i915_irq.c 131 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732
  1. /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
  2. */
  3. /*
  4. * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
  5. * All Rights Reserved.
  6. *
  7. * Permission is hereby granted, free of charge, to any person obtaining a
  8. * copy of this software and associated documentation files (the
  9. * "Software"), to deal in the Software without restriction, including
  10. * without limitation the rights to use, copy, modify, merge, publish,
  11. * distribute, sub license, and/or sell copies of the Software, and to
  12. * permit persons to whom the Software is furnished to do so, subject to
  13. * the following conditions:
  14. *
  15. * The above copyright notice and this permission notice (including the
  16. * next paragraph) shall be included in all copies or substantial portions
  17. * of the Software.
  18. *
  19. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  20. * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  21. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
  22. * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
  23. * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
  24. * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
  25. * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
  26. *
  27. */
  28. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  29. #include <linux/sysrq.h>
  30. #include <linux/slab.h>
  31. #include <linux/circ_buf.h>
  32. #include <drm/drmP.h>
  33. #include <drm/i915_drm.h>
  34. #include "i915_drv.h"
  35. #include "i915_trace.h"
  36. #include "intel_drv.h"
  37. /**
  38. * DOC: interrupt handling
  39. *
  40. * These functions provide the basic support for enabling and disabling the
  41. * interrupt handling support. There's a lot more functionality in i915_irq.c
  42. * and related files, but that will be described in separate chapters.
  43. */
  44. static const u32 hpd_ilk[HPD_NUM_PINS] = {
  45. [HPD_PORT_A] = DE_DP_A_HOTPLUG,
  46. };
  47. static const u32 hpd_ivb[HPD_NUM_PINS] = {
  48. [HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
  49. };
  50. static const u32 hpd_bdw[HPD_NUM_PINS] = {
  51. [HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
  52. };
  53. static const u32 hpd_ibx[HPD_NUM_PINS] = {
  54. [HPD_CRT] = SDE_CRT_HOTPLUG,
  55. [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
  56. [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
  57. [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
  58. [HPD_PORT_D] = SDE_PORTD_HOTPLUG
  59. };
  60. static const u32 hpd_cpt[HPD_NUM_PINS] = {
  61. [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
  62. [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
  63. [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
  64. [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
  65. [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
  66. };
  67. static const u32 hpd_spt[HPD_NUM_PINS] = {
  68. [HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
  69. [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
  70. [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
  71. [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
  72. [HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
  73. };
  74. static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
  75. [HPD_CRT] = CRT_HOTPLUG_INT_EN,
  76. [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
  77. [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
  78. [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
  79. [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
  80. [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
  81. };
  82. static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
  83. [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
  84. [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
  85. [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
  86. [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
  87. [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
  88. [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
  89. };
  90. static const u32 hpd_status_i915[HPD_NUM_PINS] = {
  91. [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
  92. [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
  93. [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
  94. [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
  95. [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
  96. [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
  97. };
  98. /* BXT hpd list */
  99. static const u32 hpd_bxt[HPD_NUM_PINS] = {
  100. [HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
  101. [HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
  102. [HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
  103. };
  104. /* IIR can theoretically queue up two events. Be paranoid. */
  105. #define GEN8_IRQ_RESET_NDX(type, which) do { \
  106. I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
  107. POSTING_READ(GEN8_##type##_IMR(which)); \
  108. I915_WRITE(GEN8_##type##_IER(which), 0); \
  109. I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
  110. POSTING_READ(GEN8_##type##_IIR(which)); \
  111. I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
  112. POSTING_READ(GEN8_##type##_IIR(which)); \
  113. } while (0)
  114. #define GEN5_IRQ_RESET(type) do { \
  115. I915_WRITE(type##IMR, 0xffffffff); \
  116. POSTING_READ(type##IMR); \
  117. I915_WRITE(type##IER, 0); \
  118. I915_WRITE(type##IIR, 0xffffffff); \
  119. POSTING_READ(type##IIR); \
  120. I915_WRITE(type##IIR, 0xffffffff); \
  121. POSTING_READ(type##IIR); \
  122. } while (0)
  123. /*
  124. * We should clear IMR at preinstall/uninstall, and just check at postinstall.
  125. */
  126. static void gen5_assert_iir_is_zero(struct drm_i915_private *dev_priv,
  127. i915_reg_t reg)
  128. {
  129. u32 val = I915_READ(reg);
  130. if (val == 0)
  131. return;
  132. WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
  133. i915_mmio_reg_offset(reg), val);
  134. I915_WRITE(reg, 0xffffffff);
  135. POSTING_READ(reg);
  136. I915_WRITE(reg, 0xffffffff);
  137. POSTING_READ(reg);
  138. }
  139. #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
  140. gen5_assert_iir_is_zero(dev_priv, GEN8_##type##_IIR(which)); \
  141. I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
  142. I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
  143. POSTING_READ(GEN8_##type##_IMR(which)); \
  144. } while (0)
  145. #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
  146. gen5_assert_iir_is_zero(dev_priv, type##IIR); \
  147. I915_WRITE(type##IER, (ier_val)); \
  148. I915_WRITE(type##IMR, (imr_val)); \
  149. POSTING_READ(type##IMR); \
  150. } while (0)
  151. static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
  152. /* For display hotplug interrupt */
  153. static inline void
  154. i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
  155. uint32_t mask,
  156. uint32_t bits)
  157. {
  158. uint32_t val;
  159. assert_spin_locked(&dev_priv->irq_lock);
  160. WARN_ON(bits & ~mask);
  161. val = I915_READ(PORT_HOTPLUG_EN);
  162. val &= ~mask;
  163. val |= bits;
  164. I915_WRITE(PORT_HOTPLUG_EN, val);
  165. }
  166. /**
  167. * i915_hotplug_interrupt_update - update hotplug interrupt enable
  168. * @dev_priv: driver private
  169. * @mask: bits to update
  170. * @bits: bits to enable
  171. * NOTE: the HPD enable bits are modified both inside and outside
  172. * of an interrupt context. To avoid that read-modify-write cycles
  173. * interfer, these bits are protected by a spinlock. Since this
  174. * function is usually not called from a context where the lock is
  175. * held already, this function acquires the lock itself. A non-locking
  176. * version is also available.
  177. */
  178. void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
  179. uint32_t mask,
  180. uint32_t bits)
  181. {
  182. spin_lock_irq(&dev_priv->irq_lock);
  183. i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
  184. spin_unlock_irq(&dev_priv->irq_lock);
  185. }
  186. /**
  187. * ilk_update_display_irq - update DEIMR
  188. * @dev_priv: driver private
  189. * @interrupt_mask: mask of interrupt bits to update
  190. * @enabled_irq_mask: mask of interrupt bits to enable
  191. */
  192. void ilk_update_display_irq(struct drm_i915_private *dev_priv,
  193. uint32_t interrupt_mask,
  194. uint32_t enabled_irq_mask)
  195. {
  196. uint32_t new_val;
  197. assert_spin_locked(&dev_priv->irq_lock);
  198. WARN_ON(enabled_irq_mask & ~interrupt_mask);
  199. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  200. return;
  201. new_val = dev_priv->irq_mask;
  202. new_val &= ~interrupt_mask;
  203. new_val |= (~enabled_irq_mask & interrupt_mask);
  204. if (new_val != dev_priv->irq_mask) {
  205. dev_priv->irq_mask = new_val;
  206. I915_WRITE(DEIMR, dev_priv->irq_mask);
  207. POSTING_READ(DEIMR);
  208. }
  209. }
  210. /**
  211. * ilk_update_gt_irq - update GTIMR
  212. * @dev_priv: driver private
  213. * @interrupt_mask: mask of interrupt bits to update
  214. * @enabled_irq_mask: mask of interrupt bits to enable
  215. */
  216. static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
  217. uint32_t interrupt_mask,
  218. uint32_t enabled_irq_mask)
  219. {
  220. assert_spin_locked(&dev_priv->irq_lock);
  221. WARN_ON(enabled_irq_mask & ~interrupt_mask);
  222. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  223. return;
  224. dev_priv->gt_irq_mask &= ~interrupt_mask;
  225. dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
  226. I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
  227. POSTING_READ(GTIMR);
  228. }
  229. void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
  230. {
  231. ilk_update_gt_irq(dev_priv, mask, mask);
  232. }
  233. void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
  234. {
  235. ilk_update_gt_irq(dev_priv, mask, 0);
  236. }
  237. static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv)
  238. {
  239. return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
  240. }
  241. static i915_reg_t gen6_pm_imr(struct drm_i915_private *dev_priv)
  242. {
  243. return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
  244. }
  245. static i915_reg_t gen6_pm_ier(struct drm_i915_private *dev_priv)
  246. {
  247. return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
  248. }
  249. /**
  250. * snb_update_pm_irq - update GEN6_PMIMR
  251. * @dev_priv: driver private
  252. * @interrupt_mask: mask of interrupt bits to update
  253. * @enabled_irq_mask: mask of interrupt bits to enable
  254. */
  255. static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
  256. uint32_t interrupt_mask,
  257. uint32_t enabled_irq_mask)
  258. {
  259. uint32_t new_val;
  260. WARN_ON(enabled_irq_mask & ~interrupt_mask);
  261. assert_spin_locked(&dev_priv->irq_lock);
  262. new_val = dev_priv->pm_irq_mask;
  263. new_val &= ~interrupt_mask;
  264. new_val |= (~enabled_irq_mask & interrupt_mask);
  265. if (new_val != dev_priv->pm_irq_mask) {
  266. dev_priv->pm_irq_mask = new_val;
  267. I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_irq_mask);
  268. POSTING_READ(gen6_pm_imr(dev_priv));
  269. }
  270. }
  271. void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
  272. {
  273. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  274. return;
  275. snb_update_pm_irq(dev_priv, mask, mask);
  276. }
  277. static void __gen6_disable_pm_irq(struct drm_i915_private *dev_priv,
  278. uint32_t mask)
  279. {
  280. snb_update_pm_irq(dev_priv, mask, 0);
  281. }
  282. void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
  283. {
  284. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  285. return;
  286. __gen6_disable_pm_irq(dev_priv, mask);
  287. }
  288. void gen6_reset_rps_interrupts(struct drm_i915_private *dev_priv)
  289. {
  290. i915_reg_t reg = gen6_pm_iir(dev_priv);
  291. spin_lock_irq(&dev_priv->irq_lock);
  292. I915_WRITE(reg, dev_priv->pm_rps_events);
  293. I915_WRITE(reg, dev_priv->pm_rps_events);
  294. POSTING_READ(reg);
  295. dev_priv->rps.pm_iir = 0;
  296. spin_unlock_irq(&dev_priv->irq_lock);
  297. }
  298. void gen6_enable_rps_interrupts(struct drm_i915_private *dev_priv)
  299. {
  300. spin_lock_irq(&dev_priv->irq_lock);
  301. WARN_ON(dev_priv->rps.pm_iir);
  302. WARN_ON(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
  303. dev_priv->rps.interrupts_enabled = true;
  304. I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) |
  305. dev_priv->pm_rps_events);
  306. gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
  307. spin_unlock_irq(&dev_priv->irq_lock);
  308. }
  309. u32 gen6_sanitize_rps_pm_mask(struct drm_i915_private *dev_priv, u32 mask)
  310. {
  311. return (mask & ~dev_priv->rps.pm_intr_keep);
  312. }
  313. void gen6_disable_rps_interrupts(struct drm_i915_private *dev_priv)
  314. {
  315. spin_lock_irq(&dev_priv->irq_lock);
  316. dev_priv->rps.interrupts_enabled = false;
  317. spin_unlock_irq(&dev_priv->irq_lock);
  318. cancel_work_sync(&dev_priv->rps.work);
  319. spin_lock_irq(&dev_priv->irq_lock);
  320. I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0));
  321. __gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
  322. I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) &
  323. ~dev_priv->pm_rps_events);
  324. spin_unlock_irq(&dev_priv->irq_lock);
  325. synchronize_irq(dev_priv->dev->irq);
  326. }
  327. /**
  328. * bdw_update_port_irq - update DE port interrupt
  329. * @dev_priv: driver private
  330. * @interrupt_mask: mask of interrupt bits to update
  331. * @enabled_irq_mask: mask of interrupt bits to enable
  332. */
  333. static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
  334. uint32_t interrupt_mask,
  335. uint32_t enabled_irq_mask)
  336. {
  337. uint32_t new_val;
  338. uint32_t old_val;
  339. assert_spin_locked(&dev_priv->irq_lock);
  340. WARN_ON(enabled_irq_mask & ~interrupt_mask);
  341. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  342. return;
  343. old_val = I915_READ(GEN8_DE_PORT_IMR);
  344. new_val = old_val;
  345. new_val &= ~interrupt_mask;
  346. new_val |= (~enabled_irq_mask & interrupt_mask);
  347. if (new_val != old_val) {
  348. I915_WRITE(GEN8_DE_PORT_IMR, new_val);
  349. POSTING_READ(GEN8_DE_PORT_IMR);
  350. }
  351. }
  352. /**
  353. * bdw_update_pipe_irq - update DE pipe interrupt
  354. * @dev_priv: driver private
  355. * @pipe: pipe whose interrupt to update
  356. * @interrupt_mask: mask of interrupt bits to update
  357. * @enabled_irq_mask: mask of interrupt bits to enable
  358. */
  359. void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
  360. enum pipe pipe,
  361. uint32_t interrupt_mask,
  362. uint32_t enabled_irq_mask)
  363. {
  364. uint32_t new_val;
  365. assert_spin_locked(&dev_priv->irq_lock);
  366. WARN_ON(enabled_irq_mask & ~interrupt_mask);
  367. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  368. return;
  369. new_val = dev_priv->de_irq_mask[pipe];
  370. new_val &= ~interrupt_mask;
  371. new_val |= (~enabled_irq_mask & interrupt_mask);
  372. if (new_val != dev_priv->de_irq_mask[pipe]) {
  373. dev_priv->de_irq_mask[pipe] = new_val;
  374. I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
  375. POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
  376. }
  377. }
  378. /**
  379. * ibx_display_interrupt_update - update SDEIMR
  380. * @dev_priv: driver private
  381. * @interrupt_mask: mask of interrupt bits to update
  382. * @enabled_irq_mask: mask of interrupt bits to enable
  383. */
  384. void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
  385. uint32_t interrupt_mask,
  386. uint32_t enabled_irq_mask)
  387. {
  388. uint32_t sdeimr = I915_READ(SDEIMR);
  389. sdeimr &= ~interrupt_mask;
  390. sdeimr |= (~enabled_irq_mask & interrupt_mask);
  391. WARN_ON(enabled_irq_mask & ~interrupt_mask);
  392. assert_spin_locked(&dev_priv->irq_lock);
  393. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  394. return;
  395. I915_WRITE(SDEIMR, sdeimr);
  396. POSTING_READ(SDEIMR);
  397. }
  398. static void
  399. __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
  400. u32 enable_mask, u32 status_mask)
  401. {
  402. i915_reg_t reg = PIPESTAT(pipe);
  403. u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
  404. assert_spin_locked(&dev_priv->irq_lock);
  405. WARN_ON(!intel_irqs_enabled(dev_priv));
  406. if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
  407. status_mask & ~PIPESTAT_INT_STATUS_MASK,
  408. "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
  409. pipe_name(pipe), enable_mask, status_mask))
  410. return;
  411. if ((pipestat & enable_mask) == enable_mask)
  412. return;
  413. dev_priv->pipestat_irq_mask[pipe] |= status_mask;
  414. /* Enable the interrupt, clear any pending status */
  415. pipestat |= enable_mask | status_mask;
  416. I915_WRITE(reg, pipestat);
  417. POSTING_READ(reg);
  418. }
  419. static void
  420. __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
  421. u32 enable_mask, u32 status_mask)
  422. {
  423. i915_reg_t reg = PIPESTAT(pipe);
  424. u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
  425. assert_spin_locked(&dev_priv->irq_lock);
  426. WARN_ON(!intel_irqs_enabled(dev_priv));
  427. if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
  428. status_mask & ~PIPESTAT_INT_STATUS_MASK,
  429. "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
  430. pipe_name(pipe), enable_mask, status_mask))
  431. return;
  432. if ((pipestat & enable_mask) == 0)
  433. return;
  434. dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
  435. pipestat &= ~enable_mask;
  436. I915_WRITE(reg, pipestat);
  437. POSTING_READ(reg);
  438. }
  439. static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
  440. {
  441. u32 enable_mask = status_mask << 16;
  442. /*
  443. * On pipe A we don't support the PSR interrupt yet,
  444. * on pipe B and C the same bit MBZ.
