compression.c 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056
  1. /*
  2. * Copyright (C) 2008 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/kernel.h>
  19. #include <linux/bio.h>
  20. #include <linux/buffer_head.h>
  21. #include <linux/file.h>
  22. #include <linux/fs.h>
  23. #include <linux/pagemap.h>
  24. #include <linux/highmem.h>
  25. #include <linux/time.h>
  26. #include <linux/init.h>
  27. #include <linux/string.h>
  28. #include <linux/backing-dev.h>
  29. #include <linux/mpage.h>
  30. #include <linux/swap.h>
  31. #include <linux/writeback.h>
  32. #include <linux/bit_spinlock.h>
  33. #include <linux/slab.h>
  34. #include "ctree.h"
  35. #include "disk-io.h"
  36. #include "transaction.h"
  37. #include "btrfs_inode.h"
  38. #include "volumes.h"
  39. #include "ordered-data.h"
  40. #include "compression.h"
  41. #include "extent_io.h"
  42. #include "extent_map.h"
  43. struct compressed_bio {
  44. /* number of bios pending for this compressed extent */
  45. atomic_t pending_bios;
  46. /* the pages with the compressed data on them */
  47. struct page **compressed_pages;
  48. /* inode that owns this data */
  49. struct inode *inode;
  50. /* starting offset in the inode for our pages */
  51. u64 start;
  52. /* number of bytes in the inode we're working on */
  53. unsigned long len;
  54. /* number of bytes on disk */
  55. unsigned long compressed_len;
  56. /* the compression algorithm for this bio */
  57. int compress_type;
  58. /* number of compressed pages in the array */
  59. unsigned long nr_pages;
  60. /* IO errors */
  61. int errors;
  62. int mirror_num;
  63. /* for reads, this is the bio we are copying the data into */
  64. struct bio *orig_bio;
  65. /*
  66. * the start of a variable length array of checksums only
  67. * used by reads
  68. */
  69. u32 sums;
  70. };
  71. static int btrfs_decompress_biovec(int type, struct page **pages_in,
  72. u64 disk_start, struct bio_vec *bvec,
  73. int vcnt, size_t srclen);
  74. static inline int compressed_bio_size(struct btrfs_root *root,
  75. unsigned long disk_size)
  76. {
  77. u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
  78. return sizeof(struct compressed_bio) +
  79. ((disk_size + root->sectorsize - 1) / root->sectorsize) *
  80. csum_size;
  81. }
  82. static struct bio *compressed_bio_alloc(struct block_device *bdev,
  83. u64 first_byte, gfp_t gfp_flags)
  84. {
  85. int nr_vecs;
  86. nr_vecs = bio_get_nr_vecs(bdev);
  87. return btrfs_bio_alloc(bdev, first_byte >> 9, nr_vecs, gfp_flags);
  88. }
  89. static int check_compressed_csum(struct inode *inode,
  90. struct compressed_bio *cb,
  91. u64 disk_start)
  92. {
  93. int ret;
  94. struct page *page;
  95. unsigned long i;
  96. char *kaddr;
  97. u32 csum;
  98. u32 *cb_sum = &cb->sums;
  99. if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
  100. return 0;
  101. for (i = 0; i < cb->nr_pages; i++) {
  102. page = cb->compressed_pages[i];
  103. csum = ~(u32)0;
  104. kaddr = kmap_atomic(page);
  105. csum = btrfs_csum_data(kaddr, csum, PAGE_CACHE_SIZE);
  106. btrfs_csum_final(csum, (char *)&csum);
  107. kunmap_atomic(kaddr);
  108. if (csum != *cb_sum) {
  109. btrfs_info(BTRFS_I(inode)->root->fs_info,
  110. "csum failed ino %llu extent %llu csum %u wanted %u mirror %d",
  111. btrfs_ino(inode), disk_start, csum, *cb_sum,
  112. cb->mirror_num);
  113. ret = -EIO;
  114. goto fail;
  115. }
  116. cb_sum++;
  117. }
  118. ret = 0;
  119. fail:
  120. return ret;
  121. }
  122. /* when we finish reading compressed pages from the disk, we
  123. * decompress them and then run the bio end_io routines on the
  124. * decompressed pages (in the inode address space).
