intel_ringbuffer.c 78 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871
  1. /*
  2. * Copyright © 2008-2010 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. * Zou Nan hai <nanhai.zou@intel.com>
  26. * Xiang Hai hao<haihao.xiang@intel.com>
  27. *
  28. */
  29. #include <drm/drmP.h>
  30. #include "i915_drv.h"
  31. #include <drm/i915_drm.h>
  32. #include "i915_trace.h"
  33. #include "intel_drv.h"
  34. bool
  35. intel_ring_initialized(struct intel_engine_cs *ring)
  36. {
  37. struct drm_device *dev = ring->dev;
  38. if (!dev)
  39. return false;
  40. if (i915.enable_execlists) {
  41. struct intel_context *dctx = ring->default_context;
  42. struct intel_ringbuffer *ringbuf = dctx->engine[ring->id].ringbuf;
  43. return ringbuf->obj;
  44. } else
  45. return ring->buffer && ring->buffer->obj;
  46. }
  47. int __intel_ring_space(int head, int tail, int size)
  48. {
  49. int space = head - tail;
  50. if (space <= 0)
  51. space += size;
  52. return space - I915_RING_FREE_SPACE;
  53. }
  54. void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
  55. {
  56. if (ringbuf->last_retired_head != -1) {
  57. ringbuf->head = ringbuf->last_retired_head;
  58. ringbuf->last_retired_head = -1;
  59. }
  60. ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
  61. ringbuf->tail, ringbuf->size);
  62. }
  63. int intel_ring_space(struct intel_ringbuffer *ringbuf)
  64. {
  65. intel_ring_update_space(ringbuf);
  66. return ringbuf->space;
  67. }
  68. bool intel_ring_stopped(struct intel_engine_cs *ring)
  69. {
  70. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  71. return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
  72. }
  73. void __intel_ring_advance(struct intel_engine_cs *ring)
  74. {
  75. struct intel_ringbuffer *ringbuf = ring->buffer;
  76. ringbuf->tail &= ringbuf->size - 1;
  77. if (intel_ring_stopped(ring))
  78. return;
  79. ring->write_tail(ring, ringbuf->tail);
  80. }
  81. static int
  82. gen2_render_ring_flush(struct intel_engine_cs *ring,
  83. u32 invalidate_domains,
  84. u32 flush_domains)
  85. {
  86. u32 cmd;
  87. int ret;
  88. cmd = MI_FLUSH;
  89. if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
  90. cmd |= MI_NO_WRITE_FLUSH;
  91. if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
  92. cmd |= MI_READ_FLUSH;
  93. ret = intel_ring_begin(ring, 2);
  94. if (ret)
  95. return ret;
  96. intel_ring_emit(ring, cmd);
  97. intel_ring_emit(ring, MI_NOOP);
  98. intel_ring_advance(ring);
  99. return 0;
  100. }
  101. static int
  102. gen4_render_ring_flush(struct intel_engine_cs *ring,
  103. u32 invalidate_domains,
  104. u32 flush_domains)
  105. {
  106. struct drm_device *dev = ring->dev;
  107. u32 cmd;
  108. int ret;
  109. /*
  110. * read/write caches:
  111. *
  112. * I915_GEM_DOMAIN_RENDER is always invalidated, but is
  113. * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
  114. * also flushed at 2d versus 3d pipeline switches.
  115. *
  116. * read-only caches:
  117. *
  118. * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
  119. * MI_READ_FLUSH is set, and is always flushed on 965.
  120. *
  121. * I915_GEM_DOMAIN_COMMAND may not exist?
  122. *
  123. * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
  124. * invalidated when MI_EXE_FLUSH is set.
  125. *
  126. * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
  127. * invalidated with every MI_FLUSH.
  128. *
  129. * TLBs:
  130. *
  131. * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
  132. * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
  133. * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
  134. * are flushed at any MI_FLUSH.
  135. */
  136. cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
  137. if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
  138. cmd &= ~MI_NO_WRITE_FLUSH;
  139. if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
  140. cmd |= MI_EXE_FLUSH;
  141. if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
  142. (IS_G4X(dev) || IS_GEN5(dev)))
  143. cmd |= MI_INVALIDATE_ISP;
  144. ret = intel_ring_begin(ring, 2);
  145. if (ret)
  146. return ret;
  147. intel_ring_emit(ring, cmd);
  148. intel_ring_emit(ring, MI_NOOP);
  149. intel_ring_advance(ring);
  150. return 0;
  151. }
  152. /**
  153. * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
  154. * implementing two workarounds on gen6. From section 1.4.7.1
  155. * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
  156. *
  157. * [DevSNB-C+{W/A}] Before any depth stall flush (including those
  158. * produced by non-pipelined state commands), software needs to first
  159. * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
  160. * 0.
  161. *
  162. * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
  163. * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
  164. *
  165. * And the workaround for these two requires this workaround first:
  166. *
  167. * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
  168. * BEFORE the pipe-control with a post-sync op and no write-cache
  169. * flushes.
  170. *
  171. * And this last workaround is tricky because of the requirements on
  172. * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
  173. * volume 2 part 1:
  174. *
  175. * "1 of the following must also be set:
  176. * - Render Target Cache Flush Enable ([12] of DW1)
  177. * - Depth Cache Flush Enable ([0] of DW1)
  178. * - Stall at Pixel Scoreboard ([1] of DW1)
  179. * - Depth Stall ([13] of DW1)
  180. * - Post-Sync Operation ([13] of DW1)
  181. * - Notify Enable ([8] of DW1)"
  182. *
  183. * The cache flushes require the workaround flush that triggered this
  184. * one, so we can't use it. Depth stall would trigger the same.
  185. * Post-sync nonzero is what triggered this second workaround, so we
  186. * can't use that one either. Notify enable is IRQs, which aren't
  187. * really our business. That leaves only stall at scoreboard.
  188. */
  189. static int
  190. intel_emit_post_sync_nonzero_flush(struct intel_engine_cs *ring)
  191. {
  192. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  193. int ret;
  194. ret = intel_ring_begin(ring, 6);
  195. if (ret)
  196. return ret;
  197. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  198. intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
  199. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  200. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  201. intel_ring_emit(ring, 0); /* low dword */
  202. intel_ring_emit(ring, 0); /* high dword */
  203. intel_ring_emit(ring, MI_NOOP);
  204. intel_ring_advance(ring);
  205. ret = intel_ring_begin(ring, 6);
  206. if (ret)
  207. return ret;
  208. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  209. intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
  210. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  211. intel_ring_emit(ring, 0);
  212. intel_ring_emit(ring, 0);
  213. intel_ring_emit(ring, MI_NOOP);
  214. intel_ring_advance(ring);
  215. return 0;
  216. }
  217. static int
  218. gen6_render_ring_flush(struct intel_engine_cs *ring,
  219. u32 invalidate_domains, u32 flush_domains)
  220. {
  221. u32 flags = 0;
  222. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  223. int ret;
  224. /* Force SNB workarounds for PIPE_CONTROL flushes */
  225. ret = intel_emit_post_sync_nonzero_flush(ring);
  226. if (ret)
  227. return ret;
  228. /* Just flush everything. Experiments have shown that reducing the
  229. * number of bits based on the write domains has little performance
  230. * impact.
  231. */
  232. if (flush_domains) {
  233. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  234. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  235. /*
  236. * Ensure that any following seqno writes only happen
  237. * when the render cache is indeed flushed.
  238. */
  239. flags |= PIPE_CONTROL_CS_STALL;
  240. }
  241. if (invalidate_domains) {
  242. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  243. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  244. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  245. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  246. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  247. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  248. /*
  249. * TLB invalidate requires a post-sync write.
  250. */
  251. flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
  252. }
  253. ret = intel_ring_begin(ring, 4);
  254. if (ret)
  255. return ret;
  256. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  257. intel_ring_emit(ring, flags);
  258. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
  259. intel_ring_emit(ring, 0);
  260. intel_ring_advance(ring);
  261. return 0;
  262. }
  263. static int
  264. gen7_render_ring_cs_stall_wa(struct intel_engine_cs *ring)
  265. {
  266. int ret;
  267. ret = intel_ring_begin(ring, 4);
  268. if (ret)
  269. return ret;
  270. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  271. intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
  272. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  273. intel_ring_emit(ring, 0);
  274. intel_ring_emit(ring, 0);
  275. intel_ring_advance(ring);
  276. return 0;
  277. }
  278. static int
  279. gen7_render_ring_flush(struct intel_engine_cs *ring,
  280. u32 invalidate_domains, u32 flush_domains)
  281. {
  282. u32 flags = 0;
  283. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  284. int ret;
  285. /*
  286. * Ensure that any following seqno writes only happen when the render
  287. * cache is indeed flushed.
  288. *
  289. * Workaround: 4th PIPE_CONTROL command (except the ones with only
  290. * read-cache invalidate bits set) must have the CS_STALL bit set. We
  291. * don't try to be clever and just set it unconditionally.
  292. */
  293. flags |= PIPE_CONTROL_CS_STALL;
  294. /* Just flush everything. Experiments have shown that reducing the
  295. * number of bits based on the write domains has little performance
  296. * impact.
  297. */
  298. if (flush_domains) {
  299. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  300. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  301. }
  302. if (invalidate_domains) {
  303. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  304. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  305. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  306. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  307. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  308. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  309. flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
  310. /*
  311. * TLB invalidate requires a post-sync write.
  312. */
  313. flags |= PIPE_CONTROL_QW_WRITE;
  314. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  315. flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
  316. /* Workaround: we must issue a pipe_control with CS-stall bit
  317. * set before a pipe_control command that has the state cache
  318. * invalidate bit set. */
  319. gen7_render_ring_cs_stall_wa(ring);
  320. }
  321. ret = intel_ring_begin(ring, 4);
  322. if (ret)
  323. return ret;
  324. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  325. intel_ring_emit(ring, flags);
  326. intel_ring_emit(ring, scratch_addr);
  327. intel_ring_emit(ring, 0);
  328. intel_ring_advance(ring);
  329. return 0;
  330. }
  331. static int
  332. gen8_emit_pipe_control(struct intel_engine_cs *ring,
  333. u32 flags, u32 scratch_addr)
  334. {
  335. int ret;
  336. ret = intel_ring_begin(ring, 6);
  337. if (ret)
  338. return ret;
  339. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
  340. intel_ring_emit(ring, flags);
  341. intel_ring_emit(ring, scratch_addr);
  342. intel_ring_emit(ring, 0);
  343. intel_ring_emit(ring, 0);
  344. intel_ring_emit(ring, 0);
  345. intel_ring_advance(ring);
  346. return 0;
  347. }
  348. static int
  349. gen8_render_ring_flush(struct intel_engine_cs *ring,
  350. u32 invalidate_domains, u32 flush_domains)
  351. {
  352. u32 flags = 0;
  353. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  354. int ret;
  355. flags |= PIPE_CONTROL_CS_STALL;
  356. if (flush_domains) {
  357. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  358. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  359. }
  360. if (invalidate_domains) {
  361. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  362. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  363. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  364. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  365. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  366. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  367. flags |= PIPE_CONTROL_QW_WRITE;
  368. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  369. /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
  370. ret = gen8_emit_pipe_control(ring,
  371. PIPE_CONTROL_CS_STALL |
  372. PIPE_CONTROL_STALL_AT_SCOREBOARD,
  373. 0);
  374. if (ret)
  375. return ret;
  376. }
  377. return gen8_emit_pipe_control(ring, flags, scratch_addr);
  378. }
  379. static void ring_write_tail(struct intel_engine_cs *ring,
  380. u32 value)
  381. {
  382. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  383. I915_WRITE_TAIL(ring, value);
  384. }
  385. u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
  386. {
  387. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  388. u64 acthd;
  389. if (INTEL_INFO(ring->dev)->gen >= 8)
  390. acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
  391. RING_ACTHD_UDW(ring->mmio_base));
  392. else if (INTEL_INFO(ring->dev)->gen >= 4)
  393. acthd = I915_READ(RING_ACTHD(ring->mmio_base));
  394. else
  395. acthd = I915_READ(ACTHD);
  396. return acthd;
  397. }
  398. static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
  399. {
  400. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  401. u32 addr;
  402. addr = dev_priv->status_page_dmah->busaddr;
  403. if (INTEL_INFO(ring->dev)->gen >= 4)
  404. addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
  405. I915_WRITE(HWS_PGA, addr);
  406. }
  407. static void intel_ring_setup_status_page(struct intel_engine_cs *ring)
  408. {
  409. struct drm_device *dev = ring->dev;
  410. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  411. u32 mmio = 0;
  412. /* The ring status page addresses are no longer next to the rest of
  413. * the ring registers as of gen7.