  445. */
  446. if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
  447. return 0;
  448. /*
  449. * On pipe B and C we don't support the PSR interrupt yet, on pipe
  450. * A the same bit is for perf counters which we don't use either.
  451. */
  452. if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
  453. return 0;
  454. enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
  455. SPRITE0_FLIP_DONE_INT_EN_VLV |
  456. SPRITE1_FLIP_DONE_INT_EN_VLV);
  457. if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
  458. enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
  459. if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
  460. enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
  461. return enable_mask;
  462. }
  463. void
  464. i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
  465. u32 status_mask)
  466. {
  467. u32 enable_mask;
  468. if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
  469. enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
  470. status_mask);
  471. else
  472. enable_mask = status_mask << 16;
  473. __i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
  474. }
  475. void
  476. i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
  477. u32 status_mask)
  478. {
  479. u32 enable_mask;
  480. if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
  481. enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
  482. status_mask);
  483. else
  484. enable_mask = status_mask << 16;
  485. __i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
  486. }
  487. /**
  488. * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
  489. * @dev: drm device
  490. */
  491. static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv)
  492. {
  493. if (!dev_priv->opregion.asle || !IS_MOBILE(dev_priv))
  494. return;
  495. spin_lock_irq(&dev_priv->irq_lock);
  496. i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
  497. if (INTEL_GEN(dev_priv) >= 4)
  498. i915_enable_pipestat(dev_priv, PIPE_A,
  499. PIPE_LEGACY_BLC_EVENT_STATUS);
  500. spin_unlock_irq(&dev_priv->irq_lock);
  501. }
  502. /*
  503. * This timing diagram depicts the video signal in and
  504. * around the vertical blanking period.
  505. *
  506. * Assumptions about the fictitious mode used in this example:
  507. * vblank_start >= 3
  508. * vsync_start = vblank_start + 1
  509. * vsync_end = vblank_start + 2
  510. * vtotal = vblank_start + 3
  511. *
  512. * start of vblank:
  513. * latch double buffered registers
  514. * increment frame counter (ctg+)
  515. * generate start of vblank interrupt (gen4+)
  516. * |
  517. * | frame start:
  518. * | generate frame start interrupt (aka. vblank interrupt) (gmch)
  519. * | may be shifted forward 1-3 extra lines via PIPECONF
  520. * | |
  521. * | | start of vsync:
  522. * | | generate vsync interrupt
  523. * | | |
  524. * ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx
  525. * . \hs/ . \hs/ \hs/ \hs/ . \hs/
  526. * ----va---> <-----------------vb--------------------> <--------va-------------
  527. * | | <----vs-----> |
  528. * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
  529. * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
  530. * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
  531. * | | |
  532. * last visible pixel first visible pixel
  533. * | increment frame counter (gen3/4)
  534. * pixel counter = vblank_start * htotal pixel counter = 0 (gen3/4)
  535. *
  536. * x = horizontal active
  537. * _ = horizontal blanking
  538. * hs = horizontal sync
  539. * va = vertical active
  540. * vb = vertical blanking
  541. * vs = vertical sync
  542. * vbs = vblank_start (number)
  543. *
  544. * Summary:
  545. * - most events happen at the start of horizontal sync
  546. * - frame start happens at the start of horizontal blank, 1-4 lines
  547. * (depending on PIPECONF settings) after the start of vblank
  548. * - gen3/4 pixel and frame counter are synchronized with the start
  549. * of horizontal active on the first line of vertical active
  550. */
  551. static u32 i8xx_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
  552. {
  553. /* Gen2 doesn't have a hardware frame counter */
  554. return 0;
  555. }
  556. /* Called from drm generic code, passed a 'crtc', which
  557. * we use as a pipe index
  558. */
  559. static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
  560. {
  561. struct drm_i915_private *dev_priv = dev->dev_private;
  562. i915_reg_t high_frame, low_frame;
  563. u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
  564. struct intel_crtc *intel_crtc =
  565. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  566. const struct drm_display_mode *mode = &intel_crtc->base.hwmode;
  567. htotal = mode->crtc_htotal;
  568. hsync_start = mode->crtc_hsync_start;
  569. vbl_start = mode->crtc_vblank_start;
  570. if (mode->flags & DRM_MODE_FLAG_INTERLACE)
  571. vbl_start = DIV_ROUND_UP(vbl_start, 2);
  572. /* Convert to pixel count */
  573. vbl_start *= htotal;
  574. /* Start of vblank event occurs at start of hsync */
  575. vbl_start -= htotal - hsync_start;
  576. high_frame = PIPEFRAME(pipe);
  577. low_frame = PIPEFRAMEPIXEL(pipe);
  578. /*
  579. * High & low register fields aren't synchronized, so make sure
  580. * we get a low value that's stable across two reads of the high
  581. * register.
  582. */
  583. do {
  584. high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
  585. low = I915_READ(low_frame);
  586. high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
  587. } while (high1 != high2);
  588. high1 >>= PIPE_FRAME_HIGH_SHIFT;
  589. pixel = low & PIPE_PIXEL_MASK;
  590. low >>= PIPE_FRAME_LOW_SHIFT;
  591. /*
  592. * The frame counter increments at beginning of active.
  593. * Cook up a vblank counter by also checking the pixel
  594. * counter against vblank start.
  595. */
  596. return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
  597. }
  598. static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
  599. {
  600. struct drm_i915_private *dev_priv = dev->dev_private;
  601. return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
  602. }
  603. /* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
  604. static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
  605. {
  606. struct drm_device *dev = crtc->base.dev;
  607. struct drm_i915_private *dev_priv = dev->dev_private;
  608. const struct drm_display_mode *mode = &crtc->base.hwmode;
  609. enum pipe pipe = crtc->pipe;
  610. int position, vtotal;
  611. vtotal = mode->crtc_vtotal;
  612. if (mode->flags & DRM_MODE_FLAG_INTERLACE)
  613. vtotal /= 2;
  614. if (IS_GEN2(dev_priv))
  615. position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
  616. else
  617. position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
  618. /*
  619. * On HSW, the DSL reg (0x70000) appears to return 0 if we
  620. * read it just before the start of vblank. So try it again
  621. * so we don't accidentally end up spanning a vblank frame
  622. * increment, causing the pipe_update_end() code to squak at us.
  623. *
  624. * The nature of this problem means we can't simply check the ISR
  625. * bit and return the vblank start value; nor can we use the scanline
  626. * debug register in the transcoder as it appears to have the same
  627. * problem. We may need to extend this to include other platforms,
  628. * but so far testing only shows the problem on HSW.
  629. */
  630. if (HAS_DDI(dev_priv) && !position) {
  631. int i, temp;
  632. for (i = 0; i < 100; i++) {
  633. udelay(1);
  634. temp = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) &
  635. DSL_LINEMASK_GEN3;
  636. if (temp != position) {
  637. position = temp;
  638. break;
  639. }
  640. }
  641. }
  642. /*
  643. * See update_scanline_offset() for the details on the
  644. * scanline_offset adjustment.
  645. */
  646. return (position + crtc->scanline_offset) % vtotal;
  647. }
  648. static int i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
  649. unsigned int flags, int *vpos, int *hpos,
  650. ktime_t *stime, ktime_t *etime,
  651. const struct drm_display_mode *mode)
  652. {
  653. struct drm_i915_private *dev_priv = dev->dev_private;
  654. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  655. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  656. int position;
  657. int vbl_start, vbl_end, hsync_start, htotal, vtotal;
  658. bool in_vbl = true;
  659. int ret = 0;
  660. unsigned long irqflags;
  661. if (WARN_ON(!mode->crtc_clock)) {
  662. DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
  663. "pipe %c\n", pipe_name(pipe));
  664. return 0;
  665. }
  666. htotal = mode->crtc_htotal;
  667. hsync_start = mode->crtc_hsync_start;
  668. vtotal = mode->crtc_vtotal;
  669. vbl_start = mode->crtc_vblank_start;
  670. vbl_end = mode->crtc_vblank_end;
  671. if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
  672. vbl_start = DIV_ROUND_UP(vbl_start, 2);
  673. vbl_end /= 2;
  674. vtotal /= 2;
  675. }
  676. ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
  677. /*
  678. * Lock uncore.lock, as we will do multiple timing critical raw
  679. * register reads, potentially with preemption disabled, so the
  680. * following code must not block on uncore.lock.
  681. */
  682. spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
  683. /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
  684. /* Get optional system timestamp before query. */
  685. if (stime)
  686. *stime = ktime_get();
  687. if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
  688. /* No obvious pixelcount register. Only query vertical
  689. * scanout position from Display scan line register.
  690. */
  691. position = __intel_get_crtc_scanline(intel_crtc);
  692. } else {
  693. /* Have access to pixelcount since start of frame.
  694. * We can split this into vertical and horizontal
  695. * scanout position.
  696. */
  697. position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
  698. /* convert to pixel counts */
  699. vbl_start *= htotal;
  700. vbl_end *= htotal;
  701. vtotal *= htotal;
  702. /*
  703. * In interlaced modes, the pixel counter counts all pixels,
  704. * so one field will have htotal more pixels. In order to avoid
  705. * the reported position from jumping backwards when the pixel
  706. * counter is beyond the length of the shorter field, just
  707. * clamp the position the length of the shorter field. This
  708. * matches how the scanline counter based position works since
  709. * the scanline counter doesn't count the two half lines.
  710. */
  711. if (position >= vtotal)
  712. position = vtotal - 1;
  713. /*
  714. * Start of vblank interrupt is triggered at start of hsync,
  715. * just prior to the first active line of vblank. However we
  716. * consider lines to start at the leading edge of horizontal
  717. * active. So, should we get here before we've crossed into
  718. * the horizontal active of the first line in vblank, we would
  719. * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
  720. * always add htotal-hsync_start to the current pixel position.
  721. */
  722. position = (position + htotal - hsync_start) % vtotal;
  723. }
  724. /* Get optional system timestamp after query. */
  725. if (etime)
  726. *etime = ktime_get();
  727. /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
  728. spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
  729. in_vbl = position >= vbl_start && position < vbl_end;
  730. /*
  731. * While in vblank, position will be negative
  732. * counting up towards 0 at vbl_end. And outside
  733. * vblank, position will be positive counting
  734. * up since vbl_end.
  735. */
  736. if (position >= vbl_start)
  737. position -= vbl_end;
  738. else
  739. position += vtotal - vbl_end;
  740. if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
  741. *vpos = position;
  742. *hpos = 0;
  743. } else {
  744. *vpos = position / htotal;
  745. *hpos = position - (*vpos * htotal);
  746. }
  747. /* In vblank? */
  748. if (in_vbl)
  749. ret |= DRM_SCANOUTPOS_IN_VBLANK;
  750. return ret;
  751. }
  752. int intel_get_crtc_scanline(struct intel_crtc *crtc)
  753. {
  754. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  755. unsigned long irqflags;
  756. int position;
  757. spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
  758. position = __intel_get_crtc_scanline(crtc);
  759. spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
  760. return position;
  761. }
  762. static int i915_get_vblank_timestamp(struct drm_device *dev, unsigned int pipe,
  763. int *max_error,
  764. struct timeval *vblank_time,
  765. unsigned flags)
  766. {
  767. struct drm_crtc *crtc;
  768. if (pipe >= INTEL_INFO(dev)->num_pipes) {
  769. DRM_ERROR("Invalid crtc %u\n", pipe);
  770. return -EINVAL;
  771. }
  772. /* Get drm_crtc to timestamp: */
  773. crtc = intel_get_crtc_for_pipe(dev, pipe);
  774. if (crtc == NULL) {
  775. DRM_ERROR("Invalid crtc %u\n", pipe);
  776. return -EINVAL;
  777. }
  778. if (!crtc->hwmode.crtc_clock) {
  779. DRM_DEBUG_KMS("crtc %u is disabled\n", pipe);
  780. return -EBUSY;
  781. }
  782. /* Helper routine in DRM core does all the work: */
  783. return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
  784. vblank_time, flags,
  785. &crtc->hwmode);
  786. }
  787. static void ironlake_rps_change_irq_handler(struct drm_i915_private *dev_priv)
  788. {
  789. u32 busy_up, busy_down, max_avg, min_avg;
  790. u8 new_delay;
  791. spin_lock(&mchdev_lock);
  792. I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
  793. new_delay = dev_priv->ips.cur_delay;
  794. I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
  795. busy_up = I915_READ(RCPREVBSYTUPAVG);
  796. busy_down = I915_READ(RCPREVBSYTDNAVG);
  797. max_avg = I915_READ(RCBMAXAVG);
  798. min_avg = I915_READ(RCBMINAVG);
  799. /* Handle RCS change request from hw */
  800. if (busy_up > max_avg) {
  801. if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
  802. new_delay = dev_priv->ips.cur_delay - 1;
  803. if (new_delay < dev_priv->ips.max_delay)
  804. new_delay = dev_priv->ips.max_delay;
  805. } else if (busy_down < min_avg) {
  806. if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
  807. new_delay = dev_priv->ips.cur_delay + 1;
  808. if (new_delay > dev_priv->ips.min_delay)
  809. new_delay = dev_priv->ips.min_delay;
  810. }
  811. if (ironlake_set_drps(dev_priv, new_delay))
  812. dev_priv->ips.cur_delay = new_delay;
  813. spin_unlock(&mchdev_lock);
  814. return;
  815. }
  816. static void notify_ring(struct intel_engine_cs *engine)
  817. {
  818. if (!intel_engine_initialized(engine))
  819. return;
  820. trace_i915_gem_request_notify(engine);
  821. engine->user_interrupts++;
  822. wake_up_all(&engine->irq_queue);
  823. }
  824. static void vlv_c0_read(struct drm_i915_private *dev_priv,
  825. struct intel_rps_ei *ei)
  826. {
  827. ei->cz_clock = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP);
  828. ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
  829. ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
  830. }
  831. static bool vlv_c0_above(struct drm_i915_private *dev_priv,
  832. const struct intel_rps_ei *old,
  833. const struct intel_rps_ei *now,
  834. int threshold)
  835. {
  836. u64 time, c0;
  837. unsigned int mul = 100;
  838. if (old->cz_clock == 0)
  839. return false;
  840. if (I915_READ(VLV_COUNTER_CONTROL) & VLV_COUNT_RANGE_HIGH)
  841. mul <<= 8;
  842. time = now->cz_clock - old->cz_clock;
  843. time *= threshold * dev_priv->czclk_freq;
  844. /* Workload can be split between render + media, e.g. SwapBuffers
  845. * being blitted in X after being rendered in mesa. To account for
  846. * this we need to combine both engines into our activity counter.
  847. */
  848. c0 = now->render_c0 - old->render_c0;
  849. c0 += now->media_c0 - old->media_c0;
  850. c0 *= mul * VLV_CZ_CLOCK_TO_MILLI_SEC;
  851. return c0 >= time;
  852. }
  853. void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
  854. {
  855. vlv_c0_read(dev_priv, &dev_priv->rps.down_ei);
  856. dev_priv->rps.up_ei = dev_priv->rps.down_ei;
  857. }
  858. static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
  859. {
  860. struct intel_rps_ei now;
  861. u32 events = 0;
  862. if ((pm_iir & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED)) == 0)
  863. return 0;
  864. vlv_c0_read(dev_priv, &now);
  865. if (now.cz_clock == 0)
  866. return 0;
  867. if (pm_iir & GEN6_PM_RP_DOWN_EI_EXPIRED) {
  868. if (!vlv_c0_above(dev_priv,
  869. &dev_priv->rps.down_ei, &now,
  870. dev_priv->rps.down_threshold))
  871. events |= GEN6_PM_RP_DOWN_THRESHOLD;
  872. dev_priv->rps.down_ei = now;
  873. }
  874. if (pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) {
  875. if (vlv_c0_above(dev_priv,
  876. &dev_priv->rps.up_ei, &now,
  877. dev_priv->rps.up_threshold))
  878. events |= GEN6_PM_RP_UP_THRESHOLD;
  879. dev_priv->rps.up_ei = now;
  880. }
  881. return events;
  882. }
  883. static bool any_waiters(struct drm_i915_private *dev_priv)
  884. {
  885. struct intel_engine_cs *engine;
  886. for_each_engine(engine, dev_priv)
  887. if (engine->irq_refcount)
  888. return true;
  889. return false;
  890. }
  891. static void gen6_pm_rps_work(struct work_struct *work)
  892. {
  893. struct drm_i915_private *dev_priv =
  894. container_of(work, struct drm_i915_private, rps.work);
  895. bool client_boost;
  896. int new_delay, adj, min, max;
  897. u32 pm_iir;
  898. spin_lock_irq(&dev_priv->irq_lock);
  899. /* Speed up work cancelation during disabling rps interrupts. */
  900. if (!dev_priv->rps.interrupts_enabled) {
  901. spin_unlock_irq(&dev_priv->irq_lock);
  902. return;
  903. }
  904. /*
  905. * The RPS work is synced during runtime suspend, we don't require a
  906. * wakeref. TODO: instead of disabling the asserts make sure that we
  907. * always hold an RPM reference while the work is running.