  125. *
  126. * This allows the checksumming and other IO error handling routines
  127. * to work normally
  128. *
  129. * The compressed pages are freed here, and it must be run
  130. * in process context
  131. */
  132. static void end_compressed_bio_read(struct bio *bio, int err)
  133. {
  134. struct compressed_bio *cb = bio->bi_private;
  135. struct inode *inode;
  136. struct page *page;
  137. unsigned long index;
  138. int ret;
  139. if (err)
  140. cb->errors = 1;
  141. /* if there are more bios still pending for this compressed
  142. * extent, just exit
  143. */
  144. if (!atomic_dec_and_test(&cb->pending_bios))
  145. goto out;
  146. inode = cb->inode;
  147. ret = check_compressed_csum(inode, cb, (u64)bio->bi_sector << 9);
  148. if (ret)
  149. goto csum_failed;
  150. /* ok, we're the last bio for this extent, lets start
  151. * the decompression.
  152. */
  153. ret = btrfs_decompress_biovec(cb->compress_type,
  154. cb->compressed_pages,
  155. cb->start,
  156. cb->orig_bio->bi_io_vec,
  157. cb->orig_bio->bi_vcnt,
  158. cb->compressed_len);
  159. csum_failed:
  160. if (ret)
  161. cb->errors = 1;
  162. /* release the compressed pages */
  163. index = 0;
  164. for (index = 0; index < cb->nr_pages; index++) {
  165. page = cb->compressed_pages[index];
  166. page->mapping = NULL;
  167. page_cache_release(page);
  168. }
  169. /* do io completion on the original bio */
  170. if (cb->errors) {
  171. bio_io_error(cb->orig_bio);
  172. } else {
  173. int bio_index = 0;
  174. struct bio_vec *bvec = cb->orig_bio->bi_io_vec;
  175. /*
  176. * we have verified the checksum already, set page
  177. * checked so the end_io handlers know about it
  178. */
  179. while (bio_index < cb->orig_bio->bi_vcnt) {
  180. SetPageChecked(bvec->bv_page);
  181. bvec++;
  182. bio_index++;
  183. }
  184. bio_endio(cb->orig_bio, 0);
  185. }
  186. /* finally free the cb struct */
  187. kfree(cb->compressed_pages);
  188. kfree(cb);
  189. out:
  190. bio_put(bio);
  191. }
  192. /*
  193. * Clear the writeback bits on all of the file
  194. * pages for a compressed write
  195. */
  196. static noinline void end_compressed_writeback(struct inode *inode, u64 start,
  197. unsigned long ram_size)
  198. {
  199. unsigned long index = start >> PAGE_CACHE_SHIFT;
  200. unsigned long end_index = (start + ram_size - 1) >> PAGE_CACHE_SHIFT;
  201. struct page *pages[16];
  202. unsigned long nr_pages = end_index - index + 1;
  203. int i;
  204. int ret;
  205. while (nr_pages > 0) {
  206. ret = find_get_pages_contig(inode->i_mapping, index,
  207. min_t(unsigned long,
  208. nr_pages, ARRAY_SIZE(pages)), pages);
  209. if (ret == 0) {
  210. nr_pages -= 1;
  211. index += 1;
  212. continue;
  213. }
  214. for (i = 0; i < ret; i++) {
  215. end_page_writeback(pages[i]);
  216. page_cache_release(pages[i]);
  217. }
  218. nr_pages -= ret;
  219. index += ret;
  220. }
  221. /* the inode may be gone now */
  222. }
  223. /*
  224. * do the cleanup once all the compressed pages hit the disk.
  225. * This will clear writeback on the file pages and free the compressed
  226. * pages.
  227. *
  228. * This also calls the writeback end hooks for the file pages so that
  229. * metadata and checksums can be updated in the file.
  230. */
  231. static void end_compressed_bio_write(struct bio *bio, int err)
  232. {
  233. struct extent_io_tree *tree;
  234. struct compressed_bio *cb = bio->bi_private;
  235. struct inode *inode;
  236. struct page *page;
  237. unsigned long index;
  238. if (err)
  239. cb->errors = 1;
  240. /* if there are more bios still pending for this compressed
  241. * extent, just exit
  242. */
  243. if (!atomic_dec_and_test(&cb->pending_bios))
  244. goto out;
  245. /* ok, we're the last bio for this extent, step one is to
  246. * call back into the FS and do all the end_io operations
  247. */
  248. inode = cb->inode;
  249. tree = &BTRFS_I(inode)->io_tree;
  250. cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
  251. tree->ops->writepage_end_io_hook(cb->compressed_pages[0],
  252. cb->start,
  253. cb->start + cb->len - 1,
  254. NULL, 1);
  255. cb->compressed_pages[0]->mapping = NULL;
  256. end_compressed_writeback(inode, cb->start, cb->len);
  257. /* note, our inode could be gone now */
  258. /*
  259. * release the compressed pages, these came from alloc_page and
  260. * are not attached to the inode at all
  261. */
  262. index = 0;
  263. for (index = 0; index < cb->nr_pages; index++) {
  264. page = cb->compressed_pages[index];
  265. page->mapping = NULL;
  266. page_cache_release(page);
  267. }
  268. /* finally free the cb struct */
  269. kfree(cb->compressed_pages);
  270. kfree(cb);
  271. out:
  272. bio_put(bio);
  273. }
  274. /*
  275. * worker function to build and submit bios for previously compressed pages.
