intel_dpll_mgr.c 49 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930
  1. /*
  2. * Copyright © 2006-2016 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21. * DEALINGS IN THE SOFTWARE.
  22. */
  23. #include "intel_drv.h"
  24. struct intel_shared_dpll *
  25. skl_find_link_pll(struct drm_i915_private *dev_priv, int clock)
  26. {
  27. struct intel_shared_dpll *pll = NULL;
  28. struct intel_dpll_hw_state dpll_hw_state;
  29. enum intel_dpll_id i;
  30. bool found = false;
  31. if (!skl_ddi_dp_set_dpll_hw_state(clock, &dpll_hw_state))
  32. return pll;
  33. for (i = DPLL_ID_SKL_DPLL1; i <= DPLL_ID_SKL_DPLL3; i++) {
  34. pll = &dev_priv->shared_dplls[i];
  35. /* Only want to check enabled timings first */
  36. if (pll->config.crtc_mask == 0)
  37. continue;
  38. if (memcmp(&dpll_hw_state, &pll->config.hw_state,
  39. sizeof(pll->config.hw_state)) == 0) {
  40. found = true;
  41. break;
  42. }
  43. }
  44. /* Ok no matching timings, maybe there's a free one? */
  45. for (i = DPLL_ID_SKL_DPLL1;
  46. ((found == false) && (i <= DPLL_ID_SKL_DPLL3)); i++) {
  47. pll = &dev_priv->shared_dplls[i];
  48. if (pll->config.crtc_mask == 0) {
  49. pll->config.hw_state = dpll_hw_state;
  50. break;
  51. }
  52. }
  53. return pll;
  54. }
  55. struct intel_shared_dpll *
  56. intel_get_shared_dpll_by_id(struct drm_i915_private *dev_priv,
  57. enum intel_dpll_id id)
  58. {
  59. return &dev_priv->shared_dplls[id];
  60. }
  61. enum intel_dpll_id
  62. intel_get_shared_dpll_id(struct drm_i915_private *dev_priv,
  63. struct intel_shared_dpll *pll)
  64. {
  65. if (WARN_ON(pll < dev_priv->shared_dplls||
  66. pll > &dev_priv->shared_dplls[dev_priv->num_shared_dpll]))
  67. return -1;
  68. return (enum intel_dpll_id) (pll - dev_priv->shared_dplls);
  69. }
  70. /* For ILK+ */
  71. void assert_shared_dpll(struct drm_i915_private *dev_priv,
  72. struct intel_shared_dpll *pll,
  73. bool state)
  74. {
  75. bool cur_state;
  76. struct intel_dpll_hw_state hw_state;
  77. if (WARN(!pll, "asserting DPLL %s with no DPLL\n", onoff(state)))
  78. return;
  79. cur_state = pll->funcs.get_hw_state(dev_priv, pll, &hw_state);
  80. I915_STATE_WARN(cur_state != state,
  81. "%s assertion failure (expected %s, current %s)\n",
  82. pll->name, onoff(state), onoff(cur_state));
  83. }
  84. void intel_prepare_shared_dpll(struct intel_crtc *crtc)
  85. {
  86. struct drm_device *dev = crtc->base.dev;
  87. struct drm_i915_private *dev_priv = to_i915(dev);
  88. struct intel_shared_dpll *pll = crtc->config->shared_dpll;
  89. if (WARN_ON(pll == NULL))
  90. return;
  91. mutex_lock(&dev_priv->dpll_lock);
  92. WARN_ON(!pll->config.crtc_mask);
  93. if (!pll->active_mask) {
  94. DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
  95. WARN_ON(pll->on);
  96. assert_shared_dpll_disabled(dev_priv, pll);
  97. pll->funcs.mode_set(dev_priv, pll);
  98. }
  99. mutex_unlock(&dev_priv->dpll_lock);
  100. }
  101. /**
  102. * intel_enable_shared_dpll - enable PCH PLL
  103. * @dev_priv: i915 private structure
  104. * @pipe: pipe PLL to enable
  105. *
  106. * The PCH PLL needs to be enabled before the PCH transcoder, since it
  107. * drives the transcoder clock.
  108. */
  109. void intel_enable_shared_dpll(struct intel_crtc *crtc)
  110. {
  111. struct drm_device *dev = crtc->base.dev;
  112. struct drm_i915_private *dev_priv = to_i915(dev);
  113. struct intel_shared_dpll *pll = crtc->config->shared_dpll;
  114. unsigned crtc_mask = 1 << drm_crtc_index(&crtc->base);
  115. unsigned old_mask;
  116. if (WARN_ON(pll == NULL))
  117. return;
  118. mutex_lock(&dev_priv->dpll_lock);
  119. old_mask = pll->active_mask;
  120. if (WARN_ON(!(pll->config.crtc_mask & crtc_mask)) ||
  121. WARN_ON(pll->active_mask & crtc_mask))
  122. goto out;
  123. pll->active_mask |= crtc_mask;
  124. DRM_DEBUG_KMS("enable %s (active %x, on? %d) for crtc %d\n",
  125. pll->name, pll->active_mask, pll->on,
  126. crtc->base.base.id);
  127. if (old_mask) {
  128. WARN_ON(!pll->on);
  129. assert_shared_dpll_enabled(dev_priv, pll);
  130. goto out;
  131. }
  132. WARN_ON(pll->on);
  133. DRM_DEBUG_KMS("enabling %s\n", pll->name);
  134. pll->funcs.enable(dev_priv, pll);
  135. pll->on = true;
  136. out:
  137. mutex_unlock(&dev_priv->dpll_lock);
  138. }
  139. void intel_disable_shared_dpll(struct intel_crtc *crtc)
  140. {
  141. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  142. struct intel_shared_dpll *pll = crtc->config->shared_dpll;
  143. unsigned crtc_mask = 1 << drm_crtc_index(&crtc->base);
  144. /* PCH only available on ILK+ */
  145. if (INTEL_GEN(dev_priv) < 5)
  146. return;
  147. if (pll == NULL)
  148. return;
  149. mutex_lock(&dev_priv->dpll_lock);
  150. if (WARN_ON(!(pll->active_mask & crtc_mask)))
  151. goto out;
  152. DRM_DEBUG_KMS("disable %s (active %x, on? %d) for crtc %d\n",
  153. pll->name, pll->active_mask, pll->on,
  154. crtc->base.base.id);
  155. assert_shared_dpll_enabled(dev_priv, pll);
  156. WARN_ON(!pll->on);
  157. pll->active_mask &= ~crtc_mask;
  158. if (pll->active_mask)
  159. goto out;
  160. DRM_DEBUG_KMS("disabling %s\n", pll->name);
  161. pll->funcs.disable(dev_priv, pll);
  162. pll->on = false;
  163. out:
  164. mutex_unlock(&dev_priv->dpll_lock);
  165. }
  166. static struct intel_shared_dpll *
  167. intel_find_shared_dpll(struct intel_crtc *crtc,
  168. struct intel_crtc_state *crtc_state,
  169. enum intel_dpll_id range_min,
  170. enum intel_dpll_id range_max)
  171. {
  172. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  173. struct intel_shared_dpll *pll;
  174. struct intel_shared_dpll_config *shared_dpll;
  175. enum intel_dpll_id i;
  176. shared_dpll = intel_atomic_get_shared_dpll_state(crtc_state->base.state);
  177. for (i = range_min; i <= range_max; i++) {
  178. pll = &dev_priv->shared_dplls[i];
  179. /* Only want to check enabled timings first */
  180. if (shared_dpll[i].crtc_mask == 0)
  181. continue;
  182. if (memcmp(&crtc_state->dpll_hw_state,
  183. &shared_dpll[i].hw_state,
  184. sizeof(crtc_state->dpll_hw_state)) == 0) {
  185. DRM_DEBUG_KMS("[CRTC:%d:%s] sharing existing %s (crtc mask 0x%08x, active %x)\n",
  186. crtc->base.base.id, crtc->base.name, pll->name,
  187. shared_dpll[i].crtc_mask,
  188. pll->active_mask);
  189. return pll;
  190. }
  191. }
  192. /* Ok no matching timings, maybe there's a free one? */
  193. for (i = range_min; i <= range_max; i++) {
  194. pll = &dev_priv->shared_dplls[i];
  195. if (shared_dpll[i].crtc_mask == 0) {
  196. DRM_DEBUG_KMS("[CRTC:%d:%s] allocated %s\n",
  197. crtc->base.base.id, crtc->base.name, pll->name);
  198. return pll;
  199. }
  200. }
  201. return NULL;
  202. }
  203. static void
  204. intel_reference_shared_dpll(struct intel_shared_dpll *pll,
  205. struct intel_crtc_state *crtc_state)
  206. {
  207. struct intel_shared_dpll_config *shared_dpll;
  208. struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
  209. enum intel_dpll_id i = pll->id;
  210. shared_dpll = intel_atomic_get_shared_dpll_state(crtc_state->base.state);
  211. if (shared_dpll[i].crtc_mask == 0)
  212. shared_dpll[i].hw_state =
  213. crtc_state->dpll_hw_state;
  214. crtc_state->shared_dpll = pll;
  215. DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
  216. pipe_name(crtc->pipe));
  217. shared_dpll[pll->id].crtc_mask |= 1 << crtc->pipe;
  218. }
  219. void intel_shared_dpll_commit(struct drm_atomic_state *state)
  220. {
  221. struct drm_i915_private *dev_priv = to_i915(state->dev);
  222. struct intel_shared_dpll_config *shared_dpll;
  223. struct intel_shared_dpll *pll;
  224. enum intel_dpll_id i;
  225. if (!to_intel_atomic_state(state)->dpll_set)
  226. return;
  227. shared_dpll = to_intel_atomic_state(state)->shared_dpll;
  228. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  229. pll = &dev_priv->shared_dplls[i];
  230. pll->config = shared_dpll[i];
  231. }
  232. }
  233. static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
  234. struct intel_shared_dpll *pll,
  235. struct intel_dpll_hw_state *hw_state)
  236. {
  237. uint32_t val;
  238. if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS))
  239. return false;
  240. val = I915_READ(PCH_DPLL(pll->id));
  241. hw_state->dpll = val;
  242. hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
  243. hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
  244. intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
  245. return val & DPLL_VCO_ENABLE;
  246. }
  247. static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
  248. struct intel_shared_dpll *pll)
  249. {
  250. I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
  251. I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
  252. }
  253. static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
  254. {
  255. u32 val;
  256. bool enabled;
  257. I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
  258. val = I915_READ(PCH_DREF_CONTROL);
  259. enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
  260. DREF_SUPERSPREAD_SOURCE_MASK));
  261. I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
  262. }
  263. static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
  264. struct intel_shared_dpll *pll)
  265. {
  266. /* PCH refclock must be enabled first */
  267. ibx_assert_pch_refclk_enabled(dev_priv);
  268. I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
  269. /* Wait for the clocks to stabilize. */
  270. POSTING_READ(PCH_DPLL(pll->id));
  271. udelay(150);
  272. /* The pixel multiplier can only be updated once the
  273. * DPLL is enabled and the clocks are stable.