  908. */
  909. DISABLE_RPM_WAKEREF_ASSERTS(dev_priv);
  910. pm_iir = dev_priv->rps.pm_iir;
  911. dev_priv->rps.pm_iir = 0;
  912. /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
  913. gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
  914. client_boost = dev_priv->rps.client_boost;
  915. dev_priv->rps.client_boost = false;
  916. spin_unlock_irq(&dev_priv->irq_lock);
  917. /* Make sure we didn't queue anything we're not going to process. */
  918. WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
  919. if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
  920. goto out;
  921. mutex_lock(&dev_priv->rps.hw_lock);
  922. pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
  923. adj = dev_priv->rps.last_adj;
  924. new_delay = dev_priv->rps.cur_freq;
  925. min = dev_priv->rps.min_freq_softlimit;
  926. max = dev_priv->rps.max_freq_softlimit;
  927. if (client_boost) {
  928. new_delay = dev_priv->rps.max_freq_softlimit;
  929. adj = 0;
  930. } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
  931. if (adj > 0)
  932. adj *= 2;
  933. else /* CHV needs even encode values */
  934. adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
  935. /*
  936. * For better performance, jump directly
  937. * to RPe if we're below it.
  938. */
  939. if (new_delay < dev_priv->rps.efficient_freq - adj) {
  940. new_delay = dev_priv->rps.efficient_freq;
  941. adj = 0;
  942. }
  943. } else if (any_waiters(dev_priv)) {
  944. adj = 0;
  945. } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
  946. if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
  947. new_delay = dev_priv->rps.efficient_freq;
  948. else
  949. new_delay = dev_priv->rps.min_freq_softlimit;
  950. adj = 0;
  951. } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
  952. if (adj < 0)
  953. adj *= 2;
  954. else /* CHV needs even encode values */
  955. adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
  956. } else { /* unknown event */
  957. adj = 0;
  958. }
  959. dev_priv->rps.last_adj = adj;
  960. /* sysfs frequency interfaces may have snuck in while servicing the
  961. * interrupt
  962. */
  963. new_delay += adj;
  964. new_delay = clamp_t(int, new_delay, min, max);
  965. intel_set_rps(dev_priv, new_delay);
  966. mutex_unlock(&dev_priv->rps.hw_lock);
  967. out:
  968. ENABLE_RPM_WAKEREF_ASSERTS(dev_priv);
  969. }
  970. /**
  971. * ivybridge_parity_work - Workqueue called when a parity error interrupt
  972. * occurred.
  973. * @work: workqueue struct
  974. *
  975. * Doesn't actually do anything except notify userspace. As a consequence of
  976. * this event, userspace should try to remap the bad rows since statistically
  977. * it is likely the same row is more likely to go bad again.
  978. */
  979. static void ivybridge_parity_work(struct work_struct *work)
  980. {
  981. struct drm_i915_private *dev_priv =
  982. container_of(work, struct drm_i915_private, l3_parity.error_work);
  983. u32 error_status, row, bank, subbank;
  984. char *parity_event[6];
  985. uint32_t misccpctl;
  986. uint8_t slice = 0;
  987. /* We must turn off DOP level clock gating to access the L3 registers.
  988. * In order to prevent a get/put style interface, acquire struct mutex
  989. * any time we access those registers.
  990. */
  991. mutex_lock(&dev_priv->dev->struct_mutex);
  992. /* If we've screwed up tracking, just let the interrupt fire again */
  993. if (WARN_ON(!dev_priv->l3_parity.which_slice))
  994. goto out;
  995. misccpctl = I915_READ(GEN7_MISCCPCTL);
  996. I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
  997. POSTING_READ(GEN7_MISCCPCTL);
  998. while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
  999. i915_reg_t reg;
  1000. slice--;
  1001. if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv)))
  1002. break;
  1003. dev_priv->l3_parity.which_slice &= ~(1<<slice);
  1004. reg = GEN7_L3CDERRST1(slice);
  1005. error_status = I915_READ(reg);
  1006. row = GEN7_PARITY_ERROR_ROW(error_status);
  1007. bank = GEN7_PARITY_ERROR_BANK(error_status);
  1008. subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
  1009. I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
  1010. POSTING_READ(reg);
  1011. parity_event[0] = I915_L3_PARITY_UEVENT "=1";
  1012. parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
  1013. parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
  1014. parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
  1015. parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
  1016. parity_event[5] = NULL;
  1017. kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj,
  1018. KOBJ_CHANGE, parity_event);
  1019. DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
  1020. slice, row, bank, subbank);
  1021. kfree(parity_event[4]);
  1022. kfree(parity_event[3]);
  1023. kfree(parity_event[2]);
  1024. kfree(parity_event[1]);
  1025. }
  1026. I915_WRITE(GEN7_MISCCPCTL, misccpctl);
  1027. out:
  1028. WARN_ON(dev_priv->l3_parity.which_slice);
  1029. spin_lock_irq(&dev_priv->irq_lock);
  1030. gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
  1031. spin_unlock_irq(&dev_priv->irq_lock);
  1032. mutex_unlock(&dev_priv->dev->struct_mutex);
  1033. }
  1034. static void ivybridge_parity_error_irq_handler(struct drm_i915_private *dev_priv,
  1035. u32 iir)
  1036. {
  1037. if (!HAS_L3_DPF(dev_priv))
  1038. return;
  1039. spin_lock(&dev_priv->irq_lock);
  1040. gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
  1041. spin_unlock(&dev_priv->irq_lock);
  1042. iir &= GT_PARITY_ERROR(dev_priv);
  1043. if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
  1044. dev_priv->l3_parity.which_slice |= 1 << 1;
  1045. if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
  1046. dev_priv->l3_parity.which_slice |= 1 << 0;
  1047. queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
  1048. }
  1049. static void ilk_gt_irq_handler(struct drm_i915_private *dev_priv,
  1050. u32 gt_iir)
  1051. {
  1052. if (gt_iir &
  1053. (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
  1054. notify_ring(&dev_priv->engine[RCS]);
  1055. if (gt_iir & ILK_BSD_USER_INTERRUPT)
  1056. notify_ring(&dev_priv->engine[VCS]);
  1057. }
  1058. static void snb_gt_irq_handler(struct drm_i915_private *dev_priv,
  1059. u32 gt_iir)
  1060. {
  1061. if (gt_iir &
  1062. (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
  1063. notify_ring(&dev_priv->engine[RCS]);
  1064. if (gt_iir & GT_BSD_USER_INTERRUPT)
  1065. notify_ring(&dev_priv->engine[VCS]);
  1066. if (gt_iir & GT_BLT_USER_INTERRUPT)
  1067. notify_ring(&dev_priv->engine[BCS]);
  1068. if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
  1069. GT_BSD_CS_ERROR_INTERRUPT |
  1070. GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
  1071. DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
  1072. if (gt_iir & GT_PARITY_ERROR(dev_priv))
  1073. ivybridge_parity_error_irq_handler(dev_priv, gt_iir);
  1074. }
  1075. static __always_inline void
  1076. gen8_cs_irq_handler(struct intel_engine_cs *engine, u32 iir, int test_shift)
  1077. {
  1078. if (iir & (GT_RENDER_USER_INTERRUPT << test_shift))
  1079. notify_ring(engine);
  1080. if (iir & (GT_CONTEXT_SWITCH_INTERRUPT << test_shift))
  1081. tasklet_schedule(&engine->irq_tasklet);
  1082. }
  1083. static irqreturn_t gen8_gt_irq_ack(struct drm_i915_private *dev_priv,
  1084. u32 master_ctl,
  1085. u32 gt_iir[4])
  1086. {
  1087. irqreturn_t ret = IRQ_NONE;
  1088. if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
  1089. gt_iir[0] = I915_READ_FW(GEN8_GT_IIR(0));
  1090. if (gt_iir[0]) {
  1091. I915_WRITE_FW(GEN8_GT_IIR(0), gt_iir[0]);
  1092. ret = IRQ_HANDLED;
  1093. } else
  1094. DRM_ERROR("The master control interrupt lied (GT0)!\n");
  1095. }
  1096. if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
  1097. gt_iir[1] = I915_READ_FW(GEN8_GT_IIR(1));
  1098. if (gt_iir[1]) {
  1099. I915_WRITE_FW(GEN8_GT_IIR(1), gt_iir[1]);
  1100. ret = IRQ_HANDLED;
  1101. } else
  1102. DRM_ERROR("The master control interrupt lied (GT1)!\n");
  1103. }
  1104. if (master_ctl & GEN8_GT_VECS_IRQ) {
  1105. gt_iir[3] = I915_READ_FW(GEN8_GT_IIR(3));
  1106. if (gt_iir[3]) {
  1107. I915_WRITE_FW(GEN8_GT_IIR(3), gt_iir[3]);
  1108. ret = IRQ_HANDLED;
  1109. } else
  1110. DRM_ERROR("The master control interrupt lied (GT3)!\n");
  1111. }
  1112. if (master_ctl & GEN8_GT_PM_IRQ) {
  1113. gt_iir[2] = I915_READ_FW(GEN8_GT_IIR(2));
  1114. if (gt_iir[2] & dev_priv->pm_rps_events) {
  1115. I915_WRITE_FW(GEN8_GT_IIR(2),
  1116. gt_iir[2] & dev_priv->pm_rps_events);
  1117. ret = IRQ_HANDLED;
  1118. } else
  1119. DRM_ERROR("The master control interrupt lied (PM)!\n");
  1120. }
  1121. return ret;
  1122. }
  1123. static void gen8_gt_irq_handler(struct drm_i915_private *dev_priv,
  1124. u32 gt_iir[4])
  1125. {
  1126. if (gt_iir[0]) {
  1127. gen8_cs_irq_handler(&dev_priv->engine[RCS],
  1128. gt_iir[0], GEN8_RCS_IRQ_SHIFT);
  1129. gen8_cs_irq_handler(&dev_priv->engine[BCS],
  1130. gt_iir[0], GEN8_BCS_IRQ_SHIFT);
  1131. }
  1132. if (gt_iir[1]) {
  1133. gen8_cs_irq_handler(&dev_priv->engine[VCS],
  1134. gt_iir[1], GEN8_VCS1_IRQ_SHIFT);
  1135. gen8_cs_irq_handler(&dev_priv->engine[VCS2],
  1136. gt_iir[1], GEN8_VCS2_IRQ_SHIFT);
  1137. }
  1138. if (gt_iir[3])
  1139. gen8_cs_irq_handler(&dev_priv->engine[VECS],
  1140. gt_iir[3], GEN8_VECS_IRQ_SHIFT);
  1141. if (gt_iir[2] & dev_priv->pm_rps_events)
  1142. gen6_rps_irq_handler(dev_priv, gt_iir[2]);
  1143. }
  1144. static bool bxt_port_hotplug_long_detect(enum port port, u32 val)
  1145. {
  1146. switch (port) {
  1147. case PORT_A:
  1148. return val & PORTA_HOTPLUG_LONG_DETECT;
  1149. case PORT_B:
  1150. return val & PORTB_HOTPLUG_LONG_DETECT;
  1151. case PORT_C:
  1152. return val & PORTC_HOTPLUG_LONG_DETECT;
  1153. default:
  1154. return false;
  1155. }
  1156. }
  1157. static bool spt_port_hotplug2_long_detect(enum port port, u32 val)
  1158. {
  1159. switch (port) {
  1160. case PORT_E:
  1161. return val & PORTE_HOTPLUG_LONG_DETECT;
  1162. default:
  1163. return false;
  1164. }
  1165. }
  1166. static bool spt_port_hotplug_long_detect(enum port port, u32 val)
  1167. {
  1168. switch (port) {
  1169. case PORT_A:
  1170. return val & PORTA_HOTPLUG_LONG_DETECT;
  1171. case PORT_B:
  1172. return val & PORTB_HOTPLUG_LONG_DETECT;
  1173. case PORT_C:
  1174. return val & PORTC_HOTPLUG_LONG_DETECT;
  1175. case PORT_D:
  1176. return val & PORTD_HOTPLUG_LONG_DETECT;
  1177. default:
  1178. return false;
  1179. }
  1180. }
  1181. static bool ilk_port_hotplug_long_detect(enum port port, u32 val)
  1182. {
  1183. switch (port) {
  1184. case PORT_A:
  1185. return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
  1186. default:
  1187. return false;
  1188. }
  1189. }
  1190. static bool pch_port_hotplug_long_detect(enum port port, u32 val)
  1191. {
  1192. switch (port) {
  1193. case PORT_B:
  1194. return val & PORTB_HOTPLUG_LONG_DETECT;
  1195. case PORT_C:
  1196. return val & PORTC_HOTPLUG_LONG_DETECT;
  1197. case PORT_D:
  1198. return val & PORTD_HOTPLUG_LONG_DETECT;
  1199. default:
  1200. return false;
  1201. }
  1202. }
  1203. static bool i9xx_port_hotplug_long_detect(enum port port, u32 val)
  1204. {
  1205. switch (port) {
  1206. case PORT_B:
  1207. return val & PORTB_HOTPLUG_INT_LONG_PULSE;
  1208. case PORT_C:
  1209. return val & PORTC_HOTPLUG_INT_LONG_PULSE;
  1210. case PORT_D:
  1211. return val & PORTD_HOTPLUG_INT_LONG_PULSE;
  1212. default:
  1213. return false;
  1214. }
  1215. }
  1216. /*
  1217. * Get a bit mask of pins that have triggered, and which ones may be long.
  1218. * This can be called multiple times with the same masks to accumulate
  1219. * hotplug detection results from several registers.
  1220. *
  1221. * Note that the caller is expected to zero out the masks initially.