  276. * The corresponding pages in the inode should be marked for writeback
  277. * and the compressed pages should have a reference on them for dropping
  278. * when the IO is complete.
  279. *
  280. * This also checksums the file bytes and gets things ready for
  281. * the end io hooks.
  282. */
  283. int btrfs_submit_compressed_write(struct inode *inode, u64 start,
  284. unsigned long len, u64 disk_start,
  285. unsigned long compressed_len,
  286. struct page **compressed_pages,
  287. unsigned long nr_pages)
  288. {
  289. struct bio *bio = NULL;
  290. struct btrfs_root *root = BTRFS_I(inode)->root;
  291. struct compressed_bio *cb;
  292. unsigned long bytes_left;
  293. struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
  294. int pg_index = 0;
  295. struct page *page;
  296. u64 first_byte = disk_start;
  297. struct block_device *bdev;
  298. int ret;
  299. int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
  300. WARN_ON(start & ((u64)PAGE_CACHE_SIZE - 1));
  301. cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
  302. if (!cb)
  303. return -ENOMEM;
  304. atomic_set(&cb->pending_bios, 0);
  305. cb->errors = 0;
  306. cb->inode = inode;
  307. cb->start = start;
  308. cb->len = len;
  309. cb->mirror_num = 0;
  310. cb->compressed_pages = compressed_pages;
  311. cb->compressed_len = compressed_len;
  312. cb->orig_bio = NULL;
  313. cb->nr_pages = nr_pages;
  314. bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  315. bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
  316. if (!bio) {
  317. kfree(cb);
  318. return -ENOMEM;
  319. }
  320. bio->bi_private = cb;
  321. bio->bi_end_io = end_compressed_bio_write;
  322. atomic_inc(&cb->pending_bios);
  323. /* create and submit bios for the compressed pages */
  324. bytes_left = compressed_len;
  325. for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
  326. page = compressed_pages[pg_index];
  327. page->mapping = inode->i_mapping;
  328. if (bio->bi_size)
  329. ret = io_tree->ops->merge_bio_hook(WRITE, page, 0,
  330. PAGE_CACHE_SIZE,
  331. bio, 0);
  332. else
  333. ret = 0;
  334. page->mapping = NULL;
  335. if (ret || bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) <
  336. PAGE_CACHE_SIZE) {
  337. bio_get(bio);
  338. /*
  339. * inc the count before we submit the bio so
  340. * we know the end IO handler won't happen before
  341. * we inc the count. Otherwise, the cb might get
  342. * freed before we're done setting it up
  343. */
  344. atomic_inc(&cb->pending_bios);
  345. ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
  346. BUG_ON(ret); /* -ENOMEM */
  347. if (!skip_sum) {
  348. ret = btrfs_csum_one_bio(root, inode, bio,
  349. start, 1);
  350. BUG_ON(ret); /* -ENOMEM */
  351. }
  352. ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
  353. BUG_ON(ret); /* -ENOMEM */
  354. bio_put(bio);
  355. bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
  356. BUG_ON(!bio);
  357. bio->bi_private = cb;
  358. bio->bi_end_io = end_compressed_bio_write;
  359. bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
  360. }
  361. if (bytes_left < PAGE_CACHE_SIZE) {
  362. btrfs_info(BTRFS_I(inode)->root->fs_info,
  363. "bytes left %lu compress len %lu nr %lu",
  364. bytes_left, cb->compressed_len, cb->nr_pages);
  365. }
  366. bytes_left -= PAGE_CACHE_SIZE;
  367. first_byte += PAGE_CACHE_SIZE;
  368. cond_resched();
  369. }
  370. bio_get(bio);
  371. ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
  372. BUG_ON(ret); /* -ENOMEM */