  274. *
  275. * So write it again.
  276. */
  277. I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
  278. POSTING_READ(PCH_DPLL(pll->id));
  279. udelay(200);
  280. }
  281. static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
  282. struct intel_shared_dpll *pll)
  283. {
  284. struct drm_device *dev = &dev_priv->drm;
  285. struct intel_crtc *crtc;
  286. /* Make sure no transcoder isn't still depending on us. */
  287. for_each_intel_crtc(dev, crtc) {
  288. if (crtc->config->shared_dpll == pll)
  289. assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
  290. }
  291. I915_WRITE(PCH_DPLL(pll->id), 0);
  292. POSTING_READ(PCH_DPLL(pll->id));
  293. udelay(200);
  294. }
  295. static struct intel_shared_dpll *
  296. ibx_get_dpll(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state,
  297. struct intel_encoder *encoder)
  298. {
  299. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  300. struct intel_shared_dpll *pll;
  301. enum intel_dpll_id i;
  302. if (HAS_PCH_IBX(dev_priv)) {
  303. /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
  304. i = (enum intel_dpll_id) crtc->pipe;
  305. pll = &dev_priv->shared_dplls[i];
  306. DRM_DEBUG_KMS("[CRTC:%d:%s] using pre-allocated %s\n",
  307. crtc->base.base.id, crtc->base.name, pll->name);
  308. } else {
  309. pll = intel_find_shared_dpll(crtc, crtc_state,
  310. DPLL_ID_PCH_PLL_A,
  311. DPLL_ID_PCH_PLL_B);
  312. }
  313. if (!pll)
  314. return NULL;
  315. /* reference the pll */
  316. intel_reference_shared_dpll(pll, crtc_state);
  317. return pll;
  318. }
  319. static const struct intel_shared_dpll_funcs ibx_pch_dpll_funcs = {
  320. .mode_set = ibx_pch_dpll_mode_set,
  321. .enable = ibx_pch_dpll_enable,
  322. .disable = ibx_pch_dpll_disable,
  323. .get_hw_state = ibx_pch_dpll_get_hw_state,
  324. };
  325. static void hsw_ddi_wrpll_enable(struct drm_i915_private *dev_priv,
  326. struct intel_shared_dpll *pll)
  327. {
  328. I915_WRITE(WRPLL_CTL(pll->id), pll->config.hw_state.wrpll);
  329. POSTING_READ(WRPLL_CTL(pll->id));
  330. udelay(20);
  331. }
  332. static void hsw_ddi_spll_enable(struct drm_i915_private *dev_priv,
  333. struct intel_shared_dpll *pll)
  334. {
  335. I915_WRITE(SPLL_CTL, pll->config.hw_state.spll);
  336. POSTING_READ(SPLL_CTL);
  337. udelay(20);
  338. }
  339. static void hsw_ddi_wrpll_disable(struct drm_i915_private *dev_priv,
  340. struct intel_shared_dpll *pll)
  341. {
  342. uint32_t val;
  343. val = I915_READ(WRPLL_CTL(pll->id));
  344. I915_WRITE(WRPLL_CTL(pll->id), val & ~WRPLL_PLL_ENABLE);
  345. POSTING_READ(WRPLL_CTL(pll->id));
  346. }
  347. static void hsw_ddi_spll_disable(struct drm_i915_private *dev_priv,
  348. struct intel_shared_dpll *pll)
  349. {
  350. uint32_t val;
  351. val = I915_READ(SPLL_CTL);
  352. I915_WRITE(SPLL_CTL, val & ~SPLL_PLL_ENABLE);
  353. POSTING_READ(SPLL_CTL);
  354. }
  355. static bool hsw_ddi_wrpll_get_hw_state(struct drm_i915_private *dev_priv,
  356. struct intel_shared_dpll *pll,
  357. struct intel_dpll_hw_state *hw_state)
  358. {
  359. uint32_t val;
  360. if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS))
  361. return false;
  362. val = I915_READ(WRPLL_CTL(pll->id));
  363. hw_state->wrpll = val;
  364. intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
  365. return val & WRPLL_PLL_ENABLE;
  366. }
  367. static bool hsw_ddi_spll_get_hw_state(struct drm_i915_private *dev_priv,
  368. struct intel_shared_dpll *pll,
  369. struct intel_dpll_hw_state *hw_state)
  370. {
  371. uint32_t val;
  372. if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS))
  373. return false;
  374. val = I915_READ(SPLL_CTL);
  375. hw_state->spll = val;
  376. intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
  377. return val & SPLL_PLL_ENABLE;
  378. }
  379. #define LC_FREQ 2700
  380. #define LC_FREQ_2K U64_C(LC_FREQ * 2000)
  381. #define P_MIN 2
  382. #define P_MAX 64
  383. #define P_INC 2
  384. /* Constraints for PLL good behavior */
  385. #define REF_MIN 48
  386. #define REF_MAX 400
  387. #define VCO_MIN 2400
  388. #define VCO_MAX 4800
  389. struct hsw_wrpll_rnp {
  390. unsigned p, n2, r2;
  391. };
  392. static unsigned hsw_wrpll_get_budget_for_freq(int clock)
  393. {
  394. unsigned budget;
  395. switch (clock) {
  396. case 25175000:
  397. case 25200000:
  398. case 27000000:
  399. case 27027000:
  400. case 37762500:
  401. case 37800000:
  402. case 40500000:
  403. case 40541000:
  404. case 54000000:
  405. case 54054000:
  406. case 59341000:
  407. case 59400000:
  408. case 72000000:
  409. case 74176000:
  410. case 74250000:
  411. case 81000000:
  412. case 81081000:
  413. case 89012000:
  414. case 89100000:
  415. case 108000000:
  416. case 108108000:
  417. case 111264000:
  418. case 111375000:
  419. case 148352000:
  420. case 148500000:
  421. case 162000000:
  422. case 162162000:
  423. case 222525000:
  424. case 222750000:
  425. case 296703000:
  426. case 297000000:
  427. budget = 0;
  428. break;
  429. case 233500000:
  430. case 245250000:
  431. case 247750000:
  432. case 253250000:
  433. case 298000000:
  434. budget = 1500;
  435. break;
  436. case 169128000:
  437. case 169500000:
  438. case 179500000:
  439. case 202000000:
  440. budget = 2000;
  441. break;
  442. case 256250000:
  443. case 262500000:
  444. case 270000000:
  445. case 272500000:
  446. case 273750000:
  447. case 280750000:
  448. case 281250000:
  449. case 286000000:
  450. case 291750000:
  451. budget = 4000;
  452. break;
  453. case 267250000:
  454. case 268500000:
  455. budget = 5000;
  456. break;
  457. default:
  458. budget = 1000;
  459. break;
  460. }
  461. return budget;
  462. }
  463. static void hsw_wrpll_update_rnp(uint64_t freq2k, unsigned budget,
  464. unsigned r2, unsigned n2, unsigned p,
  465. struct hsw_wrpll_rnp *best)
  466. {
  467. uint64_t a, b, c, d, diff, diff_best;
  468. /* No best (r,n,p) yet */
  469. if (best->p == 0) {
  470. best->p = p;
  471. best->n2 = n2;
  472. best->r2 = r2;
  473. return;
  474. }
  475. /*
  476. * Output clock is (LC_FREQ_2K / 2000) * N / (P * R), which compares to
  477. * freq2k.
  478. *
  479. * delta = 1e6 *
  480. * abs(freq2k - (LC_FREQ_2K * n2/(p * r2))) /
  481. * freq2k;
  482. *
  483. * and we would like delta <= budget.
  484. *
  485. * If the discrepancy is above the PPM-based budget, always prefer to
  486. * improve upon the previous solution. However, if you're within the
  487. * budget, try to maximize Ref * VCO, that is N / (P * R^2).