  414. */
  415. if (IS_GEN7(dev)) {
  416. switch (ring->id) {
  417. case RCS:
  418. mmio = RENDER_HWS_PGA_GEN7;
  419. break;
  420. case BCS:
  421. mmio = BLT_HWS_PGA_GEN7;
  422. break;
  423. /*
  424. * VCS2 actually doesn't exist on Gen7. Only shut up
  425. * gcc switch check warning
  426. */
  427. case VCS2:
  428. case VCS:
  429. mmio = BSD_HWS_PGA_GEN7;
  430. break;
  431. case VECS:
  432. mmio = VEBOX_HWS_PGA_GEN7;
  433. break;
  434. }
  435. } else if (IS_GEN6(ring->dev)) {
  436. mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
  437. } else {
  438. /* XXX: gen8 returns to sanity */
  439. mmio = RING_HWS_PGA(ring->mmio_base);
  440. }
  441. I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
  442. POSTING_READ(mmio);
  443. /*
  444. * Flush the TLB for this page
  445. *
  446. * FIXME: These two bits have disappeared on gen8, so a question
  447. * arises: do we still need this and if so how should we go about
  448. * invalidating the TLB?
  449. */
  450. if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
  451. u32 reg = RING_INSTPM(ring->mmio_base);
  452. /* ring should be idle before issuing a sync flush*/
  453. WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
  454. I915_WRITE(reg,
  455. _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
  456. INSTPM_SYNC_FLUSH));
  457. if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
  458. 1000))
  459. DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
  460. ring->name);
  461. }
  462. }
  463. static bool stop_ring(struct intel_engine_cs *ring)
  464. {
  465. struct drm_i915_private *dev_priv = to_i915(ring->dev);
  466. if (!IS_GEN2(ring->dev)) {
  467. I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
  468. if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
  469. DRM_ERROR("%s : timed out trying to stop ring\n", ring->name);
  470. /* Sometimes we observe that the idle flag is not
  471. * set even though the ring is empty. So double
  472. * check before giving up.
  473. */
  474. if (I915_READ_HEAD(ring) != I915_READ_TAIL(ring))
  475. return false;
  476. }
  477. }
  478. I915_WRITE_CTL(ring, 0);
  479. I915_WRITE_HEAD(ring, 0);
  480. ring->write_tail(ring, 0);
  481. if (!IS_GEN2(ring->dev)) {
  482. (void)I915_READ_CTL(ring);
  483. I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
  484. }
  485. return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
  486. }
  487. static int init_ring_common(struct intel_engine_cs *ring)
  488. {
  489. struct drm_device *dev = ring->dev;
  490. struct drm_i915_private *dev_priv = dev->dev_private;
  491. struct intel_ringbuffer *ringbuf = ring->buffer;
  492. struct drm_i915_gem_object *obj = ringbuf->obj;
  493. int ret = 0;
  494. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  495. if (!stop_ring(ring)) {
  496. /* G45 ring initialization often fails to reset head to zero */
  497. DRM_DEBUG_KMS("%s head not reset to zero "
  498. "ctl %08x head %08x tail %08x start %08x\n",
  499. ring->name,
  500. I915_READ_CTL(ring),
  501. I915_READ_HEAD(ring),
  502. I915_READ_TAIL(ring),
  503. I915_READ_START(ring));
  504. if (!stop_ring(ring)) {
  505. DRM_ERROR("failed to set %s head to zero "
  506. "ctl %08x head %08x tail %08x start %08x\n",
  507. ring->name,
  508. I915_READ_CTL(ring),
  509. I915_READ_HEAD(ring),
  510. I915_READ_TAIL(ring),
  511. I915_READ_START(ring));
  512. ret = -EIO;
  513. goto out;
  514. }
  515. }
  516. if (I915_NEED_GFX_HWS(dev))
  517. intel_ring_setup_status_page(ring);
  518. else
  519. ring_setup_phys_status_page(ring);
  520. /* Enforce ordering by reading HEAD register back */
  521. I915_READ_HEAD(ring);
  522. /* Initialize the ring. This must happen _after_ we've cleared the ring
  523. * registers with the above sequence (the readback of the HEAD registers
  524. * also enforces ordering), otherwise the hw might lose the new ring
  525. * register values. */
  526. I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
  527. /* WaClearRingBufHeadRegAtInit:ctg,elk */
  528. if (I915_READ_HEAD(ring))
  529. DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
  530. ring->name, I915_READ_HEAD(ring));
  531. I915_WRITE_HEAD(ring, 0);
  532. (void)I915_READ_HEAD(ring);
  533. I915_WRITE_CTL(ring,
  534. ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
  535. | RING_VALID);
  536. /* If the head is still not zero, the ring is dead */
  537. if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
  538. I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
  539. (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
  540. DRM_ERROR("%s initialization failed "
  541. "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
  542. ring->name,
  543. I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
  544. I915_READ_HEAD(ring), I915_READ_TAIL(ring),
  545. I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
  546. ret = -EIO;
  547. goto out;
  548. }
  549. ringbuf->last_retired_head = -1;
  550. ringbuf->head = I915_READ_HEAD(ring);
  551. ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
  552. intel_ring_update_space(ringbuf);
  553. memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
  554. out:
  555. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  556. return ret;
  557. }
  558. void
  559. intel_fini_pipe_control(struct intel_engine_cs *ring)
  560. {
  561. struct drm_device *dev = ring->dev;
  562. if (ring->scratch.obj == NULL)
  563. return;
  564. if (INTEL_INFO(dev)->gen >= 5) {
  565. kunmap(sg_page(ring->scratch.obj->pages->sgl));
  566. i915_gem_object_ggtt_unpin(ring->scratch.obj);
  567. }
  568. drm_gem_object_unreference(&ring->scratch.obj->base);
  569. ring->scratch.obj = NULL;
  570. }
  571. int
  572. intel_init_pipe_control(struct intel_engine_cs *ring)
  573. {
  574. int ret;
  575. WARN_ON(ring->scratch.obj);
  576. ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
  577. if (ring->scratch.obj == NULL) {
  578. DRM_ERROR("Failed to allocate seqno page\n");
  579. ret = -ENOMEM;
  580. goto err;
  581. }
  582. ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
  583. if (ret)
  584. goto err_unref;
  585. ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
  586. if (ret)
  587. goto err_unref;
  588. ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
  589. ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
  590. if (ring->scratch.cpu_page == NULL) {
  591. ret = -ENOMEM;
  592. goto err_unpin;
  593. }
  594. DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
  595. ring->name, ring->scratch.gtt_offset);
  596. return 0;
  597. err_unpin:
  598. i915_gem_object_ggtt_unpin(ring->scratch.obj);
  599. err_unref:
  600. drm_gem_object_unreference(&ring->scratch.obj->base);
  601. err:
  602. return ret;
  603. }
  604. static int intel_ring_workarounds_emit(struct intel_engine_cs *ring,
  605. struct intel_context *ctx)
  606. {
  607. int ret, i;
  608. struct drm_device *dev = ring->dev;
  609. struct drm_i915_private *dev_priv = dev->dev_private;
  610. struct i915_workarounds *w = &dev_priv->workarounds;
  611. if (WARN_ON_ONCE(w->count == 0))
  612. return 0;
  613. ring->gpu_caches_dirty = true;
  614. ret = intel_ring_flush_all_caches(ring);
  615. if (ret)
  616. return ret;
  617. ret = intel_ring_begin(ring, (w->count * 2 + 2));
  618. if (ret)
  619. return ret;
  620. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
  621. for (i = 0; i < w->count; i++) {
  622. intel_ring_emit(ring, w->reg[i].addr);
  623. intel_ring_emit(ring, w->reg[i].value);
  624. }
  625. intel_ring_emit(ring, MI_NOOP);
  626. intel_ring_advance(ring);
  627. ring->gpu_caches_dirty = true;
  628. ret = intel_ring_flush_all_caches(ring);
  629. if (ret)
  630. return ret;
  631. DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
  632. return 0;
  633. }
  634. static int intel_rcs_ctx_init(struct intel_engine_cs *ring,
  635. struct intel_context *ctx)
  636. {
  637. int ret;
  638. ret = intel_ring_workarounds_emit(ring, ctx);
  639. if (ret != 0)
  640. return ret;
  641. ret = i915_gem_render_state_init(ring);
  642. if (ret)
  643. DRM_ERROR("init render state: %d\n", ret);
  644. return ret;
  645. }
  646. static int wa_add(struct drm_i915_private *dev_priv,
  647. const u32 addr, const u32 mask, const u32 val)
  648. {
  649. const u32 idx = dev_priv->workarounds.count;
  650. if (WARN_ON(idx >= I915_MAX_WA_REGS))
  651. return -ENOSPC;
  652. dev_priv->workarounds.reg[idx].addr = addr;
  653. dev_priv->workarounds.reg[idx].value = val;
  654. dev_priv->workarounds.reg[idx].mask = mask;
  655. dev_priv->workarounds.count++;
  656. return 0;
  657. }
  658. #define WA_REG(addr, mask, val) { \
  659. const int r = wa_add(dev_priv, (addr), (mask), (val)); \
  660. if (r) \
  661. return r; \
  662. }
  663. #define WA_SET_BIT_MASKED(addr, mask) \
  664. WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
  665. #define WA_CLR_BIT_MASKED(addr, mask) \
  666. WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
  667. #define WA_SET_FIELD_MASKED(addr, mask, value) \
  668. WA_REG(addr, mask, _MASKED_FIELD(mask, value))
  669. #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
  670. #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
  671. #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
  672. static int bdw_init_workarounds(struct intel_engine_cs *ring)
  673. {
  674. struct drm_device *dev = ring->dev;
  675. struct drm_i915_private *dev_priv = dev->dev_private;
  676. /* WaDisablePartialInstShootdown:bdw */
  677. /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
  678. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  679. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE |
  680. STALL_DOP_GATING_DISABLE);
  681. /* WaDisableDopClockGating:bdw */
  682. WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
  683. DOP_CLOCK_GATING_DISABLE);
  684. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  685. GEN8_SAMPLER_POWER_BYPASS_DIS);
  686. /* Use Force Non-Coherent whenever executing a 3D context. This is a
  687. * workaround for for a possible hang in the unlikely event a TLB
  688. * invalidation occurs during a PSD flush.