  1222. */
  1223. static void intel_get_hpd_pins(u32 *pin_mask, u32 *long_mask,
  1224. u32 hotplug_trigger, u32 dig_hotplug_reg,
  1225. const u32 hpd[HPD_NUM_PINS],
  1226. bool long_pulse_detect(enum port port, u32 val))
  1227. {
  1228. enum port port;
  1229. int i;
  1230. for_each_hpd_pin(i) {
  1231. if ((hpd[i] & hotplug_trigger) == 0)
  1232. continue;
  1233. *pin_mask |= BIT(i);
  1234. if (!intel_hpd_pin_to_port(i, &port))
  1235. continue;
  1236. if (long_pulse_detect(port, dig_hotplug_reg))
  1237. *long_mask |= BIT(i);
  1238. }
  1239. DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x\n",
  1240. hotplug_trigger, dig_hotplug_reg, *pin_mask);
  1241. }
  1242. static void gmbus_irq_handler(struct drm_i915_private *dev_priv)
  1243. {
  1244. wake_up_all(&dev_priv->gmbus_wait_queue);
  1245. }
  1246. static void dp_aux_irq_handler(struct drm_i915_private *dev_priv)
  1247. {
  1248. wake_up_all(&dev_priv->gmbus_wait_queue);
  1249. }
  1250. #if defined(CONFIG_DEBUG_FS)
  1251. static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
  1252. enum pipe pipe,
  1253. uint32_t crc0, uint32_t crc1,
  1254. uint32_t crc2, uint32_t crc3,
  1255. uint32_t crc4)
  1256. {
  1257. struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
  1258. struct intel_pipe_crc_entry *entry;
  1259. int head, tail;
  1260. spin_lock(&pipe_crc->lock);
  1261. if (!pipe_crc->entries) {
  1262. spin_unlock(&pipe_crc->lock);
  1263. DRM_DEBUG_KMS("spurious interrupt\n");
  1264. return;
  1265. }
  1266. head = pipe_crc->head;
  1267. tail = pipe_crc->tail;
  1268. if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
  1269. spin_unlock(&pipe_crc->lock);
  1270. DRM_ERROR("CRC buffer overflowing\n");
  1271. return;
  1272. }
  1273. entry = &pipe_crc->entries[head];
  1274. entry->frame = dev_priv->dev->driver->get_vblank_counter(dev_priv->dev,
  1275. pipe);
  1276. entry->crc[0] = crc0;
  1277. entry->crc[1] = crc1;
  1278. entry->crc[2] = crc2;
  1279. entry->crc[3] = crc3;
  1280. entry->crc[4] = crc4;
  1281. head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
  1282. pipe_crc->head = head;
  1283. spin_unlock(&pipe_crc->lock);
  1284. wake_up_interruptible(&pipe_crc->wq);
  1285. }
  1286. #else
  1287. static inline void
  1288. display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
  1289. enum pipe pipe,
  1290. uint32_t crc0, uint32_t crc1,
  1291. uint32_t crc2, uint32_t crc3,
  1292. uint32_t crc4) {}
  1293. #endif
  1294. static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
  1295. enum pipe pipe)
  1296. {
  1297. display_pipe_crc_irq_handler(dev_priv, pipe,
  1298. I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
  1299. 0, 0, 0, 0);
  1300. }
  1301. static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
  1302. enum pipe pipe)
  1303. {
  1304. display_pipe_crc_irq_handler(dev_priv, pipe,
  1305. I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
  1306. I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
  1307. I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
  1308. I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
  1309. I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
  1310. }
  1311. static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
  1312. enum pipe pipe)
  1313. {
  1314. uint32_t res1, res2;
  1315. if (INTEL_GEN(dev_priv) >= 3)
  1316. res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
  1317. else
  1318. res1 = 0;
  1319. if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
  1320. res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
  1321. else
  1322. res2 = 0;
  1323. display_pipe_crc_irq_handler(dev_priv, pipe,
  1324. I915_READ(PIPE_CRC_RES_RED(pipe)),
  1325. I915_READ(PIPE_CRC_RES_GREEN(pipe)),
  1326. I915_READ(PIPE_CRC_RES_BLUE(pipe)),
  1327. res1, res2);
  1328. }
  1329. /* The RPS events need forcewake, so we add them to a work queue and mask their
  1330. * IMR bits until the work is done. Other interrupts can be processed without
  1331. * the work queue. */
  1332. static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
  1333. {
  1334. if (pm_iir & dev_priv->pm_rps_events) {
  1335. spin_lock(&dev_priv->irq_lock);
  1336. gen6_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
  1337. if (dev_priv->rps.interrupts_enabled) {
  1338. dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
  1339. queue_work(dev_priv->wq, &dev_priv->rps.work);
  1340. }
  1341. spin_unlock(&dev_priv->irq_lock);
  1342. }
  1343. if (INTEL_INFO(dev_priv)->gen >= 8)
  1344. return;
  1345. if (HAS_VEBOX(dev_priv)) {
  1346. if (pm_iir & PM_VEBOX_USER_INTERRUPT)
  1347. notify_ring(&dev_priv->engine[VECS]);
  1348. if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
  1349. DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
  1350. }
  1351. }
  1352. static bool intel_pipe_handle_vblank(struct drm_i915_private *dev_priv,
  1353. enum pipe pipe)
  1354. {
  1355. bool ret;
  1356. ret = drm_handle_vblank(dev_priv->dev, pipe);
  1357. if (ret)
  1358. intel_finish_page_flip_mmio(dev_priv, pipe);
  1359. return ret;
  1360. }
  1361. static void valleyview_pipestat_irq_ack(struct drm_i915_private *dev_priv,
  1362. u32 iir, u32 pipe_stats[I915_MAX_PIPES])
  1363. {
  1364. int pipe;
  1365. spin_lock(&dev_priv->irq_lock);
  1366. if (!dev_priv->display_irqs_enabled) {
  1367. spin_unlock(&dev_priv->irq_lock);
  1368. return;
  1369. }
  1370. for_each_pipe(dev_priv, pipe) {
  1371. i915_reg_t reg;
  1372. u32 mask, iir_bit = 0;
  1373. /*
  1374. * PIPESTAT bits get signalled even when the interrupt is
  1375. * disabled with the mask bits, and some of the status bits do
  1376. * not generate interrupts at all (like the underrun bit). Hence
  1377. * we need to be careful that we only handle what we want to
  1378. * handle.
  1379. */
  1380. /* fifo underruns are filterered in the underrun handler. */
  1381. mask = PIPE_FIFO_UNDERRUN_STATUS;
  1382. switch (pipe) {
  1383. case PIPE_A:
  1384. iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
  1385. break;
  1386. case PIPE_B:
  1387. iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
  1388. break;
  1389. case PIPE_C:
  1390. iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
  1391. break;
  1392. }
  1393. if (iir & iir_bit)
  1394. mask |= dev_priv->pipestat_irq_mask[pipe];
  1395. if (!mask)
  1396. continue;
  1397. reg = PIPESTAT(pipe);
  1398. mask |= PIPESTAT_INT_ENABLE_MASK;
  1399. pipe_stats[pipe] = I915_READ(reg) & mask;
  1400. /*
  1401. * Clear the PIPE*STAT regs before the IIR
  1402. */
  1403. if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
  1404. PIPESTAT_INT_STATUS_MASK))
  1405. I915_WRITE(reg, pipe_stats[pipe]);
  1406. }
  1407. spin_unlock(&dev_priv->irq_lock);
  1408. }
  1409. static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv,
  1410. u32 pipe_stats[I915_MAX_PIPES])
  1411. {
  1412. enum pipe pipe;
  1413. for_each_pipe(dev_priv, pipe) {
  1414. if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
  1415. intel_pipe_handle_vblank(dev_priv, pipe))
  1416. intel_check_page_flip(dev_priv, pipe);
  1417. if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV)
  1418. intel_finish_page_flip_cs(dev_priv, pipe);
  1419. if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
  1420. i9xx_pipe_crc_irq_handler(dev_priv, pipe);
  1421. if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
  1422. intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
  1423. }
  1424. if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
  1425. gmbus_irq_handler(dev_priv);
  1426. }
  1427. static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
  1428. {
  1429. u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
  1430. if (hotplug_status)
  1431. I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
  1432. return hotplug_status;
  1433. }
  1434. static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv,
  1435. u32 hotplug_status)
  1436. {
  1437. u32 pin_mask = 0, long_mask = 0;
  1438. if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
  1439. IS_CHERRYVIEW(dev_priv)) {
  1440. u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
  1441. if (hotplug_trigger) {
  1442. intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
  1443. hotplug_trigger, hpd_status_g4x,
  1444. i9xx_port_hotplug_long_detect);
  1445. intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
  1446. }
  1447. if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
  1448. dp_aux_irq_handler(dev_priv);
  1449. } else {
  1450. u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
  1451. if (hotplug_trigger) {
  1452. intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
  1453. hotplug_trigger, hpd_status_i915,
  1454. i9xx_port_hotplug_long_detect);
  1455. intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
  1456. }
  1457. }
  1458. }
  1459. static irqreturn_t valleyview_irq_handler(int irq, void *arg)
  1460. {
  1461. struct drm_device *dev = arg;
  1462. struct drm_i915_private *dev_priv = dev->dev_private;
  1463. irqreturn_t ret = IRQ_NONE;
  1464. if (!intel_irqs_enabled(dev_priv))
  1465. return IRQ_NONE;
  1466. /* IRQs are synced during runtime_suspend, we don't require a wakeref */
  1467. disable_rpm_wakeref_asserts(dev_priv);
  1468. do {
  1469. u32 iir, gt_iir, pm_iir;
  1470. u32 pipe_stats[I915_MAX_PIPES] = {};
  1471. u32 hotplug_status = 0;
  1472. u32 ier = 0;
  1473. gt_iir = I915_READ(GTIIR);
  1474. pm_iir = I915_READ(GEN6_PMIIR);
  1475. iir = I915_READ(VLV_IIR);
  1476. if (gt_iir == 0 && pm_iir == 0 && iir == 0)
  1477. break;
  1478. ret = IRQ_HANDLED;
  1479. /*
  1480. * Theory on interrupt generation, based on empirical evidence:
  1481. *
  1482. * x = ((VLV_IIR & VLV_IER) ||
  1483. * (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
  1484. * (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
  1485. *
  1486. * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
  1487. * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
  1488. * guarantee the CPU interrupt will be raised again even if we
  1489. * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
  1490. * bits this time around.
  1491. */
  1492. I915_WRITE(VLV_MASTER_IER, 0);
  1493. ier = I915_READ(VLV_IER);
  1494. I915_WRITE(VLV_IER, 0);
  1495. if (gt_iir)
  1496. I915_WRITE(GTIIR, gt_iir);
  1497. if (pm_iir)
  1498. I915_WRITE(GEN6_PMIIR, pm_iir);
  1499. if (iir & I915_DISPLAY_PORT_INTERRUPT)
  1500. hotplug_status = i9xx_hpd_irq_ack(dev_priv);
  1501. /* Call regardless, as some status bits might not be
  1502. * signalled in iir */
  1503. valleyview_pipestat_irq_ack(dev_priv, iir, pipe_stats);
  1504. /*
  1505. * VLV_IIR is single buffered, and reflects the level
  1506. * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
  1507. */
  1508. if (iir)
  1509. I915_WRITE(VLV_IIR, iir);
  1510. I915_WRITE(VLV_IER, ier);
  1511. I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
  1512. POSTING_READ(VLV_MASTER_IER);
  1513. if (gt_iir)
  1514. snb_gt_irq_handler(dev_priv, gt_iir);
  1515. if (pm_iir)
  1516. gen6_rps_irq_handler(dev_priv, pm_iir);
  1517. if (hotplug_status)
  1518. i9xx_hpd_irq_handler(dev_priv, hotplug_status);
  1519. valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
  1520. } while (0);
  1521. enable_rpm_wakeref_asserts(dev_priv);
  1522. return ret;
  1523. }
  1524. static irqreturn_t cherryview_irq_handler(int irq, void *arg)
  1525. {
  1526. struct drm_device *dev = arg;
  1527. struct drm_i915_private *dev_priv = dev->dev_private;
  1528. irqreturn_t ret = IRQ_NONE;
  1529. if (!intel_irqs_enabled(dev_priv))
  1530. return IRQ_NONE;
  1531. /* IRQs are synced during runtime_suspend, we don't require a wakeref */
  1532. disable_rpm_wakeref_asserts(dev_priv);
  1533. do {
  1534. u32 master_ctl, iir;
  1535. u32 gt_iir[4] = {};
  1536. u32 pipe_stats[I915_MAX_PIPES] = {};
  1537. u32 hotplug_status = 0;
  1538. u32 ier = 0;
  1539. master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
  1540. iir = I915_READ(VLV_IIR);
  1541. if (master_ctl == 0 && iir == 0)
  1542. break;
  1543. ret = IRQ_HANDLED;
  1544. /*
  1545. * Theory on interrupt generation, based on empirical evidence:
  1546. *
  1547. * x = ((VLV_IIR & VLV_IER) ||
  1548. * ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
  1549. * (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
  1550. *
  1551. * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
  1552. * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
  1553. * guarantee the CPU interrupt will be raised again even if we
  1554. * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
  1555. * bits this time around.
  1556. */
  1557. I915_WRITE(GEN8_MASTER_IRQ, 0);
  1558. ier = I915_READ(VLV_IER);
  1559. I915_WRITE(VLV_IER, 0);
  1560. gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
  1561. if (iir & I915_DISPLAY_PORT_INTERRUPT)
  1562. hotplug_status = i9xx_hpd_irq_ack(dev_priv);
  1563. /* Call regardless, as some status bits might not be
  1564. * signalled in iir */
  1565. valleyview_pipestat_irq_ack(dev_priv, iir, pipe_stats);
  1566. /*
  1567. * VLV_IIR is single buffered, and reflects the level
  1568. * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
  1569. */
  1570. if (iir)
  1571. I915_WRITE(VLV_IIR, iir);
  1572. I915_WRITE(VLV_IER, ier);
  1573. I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
  1574. POSTING_READ(GEN8_MASTER_IRQ);
  1575. gen8_gt_irq_handler(dev_priv, gt_iir);
  1576. if (hotplug_status)
  1577. i9xx_hpd_irq_handler(dev_priv, hotplug_status);
  1578. valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
  1579. } while (0);
  1580. enable_rpm_wakeref_asserts(dev_priv);
  1581. return ret;
  1582. }
  1583. static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv,
  1584. u32 hotplug_trigger,
  1585. const u32 hpd[HPD_NUM_PINS])
  1586. {
  1587. u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
  1588. /*
  1589. * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
  1590. * unless we touch the hotplug register, even if hotplug_trigger is
  1591. * zero. Not acking leads to "The master control interrupt lied (SDE)!"
  1592. * errors.
