcp;
  1040. if (cold)
  1041. list_add_tail(&page->lru, &pcp->lists[migratetype]);
  1042. else
  1043. list_add(&page->lru, &pcp->lists[migratetype]);
  1044. pcp->count++;
  1045. if (pcp->count >= pcp->high) {
  1046. free_pcppages_bulk(zone, pcp->batch, pcp);
  1047. pcp->count -= pcp->batch;
  1048. }
  1049. out:
  1050. local_irq_restore(flags);
  1051. }
  1052. /*
  1053. * split_page takes a non-compound higher-order page, and splits it into
  1054. * n (1<<order) sub-pages: page[0..n]
  1055. * Each sub-page must be freed individually.
  1056. *
  1057. * Note: this is probably too low level an operation for use in drivers.
  1058. * Please consult with lkml before using this in your driver.
  1059. */
  1060. void split_page(struct page *page, unsigned int order)
  1061. {
  1062. int i;
  1063. VM_BUG_ON(PageCompound(page));
  1064. VM_BUG_ON(!page_count(page));
  1065. #ifdef CONFIG_KMEMCHECK
  1066. /*
  1067. * Split shadow pages too, because free(page[0]) would
  1068. * otherwise free the whole shadow.
  1069. */
  1070. if (kmemcheck_page_is_tracked(page))
  1071. split_page(virt_to_page(page[0].shadow), order);
  1072. #endif
  1073. for (i = 1; i < (1 << order); i++)
  1074. set_page_refcounted(page + i);
  1075. }
  1076. /*
  1077. * Similar to split_page except the page is already free. As this is only
  1078. * being used for migration, the migratetype of the block also changes.
  1079. * As this is called with interrupts disabled, the caller is responsible
  1080. * for calling arch_alloc_page() and kernel_map_page() after interrupts
  1081. * are enabled.
  1082. *
  1083. * Note: this is probably too low level an operation for use in drivers.
  1084. * Please consult with lkml before using this in your driver.
  1085. */
  1086. int split_free_page(struct page *page)
  1087. {
  1088. unsigned int order;
  1089. unsigned long watermark;
  1090. struct zone *zone;
  1091. BUG_ON(!PageBuddy(page));
  1092. zone = page_zone(page);
  1093. order = page_order(page);
  1094. /* Obey watermarks as if the page was being allocated */
  1095. watermark = low_wmark_pages(zone) + (1 << order);
  1096. if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
  1097. return 0;
  1098. /* Remove page from free list */
  1099. list_del(&page->lru);
  1100. zone->free_area[order].nr_free--;
  1101. rmv_page_order(page);
  1102. __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
  1103. /* Split into individual pages */
  1104. set_page_refcounted(page);
  1105. split_page(page, order);
  1106. if (order >= pageblock_order - 1) {
  1107. struct page *endpage = page + (1 << order) - 1;
  1108. for (; page < endpage; page += pageblock_nr_pages)
  1109. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  1110. }
  1111. return 1 << order;
  1112. }
  1113. /*
  1114. * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
  1115. * we cheat by calling it from here, in the order > 0 path. Saves a branch
  1116. * or two.
  1117. */
  1118. static inline
  1119. struct page *buffered_rmqueue(struct zone *preferred_zone,
  1120. struct zone *zone, int order, gfp_t gfp_flags,
  1121. int migratetype)
  1122. {
  1123. unsigned long flags;
  1124. struct page *page;
  1125. int cold = !!(gfp_flags & __GFP_COLD);
  1126. again:
  1127. if (likely(order == 0)) {
  1128. struct per_cpu_pages *pcp;
  1129. struct list_head *list;
  1130. local_irq_save(flags);
  1131. pcp = &this_cpu_ptr(zone->pageset)->pcp;
  1132. list = &pcp->lists[migratetype];
  1133. if (list_empty(list)) {
  1134. pcp->count += rmqueue_bulk(zone, 0,
  1135. pcp->batch, list,
  1136. migratetype, cold);
  1137. if (unlikely(list_empty(list)))
  1138. goto failed;
  1139. }
  1140. if (cold)
  1141. page = list_entry(list->prev, struct page, lru);
  1142. else
  1143. page = list_entry(list->next, struct page, lru);
  1144. list_del(&page->lru);
  1145. pcp->count--;
  1146. } else {
  1147. if (unlikely(gfp_flags & __GFP_NOFAIL)) {
  1148. /*
  1149. * __GFP_NOFAIL is not to be used in new code.
  1150. *
  1151. * All __GFP_NOFAIL callers should be fixed so that they
  1152. * properly detect and handle allocation failures.
  1153. *
  1154. * We most definitely don't want callers attempting to
  1155. * allocate greater than order-1 page units with
  1156. * __GFP_NOFAIL.
  1157. */
  1158. WARN_ON_ONCE(order > 1);
  1159. }
  1160. spin_lock_irqsave(&zone->lock, flags);
  1161. page = __rmqueue(zone, order, migratetype);
  1162. spin_unlock(&zone->lock);
  1163. if (!page)
  1164. goto failed;
  1165. __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
  1166. }
  1167. __count_zone_vm_events(PGALLOC, zone, 1 << order);
  1168. zone_statistics(preferred_zone, zone, gfp_flags);
  1169. local_irq_restore(flags);
  1170. VM_BUG_ON(bad_range(zone, page));
  1171. if (prep_new_page(page, order, gfp_flags))
  1172. goto again;
  1173. return page;
  1174. failed:
  1175. local_irq_restore(flags);
  1176. return NULL;
  1177. }
  1178. /* The ALLOC_WMARK bits are used as an index to zone->watermark */
  1179. #define ALLOC_WMARK_MIN WMARK_MIN
  1180. #define ALLOC_WMARK_LOW WMARK_LOW
  1181. #define ALLOC_WMARK_HIGH WMARK_HIGH
  1182. #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
  1183. /* Mask to get the watermark bits */
  1184. #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
  1185. #define ALLOC_HARDER 0x10 /* try to alloc harder */
  1186. #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
  1187. #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
  1188. #ifdef CONFIG_FAIL_PAGE_ALLOC
  1189. static struct {
  1190. struct fault_attr attr;
  1191. u32 ignore_gfp_highmem;
  1192. u32 ignore_gfp_wait;
  1193. u32 min_order;
  1194. } fail_page_alloc = {
  1195. .attr = FAULT_ATTR_INITIALIZER,
  1196. .ignore_gfp_wait = 1,
  1197. .ignore_gfp_highmem = 1,
  1198. .min_order = 1,
  1199. };
  1200. static int __init setup_fail_page_alloc(char *str)
  1201. {
  1202. return setup_fault_attr(&fail_page_alloc.attr, str);
  1203. }
  1204. __setup("fail_page_alloc=", setup_fail_page_alloc);
  1205. static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1206. {
  1207. if (order < fail_page_alloc.min_order)
  1208. return 0;
  1209. if (gfp_mask & __GFP_NOFAIL)
  1210. return 0;
  1211. if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
  1212. return 0;
  1213. if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
  1214. return 0;
  1215. return should_fail(&fail_page_alloc.attr, 1 << order);
  1216. }
  1217. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  1218. static int __init fail_page_alloc_debugfs(void)
  1219. {
  1220. mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
  1221. struct dentry *dir;
  1222. dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
  1223. &fail_page_alloc.attr);
  1224. if (IS_ERR(dir))
  1225. return PTR_ERR(dir);
  1226. if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
  1227. &fail_page_alloc.ignore_gfp_wait))
  1228. goto fail;
  1229. if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
  1230. &fail_page_alloc.ignore_gfp_highmem))
  1231. goto fail;
  1232. if (!debugfs_create_u32("min-order", mode, dir,
  1233. &fail_page_alloc.min_order))
  1234. goto fail;
  1235. return 0;
  1236. fail:
  1237. debugfs_remove_recursive(dir);
  1238. return -ENOMEM;
  1239. }
  1240. late_initcall(fail_page_alloc_debugfs);
  1241. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  1242. #else /* CONFIG_FAIL_PAGE_ALLOC */
  1243. static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1244. {
  1245. return 0;
  1246. }
  1247. #endif /* CONFIG_FAIL_PAGE_ALLOC */
  1248. /*
  1249. * Return true if free pages are above 'mark'. This takes into account the order
  1250. * of the allocation.
  1251. */
  1252. static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  1253. int classzone_idx, int alloc_flags, long free_pages)
  1254. {
  1255. /* free_pages my go negative - that's OK */
  1256. long min = mark;
  1257. int o;
  1258. free_pages -= (1 << order) + 1;
  1259. if (alloc_flags & ALLOC_HIGH)
  1260. min -= min / 2;
  1261. if (alloc_flags & ALLOC_HARDER)
  1262. min -= min / 4;
  1263. if (free_pages <= min + z->lowmem_reserve[classzone_idx])
  1264. return false;
  1265. for (o = 0; o < order; o++) {
  1266. /* At the next order, this order's pages become unavailable */
  1267. free_pages -= z->free_area[o].nr_free << o;
  1268. /* Require fewer higher order pages to be free */
  1269. min >>= 1;
  1270. if (free_pages <= min)
  1271. return false;
  1272. }
  1273. return true;
  1274. }
  1275. bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  1276. int classzone_idx, int alloc_flags)
  1277. {
  1278. return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
  1279. zone_page_state(z, NR_FREE_PAGES));
  1280. }
  1281. bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
  1282. int classzone_idx, int alloc_flags)
  1283. {
  1284. long free_pages = zone_page_state(z, NR_FREE_PAGES);
  1285. if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
  1286. free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
  1287. return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
  1288. free_pages);
  1289. }
  1290. #ifdef CONFIG_NUMA
  1291. /*
  1292. * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
  1293. * skip over zones that are not allowed by the cpuset, or that have
  1294. * been recently (in last second) found to be nearly full. See further
  1295. * comments in mmzone.h. Reduces cache footprint of zonelist scans
  1296. * that have to skip over a lot of full or unallowed zones.
  1297. *
  1298. * If the zonelist cache is present in the passed in zonelist, then
  1299. * returns a pointer to the allowed node mask (either the current
  1300. * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
  1301. *
  1302. * If the zonelist cache is not available for this zonelist, does
  1303. * nothing and returns NULL.
  1304. *
  1305. * If the fullzones BITMAP in the zonelist cache is stale (more than
  1306. * a second since last zap'd) then we zap it out (clear its bits.)
  1307. *
  1308. * We hold off even calling zlc_setup, until after we've checked the
  1309. * first zone in the zonelist, on the theory that most allocations will
  1310. * be satisfied from that first zone, so best to examine that zone as
  1311. * quickly as we can.
  1312. */
  1313. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1314. {
  1315. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1316. nodemask_t *allowednodes; /* zonelist_cache approximation */
  1317. zlc = zonelist->zlcache_ptr;
  1318. if (!zlc)
  1319. return NULL;
  1320. if (time_after(jiffies, zlc->last_full_zap + HZ)) {
  1321. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1322. zlc->last_full_zap = jiffies;
  1323. }
  1324. allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
  1325. &cpuset_current_mems_allowed :
  1326. &node_states[N_HIGH_MEMORY];
  1327. return allowednodes;
  1328. }
  1329. /*
  1330. * Given 'z' scanning a zonelist, run a couple of quick checks to see
  1331. * if it is worth looking at further for free memory:
  1332. * 1) Check that the zone isn't thought to be full (doesn't have its
  1333. * bit set in the zonelist_cache fullzones BITMAP).
  1334. * 2) Check that the zones node (obtained from the zonelist_cache
  1335. * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
  1336. * Return true (non-zero) if zone is worth looking at further, or
  1337. * else return false (zero) if it is not.
  1338. *
  1339. * This check -ignores- the distinction between various watermarks,
  1340. * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
  1341. * found to be full for any variation of these watermarks, it will
  1342. * be considered full for up to one second by all requests, unless
  1343. * we are so low on memory on all allowed nodes that we are forced
  1344. * into the second scan of the zonelist.
  1345. *
  1346. * In the second scan we ignore this zonelist cache and exactly
  1347. * apply the watermarks to all zones, even it is slower to do so.
  1348. * We are low on memory in the second scan, and should leave no stone
  1349. * unturned looking for a free page.
  1350. */
  1351. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1352. nodemask_t *allowednodes)
  1353. {
  1354. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1355. int i; /* index of *z in zonelist zones */
  1356. int n; /* node that zone *z is on */
  1357. zlc = zonelist->zlcache_ptr;
  1358. if (!zlc)
  1359. return 1;
  1360. i = z - zonelist->_zonerefs;
  1361. n = zlc->z_to_n[i];
  1362. /* This zone is worth trying if it is allowed but not full */
  1363. return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
  1364. }
  1365. /*
  1366. * Given 'z' scanning a zonelist, set the corresponding bit in
  1367. * zlc->fullzones, so that subsequent attempts to allocate a page
  1368. * from that zone don't waste time re-examining it.
  1369. */
  1370. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1371. {
  1372. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1373. int i; /* index of *z in zonelist zones */
  1374. zlc = zonelist->zlcache_ptr;
  1375. if (!zlc)
  1376. return;
  1377. i = z - zonelist->_zonerefs;
  1378. set_bit(i, zlc->fullzones);
  1379. }
  1380. /*
  1381. * clear all zones full, called after direct reclaim makes progress so that
  1382. * a zone that was recently full is not skipped over for up to a second
  1383. */
  1384. static void zlc_clear_zones_full(struct zonelist *zonelist)
  1385. {
  1386. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1387. zlc = zonelist->zlcache_ptr;
  1388. if (!zlc)
  1389. return;
  1390. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1391. }
  1392. #else /* CONFIG_NUMA */
  1393. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1394. {
  1395. return NULL;
  1396. }
  1397. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1398. nodemask_t *allowednodes)
  1399. {
  1400. return 1;
  1401. }
  1402. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1403. {
  1404. }
  1405. static void zlc_clear_zones_full(struct zonelist *zonelist)
  1406. {
  1407. }
  1408. #endif /* CONFIG_NUMA */
  1409. /*
  1410. * get_page_from_freelist goes through the zonelist trying to allocate
  1411. * a page.
  1412. */
  1413. static struct page *
  1414. get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
  1415. struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
  1416. struct zone *preferred_zone, int migratetype)
  1417. {
  1418. struct zoneref *z;
  1419. struct page *page = NULL;
  1420. int classzone_idx;
  1421. struct zone *zone;
  1422. nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
  1423. int zlc_active = 0; /* set if using zonelist_cache */
  1424. int did_zlc_setup = 0; /* just call zlc_setup() one time */
  1425. classzone_idx = zone_idx(preferred_zone);
  1426. zonelist_scan:
  1427. /*
  1428. * Scan zonelist, looking for a zone with enough free.
  1429. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1430. */
  1431. for_each_zone_zonelist_nodemask(zone, z, zonelist,
  1432. high_zoneidx, nodemask) {
  1433. if (NUMA_BUILD && zlc_active &&
  1434. !zlc_zone_worth_trying(zonelist, z, allowednodes))
  1435. continue;
  1436. if ((alloc_flags & ALLOC_CPUSET) &&
  1437. !cpuset_zone_allowed_softwall(zone, gfp_mask))
  1438. continue;
  1439. BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
  1440. if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
  1441. unsigned long mark;
  1442. int ret;
  1443. mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
  1444. if (zone_watermark_ok(zone, order, mark,
  1445. classzone_idx, alloc_flags))
  1446. goto try_this_zone;
  1447. if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
  1448. /*
  1449. * we do zlc_setup if there are multiple nodes
  1450. * and before considering the first zone allowed
  1451. * by the cpuset.
  1452. */
  1453. allowednodes = zlc_setup(zonelist, alloc_flags);
  1454. zlc_active = 1;
  1455. did_zlc_setup = 1;
  1456. }
  1457. if (zone_reclaim_mode == 0)
  1458. goto this_zone_full;
  1459. /*
  1460. * As we may have just activated ZLC, check if the first
  1461. * eligible zone has failed zone_reclaim recently.
  1462. */
  1463. if (NUMA_BUILD && zlc_active &&
  1464. !zlc_zone_worth_trying(zonelist, z, allowednodes))
  1465. continue;
  1466. ret = zone_reclaim(zone, gfp_mask, order);
  1467. switch (ret) {
  1468. case ZONE_RECLAIM_NOSCAN:
  1469. /* did not scan */
  1470. continue;
  1471. case ZONE_RECLAIM_FULL:
  1472. /* scanned but unreclaimable */
  1473. continue;
  1474. default:
  1475. /* did we reclaim enough */
  1476. if (!zone_watermark_ok(zone, order, mark,
  1477. classzone_idx, alloc_flags))
  1478. goto this_zone_full;
  1479. }
  1480. }
  1481. try_this_zone:
  1482. page = buffered_rmqueue(preferred_zone, zone, order,
  1483. gfp_mask, migratetype);
  1484. if (page)
  1485. break;
  1486. this_zone_full:
  1487. if (NUMA_BUILD)
  1488. zlc_mark_zone_full(zonelist, z);
  1489. }
  1490. if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
  1491. /* Disable zlc cache for second zonelist scan */
  1492. zlc_active = 0;
  1493. goto zonelist_scan;
  1494. }
  1495. return page;
  1496. }
  1497. /*
  1498. * Large machines with many possible nodes should not always dump per-node
  1499. * meminfo in irq context.
  1500. */
  1501. static inline bool should_suppress_show_mem(void)
  1502. {
  1503. bool ret = false;
  1504. #if NODES_SHIFT > 8
  1505. ret = in_interrupt();
  1506. #endif
  1507. return ret;
  1508. }
  1509. static DEFINE_RATELIMIT_STATE(nopage_rs,
  1510. DEFAULT_RATELIMIT_INTERVAL,
  1511. DEFAULT_RATELIMIT_BURST);
  1512. void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
  1513. {
  1514. unsigned int filter = SHOW_MEM_FILTER_NODES;
  1515. if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
  1516. return;
  1517. /*
  1518. * This documents exceptions given to allocations in certain
  1519. * contexts that are allowed to allocate outside current's set
  1520. * of allowed nodes.
  1521. */
  1522. if (!(gfp_mask & __GFP_NOMEMALLOC))
  1523. if (test_thread_flag(TIF_MEMDIE) ||
  1524. (current->flags & (PF_MEMALLOC | PF_EXITING)))
  1525. filter &= ~SHOW_MEM_FILTER_NODES;
  1526. if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
  1527. filter &= ~SHOW_MEM_FILTER_NODES;
  1528. if (fmt) {
  1529. struct va_format vaf;
  1530. va_list args;
  1531. va_start(args, fmt);
  1532. vaf.fmt = fmt;
  1533. vaf.va = &args;
  1534. pr_warn("%pV", &vaf);
  1535. va_end(args);
  1536. }
  1537. pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
  1538. current->comm, order, gfp_mask);
  1539. dump_stack();
  1540. if (!should_suppress_show_mem())
  1541. show_mem(filter);
  1542. }
  1543. static inline int
  1544. should_alloc_retry(gfp_t gfp_mask, unsigned int order,
  1545. unsigned long pages_reclaimed)
  1546. {
  1547. /* Do not loop if specifically requested */
  1548. if (gfp_mask & __GFP_NORETRY)
  1549. return 0;
  1550. /*
  1551. * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
  1552. * means __GFP_NOFAIL, but that may not be true in other
  1553. * implementations.