  689. */
  690. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  691. /* WaForceEnableNonCoherent:bdw */
  692. HDC_FORCE_NON_COHERENT |
  693. /* WaForceContextSaveRestoreNonCoherent:bdw */
  694. HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
  695. /* WaHdcDisableFetchWhenMasked:bdw */
  696. HDC_DONOT_FETCH_MEM_WHEN_MASKED |
  697. /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
  698. (IS_BDW_GT3(dev) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
  699. /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
  700. * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
  701. * polygons in the same 8x4 pixel/sample area to be processed without
  702. * stalling waiting for the earlier ones to write to Hierarchical Z
  703. * buffer."
  704. *
  705. * This optimization is off by default for Broadwell; turn it on.
  706. */
  707. WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
  708. /* Wa4x4STCOptimizationDisable:bdw */
  709. WA_SET_BIT_MASKED(CACHE_MODE_1,
  710. GEN8_4x4_STC_OPTIMIZATION_DISABLE);
  711. /*
  712. * BSpec recommends 8x4 when MSAA is used,
  713. * however in practice 16x4 seems fastest.
  714. *
  715. * Note that PS/WM thread counts depend on the WIZ hashing
  716. * disable bit, which we don't touch here, but it's good
  717. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  718. */
  719. WA_SET_FIELD_MASKED(GEN7_GT_MODE,
  720. GEN6_WIZ_HASHING_MASK,
  721. GEN6_WIZ_HASHING_16x4);
  722. /* WaProgramL3SqcReg1Default:bdw */
  723. WA_WRITE(GEN8_L3SQCREG1, BDW_WA_L3SQCREG1_DEFAULT);
  724. return 0;
  725. }
  726. static int chv_init_workarounds(struct intel_engine_cs *ring)
  727. {
  728. struct drm_device *dev = ring->dev;
  729. struct drm_i915_private *dev_priv = dev->dev_private;
  730. /* WaDisablePartialInstShootdown:chv */
  731. /* WaDisableThreadStallDopClockGating:chv */
  732. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  733. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE |
  734. STALL_DOP_GATING_DISABLE);
  735. /* Use Force Non-Coherent whenever executing a 3D context. This is a
  736. * workaround for a possible hang in the unlikely event a TLB
  737. * invalidation occurs during a PSD flush.
  738. */
  739. /* WaForceEnableNonCoherent:chv */
  740. /* WaHdcDisableFetchWhenMasked:chv */
  741. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  742. HDC_FORCE_NON_COHERENT |
  743. HDC_DONOT_FETCH_MEM_WHEN_MASKED);
  744. /* According to the CACHE_MODE_0 default value documentation, some
  745. * CHV platforms disable this optimization by default. Turn it on.
  746. */
  747. WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
  748. /* Wa4x4STCOptimizationDisable:chv */
  749. WA_SET_BIT_MASKED(CACHE_MODE_1,
  750. GEN8_4x4_STC_OPTIMIZATION_DISABLE);
  751. /* Improve HiZ throughput on CHV. */
  752. WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
  753. /*
  754. * BSpec recommends 8x4 when MSAA is used,
  755. * however in practice 16x4 seems fastest.
  756. *
  757. * Note that PS/WM thread counts depend on the WIZ hashing
  758. * disable bit, which we don't touch here, but it's good
  759. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  760. */
  761. WA_SET_FIELD_MASKED(GEN7_GT_MODE,
  762. GEN6_WIZ_HASHING_MASK,
  763. GEN6_WIZ_HASHING_16x4);
  764. if (INTEL_REVID(dev) == SKL_REVID_C0 ||
  765. INTEL_REVID(dev) == SKL_REVID_D0)
  766. /* WaBarrierPerformanceFixDisable:skl */
  767. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  768. HDC_FENCE_DEST_SLM_DISABLE |
  769. HDC_BARRIER_PERFORMANCE_DISABLE);
  770. return 0;
  771. }
  772. static int gen9_init_workarounds(struct intel_engine_cs *ring)
  773. {
  774. struct drm_device *dev = ring->dev;
  775. struct drm_i915_private *dev_priv = dev->dev_private;
  776. /* WaDisablePartialInstShootdown:skl,bxt */
  777. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  778. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
  779. /* Syncing dependencies between camera and graphics:skl,bxt */
  780. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  781. GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
  782. if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) == SKL_REVID_A0 ||
  783. INTEL_REVID(dev) == SKL_REVID_B0)) ||
  784. (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0)) {
  785. /* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
  786. WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
  787. GEN9_DG_MIRROR_FIX_ENABLE);
  788. }
  789. if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) <= SKL_REVID_B0) ||
  790. (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0)) {
  791. /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
  792. WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
  793. GEN9_RHWO_OPTIMIZATION_DISABLE);
  794. WA_SET_BIT_MASKED(GEN9_SLICE_COMMON_ECO_CHICKEN0,
  795. DISABLE_PIXEL_MASK_CAMMING);
  796. }
  797. if (INTEL_REVID(dev) >= SKL_REVID_C0) {
  798. /* WaEnableYV12BugFixInHalfSliceChicken7:skl */
  799. WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
  800. GEN9_ENABLE_YV12_BUGFIX);
  801. }
  802. if (INTEL_REVID(dev) <= SKL_REVID_D0) {
  803. /*
  804. *Use Force Non-Coherent whenever executing a 3D context. This
  805. * is a workaround for a possible hang in the unlikely event
  806. * a TLB invalidation occurs during a PSD flush.
  807. */
  808. /* WaForceEnableNonCoherent:skl */
  809. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  810. HDC_FORCE_NON_COHERENT);
  811. }
  812. /* Wa4x4STCOptimizationDisable:skl */
  813. WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
  814. /* WaDisablePartialResolveInVc:skl */
  815. WA_SET_BIT_MASKED(CACHE_MODE_1, GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE);
  816. /* WaCcsTlbPrefetchDisable:skl */
  817. WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
  818. GEN9_CCS_TLB_PREFETCH_ENABLE);
  819. /*
  820. * FIXME: don't apply the following on BXT for stepping C. On BXT A0
  821. * the flag reads back as 0.
  822. */
  823. /* WaDisableMaskBasedCammingInRCC:sklC,bxtA */
  824. if (INTEL_REVID(dev) == SKL_REVID_C0 || IS_BROXTON(dev))
  825. WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
  826. PIXEL_MASK_CAMMING_DISABLE);
  827. return 0;
  828. }
  829. static int skl_tune_iz_hashing(struct intel_engine_cs *ring)
  830. {
  831. struct drm_device *dev = ring->dev;
  832. struct drm_i915_private *dev_priv = dev->dev_private;
  833. u8 vals[3] = { 0, 0, 0 };
  834. unsigned int i;
  835. for (i = 0; i < 3; i++) {
  836. u8 ss;
  837. /*
  838. * Only consider slices where one, and only one, subslice has 7
  839. * EUs
  840. */
  841. if (hweight8(dev_priv->info.subslice_7eu[i]) != 1)
  842. continue;
  843. /*
  844. * subslice_7eu[i] != 0 (because of the check above) and
  845. * ss_max == 4 (maximum number of subslices possible per slice)
  846. *
  847. * -> 0 <= ss <= 3;
  848. */
  849. ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
  850. vals[i] = 3 - ss;
  851. }
  852. if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
  853. return 0;
  854. /* Tune IZ hashing. See intel_device_info_runtime_init() */
  855. WA_SET_FIELD_MASKED(GEN7_GT_MODE,
  856. GEN9_IZ_HASHING_MASK(2) |
  857. GEN9_IZ_HASHING_MASK(1) |
  858. GEN9_IZ_HASHING_MASK(0),
  859. GEN9_IZ_HASHING(2, vals[2]) |
  860. GEN9_IZ_HASHING(1, vals[1]) |
  861. GEN9_IZ_HASHING(0, vals[0]));
  862. return 0;
  863. }
  864. static int skl_init_workarounds(struct intel_engine_cs *ring)
  865. {
  866. struct drm_device *dev = ring->dev;
  867. struct drm_i915_private *dev_priv = dev->dev_private;
  868. gen9_init_workarounds(ring);
  869. /* WaDisablePowerCompilerClockGating:skl */
  870. if (INTEL_REVID(dev) == SKL_REVID_B0)
  871. WA_SET_BIT_MASKED(HIZ_CHICKEN,
  872. BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
  873. return skl_tune_iz_hashing(ring);
  874. }
  875. static int bxt_init_workarounds(struct intel_engine_cs *ring)
  876. {
  877. struct drm_device *dev = ring->dev;
  878. struct drm_i915_private *dev_priv = dev->dev_private;
  879. gen9_init_workarounds(ring);
  880. /* WaDisableThreadStallDopClockGating:bxt */
  881. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  882. STALL_DOP_GATING_DISABLE);
  883. /* WaDisableSbeCacheDispatchPortSharing:bxt */
  884. if (INTEL_REVID(dev) <= BXT_REVID_B0) {
  885. WA_SET_BIT_MASKED(
  886. GEN7_HALF_SLICE_CHICKEN1,
  887. GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
  888. }
  889. /* WaForceContextSaveRestoreNonCoherent:bxt */
  890. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  891. HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT);
  892. return 0;
  893. }
  894. int init_workarounds_ring(struct intel_engine_cs *ring)
  895. {
  896. struct drm_device *dev = ring->dev;
  897. struct drm_i915_private *dev_priv = dev->dev_private;
  898. WARN_ON(ring->id != RCS);
  899. dev_priv->workarounds.count = 0;
  900. if (IS_BROADWELL(dev))
  901. return bdw_init_workarounds(ring);
  902. if (IS_CHERRYVIEW(dev))
  903. return chv_init_workarounds(ring);
  904. if (IS_SKYLAKE(dev))
  905. return skl_init_workarounds(ring);
  906. if (IS_BROXTON(dev))
  907. return bxt_init_workarounds(ring);
  908. return 0;
  909. }
  910. static int init_render_ring(struct intel_engine_cs *ring)
  911. {
  912. struct drm_device *dev = ring->dev;
  913. struct drm_i915_private *dev_priv = dev->dev_private;
  914. int ret = init_ring_common(ring);
  915. if (ret)
  916. return ret;
  917. /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
  918. if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
  919. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
  920. /* We need to disable the AsyncFlip performance optimisations in order
  921. * to use MI_WAIT_FOR_EVENT within the CS. It should already be
  922. * programmed to '1' on all products.
  923. *
  924. * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
  925. */
  926. if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 9)
  927. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
  928. /* Required for the hardware to program scanline values for waiting */
  929. /* WaEnableFlushTlbInvalidationMode:snb */
  930. if (INTEL_INFO(dev)->gen == 6)
  931. I915_WRITE(GFX_MODE,
  932. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
  933. /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
  934. if (IS_GEN7(dev))
  935. I915_WRITE(GFX_MODE_GEN7,
  936. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
  937. _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
  938. if (IS_GEN6(dev)) {
  939. /* From the Sandybridge PRM, volume 1 part 3, page 24:
  940. * "If this bit is set, STCunit will have LRA as replacement
  941. * policy. [...] This bit must be reset. LRA replacement
  942. * policy is not supported."