  1593. */
  1594. dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
  1595. if (!hotplug_trigger) {
  1596. u32 mask = PORTA_HOTPLUG_STATUS_MASK |
  1597. PORTD_HOTPLUG_STATUS_MASK |
  1598. PORTC_HOTPLUG_STATUS_MASK |
  1599. PORTB_HOTPLUG_STATUS_MASK;
  1600. dig_hotplug_reg &= ~mask;
  1601. }
  1602. I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
  1603. if (!hotplug_trigger)
  1604. return;
  1605. intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
  1606. dig_hotplug_reg, hpd,
  1607. pch_port_hotplug_long_detect);
  1608. intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
  1609. }
  1610. static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
  1611. {
  1612. int pipe;
  1613. u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
  1614. ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ibx);
  1615. if (pch_iir & SDE_AUDIO_POWER_MASK) {
  1616. int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
  1617. SDE_AUDIO_POWER_SHIFT);
  1618. DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
  1619. port_name(port));
  1620. }
  1621. if (pch_iir & SDE_AUX_MASK)
  1622. dp_aux_irq_handler(dev_priv);
  1623. if (pch_iir & SDE_GMBUS)
  1624. gmbus_irq_handler(dev_priv);
  1625. if (pch_iir & SDE_AUDIO_HDCP_MASK)
  1626. DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
  1627. if (pch_iir & SDE_AUDIO_TRANS_MASK)
  1628. DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
  1629. if (pch_iir & SDE_POISON)
  1630. DRM_ERROR("PCH poison interrupt\n");
  1631. if (pch_iir & SDE_FDI_MASK)
  1632. for_each_pipe(dev_priv, pipe)
  1633. DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
  1634. pipe_name(pipe),
  1635. I915_READ(FDI_RX_IIR(pipe)));
  1636. if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
  1637. DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
  1638. if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
  1639. DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
  1640. if (pch_iir & SDE_TRANSA_FIFO_UNDER)
  1641. intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
  1642. if (pch_iir & SDE_TRANSB_FIFO_UNDER)
  1643. intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
  1644. }
  1645. static void ivb_err_int_handler(struct drm_i915_private *dev_priv)
  1646. {
  1647. u32 err_int = I915_READ(GEN7_ERR_INT);
  1648. enum pipe pipe;
  1649. if (err_int & ERR_INT_POISON)
  1650. DRM_ERROR("Poison interrupt\n");
  1651. for_each_pipe(dev_priv, pipe) {
  1652. if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
  1653. intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
  1654. if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
  1655. if (IS_IVYBRIDGE(dev_priv))
  1656. ivb_pipe_crc_irq_handler(dev_priv, pipe);
  1657. else
  1658. hsw_pipe_crc_irq_handler(dev_priv, pipe);
  1659. }
  1660. }
  1661. I915_WRITE(GEN7_ERR_INT, err_int);
  1662. }
  1663. static void cpt_serr_int_handler(struct drm_i915_private *dev_priv)
  1664. {
  1665. u32 serr_int = I915_READ(SERR_INT);
  1666. if (serr_int & SERR_INT_POISON)
  1667. DRM_ERROR("PCH poison interrupt\n");
  1668. if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
  1669. intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
  1670. if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
  1671. intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
  1672. if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
  1673. intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_C);
  1674. I915_WRITE(SERR_INT, serr_int);
  1675. }
  1676. static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
  1677. {
  1678. int pipe;
  1679. u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
  1680. ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_cpt);
  1681. if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
  1682. int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
  1683. SDE_AUDIO_POWER_SHIFT_CPT);
  1684. DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
  1685. port_name(port));
  1686. }
  1687. if (pch_iir & SDE_AUX_MASK_CPT)
  1688. dp_aux_irq_handler(dev_priv);
  1689. if (pch_iir & SDE_GMBUS_CPT)
  1690. gmbus_irq_handler(dev_priv);
  1691. if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
  1692. DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
  1693. if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
  1694. DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
  1695. if (pch_iir & SDE_FDI_MASK_CPT)
  1696. for_each_pipe(dev_priv, pipe)
  1697. DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
  1698. pipe_name(pipe),
  1699. I915_READ(FDI_RX_IIR(pipe)));
  1700. if (pch_iir & SDE_ERROR_CPT)
  1701. cpt_serr_int_handler(dev_priv);
  1702. }
  1703. static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
  1704. {
  1705. u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
  1706. ~SDE_PORTE_HOTPLUG_SPT;
  1707. u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
  1708. u32 pin_mask = 0, long_mask = 0;
  1709. if (hotplug_trigger) {
  1710. u32 dig_hotplug_reg;
  1711. dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
  1712. I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
  1713. intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
  1714. dig_hotplug_reg, hpd_spt,
  1715. spt_port_hotplug_long_detect);
  1716. }
  1717. if (hotplug2_trigger) {
  1718. u32 dig_hotplug_reg;
  1719. dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
  1720. I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
  1721. intel_get_hpd_pins(&pin_mask, &long_mask, hotplug2_trigger,
  1722. dig_hotplug_reg, hpd_spt,
  1723. spt_port_hotplug2_long_detect);
  1724. }
  1725. if (pin_mask)
  1726. intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
  1727. if (pch_iir & SDE_GMBUS_CPT)
  1728. gmbus_irq_handler(dev_priv);
  1729. }
  1730. static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv,
  1731. u32 hotplug_trigger,
  1732. const u32 hpd[HPD_NUM_PINS])
  1733. {
  1734. u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
  1735. dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
  1736. I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
  1737. intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
  1738. dig_hotplug_reg, hpd,
  1739. ilk_port_hotplug_long_detect);
  1740. intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
  1741. }
  1742. static void ilk_display_irq_handler(struct drm_i915_private *dev_priv,
  1743. u32 de_iir)
  1744. {
  1745. enum pipe pipe;
  1746. u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
  1747. if (hotplug_trigger)
  1748. ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ilk);
  1749. if (de_iir & DE_AUX_CHANNEL_A)
  1750. dp_aux_irq_handler(dev_priv);
  1751. if (de_iir & DE_GSE)
  1752. intel_opregion_asle_intr(dev_priv);
  1753. if (de_iir & DE_POISON)
  1754. DRM_ERROR("Poison interrupt\n");
  1755. for_each_pipe(dev_priv, pipe) {
  1756. if (de_iir & DE_PIPE_VBLANK(pipe) &&
  1757. intel_pipe_handle_vblank(dev_priv, pipe))
  1758. intel_check_page_flip(dev_priv, pipe);
  1759. if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
  1760. intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
  1761. if (de_iir & DE_PIPE_CRC_DONE(pipe))
  1762. i9xx_pipe_crc_irq_handler(dev_priv, pipe);
  1763. /* plane/pipes map 1:1 on ilk+ */
  1764. if (de_iir & DE_PLANE_FLIP_DONE(pipe))
  1765. intel_finish_page_flip_cs(dev_priv, pipe);
  1766. }
  1767. /* check event from PCH */
  1768. if (de_iir & DE_PCH_EVENT) {
  1769. u32 pch_iir = I915_READ(SDEIIR);
  1770. if (HAS_PCH_CPT(dev_priv))
  1771. cpt_irq_handler(dev_priv, pch_iir);
  1772. else
  1773. ibx_irq_handler(dev_priv, pch_iir);
  1774. /* should clear PCH hotplug event before clear CPU irq */
  1775. I915_WRITE(SDEIIR, pch_iir);
  1776. }
  1777. if (IS_GEN5(dev_priv) && de_iir & DE_PCU_EVENT)
  1778. ironlake_rps_change_irq_handler(dev_priv);
  1779. }
  1780. static void ivb_display_irq_handler(struct drm_i915_private *dev_priv,
  1781. u32 de_iir)
  1782. {
  1783. enum pipe pipe;
  1784. u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
  1785. if (hotplug_trigger)
  1786. ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ivb);
  1787. if (de_iir & DE_ERR_INT_IVB)
  1788. ivb_err_int_handler(dev_priv);
  1789. if (de_iir & DE_AUX_CHANNEL_A_IVB)
  1790. dp_aux_irq_handler(dev_priv);
  1791. if (de_iir & DE_GSE_IVB)
  1792. intel_opregion_asle_intr(dev_priv);
  1793. for_each_pipe(dev_priv, pipe) {
  1794. if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) &&
  1795. intel_pipe_handle_vblank(dev_priv, pipe))
  1796. intel_check_page_flip(dev_priv, pipe);
  1797. /* plane/pipes map 1:1 on ilk+ */
  1798. if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe))
  1799. intel_finish_page_flip_cs(dev_priv, pipe);
  1800. }
  1801. /* check event from PCH */
  1802. if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) {
  1803. u32 pch_iir = I915_READ(SDEIIR);
  1804. cpt_irq_handler(dev_priv, pch_iir);
  1805. /* clear PCH hotplug event before clear CPU irq */
  1806. I915_WRITE(SDEIIR, pch_iir);
  1807. }
  1808. }
  1809. /*
  1810. * To handle irqs with the minimum potential races with fresh interrupts, we:
  1811. * 1 - Disable Master Interrupt Control.
  1812. * 2 - Find the source(s) of the interrupt.
  1813. * 3 - Clear the Interrupt Identity bits (IIR).
  1814. * 4 - Process the interrupt(s) that had bits set in the IIRs.
  1815. * 5 - Re-enable Master Interrupt Control.
  1816. */
  1817. static irqreturn_t ironlake_irq_handler(int irq, void *arg)
  1818. {
  1819. struct drm_device *dev = arg;
  1820. struct drm_i915_private *dev_priv = dev->dev_private;
  1821. u32 de_iir, gt_iir, de_ier, sde_ier = 0;
  1822. irqreturn_t ret = IRQ_NONE;
  1823. if (!intel_irqs_enabled(dev_priv))
  1824. return IRQ_NONE;
  1825. /* IRQs are synced during runtime_suspend, we don't require a wakeref */
  1826. disable_rpm_wakeref_asserts(dev_priv);
  1827. /* disable master interrupt before clearing iir */
  1828. de_ier = I915_READ(DEIER);
  1829. I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
  1830. POSTING_READ(DEIER);
  1831. /* Disable south interrupts. We'll only write to SDEIIR once, so further
  1832. * interrupts will will be stored on its back queue, and then we'll be
  1833. * able to process them after we restore SDEIER (as soon as we restore
  1834. * it, we'll get an interrupt if SDEIIR still has something to process
  1835. * due to its back queue). */
  1836. if (!HAS_PCH_NOP(dev_priv)) {
  1837. sde_ier = I915_READ(SDEIER);
  1838. I915_WRITE(SDEIER, 0);
  1839. POSTING_READ(SDEIER);
  1840. }
  1841. /* Find, clear, then process each source of interrupt */
  1842. gt_iir = I915_READ(GTIIR);
  1843. if (gt_iir) {
  1844. I915_WRITE(GTIIR, gt_iir);
  1845. ret = IRQ_HANDLED;
  1846. if (INTEL_GEN(dev_priv) >= 6)
  1847. snb_gt_irq_handler(dev_priv, gt_iir);
  1848. else
  1849. ilk_gt_irq_handler(dev_priv, gt_iir);
  1850. }
  1851. de_iir = I915_READ(DEIIR);
  1852. if (de_iir) {
  1853. I915_WRITE(DEIIR, de_iir);
  1854. ret = IRQ_HANDLED;
  1855. if (INTEL_GEN(dev_priv) >= 7)
  1856. ivb_display_irq_handler(dev_priv, de_iir);
  1857. else
  1858. ilk_display_irq_handler(dev_priv, de_iir);
  1859. }
  1860. if (INTEL_GEN(dev_priv) >= 6) {
  1861. u32 pm_iir = I915_READ(GEN6_PMIIR);
  1862. if (pm_iir) {
  1863. I915_WRITE(GEN6_PMIIR, pm_iir);
  1864. ret = IRQ_HANDLED;
  1865. gen6_rps_irq_handler(dev_priv, pm_iir);
  1866. }
  1867. }
  1868. I915_WRITE(DEIER, de_ier);
  1869. POSTING_READ(DEIER);
  1870. if (!HAS_PCH_NOP(dev_priv)) {
  1871. I915_WRITE(SDEIER, sde_ier);
  1872. POSTING_READ(SDEIER);
  1873. }
  1874. /* IRQs are synced during runtime_suspend, we don't require a wakeref */
  1875. enable_rpm_wakeref_asserts(dev_priv);
  1876. return ret;
  1877. }
  1878. static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv,
  1879. u32 hotplug_trigger,
  1880. const u32 hpd[HPD_NUM_PINS])
  1881. {
  1882. u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
  1883. dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
  1884. I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
  1885. intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
  1886. dig_hotplug_reg, hpd,
  1887. bxt_port_hotplug_long_detect);
  1888. intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
  1889. }
  1890. static irqreturn_t
  1891. gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
  1892. {
  1893. irqreturn_t ret = IRQ_NONE;
  1894. u32 iir;
  1895. enum pipe pipe;
  1896. if (master_ctl & GEN8_DE_MISC_IRQ) {
  1897. iir = I915_READ(GEN8_DE_MISC_IIR);
  1898. if (iir) {
  1899. I915_WRITE(GEN8_DE_MISC_IIR, iir);
  1900. ret = IRQ_HANDLED;
  1901. if (iir & GEN8_DE_MISC_GSE)
  1902. intel_opregion_asle_intr(dev_priv);
  1903. else
  1904. DRM_ERROR("Unexpected DE Misc interrupt\n");
  1905. }
  1906. else
  1907. DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
  1908. }
  1909. if (master_ctl & GEN8_DE_PORT_IRQ) {
  1910. iir = I915_READ(GEN8_DE_PORT_IIR);
  1911. if (iir) {
  1912. u32 tmp_mask;
  1913. bool found = false;
  1914. I915_WRITE(GEN8_DE_PORT_IIR, iir);
  1915. ret = IRQ_HANDLED;
  1916. tmp_mask = GEN8_AUX_CHANNEL_A;
  1917. if (INTEL_INFO(dev_priv)->gen >= 9)
  1918. tmp_mask |= GEN9_AUX_CHANNEL_B |
  1919. GEN9_AUX_CHANNEL_C |
  1920. GEN9_AUX_CHANNEL_D;
  1921. if (iir & tmp_mask) {
  1922. dp_aux_irq_handler(dev_priv);
  1923. found = true;
  1924. }
  1925. if (IS_BROXTON(dev_priv)) {
  1926. tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
  1927. if (tmp_mask) {
  1928. bxt_hpd_irq_handler(dev_priv, tmp_mask,
  1929. hpd_bxt);
  1930. found = true;
  1931. }
  1932. } else if (IS_BROADWELL(dev_priv)) {
  1933. tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
  1934. if (tmp_mask) {
  1935. ilk_hpd_irq_handler(dev_priv,
  1936. tmp_mask, hpd_bdw);
  1937. found = true;
  1938. }
  1939. }
  1940. if (IS_BROXTON(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) {
  1941. gmbus_irq_handler(dev_priv);
  1942. found = true;
  1943. }
  1944. if (!found)
  1945. DRM_ERROR("Unexpected DE Port interrupt\n");
  1946. }
  1947. else
  1948. DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
  1949. }
  1950. for_each_pipe(dev_priv, pipe) {
  1951. u32 flip_done, fault_errors;
  1952. if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
  1953. continue;
  1954. iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
  1955. if (!iir) {
  1956. DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
  1957. continue;
  1958. }
  1959. ret = IRQ_HANDLED;
  1960. I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
  1961. if (iir & GEN8_PIPE_VBLANK &&
  1962. intel_pipe_handle_vblank(dev_priv, pipe))
  1963. intel_check_page_flip(dev_priv, pipe);
  1964. flip_done = iir;
  1965. if (INTEL_INFO(dev_priv)->gen >= 9)
  1966. flip_done &= GEN9_PIPE_PLANE1_FLIP_DONE;
  1967. else
  1968. flip_done &= GEN8_PIPE_PRIMARY_FLIP_DONE;
  1969. if (flip_done)
  1970. intel_finish_page_flip_cs(dev_priv, pipe);
  1971. if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
  1972. hsw_pipe_crc_irq_handler(dev_priv, pipe);
  1973. if (iir & GEN8_PIPE_FIFO_UNDERRUN)
  1974. intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
  1975. fault_errors = iir;
  1976. if (INTEL_INFO(dev_priv)->gen >= 9)
  1977. fault_errors &= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
  1978. else
  1979. fault_errors &= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
  1980. if (fault_errors)
  1981. DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
  1982. pipe_name(pipe),
  1983. fault_errors);
  1984. }
  1985. if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) &&
  1986. master_ctl & GEN8_DE_PCH_IRQ) {
  1987. /*
  1988. * FIXME(BDW): Assume for now that the new interrupt handling
  1989. * scheme also closed the SDE interrupt handling race we've seen
  1990. * on older pch-split platforms. But this needs testing.
  1991. */
  1992. iir = I915_READ(SDEIIR);
  1993. if (iir) {
  1994. I915_WRITE(SDEIIR, iir);
  1995. ret = IRQ_HANDLED;
  1996. if (HAS_PCH_SPT(dev_priv))
  1997. spt_irq_handler(dev_priv, iir);
  1998. else
  1999. cpt_irq_handler(dev_priv, iir);
  2000. } else {
  2001. /*
  2002. * Like on previous PCH there seems to be something
  2003. * fishy going on with forwarding PCH interrupts.
  2004. */
  2005. DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
  2006. }
  2007. }
  2008. return ret;
  2009. }
  2010. static irqreturn_t gen8_irq_handler(int irq, void *arg)
  2011. {
  2012. struct drm_device *dev = arg;
  2013. struct drm_i915_private *dev_priv = dev->dev_private;
  2014. u32 master_ctl;
  2015. u32 gt_iir[4] = {};
  2016. irqreturn_t ret;
  2017. if (!intel_irqs_enabled(dev_priv))
  2018. return IRQ_NONE;
  2019. master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
  2020. master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
  2021. if (!master_ctl)
  2022. return IRQ_NONE;
  2023. I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
  2024. /* IRQs are synced during runtime_suspend, we don't require a wakeref */
  2025. disable_rpm_wakeref_asserts(dev_priv);
  2026. /* Find, clear, then process each source of interrupt */
  2027. ret = gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
  2028. gen8_gt_irq_handler(dev_priv, gt_iir);
  2029. ret |= gen8_de_irq_handler(dev_priv, master_ctl);
  2030. I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
  2031. POSTING_READ_FW(GEN8_MASTER_IRQ);
  2032. enable_rpm_wakeref_asserts(dev_priv);
  2033. return ret;
  2034. }
  2035. static void i915_error_wake_up(struct drm_i915_private *dev_priv,
  2036. bool reset_completed)
  2037. {
  2038. struct intel_engine_cs *engine;
  2039. /*
  2040. * Notify all waiters for GPU completion events that reset state has
  2041. * been changed, and that they need to restart their wait after
  2042. * checking for potential errors (and bail out to drop locks if there is
  2043. * a gpu reset pending so that i915_error_work_func can acquire them).
  2044. */
  2045. /* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
  2046. for_each_engine(engine, dev_priv)
  2047. wake_up_all(&engine->irq_queue);
  2048. /* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
  2049. wake_up_all(&dev_priv->pending_flip_queue);
  2050. /*
  2051. * Signal tasks blocked in i915_gem_wait_for_error that the pending
  2052. * reset state is cleared.
  2053. */
  2054. if (reset_completed)
  2055. wake_up_all(&dev_priv->gpu_error.reset_queue);
  2056. }
  2057. /**
  2058. * i915_reset_and_wakeup - do process context error handling work
  2059. * @dev: drm device
  2060. *
  2061. * Fire an error uevent so userspace can see that a hang or error
  2062. * was detected.