  1554. */
  1555. if (order <= PAGE_ALLOC_COSTLY_ORDER)
  1556. return 1;
  1557. /*
  1558. * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
  1559. * specified, then we retry until we no longer reclaim any pages
  1560. * (above), or we've reclaimed an order of pages at least as
  1561. * large as the allocation's order. In both cases, if the
  1562. * allocation still fails, we stop retrying.
  1563. */
  1564. if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
  1565. return 1;
  1566. /*
  1567. * Don't let big-order allocations loop unless the caller
  1568. * explicitly requests that.
  1569. */
  1570. if (gfp_mask & __GFP_NOFAIL)
  1571. return 1;
  1572. return 0;
  1573. }
  1574. static inline struct page *
  1575. __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
  1576. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1577. nodemask_t *nodemask, struct zone *preferred_zone,
  1578. int migratetype)
  1579. {
  1580. struct page *page;
  1581. /* Acquire the OOM killer lock for the zones in zonelist */
  1582. if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
  1583. schedule_timeout_uninterruptible(1);
  1584. return NULL;
  1585. }
  1586. /*
  1587. * Go through the zonelist yet one more time, keep very high watermark
  1588. * here, this is only to catch a parallel oom killing, we must fail if
  1589. * we're still under heavy pressure.
  1590. */
  1591. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
  1592. order, zonelist, high_zoneidx,
  1593. ALLOC_WMARK_HIGH|ALLOC_CPUSET,
  1594. preferred_zone, migratetype);
  1595. if (page)
  1596. goto out;
  1597. if (!(gfp_mask & __GFP_NOFAIL)) {
  1598. /* The OOM killer will not help higher order allocs */
  1599. if (order > PAGE_ALLOC_COSTLY_ORDER)
  1600. goto out;
  1601. /* The OOM killer does not needlessly kill tasks for lowmem */
  1602. if (high_zoneidx < ZONE_NORMAL)
  1603. goto out;
  1604. /*
  1605. * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
  1606. * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
  1607. * The caller should handle page allocation failure by itself if
  1608. * it specifies __GFP_THISNODE.
  1609. * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
  1610. */
  1611. if (gfp_mask & __GFP_THISNODE)
  1612. goto out;
  1613. }
  1614. /* Exhausted what can be done so it's blamo time */
  1615. out_of_memory(zonelist, gfp_mask, order, nodemask);
  1616. out:
  1617. clear_zonelist_oom(zonelist, gfp_mask);
  1618. return page;
  1619. }
  1620. #ifdef CONFIG_COMPACTION
  1621. /* Try memory compaction for high-order allocations before reclaim */
  1622. static struct page *
  1623. __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
  1624. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1625. nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
  1626. int migratetype, unsigned long *did_some_progress,
  1627. bool sync_migration)
  1628. {
  1629. struct page *page;
  1630. if (!order || compaction_deferred(preferred_zone))
  1631. return NULL;
  1632. current->flags |= PF_MEMALLOC;
  1633. *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
  1634. nodemask, sync_migration);
  1635. current->flags &= ~PF_MEMALLOC;
  1636. if (*did_some_progress != COMPACT_SKIPPED) {
  1637. /* Page migration frees to the PCP lists but we want merging */
  1638. drain_pages(get_cpu());
  1639. put_cpu();
  1640. page = get_page_from_freelist(gfp_mask, nodemask,
  1641. order, zonelist, high_zoneidx,
  1642. alloc_flags, preferred_zone,
  1643. migratetype);
  1644. if (page) {
  1645. preferred_zone->compact_considered = 0;
  1646. preferred_zone->compact_defer_shift = 0;
  1647. count_vm_event(COMPACTSUCCESS);
  1648. return page;
  1649. }
  1650. /*
  1651. * It's bad if compaction run occurs and fails.
  1652. * The most likely reason is that pages exist,
  1653. * but not enough to satisfy watermarks.
  1654. */
  1655. count_vm_event(COMPACTFAIL);
  1656. defer_compaction(preferred_zone);
  1657. cond_resched();
  1658. }
  1659. return NULL;
  1660. }
  1661. #else
  1662. static inline struct page *
  1663. __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
  1664. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1665. nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
  1666. int migratetype, unsigned long *did_some_progress,
  1667. bool sync_migration)
  1668. {
  1669. return NULL;
  1670. }
  1671. #endif /* CONFIG_COMPACTION */
  1672. /* The really slow allocator path where we enter direct reclaim */
  1673. static inline struct page *
  1674. __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
  1675. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1676. nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
  1677. int migratetype, unsigned long *did_some_progress)
  1678. {
  1679. struct page *page = NULL;
  1680. struct reclaim_state reclaim_state;
  1681. bool drained = false;
  1682. cond_resched();
  1683. /* We now go into synchronous reclaim */
  1684. cpuset_memory_pressure_bump();
  1685. current->flags |= PF_MEMALLOC;
  1686. lockdep_set_current_reclaim_state(gfp_mask);
  1687. reclaim_state.reclaimed_slab = 0;
  1688. current->reclaim_state = &reclaim_state;
  1689. *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
  1690. current->reclaim_state = NULL;
  1691. lockdep_clear_current_reclaim_state();
  1692. current->flags &= ~PF_MEMALLOC;
  1693. cond_resched();
  1694. if (unlikely(!(*did_some_progress)))
  1695. return NULL;
  1696. /* After successful reclaim, reconsider all zones for allocation */
  1697. if (NUMA_BUILD)
  1698. zlc_clear_zones_full(zonelist);
  1699. retry:
  1700. page = get_page_from_freelist(gfp_mask, nodemask, order,
  1701. zonelist, high_zoneidx,
  1702. alloc_flags, preferred_zone,
  1703. migratetype);
  1704. /*
  1705. * If an allocation failed after direct reclaim, it could be because
  1706. * pages are pinned on the per-cpu lists. Drain them and try again
  1707. */
  1708. if (!page && !drained) {
  1709. drain_all_pages();
  1710. drained = true;
  1711. goto retry;
  1712. }
  1713. return page;
  1714. }
  1715. /*
  1716. * This is called in the allocator slow-path if the allocation request is of
  1717. * sufficient urgency to ignore watermarks and take other desperate measures
  1718. */
  1719. static inline struct page *
  1720. __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
  1721. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1722. nodemask_t *nodemask, struct zone *preferred_zone,
  1723. int migratetype)
  1724. {
  1725. struct page *page;
  1726. do {
  1727. page = get_page_from_freelist(gfp_mask, nodemask, order,
  1728. zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
  1729. preferred_zone, migratetype);
  1730. if (!page && gfp_mask & __GFP_NOFAIL)
  1731. wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
  1732. } while (!page && (gfp_mask & __GFP_NOFAIL));
  1733. return page;
  1734. }
  1735. static inline
  1736. void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
  1737. enum zone_type high_zoneidx,
  1738. enum zone_type classzone_idx)
  1739. {
  1740. struct zoneref *z;
  1741. struct zone *zone;
  1742. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
  1743. wakeup_kswapd(zone, order, classzone_idx);
  1744. }
  1745. static inline int
  1746. gfp_to_alloc_flags(gfp_t gfp_mask)
  1747. {
  1748. int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
  1749. const gfp_t wait = gfp_mask & __GFP_WAIT;
  1750. /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
  1751. BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
  1752. /*
  1753. * The caller may dip into page reserves a bit more if the caller
  1754. * cannot run direct reclaim, or if the caller has realtime scheduling
  1755. * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
  1756. * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
  1757. */
  1758. alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
  1759. if (!wait) {
  1760. /*
  1761. * Not worth trying to allocate harder for
  1762. * __GFP_NOMEMALLOC even if it can't schedule.
  1763. */
  1764. if (!(gfp_mask & __GFP_NOMEMALLOC))
  1765. alloc_flags |= ALLOC_HARDER;
  1766. /*
  1767. * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
  1768. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1769. */
  1770. alloc_flags &= ~ALLOC_CPUSET;
  1771. } else if (unlikely(rt_task(current)) && !in_interrupt())
  1772. alloc_flags |= ALLOC_HARDER;
  1773. if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
  1774. if (!in_interrupt() &&
  1775. ((current->flags & PF_MEMALLOC) ||
  1776. unlikely(test_thread_flag(TIF_MEMDIE))))
  1777. alloc_flags |= ALLOC_NO_WATERMARKS;
  1778. }
  1779. return alloc_flags;
  1780. }
  1781. static inline struct page *
  1782. __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
  1783. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1784. nodemask_t *nodemask, struct zone *preferred_zone,
  1785. int migratetype)
  1786. {
  1787. const gfp_t wait = gfp_mask & __GFP_WAIT;
  1788. struct page *page = NULL;
  1789. int alloc_flags;
  1790. unsigned long pages_reclaimed = 0;
  1791. unsigned long did_some_progress;
  1792. bool sync_migration = false;
  1793. /*
  1794. * In the slowpath, we sanity check order to avoid ever trying to
  1795. * reclaim >= MAX_ORDER areas which will never succeed. Callers may
  1796. * be using allocators in order of preference for an area that is
  1797. * too large.
  1798. */
  1799. if (order >= MAX_ORDER) {
  1800. WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
  1801. return NULL;
  1802. }
  1803. /*
  1804. * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
  1805. * __GFP_NOWARN set) should not cause reclaim since the subsystem
  1806. * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
  1807. * using a larger set of nodes after it has established that the
  1808. * allowed per node queues are empty and that nodes are
  1809. * over allocated.
  1810. */
  1811. if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
  1812. goto nopage;
  1813. restart:
  1814. if (!(gfp_mask & __GFP_NO_KSWAPD))
  1815. wake_all_kswapd(order, zonelist, high_zoneidx,
  1816. zone_idx(preferred_zone));
  1817. /*
  1818. * OK, we're below the kswapd watermark and have kicked background
  1819. * reclaim. Now things get more complex, so set up alloc_flags according
  1820. * to how we want to proceed.
  1821. */
  1822. alloc_flags = gfp_to_alloc_flags(gfp_mask);
  1823. /*
  1824. * Find the true preferred zone if the allocation is unconstrained by
  1825. * cpusets.
  1826. */
  1827. if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
  1828. first_zones_zonelist(zonelist, high_zoneidx, NULL,
  1829. &preferred_zone);
  1830. rebalance:
  1831. /* This is the last chance, in general, before the goto nopage. */
  1832. page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
  1833. high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
  1834. preferred_zone, migratetype);
  1835. if (page)
  1836. goto got_pg;
  1837. /* Allocate without watermarks if the context allows */
  1838. if (alloc_flags & ALLOC_NO_WATERMARKS) {
  1839. page = __alloc_pages_high_priority(gfp_mask, order,
  1840. zonelist, high_zoneidx, nodemask,
  1841. preferred_zone, migratetype);
  1842. if (page)
  1843. goto got_pg;
  1844. }
  1845. /* Atomic allocations - we can't balance anything */
  1846. if (!wait)
  1847. goto nopage;
  1848. /* Avoid recursion of direct reclaim */
  1849. if (current->flags & PF_MEMALLOC)
  1850. goto nopage;
  1851. /* Avoid allocations with no watermarks from looping endlessly */
  1852. if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
  1853. goto nopage;
  1854. /*
  1855. * Try direct compaction. The first pass is asynchronous. Subsequent
  1856. * attempts after direct reclaim are synchronous
  1857. */
  1858. page = __alloc_pages_direct_compact(gfp_mask, order,
  1859. zonelist, high_zoneidx,
  1860. nodemask,
  1861. alloc_flags, preferred_zone,
  1862. migratetype, &did_some_progress,
  1863. sync_migration);
  1864. if (page)
  1865. goto got_pg;
  1866. sync_migration = true;
  1867. /* Try direct reclaim and then allocating */
  1868. page = __alloc_pages_direct_reclaim(gfp_mask, order,
  1869. zonelist, high_zoneidx,
  1870. nodemask,
  1871. alloc_flags, preferred_zone,
  1872. migratetype, &did_some_progress);
  1873. if (page)
  1874. goto got_pg;
  1875. /*
  1876. * If we failed to make any progress reclaiming, then we are
  1877. * running out of options and have to consider going OOM
  1878. */
  1879. if (!did_some_progress) {
  1880. if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
  1881. if (oom_killer_disabled)
  1882. goto nopage;
  1883. page = __alloc_pages_may_oom(gfp_mask, order,
  1884. zonelist, high_zoneidx,
  1885. nodemask, preferred_zone,
  1886. migratetype);
  1887. if (page)
  1888. goto got_pg;
  1889. if (!(gfp_mask & __GFP_NOFAIL)) {
  1890. /*
  1891. * The oom killer is not called for high-order
  1892. * allocations that may fail, so if no progress
  1893. * is being made, there are no other options and
  1894. * retrying is unlikely to help.
  1895. */
  1896. if (order > PAGE_ALLOC_COSTLY_ORDER)
  1897. goto nopage;
  1898. /*
  1899. * The oom killer is not called for lowmem
  1900. * allocations to prevent needlessly killing
  1901. * innocent tasks.
  1902. */
  1903. if (high_zoneidx < ZONE_NORMAL)
  1904. goto nopage;
  1905. }
  1906. goto restart;
  1907. }
  1908. }
  1909. /* Check if we should retry the allocation */
  1910. pages_reclaimed += did_some_progress;
  1911. if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
  1912. /* Wait for some write requests to complete then retry */
  1913. wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
  1914. goto rebalance;
  1915. } else {
  1916. /*
  1917. * High-order allocations do not necessarily loop after
  1918. * direct reclaim and reclaim/compaction depends on compaction
  1919. * being called after reclaim so call directly if necessary
  1920. */
  1921. page = __alloc_pages_direct_compact(gfp_mask, order,
  1922. zonelist, high_zoneidx,
  1923. nodemask,
  1924. alloc_flags, preferred_zone,
  1925. migratetype, &did_some_progress,
  1926. sync_migration);
  1927. if (page)
  1928. goto got_pg;
  1929. }
  1930. nopage:
  1931. warn_alloc_failed(gfp_mask, order, NULL);
  1932. return page;
  1933. got_pg:
  1934. if (kmemcheck_enabled)
  1935. kmemcheck_pagealloc_alloc(page, order, gfp_mask);
  1936. return page;
  1937. }
  1938. /*
  1939. * This is the 'heart' of the zoned buddy allocator.
  1940. */
  1941. struct page *
  1942. __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
  1943. struct zonelist *zonelist, nodemask_t *nodemask)
  1944. {
  1945. enum zone_type high_zoneidx = gfp_zone(gfp_mask);
  1946. struct zone *preferred_zone;
  1947. struct page *page;
  1948. int migratetype = allocflags_to_migratetype(gfp_mask);
  1949. gfp_mask &= gfp_allowed_mask;
  1950. lockdep_trace_alloc(gfp_mask);
  1951. might_sleep_if(gfp_mask & __GFP_WAIT);
  1952. if (should_fail_alloc_page(gfp_mask, order))
  1953. return NULL;
  1954. /*
  1955. * Check the zones suitable for the gfp_mask contain at least one
  1956. * valid zone. It's possible to have an empty zonelist as a result
  1957. * of GFP_THISNODE and a memoryless node
  1958. */
  1959. if (unlikely(!zonelist->_zonerefs->zone))
  1960. return NULL;
  1961. get_mems_allowed();
  1962. /* The preferred zone is used for statistics later */
  1963. first_zones_zonelist(zonelist, high_zoneidx,
  1964. nodemask ? : &cpuset_current_mems_allowed,
  1965. &preferred_zone);
  1966. if (!preferred_zone) {
  1967. put_mems_allowed();
  1968. return NULL;
  1969. }
  1970. /* First allocation attempt */
  1971. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
  1972. zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
  1973. preferred_zone, migratetype);
  1974. if (unlikely(!page))
  1975. page = __alloc_pages_slowpath(gfp_mask, order,
  1976. zonelist, high_zoneidx, nodemask,
  1977. preferred_zone, migratetype);
  1978. put_mems_allowed();
  1979. trace_mm_page_alloc(page, order, gfp_mask, migratetype);
  1980. return page;
  1981. }
  1982. EXPORT_SYMBOL(__alloc_pages_nodemask);
  1983. /*
  1984. * Common helper functions.
  1985. */
  1986. unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
  1987. {
  1988. struct page *page;
  1989. /*
  1990. * __get_free_pages() returns a 32-bit address, which cannot represent
  1991. * a highmem page
  1992. */
  1993. VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
  1994. page = alloc_pages(gfp_mask, order);
  1995. if (!page)
  1996. return 0;
  1997. return (unsigned long) page_address(page);
  1998. }
  1999. EXPORT_SYMBOL(__get_free_pages);
  2000. unsigned long get_zeroed_page(gfp_t gfp_mask)
  2001. {
  2002. return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
  2003. }
  2004. EXPORT_SYMBOL(get_zeroed_page);
  2005. void __pagevec_free(struct pagevec *pvec)
  2006. {
  2007. int i = pagevec_count(pvec);
  2008. while (--i >= 0) {
  2009. trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
  2010. free_hot_cold_page(pvec->pages[i], pvec->cold);
  2011. }
  2012. }
  2013. void __free_pages(struct page *page, unsigned int order)
  2014. {
  2015. if (put_page_testzero(page)) {
  2016. if (order == 0)
  2017. free_hot_cold_page(page, 0);
  2018. else
  2019. __free_pages_ok(page, order);
  2020. }
  2021. }
  2022. EXPORT_SYMBOL(__free_pages);
  2023. void free_pages(unsigned long addr, unsigned int order)
  2024. {
  2025. if (addr != 0) {
  2026. VM_BUG_ON(!virt_addr_valid((void *)addr));
  2027. __free_pages(virt_to_page((void *)addr), order);
  2028. }
  2029. }
  2030. EXPORT_SYMBOL(free_pages);
  2031. static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
  2032. {
  2033. if (addr) {
  2034. unsigned long alloc_end = addr + (PAGE_SIZE << order);
  2035. unsigned long used = addr + PAGE_ALIGN(size);
  2036. split_page(virt_to_page((void *)addr), order);
  2037. while (used < alloc_end) {
  2038. free_page(used);
  2039. used += PAGE_SIZE;
  2040. }
  2041. }
  2042. return (void *)addr;
  2043. }
  2044. /**
  2045. * alloc_pages_exact - allocate an exact number physically-contiguous pages.
  2046. * @size: the number of bytes to allocate
  2047. * @gfp_mask: GFP flags for the allocation
  2048. *
  2049. * This function is similar to alloc_pages(), except that it allocates the
  2050. * minimum number of pages to satisfy the request. alloc_pages() can only
  2051. * allocate memory in power-of-two pages.
  2052. *
  2053. * This function is also limited by MAX_ORDER.
  2054. *
  2055. * Memory allocated by this function must be released by free_pages_exact().
  2056. */
  2057. void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
  2058. {
  2059. unsigned int order = get_order(size);
  2060. unsigned long addr;
  2061. addr = __get_free_pages(gfp_mask, order);
  2062. return make_alloc_exact(addr, order, size);
  2063. }
  2064. EXPORT_SYMBOL(alloc_pages_exact);
  2065. /**
  2066. * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
  2067. * pages on a node.