  943. */
  944. I915_WRITE(CACHE_MODE_0,
  945. _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  946. }
  947. if (INTEL_INFO(dev)->gen >= 6)
  948. I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
  949. if (HAS_L3_DPF(dev))
  950. I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
  951. return init_workarounds_ring(ring);
  952. }
  953. static void render_ring_cleanup(struct intel_engine_cs *ring)
  954. {
  955. struct drm_device *dev = ring->dev;
  956. struct drm_i915_private *dev_priv = dev->dev_private;
  957. if (dev_priv->semaphore_obj) {
  958. i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
  959. drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
  960. dev_priv->semaphore_obj = NULL;
  961. }
  962. intel_fini_pipe_control(ring);
  963. }
  964. static int gen8_rcs_signal(struct intel_engine_cs *signaller,
  965. unsigned int num_dwords)
  966. {
  967. #define MBOX_UPDATE_DWORDS 8
  968. struct drm_device *dev = signaller->dev;
  969. struct drm_i915_private *dev_priv = dev->dev_private;
  970. struct intel_engine_cs *waiter;
  971. int i, ret, num_rings;
  972. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  973. num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
  974. #undef MBOX_UPDATE_DWORDS
  975. ret = intel_ring_begin(signaller, num_dwords);
  976. if (ret)
  977. return ret;
  978. for_each_ring(waiter, dev_priv, i) {
  979. u32 seqno;
  980. u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
  981. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  982. continue;
  983. seqno = i915_gem_request_get_seqno(
  984. signaller->outstanding_lazy_request);
  985. intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
  986. intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
  987. PIPE_CONTROL_QW_WRITE |
  988. PIPE_CONTROL_FLUSH_ENABLE);
  989. intel_ring_emit(signaller, lower_32_bits(gtt_offset));
  990. intel_ring_emit(signaller, upper_32_bits(gtt_offset));
  991. intel_ring_emit(signaller, seqno);
  992. intel_ring_emit(signaller, 0);
  993. intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
  994. MI_SEMAPHORE_TARGET(waiter->id));
  995. intel_ring_emit(signaller, 0);
  996. }
  997. return 0;
  998. }
  999. static int gen8_xcs_signal(struct intel_engine_cs *signaller,
  1000. unsigned int num_dwords)
  1001. {
  1002. #define MBOX_UPDATE_DWORDS 6
  1003. struct drm_device *dev = signaller->dev;
  1004. struct drm_i915_private *dev_priv = dev->dev_private;
  1005. struct intel_engine_cs *waiter;
  1006. int i, ret, num_rings;
  1007. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  1008. num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
  1009. #undef MBOX_UPDATE_DWORDS
  1010. ret = intel_ring_begin(signaller, num_dwords);
  1011. if (ret)
  1012. return ret;
  1013. for_each_ring(waiter, dev_priv, i) {
  1014. u32 seqno;
  1015. u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
  1016. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  1017. continue;
  1018. seqno = i915_gem_request_get_seqno(
  1019. signaller->outstanding_lazy_request);
  1020. intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
  1021. MI_FLUSH_DW_OP_STOREDW);
  1022. intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
  1023. MI_FLUSH_DW_USE_GTT);
  1024. intel_ring_emit(signaller, upper_32_bits(gtt_offset));
  1025. intel_ring_emit(signaller, seqno);
  1026. intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
  1027. MI_SEMAPHORE_TARGET(waiter->id));
  1028. intel_ring_emit(signaller, 0);
  1029. }
  1030. return 0;
  1031. }
  1032. static int gen6_signal(struct intel_engine_cs *signaller,
  1033. unsigned int num_dwords)
  1034. {
  1035. struct drm_device *dev = signaller->dev;
  1036. struct drm_i915_private *dev_priv = dev->dev_private;
  1037. struct intel_engine_cs *useless;
  1038. int i, ret, num_rings;
  1039. #define MBOX_UPDATE_DWORDS 3
  1040. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  1041. num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
  1042. #undef MBOX_UPDATE_DWORDS
  1043. ret = intel_ring_begin(signaller, num_dwords);
  1044. if (ret)
  1045. return ret;
  1046. for_each_ring(useless, dev_priv, i) {
  1047. u32 mbox_reg = signaller->semaphore.mbox.signal[i];
  1048. if (mbox_reg != GEN6_NOSYNC) {
  1049. u32 seqno = i915_gem_request_get_seqno(
  1050. signaller->outstanding_lazy_request);
  1051. intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
  1052. intel_ring_emit(signaller, mbox_reg);
  1053. intel_ring_emit(signaller, seqno);
  1054. }
  1055. }
  1056. /* If num_dwords was rounded, make sure the tail pointer is correct */
  1057. if (num_rings % 2 == 0)
  1058. intel_ring_emit(signaller, MI_NOOP);
  1059. return 0;
  1060. }
  1061. /**
  1062. * gen6_add_request - Update the semaphore mailbox registers
  1063. *
  1064. * @ring - ring that is adding a request
  1065. * @seqno - return seqno stuck into the ring
  1066. *
  1067. * Update the mailbox registers in the *other* rings with the current seqno.
  1068. * This acts like a signal in the canonical semaphore.
  1069. */
  1070. static int
  1071. gen6_add_request(struct intel_engine_cs *ring)
  1072. {
  1073. int ret;
  1074. if (ring->semaphore.signal)
  1075. ret = ring->semaphore.signal(ring, 4);
  1076. else
  1077. ret = intel_ring_begin(ring, 4);
  1078. if (ret)
  1079. return ret;
  1080. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  1081. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1082. intel_ring_emit(ring,
  1083. i915_gem_request_get_seqno(ring->outstanding_lazy_request));
  1084. intel_ring_emit(ring, MI_USER_INTERRUPT);
  1085. __intel_ring_advance(ring);
  1086. return 0;
  1087. }
  1088. static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
  1089. u32 seqno)
  1090. {
  1091. struct drm_i915_private *dev_priv = dev->dev_private;
  1092. return dev_priv->last_seqno < seqno;
  1093. }
  1094. /**
  1095. * intel_ring_sync - sync the waiter to the signaller on seqno
  1096. *
  1097. * @waiter - ring that is waiting
  1098. * @signaller - ring which has, or will signal
  1099. * @seqno - seqno which the waiter will block on
  1100. */
  1101. static int
  1102. gen8_ring_sync(struct intel_engine_cs *waiter,
  1103. struct intel_engine_cs *signaller,
  1104. u32 seqno)
  1105. {
  1106. struct drm_i915_private *dev_priv = waiter->dev->dev_private;
  1107. int ret;
  1108. ret = intel_ring_begin(waiter, 4);
  1109. if (ret)
  1110. return ret;
  1111. intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
  1112. MI_SEMAPHORE_GLOBAL_GTT |
  1113. MI_SEMAPHORE_POLL |
  1114. MI_SEMAPHORE_SAD_GTE_SDD);
  1115. intel_ring_emit(waiter, seqno);
  1116. intel_ring_emit(waiter,
  1117. lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
  1118. intel_ring_emit(waiter,
  1119. upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
  1120. intel_ring_advance(waiter);
  1121. return 0;
  1122. }
  1123. static int
  1124. gen6_ring_sync(struct intel_engine_cs *waiter,
  1125. struct intel_engine_cs *signaller,
  1126. u32 seqno)
  1127. {
  1128. u32 dw1 = MI_SEMAPHORE_MBOX |
  1129. MI_SEMAPHORE_COMPARE |
  1130. MI_SEMAPHORE_REGISTER;
  1131. u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
  1132. int ret;
  1133. /* Throughout all of the GEM code, seqno passed implies our current
  1134. * seqno is >= the last seqno executed. However for hardware the
  1135. * comparison is strictly greater than.
  1136. */
  1137. seqno -= 1;
  1138. WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
  1139. ret = intel_ring_begin(waiter, 4);
  1140. if (ret)
  1141. return ret;
  1142. /* If seqno wrap happened, omit the wait with no-ops */
  1143. if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
  1144. intel_ring_emit(waiter, dw1 | wait_mbox);
  1145. intel_ring_emit(waiter, seqno);
  1146. intel_ring_emit(waiter, 0);
  1147. intel_ring_emit(waiter, MI_NOOP);
  1148. } else {
  1149. intel_ring_emit(waiter, MI_NOOP);
  1150. intel_ring_emit(waiter, MI_NOOP);
  1151. intel_ring_emit(waiter, MI_NOOP);
  1152. intel_ring_emit(waiter, MI_NOOP);
  1153. }
  1154. intel_ring_advance(waiter);
  1155. return 0;
  1156. }
  1157. #define PIPE_CONTROL_FLUSH(ring__, addr__) \
  1158. do { \
  1159. intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
  1160. PIPE_CONTROL_DEPTH_STALL); \
  1161. intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
  1162. intel_ring_emit(ring__, 0); \
  1163. intel_ring_emit(ring__, 0); \
  1164. } while (0)
  1165. static int
  1166. pc_render_add_request(struct intel_engine_cs *ring)
  1167. {
  1168. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  1169. int ret;
  1170. /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
  1171. * incoherent with writes to memory, i.e. completely fubar,
  1172. * so we need to use PIPE_NOTIFY instead.
  1173. *
  1174. * However, we also need to workaround the qword write
  1175. * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
  1176. * memory before requesting an interrupt.