  2063. */
  2064. static void i915_reset_and_wakeup(struct drm_i915_private *dev_priv)
  2065. {
  2066. struct kobject *kobj = &dev_priv->dev->primary->kdev->kobj;
  2067. char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
  2068. char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
  2069. char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
  2070. int ret;
  2071. kobject_uevent_env(kobj, KOBJ_CHANGE, error_event);
  2072. /*
  2073. * Note that there's only one work item which does gpu resets, so we
  2074. * need not worry about concurrent gpu resets potentially incrementing
  2075. * error->reset_counter twice. We only need to take care of another
  2076. * racing irq/hangcheck declaring the gpu dead for a second time. A
  2077. * quick check for that is good enough: schedule_work ensures the
  2078. * correct ordering between hang detection and this work item, and since
  2079. * the reset in-progress bit is only ever set by code outside of this
  2080. * work we don't need to worry about any other races.
  2081. */
  2082. if (i915_reset_in_progress(&dev_priv->gpu_error)) {
  2083. DRM_DEBUG_DRIVER("resetting chip\n");
  2084. kobject_uevent_env(kobj, KOBJ_CHANGE, reset_event);
  2085. /*
  2086. * In most cases it's guaranteed that we get here with an RPM
  2087. * reference held, for example because there is a pending GPU
  2088. * request that won't finish until the reset is done. This
  2089. * isn't the case at least when we get here by doing a
  2090. * simulated reset via debugs, so get an RPM reference.
  2091. */
  2092. intel_runtime_pm_get(dev_priv);
  2093. intel_prepare_reset(dev_priv);
  2094. /*
  2095. * All state reset _must_ be completed before we update the
  2096. * reset counter, for otherwise waiters might miss the reset
  2097. * pending state and not properly drop locks, resulting in
  2098. * deadlocks with the reset work.
  2099. */
  2100. ret = i915_reset(dev_priv);
  2101. intel_finish_reset(dev_priv);
  2102. intel_runtime_pm_put(dev_priv);
  2103. if (ret == 0)
  2104. kobject_uevent_env(kobj,
  2105. KOBJ_CHANGE, reset_done_event);
  2106. /*
  2107. * Note: The wake_up also serves as a memory barrier so that
  2108. * waiters see the update value of the reset counter atomic_t.
  2109. */
  2110. i915_error_wake_up(dev_priv, true);
  2111. }
  2112. }
  2113. static void i915_report_and_clear_eir(struct drm_i915_private *dev_priv)
  2114. {
  2115. uint32_t instdone[I915_NUM_INSTDONE_REG];
  2116. u32 eir = I915_READ(EIR);
  2117. int pipe, i;
  2118. if (!eir)
  2119. return;
  2120. pr_err("render error detected, EIR: 0x%08x\n", eir);
  2121. i915_get_extra_instdone(dev_priv, instdone);
  2122. if (IS_G4X(dev_priv)) {
  2123. if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
  2124. u32 ipeir = I915_READ(IPEIR_I965);
  2125. pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
  2126. pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
  2127. for (i = 0; i < ARRAY_SIZE(instdone); i++)
  2128. pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
  2129. pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
  2130. pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
  2131. I915_WRITE(IPEIR_I965, ipeir);
  2132. POSTING_READ(IPEIR_I965);
  2133. }
  2134. if (eir & GM45_ERROR_PAGE_TABLE) {
  2135. u32 pgtbl_err = I915_READ(PGTBL_ER);
  2136. pr_err("page table error\n");
  2137. pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
  2138. I915_WRITE(PGTBL_ER, pgtbl_err);
  2139. POSTING_READ(PGTBL_ER);
  2140. }
  2141. }
  2142. if (!IS_GEN2(dev_priv)) {
  2143. if (eir & I915_ERROR_PAGE_TABLE) {
  2144. u32 pgtbl_err = I915_READ(PGTBL_ER);
  2145. pr_err("page table error\n");
  2146. pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
  2147. I915_WRITE(PGTBL_ER, pgtbl_err);
  2148. POSTING_READ(PGTBL_ER);
  2149. }
  2150. }
  2151. if (eir & I915_ERROR_MEMORY_REFRESH) {
  2152. pr_err("memory refresh error:\n");
  2153. for_each_pipe(dev_priv, pipe)
  2154. pr_err("pipe %c stat: 0x%08x\n",
  2155. pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
  2156. /* pipestat has already been acked */
  2157. }
  2158. if (eir & I915_ERROR_INSTRUCTION) {
  2159. pr_err("instruction error\n");
  2160. pr_err(" INSTPM: 0x%08x\n", I915_READ(INSTPM));
  2161. for (i = 0; i < ARRAY_SIZE(instdone); i++)
  2162. pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
  2163. if (INTEL_GEN(dev_priv) < 4) {
  2164. u32 ipeir = I915_READ(IPEIR);
  2165. pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR));
  2166. pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR));
  2167. pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD));
  2168. I915_WRITE(IPEIR, ipeir);
  2169. POSTING_READ(IPEIR);
  2170. } else {
  2171. u32 ipeir = I915_READ(IPEIR_I965);
  2172. pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
  2173. pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
  2174. pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
  2175. pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
  2176. I915_WRITE(IPEIR_I965, ipeir);
  2177. POSTING_READ(IPEIR_I965);
  2178. }
  2179. }
  2180. I915_WRITE(EIR, eir);
  2181. POSTING_READ(EIR);
  2182. eir = I915_READ(EIR);
  2183. if (eir) {
  2184. /*
  2185. * some errors might have become stuck,
  2186. * mask them.
  2187. */
  2188. DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
  2189. I915_WRITE(EMR, I915_READ(EMR) | eir);
  2190. I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
  2191. }
  2192. }
  2193. /**
  2194. * i915_handle_error - handle a gpu error
  2195. * @dev: drm device
  2196. * @engine_mask: mask representing engines that are hung
  2197. * Do some basic checking of register state at error time and
  2198. * dump it to the syslog. Also call i915_capture_error_state() to make
  2199. * sure we get a record and make it available in debugfs. Fire a uevent
  2200. * so userspace knows something bad happened (should trigger collection
  2201. * of a ring dump etc.).
  2202. */
  2203. void i915_handle_error(struct drm_i915_private *dev_priv,
  2204. u32 engine_mask,
  2205. const char *fmt, ...)
  2206. {
  2207. va_list args;
  2208. char error_msg[80];
  2209. va_start(args, fmt);
  2210. vscnprintf(error_msg, sizeof(error_msg), fmt, args);
  2211. va_end(args);
  2212. i915_capture_error_state(dev_priv, engine_mask, error_msg);
  2213. i915_report_and_clear_eir(dev_priv);
  2214. if (engine_mask) {
  2215. atomic_or(I915_RESET_IN_PROGRESS_FLAG,
  2216. &dev_priv->gpu_error.reset_counter);
  2217. /*
  2218. * Wakeup waiting processes so that the reset function
  2219. * i915_reset_and_wakeup doesn't deadlock trying to grab
  2220. * various locks. By bumping the reset counter first, the woken
  2221. * processes will see a reset in progress and back off,
  2222. * releasing their locks and then wait for the reset completion.
  2223. * We must do this for _all_ gpu waiters that might hold locks
  2224. * that the reset work needs to acquire.
  2225. *
  2226. * Note: The wake_up serves as the required memory barrier to
  2227. * ensure that the waiters see the updated value of the reset
  2228. * counter atomic_t.
  2229. */
  2230. i915_error_wake_up(dev_priv, false);
  2231. }
  2232. i915_reset_and_wakeup(dev_priv);
  2233. }
  2234. /* Called from drm generic code, passed 'crtc' which
  2235. * we use as a pipe index
  2236. */
  2237. static int i915_enable_vblank(struct drm_device *dev, unsigned int pipe)
  2238. {
  2239. struct drm_i915_private *dev_priv = dev->dev_private;
  2240. unsigned long irqflags;
  2241. spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
  2242. if (INTEL_INFO(dev)->gen >= 4)
  2243. i915_enable_pipestat(dev_priv, pipe,
  2244. PIPE_START_VBLANK_INTERRUPT_STATUS);
  2245. else
  2246. i915_enable_pipestat(dev_priv, pipe,
  2247. PIPE_VBLANK_INTERRUPT_STATUS);
  2248. spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
  2249. return 0;
  2250. }
  2251. static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe)
  2252. {
  2253. struct drm_i915_private *dev_priv = dev->dev_private;
  2254. unsigned long irqflags;
  2255. uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
  2256. DE_PIPE_VBLANK(pipe);
  2257. spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
  2258. ilk_enable_display_irq(dev_priv, bit);
  2259. spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
  2260. return 0;
  2261. }
  2262. static int valleyview_enable_vblank(struct drm_device *dev, unsigned int pipe)
  2263. {
  2264. struct drm_i915_private *dev_priv = dev->dev_private;
  2265. unsigned long irqflags;
  2266. spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
  2267. i915_enable_pipestat(dev_priv, pipe,
  2268. PIPE_START_VBLANK_INTERRUPT_STATUS);
  2269. spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
  2270. return 0;
  2271. }
  2272. static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe)
  2273. {
  2274. struct drm_i915_private *dev_priv = dev->dev_private;
  2275. unsigned long irqflags;
  2276. spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
  2277. bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
  2278. spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
  2279. return 0;
  2280. }
  2281. /* Called from drm generic code, passed 'crtc' which
  2282. * we use as a pipe index
  2283. */
  2284. static void i915_disable_vblank(struct drm_device *dev, unsigned int pipe)
  2285. {
  2286. struct drm_i915_private *dev_priv = dev->dev_private;
  2287. unsigned long irqflags;
  2288. spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
  2289. i915_disable_pipestat(dev_priv, pipe,
  2290. PIPE_VBLANK_INTERRUPT_STATUS |
  2291. PIPE_START_VBLANK_INTERRUPT_STATUS);
  2292. spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
  2293. }
  2294. static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe)
  2295. {
  2296. struct drm_i915_private *dev_priv = dev->dev_private;
  2297. unsigned long irqflags;
  2298. uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
  2299. DE_PIPE_VBLANK(pipe);
  2300. spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
  2301. ilk_disable_display_irq(dev_priv, bit);
  2302. spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
  2303. }
  2304. static void valleyview_disable_vblank(struct drm_device *dev, unsigned int pipe)
  2305. {
  2306. struct drm_i915_private *dev_priv = dev->dev_private;
  2307. unsigned long irqflags;
  2308. spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
  2309. i915_disable_pipestat(dev_priv, pipe,
  2310. PIPE_START_VBLANK_INTERRUPT_STATUS);
  2311. spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
  2312. }
  2313. static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe)
  2314. {
  2315. struct drm_i915_private *dev_priv = dev->dev_private;
  2316. unsigned long irqflags;
  2317. spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
  2318. bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
  2319. spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
  2320. }
  2321. static bool
  2322. ring_idle(struct intel_engine_cs *engine, u32 seqno)
  2323. {
  2324. return i915_seqno_passed(seqno,
  2325. READ_ONCE(engine->last_submitted_seqno));
  2326. }
  2327. static bool
  2328. ipehr_is_semaphore_wait(struct drm_i915_private *dev_priv, u32 ipehr)
  2329. {
  2330. if (INTEL_GEN(dev_priv) >= 8) {
  2331. return (ipehr >> 23) == 0x1c;
  2332. } else {
  2333. ipehr &= ~MI_SEMAPHORE_SYNC_MASK;
  2334. return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE |
  2335. MI_SEMAPHORE_REGISTER);
  2336. }
  2337. }
  2338. static struct intel_engine_cs *
  2339. semaphore_wait_to_signaller_ring(struct intel_engine_cs *engine, u32 ipehr,
  2340. u64 offset)
  2341. {
  2342. struct drm_i915_private *dev_priv = engine->i915;
  2343. struct intel_engine_cs *signaller;
  2344. if (INTEL_GEN(dev_priv) >= 8) {
  2345. for_each_engine(signaller, dev_priv) {
  2346. if (engine == signaller)
  2347. continue;
  2348. if (offset == signaller->semaphore.signal_ggtt[engine->id])
  2349. return signaller;
  2350. }
  2351. } else {
  2352. u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
  2353. for_each_engine(signaller, dev_priv) {
  2354. if(engine == signaller)
  2355. continue;
  2356. if (sync_bits == signaller->semaphore.mbox.wait[engine->id])
  2357. return signaller;
  2358. }
  2359. }
  2360. DRM_ERROR("No signaller ring found for ring %i, ipehr 0x%08x, offset 0x%016llx\n",
  2361. engine->id, ipehr, offset);
  2362. return NULL;
  2363. }
  2364. static struct intel_engine_cs *
  2365. semaphore_waits_for(struct intel_engine_cs *engine, u32 *seqno)
  2366. {
  2367. struct drm_i915_private *dev_priv = engine->i915;
  2368. u32 cmd, ipehr, head;
  2369. u64 offset = 0;
  2370. int i, backwards;
  2371. /*
  2372. * This function does not support execlist mode - any attempt to
  2373. * proceed further into this function will result in a kernel panic
  2374. * when dereferencing ring->buffer, which is not set up in execlist
  2375. * mode.
  2376. *
  2377. * The correct way of doing it would be to derive the currently
  2378. * executing ring buffer from the current context, which is derived
  2379. * from the currently running request. Unfortunately, to get the
  2380. * current request we would have to grab the struct_mutex before doing
  2381. * anything else, which would be ill-advised since some other thread
  2382. * might have grabbed it already and managed to hang itself, causing
  2383. * the hang checker to deadlock.
  2384. *
  2385. * Therefore, this function does not support execlist mode in its
  2386. * current form. Just return NULL and move on.
  2387. */
  2388. if (engine->buffer == NULL)
  2389. return NULL;
  2390. ipehr = I915_READ(RING_IPEHR(engine->mmio_base));
  2391. if (!ipehr_is_semaphore_wait(engine->i915, ipehr))
  2392. return NULL;
  2393. /*
  2394. * HEAD is likely pointing to the dword after the actual command,
  2395. * so scan backwards until we find the MBOX. But limit it to just 3
  2396. * or 4 dwords depending on the semaphore wait command size.
  2397. * Note that we don't care about ACTHD here since that might
  2398. * point at at batch, and semaphores are always emitted into the
  2399. * ringbuffer itself.
  2400. */
  2401. head = I915_READ_HEAD(engine) & HEAD_ADDR;
  2402. backwards = (INTEL_GEN(dev_priv) >= 8) ? 5 : 4;
  2403. for (i = backwards; i; --i) {
  2404. /*
  2405. * Be paranoid and presume the hw has gone off into the wild -
  2406. * our ring is smaller than what the hardware (and hence
  2407. * HEAD_ADDR) allows. Also handles wrap-around.
  2408. */
  2409. head &= engine->buffer->size - 1;
  2410. /* This here seems to blow up */
  2411. cmd = ioread32(engine->buffer->virtual_start + head);
  2412. if (cmd == ipehr)
  2413. break;
  2414. head -= 4;
  2415. }
  2416. if (!i)
  2417. return NULL;
  2418. *seqno = ioread32(engine->buffer->virtual_start + head + 4) + 1;
  2419. if (INTEL_GEN(dev_priv) >= 8) {
  2420. offset = ioread32(engine->buffer->virtual_start + head + 12);
  2421. offset <<= 32;
  2422. offset = ioread32(engine->buffer->virtual_start + head + 8);
  2423. }
  2424. return semaphore_wait_to_signaller_ring(engine, ipehr, offset);
  2425. }
  2426. static int semaphore_passed(struct intel_engine_cs *engine)
  2427. {
  2428. struct drm_i915_private *dev_priv = engine->i915;
  2429. struct intel_engine_cs *signaller;
  2430. u32 seqno;
  2431. engine->hangcheck.deadlock++;
  2432. signaller = semaphore_waits_for(engine, &seqno);
  2433. if (signaller == NULL)
  2434. return -1;
  2435. /* Prevent pathological recursion due to driver bugs */
  2436. if (signaller->hangcheck.deadlock >= I915_NUM_ENGINES)
  2437. return -1;
  2438. if (i915_seqno_passed(signaller->get_seqno(signaller), seqno))
  2439. return 1;
  2440. /* cursory check for an unkickable deadlock */
  2441. if (I915_READ_CTL(signaller) & RING_WAIT_SEMAPHORE &&
  2442. semaphore_passed(signaller) < 0)
  2443. return -1;
  2444. return 0;
  2445. }
  2446. static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
  2447. {
  2448. struct intel_engine_cs *engine;
  2449. for_each_engine(engine, dev_priv)
  2450. engine->hangcheck.deadlock = 0;
  2451. }
  2452. static bool subunits_stuck(struct intel_engine_cs *engine)
  2453. {
  2454. u32 instdone[I915_NUM_INSTDONE_REG];
  2455. bool stuck;
  2456. int i;
  2457. if (engine->id != RCS)
  2458. return true;
  2459. i915_get_extra_instdone(engine->i915, instdone);
  2460. /* There might be unstable subunit states even when
  2461. * actual head is not moving. Filter out the unstable ones by
  2462. * accumulating the undone -> done transitions and only
  2463. * consider those as progress.