  2068. * @nid: the preferred node ID where memory should be allocated
  2069. * @size: the number of bytes to allocate
  2070. * @gfp_mask: GFP flags for the allocation
  2071. *
  2072. * Like alloc_pages_exact(), but try to allocate on node nid first before falling
  2073. * back.
  2074. * Note this is not alloc_pages_exact_node() which allocates on a specific node,
  2075. * but is not exact.
  2076. */
  2077. void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
  2078. {
  2079. unsigned order = get_order(size);
  2080. struct page *p = alloc_pages_node(nid, gfp_mask, order);
  2081. if (!p)
  2082. return NULL;
  2083. return make_alloc_exact((unsigned long)page_address(p), order, size);
  2084. }
  2085. EXPORT_SYMBOL(alloc_pages_exact_nid);
  2086. /**
  2087. * free_pages_exact - release memory allocated via alloc_pages_exact()
  2088. * @virt: the value returned by alloc_pages_exact.
  2089. * @size: size of allocation, same value as passed to alloc_pages_exact().
  2090. *
  2091. * Release the memory allocated by a previous call to alloc_pages_exact.
  2092. */
  2093. void free_pages_exact(void *virt, size_t size)
  2094. {
  2095. unsigned long addr = (unsigned long)virt;
  2096. unsigned long end = addr + PAGE_ALIGN(size);
  2097. while (addr < end) {
  2098. free_page(addr);
  2099. addr += PAGE_SIZE;
  2100. }
  2101. }
  2102. EXPORT_SYMBOL(free_pages_exact);
  2103. static unsigned int nr_free_zone_pages(int offset)
  2104. {
  2105. struct zoneref *z;
  2106. struct zone *zone;
  2107. /* Just pick one node, since fallback list is circular */
  2108. unsigned int sum = 0;
  2109. struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
  2110. for_each_zone_zonelist(zone, z, zonelist, offset) {
  2111. unsigned long size = zone->present_pages;
  2112. unsigned long high = high_wmark_pages(zone);
  2113. if (size > high)
  2114. sum += size - high;
  2115. }
  2116. return sum;
  2117. }
  2118. /*
  2119. * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
  2120. */
  2121. unsigned int nr_free_buffer_pages(void)
  2122. {
  2123. return nr_free_zone_pages(gfp_zone(GFP_USER));
  2124. }
  2125. EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
  2126. /*
  2127. * Amount of free RAM allocatable within all zones
  2128. */
  2129. unsigned int nr_free_pagecache_pages(void)
  2130. {
  2131. return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
  2132. }
  2133. static inline void show_node(struct zone *zone)
  2134. {
  2135. if (NUMA_BUILD)
  2136. printk("Node %d ", zone_to_nid(zone));
  2137. }
  2138. void si_meminfo(struct sysinfo *val)
  2139. {
  2140. val->totalram = totalram_pages;
  2141. val->sharedram = 0;
  2142. val->freeram = global_page_state(NR_FREE_PAGES);
  2143. val->bufferram = nr_blockdev_pages();
  2144. val->totalhigh = totalhigh_pages;
  2145. val->freehigh = nr_free_highpages();
  2146. val->mem_unit = PAGE_SIZE;
  2147. }
  2148. EXPORT_SYMBOL(si_meminfo);
  2149. #ifdef CONFIG_NUMA
  2150. void si_meminfo_node(struct sysinfo *val, int nid)
  2151. {
  2152. pg_data_t *pgdat = NODE_DATA(nid);
  2153. val->totalram = pgdat->node_present_pages;
  2154. val->freeram = node_page_state(nid, NR_FREE_PAGES);
  2155. #ifdef CONFIG_HIGHMEM
  2156. val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
  2157. val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
  2158. NR_FREE_PAGES);
  2159. #else
  2160. val->totalhigh = 0;
  2161. val->freehigh = 0;
  2162. #endif
  2163. val->mem_unit = PAGE_SIZE;
  2164. }
  2165. #endif
  2166. /*
  2167. * Determine whether the node should be displayed or not, depending on whether
  2168. * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
  2169. */
  2170. bool skip_free_areas_node(unsigned int flags, int nid)
  2171. {
  2172. bool ret = false;
  2173. if (!(flags & SHOW_MEM_FILTER_NODES))
  2174. goto out;
  2175. get_mems_allowed();
  2176. ret = !node_isset(nid, cpuset_current_mems_allowed);
  2177. put_mems_allowed();
  2178. out:
  2179. return ret;
  2180. }
  2181. #define K(x) ((x) << (PAGE_SHIFT-10))
  2182. /*
  2183. * Show free area list (used inside shift_scroll-lock stuff)
  2184. * We also calculate the percentage fragmentation. We do this by counting the
  2185. * memory on each free list with the exception of the first item on the list.
  2186. * Suppresses nodes that are not allowed by current's cpuset if
  2187. * SHOW_MEM_FILTER_NODES is passed.
  2188. */
  2189. void show_free_areas(unsigned int filter)
  2190. {
  2191. int cpu;
  2192. struct zone *zone;
  2193. for_each_populated_zone(zone) {
  2194. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  2195. continue;
  2196. show_node(zone);
  2197. printk("%s per-cpu:\n", zone->name);
  2198. for_each_online_cpu(cpu) {
  2199. struct per_cpu_pageset *pageset;
  2200. pageset = per_cpu_ptr(zone->pageset, cpu);
  2201. printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
  2202. cpu, pageset->pcp.high,
  2203. pageset->pcp.batch, pageset->pcp.count);
  2204. }
  2205. }
  2206. printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
  2207. " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
  2208. " unevictable:%lu"
  2209. " dirty:%lu writeback:%lu unstable:%lu\n"
  2210. " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
  2211. " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
  2212. global_page_state(NR_ACTIVE_ANON),
  2213. global_page_state(NR_INACTIVE_ANON),
  2214. global_page_state(NR_ISOLATED_ANON),
  2215. global_page_state(NR_ACTIVE_FILE),
  2216. global_page_state(NR_INACTIVE_FILE),
  2217. global_page_state(NR_ISOLATED_FILE),
  2218. global_page_state(NR_UNEVICTABLE),
  2219. global_page_state(NR_FILE_DIRTY),
  2220. global_page_state(NR_WRITEBACK),
  2221. global_page_state(NR_UNSTABLE_NFS),
  2222. global_page_state(NR_FREE_PAGES),
  2223. global_page_state(NR_SLAB_RECLAIMABLE),
  2224. global_page_state(NR_SLAB_UNRECLAIMABLE),
  2225. global_page_state(NR_FILE_MAPPED),
  2226. global_page_state(NR_SHMEM),
  2227. global_page_state(NR_PAGETABLE),
  2228. global_page_state(NR_BOUNCE));
  2229. for_each_populated_zone(zone) {
  2230. int i;
  2231. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  2232. continue;
  2233. show_node(zone);
  2234. printk("%s"
  2235. " free:%lukB"
  2236. " min:%lukB"
  2237. " low:%lukB"
  2238. " high:%lukB"
  2239. " active_anon:%lukB"
  2240. " inactive_anon:%lukB"
  2241. " active_file:%lukB"
  2242. " inactive_file:%lukB"
  2243. " unevictable:%lukB"
  2244. " isolated(anon):%lukB"
  2245. " isolated(file):%lukB"
  2246. " present:%lukB"
  2247. " mlocked:%lukB"
  2248. " dirty:%lukB"
  2249. " writeback:%lukB"
  2250. " mapped:%lukB"
  2251. " shmem:%lukB"
  2252. " slab_reclaimable:%lukB"
  2253. " slab_unreclaimable:%lukB"
  2254. " kernel_stack:%lukB"
  2255. " pagetables:%lukB"
  2256. " unstable:%lukB"
  2257. " bounce:%lukB"
  2258. " writeback_tmp:%lukB"
  2259. " pages_scanned:%lu"
  2260. " all_unreclaimable? %s"
  2261. "\n",
  2262. zone->name,
  2263. K(zone_page_state(zone, NR_FREE_PAGES)),
  2264. K(min_wmark_pages(zone)),
  2265. K(low_wmark_pages(zone)),
  2266. K(high_wmark_pages(zone)),
  2267. K(zone_page_state(zone, NR_ACTIVE_ANON)),
  2268. K(zone_page_state(zone, NR_INACTIVE_ANON)),
  2269. K(zone_page_state(zone, NR_ACTIVE_FILE)),
  2270. K(zone_page_state(zone, NR_INACTIVE_FILE)),
  2271. K(zone_page_state(zone, NR_UNEVICTABLE)),
  2272. K(zone_page_state(zone, NR_ISOLATED_ANON)),
  2273. K(zone_page_state(zone, NR_ISOLATED_FILE)),
  2274. K(zone->present_pages),
  2275. K(zone_page_state(zone, NR_MLOCK)),
  2276. K(zone_page_state(zone, NR_FILE_DIRTY)),
  2277. K(zone_page_state(zone, NR_WRITEBACK)),
  2278. K(zone_page_state(zone, NR_FILE_MAPPED)),
  2279. K(zone_page_state(zone, NR_SHMEM)),
  2280. K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
  2281. K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
  2282. zone_page_state(zone, NR_KERNEL_STACK) *
  2283. THREAD_SIZE / 1024,
  2284. K(zone_page_state(zone, NR_PAGETABLE)),
  2285. K(zone_page_state(zone, NR_UNSTABLE_NFS)),
  2286. K(zone_page_state(zone, NR_BOUNCE)),
  2287. K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
  2288. zone->pages_scanned,
  2289. (zone->all_unreclaimable ? "yes" : "no")
  2290. );
  2291. printk("lowmem_reserve[]:");
  2292. for (i = 0; i < MAX_NR_ZONES; i++)
  2293. printk(" %lu", zone->lowmem_reserve[i]);
  2294. printk("\n");
  2295. }
  2296. for_each_populated_zone(zone) {
  2297. unsigned long nr[MAX_ORDER], flags, order, total = 0;
  2298. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  2299. continue;
  2300. show_node(zone);
  2301. printk("%s: ", zone->name);
  2302. spin_lock_irqsave(&zone->lock, flags);
  2303. for (order = 0; order < MAX_ORDER; order++) {
  2304. nr[order] = zone->free_area[order].nr_free;
  2305. total += nr[order] << order;
  2306. }
  2307. spin_unlock_irqrestore(&zone->lock, flags);
  2308. for (order = 0; order < MAX_ORDER; order++)
  2309. printk("%lu*%lukB ", nr[order], K(1UL) << order);
  2310. printk("= %lukB\n", K(total));
  2311. }
  2312. printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
  2313. show_swap_cache_info();
  2314. }
  2315. static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
  2316. {
  2317. zoneref->zone = zone;
  2318. zoneref->zone_idx = zone_idx(zone);
  2319. }
  2320. /*
  2321. * Builds allocation fallback zone lists.
  2322. *
  2323. * Add all populated zones of a node to the zonelist.
  2324. */
  2325. static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
  2326. int nr_zones, enum zone_type zone_type)
  2327. {
  2328. struct zone *zone;
  2329. BUG_ON(zone_type >= MAX_NR_ZONES);
  2330. zone_type++;
  2331. do {
  2332. zone_type--;
  2333. zone = pgdat->node_zones + zone_type;
  2334. if (populated_zone(zone)) {
  2335. zoneref_set_zone(zone,
  2336. &zonelist->_zonerefs[nr_zones++]);
  2337. check_highest_zone(zone_type);
  2338. }
  2339. } while (zone_type);
  2340. return nr_zones;
  2341. }
  2342. /*
  2343. * zonelist_order:
  2344. * 0 = automatic detection of better ordering.
  2345. * 1 = order by ([node] distance, -zonetype)
  2346. * 2 = order by (-zonetype, [node] distance)
  2347. *
  2348. * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
  2349. * the same zonelist. So only NUMA can configure this param.
  2350. */
  2351. #define ZONELIST_ORDER_DEFAULT 0
  2352. #define ZONELIST_ORDER_NODE 1
  2353. #define ZONELIST_ORDER_ZONE 2
  2354. /* zonelist order in the kernel.
  2355. * set_zonelist_order() will set this to NODE or ZONE.
  2356. */
  2357. static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
  2358. static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
  2359. #ifdef CONFIG_NUMA
  2360. /* The value user specified ....changed by config */
  2361. static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  2362. /* string for sysctl */
  2363. #define NUMA_ZONELIST_ORDER_LEN 16
  2364. char numa_zonelist_order[16] = "default";
  2365. /*
  2366. * interface for configure zonelist ordering.
  2367. * command line option "numa_zonelist_order"
  2368. * = "[dD]efault - default, automatic configuration.
  2369. * = "[nN]ode - order by node locality, then by zone within node
  2370. * = "[zZ]one - order by zone, then by locality within zone
  2371. */
  2372. static int __parse_numa_zonelist_order(char *s)
  2373. {
  2374. if (*s == 'd' || *s == 'D') {
  2375. user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  2376. } else if (*s == 'n' || *s == 'N') {
  2377. user_zonelist_order = ZONELIST_ORDER_NODE;
  2378. } else if (*s == 'z' || *s == 'Z') {
  2379. user_zonelist_order = ZONELIST_ORDER_ZONE;
  2380. } else {
  2381. printk(KERN_WARNING
  2382. "Ignoring invalid numa_zonelist_order value: "
  2383. "%s\n", s);
  2384. return -EINVAL;
  2385. }
  2386. return 0;
  2387. }
  2388. static __init int setup_numa_zonelist_order(char *s)
  2389. {
  2390. int ret;
  2391. if (!s)
  2392. return 0;
  2393. ret = __parse_numa_zonelist_order(s);
  2394. if (ret == 0)
  2395. strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
  2396. return ret;
  2397. }
  2398. early_param("numa_zonelist_order", setup_numa_zonelist_order);
  2399. /*
  2400. * sysctl handler for numa_zonelist_order
  2401. */
  2402. int numa_zonelist_order_handler(ctl_table *table, int write,
  2403. void __user *buffer, size_t *length,
  2404. loff_t *ppos)
  2405. {
  2406. char saved_string[NUMA_ZONELIST_ORDER_LEN];
  2407. int ret;
  2408. static DEFINE_MUTEX(zl_order_mutex);
  2409. mutex_lock(&zl_order_mutex);
  2410. if (write)
  2411. strcpy(saved_string, (char*)table->data);
  2412. ret = proc_dostring(table, write, buffer, length, ppos);
  2413. if (ret)
  2414. goto out;
  2415. if (write) {
  2416. int oldval = user_zonelist_order;
  2417. if (__parse_numa_zonelist_order((char*)table->data)) {
  2418. /*
  2419. * bogus value. restore saved string
  2420. */
  2421. strncpy((char*)table->data, saved_string,
  2422. NUMA_ZONELIST_ORDER_LEN);
  2423. user_zonelist_order = oldval;
  2424. } else if (oldval != user_zonelist_order) {
  2425. mutex_lock(&zonelists_mutex);
  2426. build_all_zonelists(NULL);
  2427. mutex_unlock(&zonelists_mutex);
  2428. }
  2429. }
  2430. out:
  2431. mutex_unlock(&zl_order_mutex);
  2432. return ret;
  2433. }
  2434. #define MAX_NODE_LOAD (nr_online_nodes)
  2435. static int node_load[MAX_NUMNODES];
  2436. /**
  2437. * find_next_best_node - find the next node that should appear in a given node's fallback list
  2438. * @node: node whose fallback list we're appending
  2439. * @used_node_mask: nodemask_t of already used nodes
  2440. *
  2441. * We use a number of factors to determine which is the next node that should
  2442. * appear on a given node's fallback list. The node should not have appeared
  2443. * already in @node's fallback list, and it should be the next closest node
  2444. * according to the distance array (which contains arbitrary distance values
  2445. * from each node to each node in the system), and should also prefer nodes
  2446. * with no CPUs, since presumably they'll have very little allocation pressure
  2447. * on them otherwise.
  2448. * It returns -1 if no node is found.
  2449. */
  2450. static int find_next_best_node(int node, nodemask_t *used_node_mask)
  2451. {
  2452. int n, val;
  2453. int min_val = INT_MAX;
  2454. int best_node = -1;
  2455. const struct cpumask *tmp = cpumask_of_node(0);
  2456. /* Use the local node if we haven't already */
  2457. if (!node_isset(node, *used_node_mask)) {
  2458. node_set(node, *used_node_mask);
  2459. return node;
  2460. }
  2461. for_each_node_state(n, N_HIGH_MEMORY) {
  2462. /* Don't want a node to appear more than once */
  2463. if (node_isset(n, *used_node_mask))
  2464. continue;
  2465. /* Use the distance array to find the distance */
  2466. val = node_distance(node, n);
  2467. /* Penalize nodes under us ("prefer the next node") */
  2468. val += (n < node);
  2469. /* Give preference to headless and unused nodes */
  2470. tmp = cpumask_of_node(n);
  2471. if (!cpumask_empty(tmp))
  2472. val += PENALTY_FOR_NODE_WITH_CPUS;
  2473. /* Slight preference for less loaded node */
  2474. val *= (MAX_NODE_LOAD*MAX_NUMNODES);
  2475. val += node_load[n];
  2476. if (val < min_val) {
  2477. min_val = val;
  2478. best_node = n;
  2479. }
  2480. }
  2481. if (best_node >= 0)
  2482. node_set(best_node, *used_node_mask);
  2483. return best_node;
  2484. }
  2485. /*
  2486. * Build zonelists ordered by node and zones within node.
  2487. * This results in maximum locality--normal zone overflows into local
  2488. * DMA zone, if any--but risks exhausting DMA zone.
  2489. */
  2490. static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
  2491. {
  2492. int j;
  2493. struct zonelist *zonelist;
  2494. zonelist = &pgdat->node_zonelists[0];
  2495. for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
  2496. ;
  2497. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  2498. MAX_NR_ZONES - 1);
  2499. zonelist->_zonerefs[j].zone = NULL;
  2500. zonelist->_zonerefs[j].zone_idx = 0;
  2501. }
  2502. /*
  2503. * Build gfp_thisnode zonelists
  2504. */
  2505. static void build_thisnode_zonelists(pg_data_t *pgdat)
  2506. {
  2507. int j;
  2508. struct zonelist *zonelist;
  2509. zonelist = &pgdat->node_zonelists[1];
  2510. j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
  2511. zonelist->_zonerefs[j].zone = NULL;
  2512. zonelist->_zonerefs[j].zone_idx = 0;
  2513. }
  2514. /*
  2515. * Build zonelists ordered by zone and nodes within zones.
  2516. * This results in conserving DMA zone[s] until all Normal memory is
  2517. * exhausted, but results in overflowing to remote node while memory
  2518. * may still exist in local DMA zone.