  488. */
  489. a = freq2k * budget * p * r2;
  490. b = freq2k * budget * best->p * best->r2;
  491. diff = abs_diff(freq2k * p * r2, LC_FREQ_2K * n2);
  492. diff_best = abs_diff(freq2k * best->p * best->r2,
  493. LC_FREQ_2K * best->n2);
  494. c = 1000000 * diff;
  495. d = 1000000 * diff_best;
  496. if (a < c && b < d) {
  497. /* If both are above the budget, pick the closer */
  498. if (best->p * best->r2 * diff < p * r2 * diff_best) {
  499. best->p = p;
  500. best->n2 = n2;
  501. best->r2 = r2;
  502. }
  503. } else if (a >= c && b < d) {
  504. /* If A is below the threshold but B is above it? Update. */
  505. best->p = p;
  506. best->n2 = n2;
  507. best->r2 = r2;
  508. } else if (a >= c && b >= d) {
  509. /* Both are below the limit, so pick the higher n2/(r2*r2) */
  510. if (n2 * best->r2 * best->r2 > best->n2 * r2 * r2) {
  511. best->p = p;
  512. best->n2 = n2;
  513. best->r2 = r2;
  514. }
  515. }
  516. /* Otherwise a < c && b >= d, do nothing */
  517. }
  518. static void
  519. hsw_ddi_calculate_wrpll(int clock /* in Hz */,
  520. unsigned *r2_out, unsigned *n2_out, unsigned *p_out)
  521. {
  522. uint64_t freq2k;
  523. unsigned p, n2, r2;
  524. struct hsw_wrpll_rnp best = { 0, 0, 0 };
  525. unsigned budget;
  526. freq2k = clock / 100;
  527. budget = hsw_wrpll_get_budget_for_freq(clock);
  528. /* Special case handling for 540 pixel clock: bypass WR PLL entirely
  529. * and directly pass the LC PLL to it. */
  530. if (freq2k == 5400000) {
  531. *n2_out = 2;
  532. *p_out = 1;
  533. *r2_out = 2;
  534. return;
  535. }
  536. /*
  537. * Ref = LC_FREQ / R, where Ref is the actual reference input seen by
  538. * the WR PLL.
  539. *
  540. * We want R so that REF_MIN <= Ref <= REF_MAX.
  541. * Injecting R2 = 2 * R gives:
  542. * REF_MAX * r2 > LC_FREQ * 2 and
  543. * REF_MIN * r2 < LC_FREQ * 2
  544. *
  545. * Which means the desired boundaries for r2 are:
  546. * LC_FREQ * 2 / REF_MAX < r2 < LC_FREQ * 2 / REF_MIN
  547. *
  548. */
  549. for (r2 = LC_FREQ * 2 / REF_MAX + 1;
  550. r2 <= LC_FREQ * 2 / REF_MIN;
  551. r2++) {
  552. /*
  553. * VCO = N * Ref, that is: VCO = N * LC_FREQ / R
  554. *
  555. * Once again we want VCO_MIN <= VCO <= VCO_MAX.
  556. * Injecting R2 = 2 * R and N2 = 2 * N, we get:
  557. * VCO_MAX * r2 > n2 * LC_FREQ and
  558. * VCO_MIN * r2 < n2 * LC_FREQ)
  559. *
  560. * Which means the desired boundaries for n2 are:
  561. * VCO_MIN * r2 / LC_FREQ < n2 < VCO_MAX * r2 / LC_FREQ
  562. */
  563. for (n2 = VCO_MIN * r2 / LC_FREQ + 1;
  564. n2 <= VCO_MAX * r2 / LC_FREQ;
  565. n2++) {
  566. for (p = P_MIN; p <= P_MAX; p += P_INC)
  567. hsw_wrpll_update_rnp(freq2k, budget,
  568. r2, n2, p, &best);
  569. }
  570. }
  571. *n2_out = best.n2;
  572. *p_out = best.p;
  573. *r2_out = best.r2;
  574. }
  575. static struct intel_shared_dpll *hsw_ddi_hdmi_get_dpll(int clock,
  576. struct intel_crtc *crtc,
  577. struct intel_crtc_state *crtc_state)
  578. {
  579. struct intel_shared_dpll *pll;
  580. uint32_t val;
  581. unsigned int p, n2, r2;
  582. hsw_ddi_calculate_wrpll(clock * 1000, &r2, &n2, &p);
  583. val = WRPLL_PLL_ENABLE | WRPLL_PLL_LCPLL |
  584. WRPLL_DIVIDER_REFERENCE(r2) | WRPLL_DIVIDER_FEEDBACK(n2) |
  585. WRPLL_DIVIDER_POST(p);
  586. crtc_state->dpll_hw_state.wrpll = val;
  587. pll = intel_find_shared_dpll(crtc, crtc_state,
  588. DPLL_ID_WRPLL1, DPLL_ID_WRPLL2);
  589. if (!pll)
  590. return NULL;
  591. return pll;
  592. }
  593. struct intel_shared_dpll *hsw_ddi_dp_get_dpll(struct intel_encoder *encoder,
  594. int clock)
  595. {
  596. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  597. struct intel_shared_dpll *pll;
  598. enum intel_dpll_id pll_id;
  599. switch (clock / 2) {
  600. case 81000:
  601. pll_id = DPLL_ID_LCPLL_810;
  602. break;
  603. case 135000:
  604. pll_id = DPLL_ID_LCPLL_1350;
  605. break;
  606. case 270000:
  607. pll_id = DPLL_ID_LCPLL_2700;
  608. break;
  609. default:
  610. DRM_DEBUG_KMS("Invalid clock for DP: %d\n", clock);
  611. return NULL;
  612. }
  613. pll = intel_get_shared_dpll_by_id(dev_priv, pll_id);
  614. if (!pll)
  615. return NULL;
  616. return pll;
  617. }
  618. static struct intel_shared_dpll *
  619. hsw_get_dpll(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state,
  620. struct intel_encoder *encoder)
  621. {
  622. struct intel_shared_dpll *pll;
  623. int clock = crtc_state->port_clock;
  624. memset(&crtc_state->dpll_hw_state, 0,
  625. sizeof(crtc_state->dpll_hw_state));
  626. if (encoder->type == INTEL_OUTPUT_HDMI) {
  627. pll = hsw_ddi_hdmi_get_dpll(clock, crtc, crtc_state);
  628. } else if (encoder->type == INTEL_OUTPUT_DP ||
  629. encoder->type == INTEL_OUTPUT_DP_MST ||
  630. encoder->type == INTEL_OUTPUT_EDP) {
  631. pll = hsw_ddi_dp_get_dpll(encoder, clock);
  632. } else if (encoder->type == INTEL_OUTPUT_ANALOG) {
  633. if (WARN_ON(crtc_state->port_clock / 2 != 135000))
  634. return NULL;
  635. crtc_state->dpll_hw_state.spll =
  636. SPLL_PLL_ENABLE | SPLL_PLL_FREQ_1350MHz | SPLL_PLL_SSC;
  637. pll = intel_find_shared_dpll(crtc, crtc_state,
  638. DPLL_ID_SPLL, DPLL_ID_SPLL);
  639. } else {
  640. return NULL;
  641. }
  642. if (!pll)
  643. return NULL;
  644. intel_reference_shared_dpll(pll, crtc_state);
  645. return pll;
  646. }
  647. static const struct intel_shared_dpll_funcs hsw_ddi_wrpll_funcs = {
  648. .enable = hsw_ddi_wrpll_enable,
  649. .disable = hsw_ddi_wrpll_disable,
  650. .get_hw_state = hsw_ddi_wrpll_get_hw_state,
  651. };
  652. static const struct intel_shared_dpll_funcs hsw_ddi_spll_funcs = {
  653. .enable = hsw_ddi_spll_enable,
  654. .disable = hsw_ddi_spll_disable,
  655. .get_hw_state = hsw_ddi_spll_get_hw_state,
  656. };
  657. static void hsw_ddi_lcpll_enable(struct drm_i915_private *dev_priv,
  658. struct intel_shared_dpll *pll)
  659. {
  660. }
  661. static void hsw_ddi_lcpll_disable(struct drm_i915_private *dev_priv,
  662. struct intel_shared_dpll *pll)
  663. {
  664. }
  665. static bool hsw_ddi_lcpll_get_hw_state(struct drm_i915_private *dev_priv,
  666. struct intel_shared_dpll *pll,
  667. struct intel_dpll_hw_state *hw_state)
  668. {
  669. return true;
  670. }
  671. static const struct intel_shared_dpll_funcs hsw_ddi_lcpll_funcs = {
  672. .enable = hsw_ddi_lcpll_enable,
  673. .disable = hsw_ddi_lcpll_disable,
  674. .get_hw_state = hsw_ddi_lcpll_get_hw_state,
  675. };
  676. struct skl_dpll_regs {
  677. i915_reg_t ctl, cfgcr1, cfgcr2;
  678. };
  679. /* this array is indexed by the *shared* pll id */
  680. static const struct skl_dpll_regs skl_dpll_regs[4] = {
  681. {
  682. /* DPLL 0 */
  683. .ctl = LCPLL1_CTL,
  684. /* DPLL 0 doesn't support HDMI mode */
  685. },
  686. {
  687. /* DPLL 1 */
  688. .ctl = LCPLL2_CTL,
  689. .cfgcr1 = DPLL_CFGCR1(SKL_DPLL1),
  690. .cfgcr2 = DPLL_CFGCR2(SKL_DPLL1),
  691. },
  692. {
  693. /* DPLL 2 */
  694. .ctl = WRPLL_CTL(0),
  695. .cfgcr1 = DPLL_CFGCR1(SKL_DPLL2),
  696. .cfgcr2 = DPLL_CFGCR2(SKL_DPLL2),
  697. },
  698. {
  699. /* DPLL 3 */
  700. .ctl = WRPLL_CTL(1),
  701. .cfgcr1 = DPLL_CFGCR1(SKL_DPLL3),
  702. .cfgcr2 = DPLL_CFGCR2(SKL_DPLL3),
  703. },
  704. };
  705. static void skl_ddi_pll_write_ctrl1(struct drm_i915_private *dev_priv,
  706. struct intel_shared_dpll *pll)
  707. {
  708. uint32_t val;
  709. val = I915_READ(DPLL_CTRL1);