  2464. */
  2465. stuck = true;
  2466. for (i = 0; i < I915_NUM_INSTDONE_REG; i++) {
  2467. const u32 tmp = instdone[i] | engine->hangcheck.instdone[i];
  2468. if (tmp != engine->hangcheck.instdone[i])
  2469. stuck = false;
  2470. engine->hangcheck.instdone[i] |= tmp;
  2471. }
  2472. return stuck;
  2473. }
  2474. static enum intel_ring_hangcheck_action
  2475. head_stuck(struct intel_engine_cs *engine, u64 acthd)
  2476. {
  2477. if (acthd != engine->hangcheck.acthd) {
  2478. /* Clear subunit states on head movement */
  2479. memset(engine->hangcheck.instdone, 0,
  2480. sizeof(engine->hangcheck.instdone));
  2481. return HANGCHECK_ACTIVE;
  2482. }
  2483. if (!subunits_stuck(engine))
  2484. return HANGCHECK_ACTIVE;
  2485. return HANGCHECK_HUNG;
  2486. }
  2487. static enum intel_ring_hangcheck_action
  2488. ring_stuck(struct intel_engine_cs *engine, u64 acthd)
  2489. {
  2490. struct drm_i915_private *dev_priv = engine->i915;
  2491. enum intel_ring_hangcheck_action ha;
  2492. u32 tmp;
  2493. ha = head_stuck(engine, acthd);
  2494. if (ha != HANGCHECK_HUNG)
  2495. return ha;
  2496. if (IS_GEN2(dev_priv))
  2497. return HANGCHECK_HUNG;
  2498. /* Is the chip hanging on a WAIT_FOR_EVENT?
  2499. * If so we can simply poke the RB_WAIT bit
  2500. * and break the hang. This should work on
  2501. * all but the second generation chipsets.
  2502. */
  2503. tmp = I915_READ_CTL(engine);
  2504. if (tmp & RING_WAIT) {
  2505. i915_handle_error(dev_priv, 0,
  2506. "Kicking stuck wait on %s",
  2507. engine->name);
  2508. I915_WRITE_CTL(engine, tmp);
  2509. return HANGCHECK_KICK;
  2510. }
  2511. if (INTEL_GEN(dev_priv) >= 6 && tmp & RING_WAIT_SEMAPHORE) {
  2512. switch (semaphore_passed(engine)) {
  2513. default:
  2514. return HANGCHECK_HUNG;
  2515. case 1:
  2516. i915_handle_error(dev_priv, 0,
  2517. "Kicking stuck semaphore on %s",
  2518. engine->name);
  2519. I915_WRITE_CTL(engine, tmp);
  2520. return HANGCHECK_KICK;
  2521. case 0:
  2522. return HANGCHECK_WAIT;
  2523. }
  2524. }
  2525. return HANGCHECK_HUNG;
  2526. }
  2527. static unsigned kick_waiters(struct intel_engine_cs *engine)
  2528. {
  2529. struct drm_i915_private *i915 = engine->i915;
  2530. unsigned user_interrupts = READ_ONCE(engine->user_interrupts);
  2531. if (engine->hangcheck.user_interrupts == user_interrupts &&
  2532. !test_and_set_bit(engine->id, &i915->gpu_error.missed_irq_rings)) {
  2533. if (!(i915->gpu_error.test_irq_rings & intel_engine_flag(engine)))
  2534. DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
  2535. engine->name);
  2536. else
  2537. DRM_INFO("Fake missed irq on %s\n",
  2538. engine->name);
  2539. wake_up_all(&engine->irq_queue);
  2540. }
  2541. return user_interrupts;
  2542. }
  2543. /*
  2544. * This is called when the chip hasn't reported back with completed
  2545. * batchbuffers in a long time. We keep track per ring seqno progress and
  2546. * if there are no progress, hangcheck score for that ring is increased.
  2547. * Further, acthd is inspected to see if the ring is stuck. On stuck case
  2548. * we kick the ring. If we see no progress on three subsequent calls
  2549. * we assume chip is wedged and try to fix it by resetting the chip.
  2550. */
  2551. static void i915_hangcheck_elapsed(struct work_struct *work)
  2552. {
  2553. struct drm_i915_private *dev_priv =
  2554. container_of(work, typeof(*dev_priv),
  2555. gpu_error.hangcheck_work.work);
  2556. struct intel_engine_cs *engine;
  2557. enum intel_engine_id id;
  2558. int busy_count = 0, rings_hung = 0;
  2559. bool stuck[I915_NUM_ENGINES] = { 0 };
  2560. #define BUSY 1
  2561. #define KICK 5
  2562. #define HUNG 20
  2563. #define ACTIVE_DECAY 15
  2564. if (!i915.enable_hangcheck)
  2565. return;
  2566. /*
  2567. * The hangcheck work is synced during runtime suspend, we don't
  2568. * require a wakeref. TODO: instead of disabling the asserts make
  2569. * sure that we hold a reference when this work is running.
  2570. */
  2571. DISABLE_RPM_WAKEREF_ASSERTS(dev_priv);
  2572. /* As enabling the GPU requires fairly extensive mmio access,
  2573. * periodically arm the mmio checker to see if we are triggering
  2574. * any invalid access.
  2575. */
  2576. intel_uncore_arm_unclaimed_mmio_detection(dev_priv);
  2577. for_each_engine_id(engine, dev_priv, id) {
  2578. u64 acthd;
  2579. u32 seqno;
  2580. unsigned user_interrupts;
  2581. bool busy = true;
  2582. semaphore_clear_deadlocks(dev_priv);
  2583. /* We don't strictly need an irq-barrier here, as we are not
  2584. * serving an interrupt request, be paranoid in case the
  2585. * barrier has side-effects (such as preventing a broken
  2586. * cacheline snoop) and so be sure that we can see the seqno
  2587. * advance. If the seqno should stick, due to a stale
  2588. * cacheline, we would erroneously declare the GPU hung.
  2589. */
  2590. if (engine->irq_seqno_barrier)
  2591. engine->irq_seqno_barrier(engine);
  2592. acthd = intel_ring_get_active_head(engine);
  2593. seqno = engine->get_seqno(engine);
  2594. /* Reset stuck interrupts between batch advances */
  2595. user_interrupts = 0;
  2596. if (engine->hangcheck.seqno == seqno) {
  2597. if (ring_idle(engine, seqno)) {
  2598. engine->hangcheck.action = HANGCHECK_IDLE;
  2599. if (waitqueue_active(&engine->irq_queue)) {
  2600. /* Safeguard against driver failure */
  2601. user_interrupts = kick_waiters(engine);
  2602. engine->hangcheck.score += BUSY;
  2603. } else
  2604. busy = false;
  2605. } else {
  2606. /* We always increment the hangcheck score
  2607. * if the ring is busy and still processing
  2608. * the same request, so that no single request
  2609. * can run indefinitely (such as a chain of
  2610. * batches). The only time we do not increment
  2611. * the hangcheck score on this ring, if this
  2612. * ring is in a legitimate wait for another
  2613. * ring. In that case the waiting ring is a
  2614. * victim and we want to be sure we catch the
  2615. * right culprit. Then every time we do kick
  2616. * the ring, add a small increment to the
  2617. * score so that we can catch a batch that is
  2618. * being repeatedly kicked and so responsible
  2619. * for stalling the machine.
  2620. */
  2621. engine->hangcheck.action = ring_stuck(engine,
  2622. acthd);
  2623. switch (engine->hangcheck.action) {
  2624. case HANGCHECK_IDLE:
  2625. case HANGCHECK_WAIT:
  2626. break;
  2627. case HANGCHECK_ACTIVE:
  2628. engine->hangcheck.score += BUSY;
  2629. break;
  2630. case HANGCHECK_KICK:
  2631. engine->hangcheck.score += KICK;
  2632. break;
  2633. case HANGCHECK_HUNG:
  2634. engine->hangcheck.score += HUNG;
  2635. stuck[id] = true;
  2636. break;
  2637. }
  2638. }
  2639. } else {
  2640. engine->hangcheck.action = HANGCHECK_ACTIVE;
  2641. /* Gradually reduce the count so that we catch DoS
  2642. * attempts across multiple batches.
  2643. */
  2644. if (engine->hangcheck.score > 0)
  2645. engine->hangcheck.score -= ACTIVE_DECAY;
  2646. if (engine->hangcheck.score < 0)
  2647. engine->hangcheck.score = 0;
  2648. /* Clear head and subunit states on seqno movement */
  2649. acthd = 0;
  2650. memset(engine->hangcheck.instdone, 0,
  2651. sizeof(engine->hangcheck.instdone));
  2652. }
  2653. engine->hangcheck.seqno = seqno;
  2654. engine->hangcheck.acthd = acthd;
  2655. engine->hangcheck.user_interrupts = user_interrupts;
  2656. busy_count += busy;
  2657. }
  2658. for_each_engine_id(engine, dev_priv, id) {
  2659. if (engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
  2660. DRM_INFO("%s on %s\n",
  2661. stuck[id] ? "stuck" : "no progress",
  2662. engine->name);
  2663. rings_hung |= intel_engine_flag(engine);
  2664. }
  2665. }
  2666. if (rings_hung) {
  2667. i915_handle_error(dev_priv, rings_hung, "Engine(s) hung");
  2668. goto out;
  2669. }
  2670. if (busy_count)
  2671. /* Reset timer case chip hangs without another request
  2672. * being added */
  2673. i915_queue_hangcheck(dev_priv);
  2674. out:
  2675. ENABLE_RPM_WAKEREF_ASSERTS(dev_priv);
  2676. }
  2677. void i915_queue_hangcheck(struct drm_i915_private *dev_priv)
  2678. {
  2679. struct i915_gpu_error *e = &dev_priv->gpu_error;
  2680. if (!i915.enable_hangcheck)
  2681. return;
  2682. /* Don't continually defer the hangcheck so that it is always run at
  2683. * least once after work has been scheduled on any ring. Otherwise,
  2684. * we will ignore a hung ring if a second ring is kept busy.
  2685. */
  2686. queue_delayed_work(e->hangcheck_wq, &e->hangcheck_work,
  2687. round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES));
  2688. }
  2689. static void ibx_irq_reset(struct drm_device *dev)
  2690. {
  2691. struct drm_i915_private *dev_priv = dev->dev_private;
  2692. if (HAS_PCH_NOP(dev))
  2693. return;
  2694. GEN5_IRQ_RESET(SDE);
  2695. if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
  2696. I915_WRITE(SERR_INT, 0xffffffff);
  2697. }
  2698. /*
  2699. * SDEIER is also touched by the interrupt handler to work around missed PCH
  2700. * interrupts. Hence we can't update it after the interrupt handler is enabled -
  2701. * instead we unconditionally enable all PCH interrupt sources here, but then
  2702. * only unmask them as needed with SDEIMR.
  2703. *
  2704. * This function needs to be called before interrupts are enabled.
  2705. */
  2706. static void ibx_irq_pre_postinstall(struct drm_device *dev)
  2707. {
  2708. struct drm_i915_private *dev_priv = dev->dev_private;
  2709. if (HAS_PCH_NOP(dev))
  2710. return;
  2711. WARN_ON(I915_READ(SDEIER) != 0);
  2712. I915_WRITE(SDEIER, 0xffffffff);
  2713. POSTING_READ(SDEIER);
  2714. }
  2715. static void gen5_gt_irq_reset(struct drm_device *dev)
  2716. {
  2717. struct drm_i915_private *dev_priv = dev->dev_private;
  2718. GEN5_IRQ_RESET(GT);
  2719. if (INTEL_INFO(dev)->gen >= 6)
  2720. GEN5_IRQ_RESET(GEN6_PM);
  2721. }
  2722. static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
  2723. {
  2724. enum pipe pipe;
  2725. if (IS_CHERRYVIEW(dev_priv))
  2726. I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
  2727. else
  2728. I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
  2729. i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
  2730. I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
  2731. for_each_pipe(dev_priv, pipe) {
  2732. I915_WRITE(PIPESTAT(pipe),
  2733. PIPE_FIFO_UNDERRUN_STATUS |
  2734. PIPESTAT_INT_STATUS_MASK);
  2735. dev_priv->pipestat_irq_mask[pipe] = 0;
  2736. }
  2737. GEN5_IRQ_RESET(VLV_);
  2738. dev_priv->irq_mask = ~0;
  2739. }
  2740. static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
  2741. {
  2742. u32 pipestat_mask;
  2743. u32 enable_mask;
  2744. enum pipe pipe;
  2745. pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
  2746. PIPE_CRC_DONE_INTERRUPT_STATUS;
  2747. i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
  2748. for_each_pipe(dev_priv, pipe)
  2749. i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
  2750. enable_mask = I915_DISPLAY_PORT_INTERRUPT |
  2751. I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
  2752. I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
  2753. if (IS_CHERRYVIEW(dev_priv))
  2754. enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
  2755. WARN_ON(dev_priv->irq_mask != ~0);
  2756. dev_priv->irq_mask = ~enable_mask;
  2757. GEN5_IRQ_INIT(VLV_, dev_priv->irq_mask, enable_mask);
  2758. }
  2759. /* drm_dma.h hooks
  2760. */
  2761. static void ironlake_irq_reset(struct drm_device *dev)
  2762. {
  2763. struct drm_i915_private *dev_priv = dev->dev_private;
  2764. I915_WRITE(HWSTAM, 0xffffffff);
  2765. GEN5_IRQ_RESET(DE);
  2766. if (IS_GEN7(dev))
  2767. I915_WRITE(GEN7_ERR_INT, 0xffffffff);
  2768. gen5_gt_irq_reset(dev);
  2769. ibx_irq_reset(dev);
  2770. }
  2771. static void valleyview_irq_preinstall(struct drm_device *dev)
  2772. {
  2773. struct drm_i915_private *dev_priv = dev->dev_private;
  2774. I915_WRITE(VLV_MASTER_IER, 0);
  2775. POSTING_READ(VLV_MASTER_IER);
  2776. gen5_gt_irq_reset(dev);
  2777. spin_lock_irq(&dev_priv->irq_lock);
  2778. if (dev_priv->display_irqs_enabled)
  2779. vlv_display_irq_reset(dev_priv);
  2780. spin_unlock_irq(&dev_priv->irq_lock);
  2781. }
  2782. static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
  2783. {
  2784. GEN8_IRQ_RESET_NDX(GT, 0);
  2785. GEN8_IRQ_RESET_NDX(GT, 1);
  2786. GEN8_IRQ_RESET_NDX(GT, 2);
  2787. GEN8_IRQ_RESET_NDX(GT, 3);
  2788. }
  2789. static void gen8_irq_reset(struct drm_device *dev)
  2790. {
  2791. struct drm_i915_private *dev_priv = dev->dev_private;
  2792. int pipe;
  2793. I915_WRITE(GEN8_MASTER_IRQ, 0);
  2794. POSTING_READ(GEN8_MASTER_IRQ);
  2795. gen8_gt_irq_reset(dev_priv);
  2796. for_each_pipe(dev_priv, pipe)
  2797. if (intel_display_power_is_enabled(dev_priv,
  2798. POWER_DOMAIN_PIPE(pipe)))
  2799. GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
  2800. GEN5_IRQ_RESET(GEN8_DE_PORT_);
  2801. GEN5_IRQ_RESET(GEN8_DE_MISC_);
  2802. GEN5_IRQ_RESET(GEN8_PCU_);
  2803. if (HAS_PCH_SPLIT(dev))
  2804. ibx_irq_reset(dev);
  2805. }
  2806. void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
  2807. unsigned int pipe_mask)
  2808. {
  2809. uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
  2810. enum pipe pipe;
  2811. spin_lock_irq(&dev_priv->irq_lock);
  2812. for_each_pipe_masked(dev_priv, pipe, pipe_mask)
  2813. GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
  2814. dev_priv->de_irq_mask[pipe],
  2815. ~dev_priv->de_irq_mask[pipe] | extra_ier);
  2816. spin_unlock_irq(&dev_priv->irq_lock);
  2817. }
  2818. void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
  2819. unsigned int pipe_mask)
  2820. {
  2821. enum pipe pipe;
  2822. spin_lock_irq(&dev_priv->irq_lock);
  2823. for_each_pipe_masked(dev_priv, pipe, pipe_mask)
  2824. GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
  2825. spin_unlock_irq(&dev_priv->irq_lock);
  2826. /* make sure we're done processing display irqs */
  2827. synchronize_irq(dev_priv->dev->irq);
  2828. }
  2829. static void cherryview_irq_preinstall(struct drm_device *dev)
  2830. {
  2831. struct drm_i915_private *dev_priv = dev->dev_private;
  2832. I915_WRITE(GEN8_MASTER_IRQ, 0);
  2833. POSTING_READ(GEN8_MASTER_IRQ);
  2834. gen8_gt_irq_reset(dev_priv);
  2835. GEN5_IRQ_RESET(GEN8_PCU_);
  2836. spin_lock_irq(&dev_priv->irq_lock);
  2837. if (dev_priv->display_irqs_enabled)
  2838. vlv_display_irq_reset(dev_priv);
  2839. spin_unlock_irq(&dev_priv->irq_lock);
  2840. }
  2841. static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv,
  2842. const u32 hpd[HPD_NUM_PINS])
  2843. {
  2844. struct intel_encoder *encoder;
  2845. u32 enabled_irqs = 0;
  2846. for_each_intel_encoder(dev_priv->dev, encoder)
  2847. if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
  2848. enabled_irqs |= hpd[encoder->hpd_pin];
  2849. return enabled_irqs;
  2850. }
  2851. static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv)
  2852. {
  2853. u32 hotplug_irqs, hotplug, enabled_irqs;
  2854. if (HAS_PCH_IBX(dev_priv)) {
  2855. hotplug_irqs = SDE_HOTPLUG_MASK;
  2856. enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ibx);
  2857. } else {
  2858. hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
  2859. enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_cpt);
  2860. }
  2861. ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
  2862. /*
  2863. * Enable digital hotplug on the PCH, and configure the DP short pulse
  2864. * duration to 2ms (which is the minimum in the Display Port spec).