  2519. */
  2520. static int node_order[MAX_NUMNODES];
  2521. static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
  2522. {
  2523. int pos, j, node;
  2524. int zone_type; /* needs to be signed */
  2525. struct zone *z;
  2526. struct zonelist *zonelist;
  2527. zonelist = &pgdat->node_zonelists[0];
  2528. pos = 0;
  2529. for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
  2530. for (j = 0; j < nr_nodes; j++) {
  2531. node = node_order[j];
  2532. z = &NODE_DATA(node)->node_zones[zone_type];
  2533. if (populated_zone(z)) {
  2534. zoneref_set_zone(z,
  2535. &zonelist->_zonerefs[pos++]);
  2536. check_highest_zone(zone_type);
  2537. }
  2538. }
  2539. }
  2540. zonelist->_zonerefs[pos].zone = NULL;
  2541. zonelist->_zonerefs[pos].zone_idx = 0;
  2542. }
  2543. static int default_zonelist_order(void)
  2544. {
  2545. int nid, zone_type;
  2546. unsigned long low_kmem_size,total_size;
  2547. struct zone *z;
  2548. int average_size;
  2549. /*
  2550. * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
  2551. * If they are really small and used heavily, the system can fall
  2552. * into OOM very easily.
  2553. * This function detect ZONE_DMA/DMA32 size and configures zone order.
  2554. */
  2555. /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
  2556. low_kmem_size = 0;
  2557. total_size = 0;
  2558. for_each_online_node(nid) {
  2559. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  2560. z = &NODE_DATA(nid)->node_zones[zone_type];
  2561. if (populated_zone(z)) {
  2562. if (zone_type < ZONE_NORMAL)
  2563. low_kmem_size += z->present_pages;
  2564. total_size += z->present_pages;
  2565. } else if (zone_type == ZONE_NORMAL) {
  2566. /*
  2567. * If any node has only lowmem, then node order
  2568. * is preferred to allow kernel allocations
  2569. * locally; otherwise, they can easily infringe
  2570. * on other nodes when there is an abundance of
  2571. * lowmem available to allocate from.
  2572. */
  2573. return ZONELIST_ORDER_NODE;
  2574. }
  2575. }
  2576. }
  2577. if (!low_kmem_size || /* there are no DMA area. */
  2578. low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
  2579. return ZONELIST_ORDER_NODE;
  2580. /*
  2581. * look into each node's config.
  2582. * If there is a node whose DMA/DMA32 memory is very big area on
  2583. * local memory, NODE_ORDER may be suitable.
  2584. */
  2585. average_size = total_size /
  2586. (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
  2587. for_each_online_node(nid) {
  2588. low_kmem_size = 0;
  2589. total_size = 0;
  2590. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  2591. z = &NODE_DATA(nid)->node_zones[zone_type];
  2592. if (populated_zone(z)) {
  2593. if (zone_type < ZONE_NORMAL)
  2594. low_kmem_size += z->present_pages;
  2595. total_size += z->present_pages;
  2596. }
  2597. }
  2598. if (low_kmem_size &&
  2599. total_size > average_size && /* ignore small node */
  2600. low_kmem_size > total_size * 70/100)
  2601. return ZONELIST_ORDER_NODE;
  2602. }
  2603. return ZONELIST_ORDER_ZONE;
  2604. }
  2605. static void set_zonelist_order(void)
  2606. {
  2607. if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
  2608. current_zonelist_order = default_zonelist_order();
  2609. else
  2610. current_zonelist_order = user_zonelist_order;
  2611. }
  2612. static void build_zonelists(pg_data_t *pgdat)
  2613. {
  2614. int j, node, load;
  2615. enum zone_type i;
  2616. nodemask_t used_mask;
  2617. int local_node, prev_node;
  2618. struct zonelist *zonelist;
  2619. int order = current_zonelist_order;
  2620. /* initialize zonelists */
  2621. for (i = 0; i < MAX_ZONELISTS; i++) {
  2622. zonelist = pgdat->node_zonelists + i;
  2623. zonelist->_zonerefs[0].zone = NULL;
  2624. zonelist->_zonerefs[0].zone_idx = 0;
  2625. }
  2626. /* NUMA-aware ordering of nodes */
  2627. local_node = pgdat->node_id;
  2628. load = nr_online_nodes;
  2629. prev_node = local_node;
  2630. nodes_clear(used_mask);
  2631. memset(node_order, 0, sizeof(node_order));
  2632. j = 0;
  2633. while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
  2634. int distance = node_distance(local_node, node);
  2635. /*
  2636. * If another node is sufficiently far away then it is better
  2637. * to reclaim pages in a zone before going off node.
  2638. */
  2639. if (distance > RECLAIM_DISTANCE)
  2640. zone_reclaim_mode = 1;
  2641. /*
  2642. * We don't want to pressure a particular node.
  2643. * So adding penalty to the first node in same
  2644. * distance group to make it round-robin.
  2645. */
  2646. if (distance != node_distance(local_node, prev_node))
  2647. node_load[node] = load;
  2648. prev_node = node;
  2649. load--;
  2650. if (order == ZONELIST_ORDER_NODE)
  2651. build_zonelists_in_node_order(pgdat, node);
  2652. else
  2653. node_order[j++] = node; /* remember order */
  2654. }
  2655. if (order == ZONELIST_ORDER_ZONE) {
  2656. /* calculate node order -- i.e., DMA last! */
  2657. build_zonelists_in_zone_order(pgdat, j);
  2658. }
  2659. build_thisnode_zonelists(pgdat);
  2660. }
  2661. /* Construct the zonelist performance cache - see further mmzone.h */
  2662. static void build_zonelist_cache(pg_data_t *pgdat)
  2663. {
  2664. struct zonelist *zonelist;
  2665. struct zonelist_cache *zlc;
  2666. struct zoneref *z;
  2667. zonelist = &pgdat->node_zonelists[0];
  2668. zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
  2669. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  2670. for (z = zonelist->_zonerefs; z->zone; z++)
  2671. zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
  2672. }
  2673. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  2674. /*
  2675. * Return node id of node used for "local" allocations.
  2676. * I.e., first node id of first zone in arg node's generic zonelist.
  2677. * Used for initializing percpu 'numa_mem', which is used primarily
  2678. * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
  2679. */
  2680. int local_memory_node(int node)
  2681. {
  2682. struct zone *zone;
  2683. (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
  2684. gfp_zone(GFP_KERNEL),
  2685. NULL,
  2686. &zone);
  2687. return zone->node;
  2688. }
  2689. #endif
  2690. #else /* CONFIG_NUMA */
  2691. static void set_zonelist_order(void)
  2692. {
  2693. current_zonelist_order = ZONELIST_ORDER_ZONE;
  2694. }
  2695. static void build_zonelists(pg_data_t *pgdat)
  2696. {
  2697. int node, local_node;
  2698. enum zone_type j;
  2699. struct zonelist *zonelist;
  2700. local_node = pgdat->node_id;
  2701. zonelist = &pgdat->node_zonelists[0];
  2702. j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
  2703. /*
  2704. * Now we build the zonelist so that it contains the zones
  2705. * of all the other nodes.
  2706. * We don't want to pressure a particular node, so when
  2707. * building the zones for node N, we make sure that the
  2708. * zones coming right after the local ones are those from
  2709. * node N+1 (modulo N)
  2710. */
  2711. for (node = local_node + 1; node < MAX_NUMNODES; node++) {
  2712. if (!node_online(node))
  2713. continue;
  2714. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  2715. MAX_NR_ZONES - 1);
  2716. }
  2717. for (node = 0; node < local_node; node++) {
  2718. if (!node_online(node))
  2719. continue;
  2720. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  2721. MAX_NR_ZONES - 1);
  2722. }
  2723. zonelist->_zonerefs[j].zone = NULL;
  2724. zonelist->_zonerefs[j].zone_idx = 0;
  2725. }
  2726. /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
  2727. static void build_zonelist_cache(pg_data_t *pgdat)
  2728. {
  2729. pgdat->node_zonelists[0].zlcache_ptr = NULL;
  2730. }
  2731. #endif /* CONFIG_NUMA */
  2732. /*
  2733. * Boot pageset table. One per cpu which is going to be used for all
  2734. * zones and all nodes. The parameters will be set in such a way
  2735. * that an item put on a list will immediately be handed over to
  2736. * the buddy list. This is safe since pageset manipulation is done
  2737. * with interrupts disabled.
  2738. *
  2739. * The boot_pagesets must be kept even after bootup is complete for
  2740. * unused processors and/or zones. They do play a role for bootstrapping
  2741. * hotplugged processors.
  2742. *
  2743. * zoneinfo_show() and maybe other functions do
  2744. * not check if the processor is online before following the pageset pointer.
  2745. * Other parts of the kernel may not check if the zone is available.
  2746. */
  2747. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
  2748. static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
  2749. static void setup_zone_pageset(struct zone *zone);
  2750. /*
  2751. * Global mutex to protect against size modification of zonelists
  2752. * as well as to serialize pageset setup for the new populated zone.
  2753. */
  2754. DEFINE_MUTEX(zonelists_mutex);
  2755. /* return values int ....just for stop_machine() */
  2756. static __init_refok int __build_all_zonelists(void *data)
  2757. {
  2758. int nid;
  2759. int cpu;
  2760. #ifdef CONFIG_NUMA
  2761. memset(node_load, 0, sizeof(node_load));
  2762. #endif
  2763. for_each_online_node(nid) {
  2764. pg_data_t *pgdat = NODE_DATA(nid);
  2765. build_zonelists(pgdat);
  2766. build_zonelist_cache(pgdat);
  2767. }
  2768. /*
  2769. * Initialize the boot_pagesets that are going to be used
  2770. * for bootstrapping processors. The real pagesets for
  2771. * each zone will be allocated later when the per cpu
  2772. * allocator is available.
  2773. *
  2774. * boot_pagesets are used also for bootstrapping offline
  2775. * cpus if the system is already booted because the pagesets
  2776. * are needed to initialize allocators on a specific cpu too.
  2777. * F.e. the percpu allocator needs the page allocator which
  2778. * needs the percpu allocator in order to allocate its pagesets
  2779. * (a chicken-egg dilemma).
  2780. */
  2781. for_each_possible_cpu(cpu) {
  2782. setup_pageset(&per_cpu(boot_pageset, cpu), 0);
  2783. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  2784. /*
  2785. * We now know the "local memory node" for each node--
  2786. * i.e., the node of the first zone in the generic zonelist.
  2787. * Set up numa_mem percpu variable for on-line cpus. During
  2788. * boot, only the boot cpu should be on-line; we'll init the
  2789. * secondary cpus' numa_mem as they come on-line. During
  2790. * node/memory hotplug, we'll fixup all on-line cpus.
  2791. */
  2792. if (cpu_online(cpu))
  2793. set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
  2794. #endif
  2795. }
  2796. return 0;
  2797. }
  2798. /*
  2799. * Called with zonelists_mutex held always
  2800. * unless system_state == SYSTEM_BOOTING.
  2801. */
  2802. void __ref build_all_zonelists(void *data)
  2803. {
  2804. set_zonelist_order();
  2805. if (system_state == SYSTEM_BOOTING) {
  2806. __build_all_zonelists(NULL);
  2807. mminit_verify_zonelist();
  2808. cpuset_init_current_mems_allowed();
  2809. } else {
  2810. /* we have to stop all cpus to guarantee there is no user
  2811. of zonelist */
  2812. #ifdef CONFIG_MEMORY_HOTPLUG
  2813. if (data)
  2814. setup_zone_pageset((struct zone *)data);
  2815. #endif
  2816. stop_machine(__build_all_zonelists, NULL, NULL);
  2817. /* cpuset refresh routine should be here */
  2818. }
  2819. vm_total_pages = nr_free_pagecache_pages();
  2820. /*
  2821. * Disable grouping by mobility if the number of pages in the
  2822. * system is too low to allow the mechanism to work. It would be
  2823. * more accurate, but expensive to check per-zone. This check is
  2824. * made on memory-hotadd so a system can start with mobility
  2825. * disabled and enable it later
  2826. */
  2827. if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
  2828. page_group_by_mobility_disabled = 1;
  2829. else
  2830. page_group_by_mobility_disabled = 0;
  2831. printk("Built %i zonelists in %s order, mobility grouping %s. "
  2832. "Total pages: %ld\n",
  2833. nr_online_nodes,
  2834. zonelist_order_name[current_zonelist_order],
  2835. page_group_by_mobility_disabled ? "off" : "on",
  2836. vm_total_pages);
  2837. #ifdef CONFIG_NUMA
  2838. printk("Policy zone: %s\n", zone_names[policy_zone]);
  2839. #endif
  2840. }
  2841. /*
  2842. * Helper functions to size the waitqueue hash table.
  2843. * Essentially these want to choose hash table sizes sufficiently
  2844. * large so that collisions trying to wait on pages are rare.
  2845. * But in fact, the number of active page waitqueues on typical
  2846. * systems is ridiculously low, less than 200. So this is even
  2847. * conservative, even though it seems large.
  2848. *
  2849. * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
  2850. * waitqueues, i.e. the size of the waitq table given the number of pages.
  2851. */
  2852. #define PAGES_PER_WAITQUEUE 256
  2853. #ifndef CONFIG_MEMORY_HOTPLUG
  2854. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  2855. {
  2856. unsigned long size = 1;
  2857. pages /= PAGES_PER_WAITQUEUE;
  2858. while (size < pages)
  2859. size <<= 1;
  2860. /*
  2861. * Once we have dozens or even hundreds of threads sleeping
  2862. * on IO we've got bigger problems than wait queue collision.
  2863. * Limit the size of the wait table to a reasonable size.
  2864. */
  2865. size = min(size, 4096UL);
  2866. return max(size, 4UL);
  2867. }
  2868. #else
  2869. /*
  2870. * A zone's size might be changed by hot-add, so it is not possible to determine
  2871. * a suitable size for its wait_table. So we use the maximum size now.
  2872. *
  2873. * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
  2874. *
  2875. * i386 (preemption config) : 4096 x 16 = 64Kbyte.
  2876. * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
  2877. * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
  2878. *
  2879. * The maximum entries are prepared when a zone's memory is (512K + 256) pages
  2880. * or more by the traditional way. (See above). It equals:
  2881. *
  2882. * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
  2883. * ia64(16K page size) : = ( 8G + 4M)byte.
  2884. * powerpc (64K page size) : = (32G +16M)byte.
  2885. */
  2886. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  2887. {
  2888. return 4096UL;
  2889. }
  2890. #endif
  2891. /*
  2892. * This is an integer logarithm so that shifts can be used later
  2893. * to extract the more random high bits from the multiplicative
  2894. * hash function before the remainder is taken.
  2895. */
  2896. static inline unsigned long wait_table_bits(unsigned long size)
  2897. {
  2898. return ffz(~size);
  2899. }
  2900. #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
  2901. /*
  2902. * Check if a pageblock contains reserved pages
  2903. */
  2904. static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
  2905. {
  2906. unsigned long pfn;
  2907. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  2908. if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
  2909. return 1;
  2910. }
  2911. return 0;
  2912. }
  2913. /*
  2914. * Mark a number of pageblocks as MIGRATE_RESERVE. The number
  2915. * of blocks reserved is based on min_wmark_pages(zone). The memory within
  2916. * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
  2917. * higher will lead to a bigger reserve which will get freed as contiguous
  2918. * blocks as reclaim kicks in
  2919. */
  2920. static void setup_zone_migrate_reserve(struct zone *zone)
  2921. {
  2922. unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
  2923. struct page *page;
  2924. unsigned long block_migratetype;
  2925. int reserve;
  2926. /* Get the start pfn, end pfn and the number of blocks to reserve */
  2927. start_pfn = zone->zone_start_pfn;
  2928. end_pfn = start_pfn + zone->spanned_pages;
  2929. reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
  2930. pageblock_order;
  2931. /*
  2932. * Reserve blocks are generally in place to help high-order atomic
  2933. * allocations that are short-lived. A min_free_kbytes value that
  2934. * would result in more than 2 reserve blocks for atomic allocations
  2935. * is assumed to be in place to help anti-fragmentation for the
  2936. * future allocation of hugepages at runtime.
  2937. */
  2938. reserve = min(2, reserve);
  2939. for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
  2940. if (!pfn_valid(pfn))
  2941. continue;
  2942. page = pfn_to_page(pfn);
  2943. /* Watch out for overlapping nodes */
  2944. if (page_to_nid(page) != zone_to_nid(zone))
  2945. continue;
  2946. /* Blocks with reserved pages will never free, skip them. */
  2947. block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
  2948. if (pageblock_is_reserved(pfn, block_end_pfn))
  2949. continue;
  2950. block_migratetype = get_pageblock_migratetype(page);
  2951. /* If this block is reserved, account for it */
  2952. if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
  2953. reserve--;
  2954. continue;
  2955. }
  2956. /* Suitable for reserving if this block is movable */
  2957. if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
  2958. set_pageblock_migratetype(page, MIGRATE_RESERVE);
  2959. move_freepages_block(zone, page, MIGRATE_RESERVE);
  2960. reserve--;
  2961. continue;
  2962. }
  2963. /*
  2964. * If the reserve is met and this is a previous reserved block,
  2965. * take it back
  2966. */
  2967. if (block_migratetype == MIGRATE_RESERVE) {
  2968. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  2969. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  2970. }
  2971. }
  2972. }
  2973. /*
  2974. * Initially all pages are reserved - free ones are freed
  2975. * up by free_all_bootmem() once the early boot process is
  2976. * done. Non-atomic initialization, single-pass.
  2977. */
  2978. void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
  2979. unsigned long start_pfn, enum memmap_context context)
  2980. {
  2981. struct page *page;
  2982. unsigned long end_pfn = start_pfn + size;
  2983. unsigned long pfn;
  2984. struct zone *z;
  2985. if (highest_memmap_pfn < end_pfn - 1)
  2986. highest_memmap_pfn = end_pfn - 1;
  2987. z = &NODE_DATA(nid)->node_zones[zone];
  2988. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  2989. /*
  2990. * There can be holes in boot-time mem_map[]s
  2991. * handed to this function. They do not
  2992. * exist on hotplugged memory.
  2993. */
  2994. if (context == MEMMAP_EARLY) {
  2995. if (!early_pfn_valid(pfn))
  2996. continue;
  2997. if (!early_pfn_in_nid(pfn, nid))
  2998. continue;
  2999. }
  3000. page = pfn_to_page(pfn);
  3001. set_page_links(page, zone, nid, pfn);
  3002. mminit_verify_page_links(page, zone, nid, pfn);
  3003. init_page_count(page);
  3004. reset_page_mapcount(page);
  3005. SetPageReserved(page);
  3006. /*
  3007. * Mark the block movable so that blocks are reserved for
  3008. * movable at startup. This will force kernel allocations
  3009. * to reserve their blocks rather than leaking throughout
  3010. * the address space during boot when many long-lived
  3011. * kernel allocations are made. Later some blocks near
  3012. * the start are marked MIGRATE_RESERVE by
  3013. * setup_zone_migrate_reserve()
  3014. *
  3015. * bitmap is created for zone's valid pfn range. but memmap
  3016. * can be created for invalid pages (for alignment)
  3017. * check here not to call set_pageblock_migratetype() against
  3018. * pfn out of zone.