  373. if (!skip_sum) {
  374. ret = btrfs_csum_one_bio(root, inode, bio, start, 1);
  375. BUG_ON(ret); /* -ENOMEM */
  376. }
  377. ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
  378. BUG_ON(ret); /* -ENOMEM */
  379. bio_put(bio);
  380. return 0;
  381. }
  382. static noinline int add_ra_bio_pages(struct inode *inode,
  383. u64 compressed_end,
  384. struct compressed_bio *cb)
  385. {
  386. unsigned long end_index;
  387. unsigned long pg_index;
  388. u64 last_offset;
  389. u64 isize = i_size_read(inode);
  390. int ret;
  391. struct page *page;
  392. unsigned long nr_pages = 0;
  393. struct extent_map *em;
  394. struct address_space *mapping = inode->i_mapping;
  395. struct extent_map_tree *em_tree;
  396. struct extent_io_tree *tree;
  397. u64 end;
  398. int misses = 0;
  399. page = cb->orig_bio->bi_io_vec[cb->orig_bio->bi_vcnt - 1].bv_page;
  400. last_offset = (page_offset(page) + PAGE_CACHE_SIZE);
  401. em_tree = &BTRFS_I(inode)->extent_tree;
  402. tree = &BTRFS_I(inode)->io_tree;
  403. if (isize == 0)
  404. return 0;
  405. end_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
  406. while (last_offset < compressed_end) {
  407. pg_index = last_offset >> PAGE_CACHE_SHIFT;
  408. if (pg_index > end_index)
  409. break;
  410. rcu_read_lock();
  411. page = radix_tree_lookup(&mapping->page_tree, pg_index);
  412. rcu_read_unlock();
  413. if (page) {
  414. misses++;
  415. if (misses > 4)
  416. break;
  417. goto next;
  418. }
  419. page = __page_cache_alloc(mapping_gfp_mask(mapping) &
  420. ~__GFP_FS);
  421. if (!page)
  422. break;
  423. if (add_to_page_cache_lru(page, mapping, pg_index,
  424. GFP_NOFS)) {
  425. page_cache_release(page);
  426. goto next;
  427. }
  428. end = last_offset + PAGE_CACHE_SIZE - 1;
  429. /*
  430. * at this point, we have a locked page in the page cache
  431. * for these bytes in the file. But, we have to make
  432. * sure they map to this compressed extent on disk.
  433. */
  434. set_page_extent_mapped(page);
  435. lock_extent(tree, last_offset, end);
  436. read_lock(&em_tree->lock);
  437. em = lookup_extent_mapping(em_tree, last_offset,
  438. PAGE_CACHE_SIZE);
  439. read_unlock(&em_tree->lock);
  440. if (!em || last_offset < em->start ||
  441. (last_offset + PAGE_CACHE_SIZE > extent_map_end(em)) ||
  442. (em->block_start >> 9) != cb->orig_bio->bi_sector) {
  443. free_extent_map(em);
  444. unlock_extent(tree, last_offset, end);
  445. unlock_page(page);
  446. page_cache_release(page);
  447. break;
  448. }
  449. free_extent_map(em);
  450. if (page->index == end_index) {
  451. char *userpage;
  452. size_t zero_offset = isize & (PAGE_CACHE_SIZE - 1);
  453. if (zero_offset) {
  454. int zeros;
  455. zeros = PAGE_CACHE_SIZE - zero_offset;
  456. userpage = kmap_atomic(page);
  457. memset(userpage + zero_offset, 0, zeros);
  458. flush_dcache_page(page);
  459. kunmap_atomic(userpage);
  460. }
  461. }
  462. ret = bio_add_page(cb->orig_bio, page,
  463. PAGE_CACHE_SIZE, 0);
  464. if (ret == PAGE_CACHE_SIZE) {
  465. nr_pages++;
  466. page_cache_release(page);
  467. } else {
  468. unlock_extent(tree, last_offset, end);
  469. unlock_page(page);
  470. page_cache_release(page);
  471. break;
  472. }
  473. next:
  474. last_offset += PAGE_CACHE_SIZE;
  475. }
  476. return 0;
  477. }
  478. /*
  479. * for a compressed read, the bio we get passed has all the inode pages
  480. * in it. We don't actually do IO on those pages but allocate new ones
  481. * to hold the compressed pages on disk.