  1177. */
  1178. ret = intel_ring_begin(ring, 32);
  1179. if (ret)
  1180. return ret;
  1181. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  1182. PIPE_CONTROL_WRITE_FLUSH |
  1183. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
  1184. intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  1185. intel_ring_emit(ring,
  1186. i915_gem_request_get_seqno(ring->outstanding_lazy_request));
  1187. intel_ring_emit(ring, 0);
  1188. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1189. scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
  1190. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1191. scratch_addr += 2 * CACHELINE_BYTES;
  1192. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1193. scratch_addr += 2 * CACHELINE_BYTES;
  1194. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1195. scratch_addr += 2 * CACHELINE_BYTES;
  1196. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1197. scratch_addr += 2 * CACHELINE_BYTES;
  1198. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1199. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  1200. PIPE_CONTROL_WRITE_FLUSH |
  1201. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
  1202. PIPE_CONTROL_NOTIFY);
  1203. intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  1204. intel_ring_emit(ring,
  1205. i915_gem_request_get_seqno(ring->outstanding_lazy_request));
  1206. intel_ring_emit(ring, 0);
  1207. __intel_ring_advance(ring);
  1208. return 0;
  1209. }
  1210. static u32
  1211. gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  1212. {
  1213. /* Workaround to force correct ordering between irq and seqno writes on
  1214. * ivb (and maybe also on snb) by reading from a CS register (like
  1215. * ACTHD) before reading the status page. */
  1216. if (!lazy_coherency) {
  1217. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1218. POSTING_READ(RING_ACTHD(ring->mmio_base));
  1219. }
  1220. return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
  1221. }
  1222. static u32
  1223. ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  1224. {
  1225. return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
  1226. }
  1227. static void
  1228. ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
  1229. {
  1230. intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
  1231. }
  1232. static u32
  1233. pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  1234. {
  1235. return ring->scratch.cpu_page[0];
  1236. }
  1237. static void
  1238. pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
  1239. {
  1240. ring->scratch.cpu_page[0] = seqno;
  1241. }
  1242. static bool
  1243. gen5_ring_get_irq(struct intel_engine_cs *ring)
  1244. {
  1245. struct drm_device *dev = ring->dev;
  1246. struct drm_i915_private *dev_priv = dev->dev_private;
  1247. unsigned long flags;
  1248. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1249. return false;
  1250. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1251. if (ring->irq_refcount++ == 0)
  1252. gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
  1253. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1254. return true;
  1255. }
  1256. static void
  1257. gen5_ring_put_irq(struct intel_engine_cs *ring)
  1258. {
  1259. struct drm_device *dev = ring->dev;
  1260. struct drm_i915_private *dev_priv = dev->dev_private;
  1261. unsigned long flags;
  1262. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1263. if (--ring->irq_refcount == 0)
  1264. gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
  1265. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1266. }
  1267. static bool
  1268. i9xx_ring_get_irq(struct intel_engine_cs *ring)
  1269. {
  1270. struct drm_device *dev = ring->dev;
  1271. struct drm_i915_private *dev_priv = dev->dev_private;
  1272. unsigned long flags;
  1273. if (!intel_irqs_enabled(dev_priv))
  1274. return false;
  1275. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1276. if (ring->irq_refcount++ == 0) {
  1277. dev_priv->irq_mask &= ~ring->irq_enable_mask;
  1278. I915_WRITE(IMR, dev_priv->irq_mask);
  1279. POSTING_READ(IMR);
  1280. }
  1281. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1282. return true;
  1283. }
  1284. static void
  1285. i9xx_ring_put_irq(struct intel_engine_cs *ring)
  1286. {
  1287. struct drm_device *dev = ring->dev;
  1288. struct drm_i915_private *dev_priv = dev->dev_private;
  1289. unsigned long flags;
  1290. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1291. if (--ring->irq_refcount == 0) {
  1292. dev_priv->irq_mask |= ring->irq_enable_mask;
  1293. I915_WRITE(IMR, dev_priv->irq_mask);
  1294. POSTING_READ(IMR);
  1295. }
  1296. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1297. }
  1298. static bool
  1299. i8xx_ring_get_irq(struct intel_engine_cs *ring)
  1300. {
  1301. struct drm_device *dev = ring->dev;
  1302. struct drm_i915_private *dev_priv = dev->dev_private;
  1303. unsigned long flags;
  1304. if (!intel_irqs_enabled(dev_priv))
  1305. return false;
  1306. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1307. if (ring->irq_refcount++ == 0) {
  1308. dev_priv->irq_mask &= ~ring->irq_enable_mask;
  1309. I915_WRITE16(IMR, dev_priv->irq_mask);
  1310. POSTING_READ16(IMR);
  1311. }
  1312. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1313. return true;
  1314. }
  1315. static void
  1316. i8xx_ring_put_irq(struct intel_engine_cs *ring)
  1317. {
  1318. struct drm_device *dev = ring->dev;
  1319. struct drm_i915_private *dev_priv = dev->dev_private;
  1320. unsigned long flags;
  1321. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1322. if (--ring->irq_refcount == 0) {
  1323. dev_priv->irq_mask |= ring->irq_enable_mask;
  1324. I915_WRITE16(IMR, dev_priv->irq_mask);
  1325. POSTING_READ16(IMR);
  1326. }
  1327. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1328. }
  1329. static int
  1330. bsd_ring_flush(struct intel_engine_cs *ring,
  1331. u32 invalidate_domains,
  1332. u32 flush_domains)
  1333. {
  1334. int ret;
  1335. ret = intel_ring_begin(ring, 2);
  1336. if (ret)
  1337. return ret;
  1338. intel_ring_emit(ring, MI_FLUSH);
  1339. intel_ring_emit(ring, MI_NOOP);
  1340. intel_ring_advance(ring);
  1341. return 0;
  1342. }
  1343. static int
  1344. i9xx_add_request(struct intel_engine_cs *ring)
  1345. {
  1346. int ret;
  1347. ret = intel_ring_begin(ring, 4);
  1348. if (ret)
  1349. return ret;
  1350. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  1351. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1352. intel_ring_emit(ring,
  1353. i915_gem_request_get_seqno(ring->outstanding_lazy_request));
  1354. intel_ring_emit(ring, MI_USER_INTERRUPT);
  1355. __intel_ring_advance(ring);
  1356. return 0;
  1357. }
  1358. static bool
  1359. gen6_ring_get_irq(struct intel_engine_cs *ring)
  1360. {
  1361. struct drm_device *dev = ring->dev;
  1362. struct drm_i915_private *dev_priv = dev->dev_private;
  1363. unsigned long flags;
  1364. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1365. return false;
  1366. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1367. if (ring->irq_refcount++ == 0) {
  1368. if (HAS_L3_DPF(dev) && ring->id == RCS)
  1369. I915_WRITE_IMR(ring,
  1370. ~(ring->irq_enable_mask |
  1371. GT_PARITY_ERROR(dev)));
  1372. else
  1373. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1374. gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
  1375. }
  1376. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1377. return true;
  1378. }
  1379. static void
  1380. gen6_ring_put_irq(struct intel_engine_cs *ring)
  1381. {
  1382. struct drm_device *dev = ring->dev;
  1383. struct drm_i915_private *dev_priv = dev->dev_private;
  1384. unsigned long flags;
  1385. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1386. if (--ring->irq_refcount == 0) {
  1387. if (HAS_L3_DPF(dev) && ring->id == RCS)
  1388. I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
  1389. else
  1390. I915_WRITE_IMR(ring, ~0);
  1391. gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
  1392. }
  1393. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1394. }
  1395. static bool
  1396. hsw_vebox_get_irq(struct intel_engine_cs *ring)
  1397. {
  1398. struct drm_device *dev = ring->dev;
  1399. struct drm_i915_private *dev_priv = dev->dev_private;
  1400. unsigned long flags;
  1401. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1402. return false;
  1403. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1404. if (ring->irq_refcount++ == 0) {
  1405. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1406. gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
  1407. }
  1408. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1409. return true;
  1410. }
  1411. static void
  1412. hsw_vebox_put_irq(struct intel_engine_cs *ring)
  1413. {
  1414. struct drm_device *dev = ring->dev;
  1415. struct drm_i915_private *dev_priv = dev->dev_private;
  1416. unsigned long flags;
  1417. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1418. if (--ring->irq_refcount == 0) {
  1419. I915_WRITE_IMR(ring, ~0);
  1420. gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
  1421. }
  1422. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1423. }
  1424. static bool
  1425. gen8_ring_get_irq(struct intel_engine_cs *ring)
  1426. {
  1427. struct drm_device *dev = ring->dev;
  1428. struct drm_i915_private *dev_priv = dev->dev_private;
  1429. unsigned long flags;
  1430. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1431. return false;
  1432. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1433. if (ring->irq_refcount++ == 0) {
  1434. if (HAS_L3_DPF(dev) && ring->id == RCS) {
  1435. I915_WRITE_IMR(ring,
  1436. ~(ring->irq_enable_mask |
  1437. GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
  1438. } else {
  1439. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1440. }
  1441. POSTING_READ(RING_IMR(ring->mmio_base));
  1442. }
  1443. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1444. return true;
  1445. }
  1446. static void
  1447. gen8_ring_put_irq(struct intel_engine_cs *ring)
  1448. {
  1449. struct drm_device *dev = ring->dev;
  1450. struct drm_i915_private *dev_priv = dev->dev_private;
  1451. unsigned long flags;
  1452. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1453. if (--ring->irq_refcount == 0) {
  1454. if (HAS_L3_DPF(dev) && ring->id == RCS) {
  1455. I915_WRITE_IMR(ring,
  1456. ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
  1457. } else {
  1458. I915_WRITE_IMR(ring, ~0);
  1459. }
  1460. POSTING_READ(RING_IMR(ring->mmio_base));
  1461. }
  1462. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1463. }
  1464. static int
  1465. i965_dispatch_execbuffer(struct intel_engine_cs *ring,
  1466. u64 offset, u32 length,
  1467. unsigned dispatch_flags)
  1468. {
  1469. int ret;
  1470. ret = intel_ring_begin(ring, 2);
  1471. if (ret)
  1472. return ret;
  1473. intel_ring_emit(ring,
  1474. MI_BATCH_BUFFER_START |
  1475. MI_BATCH_GTT |
  1476. (dispatch_flags & I915_DISPATCH_SECURE ?
  1477. 0 : MI_BATCH_NON_SECURE_I965));
  1478. intel_ring_emit(ring, offset);
  1479. intel_ring_advance(ring);
  1480. return 0;
  1481. }
  1482. /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
  1483. #define I830_BATCH_LIMIT (256*1024)
  1484. #define I830_TLB_ENTRIES (2)
  1485. #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
  1486. static int
  1487. i830_dispatch_execbuffer(struct intel_engine_cs *ring,
  1488. u64 offset, u32 len,
  1489. unsigned dispatch_flags)
  1490. {
  1491. u32 cs_offset = ring->scratch.gtt_offset;
  1492. int ret;
  1493. ret = intel_ring_begin(ring, 6);
  1494. if (ret)
  1495. return ret;
  1496. /* Evict the invalid PTE TLBs */
  1497. intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
  1498. intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
  1499. intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
  1500. intel_ring_emit(ring, cs_offset);
  1501. intel_ring_emit(ring, 0xdeadbeef);
  1502. intel_ring_emit(ring, MI_NOOP);
  1503. intel_ring_advance(ring);
  1504. if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
  1505. if (len > I830_BATCH_LIMIT)
  1506. return -ENOSPC;
  1507. ret = intel_ring_begin(ring, 6 + 2);
  1508. if (ret)
  1509. return ret;
  1510. /* Blit the batch (which has now all relocs applied) to the
  1511. * stable batch scratch bo area (so that the CS never
  1512. * stumbles over its tlb invalidation bug) ...
  1513. */
  1514. intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
  1515. intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
  1516. intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
  1517. intel_ring_emit(ring, cs_offset);
  1518. intel_ring_emit(ring, 4096);
  1519. intel_ring_emit(ring, offset);
  1520. intel_ring_emit(ring, MI_FLUSH);
  1521. intel_ring_emit(ring, MI_NOOP);
  1522. intel_ring_advance(ring);
  1523. /* ... and execute it. */
  1524. offset = cs_offset;
  1525. }
  1526. ret = intel_ring_begin(ring, 4);
  1527. if (ret)
  1528. return ret;
  1529. intel_ring_emit(ring, MI_BATCH_BUFFER);
  1530. intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
  1531. 0 : MI_BATCH_NON_SECURE));
  1532. intel_ring_emit(ring, offset + len - 8);
  1533. intel_ring_emit(ring, MI_NOOP);
  1534. intel_ring_advance(ring);
  1535. return 0;
  1536. }
  1537. static int
  1538. i915_dispatch_execbuffer(struct intel_engine_cs *ring,
  1539. u64 offset, u32 len,
  1540. unsigned dispatch_flags)
  1541. {
  1542. int ret;
  1543. ret = intel_ring_begin(ring, 2);
  1544. if (ret)
  1545. return ret;
  1546. intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
  1547. intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
  1548. 0 : MI_BATCH_NON_SECURE));
  1549. intel_ring_advance(ring);
  1550. return 0;
  1551. }
  1552. static void cleanup_status_page(struct intel_engine_cs *ring)
  1553. {
  1554. struct drm_i915_gem_object *obj;
  1555. obj = ring->status_page.obj;
  1556. if (obj == NULL)
  1557. return;
  1558. kunmap(sg_page(obj->pages->sgl));
  1559. i915_gem_object_ggtt_unpin(obj);
  1560. drm_gem_object_unreference(&obj->base);
  1561. ring->status_page.obj = NULL;
  1562. }
  1563. static int init_status_page(struct intel_engine_cs *ring)
  1564. {
  1565. struct drm_i915_gem_object *obj;
  1566. if ((obj = ring->status_page.obj) == NULL) {
  1567. unsigned flags;
  1568. int ret;
  1569. obj = i915_gem_alloc_object(ring->dev, 4096);
  1570. if (obj == NULL) {
  1571. DRM_ERROR("Failed to allocate status page\n");
  1572. return -ENOMEM;
  1573. }
  1574. ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  1575. if (ret)
  1576. goto err_unref;
  1577. flags = 0;
  1578. if (!HAS_LLC(ring->dev))
  1579. /* On g33, we cannot place HWS above 256MiB, so
  1580. * restrict its pinning to the low mappable arena.