  3019. */
  3020. if ((z->zone_start_pfn <= pfn)
  3021. && (pfn < z->zone_start_pfn + z->spanned_pages)
  3022. && !(pfn & (pageblock_nr_pages - 1)))
  3023. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  3024. INIT_LIST_HEAD(&page->lru);
  3025. #ifdef WANT_PAGE_VIRTUAL
  3026. /* The shift won't overflow because ZONE_NORMAL is below 4G. */
  3027. if (!is_highmem_idx(zone))
  3028. set_page_address(page, __va(pfn << PAGE_SHIFT));
  3029. #endif
  3030. }
  3031. }
  3032. static void __meminit zone_init_free_lists(struct zone *zone)
  3033. {
  3034. int order, t;
  3035. for_each_migratetype_order(order, t) {
  3036. INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
  3037. zone->free_area[order].nr_free = 0;
  3038. }
  3039. }
  3040. #ifndef __HAVE_ARCH_MEMMAP_INIT
  3041. #define memmap_init(size, nid, zone, start_pfn) \
  3042. memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
  3043. #endif
  3044. static int zone_batchsize(struct zone *zone)
  3045. {
  3046. #ifdef CONFIG_MMU
  3047. int batch;
  3048. /*
  3049. * The per-cpu-pages pools are set to around 1000th of the
  3050. * size of the zone. But no more than 1/2 of a meg.
  3051. *
  3052. * OK, so we don't know how big the cache is. So guess.
  3053. */
  3054. batch = zone->present_pages / 1024;
  3055. if (batch * PAGE_SIZE > 512 * 1024)
  3056. batch = (512 * 1024) / PAGE_SIZE;
  3057. batch /= 4; /* We effectively *= 4 below */
  3058. if (batch < 1)
  3059. batch = 1;
  3060. /*
  3061. * Clamp the batch to a 2^n - 1 value. Having a power
  3062. * of 2 value was found to be more likely to have
  3063. * suboptimal cache aliasing properties in some cases.
  3064. *
  3065. * For example if 2 tasks are alternately allocating
  3066. * batches of pages, one task can end up with a lot
  3067. * of pages of one half of the possible page colors
  3068. * and the other with pages of the other colors.
  3069. */
  3070. batch = rounddown_pow_of_two(batch + batch/2) - 1;
  3071. return batch;
  3072. #else
  3073. /* The deferral and batching of frees should be suppressed under NOMMU
  3074. * conditions.
  3075. *
  3076. * The problem is that NOMMU needs to be able to allocate large chunks
  3077. * of contiguous memory as there's no hardware page translation to
  3078. * assemble apparent contiguous memory from discontiguous pages.
  3079. *
  3080. * Queueing large contiguous runs of pages for batching, however,
  3081. * causes the pages to actually be freed in smaller chunks. As there
  3082. * can be a significant delay between the individual batches being
  3083. * recycled, this leads to the once large chunks of space being
  3084. * fragmented and becoming unavailable for high-order allocations.
  3085. */
  3086. return 0;
  3087. #endif
  3088. }
  3089. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
  3090. {
  3091. struct per_cpu_pages *pcp;
  3092. int migratetype;
  3093. memset(p, 0, sizeof(*p));
  3094. pcp = &p->pcp;
  3095. pcp->count = 0;
  3096. pcp->high = 6 * batch;
  3097. pcp->batch = max(1UL, 1 * batch);
  3098. for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
  3099. INIT_LIST_HEAD(&pcp->lists[migratetype]);
  3100. }
  3101. /*
  3102. * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
  3103. * to the value high for the pageset p.
  3104. */
  3105. static void setup_pagelist_highmark(struct per_cpu_pageset *p,
  3106. unsigned long high)
  3107. {
  3108. struct per_cpu_pages *pcp;
  3109. pcp = &p->pcp;
  3110. pcp->high = high;
  3111. pcp->batch = max(1UL, high/4);
  3112. if ((high/4) > (PAGE_SHIFT * 8))
  3113. pcp->batch = PAGE_SHIFT * 8;
  3114. }
  3115. static void setup_zone_pageset(struct zone *zone)
  3116. {
  3117. int cpu;
  3118. zone->pageset = alloc_percpu(struct per_cpu_pageset);
  3119. for_each_possible_cpu(cpu) {
  3120. struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
  3121. setup_pageset(pcp, zone_batchsize(zone));
  3122. if (percpu_pagelist_fraction)
  3123. setup_pagelist_highmark(pcp,
  3124. (zone->present_pages /
  3125. percpu_pagelist_fraction));
  3126. }
  3127. }
  3128. /*
  3129. * Allocate per cpu pagesets and initialize them.
  3130. * Before this call only boot pagesets were available.
  3131. */
  3132. void __init setup_per_cpu_pageset(void)
  3133. {
  3134. struct zone *zone;
  3135. for_each_populated_zone(zone)
  3136. setup_zone_pageset(zone);
  3137. }
  3138. static noinline __init_refok
  3139. int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
  3140. {
  3141. int i;
  3142. struct pglist_data *pgdat = zone->zone_pgdat;
  3143. size_t alloc_size;
  3144. /*
  3145. * The per-page waitqueue mechanism uses hashed waitqueues
  3146. * per zone.
  3147. */
  3148. zone->wait_table_hash_nr_entries =
  3149. wait_table_hash_nr_entries(zone_size_pages);
  3150. zone->wait_table_bits =
  3151. wait_table_bits(zone->wait_table_hash_nr_entries);
  3152. alloc_size = zone->wait_table_hash_nr_entries
  3153. * sizeof(wait_queue_head_t);
  3154. if (!slab_is_available()) {
  3155. zone->wait_table = (wait_queue_head_t *)
  3156. alloc_bootmem_node_nopanic(pgdat, alloc_size);
  3157. } else {
  3158. /*
  3159. * This case means that a zone whose size was 0 gets new memory
  3160. * via memory hot-add.
  3161. * But it may be the case that a new node was hot-added. In
  3162. * this case vmalloc() will not be able to use this new node's
  3163. * memory - this wait_table must be initialized to use this new
  3164. * node itself as well.
  3165. * To use this new node's memory, further consideration will be
  3166. * necessary.
  3167. */
  3168. zone->wait_table = vmalloc(alloc_size);
  3169. }
  3170. if (!zone->wait_table)
  3171. return -ENOMEM;
  3172. for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
  3173. init_waitqueue_head(zone->wait_table + i);
  3174. return 0;
  3175. }
  3176. static int __zone_pcp_update(void *data)
  3177. {
  3178. struct zone *zone = data;
  3179. int cpu;
  3180. unsigned long batch = zone_batchsize(zone), flags;
  3181. for_each_possible_cpu(cpu) {
  3182. struct per_cpu_pageset *pset;
  3183. struct per_cpu_pages *pcp;
  3184. pset = per_cpu_ptr(zone->pageset, cpu);
  3185. pcp = &pset->pcp;
  3186. local_irq_save(flags);
  3187. free_pcppages_bulk(zone, pcp->count, pcp);
  3188. setup_pageset(pset, batch);
  3189. local_irq_restore(flags);
  3190. }
  3191. return 0;
  3192. }
  3193. void zone_pcp_update(struct zone *zone)
  3194. {
  3195. stop_machine(__zone_pcp_update, zone, NULL);
  3196. }
  3197. static __meminit void zone_pcp_init(struct zone *zone)
  3198. {
  3199. /*
  3200. * per cpu subsystem is not up at this point. The following code
  3201. * relies on the ability of the linker to provide the
  3202. * offset of a (static) per cpu variable into the per cpu area.
  3203. */
  3204. zone->pageset = &boot_pageset;
  3205. if (zone->present_pages)
  3206. printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
  3207. zone->name, zone->present_pages,
  3208. zone_batchsize(zone));
  3209. }
  3210. __meminit int init_currently_empty_zone(struct zone *zone,
  3211. unsigned long zone_start_pfn,
  3212. unsigned long size,
  3213. enum memmap_context context)
  3214. {
  3215. struct pglist_data *pgdat = zone->zone_pgdat;
  3216. int ret;
  3217. ret = zone_wait_table_init(zone, size);
  3218. if (ret)
  3219. return ret;
  3220. pgdat->nr_zones = zone_idx(zone) + 1;
  3221. zone->zone_start_pfn = zone_start_pfn;
  3222. mminit_dprintk(MMINIT_TRACE, "memmap_init",
  3223. "Initialising map node %d zone %lu pfns %lu -> %lu\n",
  3224. pgdat->node_id,
  3225. (unsigned long)zone_idx(zone),
  3226. zone_start_pfn, (zone_start_pfn + size));
  3227. zone_init_free_lists(zone);
  3228. return 0;
  3229. }
  3230. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  3231. #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  3232. /*
  3233. * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
  3234. * Architectures may implement their own version but if add_active_range()
  3235. * was used and there are no special requirements, this is a convenient
  3236. * alternative
  3237. */
  3238. int __meminit __early_pfn_to_nid(unsigned long pfn)
  3239. {
  3240. unsigned long start_pfn, end_pfn;
  3241. int i, nid;
  3242. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
  3243. if (start_pfn <= pfn && pfn < end_pfn)
  3244. return nid;
  3245. /* This is a memory hole */
  3246. return -1;
  3247. }
  3248. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  3249. int __meminit early_pfn_to_nid(unsigned long pfn)
  3250. {
  3251. int nid;
  3252. nid = __early_pfn_to_nid(pfn);
  3253. if (nid >= 0)
  3254. return nid;
  3255. /* just returns 0 */
  3256. return 0;
  3257. }
  3258. #ifdef CONFIG_NODES_SPAN_OTHER_NODES
  3259. bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
  3260. {
  3261. int nid;
  3262. nid = __early_pfn_to_nid(pfn);
  3263. if (nid >= 0 && nid != node)
  3264. return false;
  3265. return true;
  3266. }
  3267. #endif
  3268. /**
  3269. * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
  3270. * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
  3271. * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
  3272. *
  3273. * If an architecture guarantees that all ranges registered with
  3274. * add_active_ranges() contain no holes and may be freed, this
  3275. * this function may be used instead of calling free_bootmem() manually.
  3276. */
  3277. void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
  3278. {
  3279. unsigned long start_pfn, end_pfn;
  3280. int i, this_nid;
  3281. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
  3282. start_pfn = min(start_pfn, max_low_pfn);
  3283. end_pfn = min(end_pfn, max_low_pfn);
  3284. if (start_pfn < end_pfn)
  3285. free_bootmem_node(NODE_DATA(this_nid),
  3286. PFN_PHYS(start_pfn),
  3287. (end_pfn - start_pfn) << PAGE_SHIFT);
  3288. }
  3289. }
  3290. int __init add_from_early_node_map(struct range *range, int az,
  3291. int nr_range, int nid)
  3292. {
  3293. unsigned long start_pfn, end_pfn;
  3294. int i;
  3295. /* need to go over early_node_map to find out good range for node */
  3296. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL)
  3297. nr_range = add_range(range, az, nr_range, start_pfn, end_pfn);
  3298. return nr_range;
  3299. }
  3300. /**
  3301. * sparse_memory_present_with_active_regions - Call memory_present for each active range
  3302. * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
  3303. *
  3304. * If an architecture guarantees that all ranges registered with
  3305. * add_active_ranges() contain no holes and may be freed, this
  3306. * function may be used instead of calling memory_present() manually.
  3307. */
  3308. void __init sparse_memory_present_with_active_regions(int nid)
  3309. {
  3310. unsigned long start_pfn, end_pfn;
  3311. int i, this_nid;
  3312. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
  3313. memory_present(this_nid, start_pfn, end_pfn);
  3314. }
  3315. /**
  3316. * get_pfn_range_for_nid - Return the start and end page frames for a node
  3317. * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
  3318. * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
  3319. * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
  3320. *
  3321. * It returns the start and end page frame of a node based on information
  3322. * provided by an arch calling add_active_range(). If called for a node
  3323. * with no available memory, a warning is printed and the start and end
  3324. * PFNs will be 0.
  3325. */
  3326. void __meminit get_pfn_range_for_nid(unsigned int nid,
  3327. unsigned long *start_pfn, unsigned long *end_pfn)
  3328. {
  3329. unsigned long this_start_pfn, this_end_pfn;
  3330. int i;
  3331. *start_pfn = -1UL;
  3332. *end_pfn = 0;
  3333. for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
  3334. *start_pfn = min(*start_pfn, this_start_pfn);
  3335. *end_pfn = max(*end_pfn, this_end_pfn);
  3336. }
  3337. if (*start_pfn == -1UL)
  3338. *start_pfn = 0;
  3339. }
  3340. /*
  3341. * This finds a zone that can be used for ZONE_MOVABLE pages. The
  3342. * assumption is made that zones within a node are ordered in monotonic
  3343. * increasing memory addresses so that the "highest" populated zone is used
  3344. */
  3345. static void __init find_usable_zone_for_movable(void)
  3346. {
  3347. int zone_index;
  3348. for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
  3349. if (zone_index == ZONE_MOVABLE)
  3350. continue;
  3351. if (arch_zone_highest_possible_pfn[zone_index] >
  3352. arch_zone_lowest_possible_pfn[zone_index])
  3353. break;
  3354. }
  3355. VM_BUG_ON(zone_index == -1);
  3356. movable_zone = zone_index;
  3357. }
  3358. /*
  3359. * The zone ranges provided by the architecture do not include ZONE_MOVABLE
  3360. * because it is sized independent of architecture. Unlike the other zones,
  3361. * the starting point for ZONE_MOVABLE is not fixed. It may be different
  3362. * in each node depending on the size of each node and how evenly kernelcore
  3363. * is distributed. This helper function adjusts the zone ranges
  3364. * provided by the architecture for a given node by using the end of the
  3365. * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
  3366. * zones within a node are in order of monotonic increases memory addresses
  3367. */
  3368. static void __meminit adjust_zone_range_for_zone_movable(int nid,
  3369. unsigned long zone_type,
  3370. unsigned long node_start_pfn,
  3371. unsigned long node_end_pfn,
  3372. unsigned long *zone_start_pfn,
  3373. unsigned long *zone_end_pfn)
  3374. {
  3375. /* Only adjust if ZONE_MOVABLE is on this node */
  3376. if (zone_movable_pfn[nid]) {
  3377. /* Size ZONE_MOVABLE */
  3378. if (zone_type == ZONE_MOVABLE) {
  3379. *zone_start_pfn = zone_movable_pfn[nid];
  3380. *zone_end_pfn = min(node_end_pfn,
  3381. arch_zone_highest_possible_pfn[movable_zone]);
  3382. /* Adjust for ZONE_MOVABLE starting within this range */
  3383. } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
  3384. *zone_end_pfn > zone_movable_pfn[nid]) {
  3385. *zone_end_pfn = zone_movable_pfn[nid];
  3386. /* Check if this whole range is within ZONE_MOVABLE */
  3387. } else if (*zone_start_pfn >= zone_movable_pfn[nid])
  3388. *zone_start_pfn = *zone_end_pfn;
  3389. }
  3390. }
  3391. /*
  3392. * Return the number of pages a zone spans in a node, including holes
  3393. * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
  3394. */
  3395. static unsigned long __meminit zone_spanned_pages_in_node(int nid,
  3396. unsigned long zone_type,
  3397. unsigned long *ignored)
  3398. {
  3399. unsigned long node_start_pfn, node_end_pfn;
  3400. unsigned long zone_start_pfn, zone_end_pfn;
  3401. /* Get the start and end of the node and zone */
  3402. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  3403. zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
  3404. zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
  3405. adjust_zone_range_for_zone_movable(nid, zone_type,
  3406. node_start_pfn, node_end_pfn,
  3407. &zone_start_pfn, &zone_end_pfn);
  3408. /* Check that this node has pages within the zone's required range */
  3409. if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
  3410. return 0;
  3411. /* Move the zone boundaries inside the node if necessary */
  3412. zone_end_pfn = min(zone_end_pfn, node_end_pfn);
  3413. zone_start_pfn = max(zone_start_pfn, node_start_pfn);
  3414. /* Return the spanned pages */
  3415. return zone_end_pfn - zone_start_pfn;
  3416. }
  3417. /*
  3418. * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
  3419. * then all holes in the requested range will be accounted for.
  3420. */
  3421. unsigned long __meminit __absent_pages_in_range(int nid,
  3422. unsigned long range_start_pfn,
  3423. unsigned long range_end_pfn)
  3424. {
  3425. unsigned long nr_absent = range_end_pfn - range_start_pfn;
  3426. unsigned long start_pfn, end_pfn;
  3427. int i;
  3428. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
  3429. start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
  3430. end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
  3431. nr_absent -= end_pfn - start_pfn;
  3432. }
  3433. return nr_absent;
  3434. }
  3435. /**
  3436. * absent_pages_in_range - Return number of page frames in holes within a range
  3437. * @start_pfn: The start PFN to start searching for holes
  3438. * @end_pfn: The end PFN to stop searching for holes
  3439. *
  3440. * It returns the number of pages frames in memory holes within a range.
  3441. */
  3442. unsigned long __init absent_pages_in_range(unsigned long start_pfn,
  3443. unsigned long end_pfn)
  3444. {
  3445. return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
  3446. }
  3447. /* Return the number of page frames in holes in a zone on a node */
  3448. static unsigned long __meminit zone_absent_pages_in_node(int nid,
  3449. unsigned long zone_type,
  3450. unsigned long *ignored)
  3451. {
  3452. unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
  3453. unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
  3454. unsigned long node_start_pfn, node_end_pfn;
  3455. unsigned long zone_start_pfn, zone_end_pfn;
  3456. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  3457. zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
  3458. zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
  3459. adjust_zone_range_for_zone_movable(nid, zone_type,
  3460. node_start_pfn, node_end_pfn,
  3461. &zone_start_pfn, &zone_end_pfn);
  3462. return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
  3463. }
  3464. #else
  3465. static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
  3466. unsigned long zone_type,
  3467. unsigned long *zones_size)
  3468. {
  3469. return zones_size[zone_type];
  3470. }
  3471. static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
  3472. unsigned long zone_type,
  3473. unsigned long *zholes_size)
  3474. {
  3475. if (!zholes_size)
  3476. return 0;
  3477. return zholes_size[zone_type];
  3478. }
  3479. #endif
  3480. static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
  3481. unsigned long *zones_size, unsigned long *zholes_size)
  3482. {
  3483. unsigned long realtotalpages, totalpages = 0;
  3484. enum zone_type i;
  3485. for (i = 0; i < MAX_NR_ZONES; i++)
  3486. totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
  3487. zones_size);
  3488. pgdat->node_spanned_pages = totalpages;
  3489. realtotalpages = totalpages;
  3490. for (i = 0; i < MAX_NR_ZONES; i++)
  3491. realtotalpages -=
  3492. zone_absent_pages_in_node(pgdat->node_id, i,
  3493. zholes_size);
  3494. pgdat->node_present_pages = realtotalpages;
  3495. printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
  3496. realtotalpages);
  3497. }
  3498. #ifndef CONFIG_SPARSEMEM
  3499. /*
  3500. * Calculate the size of the zone->blockflags rounded to an unsigned long
  3501. * Start by making sure zonesize is a multiple of pageblock_order by rounding
  3502. * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
  3503. * round what is now in bits to nearest long in bits, then return it in
  3504. * bytes.