  710. val &= ~(DPLL_CTRL1_HDMI_MODE(pll->id) | DPLL_CTRL1_SSC(pll->id) |
  711. DPLL_CTRL1_LINK_RATE_MASK(pll->id));
  712. val |= pll->config.hw_state.ctrl1 << (pll->id * 6);
  713. I915_WRITE(DPLL_CTRL1, val);
  714. POSTING_READ(DPLL_CTRL1);
  715. }
  716. static void skl_ddi_pll_enable(struct drm_i915_private *dev_priv,
  717. struct intel_shared_dpll *pll)
  718. {
  719. const struct skl_dpll_regs *regs = skl_dpll_regs;
  720. skl_ddi_pll_write_ctrl1(dev_priv, pll);
  721. I915_WRITE(regs[pll->id].cfgcr1, pll->config.hw_state.cfgcr1);
  722. I915_WRITE(regs[pll->id].cfgcr2, pll->config.hw_state.cfgcr2);
  723. POSTING_READ(regs[pll->id].cfgcr1);
  724. POSTING_READ(regs[pll->id].cfgcr2);
  725. /* the enable bit is always bit 31 */
  726. I915_WRITE(regs[pll->id].ctl,
  727. I915_READ(regs[pll->id].ctl) | LCPLL_PLL_ENABLE);
  728. if (intel_wait_for_register(dev_priv,
  729. DPLL_STATUS,
  730. DPLL_LOCK(pll->id),
  731. DPLL_LOCK(pll->id),
  732. 5))
  733. DRM_ERROR("DPLL %d not locked\n", pll->id);
  734. }
  735. static void skl_ddi_dpll0_enable(struct drm_i915_private *dev_priv,
  736. struct intel_shared_dpll *pll)
  737. {
  738. skl_ddi_pll_write_ctrl1(dev_priv, pll);
  739. }
  740. static void skl_ddi_pll_disable(struct drm_i915_private *dev_priv,
  741. struct intel_shared_dpll *pll)
  742. {
  743. const struct skl_dpll_regs *regs = skl_dpll_regs;
  744. /* the enable bit is always bit 31 */
  745. I915_WRITE(regs[pll->id].ctl,
  746. I915_READ(regs[pll->id].ctl) & ~LCPLL_PLL_ENABLE);
  747. POSTING_READ(regs[pll->id].ctl);
  748. }
  749. static void skl_ddi_dpll0_disable(struct drm_i915_private *dev_priv,
  750. struct intel_shared_dpll *pll)
  751. {
  752. }
  753. static bool skl_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
  754. struct intel_shared_dpll *pll,
  755. struct intel_dpll_hw_state *hw_state)
  756. {
  757. uint32_t val;
  758. const struct skl_dpll_regs *regs = skl_dpll_regs;
  759. bool ret;
  760. if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS))
  761. return false;
  762. ret = false;
  763. val = I915_READ(regs[pll->id].ctl);
  764. if (!(val & LCPLL_PLL_ENABLE))
  765. goto out;
  766. val = I915_READ(DPLL_CTRL1);
  767. hw_state->ctrl1 = (val >> (pll->id * 6)) & 0x3f;
  768. /* avoid reading back stale values if HDMI mode is not enabled */
  769. if (val & DPLL_CTRL1_HDMI_MODE(pll->id)) {
  770. hw_state->cfgcr1 = I915_READ(regs[pll->id].cfgcr1);
  771. hw_state->cfgcr2 = I915_READ(regs[pll->id].cfgcr2);
  772. }
  773. ret = true;
  774. out:
  775. intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
  776. return ret;
  777. }
  778. static bool skl_ddi_dpll0_get_hw_state(struct drm_i915_private *dev_priv,
  779. struct intel_shared_dpll *pll,
  780. struct intel_dpll_hw_state *hw_state)
  781. {
  782. uint32_t val;
  783. const struct skl_dpll_regs *regs = skl_dpll_regs;
  784. bool ret;
  785. if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS))
  786. return false;
  787. ret = false;
  788. /* DPLL0 is always enabled since it drives CDCLK */
  789. val = I915_READ(regs[pll->id].ctl);
  790. if (WARN_ON(!(val & LCPLL_PLL_ENABLE)))
  791. goto out;
  792. val = I915_READ(DPLL_CTRL1);
  793. hw_state->ctrl1 = (val >> (pll->id * 6)) & 0x3f;
  794. ret = true;
  795. out:
  796. intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
  797. return ret;
  798. }
  799. struct skl_wrpll_context {
  800. uint64_t min_deviation; /* current minimal deviation */
  801. uint64_t central_freq; /* chosen central freq */
  802. uint64_t dco_freq; /* chosen dco freq */
  803. unsigned int p; /* chosen divider */
  804. };
  805. static void skl_wrpll_context_init(struct skl_wrpll_context *ctx)
  806. {
  807. memset(ctx, 0, sizeof(*ctx));
  808. ctx->min_deviation = U64_MAX;
  809. }
  810. /* DCO freq must be within +1%/-6% of the DCO central freq */
  811. #define SKL_DCO_MAX_PDEVIATION 100
  812. #define SKL_DCO_MAX_NDEVIATION 600
  813. static void skl_wrpll_try_divider(struct skl_wrpll_context *ctx,
  814. uint64_t central_freq,
  815. uint64_t dco_freq,
  816. unsigned int divider)
  817. {
  818. uint64_t deviation;
  819. deviation = div64_u64(10000 * abs_diff(dco_freq, central_freq),
  820. central_freq);
  821. /* positive deviation */
  822. if (dco_freq >= central_freq) {
  823. if (deviation < SKL_DCO_MAX_PDEVIATION &&
  824. deviation < ctx->min_deviation) {
  825. ctx->min_deviation = deviation;
  826. ctx->central_freq = central_freq;
  827. ctx->dco_freq = dco_freq;
  828. ctx->p = divider;
  829. }
  830. /* negative deviation */
  831. } else if (deviation < SKL_DCO_MAX_NDEVIATION &&
  832. deviation < ctx->min_deviation) {
  833. ctx->min_deviation = deviation;
  834. ctx->central_freq = central_freq;
  835. ctx->dco_freq = dco_freq;
  836. ctx->p = divider;
  837. }
  838. }
  839. static void skl_wrpll_get_multipliers(unsigned int p,
  840. unsigned int *p0 /* out */,
  841. unsigned int *p1 /* out */,
  842. unsigned int *p2 /* out */)
  843. {
  844. /* even dividers */
  845. if (p % 2 == 0) {
  846. unsigned int half = p / 2;
  847. if (half == 1 || half == 2 || half == 3 || half == 5) {
  848. *p0 = 2;
  849. *p1 = 1;
  850. *p2 = half;
  851. } else if (half % 2 == 0) {
  852. *p0 = 2;
  853. *p1 = half / 2;
  854. *p2 = 2;
  855. } else if (half % 3 == 0) {
  856. *p0 = 3;
  857. *p1 = half / 3;
  858. *p2 = 2;
  859. } else if (half % 7 == 0) {
  860. *p0 = 7;
  861. *p1 = half / 7;
  862. *p2 = 2;
  863. }
  864. } else if (p == 3 || p == 9) { /* 3, 5, 7, 9, 15, 21, 35 */
  865. *p0 = 3;
  866. *p1 = 1;
  867. *p2 = p / 3;
  868. } else if (p == 5 || p == 7) {
  869. *p0 = p;
  870. *p1 = 1;
  871. *p2 = 1;
  872. } else if (p == 15) {
  873. *p0 = 3;
  874. *p1 = 1;
  875. *p2 = 5;
  876. } else if (p == 21) {
  877. *p0 = 7;
  878. *p1 = 1;
  879. *p2 = 3;
  880. } else if (p == 35) {
  881. *p0 = 7;
  882. *p1 = 1;
  883. *p2 = 5;
  884. }
  885. }
  886. struct skl_wrpll_params {
  887. uint32_t dco_fraction;
  888. uint32_t dco_integer;
  889. uint32_t qdiv_ratio;
  890. uint32_t qdiv_mode;
  891. uint32_t kdiv;
  892. uint32_t pdiv;
  893. uint32_t central_freq;
  894. };
  895. static void skl_wrpll_params_populate(struct skl_wrpll_params *params,
  896. uint64_t afe_clock,
  897. uint64_t central_freq,
  898. uint32_t p0, uint32_t p1, uint32_t p2)
  899. {
  900. uint64_t dco_freq;
  901. switch (central_freq) {
  902. case 9600000000ULL:
  903. params->central_freq = 0;
  904. break;
  905. case 9000000000ULL:
  906. params->central_freq = 1;
  907. break;
  908. case 8400000000ULL:
  909. params->central_freq = 3;
  910. }
  911. switch (p0) {
  912. case 1:
  913. params->pdiv = 0;
  914. break;
  915. case 2:
  916. params->pdiv = 1;
  917. break;
  918. case 3:
  919. params->pdiv = 2;
  920. break;
  921. case 7:
  922. params->pdiv = 4;
  923. break;
  924. default:
  925. WARN(1, "Incorrect PDiv\n");
  926. }
  927. switch (p2) {
  928. case 5:
  929. params->kdiv = 0;
  930. break;
  931. case 2:
  932. params->kdiv = 1;
  933. break;
  934. case 3:
  935. params->kdiv = 2;
  936. break;
  937. case 1:
  938. params->kdiv = 3;
  939. break;
  940. default:
  941. WARN(1, "Incorrect KDiv\n");
  942. }
  943. params->qdiv_ratio = p1;
  944. params->qdiv_mode = (params->qdiv_ratio == 1) ? 0 : 1;
  945. dco_freq = p0 * p1 * p2 * afe_clock;
  946. /*
  947. * Intermediate values are in Hz.