  482. *
  483. * bio->bi_sector points to the compressed extent on disk
  484. * bio->bi_io_vec points to all of the inode pages
  485. * bio->bi_vcnt is a count of pages
  486. *
  487. * After the compressed pages are read, we copy the bytes into the
  488. * bio we were passed and then call the bio end_io calls
  489. */
  490. int btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
  491. int mirror_num, unsigned long bio_flags)
  492. {
  493. struct extent_io_tree *tree;
  494. struct extent_map_tree *em_tree;
  495. struct compressed_bio *cb;
  496. struct btrfs_root *root = BTRFS_I(inode)->root;
  497. unsigned long uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
  498. unsigned long compressed_len;
  499. unsigned long nr_pages;
  500. unsigned long pg_index;
  501. struct page *page;
  502. struct block_device *bdev;
  503. struct bio *comp_bio;
  504. u64 cur_disk_byte = (u64)bio->bi_sector << 9;
  505. u64 em_len;
  506. u64 em_start;
  507. struct extent_map *em;
  508. int ret = -ENOMEM;
  509. int faili = 0;
  510. u32 *sums;
  511. tree = &BTRFS_I(inode)->io_tree;
  512. em_tree = &BTRFS_I(inode)->extent_tree;
  513. /* we need the actual starting offset of this extent in the file */
  514. read_lock(&em_tree->lock);
  515. em = lookup_extent_mapping(em_tree,
  516. page_offset(bio->bi_io_vec->bv_page),
  517. PAGE_CACHE_SIZE);
  518. read_unlock(&em_tree->lock);
  519. if (!em)
  520. return -EIO;
  521. compressed_len = em->block_len;
  522. cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
  523. if (!cb)
  524. goto out;
  525. atomic_set(&cb->pending_bios, 0);
  526. cb->errors = 0;
  527. cb->inode = inode;
  528. cb->mirror_num = mirror_num;
  529. sums = &cb->sums;
  530. cb->start = em->orig_start;
  531. em_len = em->len;
  532. em_start = em->start;
  533. free_extent_map(em);
  534. em = NULL;
  535. cb->len = uncompressed_len;
  536. cb->compressed_len = compressed_len;
  537. cb->compress_type = extent_compress_type(bio_flags);
  538. cb->orig_bio = bio;
  539. nr_pages = (compressed_len + PAGE_CACHE_SIZE - 1) /
  540. PAGE_CACHE_SIZE;
  541. cb->compressed_pages = kzalloc(sizeof(struct page *) * nr_pages,
  542. GFP_NOFS);
  543. if (!cb->compressed_pages)
  544. goto fail1;
  545. bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  546. for (pg_index = 0; pg_index < nr_pages; pg_index++) {
  547. cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
  548. __GFP_HIGHMEM);
  549. if (!cb->compressed_pages[pg_index]) {
  550. faili = pg_index - 1;
  551. ret = -ENOMEM;
  552. goto fail2;
  553. }
  554. }
  555. faili = nr_pages - 1;
  556. cb->nr_pages = nr_pages;
  557. /* In the parent-locked case, we only locked the range we are
  558. * interested in. In all other cases, we can opportunistically
  559. * cache decompressed data that goes beyond the requested range. */
  560. if (!(bio_flags & EXTENT_BIO_PARENT_LOCKED))
  561. add_ra_bio_pages(inode, em_start + em_len, cb);
  562. /* include any pages we added in add_ra-bio_pages */
  563. uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
  564. cb->len = uncompressed_len;
  565. comp_bio = compressed_bio_alloc(bdev, cur_disk_byte, GFP_NOFS);
  566. if (!comp_bio)
  567. goto fail2;
  568. comp_bio->bi_private = cb;
  569. comp_bio->bi_end_io = end_compressed_bio_read;