  3505. */
  3506. static unsigned long __init usemap_size(unsigned long zonesize)
  3507. {
  3508. unsigned long usemapsize;
  3509. usemapsize = roundup(zonesize, pageblock_nr_pages);
  3510. usemapsize = usemapsize >> pageblock_order;
  3511. usemapsize *= NR_PAGEBLOCK_BITS;
  3512. usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
  3513. return usemapsize / 8;
  3514. }
  3515. static void __init setup_usemap(struct pglist_data *pgdat,
  3516. struct zone *zone, unsigned long zonesize)
  3517. {
  3518. unsigned long usemapsize = usemap_size(zonesize);
  3519. zone->pageblock_flags = NULL;
  3520. if (usemapsize)
  3521. zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
  3522. usemapsize);
  3523. }
  3524. #else
  3525. static inline void setup_usemap(struct pglist_data *pgdat,
  3526. struct zone *zone, unsigned long zonesize) {}
  3527. #endif /* CONFIG_SPARSEMEM */
  3528. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  3529. /* Return a sensible default order for the pageblock size. */
  3530. static inline int pageblock_default_order(void)
  3531. {
  3532. if (HPAGE_SHIFT > PAGE_SHIFT)
  3533. return HUGETLB_PAGE_ORDER;
  3534. return MAX_ORDER-1;
  3535. }
  3536. /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
  3537. static inline void __init set_pageblock_order(unsigned int order)
  3538. {
  3539. /* Check that pageblock_nr_pages has not already been setup */
  3540. if (pageblock_order)
  3541. return;
  3542. /*
  3543. * Assume the largest contiguous order of interest is a huge page.
  3544. * This value may be variable depending on boot parameters on IA64
  3545. */
  3546. pageblock_order = order;
  3547. }
  3548. #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  3549. /*
  3550. * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
  3551. * and pageblock_default_order() are unused as pageblock_order is set
  3552. * at compile-time. See include/linux/pageblock-flags.h for the values of
  3553. * pageblock_order based on the kernel config
  3554. */
  3555. static inline int pageblock_default_order(unsigned int order)
  3556. {
  3557. return MAX_ORDER-1;
  3558. }
  3559. #define set_pageblock_order(x) do {} while (0)
  3560. #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  3561. /*
  3562. * Set up the zone data structures:
  3563. * - mark all pages reserved
  3564. * - mark all memory queues empty
  3565. * - clear the memory bitmaps
  3566. */
  3567. static void __paginginit free_area_init_core(struct pglist_data *pgdat,
  3568. unsigned long *zones_size, unsigned long *zholes_size)
  3569. {
  3570. enum zone_type j;
  3571. int nid = pgdat->node_id;
  3572. unsigned long zone_start_pfn = pgdat->node_start_pfn;
  3573. int ret;
  3574. pgdat_resize_init(pgdat);
  3575. pgdat->nr_zones = 0;
  3576. init_waitqueue_head(&pgdat->kswapd_wait);
  3577. pgdat->kswapd_max_order = 0;
  3578. pgdat_page_cgroup_init(pgdat);
  3579. for (j = 0; j < MAX_NR_ZONES; j++) {
  3580. struct zone *zone = pgdat->node_zones + j;
  3581. unsigned long size, realsize, memmap_pages;
  3582. enum lru_list l;
  3583. size = zone_spanned_pages_in_node(nid, j, zones_size);
  3584. realsize = size - zone_absent_pages_in_node(nid, j,
  3585. zholes_size);
  3586. /*
  3587. * Adjust realsize so that it accounts for how much memory
  3588. * is used by this zone for memmap. This affects the watermark
  3589. * and per-cpu initialisations
  3590. */
  3591. memmap_pages =
  3592. PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
  3593. if (realsize >= memmap_pages) {
  3594. realsize -= memmap_pages;
  3595. if (memmap_pages)
  3596. printk(KERN_DEBUG
  3597. " %s zone: %lu pages used for memmap\n",
  3598. zone_names[j], memmap_pages);
  3599. } else
  3600. printk(KERN_WARNING
  3601. " %s zone: %lu pages exceeds realsize %lu\n",
  3602. zone_names[j], memmap_pages, realsize);
  3603. /* Account for reserved pages */
  3604. if (j == 0 && realsize > dma_reserve) {
  3605. realsize -= dma_reserve;
  3606. printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
  3607. zone_names[0], dma_reserve);
  3608. }
  3609. if (!is_highmem_idx(j))
  3610. nr_kernel_pages += realsize;
  3611. nr_all_pages += realsize;
  3612. zone->spanned_pages = size;
  3613. zone->present_pages = realsize;
  3614. #ifdef CONFIG_NUMA
  3615. zone->node = nid;
  3616. zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
  3617. / 100;
  3618. zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
  3619. #endif
  3620. zone->name = zone_names[j];
  3621. spin_lock_init(&zone->lock);
  3622. spin_lock_init(&zone->lru_lock);
  3623. zone_seqlock_init(zone);
  3624. zone->zone_pgdat = pgdat;
  3625. zone_pcp_init(zone);
  3626. for_each_lru(l)
  3627. INIT_LIST_HEAD(&zone->lru[l].list);
  3628. zone->reclaim_stat.recent_rotated[0] = 0;
  3629. zone->reclaim_stat.recent_rotated[1] = 0;
  3630. zone->reclaim_stat.recent_scanned[0] = 0;
  3631. zone->reclaim_stat.recent_scanned[1] = 0;
  3632. zap_zone_vm_stats(zone);
  3633. zone->flags = 0;
  3634. if (!size)
  3635. continue;
  3636. set_pageblock_order(pageblock_default_order());
  3637. setup_usemap(pgdat, zone, size);
  3638. ret = init_currently_empty_zone(zone, zone_start_pfn,
  3639. size, MEMMAP_EARLY);
  3640. BUG_ON(ret);
  3641. memmap_init(size, nid, j, zone_start_pfn);
  3642. zone_start_pfn += size;
  3643. }
  3644. }
  3645. static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
  3646. {
  3647. /* Skip empty nodes */
  3648. if (!pgdat->node_spanned_pages)
  3649. return;
  3650. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  3651. /* ia64 gets its own node_mem_map, before this, without bootmem */
  3652. if (!pgdat->node_mem_map) {
  3653. unsigned long size, start, end;
  3654. struct page *map;
  3655. /*
  3656. * The zone's endpoints aren't required to be MAX_ORDER
  3657. * aligned but the node_mem_map endpoints must be in order
  3658. * for the buddy allocator to function correctly.
  3659. */
  3660. start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
  3661. end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
  3662. end = ALIGN(end, MAX_ORDER_NR_PAGES);
  3663. size = (end - start) * sizeof(struct page);
  3664. map = alloc_remap(pgdat->node_id, size);
  3665. if (!map)
  3666. map = alloc_bootmem_node_nopanic(pgdat, size);
  3667. pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
  3668. }
  3669. #ifndef CONFIG_NEED_MULTIPLE_NODES
  3670. /*
  3671. * With no DISCONTIG, the global mem_map is just set as node 0's
  3672. */
  3673. if (pgdat == NODE_DATA(0)) {
  3674. mem_map = NODE_DATA(0)->node_mem_map;
  3675. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  3676. if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
  3677. mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
  3678. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  3679. }
  3680. #endif
  3681. #endif /* CONFIG_FLAT_NODE_MEM_MAP */
  3682. }
  3683. void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
  3684. unsigned long node_start_pfn, unsigned long *zholes_size)
  3685. {
  3686. pg_data_t *pgdat = NODE_DATA(nid);
  3687. pgdat->node_id = nid;
  3688. pgdat->node_start_pfn = node_start_pfn;
  3689. calculate_node_totalpages(pgdat, zones_size, zholes_size);
  3690. alloc_node_mem_map(pgdat);
  3691. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  3692. printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
  3693. nid, (unsigned long)pgdat,
  3694. (unsigned long)pgdat->node_mem_map);
  3695. #endif
  3696. free_area_init_core(pgdat, zones_size, zholes_size);
  3697. }
  3698. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  3699. #if MAX_NUMNODES > 1
  3700. /*
  3701. * Figure out the number of possible node ids.
  3702. */
  3703. static void __init setup_nr_node_ids(void)
  3704. {
  3705. unsigned int node;
  3706. unsigned int highest = 0;
  3707. for_each_node_mask(node, node_possible_map)
  3708. highest = node;
  3709. nr_node_ids = highest + 1;
  3710. }
  3711. #else
  3712. static inline void setup_nr_node_ids(void)
  3713. {
  3714. }
  3715. #endif
  3716. #ifndef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  3717. /*
  3718. * Common iterator interface used to define for_each_mem_pfn_range().
  3719. */
  3720. void __meminit __next_mem_pfn_range(int *idx, int nid,
  3721. unsigned long *out_start_pfn,
  3722. unsigned long *out_end_pfn, int *out_nid)
  3723. {
  3724. struct node_active_region *r = NULL;
  3725. while (++*idx < nr_nodemap_entries) {
  3726. if (nid == MAX_NUMNODES || nid == early_node_map[*idx].nid) {
  3727. r = &early_node_map[*idx];
  3728. break;
  3729. }
  3730. }
  3731. if (!r) {
  3732. *idx = -1;
  3733. return;
  3734. }
  3735. if (out_start_pfn)
  3736. *out_start_pfn = r->start_pfn;
  3737. if (out_end_pfn)
  3738. *out_end_pfn = r->end_pfn;
  3739. if (out_nid)
  3740. *out_nid = r->nid;
  3741. }
  3742. /**
  3743. * add_active_range - Register a range of PFNs backed by physical memory
  3744. * @nid: The node ID the range resides on
  3745. * @start_pfn: The start PFN of the available physical memory
  3746. * @end_pfn: The end PFN of the available physical memory
  3747. *
  3748. * These ranges are stored in an early_node_map[] and later used by
  3749. * free_area_init_nodes() to calculate zone sizes and holes. If the
  3750. * range spans a memory hole, it is up to the architecture to ensure
  3751. * the memory is not freed by the bootmem allocator. If possible
  3752. * the range being registered will be merged with existing ranges.
  3753. */
  3754. void __init add_active_range(unsigned int nid, unsigned long start_pfn,
  3755. unsigned long end_pfn)
  3756. {
  3757. int i;
  3758. mminit_dprintk(MMINIT_TRACE, "memory_register",
  3759. "Entering add_active_range(%d, %#lx, %#lx) "
  3760. "%d entries of %d used\n",
  3761. nid, start_pfn, end_pfn,
  3762. nr_nodemap_entries, MAX_ACTIVE_REGIONS);
  3763. mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
  3764. /* Merge with existing active regions if possible */
  3765. for (i = 0; i < nr_nodemap_entries; i++) {
  3766. if (early_node_map[i].nid != nid)
  3767. continue;
  3768. /* Skip if an existing region covers this new one */
  3769. if (start_pfn >= early_node_map[i].start_pfn &&
  3770. end_pfn <= early_node_map[i].end_pfn)
  3771. return;
  3772. /* Merge forward if suitable */
  3773. if (start_pfn <= early_node_map[i].end_pfn &&
  3774. end_pfn > early_node_map[i].end_pfn) {
  3775. early_node_map[i].end_pfn = end_pfn;
  3776. return;
  3777. }
  3778. /* Merge backward if suitable */
  3779. if (start_pfn < early_node_map[i].start_pfn &&
  3780. end_pfn >= early_node_map[i].start_pfn) {
  3781. early_node_map[i].start_pfn = start_pfn;
  3782. return;
  3783. }
  3784. }
  3785. /* Check that early_node_map is large enough */
  3786. if (i >= MAX_ACTIVE_REGIONS) {
  3787. printk(KERN_CRIT "More than %d memory regions, truncating\n",
  3788. MAX_ACTIVE_REGIONS);
  3789. return;
  3790. }
  3791. early_node_map[i].nid = nid;
  3792. early_node_map[i].start_pfn = start_pfn;
  3793. early_node_map[i].end_pfn = end_pfn;
  3794. nr_nodemap_entries = i + 1;
  3795. }
  3796. /**
  3797. * remove_active_range - Shrink an existing registered range of PFNs
  3798. * @nid: The node id the range is on that should be shrunk
  3799. * @start_pfn: The new PFN of the range
  3800. * @end_pfn: The new PFN of the range
  3801. *
  3802. * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
  3803. * The map is kept near the end physical page range that has already been
  3804. * registered. This function allows an arch to shrink an existing registered
  3805. * range.
  3806. */
  3807. void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
  3808. unsigned long end_pfn)
  3809. {
  3810. unsigned long this_start_pfn, this_end_pfn;
  3811. int i, j;
  3812. int removed = 0;
  3813. printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
  3814. nid, start_pfn, end_pfn);
  3815. /* Find the old active region end and shrink */
  3816. for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
  3817. if (this_start_pfn >= start_pfn && this_end_pfn <= end_pfn) {
  3818. /* clear it */
  3819. early_node_map[i].start_pfn = 0;
  3820. early_node_map[i].end_pfn = 0;
  3821. removed = 1;
  3822. continue;
  3823. }
  3824. if (this_start_pfn < start_pfn && this_end_pfn > start_pfn) {
  3825. early_node_map[i].end_pfn = start_pfn;
  3826. if (this_end_pfn > end_pfn)
  3827. add_active_range(nid, end_pfn, this_end_pfn);
  3828. continue;
  3829. }
  3830. if (this_start_pfn >= start_pfn && this_end_pfn > end_pfn &&
  3831. this_start_pfn < end_pfn) {
  3832. early_node_map[i].start_pfn = end_pfn;
  3833. continue;
  3834. }
  3835. }
  3836. if (!removed)
  3837. return;
  3838. /* remove the blank ones */
  3839. for (i = nr_nodemap_entries - 1; i > 0; i--) {
  3840. if (early_node_map[i].nid != nid)
  3841. continue;
  3842. if (early_node_map[i].end_pfn)
  3843. continue;
  3844. /* we found it, get rid of it */
  3845. for (j = i; j < nr_nodemap_entries - 1; j++)
  3846. memcpy(&early_node_map[j], &early_node_map[j+1],
  3847. sizeof(early_node_map[j]));
  3848. j = nr_nodemap_entries - 1;
  3849. memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
  3850. nr_nodemap_entries--;
  3851. }
  3852. }
  3853. /**
  3854. * remove_all_active_ranges - Remove all currently registered regions
  3855. *
  3856. * During discovery, it may be found that a table like SRAT is invalid
  3857. * and an alternative discovery method must be used. This function removes
  3858. * all currently registered regions.
  3859. */
  3860. void __init remove_all_active_ranges(void)
  3861. {
  3862. memset(early_node_map, 0, sizeof(early_node_map));
  3863. nr_nodemap_entries = 0;
  3864. }
  3865. /* Compare two active node_active_regions */
  3866. static int __init cmp_node_active_region(const void *a, const void *b)
  3867. {
  3868. struct node_active_region *arange = (struct node_active_region *)a;
  3869. struct node_active_region *brange = (struct node_active_region *)b;
  3870. /* Done this way to avoid overflows */
  3871. if (arange->start_pfn > brange->start_pfn)
  3872. return 1;
  3873. if (arange->start_pfn < brange->start_pfn)
  3874. return -1;
  3875. return 0;
  3876. }
  3877. /* sort the node_map by start_pfn */
  3878. void __init sort_node_map(void)
  3879. {
  3880. sort(early_node_map, (size_t)nr_nodemap_entries,
  3881. sizeof(struct node_active_region),
  3882. cmp_node_active_region, NULL);
  3883. }
  3884. #else /* !CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  3885. static inline void sort_node_map(void)
  3886. {
  3887. }
  3888. #endif
  3889. /**
  3890. * node_map_pfn_alignment - determine the maximum internode alignment
  3891. *
  3892. * This function should be called after node map is populated and sorted.
  3893. * It calculates the maximum power of two alignment which can distinguish
  3894. * all the nodes.
  3895. *
  3896. * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
  3897. * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
  3898. * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
  3899. * shifted, 1GiB is enough and this function will indicate so.
  3900. *
  3901. * This is used to test whether pfn -> nid mapping of the chosen memory
  3902. * model has fine enough granularity to avoid incorrect mapping for the
  3903. * populated node map.
  3904. *
  3905. * Returns the determined alignment in pfn's. 0 if there is no alignment
  3906. * requirement (single node).
  3907. */
  3908. unsigned long __init node_map_pfn_alignment(void)
  3909. {
  3910. unsigned long accl_mask = 0, last_end = 0;
  3911. unsigned long start, end, mask;
  3912. int last_nid = -1;
  3913. int i, nid;
  3914. for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
  3915. if (!start || last_nid < 0 || last_nid == nid) {
  3916. last_nid = nid;
  3917. last_end = end;
  3918. continue;
  3919. }
  3920. /*
  3921. * Start with a mask granular enough to pin-point to the
  3922. * start pfn and tick off bits one-by-one until it becomes
  3923. * too coarse to separate the current node from the last.
  3924. */
  3925. mask = ~((1 << __ffs(start)) - 1);
  3926. while (mask && last_end <= (start & (mask << 1)))
  3927. mask <<= 1;
  3928. /* accumulate all internode masks */
  3929. accl_mask |= mask;
  3930. }
  3931. /* convert mask to number of pages */
  3932. return ~accl_mask + 1;
  3933. }
  3934. /* Find the lowest pfn for a node */
  3935. static unsigned long __init find_min_pfn_for_node(int nid)
  3936. {
  3937. unsigned long min_pfn = ULONG_MAX;
  3938. unsigned long start_pfn;
  3939. int i;
  3940. for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
  3941. min_pfn = min(min_pfn, start_pfn);
  3942. if (min_pfn == ULONG_MAX) {
  3943. printk(KERN_WARNING
  3944. "Could not find start_pfn for node %d\n", nid);
  3945. return 0;
  3946. }
  3947. return min_pfn;
  3948. }
  3949. /**
  3950. * find_min_pfn_with_active_regions - Find the minimum PFN registered
  3951. *
  3952. * It returns the minimum PFN based on information provided via
  3953. * add_active_range().
  3954. */
  3955. unsigned long __init find_min_pfn_with_active_regions(void)
  3956. {
  3957. return find_min_pfn_for_node(MAX_NUMNODES);
  3958. }
  3959. /*
  3960. * early_calculate_totalpages()
  3961. * Sum pages in active regions for movable zone.
  3962. * Populate N_HIGH_MEMORY for calculating usable_nodes.
  3963. */
  3964. static unsigned long __init early_calculate_totalpages(void)
  3965. {
  3966. unsigned long totalpages = 0;
  3967. unsigned long start_pfn, end_pfn;
  3968. int i, nid;
  3969. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
  3970. unsigned long pages = end_pfn - start_pfn;
  3971. totalpages += pages;
  3972. if (pages)
  3973. node_set_state(nid, N_HIGH_MEMORY);
  3974. }
  3975. return totalpages;
  3976. }
  3977. /*
  3978. * Find the PFN the Movable zone begins in each node. Kernel memory
  3979. * is spread evenly between nodes as long as the nodes have enough
  3980. * memory. When they don't, some nodes will have more kernelcore than
  3981. * others
  3982. */
  3983. static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
  3984. {
  3985. int i, nid;
  3986. unsigned long usable_startpfn;
  3987. unsigned long kernelcore_node, kernelcore_remaining;
  3988. /* save the state before borrow the nodemask */
  3989. nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
  3990. unsigned long totalpages = early_calculate_totalpages();
  3991. int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
  3992. /*
  3993. * If movablecore was specified, calculate what size of
  3994. * kernelcore that corresponds so that memory usable for
  3995. * any allocation type is evenly spread. If both kernelcore
  3996. * and movablecore are specified, then the value of kernelcore
  3997. * will be used for required_kernelcore if it's greater than
  3998. * what movablecore would have allowed.