  1581. * Though this restriction is not documented for
  1582. * gen4, gen5, or byt, they also behave similarly
  1583. * and hang if the HWS is placed at the top of the
  1584. * GTT. To generalise, it appears that all !llc
  1585. * platforms have issues with us placing the HWS
  1586. * above the mappable region (even though we never
  1587. * actualy map it).
  1588. */
  1589. flags |= PIN_MAPPABLE;
  1590. ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
  1591. if (ret) {
  1592. err_unref:
  1593. drm_gem_object_unreference(&obj->base);
  1594. return ret;
  1595. }
  1596. ring->status_page.obj = obj;
  1597. }
  1598. ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
  1599. ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
  1600. memset(ring->status_page.page_addr, 0, PAGE_SIZE);
  1601. DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
  1602. ring->name, ring->status_page.gfx_addr);
  1603. return 0;
  1604. }
  1605. static int init_phys_status_page(struct intel_engine_cs *ring)
  1606. {
  1607. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1608. if (!dev_priv->status_page_dmah) {
  1609. dev_priv->status_page_dmah =
  1610. drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
  1611. if (!dev_priv->status_page_dmah)
  1612. return -ENOMEM;
  1613. }
  1614. ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
  1615. memset(ring->status_page.page_addr, 0, PAGE_SIZE);
  1616. return 0;
  1617. }
  1618. void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
  1619. {
  1620. iounmap(ringbuf->virtual_start);
  1621. ringbuf->virtual_start = NULL;
  1622. i915_gem_object_ggtt_unpin(ringbuf->obj);
  1623. }
  1624. int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
  1625. struct intel_ringbuffer *ringbuf)
  1626. {
  1627. struct drm_i915_private *dev_priv = to_i915(dev);
  1628. struct drm_i915_gem_object *obj = ringbuf->obj;
  1629. int ret;
  1630. ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
  1631. if (ret)
  1632. return ret;
  1633. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  1634. if (ret) {
  1635. i915_gem_object_ggtt_unpin(obj);
  1636. return ret;
  1637. }
  1638. ringbuf->virtual_start = ioremap_wc(dev_priv->gtt.mappable_base +
  1639. i915_gem_obj_ggtt_offset(obj), ringbuf->size);
  1640. if (ringbuf->virtual_start == NULL) {
  1641. i915_gem_object_ggtt_unpin(obj);
  1642. return -EINVAL;
  1643. }
  1644. return 0;
  1645. }
  1646. void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
  1647. {
  1648. drm_gem_object_unreference(&ringbuf->obj->base);
  1649. ringbuf->obj = NULL;
  1650. }
  1651. int intel_alloc_ringbuffer_obj(struct drm_device *dev,
  1652. struct intel_ringbuffer *ringbuf)
  1653. {
  1654. struct drm_i915_gem_object *obj;
  1655. obj = NULL;
  1656. if (!HAS_LLC(dev))
  1657. obj = i915_gem_object_create_stolen(dev, ringbuf->size);
  1658. if (obj == NULL)
  1659. obj = i915_gem_alloc_object(dev, ringbuf->size);
  1660. if (obj == NULL)
  1661. return -ENOMEM;
  1662. /* mark ring buffers as read-only from GPU side by default */
  1663. obj->gt_ro = 1;
  1664. ringbuf->obj = obj;
  1665. return 0;
  1666. }
  1667. static int intel_init_ring_buffer(struct drm_device *dev,
  1668. struct intel_engine_cs *ring)
  1669. {
  1670. struct intel_ringbuffer *ringbuf;
  1671. int ret;
  1672. WARN_ON(ring->buffer);
  1673. ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
  1674. if (!ringbuf)
  1675. return -ENOMEM;
  1676. ring->buffer = ringbuf;
  1677. ring->dev = dev;
  1678. INIT_LIST_HEAD(&ring->active_list);
  1679. INIT_LIST_HEAD(&ring->request_list);
  1680. INIT_LIST_HEAD(&ring->execlist_queue);
  1681. i915_gem_batch_pool_init(dev, &ring->batch_pool);
  1682. ringbuf->size = 32 * PAGE_SIZE;
  1683. ringbuf->ring = ring;
  1684. memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
  1685. init_waitqueue_head(&ring->irq_queue);
  1686. if (I915_NEED_GFX_HWS(dev)) {
  1687. ret = init_status_page(ring);
  1688. if (ret)
  1689. goto error;
  1690. } else {
  1691. BUG_ON(ring->id != RCS);
  1692. ret = init_phys_status_page(ring);
  1693. if (ret)
  1694. goto error;
  1695. }
  1696. WARN_ON(ringbuf->obj);
  1697. ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
  1698. if (ret) {
  1699. DRM_ERROR("Failed to allocate ringbuffer %s: %d\n",
  1700. ring->name, ret);
  1701. goto error;
  1702. }
  1703. ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
  1704. if (ret) {
  1705. DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
  1706. ring->name, ret);
  1707. intel_destroy_ringbuffer_obj(ringbuf);
  1708. goto error;
  1709. }
  1710. /* Workaround an erratum on the i830 which causes a hang if
  1711. * the TAIL pointer points to within the last 2 cachelines
  1712. * of the buffer.
  1713. */
  1714. ringbuf->effective_size = ringbuf->size;
  1715. if (IS_I830(dev) || IS_845G(dev))
  1716. ringbuf->effective_size -= 2 * CACHELINE_BYTES;
  1717. ret = i915_cmd_parser_init_ring(ring);
  1718. if (ret)
  1719. goto error;
  1720. return 0;
  1721. error:
  1722. kfree(ringbuf);
  1723. ring->buffer = NULL;
  1724. return ret;
  1725. }
  1726. void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
  1727. {
  1728. struct drm_i915_private *dev_priv;
  1729. struct intel_ringbuffer *ringbuf;
  1730. if (!intel_ring_initialized(ring))
  1731. return;
  1732. dev_priv = to_i915(ring->dev);
  1733. ringbuf = ring->buffer;
  1734. intel_stop_ring_buffer(ring);
  1735. WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
  1736. intel_unpin_ringbuffer_obj(ringbuf);
  1737. intel_destroy_ringbuffer_obj(ringbuf);
  1738. i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
  1739. if (ring->cleanup)
  1740. ring->cleanup(ring);
  1741. cleanup_status_page(ring);
  1742. i915_cmd_parser_fini_ring(ring);
  1743. i915_gem_batch_pool_fini(&ring->batch_pool);
  1744. kfree(ringbuf);
  1745. ring->buffer = NULL;
  1746. }
  1747. static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
  1748. {
  1749. struct intel_ringbuffer *ringbuf = ring->buffer;
  1750. struct drm_i915_gem_request *request;
  1751. int ret, new_space;
  1752. if (intel_ring_space(ringbuf) >= n)
  1753. return 0;
  1754. list_for_each_entry(request, &ring->request_list, list) {
  1755. new_space = __intel_ring_space(request->postfix, ringbuf->tail,
  1756. ringbuf->size);
  1757. if (new_space >= n)
  1758. break;
  1759. }
  1760. if (WARN_ON(&request->list == &ring->request_list))
  1761. return -ENOSPC;
  1762. ret = i915_wait_request(request);
  1763. if (ret)
  1764. return ret;
  1765. i915_gem_retire_requests_ring(ring);
  1766. WARN_ON(intel_ring_space(ringbuf) < new_space);
  1767. return 0;
  1768. }
  1769. static int intel_wrap_ring_buffer(struct intel_engine_cs *ring)
  1770. {
  1771. uint32_t __iomem *virt;
  1772. struct intel_ringbuffer *ringbuf = ring->buffer;
  1773. int rem = ringbuf->size - ringbuf->tail;
  1774. if (ringbuf->space < rem) {
  1775. int ret = ring_wait_for_space(ring, rem);
  1776. if (ret)
  1777. return ret;
  1778. }
  1779. virt = ringbuf->virtual_start + ringbuf->tail;
  1780. rem /= 4;
  1781. while (rem--)
  1782. iowrite32(MI_NOOP, virt++);
  1783. ringbuf->tail = 0;
  1784. intel_ring_update_space(ringbuf);
  1785. return 0;
  1786. }
  1787. int intel_ring_idle(struct intel_engine_cs *ring)
  1788. {
  1789. struct drm_i915_gem_request *req;
  1790. int ret;
  1791. /* We need to add any requests required to flush the objects and ring */
  1792. if (ring->outstanding_lazy_request) {
  1793. ret = i915_add_request(ring);
  1794. if (ret)
  1795. return ret;
  1796. }
  1797. /* Wait upon the last request to be completed */
  1798. if (list_empty(&ring->request_list))
  1799. return 0;
  1800. req = list_entry(ring->request_list.prev,
  1801. struct drm_i915_gem_request,
  1802. list);
  1803. return i915_wait_request(req);
  1804. }
  1805. int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
  1806. {
  1807. request->ringbuf = request->ring->buffer;
  1808. return 0;
  1809. }
  1810. static int __intel_ring_prepare(struct intel_engine_cs *ring,
  1811. int bytes)
  1812. {
  1813. struct intel_ringbuffer *ringbuf = ring->buffer;
  1814. int ret;
  1815. if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
  1816. ret = intel_wrap_ring_buffer(ring);
  1817. if (unlikely(ret))
  1818. return ret;
  1819. }
  1820. if (unlikely(ringbuf->space < bytes)) {
  1821. ret = ring_wait_for_space(ring, bytes);
  1822. if (unlikely(ret))
  1823. return ret;
  1824. }
  1825. return 0;
  1826. }
  1827. int intel_ring_begin(struct intel_engine_cs *ring,
  1828. int num_dwords)
  1829. {
  1830. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1831. int ret;
  1832. ret = i915_gem_check_wedge(&dev_priv->gpu_error,
  1833. dev_priv->mm.interruptible);
  1834. if (ret)
  1835. return ret;
  1836. ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
  1837. if (ret)
  1838. return ret;
  1839. /* Preallocate the olr before touching the ring */
  1840. ret = i915_gem_request_alloc(ring, ring->default_context);
  1841. if (ret)
  1842. return ret;
  1843. ring->buffer->space -= num_dwords * sizeof(uint32_t);
  1844. return 0;
  1845. }
  1846. /* Align the ring tail to a cacheline boundary */
  1847. int intel_ring_cacheline_align(struct intel_engine_cs *ring)
  1848. {
  1849. int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
  1850. int ret;
  1851. if (num_dwords == 0)
  1852. return 0;
  1853. num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
  1854. ret = intel_ring_begin(ring, num_dwords);
  1855. if (ret)
  1856. return ret;
  1857. while (num_dwords--)
  1858. intel_ring_emit(ring, MI_NOOP);
  1859. intel_ring_advance(ring);
  1860. return 0;
  1861. }
  1862. void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
  1863. {
  1864. struct drm_device *dev = ring->dev;
  1865. struct drm_i915_private *dev_priv = dev->dev_private;
  1866. BUG_ON(ring->outstanding_lazy_request);
  1867. if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
  1868. I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
  1869. I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
  1870. if (HAS_VEBOX(dev))
  1871. I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
  1872. }
  1873. ring->set_seqno(ring, seqno);
  1874. ring->hangcheck.seqno = seqno;
  1875. }
  1876. static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
  1877. u32 value)
  1878. {
  1879. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1880. /* Every tail move must follow the sequence below */
  1881. /* Disable notification that the ring is IDLE. The GT
  1882. * will then assume that it is busy and bring it out of rc6.