  948. * Divide by MHz to match bsepc
  949. */
  950. params->dco_integer = div_u64(dco_freq, 24 * MHz(1));
  951. params->dco_fraction =
  952. div_u64((div_u64(dco_freq, 24) -
  953. params->dco_integer * MHz(1)) * 0x8000, MHz(1));
  954. }
  955. static bool
  956. skl_ddi_calculate_wrpll(int clock /* in Hz */,
  957. struct skl_wrpll_params *wrpll_params)
  958. {
  959. uint64_t afe_clock = clock * 5; /* AFE Clock is 5x Pixel clock */
  960. uint64_t dco_central_freq[3] = {8400000000ULL,
  961. 9000000000ULL,
  962. 9600000000ULL};
  963. static const int even_dividers[] = { 4, 6, 8, 10, 12, 14, 16, 18, 20,
  964. 24, 28, 30, 32, 36, 40, 42, 44,
  965. 48, 52, 54, 56, 60, 64, 66, 68,
  966. 70, 72, 76, 78, 80, 84, 88, 90,
  967. 92, 96, 98 };
  968. static const int odd_dividers[] = { 3, 5, 7, 9, 15, 21, 35 };
  969. static const struct {
  970. const int *list;
  971. int n_dividers;
  972. } dividers[] = {
  973. { even_dividers, ARRAY_SIZE(even_dividers) },
  974. { odd_dividers, ARRAY_SIZE(odd_dividers) },
  975. };
  976. struct skl_wrpll_context ctx;
  977. unsigned int dco, d, i;
  978. unsigned int p0, p1, p2;
  979. skl_wrpll_context_init(&ctx);
  980. for (d = 0; d < ARRAY_SIZE(dividers); d++) {
  981. for (dco = 0; dco < ARRAY_SIZE(dco_central_freq); dco++) {
  982. for (i = 0; i < dividers[d].n_dividers; i++) {
  983. unsigned int p = dividers[d].list[i];
  984. uint64_t dco_freq = p * afe_clock;
  985. skl_wrpll_try_divider(&ctx,
  986. dco_central_freq[dco],
  987. dco_freq,
  988. p);
  989. /*
  990. * Skip the remaining dividers if we're sure to
  991. * have found the definitive divider, we can't
  992. * improve a 0 deviation.
  993. */
  994. if (ctx.min_deviation == 0)
  995. goto skip_remaining_dividers;
  996. }
  997. }
  998. skip_remaining_dividers:
  999. /*
  1000. * If a solution is found with an even divider, prefer
  1001. * this one.
  1002. */
  1003. if (d == 0 && ctx.p)
  1004. break;
  1005. }
  1006. if (!ctx.p) {
  1007. DRM_DEBUG_DRIVER("No valid divider found for %dHz\n", clock);
  1008. return false;
  1009. }
  1010. /*
  1011. * gcc incorrectly analyses that these can be used without being
  1012. * initialized. To be fair, it's hard to guess.
  1013. */
  1014. p0 = p1 = p2 = 0;
  1015. skl_wrpll_get_multipliers(ctx.p, &p0, &p1, &p2);
  1016. skl_wrpll_params_populate(wrpll_params, afe_clock, ctx.central_freq,
  1017. p0, p1, p2);
  1018. return true;
  1019. }
  1020. static bool skl_ddi_hdmi_pll_dividers(struct intel_crtc *crtc,
  1021. struct intel_crtc_state *crtc_state,
  1022. int clock)
  1023. {
  1024. uint32_t ctrl1, cfgcr1, cfgcr2;
  1025. struct skl_wrpll_params wrpll_params = { 0, };
  1026. /*
  1027. * See comment in intel_dpll_hw_state to understand why we always use 0
  1028. * as the DPLL id in this function.
  1029. */
  1030. ctrl1 = DPLL_CTRL1_OVERRIDE(0);
  1031. ctrl1 |= DPLL_CTRL1_HDMI_MODE(0);
  1032. if (!skl_ddi_calculate_wrpll(clock * 1000, &wrpll_params))
  1033. return false;
  1034. cfgcr1 = DPLL_CFGCR1_FREQ_ENABLE |
  1035. DPLL_CFGCR1_DCO_FRACTION(wrpll_params.dco_fraction) |
  1036. wrpll_params.dco_integer;
  1037. cfgcr2 = DPLL_CFGCR2_QDIV_RATIO(wrpll_params.qdiv_ratio) |
  1038. DPLL_CFGCR2_QDIV_MODE(wrpll_params.qdiv_mode) |
  1039. DPLL_CFGCR2_KDIV(wrpll_params.kdiv) |
  1040. DPLL_CFGCR2_PDIV(wrpll_params.pdiv) |
  1041. wrpll_params.central_freq;
  1042. memset(&crtc_state->dpll_hw_state, 0,
  1043. sizeof(crtc_state->dpll_hw_state));
  1044. crtc_state->dpll_hw_state.ctrl1 = ctrl1;
  1045. crtc_state->dpll_hw_state.cfgcr1 = cfgcr1;
  1046. crtc_state->dpll_hw_state.cfgcr2 = cfgcr2;
  1047. return true;
  1048. }
  1049. bool skl_ddi_dp_set_dpll_hw_state(int clock,
  1050. struct intel_dpll_hw_state *dpll_hw_state)
  1051. {
  1052. uint32_t ctrl1;
  1053. /*
  1054. * See comment in intel_dpll_hw_state to understand why we always use 0
  1055. * as the DPLL id in this function.
  1056. */
  1057. ctrl1 = DPLL_CTRL1_OVERRIDE(0);
  1058. switch (clock / 2) {
  1059. case 81000:
  1060. ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, 0);
  1061. break;
  1062. case 135000:
  1063. ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350, 0);
  1064. break;
  1065. case 270000:
  1066. ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700, 0);
  1067. break;
  1068. /* eDP 1.4 rates */
  1069. case 162000:
  1070. ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1620, 0);
  1071. break;
  1072. case 108000:
  1073. ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080, 0);
  1074. break;
  1075. case 216000:
  1076. ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2160, 0);
  1077. break;
  1078. }
  1079. dpll_hw_state->ctrl1 = ctrl1;
  1080. return true;
  1081. }
  1082. static struct intel_shared_dpll *
  1083. skl_get_dpll(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state,
  1084. struct intel_encoder *encoder)
  1085. {
  1086. struct intel_shared_dpll *pll;
  1087. int clock = crtc_state->port_clock;
  1088. bool bret;
  1089. struct intel_dpll_hw_state dpll_hw_state;
  1090. memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
  1091. if (encoder->type == INTEL_OUTPUT_HDMI) {
  1092. bret = skl_ddi_hdmi_pll_dividers(crtc, crtc_state, clock);
  1093. if (!bret) {
  1094. DRM_DEBUG_KMS("Could not get HDMI pll dividers.\n");
  1095. return NULL;
  1096. }
  1097. } else if (encoder->type == INTEL_OUTPUT_DP ||
  1098. encoder->type == INTEL_OUTPUT_DP_MST ||
  1099. encoder->type == INTEL_OUTPUT_EDP) {
  1100. bret = skl_ddi_dp_set_dpll_hw_state(clock, &dpll_hw_state);
  1101. if (!bret) {
  1102. DRM_DEBUG_KMS("Could not set DP dpll HW state.\n");
  1103. return NULL;
  1104. }
  1105. crtc_state->dpll_hw_state = dpll_hw_state;
  1106. } else {
  1107. return NULL;
  1108. }
  1109. if (encoder->type == INTEL_OUTPUT_EDP)
  1110. pll = intel_find_shared_dpll(crtc, crtc_state,
  1111. DPLL_ID_SKL_DPLL0,
  1112. DPLL_ID_SKL_DPLL0);
  1113. else
  1114. pll = intel_find_shared_dpll(crtc, crtc_state,
  1115. DPLL_ID_SKL_DPLL1,
  1116. DPLL_ID_SKL_DPLL3);
  1117. if (!pll)
  1118. return NULL;
  1119. intel_reference_shared_dpll(pll, crtc_state);
  1120. return pll;
  1121. }
  1122. static const struct intel_shared_dpll_funcs skl_ddi_pll_funcs = {
  1123. .enable = skl_ddi_pll_enable,
  1124. .disable = skl_ddi_pll_disable,
  1125. .get_hw_state = skl_ddi_pll_get_hw_state,
  1126. };
  1127. static const struct intel_shared_dpll_funcs skl_ddi_dpll0_funcs = {
  1128. .enable = skl_ddi_dpll0_enable,
  1129. .disable = skl_ddi_dpll0_disable,
  1130. .get_hw_state = skl_ddi_dpll0_get_hw_state,
  1131. };
  1132. static void bxt_ddi_pll_enable(struct drm_i915_private *dev_priv,
  1133. struct intel_shared_dpll *pll)
  1134. {
  1135. uint32_t temp;
  1136. enum port port = (enum port)pll->id; /* 1:1 port->PLL mapping */
  1137. enum dpio_phy phy;
  1138. enum dpio_channel ch;
  1139. bxt_port_to_phy_channel(dev_priv, port, &phy, &ch);
  1140. /* Non-SSC reference */