  570. atomic_inc(&cb->pending_bios);
  571. for (pg_index = 0; pg_index < nr_pages; pg_index++) {
  572. page = cb->compressed_pages[pg_index];
  573. page->mapping = inode->i_mapping;
  574. page->index = em_start >> PAGE_CACHE_SHIFT;
  575. if (comp_bio->bi_size)
  576. ret = tree->ops->merge_bio_hook(READ, page, 0,
  577. PAGE_CACHE_SIZE,
  578. comp_bio, 0);
  579. else
  580. ret = 0;
  581. page->mapping = NULL;
  582. if (ret || bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0) <
  583. PAGE_CACHE_SIZE) {
  584. bio_get(comp_bio);
  585. ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio, 0);
  586. BUG_ON(ret); /* -ENOMEM */
  587. /*
  588. * inc the count before we submit the bio so
  589. * we know the end IO handler won't happen before
  590. * we inc the count. Otherwise, the cb might get
  591. * freed before we're done setting it up
  592. */
  593. atomic_inc(&cb->pending_bios);
  594. if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
  595. ret = btrfs_lookup_bio_sums(root, inode,
  596. comp_bio, sums);
  597. BUG_ON(ret); /* -ENOMEM */
  598. }
  599. sums += (comp_bio->bi_size + root->sectorsize - 1) /
  600. root->sectorsize;
  601. ret = btrfs_map_bio(root, READ, comp_bio,
  602. mirror_num, 0);
  603. if (ret)
  604. bio_endio(comp_bio, ret);
  605. bio_put(comp_bio);
  606. comp_bio = compressed_bio_alloc(bdev, cur_disk_byte,
  607. GFP_NOFS);
  608. BUG_ON(!comp_bio);
  609. comp_bio->bi_private = cb;
  610. comp_bio->bi_end_io = end_compressed_bio_read;
  611. bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0);
  612. }
  613. cur_disk_byte += PAGE_CACHE_SIZE;
  614. }
  615. bio_get(comp_bio);
  616. ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio, 0);
  617. BUG_ON(ret); /* -ENOMEM */
  618. if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
  619. ret = btrfs_lookup_bio_sums(root, inode, comp_bio, sums);
  620. BUG_ON(ret); /* -ENOMEM */
  621. }
  622. ret = btrfs_map_bio(root, READ, comp_bio, mirror_num, 0);
  623. if (ret)
  624. bio_endio(comp_bio, ret);
  625. bio_put(comp_bio);
  626. return 0;
  627. fail2:
  628. while (faili >= 0) {
  629. __free_page(cb->compressed_pages[faili]);
  630. faili--;
  631. }
  632. kfree(cb->compressed_pages);
  633. fail1:
  634. kfree(cb);
  635. out:
  636. free_extent_map(em);
  637. return ret;
  638. }
  639. static struct list_head comp_idle_workspace[BTRFS_COMPRESS_TYPES];
  640. static spinlock_t comp_workspace_lock[BTRFS_COMPRESS_TYPES];
  641. static int comp_num_workspace[BTRFS_COMPRESS_TYPES];
  642. static atomic_t comp_alloc_workspace[BTRFS_COMPRESS_TYPES];
  643. static wait_queue_head_t comp_workspace_wait[BTRFS_COMPRESS_TYPES];
  644. static struct btrfs_compress_op *btrfs_compress_op[] = {
  645. &btrfs_zlib_compress,
  646. &btrfs_lzo_compress,
  647. };
  648. void __init btrfs_init_compress(void)
  649. {
  650. int i;
  651. for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
  652. INIT_LIST_HEAD(&comp_idle_workspace[i]);
  653. spin_lock_init(&comp_workspace_lock[i]);
  654. atomic_set(&comp_alloc_workspace[i], 0);
  655. init_waitqueue_head(&comp_workspace_wait[i]);
  656. }
  657. }
  658. /*
  659. * this finds an available workspace or allocates a new one
  660. * ERR_PTR is returned if things go bad.