  3999. */
  4000. if (required_movablecore) {
  4001. unsigned long corepages;
  4002. /*
  4003. * Round-up so that ZONE_MOVABLE is at least as large as what
  4004. * was requested by the user
  4005. */
  4006. required_movablecore =
  4007. roundup(required_movablecore, MAX_ORDER_NR_PAGES);
  4008. corepages = totalpages - required_movablecore;
  4009. required_kernelcore = max(required_kernelcore, corepages);
  4010. }
  4011. /* If kernelcore was not specified, there is no ZONE_MOVABLE */
  4012. if (!required_kernelcore)
  4013. goto out;
  4014. /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
  4015. find_usable_zone_for_movable();
  4016. usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
  4017. restart:
  4018. /* Spread kernelcore memory as evenly as possible throughout nodes */
  4019. kernelcore_node = required_kernelcore / usable_nodes;
  4020. for_each_node_state(nid, N_HIGH_MEMORY) {
  4021. unsigned long start_pfn, end_pfn;
  4022. /*
  4023. * Recalculate kernelcore_node if the division per node
  4024. * now exceeds what is necessary to satisfy the requested
  4025. * amount of memory for the kernel
  4026. */
  4027. if (required_kernelcore < kernelcore_node)
  4028. kernelcore_node = required_kernelcore / usable_nodes;
  4029. /*
  4030. * As the map is walked, we track how much memory is usable
  4031. * by the kernel using kernelcore_remaining. When it is
  4032. * 0, the rest of the node is usable by ZONE_MOVABLE
  4033. */
  4034. kernelcore_remaining = kernelcore_node;
  4035. /* Go through each range of PFNs within this node */
  4036. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
  4037. unsigned long size_pages;
  4038. start_pfn = max(start_pfn, zone_movable_pfn[nid]);
  4039. if (start_pfn >= end_pfn)
  4040. continue;
  4041. /* Account for what is only usable for kernelcore */
  4042. if (start_pfn < usable_startpfn) {
  4043. unsigned long kernel_pages;
  4044. kernel_pages = min(end_pfn, usable_startpfn)
  4045. - start_pfn;
  4046. kernelcore_remaining -= min(kernel_pages,
  4047. kernelcore_remaining);
  4048. required_kernelcore -= min(kernel_pages,
  4049. required_kernelcore);
  4050. /* Continue if range is now fully accounted */
  4051. if (end_pfn <= usable_startpfn) {
  4052. /*
  4053. * Push zone_movable_pfn to the end so
  4054. * that if we have to rebalance
  4055. * kernelcore across nodes, we will
  4056. * not double account here
  4057. */
  4058. zone_movable_pfn[nid] = end_pfn;
  4059. continue;
  4060. }
  4061. start_pfn = usable_startpfn;
  4062. }
  4063. /*
  4064. * The usable PFN range for ZONE_MOVABLE is from
  4065. * start_pfn->end_pfn. Calculate size_pages as the
  4066. * number of pages used as kernelcore
  4067. */
  4068. size_pages = end_pfn - start_pfn;
  4069. if (size_pages > kernelcore_remaining)
  4070. size_pages = kernelcore_remaining;
  4071. zone_movable_pfn[nid] = start_pfn + size_pages;
  4072. /*
  4073. * Some kernelcore has been met, update counts and
  4074. * break if the kernelcore for this node has been
  4075. * satisified
  4076. */
  4077. required_kernelcore -= min(required_kernelcore,
  4078. size_pages);
  4079. kernelcore_remaining -= size_pages;
  4080. if (!kernelcore_remaining)
  4081. break;
  4082. }
  4083. }
  4084. /*
  4085. * If there is still required_kernelcore, we do another pass with one
  4086. * less node in the count. This will push zone_movable_pfn[nid] further
  4087. * along on the nodes that still have memory until kernelcore is
  4088. * satisified
  4089. */
  4090. usable_nodes--;
  4091. if (usable_nodes && required_kernelcore > usable_nodes)
  4092. goto restart;
  4093. /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
  4094. for (nid = 0; nid < MAX_NUMNODES; nid++)
  4095. zone_movable_pfn[nid] =
  4096. roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
  4097. out:
  4098. /* restore the node_state */
  4099. node_states[N_HIGH_MEMORY] = saved_node_state;
  4100. }
  4101. /* Any regular memory on that node ? */
  4102. static void check_for_regular_memory(pg_data_t *pgdat)
  4103. {
  4104. #ifdef CONFIG_HIGHMEM
  4105. enum zone_type zone_type;
  4106. for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
  4107. struct zone *zone = &pgdat->node_zones[zone_type];
  4108. if (zone->present_pages)
  4109. node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
  4110. }
  4111. #endif
  4112. }
  4113. /**
  4114. * free_area_init_nodes - Initialise all pg_data_t and zone data
  4115. * @max_zone_pfn: an array of max PFNs for each zone
  4116. *
  4117. * This will call free_area_init_node() for each active node in the system.
  4118. * Using the page ranges provided by add_active_range(), the size of each
  4119. * zone in each node and their holes is calculated. If the maximum PFN
  4120. * between two adjacent zones match, it is assumed that the zone is empty.
  4121. * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
  4122. * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
  4123. * starts where the previous one ended. For example, ZONE_DMA32 starts
  4124. * at arch_max_dma_pfn.
  4125. */
  4126. void __init free_area_init_nodes(unsigned long *max_zone_pfn)
  4127. {
  4128. unsigned long start_pfn, end_pfn;
  4129. int i, nid;
  4130. /* Sort early_node_map as initialisation assumes it is sorted */
  4131. sort_node_map();
  4132. /* Record where the zone boundaries are */
  4133. memset(arch_zone_lowest_possible_pfn, 0,
  4134. sizeof(arch_zone_lowest_possible_pfn));
  4135. memset(arch_zone_highest_possible_pfn, 0,
  4136. sizeof(arch_zone_highest_possible_pfn));
  4137. arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
  4138. arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
  4139. for (i = 1; i < MAX_NR_ZONES; i++) {
  4140. if (i == ZONE_MOVABLE)
  4141. continue;
  4142. arch_zone_lowest_possible_pfn[i] =
  4143. arch_zone_highest_possible_pfn[i-1];
  4144. arch_zone_highest_possible_pfn[i] =
  4145. max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
  4146. }
  4147. arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
  4148. arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
  4149. /* Find the PFNs that ZONE_MOVABLE begins at in each node */
  4150. memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
  4151. find_zone_movable_pfns_for_nodes(zone_movable_pfn);
  4152. /* Print out the zone ranges */
  4153. printk("Zone PFN ranges:\n");
  4154. for (i = 0; i < MAX_NR_ZONES; i++) {
  4155. if (i == ZONE_MOVABLE)
  4156. continue;
  4157. printk(" %-8s ", zone_names[i]);
  4158. if (arch_zone_lowest_possible_pfn[i] ==
  4159. arch_zone_highest_possible_pfn[i])
  4160. printk("empty\n");
  4161. else
  4162. printk("%0#10lx -> %0#10lx\n",
  4163. arch_zone_lowest_possible_pfn[i],
  4164. arch_zone_highest_possible_pfn[i]);
  4165. }
  4166. /* Print out the PFNs ZONE_MOVABLE begins at in each node */
  4167. printk("Movable zone start PFN for each node\n");
  4168. for (i = 0; i < MAX_NUMNODES; i++) {
  4169. if (zone_movable_pfn[i])
  4170. printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
  4171. }
  4172. /* Print out the early_node_map[] */
  4173. printk("Early memory PFN ranges\n");
  4174. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
  4175. printk(" %3d: %0#10lx -> %0#10lx\n", nid, start_pfn, end_pfn);
  4176. /* Initialise every node */
  4177. mminit_verify_pageflags_layout();
  4178. setup_nr_node_ids();
  4179. for_each_online_node(nid) {
  4180. pg_data_t *pgdat = NODE_DATA(nid);
  4181. free_area_init_node(nid, NULL,
  4182. find_min_pfn_for_node(nid), NULL);
  4183. /* Any memory on that node */
  4184. if (pgdat->node_present_pages)
  4185. node_set_state(nid, N_HIGH_MEMORY);
  4186. check_for_regular_memory(pgdat);
  4187. }
  4188. }
  4189. static int __init cmdline_parse_core(char *p, unsigned long *core)
  4190. {
  4191. unsigned long long coremem;
  4192. if (!p)
  4193. return -EINVAL;
  4194. coremem = memparse(p, &p);
  4195. *core = coremem >> PAGE_SHIFT;
  4196. /* Paranoid check that UL is enough for the coremem value */
  4197. WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
  4198. return 0;
  4199. }
  4200. /*
  4201. * kernelcore=size sets the amount of memory for use for allocations that
  4202. * cannot be reclaimed or migrated.
  4203. */
  4204. static int __init cmdline_parse_kernelcore(char *p)
  4205. {
  4206. return cmdline_parse_core(p, &required_kernelcore);
  4207. }
  4208. /*
  4209. * movablecore=size sets the amount of memory for use for allocations that
  4210. * can be reclaimed or migrated.
  4211. */
  4212. static int __init cmdline_parse_movablecore(char *p)
  4213. {
  4214. return cmdline_parse_core(p, &required_movablecore);
  4215. }
  4216. early_param("kernelcore", cmdline_parse_kernelcore);
  4217. early_param("movablecore", cmdline_parse_movablecore);
  4218. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  4219. /**
  4220. * set_dma_reserve - set the specified number of pages reserved in the first zone
  4221. * @new_dma_reserve: The number of pages to mark reserved
  4222. *
  4223. * The per-cpu batchsize and zone watermarks are determined by present_pages.
  4224. * In the DMA zone, a significant percentage may be consumed by kernel image
  4225. * and other unfreeable allocations which can skew the watermarks badly. This
  4226. * function may optionally be used to account for unfreeable pages in the
  4227. * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
  4228. * smaller per-cpu batchsize.
  4229. */
  4230. void __init set_dma_reserve(unsigned long new_dma_reserve)
  4231. {
  4232. dma_reserve = new_dma_reserve;
  4233. }
  4234. void __init free_area_init(unsigned long *zones_size)
  4235. {
  4236. free_area_init_node(0, zones_size,
  4237. __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
  4238. }
  4239. static int page_alloc_cpu_notify(struct notifier_block *self,
  4240. unsigned long action, void *hcpu)
  4241. {
  4242. int cpu = (unsigned long)hcpu;
  4243. if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
  4244. drain_pages(cpu);
  4245. /*
  4246. * Spill the event counters of the dead processor
  4247. * into the current processors event counters.
  4248. * This artificially elevates the count of the current
  4249. * processor.
  4250. */
  4251. vm_events_fold_cpu(cpu);
  4252. /*
  4253. * Zero the differential counters of the dead processor
  4254. * so that the vm statistics are consistent.
  4255. *
  4256. * This is only okay since the processor is dead and cannot
  4257. * race with what we are doing.
  4258. */
  4259. refresh_cpu_vm_stats(cpu);
  4260. }
  4261. return NOTIFY_OK;
  4262. }
  4263. void __init page_alloc_init(void)
  4264. {
  4265. hotcpu_notifier(page_alloc_cpu_notify, 0);
  4266. }
  4267. /*
  4268. * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
  4269. * or min_free_kbytes changes.
  4270. */
  4271. static void calculate_totalreserve_pages(void)
  4272. {
  4273. struct pglist_data *pgdat;
  4274. unsigned long reserve_pages = 0;
  4275. enum zone_type i, j;
  4276. for_each_online_pgdat(pgdat) {
  4277. for (i = 0; i < MAX_NR_ZONES; i++) {
  4278. struct zone *zone = pgdat->node_zones + i;
  4279. unsigned long max = 0;
  4280. /* Find valid and maximum lowmem_reserve in the zone */
  4281. for (j = i; j < MAX_NR_ZONES; j++) {
  4282. if (zone->lowmem_reserve[j] > max)
  4283. max = zone->lowmem_reserve[j];
  4284. }
  4285. /* we treat the high watermark as reserved pages. */
  4286. max += high_wmark_pages(zone);
  4287. if (max > zone->present_pages)
  4288. max = zone->present_pages;
  4289. reserve_pages += max;
  4290. }
  4291. }
  4292. totalreserve_pages = reserve_pages;
  4293. }
  4294. /*
  4295. * setup_per_zone_lowmem_reserve - called whenever
  4296. * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
  4297. * has a correct pages reserved value, so an adequate number of
  4298. * pages are left in the zone after a successful __alloc_pages().
  4299. */
  4300. static void setup_per_zone_lowmem_reserve(void)
  4301. {
  4302. struct pglist_data *pgdat;
  4303. enum zone_type j, idx;
  4304. for_each_online_pgdat(pgdat) {
  4305. for (j = 0; j < MAX_NR_ZONES; j++) {
  4306. struct zone *zone = pgdat->node_zones + j;
  4307. unsigned long present_pages = zone->present_pages;
  4308. zone->lowmem_reserve[j] = 0;
  4309. idx = j;
  4310. while (idx) {
  4311. struct zone *lower_zone;
  4312. idx--;
  4313. if (sysctl_lowmem_reserve_ratio[idx] < 1)
  4314. sysctl_lowmem_reserve_ratio[idx] = 1;
  4315. lower_zone = pgdat->node_zones + idx;
  4316. lower_zone->lowmem_reserve[j] = present_pages /
  4317. sysctl_lowmem_reserve_ratio[idx];
  4318. present_pages += lower_zone->present_pages;
  4319. }
  4320. }
  4321. }
  4322. /* update totalreserve_pages */
  4323. calculate_totalreserve_pages();
  4324. }
  4325. /**
  4326. * setup_per_zone_wmarks - called when min_free_kbytes changes
  4327. * or when memory is hot-{added|removed}
  4328. *
  4329. * Ensures that the watermark[min,low,high] values for each zone are set
  4330. * correctly with respect to min_free_kbytes.
  4331. */
  4332. void setup_per_zone_wmarks(void)
  4333. {
  4334. unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
  4335. unsigned long lowmem_pages = 0;
  4336. struct zone *zone;
  4337. unsigned long flags;
  4338. /* Calculate total number of !ZONE_HIGHMEM pages */
  4339. for_each_zone(zone) {
  4340. if (!is_highmem(zone))
  4341. lowmem_pages += zone->present_pages;
  4342. }
  4343. for_each_zone(zone) {
  4344. u64 tmp;
  4345. spin_lock_irqsave(&zone->lock, flags);
  4346. tmp = (u64)pages_min * zone->present_pages;
  4347. do_div(tmp, lowmem_pages);
  4348. if (is_highmem(zone)) {
  4349. /*
  4350. * __GFP_HIGH and PF_MEMALLOC allocations usually don't
  4351. * need highmem pages, so cap pages_min to a small
  4352. * value here.
  4353. *
  4354. * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
  4355. * deltas controls asynch page reclaim, and so should
  4356. * not be capped for highmem.
  4357. */
  4358. int min_pages;
  4359. min_pages = zone->present_pages / 1024;
  4360. if (min_pages < SWAP_CLUSTER_MAX)
  4361. min_pages = SWAP_CLUSTER_MAX;
  4362. if (min_pages > 128)
  4363. min_pages = 128;
  4364. zone->watermark[WMARK_MIN] = min_pages;
  4365. } else {
  4366. /*
  4367. * If it's a lowmem zone, reserve a number of pages
  4368. * proportionate to the zone's size.
  4369. */
  4370. zone->watermark[WMARK_MIN] = tmp;
  4371. }
  4372. zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
  4373. zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
  4374. setup_zone_migrate_reserve(zone);
  4375. spin_unlock_irqrestore(&zone->lock, flags);
  4376. }
  4377. /* update totalreserve_pages */
  4378. calculate_totalreserve_pages();
  4379. }
  4380. /*
  4381. * The inactive anon list should be small enough that the VM never has to
  4382. * do too much work, but large enough that each inactive page has a chance
  4383. * to be referenced again before it is swapped out.
  4384. *
  4385. * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
  4386. * INACTIVE_ANON pages on this zone's LRU, maintained by the
  4387. * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
  4388. * the anonymous pages are kept on the inactive list.
  4389. *
  4390. * total target max
  4391. * memory ratio inactive anon
  4392. * -------------------------------------
  4393. * 10MB 1 5MB
  4394. * 100MB 1 50MB
  4395. * 1GB 3 250MB
  4396. * 10GB 10 0.9GB
  4397. * 100GB 31 3GB
  4398. * 1TB 101 10GB
  4399. * 10TB 320 32GB
  4400. */
  4401. static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
  4402. {
  4403. unsigned int gb, ratio;
  4404. /* Zone size in gigabytes */
  4405. gb = zone->present_pages >> (30 - PAGE_SHIFT);
  4406. if (gb)
  4407. ratio = int_sqrt(10 * gb);
  4408. else
  4409. ratio = 1;
  4410. zone->inactive_ratio = ratio;
  4411. }
  4412. static void __meminit setup_per_zone_inactive_ratio(void)
  4413. {
  4414. struct zone *zone;
  4415. for_each_zone(zone)
  4416. calculate_zone_inactive_ratio(zone);
  4417. }
  4418. /*
  4419. * Initialise min_free_kbytes.
  4420. *
  4421. * For small machines we want it small (128k min). For large machines
  4422. * we want it large (64MB max). But it is not linear, because network
  4423. * bandwidth does not increase linearly with machine size. We use
  4424. *
  4425. * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
  4426. * min_free_kbytes = sqrt(lowmem_kbytes * 16)
  4427. *
  4428. * which yields
  4429. *
  4430. * 16MB: 512k
  4431. * 32MB: 724k
  4432. * 64MB: 1024k
  4433. * 128MB: 1448k
  4434. * 256MB: 2048k
  4435. * 512MB: 2896k
  4436. * 1024MB: 4096k
  4437. * 2048MB: 5792k
  4438. * 4096MB: 8192k
  4439. * 8192MB: 11584k
  4440. * 16384MB: 16384k
  4441. */
  4442. int __meminit init_per_zone_wmark_min(void)
  4443. {
  4444. unsigned long lowmem_kbytes;
  4445. lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
  4446. min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
  4447. if (min_free_kbytes < 128)
  4448. min_free_kbytes = 128;
  4449. if (min_free_kbytes > 65536)
  4450. min_free_kbytes = 65536;
  4451. setup_per_zone_wmarks();
  4452. refresh_zone_stat_thresholds();
  4453. setup_per_zone_lowmem_reserve();
  4454. setup_per_zone_inactive_ratio();
  4455. return 0;
  4456. }
  4457. module_init(init_per_zone_wmark_min)
  4458. /*
  4459. * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
  4460. * that we can call two helper functions whenever min_free_kbytes
  4461. * changes.