  1141. temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
  1142. temp |= PORT_PLL_REF_SEL;
  1143. I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
  1144. if (IS_GEMINILAKE(dev_priv)) {
  1145. temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
  1146. temp |= PORT_PLL_POWER_ENABLE;
  1147. I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
  1148. if (wait_for_us((I915_READ(BXT_PORT_PLL_ENABLE(port)) &
  1149. PORT_PLL_POWER_STATE), 200))
  1150. DRM_ERROR("Power state not set for PLL:%d\n", port);
  1151. }
  1152. /* Disable 10 bit clock */
  1153. temp = I915_READ(BXT_PORT_PLL_EBB_4(phy, ch));
  1154. temp &= ~PORT_PLL_10BIT_CLK_ENABLE;
  1155. I915_WRITE(BXT_PORT_PLL_EBB_4(phy, ch), temp);
  1156. /* Write P1 & P2 */
  1157. temp = I915_READ(BXT_PORT_PLL_EBB_0(phy, ch));
  1158. temp &= ~(PORT_PLL_P1_MASK | PORT_PLL_P2_MASK);
  1159. temp |= pll->config.hw_state.ebb0;
  1160. I915_WRITE(BXT_PORT_PLL_EBB_0(phy, ch), temp);
  1161. /* Write M2 integer */
  1162. temp = I915_READ(BXT_PORT_PLL(phy, ch, 0));
  1163. temp &= ~PORT_PLL_M2_MASK;
  1164. temp |= pll->config.hw_state.pll0;
  1165. I915_WRITE(BXT_PORT_PLL(phy, ch, 0), temp);
  1166. /* Write N */
  1167. temp = I915_READ(BXT_PORT_PLL(phy, ch, 1));
  1168. temp &= ~PORT_PLL_N_MASK;
  1169. temp |= pll->config.hw_state.pll1;
  1170. I915_WRITE(BXT_PORT_PLL(phy, ch, 1), temp);
  1171. /* Write M2 fraction */
  1172. temp = I915_READ(BXT_PORT_PLL(phy, ch, 2));
  1173. temp &= ~PORT_PLL_M2_FRAC_MASK;
  1174. temp |= pll->config.hw_state.pll2;
  1175. I915_WRITE(BXT_PORT_PLL(phy, ch, 2), temp);
  1176. /* Write M2 fraction enable */
  1177. temp = I915_READ(BXT_PORT_PLL(phy, ch, 3));
  1178. temp &= ~PORT_PLL_M2_FRAC_ENABLE;
  1179. temp |= pll->config.hw_state.pll3;
  1180. I915_WRITE(BXT_PORT_PLL(phy, ch, 3), temp);
  1181. /* Write coeff */
  1182. temp = I915_READ(BXT_PORT_PLL(phy, ch, 6));
  1183. temp &= ~PORT_PLL_PROP_COEFF_MASK;
  1184. temp &= ~PORT_PLL_INT_COEFF_MASK;
  1185. temp &= ~PORT_PLL_GAIN_CTL_MASK;
  1186. temp |= pll->config.hw_state.pll6;
  1187. I915_WRITE(BXT_PORT_PLL(phy, ch, 6), temp);
  1188. /* Write calibration val */
  1189. temp = I915_READ(BXT_PORT_PLL(phy, ch, 8));
  1190. temp &= ~PORT_PLL_TARGET_CNT_MASK;
  1191. temp |= pll->config.hw_state.pll8;
  1192. I915_WRITE(BXT_PORT_PLL(phy, ch, 8), temp);
  1193. temp = I915_READ(BXT_PORT_PLL(phy, ch, 9));
  1194. temp &= ~PORT_PLL_LOCK_THRESHOLD_MASK;
  1195. temp |= pll->config.hw_state.pll9;
  1196. I915_WRITE(BXT_PORT_PLL(phy, ch, 9), temp);
  1197. temp = I915_READ(BXT_PORT_PLL(phy, ch, 10));
  1198. temp &= ~PORT_PLL_DCO_AMP_OVR_EN_H;
  1199. temp &= ~PORT_PLL_DCO_AMP_MASK;
  1200. temp |= pll->config.hw_state.pll10;
  1201. I915_WRITE(BXT_PORT_PLL(phy, ch, 10), temp);
  1202. /* Recalibrate with new settings */
  1203. temp = I915_READ(BXT_PORT_PLL_EBB_4(phy, ch));
  1204. temp |= PORT_PLL_RECALIBRATE;
  1205. I915_WRITE(BXT_PORT_PLL_EBB_4(phy, ch), temp);
  1206. temp &= ~PORT_PLL_10BIT_CLK_ENABLE;
  1207. temp |= pll->config.hw_state.ebb4;
  1208. I915_WRITE(BXT_PORT_PLL_EBB_4(phy, ch), temp);
  1209. /* Enable PLL */
  1210. temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
  1211. temp |= PORT_PLL_ENABLE;
  1212. I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
  1213. POSTING_READ(BXT_PORT_PLL_ENABLE(port));
  1214. if (wait_for_us((I915_READ(BXT_PORT_PLL_ENABLE(port)) & PORT_PLL_LOCK),
  1215. 200))
  1216. DRM_ERROR("PLL %d not locked\n", port);
  1217. if (IS_GEMINILAKE(dev_priv)) {
  1218. temp = I915_READ(BXT_PORT_TX_DW5_LN0(phy, ch));
  1219. temp |= DCC_DELAY_RANGE_2;
  1220. I915_WRITE(BXT_PORT_TX_DW5_GRP(phy, ch), temp);
  1221. }
  1222. /*
  1223. * While we write to the group register to program all lanes at once we
  1224. * can read only lane registers and we pick lanes 0/1 for that.
  1225. */
  1226. temp = I915_READ(BXT_PORT_PCS_DW12_LN01(phy, ch));
  1227. temp &= ~LANE_STAGGER_MASK;
  1228. temp &= ~LANESTAGGER_STRAP_OVRD;
  1229. temp |= pll->config.hw_state.pcsdw12;
  1230. I915_WRITE(BXT_PORT_PCS_DW12_GRP(phy, ch), temp);
  1231. }
  1232. static void bxt_ddi_pll_disable(struct drm_i915_private *dev_priv,
  1233. struct intel_shared_dpll *pll)
  1234. {
  1235. enum port port = (enum port)pll->id; /* 1:1 port->PLL mapping */
  1236. uint32_t temp;
  1237. temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
  1238. temp &= ~PORT_PLL_ENABLE;
  1239. I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
  1240. POSTING_READ(BXT_PORT_PLL_ENABLE(port));
  1241. if (IS_GEMINILAKE(dev_priv)) {
  1242. temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
  1243. temp &= ~PORT_PLL_POWER_ENABLE;
  1244. I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
  1245. if (wait_for_us(!(I915_READ(BXT_PORT_PLL_ENABLE(port)) &
  1246. PORT_PLL_POWER_STATE), 200))
  1247. DRM_ERROR("Power state not reset for PLL:%d\n", port);
  1248. }
  1249. }
  1250. static bool bxt_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
  1251. struct intel_shared_dpll *pll,
  1252. struct intel_dpll_hw_state *hw_state)
  1253. {
  1254. enum port port = (enum port)pll->id; /* 1:1 port->PLL mapping */
  1255. uint32_t val;
  1256. bool ret;
  1257. enum dpio_phy phy;
  1258. enum dpio_channel ch;
  1259. bxt_port_to_phy_channel(dev_priv, port, &phy, &ch);
  1260. if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS))
  1261. return false;
  1262. ret = false;
  1263. val = I915_READ(BXT_PORT_PLL_ENABLE(port));
  1264. if (!(val & PORT_PLL_ENABLE))
  1265. goto out;
  1266. hw_state->ebb0 = I915_READ(BXT_PORT_PLL_EBB_0(phy, ch));
  1267. hw_state->ebb0 &= PORT_PLL_P1_MASK | PORT_PLL_P2_MASK;
  1268. hw_state->ebb4 = I915_READ(BXT_PORT_PLL_EBB_4(phy, ch));
  1269. hw_state->ebb4 &= PORT_PLL_10BIT_CLK_ENABLE;
  1270. hw_state->pll0 = I915_READ(BXT_PORT_PLL(phy, ch, 0));
  1271. hw_state->pll0 &= PORT_PLL_M2_MASK;
  1272. hw_state->pll1 = I915_READ(BXT_PORT_PLL(phy, ch, 1));
  1273. hw_state->pll1 &= PORT_PLL_N_MASK;
  1274. hw_state->pll2 = I915_READ(BXT_PORT_PLL(phy, ch, 2));
  1275. hw_state->pll2 &= PORT_PLL_M2_FRAC_MASK;
  1276. hw_state->pll3 = I915_READ(BXT_PORT_PLL(phy, ch, 3));
  1277. hw_state->pll3 &= PORT_PLL_M2_FRAC_ENABLE;
  1278. hw_state->pll6 = I915_READ(BXT_PORT_PLL(phy, ch, 6));
  1279. hw_state->pll6 &= PORT_PLL_PROP_COEFF_MASK |
  1280. PORT_PLL_INT_COEFF_MASK |
  1281. PORT_PLL_GAIN_CTL_MASK;
  1282. hw_state->pll8 = I915_READ(BXT_PORT_PLL(phy, ch, 8));
  1283. hw_state->pll8 &= PORT_PLL_TARGET_CNT_MASK;
  1284. hw_state->pll9 = I915_READ(BXT_PORT_PLL(phy, ch, 9));
  1285. hw_state->pll9 &= PORT_PLL_LOCK_THRESHOLD_MASK;
  1286. hw_state->pll10 = I915_READ(BXT_PORT_PLL(phy, ch, 10));
  1287. hw_state->pll10 &= PORT_PLL_DCO_AMP_OVR_EN_H |
  1288. PORT_PLL_DCO_AMP_MASK;
  1289. /*
  1290. * While we write to the group register to program all lanes at once we
  1291. * can read only lane registers. We configure all lanes the same way, so
  1292. * here just read out lanes 0/1 and output a note if lanes 2/3 differ.