  661. */
  662. static struct list_head *find_workspace(int type)
  663. {
  664. struct list_head *workspace;
  665. int cpus = num_online_cpus();
  666. int idx = type - 1;
  667. struct list_head *idle_workspace = &comp_idle_workspace[idx];
  668. spinlock_t *workspace_lock = &comp_workspace_lock[idx];
  669. atomic_t *alloc_workspace = &comp_alloc_workspace[idx];
  670. wait_queue_head_t *workspace_wait = &comp_workspace_wait[idx];
  671. int *num_workspace = &comp_num_workspace[idx];
  672. again:
  673. spin_lock(workspace_lock);
  674. if (!list_empty(idle_workspace)) {
  675. workspace = idle_workspace->next;
  676. list_del(workspace);
  677. (*num_workspace)--;
  678. spin_unlock(workspace_lock);
  679. return workspace;
  680. }
  681. if (atomic_read(alloc_workspace) > cpus) {
  682. DEFINE_WAIT(wait);
  683. spin_unlock(workspace_lock);
  684. prepare_to_wait(workspace_wait, &wait, TASK_UNINTERRUPTIBLE);
  685. if (atomic_read(alloc_workspace) > cpus && !*num_workspace)
  686. schedule();
  687. finish_wait(workspace_wait, &wait);
  688. goto again;
  689. }
  690. atomic_inc(alloc_workspace);
  691. spin_unlock(workspace_lock);
  692. workspace = btrfs_compress_op[idx]->alloc_workspace();
  693. if (IS_ERR(workspace)) {
  694. atomic_dec(alloc_workspace);
  695. wake_up(workspace_wait);
  696. }
  697. return workspace;
  698. }
  699. /*
  700. * put a workspace struct back on the list or free it if we have enough
  701. * idle ones sitting around
  702. */
  703. static void free_workspace(int type, struct list_head *workspace)
  704. {
  705. int idx = type - 1;
  706. struct list_head *idle_workspace = &comp_idle_workspace[idx];
  707. spinlock_t *workspace_lock = &comp_workspace_lock[idx];
  708. atomic_t *alloc_workspace = &comp_alloc_workspace[idx];
  709. wait_queue_head_t *workspace_wait = &comp_workspace_wait[idx];
  710. int *num_workspace = &comp_num_workspace[idx];
  711. spin_lock(workspace_lock);
  712. if (*num_workspace < num_online_cpus()) {
  713. list_add_tail(workspace, idle_workspace);
  714. (*num_workspace)++;
  715. spin_unlock(workspace_lock);
  716. goto wake;
  717. }
  718. spin_unlock(workspace_lock);
  719. btrfs_compress_op[idx]->free_workspace(workspace);
  720. atomic_dec(alloc_workspace);
  721. wake:
  722. smp_mb();
  723. if (waitqueue_active(workspace_wait))
  724. wake_up(workspace_wait);
  725. }
  726. /*
  727. * cleanup function for module exit
  728. */
  729. static void free_workspaces(void)
  730. {
  731. struct list_head *workspace;
  732. int i;
  733. for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
  734. while (!list_empty(&comp_idle_workspace[i])) {
  735. workspace = comp_idle_workspace[i].next;
  736. list_del(workspace);
  737. btrfs_compress_op[i]->free_workspace(workspace);
  738. atomic_dec(&comp_alloc_workspace[i]);
  739. }
  740. }
  741. }
  742. /*
  743. * given an address space and start/len, compress the bytes.
  744. *
  745. * pages are allocated to hold the compressed result and stored
  746. * in 'pages'
  747. *
  748. * out_pages is used to return the number of pages allocated. There
  749. * may be pages allocated even if we return an error
  750. *
  751. * total_in is used to return the number of bytes actually read. It
  752. * may be smaller then len if we had to exit early because we
  753. * ran out of room in the pages array or because we cross the
  754. * max_out threshold.
  755. *
  756. * total_out is used to return the total number of compressed bytes
  757. *
  758. * max_out tells us the max number of bytes that we're allowed to
  759. * stuff into pages
  760. */
  761. int btrfs_compress_pages(int type, struct address_space *mapping,
  762. u64 start, unsigned long len,
  763. struct page **pages,
  764. unsigned long nr_dest_pages,
  765. unsigned long *out_pages,
  766. unsigned long *total_in,
  767. unsigned long *total_out,
  768. unsigned long max_out)
  769. {
  770. struct list_head *workspace;
  771. int ret;
  772. workspace = find_workspace(type);
  773. if (IS_ERR(workspace))
  774. return -1;
  775. ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping,
  776. start, len, pages,
  777. nr_dest_pages, out_pages,
  778. total_in, total_out,
  779. max_out);
  780. free_workspace(type, workspace);
  781. return ret;
  782. }
  783. /*
  784. * pages_in is an array of pages with compressed data.
  785. *
  786. * disk_start is the starting logical offset of this array in the file
  787. *
  788. * bvec is a bio_vec of pages from the file that we want to decompress into
  789. *
  790. * vcnt is the count of pages in the biovec
  791. *
  792. * srclen is the number of bytes in pages_in
  793. *
  794. * The basic idea is that we have a bio that was created by readpages.
  795. * The pages in the bio are for the uncompressed data, and they may not
  796. * be contiguous. They all correspond to the range of bytes covered by
  797. * the compressed extent.