  1883. */
  1884. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  1885. _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  1886. /* Clear the context id. Here be magic! */
  1887. I915_WRITE64(GEN6_BSD_RNCID, 0x0);
  1888. /* Wait for the ring not to be idle, i.e. for it to wake up. */
  1889. if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
  1890. GEN6_BSD_SLEEP_INDICATOR) == 0,
  1891. 50))
  1892. DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
  1893. /* Now that the ring is fully powered up, update the tail */
  1894. I915_WRITE_TAIL(ring, value);
  1895. POSTING_READ(RING_TAIL(ring->mmio_base));
  1896. /* Let the ring send IDLE messages to the GT again,
  1897. * and so let it sleep to conserve power when idle.
  1898. */
  1899. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  1900. _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  1901. }
  1902. static int gen6_bsd_ring_flush(struct intel_engine_cs *ring,
  1903. u32 invalidate, u32 flush)
  1904. {
  1905. uint32_t cmd;
  1906. int ret;
  1907. ret = intel_ring_begin(ring, 4);
  1908. if (ret)
  1909. return ret;
  1910. cmd = MI_FLUSH_DW;
  1911. if (INTEL_INFO(ring->dev)->gen >= 8)
  1912. cmd += 1;
  1913. /* We always require a command barrier so that subsequent
  1914. * commands, such as breadcrumb interrupts, are strictly ordered
  1915. * wrt the contents of the write cache being flushed to memory
  1916. * (and thus being coherent from the CPU).
  1917. */
  1918. cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  1919. /*
  1920. * Bspec vol 1c.5 - video engine command streamer:
  1921. * "If ENABLED, all TLBs will be invalidated once the flush
  1922. * operation is complete. This bit is only valid when the
  1923. * Post-Sync Operation field is a value of 1h or 3h."
  1924. */
  1925. if (invalidate & I915_GEM_GPU_DOMAINS)
  1926. cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
  1927. intel_ring_emit(ring, cmd);
  1928. intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  1929. if (INTEL_INFO(ring->dev)->gen >= 8) {
  1930. intel_ring_emit(ring, 0); /* upper addr */
  1931. intel_ring_emit(ring, 0); /* value */
  1932. } else {
  1933. intel_ring_emit(ring, 0);
  1934. intel_ring_emit(ring, MI_NOOP);
  1935. }
  1936. intel_ring_advance(ring);
  1937. return 0;
  1938. }
  1939. static int
  1940. gen8_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
  1941. u64 offset, u32 len,
  1942. unsigned dispatch_flags)
  1943. {
  1944. bool ppgtt = USES_PPGTT(ring->dev) &&
  1945. !(dispatch_flags & I915_DISPATCH_SECURE);
  1946. int ret;
  1947. ret = intel_ring_begin(ring, 4);
  1948. if (ret)
  1949. return ret;
  1950. /* FIXME(BDW): Address space and security selectors. */
  1951. intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
  1952. intel_ring_emit(ring, lower_32_bits(offset));
  1953. intel_ring_emit(ring, upper_32_bits(offset));
  1954. intel_ring_emit(ring, MI_NOOP);
  1955. intel_ring_advance(ring);
  1956. return 0;
  1957. }
  1958. static int
  1959. hsw_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
  1960. u64 offset, u32 len,
  1961. unsigned dispatch_flags)
  1962. {
  1963. int ret;
  1964. ret = intel_ring_begin(ring, 2);
  1965. if (ret)
  1966. return ret;
  1967. intel_ring_emit(ring,
  1968. MI_BATCH_BUFFER_START |
  1969. (dispatch_flags & I915_DISPATCH_SECURE ?
  1970. 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW));
  1971. /* bit0-7 is the length on GEN6+ */
  1972. intel_ring_emit(ring, offset);
  1973. intel_ring_advance(ring);
  1974. return 0;
  1975. }
  1976. static int
  1977. gen6_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
  1978. u64 offset, u32 len,
  1979. unsigned dispatch_flags)
  1980. {
  1981. int ret;
  1982. ret = intel_ring_begin(ring, 2);
  1983. if (ret)
  1984. return ret;
  1985. intel_ring_emit(ring,
  1986. MI_BATCH_BUFFER_START |
  1987. (dispatch_flags & I915_DISPATCH_SECURE ?
  1988. 0 : MI_BATCH_NON_SECURE_I965));
  1989. /* bit0-7 is the length on GEN6+ */
  1990. intel_ring_emit(ring, offset);
  1991. intel_ring_advance(ring);
  1992. return 0;
  1993. }
  1994. /* Blitter support (SandyBridge+) */
  1995. static int gen6_ring_flush(struct intel_engine_cs *ring,
  1996. u32 invalidate, u32 flush)
  1997. {
  1998. struct drm_device *dev = ring->dev;
  1999. uint32_t cmd;
  2000. int ret;
  2001. ret = intel_ring_begin(ring, 4);
  2002. if (ret)
  2003. return ret;
  2004. cmd = MI_FLUSH_DW;
  2005. if (INTEL_INFO(dev)->gen >= 8)
  2006. cmd += 1;
  2007. /* We always require a command barrier so that subsequent
  2008. * commands, such as breadcrumb interrupts, are strictly ordered
  2009. * wrt the contents of the write cache being flushed to memory
  2010. * (and thus being coherent from the CPU).
  2011. */
  2012. cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  2013. /*
  2014. * Bspec vol 1c.3 - blitter engine command streamer:
  2015. * "If ENABLED, all TLBs will be invalidated once the flush
  2016. * operation is complete. This bit is only valid when the
  2017. * Post-Sync Operation field is a value of 1h or 3h."
  2018. */
  2019. if (invalidate & I915_GEM_DOMAIN_RENDER)
  2020. cmd |= MI_INVALIDATE_TLB;
  2021. intel_ring_emit(ring, cmd);
  2022. intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  2023. if (INTEL_INFO(dev)->gen >= 8) {
  2024. intel_ring_emit(ring, 0); /* upper addr */
  2025. intel_ring_emit(ring, 0); /* value */
  2026. } else {
  2027. intel_ring_emit(ring, 0);
  2028. intel_ring_emit(ring, MI_NOOP);
  2029. }
  2030. intel_ring_advance(ring);
  2031. return 0;
  2032. }
  2033. int intel_init_render_ring_buffer(struct drm_device *dev)
  2034. {
  2035. struct drm_i915_private *dev_priv = dev->dev_private;
  2036. struct intel_engine_cs *ring = &dev_priv->ring[RCS];
  2037. struct drm_i915_gem_object *obj;
  2038. int ret;
  2039. ring->name = "render ring";
  2040. ring->id = RCS;
  2041. ring->mmio_base = RENDER_RING_BASE;
  2042. if (INTEL_INFO(dev)->gen >= 8) {
  2043. if (i915_semaphore_is_enabled(dev)) {
  2044. obj = i915_gem_alloc_object(dev, 4096);
  2045. if (obj == NULL) {
  2046. DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
  2047. i915.semaphores = 0;
  2048. } else {
  2049. i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  2050. ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
  2051. if (ret != 0) {
  2052. drm_gem_object_unreference(&obj->base);
  2053. DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
  2054. i915.semaphores = 0;
  2055. } else
  2056. dev_priv->semaphore_obj = obj;
  2057. }
  2058. }
  2059. ring->init_context = intel_rcs_ctx_init;
  2060. ring->add_request = gen6_add_request;
  2061. ring->flush = gen8_render_ring_flush;
  2062. ring->irq_get = gen8_ring_get_irq;
  2063. ring->irq_put = gen8_ring_put_irq;
  2064. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
  2065. ring->get_seqno = gen6_ring_get_seqno;
  2066. ring->set_seqno = ring_set_seqno;
  2067. if (i915_semaphore_is_enabled(dev)) {
  2068. WARN_ON(!dev_priv->semaphore_obj);
  2069. ring->semaphore.sync_to = gen8_ring_sync;
  2070. ring->semaphore.signal = gen8_rcs_signal;
  2071. GEN8_RING_SEMAPHORE_INIT;
  2072. }
  2073. } else if (INTEL_INFO(dev)->gen >= 6) {
  2074. ring->add_request = gen6_add_request;
  2075. ring->flush = gen7_render_ring_flush;
  2076. if (INTEL_INFO(dev)->gen == 6)
  2077. ring->flush = gen6_render_ring_flush;
  2078. ring->irq_get = gen6_ring_get_irq;
  2079. ring->irq_put = gen6_ring_put_irq;
  2080. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
  2081. ring->get_seqno = gen6_ring_get_seqno;
  2082. ring->set_seqno = ring_set_seqno;
  2083. if (i915_semaphore_is_enabled(dev)) {
  2084. ring->semaphore.sync_to = gen6_ring_sync;
  2085. ring->semaphore.signal = gen6_signal;
  2086. /*
  2087. * The current semaphore is only applied on pre-gen8
  2088. * platform. And there is no VCS2 ring on the pre-gen8
  2089. * platform. So the semaphore between RCS and VCS2 is
  2090. * initialized as INVALID. Gen8 will initialize the
  2091. * sema between VCS2 and RCS later.