  1293. */
  1294. hw_state->pcsdw12 = I915_READ(BXT_PORT_PCS_DW12_LN01(phy, ch));
  1295. if (I915_READ(BXT_PORT_PCS_DW12_LN23(phy, ch)) != hw_state->pcsdw12)
  1296. DRM_DEBUG_DRIVER("lane stagger config different for lane 01 (%08x) and 23 (%08x)\n",
  1297. hw_state->pcsdw12,
  1298. I915_READ(BXT_PORT_PCS_DW12_LN23(phy, ch)));
  1299. hw_state->pcsdw12 &= LANE_STAGGER_MASK | LANESTAGGER_STRAP_OVRD;
  1300. ret = true;
  1301. out:
  1302. intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
  1303. return ret;
  1304. }
  1305. /* bxt clock parameters */
  1306. struct bxt_clk_div {
  1307. int clock;
  1308. uint32_t p1;
  1309. uint32_t p2;
  1310. uint32_t m2_int;
  1311. uint32_t m2_frac;
  1312. bool m2_frac_en;
  1313. uint32_t n;
  1314. int vco;
  1315. };
  1316. /* pre-calculated values for DP linkrates */
  1317. static const struct bxt_clk_div bxt_dp_clk_val[] = {
  1318. {162000, 4, 2, 32, 1677722, 1, 1},
  1319. {270000, 4, 1, 27, 0, 0, 1},
  1320. {540000, 2, 1, 27, 0, 0, 1},
  1321. {216000, 3, 2, 32, 1677722, 1, 1},
  1322. {243000, 4, 1, 24, 1258291, 1, 1},
  1323. {324000, 4, 1, 32, 1677722, 1, 1},
  1324. {432000, 3, 1, 32, 1677722, 1, 1}
  1325. };
  1326. static bool
  1327. bxt_ddi_hdmi_pll_dividers(struct intel_crtc *intel_crtc,
  1328. struct intel_crtc_state *crtc_state, int clock,
  1329. struct bxt_clk_div *clk_div)
  1330. {
  1331. struct dpll best_clock;
  1332. /* Calculate HDMI div */
  1333. /*
  1334. * FIXME: tie the following calculation into
  1335. * i9xx_crtc_compute_clock
  1336. */
  1337. if (!bxt_find_best_dpll(crtc_state, clock, &best_clock)) {
  1338. DRM_DEBUG_DRIVER("no PLL dividers found for clock %d pipe %c\n",
  1339. clock, pipe_name(intel_crtc->pipe));
  1340. return false;
  1341. }
  1342. clk_div->p1 = best_clock.p1;
  1343. clk_div->p2 = best_clock.p2;
  1344. WARN_ON(best_clock.m1 != 2);
  1345. clk_div->n = best_clock.n;
  1346. clk_div->m2_int = best_clock.m2 >> 22;
  1347. clk_div->m2_frac = best_clock.m2 & ((1 << 22) - 1);
  1348. clk_div->m2_frac_en = clk_div->m2_frac != 0;
  1349. clk_div->vco = best_clock.vco;
  1350. return true;
  1351. }
  1352. static void bxt_ddi_dp_pll_dividers(int clock, struct bxt_clk_div *clk_div)
  1353. {
  1354. int i;
  1355. *clk_div = bxt_dp_clk_val[0];
  1356. for (i = 0; i < ARRAY_SIZE(bxt_dp_clk_val); ++i) {
  1357. if (bxt_dp_clk_val[i].clock == clock) {
  1358. *clk_div = bxt_dp_clk_val[i];
  1359. break;
  1360. }
  1361. }
  1362. clk_div->vco = clock * 10 / 2 * clk_div->p1 * clk_div->p2;
  1363. }
  1364. static bool bxt_ddi_set_dpll_hw_state(int clock,
  1365. struct bxt_clk_div *clk_div,
  1366. struct intel_dpll_hw_state *dpll_hw_state)
  1367. {
  1368. int vco = clk_div->vco;
  1369. uint32_t prop_coef, int_coef, gain_ctl, targ_cnt;
  1370. uint32_t lanestagger;
  1371. if (vco >= 6200000 && vco <= 6700000) {
  1372. prop_coef = 4;
  1373. int_coef = 9;
  1374. gain_ctl = 3;
  1375. targ_cnt = 8;
  1376. } else if ((vco > 5400000 && vco < 6200000) ||
  1377. (vco >= 4800000 && vco < 5400000)) {
  1378. prop_coef = 5;
  1379. int_coef = 11;
  1380. gain_ctl = 3;
  1381. targ_cnt = 9;
  1382. } else if (vco == 5400000) {
  1383. prop_coef = 3;
  1384. int_coef = 8;
  1385. gain_ctl = 1;
  1386. targ_cnt = 9;
  1387. } else {
  1388. DRM_ERROR("Invalid VCO\n");
  1389. return false;
  1390. }
  1391. if (clock > 270000)
  1392. lanestagger = 0x18;
  1393. else if (clock > 135000)
  1394. lanestagger = 0x0d;
  1395. else if (clock > 67000)
  1396. lanestagger = 0x07;
  1397. else if (clock > 33000)
  1398. lanestagger = 0x04;
  1399. else
  1400. lanestagger = 0x02;
  1401. dpll_hw_state->ebb0 = PORT_PLL_P1(clk_div->p1) | PORT_PLL_P2(clk_div->p2);
  1402. dpll_hw_state->pll0 = clk_div->m2_int;
  1403. dpll_hw_state->pll1 = PORT_PLL_N(clk_div->n);
  1404. dpll_hw_state->pll2 = clk_div->m2_frac;
  1405. if (clk_div->m2_frac_en)
  1406. dpll_hw_state->pll3 = PORT_PLL_M2_FRAC_ENABLE;
  1407. dpll_hw_state->pll6 = prop_coef | PORT_PLL_INT_COEFF(int_coef);
  1408. dpll_hw_state->pll6 |= PORT_PLL_GAIN_CTL(gain_ctl);
  1409. dpll_hw_state->pll8 = targ_cnt;
  1410. dpll_hw_state->pll9 = 5 << PORT_PLL_LOCK_THRESHOLD_SHIFT;
  1411. dpll_hw_state->pll10 =
  1412. PORT_PLL_DCO_AMP(PORT_PLL_DCO_AMP_DEFAULT)
  1413. | PORT_PLL_DCO_AMP_OVR_EN_H;
  1414. dpll_hw_state->ebb4 = PORT_PLL_10BIT_CLK_ENABLE;
  1415. dpll_hw_state->pcsdw12 = LANESTAGGER_STRAP_OVRD | lanestagger;
  1416. return true;
  1417. }
  1418. bool bxt_ddi_dp_set_dpll_hw_state(int clock,
  1419. struct intel_dpll_hw_state *dpll_hw_state)
  1420. {
  1421. struct bxt_clk_div clk_div = {0};
  1422. bxt_ddi_dp_pll_dividers(clock, &clk_div);
  1423. return bxt_ddi_set_dpll_hw_state(clock, &clk_div, dpll_hw_state);
  1424. }
  1425. static bool
  1426. bxt_ddi_hdmi_set_dpll_hw_state(struct intel_crtc *intel_crtc,
  1427. struct intel_crtc_state *crtc_state, int clock,
  1428. struct intel_dpll_hw_state *dpll_hw_state)
  1429. {
  1430. struct bxt_clk_div clk_div = { };
  1431. bxt_ddi_hdmi_pll_dividers(intel_crtc, crtc_state, clock, &clk_div);
  1432. return bxt_ddi_set_dpll_hw_state(clock, &clk_div, dpll_hw_state);
  1433. }
  1434. static struct intel_shared_dpll *
  1435. bxt_get_dpll(struct intel_crtc *crtc,
  1436. struct intel_crtc_state *crtc_state,
  1437. struct intel_encoder *encoder)
  1438. {
  1439. struct intel_dpll_hw_state dpll_hw_state = { };
  1440. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  1441. struct intel_digital_port *intel_dig_port;
  1442. struct intel_shared_dpll *pll;
  1443. int i, clock = crtc_state->port_clock;
  1444. if (encoder->type == INTEL_OUTPUT_HDMI &&
  1445. !bxt_ddi_hdmi_set_dpll_hw_state(crtc, crtc_state, clock,
  1446. &dpll_hw_state))
  1447. return NULL;
  1448. if ((encoder->type == INTEL_OUTPUT_DP ||
  1449. encoder->type == INTEL_OUTPUT_EDP) &&
  1450. !bxt_ddi_dp_set_dpll_hw_state(clock, &dpll_hw_state))
  1451. return NULL;
  1452. memset(&crtc_state->dpll_hw_state, 0,
  1453. sizeof(crtc_state->dpll_hw_state));
  1454. crtc_state->dpll_hw_state = dpll_hw_state;
  1455. if (encoder->type == INTEL_OUTPUT_DP_MST) {
  1456. struct intel_dp_mst_encoder *intel_mst = enc_to_mst(&encoder->base);
  1457. intel_dig_port = intel_mst->primary;
  1458. } else
  1459. intel_dig_port = enc_to_dig_port(&encoder->base);
  1460. /* 1:1 mapping between ports and PLLs */
  1461. i = (enum intel_dpll_id) intel_dig_port->port;
  1462. pll = intel_get_shared_dpll_by_id(dev_priv, i);
  1463. DRM_DEBUG_KMS("[CRTC:%d:%s] using pre-allocated %s\n",
  1464. crtc->base.base.id, crtc->base.name, pll->name);
  1465. intel_reference_shared_dpll(pll, crtc_state);
  1466. return pll;
  1467. }
  1468. static const struct intel_shared_dpll_funcs bxt_ddi_pll_funcs = {
  1469. .enable = bxt_ddi_pll_enable,
  1470. .disable = bxt_ddi_pll_disable,
  1471. .get_hw_state = bxt_ddi_pll_get_hw_state,
  1472. };
  1473. static void intel_ddi_pll_init(struct drm_device *dev)
  1474. {
  1475. struct drm_i915_private *dev_priv = to_i915(dev);
  1476. if (INTEL_GEN(dev_priv) < 9) {
  1477. uint32_t val = I915_READ(LCPLL_CTL);
  1478. /*
  1479. * The LCPLL register should be turned on by the BIOS. For now
  1480. * let's just check its state and print errors in case
  1481. * something is wrong. Don't even try to turn it on.