  798. */
  799. static int btrfs_decompress_biovec(int type, struct page **pages_in,
  800. u64 disk_start, struct bio_vec *bvec,
  801. int vcnt, size_t srclen)
  802. {
  803. struct list_head *workspace;
  804. int ret;
  805. workspace = find_workspace(type);
  806. if (IS_ERR(workspace))
  807. return -ENOMEM;
  808. ret = btrfs_compress_op[type-1]->decompress_biovec(workspace, pages_in,
  809. disk_start,
  810. bvec, vcnt, srclen);
  811. free_workspace(type, workspace);
  812. return ret;
  813. }
  814. /*
  815. * a less complex decompression routine. Our compressed data fits in a
  816. * single page, and we want to read a single page out of it.
  817. * start_byte tells us the offset into the compressed data we're interested in
  818. */
  819. int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
  820. unsigned long start_byte, size_t srclen, size_t destlen)
  821. {
  822. struct list_head *workspace;
  823. int ret;
  824. workspace = find_workspace(type);
  825. if (IS_ERR(workspace))
  826. return -ENOMEM;
  827. ret = btrfs_compress_op[type-1]->decompress(workspace, data_in,
  828. dest_page, start_byte,
  829. srclen, destlen);
  830. free_workspace(type, workspace);
  831. return ret;
  832. }
  833. void btrfs_exit_compress(void)
  834. {
  835. free_workspaces();
  836. }
  837. /*
  838. * Copy uncompressed data from working buffer to pages.
  839. *
  840. * buf_start is the byte offset we're of the start of our workspace buffer.
  841. *
  842. * total_out is the last byte of the buffer
  843. */
  844. int btrfs_decompress_buf2page(char *buf, unsigned long buf_start,
  845. unsigned long total_out, u64 disk_start,
  846. struct bio_vec *bvec, int vcnt,
  847. unsigned long *pg_index,
  848. unsigned long *pg_offset)
  849. {
  850. unsigned long buf_offset;
  851. unsigned long current_buf_start;
  852. unsigned long start_byte;
  853. unsigned long working_bytes = total_out - buf_start;
  854. unsigned long bytes;
  855. char *kaddr;
  856. struct page *page_out = bvec[*pg_index].bv_page;
  857. /*
  858. * start byte is the first byte of the page we're currently
  859. * copying into relative to the start of the compressed data.
  860. */
  861. start_byte = page_offset(page_out) - disk_start;
  862. /* we haven't yet hit data corresponding to this page */
  863. if (total_out <= start_byte)
  864. return 1;
  865. /*
  866. * the start of the data we care about is offset into
  867. * the middle of our working buffer
  868. */
  869. if (total_out > start_byte && buf_start < start_byte) {
  870. buf_offset = start_byte - buf_start;
  871. working_bytes -= buf_offset;
  872. } else {
  873. buf_offset = 0;
  874. }
  875. current_buf_start = buf_start;
  876. /* copy bytes from the working buffer into the pages */
  877. while (working_bytes > 0) {
  878. bytes = min(PAGE_CACHE_SIZE - *pg_offset,
  879. PAGE_CACHE_SIZE - buf_offset);
  880. bytes = min(bytes, working_bytes);
  881. kaddr = kmap_atomic(page_out);
  882. memcpy(kaddr + *pg_offset, buf + buf_offset, bytes);
  883. if (*pg_index == (vcnt - 1) && *pg_offset == 0)
  884. memset(kaddr + bytes, 0, PAGE_CACHE_SIZE - bytes);
  885. kunmap_atomic(kaddr);
  886. flush_dcache_page(page_out);
  887. *pg_offset += bytes;
  888. buf_offset += bytes;
  889. working_bytes -= bytes;
  890. current_buf_start += bytes;
  891. /* check if we need to pick another page */
  892. if (*pg_offset == PAGE_CACHE_SIZE) {
  893. (*pg_index)++;
  894. if (*pg_index >= vcnt)
  895. return 0;
  896. page_out = bvec[*pg_index].bv_page;
  897. *pg_offset = 0;
  898. start_byte = page_offset(page_out) - disk_start;
  899. /*
  900. * make sure our new page is covered by this
  901. * working buffer
  902. */
  903. if (total_out <= start_byte)
  904. return 1;
  905. /*
  906. * the next page in the biovec might not be adjacent
  907. * to the last page, but it might still be found
  908. * inside this working buffer. bump our offset pointer
  909. */
  910. if (total_out > start_byte &&
  911. current_buf_start < start_byte) {
  912. buf_offset = start_byte - buf_start;
  913. working_bytes = total_out - start_byte;
  914. current_buf_start = buf_start + buf_offset;
  915. }
  916. }
  917. }
  918. return 1;
  919. }