  2092. */
  2093. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
  2094. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
  2095. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
  2096. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
  2097. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2098. ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
  2099. ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
  2100. ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
  2101. ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
  2102. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2103. }
  2104. } else if (IS_GEN5(dev)) {
  2105. ring->add_request = pc_render_add_request;
  2106. ring->flush = gen4_render_ring_flush;
  2107. ring->get_seqno = pc_render_get_seqno;
  2108. ring->set_seqno = pc_render_set_seqno;
  2109. ring->irq_get = gen5_ring_get_irq;
  2110. ring->irq_put = gen5_ring_put_irq;
  2111. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
  2112. GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
  2113. } else {
  2114. ring->add_request = i9xx_add_request;
  2115. if (INTEL_INFO(dev)->gen < 4)
  2116. ring->flush = gen2_render_ring_flush;
  2117. else
  2118. ring->flush = gen4_render_ring_flush;
  2119. ring->get_seqno = ring_get_seqno;
  2120. ring->set_seqno = ring_set_seqno;
  2121. if (IS_GEN2(dev)) {
  2122. ring->irq_get = i8xx_ring_get_irq;
  2123. ring->irq_put = i8xx_ring_put_irq;
  2124. } else {
  2125. ring->irq_get = i9xx_ring_get_irq;
  2126. ring->irq_put = i9xx_ring_put_irq;
  2127. }
  2128. ring->irq_enable_mask = I915_USER_INTERRUPT;
  2129. }
  2130. ring->write_tail = ring_write_tail;
  2131. if (IS_HASWELL(dev))
  2132. ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
  2133. else if (IS_GEN8(dev))
  2134. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2135. else if (INTEL_INFO(dev)->gen >= 6)
  2136. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2137. else if (INTEL_INFO(dev)->gen >= 4)
  2138. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  2139. else if (IS_I830(dev) || IS_845G(dev))
  2140. ring->dispatch_execbuffer = i830_dispatch_execbuffer;
  2141. else
  2142. ring->dispatch_execbuffer = i915_dispatch_execbuffer;
  2143. ring->init_hw = init_render_ring;
  2144. ring->cleanup = render_ring_cleanup;
  2145. /* Workaround batchbuffer to combat CS tlb bug. */
  2146. if (HAS_BROKEN_CS_TLB(dev)) {
  2147. obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
  2148. if (obj == NULL) {
  2149. DRM_ERROR("Failed to allocate batch bo\n");
  2150. return -ENOMEM;
  2151. }
  2152. ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
  2153. if (ret != 0) {
  2154. drm_gem_object_unreference(&obj->base);
  2155. DRM_ERROR("Failed to ping batch bo\n");
  2156. return ret;
  2157. }
  2158. ring->scratch.obj = obj;
  2159. ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
  2160. }
  2161. ret = intel_init_ring_buffer(dev, ring);
  2162. if (ret)
  2163. return ret;
  2164. if (INTEL_INFO(dev)->gen >= 5) {
  2165. ret = intel_init_pipe_control(ring);
  2166. if (ret)
  2167. return ret;
  2168. }
  2169. return 0;
  2170. }
  2171. int intel_init_bsd_ring_buffer(struct drm_device *dev)
  2172. {
  2173. struct drm_i915_private *dev_priv = dev->dev_private;
  2174. struct intel_engine_cs *ring = &dev_priv->ring[VCS];
  2175. ring->name = "bsd ring";
  2176. ring->id = VCS;
  2177. ring->write_tail = ring_write_tail;
  2178. if (INTEL_INFO(dev)->gen >= 6) {
  2179. ring->mmio_base = GEN6_BSD_RING_BASE;
  2180. /* gen6 bsd needs a special wa for tail updates */
  2181. if (IS_GEN6(dev))
  2182. ring->write_tail = gen6_bsd_ring_write_tail;
  2183. ring->flush = gen6_bsd_ring_flush;
  2184. ring->add_request = gen6_add_request;
  2185. ring->get_seqno = gen6_ring_get_seqno;
  2186. ring->set_seqno = ring_set_seqno;
  2187. if (INTEL_INFO(dev)->gen >= 8) {
  2188. ring->irq_enable_mask =
  2189. GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
  2190. ring->irq_get = gen8_ring_get_irq;
  2191. ring->irq_put = gen8_ring_put_irq;
  2192. ring->dispatch_execbuffer =
  2193. gen8_ring_dispatch_execbuffer;
  2194. if (i915_semaphore_is_enabled(dev)) {
  2195. ring->semaphore.sync_to = gen8_ring_sync;
  2196. ring->semaphore.signal = gen8_xcs_signal;
  2197. GEN8_RING_SEMAPHORE_INIT;
  2198. }
  2199. } else {
  2200. ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
  2201. ring->irq_get = gen6_ring_get_irq;
  2202. ring->irq_put = gen6_ring_put_irq;
  2203. ring->dispatch_execbuffer =
  2204. gen6_ring_dispatch_execbuffer;
  2205. if (i915_semaphore_is_enabled(dev)) {
  2206. ring->semaphore.sync_to = gen6_ring_sync;
  2207. ring->semaphore.signal = gen6_signal;
  2208. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
  2209. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
  2210. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
  2211. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
  2212. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2213. ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
  2214. ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
  2215. ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
  2216. ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
  2217. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2218. }
  2219. }
  2220. } else {
  2221. ring->mmio_base = BSD_RING_BASE;
  2222. ring->flush = bsd_ring_flush;
  2223. ring->add_request = i9xx_add_request;
  2224. ring->get_seqno = ring_get_seqno;
  2225. ring->set_seqno = ring_set_seqno;
  2226. if (IS_GEN5(dev)) {
  2227. ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
  2228. ring->irq_get = gen5_ring_get_irq;
  2229. ring->irq_put = gen5_ring_put_irq;
  2230. } else {
  2231. ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
  2232. ring->irq_get = i9xx_ring_get_irq;
  2233. ring->irq_put = i9xx_ring_put_irq;
  2234. }
  2235. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  2236. }
  2237. ring->init_hw = init_ring_common;
  2238. return intel_init_ring_buffer(dev, ring);
  2239. }
  2240. /**
  2241. * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
  2242. */
  2243. int intel_init_bsd2_ring_buffer(struct drm_device *dev)
  2244. {
  2245. struct drm_i915_private *dev_priv = dev->dev_private;
  2246. struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
  2247. ring->name = "bsd2 ring";
  2248. ring->id = VCS2;
  2249. ring->write_tail = ring_write_tail;
  2250. ring->mmio_base = GEN8_BSD2_RING_BASE;
  2251. ring->flush = gen6_bsd_ring_flush;
  2252. ring->add_request = gen6_add_request;
  2253. ring->get_seqno = gen6_ring_get_seqno;
  2254. ring->set_seqno = ring_set_seqno;
  2255. ring->irq_enable_mask =
  2256. GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
  2257. ring->irq_get = gen8_ring_get_irq;
  2258. ring->irq_put = gen8_ring_put_irq;
  2259. ring->dispatch_execbuffer =
  2260. gen8_ring_dispatch_execbuffer;
  2261. if (i915_semaphore_is_enabled(dev)) {
  2262. ring->semaphore.sync_to = gen8_ring_sync;
  2263. ring->semaphore.signal = gen8_xcs_signal;
  2264. GEN8_RING_SEMAPHORE_INIT;
  2265. }
  2266. ring->init_hw = init_ring_common;
  2267. return intel_init_ring_buffer(dev, ring);
  2268. }
  2269. int intel_init_blt_ring_buffer(struct drm_device *dev)
  2270. {
  2271. struct drm_i915_private *dev_priv = dev->dev_private;
  2272. struct intel_engine_cs *ring = &dev_priv->ring[BCS];
  2273. ring->name = "blitter ring";
  2274. ring->id = BCS;
  2275. ring->mmio_base = BLT_RING_BASE;
  2276. ring->write_tail = ring_write_tail;
  2277. ring->flush = gen6_ring_flush;
  2278. ring->add_request = gen6_add_request;
  2279. ring->get_seqno = gen6_ring_get_seqno;
  2280. ring->set_seqno = ring_set_seqno;
  2281. if (INTEL_INFO(dev)->gen >= 8) {
  2282. ring->irq_enable_mask =
  2283. GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
  2284. ring->irq_get = gen8_ring_get_irq;
  2285. ring->irq_put = gen8_ring_put_irq;
  2286. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2287. if (i915_semaphore_is_enabled(dev)) {
  2288. ring->semaphore.sync_to = gen8_ring_sync;
  2289. ring->semaphore.signal = gen8_xcs_signal;
  2290. GEN8_RING_SEMAPHORE_INIT;
  2291. }
  2292. } else {
  2293. ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
  2294. ring->irq_get = gen6_ring_get_irq;
  2295. ring->irq_put = gen6_ring_put_irq;
  2296. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2297. if (i915_semaphore_is_enabled(dev)) {
  2298. ring->semaphore.signal = gen6_signal;
  2299. ring->semaphore.sync_to = gen6_ring_sync;
  2300. /*
  2301. * The current semaphore is only applied on pre-gen8
  2302. * platform. And there is no VCS2 ring on the pre-gen8
  2303. * platform. So the semaphore between BCS and VCS2 is
  2304. * initialized as INVALID. Gen8 will initialize the
  2305. * sema between BCS and VCS2 later.
  2306. */
  2307. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
  2308. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
  2309. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
  2310. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
  2311. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2312. ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
  2313. ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
  2314. ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
  2315. ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
  2316. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2317. }
  2318. }
  2319. ring->init_hw = init_ring_common;
  2320. return intel_init_ring_buffer(dev, ring);
  2321. }
  2322. int intel_init_vebox_ring_buffer(struct drm_device *dev)
  2323. {
  2324. struct drm_i915_private *dev_priv = dev->dev_private;
  2325. struct intel_engine_cs *ring = &dev_priv->ring[VECS];
  2326. ring->name = "video enhancement ring";
  2327. ring->id = VECS;
  2328. ring->mmio_base = VEBOX_RING_BASE;
  2329. ring->write_tail = ring_write_tail;
  2330. ring->flush = gen6_ring_flush;
  2331. ring->add_request = gen6_add_request;
  2332. ring->get_seqno = gen6_ring_get_seqno;
  2333. ring->set_seqno = ring_set_seqno;
  2334. if (INTEL_INFO(dev)->gen >= 8) {
  2335. ring->irq_enable_mask =
  2336. GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
  2337. ring->irq_get = gen8_ring_get_irq;
  2338. ring->irq_put = gen8_ring_put_irq;
  2339. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2340. if (i915_semaphore_is_enabled(dev)) {
  2341. ring->semaphore.sync_to = gen8_ring_sync;
  2342. ring->semaphore.signal = gen8_xcs_signal;
  2343. GEN8_RING_SEMAPHORE_INIT;
  2344. }
  2345. } else {
  2346. ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
  2347. ring->irq_get = hsw_vebox_get_irq;
  2348. ring->irq_put = hsw_vebox_put_irq;
  2349. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2350. if (i915_semaphore_is_enabled(dev)) {
  2351. ring->semaphore.sync_to = gen6_ring_sync;
  2352. ring->semaphore.signal = gen6_signal;
  2353. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
  2354. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
  2355. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
  2356. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
  2357. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2358. ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
  2359. ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
  2360. ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
  2361. ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
  2362. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2363. }
  2364. }
  2365. ring->init_hw = init_ring_common;
  2366. return intel_init_ring_buffer(dev, ring);
  2367. }
  2368. int
  2369. intel_ring_flush_all_caches(struct intel_engine_cs *ring)
  2370. {
  2371. int ret;
  2372. if (!ring->gpu_caches_dirty)
  2373. return 0;
  2374. ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
  2375. if (ret)
  2376. return ret;
  2377. trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
  2378. ring->gpu_caches_dirty = false;
  2379. return 0;
  2380. }
  2381. int
  2382. intel_ring_invalidate_all_caches(struct intel_engine_cs *ring)
  2383. {
  2384. uint32_t flush_domains;
  2385. int ret;
  2386. flush_domains = 0;
  2387. if (ring->gpu_caches_dirty)
  2388. flush_domains = I915_GEM_GPU_DOMAINS;
  2389. ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
  2390. if (ret)
  2391. return ret;
  2392. trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
  2393. ring->gpu_caches_dirty = false;
  2394. return 0;
  2395. }
  2396. void
  2397. intel_stop_ring_buffer(struct intel_engine_cs *ring)
  2398. {
  2399. int ret;
  2400. if (!intel_ring_initialized(ring))
  2401. return;
  2402. ret = intel_ring_idle(ring);
  2403. if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
  2404. DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
  2405. ring->name, ret);
  2406. stop_ring(ring);
  2407. }