  1482. */
  1483. if (val & LCPLL_CD_SOURCE_FCLK)
  1484. DRM_ERROR("CDCLK source is not LCPLL\n");
  1485. if (val & LCPLL_PLL_DISABLE)
  1486. DRM_ERROR("LCPLL is disabled\n");
  1487. }
  1488. }
  1489. struct dpll_info {
  1490. const char *name;
  1491. const int id;
  1492. const struct intel_shared_dpll_funcs *funcs;
  1493. uint32_t flags;
  1494. };
  1495. struct intel_dpll_mgr {
  1496. const struct dpll_info *dpll_info;
  1497. struct intel_shared_dpll *(*get_dpll)(struct intel_crtc *crtc,
  1498. struct intel_crtc_state *crtc_state,
  1499. struct intel_encoder *encoder);
  1500. };
  1501. static const struct dpll_info pch_plls[] = {
  1502. { "PCH DPLL A", DPLL_ID_PCH_PLL_A, &ibx_pch_dpll_funcs, 0 },
  1503. { "PCH DPLL B", DPLL_ID_PCH_PLL_B, &ibx_pch_dpll_funcs, 0 },
  1504. { NULL, -1, NULL, 0 },
  1505. };
  1506. static const struct intel_dpll_mgr pch_pll_mgr = {
  1507. .dpll_info = pch_plls,
  1508. .get_dpll = ibx_get_dpll,
  1509. };
  1510. static const struct dpll_info hsw_plls[] = {
  1511. { "WRPLL 1", DPLL_ID_WRPLL1, &hsw_ddi_wrpll_funcs, 0 },
  1512. { "WRPLL 2", DPLL_ID_WRPLL2, &hsw_ddi_wrpll_funcs, 0 },
  1513. { "SPLL", DPLL_ID_SPLL, &hsw_ddi_spll_funcs, 0 },
  1514. { "LCPLL 810", DPLL_ID_LCPLL_810, &hsw_ddi_lcpll_funcs, INTEL_DPLL_ALWAYS_ON },
  1515. { "LCPLL 1350", DPLL_ID_LCPLL_1350, &hsw_ddi_lcpll_funcs, INTEL_DPLL_ALWAYS_ON },
  1516. { "LCPLL 2700", DPLL_ID_LCPLL_2700, &hsw_ddi_lcpll_funcs, INTEL_DPLL_ALWAYS_ON },
  1517. { NULL, -1, NULL, },
  1518. };
  1519. static const struct intel_dpll_mgr hsw_pll_mgr = {
  1520. .dpll_info = hsw_plls,
  1521. .get_dpll = hsw_get_dpll,
  1522. };
  1523. static const struct dpll_info skl_plls[] = {
  1524. { "DPLL 0", DPLL_ID_SKL_DPLL0, &skl_ddi_dpll0_funcs, INTEL_DPLL_ALWAYS_ON },
  1525. { "DPLL 1", DPLL_ID_SKL_DPLL1, &skl_ddi_pll_funcs, 0 },
  1526. { "DPLL 2", DPLL_ID_SKL_DPLL2, &skl_ddi_pll_funcs, 0 },
  1527. { "DPLL 3", DPLL_ID_SKL_DPLL3, &skl_ddi_pll_funcs, 0 },
  1528. { NULL, -1, NULL, },
  1529. };
  1530. static const struct intel_dpll_mgr skl_pll_mgr = {
  1531. .dpll_info = skl_plls,
  1532. .get_dpll = skl_get_dpll,
  1533. };
  1534. static const struct dpll_info bxt_plls[] = {
  1535. { "PORT PLL A", DPLL_ID_SKL_DPLL0, &bxt_ddi_pll_funcs, 0 },
  1536. { "PORT PLL B", DPLL_ID_SKL_DPLL1, &bxt_ddi_pll_funcs, 0 },
  1537. { "PORT PLL C", DPLL_ID_SKL_DPLL2, &bxt_ddi_pll_funcs, 0 },
  1538. { NULL, -1, NULL, },
  1539. };
  1540. static const struct intel_dpll_mgr bxt_pll_mgr = {
  1541. .dpll_info = bxt_plls,
  1542. .get_dpll = bxt_get_dpll,
  1543. };
  1544. void intel_shared_dpll_init(struct drm_device *dev)
  1545. {
  1546. struct drm_i915_private *dev_priv = to_i915(dev);
  1547. const struct intel_dpll_mgr *dpll_mgr = NULL;
  1548. const struct dpll_info *dpll_info;
  1549. int i;
  1550. if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
  1551. dpll_mgr = &skl_pll_mgr;
  1552. else if (IS_GEN9_LP(dev_priv))
  1553. dpll_mgr = &bxt_pll_mgr;
  1554. else if (HAS_DDI(dev_priv))
  1555. dpll_mgr = &hsw_pll_mgr;
  1556. else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv))
  1557. dpll_mgr = &pch_pll_mgr;
  1558. if (!dpll_mgr) {
  1559. dev_priv->num_shared_dpll = 0;
  1560. return;
  1561. }
  1562. dpll_info = dpll_mgr->dpll_info;
  1563. for (i = 0; dpll_info[i].id >= 0; i++) {
  1564. WARN_ON(i != dpll_info[i].id);
  1565. dev_priv->shared_dplls[i].id = dpll_info[i].id;
  1566. dev_priv->shared_dplls[i].name = dpll_info[i].name;
  1567. dev_priv->shared_dplls[i].funcs = *dpll_info[i].funcs;
  1568. dev_priv->shared_dplls[i].flags = dpll_info[i].flags;
  1569. }
  1570. dev_priv->dpll_mgr = dpll_mgr;
  1571. dev_priv->num_shared_dpll = i;
  1572. mutex_init(&dev_priv->dpll_lock);
  1573. BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
  1574. /* FIXME: Move this to a more suitable place */
  1575. if (HAS_DDI(dev_priv))
  1576. intel_ddi_pll_init(dev);
  1577. }
  1578. struct intel_shared_dpll *
  1579. intel_get_shared_dpll(struct intel_crtc *crtc,
  1580. struct intel_crtc_state *crtc_state,
  1581. struct intel_encoder *encoder)
  1582. {
  1583. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  1584. const struct intel_dpll_mgr *dpll_mgr = dev_priv->dpll_mgr;
  1585. if (WARN_ON(!dpll_mgr))
  1586. return NULL;
  1587. return dpll_mgr->get_dpll(crtc, crtc_state, encoder);
  1588. }
  1589. /**
  1590. * intel_release_shared_dpll - end use of DPLL by CRTC in atomic state
  1591. * @dpll: dpll in use by @crtc
  1592. * @crtc: crtc
  1593. * @state: atomic state
  1594. *
  1595. */
  1596. void intel_release_shared_dpll(struct intel_shared_dpll *dpll,
  1597. struct intel_crtc *crtc,
  1598. struct drm_atomic_state *state)
  1599. {
  1600. struct intel_shared_dpll_config *shared_dpll_config;
  1601. shared_dpll_config = intel_atomic_get_shared_dpll_state(state);
  1602. shared_dpll_config[dpll->id].crtc_mask &= ~(1 << crtc->pipe);
  1603. }