  4462. */
  4463. int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
  4464. void __user *buffer, size_t *length, loff_t *ppos)
  4465. {
  4466. proc_dointvec(table, write, buffer, length, ppos);
  4467. if (write)
  4468. setup_per_zone_wmarks();
  4469. return 0;
  4470. }
  4471. #ifdef CONFIG_NUMA
  4472. int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
  4473. void __user *buffer, size_t *length, loff_t *ppos)
  4474. {
  4475. struct zone *zone;
  4476. int rc;
  4477. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  4478. if (rc)
  4479. return rc;
  4480. for_each_zone(zone)
  4481. zone->min_unmapped_pages = (zone->present_pages *
  4482. sysctl_min_unmapped_ratio) / 100;
  4483. return 0;
  4484. }
  4485. int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
  4486. void __user *buffer, size_t *length, loff_t *ppos)
  4487. {
  4488. struct zone *zone;
  4489. int rc;
  4490. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  4491. if (rc)
  4492. return rc;
  4493. for_each_zone(zone)
  4494. zone->min_slab_pages = (zone->present_pages *
  4495. sysctl_min_slab_ratio) / 100;
  4496. return 0;
  4497. }
  4498. #endif
  4499. /*
  4500. * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
  4501. * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
  4502. * whenever sysctl_lowmem_reserve_ratio changes.
  4503. *
  4504. * The reserve ratio obviously has absolutely no relation with the
  4505. * minimum watermarks. The lowmem reserve ratio can only make sense
  4506. * if in function of the boot time zone sizes.
  4507. */
  4508. int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
  4509. void __user *buffer, size_t *length, loff_t *ppos)
  4510. {
  4511. proc_dointvec_minmax(table, write, buffer, length, ppos);
  4512. setup_per_zone_lowmem_reserve();
  4513. return 0;
  4514. }
  4515. /*
  4516. * percpu_pagelist_fraction - changes the pcp->high for each zone on each
  4517. * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
  4518. * can have before it gets flushed back to buddy allocator.
  4519. */
  4520. int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
  4521. void __user *buffer, size_t *length, loff_t *ppos)
  4522. {
  4523. struct zone *zone;
  4524. unsigned int cpu;
  4525. int ret;
  4526. ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
  4527. if (!write || (ret == -EINVAL))
  4528. return ret;
  4529. for_each_populated_zone(zone) {
  4530. for_each_possible_cpu(cpu) {
  4531. unsigned long high;
  4532. high = zone->present_pages / percpu_pagelist_fraction;
  4533. setup_pagelist_highmark(
  4534. per_cpu_ptr(zone->pageset, cpu), high);
  4535. }
  4536. }
  4537. return 0;
  4538. }
  4539. int hashdist = HASHDIST_DEFAULT;
  4540. #ifdef CONFIG_NUMA
  4541. static int __init set_hashdist(char *str)
  4542. {
  4543. if (!str)
  4544. return 0;
  4545. hashdist = simple_strtoul(str, &str, 0);
  4546. return 1;
  4547. }
  4548. __setup("hashdist=", set_hashdist);
  4549. #endif
  4550. /*
  4551. * allocate a large system hash table from bootmem
  4552. * - it is assumed that the hash table must contain an exact power-of-2
  4553. * quantity of entries
  4554. * - limit is the number of hash buckets, not the total allocation size
  4555. */
  4556. void *__init alloc_large_system_hash(const char *tablename,
  4557. unsigned long bucketsize,
  4558. unsigned long numentries,
  4559. int scale,
  4560. int flags,
  4561. unsigned int *_hash_shift,
  4562. unsigned int *_hash_mask,
  4563. unsigned long limit)
  4564. {
  4565. unsigned long long max = limit;
  4566. unsigned long log2qty, size;
  4567. void *table = NULL;
  4568. /* allow the kernel cmdline to have a say */
  4569. if (!numentries) {
  4570. /* round applicable memory size up to nearest megabyte */
  4571. numentries = nr_kernel_pages;
  4572. numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
  4573. numentries >>= 20 - PAGE_SHIFT;
  4574. numentries <<= 20 - PAGE_SHIFT;
  4575. /* limit to 1 bucket per 2^scale bytes of low memory */
  4576. if (scale > PAGE_SHIFT)
  4577. numentries >>= (scale - PAGE_SHIFT);
  4578. else
  4579. numentries <<= (PAGE_SHIFT - scale);
  4580. /* Make sure we've got at least a 0-order allocation.. */
  4581. if (unlikely(flags & HASH_SMALL)) {
  4582. /* Makes no sense without HASH_EARLY */
  4583. WARN_ON(!(flags & HASH_EARLY));
  4584. if (!(numentries >> *_hash_shift)) {
  4585. numentries = 1UL << *_hash_shift;
  4586. BUG_ON(!numentries);
  4587. }
  4588. } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
  4589. numentries = PAGE_SIZE / bucketsize;
  4590. }
  4591. numentries = roundup_pow_of_two(numentries);
  4592. /* limit allocation size to 1/16 total memory by default */
  4593. if (max == 0) {
  4594. max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
  4595. do_div(max, bucketsize);
  4596. }
  4597. if (numentries > max)
  4598. numentries = max;
  4599. log2qty = ilog2(numentries);
  4600. do {
  4601. size = bucketsize << log2qty;
  4602. if (flags & HASH_EARLY)
  4603. table = alloc_bootmem_nopanic(size);
  4604. else if (hashdist)
  4605. table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
  4606. else {
  4607. /*
  4608. * If bucketsize is not a power-of-two, we may free
  4609. * some pages at the end of hash table which
  4610. * alloc_pages_exact() automatically does
  4611. */
  4612. if (get_order(size) < MAX_ORDER) {
  4613. table = alloc_pages_exact(size, GFP_ATOMIC);
  4614. kmemleak_alloc(table, size, 1, GFP_ATOMIC);
  4615. }
  4616. }
  4617. } while (!table && size > PAGE_SIZE && --log2qty);
  4618. if (!table)
  4619. panic("Failed to allocate %s hash table\n", tablename);
  4620. printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
  4621. tablename,
  4622. (1UL << log2qty),
  4623. ilog2(size) - PAGE_SHIFT,
  4624. size);
  4625. if (_hash_shift)
  4626. *_hash_shift = log2qty;
  4627. if (_hash_mask)
  4628. *_hash_mask = (1 << log2qty) - 1;
  4629. return table;
  4630. }
  4631. /* Return a pointer to the bitmap storing bits affecting a block of pages */
  4632. static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
  4633. unsigned long pfn)
  4634. {
  4635. #ifdef CONFIG_SPARSEMEM
  4636. return __pfn_to_section(pfn)->pageblock_flags;
  4637. #else
  4638. return zone->pageblock_flags;
  4639. #endif /* CONFIG_SPARSEMEM */
  4640. }
  4641. static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
  4642. {
  4643. #ifdef CONFIG_SPARSEMEM
  4644. pfn &= (PAGES_PER_SECTION-1);
  4645. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  4646. #else
  4647. pfn = pfn - zone->zone_start_pfn;
  4648. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  4649. #endif /* CONFIG_SPARSEMEM */
  4650. }
  4651. /**
  4652. * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
  4653. * @page: The page within the block of interest
  4654. * @start_bitidx: The first bit of interest to retrieve
  4655. * @end_bitidx: The last bit of interest
  4656. * returns pageblock_bits flags
  4657. */
  4658. unsigned long get_pageblock_flags_group(struct page *page,
  4659. int start_bitidx, int end_bitidx)
  4660. {
  4661. struct zone *zone;
  4662. unsigned long *bitmap;
  4663. unsigned long pfn, bitidx;
  4664. unsigned long flags = 0;
  4665. unsigned long value = 1;
  4666. zone = page_zone(page);
  4667. pfn = page_to_pfn(page);
  4668. bitmap = get_pageblock_bitmap(zone, pfn);
  4669. bitidx = pfn_to_bitidx(zone, pfn);
  4670. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  4671. if (test_bit(bitidx + start_bitidx, bitmap))
  4672. flags |= value;
  4673. return flags;
  4674. }
  4675. /**
  4676. * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
  4677. * @page: The page within the block of interest
  4678. * @start_bitidx: The first bit of interest
  4679. * @end_bitidx: The last bit of interest
  4680. * @flags: The flags to set
  4681. */
  4682. void set_pageblock_flags_group(struct page *page, unsigned long flags,
  4683. int start_bitidx, int end_bitidx)
  4684. {
  4685. struct zone *zone;
  4686. unsigned long *bitmap;
  4687. unsigned long pfn, bitidx;
  4688. unsigned long value = 1;
  4689. zone = page_zone(page);
  4690. pfn = page_to_pfn(page);
  4691. bitmap = get_pageblock_bitmap(zone, pfn);
  4692. bitidx = pfn_to_bitidx(zone, pfn);
  4693. VM_BUG_ON(pfn < zone->zone_start_pfn);
  4694. VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
  4695. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  4696. if (flags & value)
  4697. __set_bit(bitidx + start_bitidx, bitmap);
  4698. else
  4699. __clear_bit(bitidx + start_bitidx, bitmap);
  4700. }
  4701. /*
  4702. * This is designed as sub function...plz see page_isolation.c also.
  4703. * set/clear page block's type to be ISOLATE.
  4704. * page allocater never alloc memory from ISOLATE block.
  4705. */
  4706. static int
  4707. __count_immobile_pages(struct zone *zone, struct page *page, int count)
  4708. {
  4709. unsigned long pfn, iter, found;
  4710. /*
  4711. * For avoiding noise data, lru_add_drain_all() should be called
  4712. * If ZONE_MOVABLE, the zone never contains immobile pages
  4713. */
  4714. if (zone_idx(zone) == ZONE_MOVABLE)
  4715. return true;
  4716. if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE)
  4717. return true;
  4718. pfn = page_to_pfn(page);
  4719. for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
  4720. unsigned long check = pfn + iter;
  4721. if (!pfn_valid_within(check))
  4722. continue;
  4723. page = pfn_to_page(check);
  4724. if (!page_count(page)) {
  4725. if (PageBuddy(page))
  4726. iter += (1 << page_order(page)) - 1;
  4727. continue;
  4728. }
  4729. if (!PageLRU(page))
  4730. found++;
  4731. /*
  4732. * If there are RECLAIMABLE pages, we need to check it.
  4733. * But now, memory offline itself doesn't call shrink_slab()
  4734. * and it still to be fixed.
  4735. */
  4736. /*
  4737. * If the page is not RAM, page_count()should be 0.
  4738. * we don't need more check. This is an _used_ not-movable page.
  4739. *
  4740. * The problematic thing here is PG_reserved pages. PG_reserved
  4741. * is set to both of a memory hole page and a _used_ kernel
  4742. * page at boot.
  4743. */
  4744. if (found > count)
  4745. return false;
  4746. }
  4747. return true;
  4748. }
  4749. bool is_pageblock_removable_nolock(struct page *page)
  4750. {
  4751. struct zone *zone = page_zone(page);
  4752. return __count_immobile_pages(zone, page, 0);
  4753. }
  4754. int set_migratetype_isolate(struct page *page)
  4755. {
  4756. struct zone *zone;
  4757. unsigned long flags, pfn;
  4758. struct memory_isolate_notify arg;
  4759. int notifier_ret;
  4760. int ret = -EBUSY;
  4761. zone = page_zone(page);
  4762. spin_lock_irqsave(&zone->lock, flags);
  4763. pfn = page_to_pfn(page);
  4764. arg.start_pfn = pfn;
  4765. arg.nr_pages = pageblock_nr_pages;
  4766. arg.pages_found = 0;
  4767. /*
  4768. * It may be possible to isolate a pageblock even if the
  4769. * migratetype is not MIGRATE_MOVABLE. The memory isolation
  4770. * notifier chain is used by balloon drivers to return the
  4771. * number of pages in a range that are held by the balloon
  4772. * driver to shrink memory. If all the pages are accounted for
  4773. * by balloons, are free, or on the LRU, isolation can continue.
  4774. * Later, for example, when memory hotplug notifier runs, these
  4775. * pages reported as "can be isolated" should be isolated(freed)
  4776. * by the balloon driver through the memory notifier chain.
  4777. */
  4778. notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
  4779. notifier_ret = notifier_to_errno(notifier_ret);
  4780. if (notifier_ret)
  4781. goto out;
  4782. /*
  4783. * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
  4784. * We just check MOVABLE pages.
  4785. */
  4786. if (__count_immobile_pages(zone, page, arg.pages_found))
  4787. ret = 0;
  4788. /*
  4789. * immobile means "not-on-lru" paes. If immobile is larger than
  4790. * removable-by-driver pages reported by notifier, we'll fail.
  4791. */
  4792. out:
  4793. if (!ret) {
  4794. set_pageblock_migratetype(page, MIGRATE_ISOLATE);
  4795. move_freepages_block(zone, page, MIGRATE_ISOLATE);
  4796. }
  4797. spin_unlock_irqrestore(&zone->lock, flags);
  4798. if (!ret)
  4799. drain_all_pages();
  4800. return ret;
  4801. }
  4802. void unset_migratetype_isolate(struct page *page)
  4803. {
  4804. struct zone *zone;
  4805. unsigned long flags;
  4806. zone = page_zone(page);
  4807. spin_lock_irqsave(&zone->lock, flags);
  4808. if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
  4809. goto out;
  4810. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  4811. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  4812. out:
  4813. spin_unlock_irqrestore(&zone->lock, flags);
  4814. }
  4815. #ifdef CONFIG_MEMORY_HOTREMOVE
  4816. /*
  4817. * All pages in the range must be isolated before calling this.
  4818. */
  4819. void
  4820. __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
  4821. {
  4822. struct page *page;
  4823. struct zone *zone;
  4824. int order, i;
  4825. unsigned long pfn;
  4826. unsigned long flags;
  4827. /* find the first valid pfn */
  4828. for (pfn = start_pfn; pfn < end_pfn; pfn++)
  4829. if (pfn_valid(pfn))
  4830. break;
  4831. if (pfn == end_pfn)
  4832. return;
  4833. zone = page_zone(pfn_to_page(pfn));
  4834. spin_lock_irqsave(&zone->lock, flags);
  4835. pfn = start_pfn;
  4836. while (pfn < end_pfn) {
  4837. if (!pfn_valid(pfn)) {
  4838. pfn++;
  4839. continue;
  4840. }
  4841. page = pfn_to_page(pfn);
  4842. BUG_ON(page_count(page));
  4843. BUG_ON(!PageBuddy(page));
  4844. order = page_order(page);
  4845. #ifdef CONFIG_DEBUG_VM
  4846. printk(KERN_INFO "remove from free list %lx %d %lx\n",
  4847. pfn, 1 << order, end_pfn);
  4848. #endif
  4849. list_del(&page->lru);
  4850. rmv_page_order(page);
  4851. zone->free_area[order].nr_free--;
  4852. __mod_zone_page_state(zone, NR_FREE_PAGES,
  4853. - (1UL << order));
  4854. for (i = 0; i < (1 << order); i++)
  4855. SetPageReserved((page+i));
  4856. pfn += (1 << order);
  4857. }
  4858. spin_unlock_irqrestore(&zone->lock, flags);
  4859. }
  4860. #endif
  4861. #ifdef CONFIG_MEMORY_FAILURE
  4862. bool is_free_buddy_page(struct page *page)
  4863. {
  4864. struct zone *zone = page_zone(page);
  4865. unsigned long pfn = page_to_pfn(page);
  4866. unsigned long flags;
  4867. int order;
  4868. spin_lock_irqsave(&zone->lock, flags);
  4869. for (order = 0; order < MAX_ORDER; order++) {
  4870. struct page *page_head = page - (pfn & ((1 << order) - 1));
  4871. if (PageBuddy(page_head) && page_order(page_head) >= order)
  4872. break;
  4873. }
  4874. spin_unlock_irqrestore(&zone->lock, flags);
  4875. return order < MAX_ORDER;
  4876. }
  4877. #endif
  4878. static struct trace_print_flags pageflag_names[] = {
  4879. {1UL << PG_locked, "locked" },
  4880. {1UL << PG_error, "error" },
  4881. {1UL << PG_referenced, "referenced" },
  4882. {1UL << PG_uptodate, "uptodate" },
  4883. {1UL << PG_dirty, "dirty" },
  4884. {1UL << PG_lru, "lru" },
  4885. {1UL << PG_active, "active" },
  4886. {1UL << PG_slab, "slab" },
  4887. {1UL << PG_owner_priv_1, "owner_priv_1" },
  4888. {1UL << PG_arch_1, "arch_1" },
  4889. {1UL << PG_reserved, "reserved" },
  4890. {1UL << PG_private, "private" },
  4891. {1UL << PG_private_2, "private_2" },
  4892. {1UL << PG_writeback, "writeback" },
  4893. #ifdef CONFIG_PAGEFLAGS_EXTENDED
  4894. {1UL << PG_head, "head" },
  4895. {1UL << PG_tail, "tail" },
  4896. #else
  4897. {1UL << PG_compound, "compound" },
  4898. #endif
  4899. {1UL << PG_swapcache, "swapcache" },
  4900. {1UL << PG_mappedtodisk, "mappedtodisk" },
  4901. {1UL << PG_reclaim, "reclaim" },
  4902. {1UL << PG_swapbacked, "swapbacked" },
  4903. {1UL << PG_unevictable, "unevictable" },
  4904. #ifdef CONFIG_MMU
  4905. {1UL << PG_mlocked, "mlocked" },
  4906. #endif
  4907. #ifdef CONFIG_ARCH_USES_PG_UNCACHED
  4908. {1UL << PG_uncached, "uncached" },
  4909. #endif
  4910. #ifdef CONFIG_MEMORY_FAILURE
  4911. {1UL << PG_hwpoison, "hwpoison" },
  4912. #endif
  4913. {-1UL, NULL },
  4914. };
  4915. static void dump_page_flags(unsigned long flags)
  4916. {
  4917. const char *delim = "";
  4918. unsigned long mask;
  4919. int i;
  4920. printk(KERN_ALERT "page flags: %#lx(", flags);
  4921. /* remove zone id */
  4922. flags &= (1UL << NR_PAGEFLAGS) - 1;
  4923. for (i = 0; pageflag_names[i].name && flags; i++) {
  4924. mask = pageflag_names[i].mask;
  4925. if ((flags & mask) != mask)
  4926. continue;
  4927. flags &= ~mask;
  4928. printk("%s%s", delim, pageflag_names[i].name);
  4929. delim = "|";
  4930. }
  4931. /* check for left over flags */
  4932. if (flags)
  4933. printk("%s%#lx", delim, flags);
  4934. printk(")\n");
  4935. }
  4936. void dump_page(struct page *page)
  4937. {
  4938. printk(KERN_ALERT
  4939. "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
  4940. page, atomic_read(&page->_count), page_mapcount(page),
  4941. page->mapping, page->index);
  4942. dump_page_flags(page->flags);
  4943. mem_cgroup_print_bad_page(page);
  4944. }