  2865. * The pulse duration bits are reserved on LPT+.
  2866. */
  2867. hotplug = I915_READ(PCH_PORT_HOTPLUG);
  2868. hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
  2869. hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
  2870. hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
  2871. hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
  2872. /*
  2873. * When CPU and PCH are on the same package, port A
  2874. * HPD must be enabled in both north and south.
  2875. */
  2876. if (HAS_PCH_LPT_LP(dev_priv))
  2877. hotplug |= PORTA_HOTPLUG_ENABLE;
  2878. I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
  2879. }
  2880. static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv)
  2881. {
  2882. u32 hotplug_irqs, hotplug, enabled_irqs;
  2883. hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
  2884. enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_spt);
  2885. ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
  2886. /* Enable digital hotplug on the PCH */
  2887. hotplug = I915_READ(PCH_PORT_HOTPLUG);
  2888. hotplug |= PORTD_HOTPLUG_ENABLE | PORTC_HOTPLUG_ENABLE |
  2889. PORTB_HOTPLUG_ENABLE | PORTA_HOTPLUG_ENABLE;
  2890. I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
  2891. hotplug = I915_READ(PCH_PORT_HOTPLUG2);
  2892. hotplug |= PORTE_HOTPLUG_ENABLE;
  2893. I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
  2894. }
  2895. static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv)
  2896. {
  2897. u32 hotplug_irqs, hotplug, enabled_irqs;
  2898. if (INTEL_GEN(dev_priv) >= 8) {
  2899. hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
  2900. enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bdw);
  2901. bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
  2902. } else if (INTEL_GEN(dev_priv) >= 7) {
  2903. hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
  2904. enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ivb);
  2905. ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
  2906. } else {
  2907. hotplug_irqs = DE_DP_A_HOTPLUG;
  2908. enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ilk);
  2909. ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
  2910. }
  2911. /*
  2912. * Enable digital hotplug on the CPU, and configure the DP short pulse
  2913. * duration to 2ms (which is the minimum in the Display Port spec)
  2914. * The pulse duration bits are reserved on HSW+.
  2915. */
  2916. hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
  2917. hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
  2918. hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE | DIGITAL_PORTA_PULSE_DURATION_2ms;
  2919. I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
  2920. ibx_hpd_irq_setup(dev_priv);
  2921. }
  2922. static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv)
  2923. {
  2924. u32 hotplug_irqs, hotplug, enabled_irqs;
  2925. enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bxt);
  2926. hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
  2927. bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
  2928. hotplug = I915_READ(PCH_PORT_HOTPLUG);
  2929. hotplug |= PORTC_HOTPLUG_ENABLE | PORTB_HOTPLUG_ENABLE |
  2930. PORTA_HOTPLUG_ENABLE;
  2931. DRM_DEBUG_KMS("Invert bit setting: hp_ctl:%x hp_port:%x\n",
  2932. hotplug, enabled_irqs);
  2933. hotplug &= ~BXT_DDI_HPD_INVERT_MASK;
  2934. /*
  2935. * For BXT invert bit has to be set based on AOB design
  2936. * for HPD detection logic, update it based on VBT fields.
  2937. */
  2938. if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) &&
  2939. intel_bios_is_port_hpd_inverted(dev_priv, PORT_A))
  2940. hotplug |= BXT_DDIA_HPD_INVERT;
  2941. if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) &&
  2942. intel_bios_is_port_hpd_inverted(dev_priv, PORT_B))
  2943. hotplug |= BXT_DDIB_HPD_INVERT;
  2944. if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) &&
  2945. intel_bios_is_port_hpd_inverted(dev_priv, PORT_C))
  2946. hotplug |= BXT_DDIC_HPD_INVERT;
  2947. I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
  2948. }
  2949. static void ibx_irq_postinstall(struct drm_device *dev)
  2950. {
  2951. struct drm_i915_private *dev_priv = dev->dev_private;
  2952. u32 mask;
  2953. if (HAS_PCH_NOP(dev))
  2954. return;
  2955. if (HAS_PCH_IBX(dev))
  2956. mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
  2957. else
  2958. mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
  2959. gen5_assert_iir_is_zero(dev_priv, SDEIIR);
  2960. I915_WRITE(SDEIMR, ~mask);
  2961. }
  2962. static void gen5_gt_irq_postinstall(struct drm_device *dev)
  2963. {
  2964. struct drm_i915_private *dev_priv = dev->dev_private;
  2965. u32 pm_irqs, gt_irqs;
  2966. pm_irqs = gt_irqs = 0;
  2967. dev_priv->gt_irq_mask = ~0;
  2968. if (HAS_L3_DPF(dev)) {
  2969. /* L3 parity interrupt is always unmasked. */
  2970. dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
  2971. gt_irqs |= GT_PARITY_ERROR(dev);
  2972. }
  2973. gt_irqs |= GT_RENDER_USER_INTERRUPT;
  2974. if (IS_GEN5(dev)) {
  2975. gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
  2976. ILK_BSD_USER_INTERRUPT;
  2977. } else {
  2978. gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
  2979. }
  2980. GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
  2981. if (INTEL_INFO(dev)->gen >= 6) {
  2982. /*
  2983. * RPS interrupts will get enabled/disabled on demand when RPS
  2984. * itself is enabled/disabled.
  2985. */
  2986. if (HAS_VEBOX(dev))
  2987. pm_irqs |= PM_VEBOX_USER_INTERRUPT;
  2988. dev_priv->pm_irq_mask = 0xffffffff;
  2989. GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs);
  2990. }
  2991. }
  2992. static int ironlake_irq_postinstall(struct drm_device *dev)
  2993. {
  2994. struct drm_i915_private *dev_priv = dev->dev_private;
  2995. u32 display_mask, extra_mask;
  2996. if (INTEL_INFO(dev)->gen >= 7) {
  2997. display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
  2998. DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
  2999. DE_PLANEB_FLIP_DONE_IVB |
  3000. DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
  3001. extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
  3002. DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
  3003. DE_DP_A_HOTPLUG_IVB);
  3004. } else {
  3005. display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
  3006. DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
  3007. DE_AUX_CHANNEL_A |
  3008. DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
  3009. DE_POISON);
  3010. extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
  3011. DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
  3012. DE_DP_A_HOTPLUG);
  3013. }
  3014. dev_priv->irq_mask = ~display_mask;
  3015. I915_WRITE(HWSTAM, 0xeffe);
  3016. ibx_irq_pre_postinstall(dev);
  3017. GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
  3018. gen5_gt_irq_postinstall(dev);
  3019. ibx_irq_postinstall(dev);
  3020. if (IS_IRONLAKE_M(dev)) {
  3021. /* Enable PCU event interrupts
  3022. *
  3023. * spinlocking not required here for correctness since interrupt
  3024. * setup is guaranteed to run in single-threaded context. But we
  3025. * need it to make the assert_spin_locked happy. */
  3026. spin_lock_irq(&dev_priv->irq_lock);
  3027. ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
  3028. spin_unlock_irq(&dev_priv->irq_lock);
  3029. }
  3030. return 0;
  3031. }
  3032. void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
  3033. {
  3034. assert_spin_locked(&dev_priv->irq_lock);
  3035. if (dev_priv->display_irqs_enabled)
  3036. return;
  3037. dev_priv->display_irqs_enabled = true;
  3038. if (intel_irqs_enabled(dev_priv)) {
  3039. vlv_display_irq_reset(dev_priv);
  3040. vlv_display_irq_postinstall(dev_priv);
  3041. }
  3042. }
  3043. void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
  3044. {
  3045. assert_spin_locked(&dev_priv->irq_lock);
  3046. if (!dev_priv->display_irqs_enabled)
  3047. return;
  3048. dev_priv->display_irqs_enabled = false;
  3049. if (intel_irqs_enabled(dev_priv))
  3050. vlv_display_irq_reset(dev_priv);
  3051. }
  3052. static int valleyview_irq_postinstall(struct drm_device *dev)
  3053. {
  3054. struct drm_i915_private *dev_priv = dev->dev_private;
  3055. gen5_gt_irq_postinstall(dev);
  3056. spin_lock_irq(&dev_priv->irq_lock);
  3057. if (dev_priv->display_irqs_enabled)
  3058. vlv_display_irq_postinstall(dev_priv);
  3059. spin_unlock_irq(&dev_priv->irq_lock);
  3060. I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
  3061. POSTING_READ(VLV_MASTER_IER);
  3062. return 0;
  3063. }
  3064. static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
  3065. {
  3066. /* These are interrupts we'll toggle with the ring mask register */
  3067. uint32_t gt_interrupts[] = {
  3068. GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
  3069. GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
  3070. GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
  3071. GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
  3072. GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
  3073. GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
  3074. GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
  3075. GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
  3076. 0,
  3077. GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
  3078. GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
  3079. };
  3080. if (HAS_L3_DPF(dev_priv))
  3081. gt_interrupts[0] |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
  3082. dev_priv->pm_irq_mask = 0xffffffff;
  3083. GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
  3084. GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
  3085. /*
  3086. * RPS interrupts will get enabled/disabled on demand when RPS itself
  3087. * is enabled/disabled.
  3088. */
  3089. GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_irq_mask, 0);
  3090. GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
  3091. }
  3092. static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
  3093. {
  3094. uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
  3095. uint32_t de_pipe_enables;
  3096. u32 de_port_masked = GEN8_AUX_CHANNEL_A;
  3097. u32 de_port_enables;
  3098. u32 de_misc_masked = GEN8_DE_MISC_GSE;
  3099. enum pipe pipe;
  3100. if (INTEL_INFO(dev_priv)->gen >= 9) {
  3101. de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE |
  3102. GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
  3103. de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
  3104. GEN9_AUX_CHANNEL_D;
  3105. if (IS_BROXTON(dev_priv))
  3106. de_port_masked |= BXT_DE_PORT_GMBUS;
  3107. } else {
  3108. de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE |
  3109. GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
  3110. }
  3111. de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
  3112. GEN8_PIPE_FIFO_UNDERRUN;
  3113. de_port_enables = de_port_masked;
  3114. if (IS_BROXTON(dev_priv))
  3115. de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
  3116. else if (IS_BROADWELL(dev_priv))
  3117. de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
  3118. dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
  3119. dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
  3120. dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
  3121. for_each_pipe(dev_priv, pipe)
  3122. if (intel_display_power_is_enabled(dev_priv,
  3123. POWER_DOMAIN_PIPE(pipe)))
  3124. GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
  3125. dev_priv->de_irq_mask[pipe],
  3126. de_pipe_enables);
  3127. GEN5_IRQ_INIT(GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
  3128. GEN5_IRQ_INIT(GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked);
  3129. }
  3130. static int gen8_irq_postinstall(struct drm_device *dev)
  3131. {
  3132. struct drm_i915_private *dev_priv = dev->dev_private;
  3133. if (HAS_PCH_SPLIT(dev))
  3134. ibx_irq_pre_postinstall(dev);
  3135. gen8_gt_irq_postinstall(dev_priv);
  3136. gen8_de_irq_postinstall(dev_priv);
  3137. if (HAS_PCH_SPLIT(dev))
  3138. ibx_irq_postinstall(dev);
  3139. I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
  3140. POSTING_READ(GEN8_MASTER_IRQ);
  3141. return 0;
  3142. }
  3143. static int cherryview_irq_postinstall(struct drm_device *dev)
  3144. {
  3145. struct drm_i915_private *dev_priv = dev->dev_private;
  3146. gen8_gt_irq_postinstall(dev_priv);
  3147. spin_lock_irq(&dev_priv->irq_lock);
  3148. if (dev_priv->display_irqs_enabled)
  3149. vlv_display_irq_postinstall(dev_priv);
  3150. spin_unlock_irq(&dev_priv->irq_lock);
  3151. I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
  3152. POSTING_READ(GEN8_MASTER_IRQ);
  3153. return 0;
  3154. }
  3155. static void gen8_irq_uninstall(struct drm_device *dev)
  3156. {
  3157. struct drm_i915_private *dev_priv = dev->dev_private;
  3158. if (!dev_priv)
  3159. return;
  3160. gen8_irq_reset(dev);
  3161. }
  3162. static void valleyview_irq_uninstall(struct drm_device *dev)
  3163. {
  3164. struct drm_i915_private *dev_priv = dev->dev_private;
  3165. if (!dev_priv)
  3166. return;
  3167. I915_WRITE(VLV_MASTER_IER, 0);
  3168. POSTING_READ(VLV_MASTER_IER);
  3169. gen5_gt_irq_reset(dev);
  3170. I915_WRITE(HWSTAM, 0xffffffff);
  3171. spin_lock_irq(&dev_priv->irq_lock);
  3172. if (dev_priv->display_irqs_enabled)
  3173. vlv_display_irq_reset(dev_priv);
  3174. spin_unlock_irq(&dev_priv->irq_lock);
  3175. }
  3176. static void cherryview_irq_uninstall(struct drm_device *dev)
  3177. {
  3178. struct drm_i915_private *dev_priv = dev->dev_private;
  3179. if (!dev_priv)
  3180. return;
  3181. I915_WRITE(GEN8_MASTER_IRQ, 0);
  3182. POSTING_READ(GEN8_MASTER_IRQ);
  3183. gen8_gt_irq_reset(dev_priv);
  3184. GEN5_IRQ_RESET(GEN8_PCU_);
  3185. spin_lock_irq(&dev_priv->irq_lock);
  3186. if (dev_priv->display_irqs_enabled)
  3187. vlv_display_irq_reset(dev_priv);
  3188. spin_unlock_irq(&dev_priv->irq_lock);
  3189. }
  3190. static void ironlake_irq_uninstall(struct drm_device *dev)
  3191. {
  3192. struct drm_i915_private *dev_priv = dev->dev_private;
  3193. if (!dev_priv)
  3194. return;
  3195. ironlake_irq_reset(dev);
  3196. }
  3197. static void i8xx_irq_preinstall(struct drm_device * dev)
  3198. {
  3199. struct drm_i915_private *dev_priv = dev->dev_private;
  3200. int pipe;
  3201. for_each_pipe(dev_priv, pipe)
  3202. I915_WRITE(PIPESTAT(pipe), 0);
  3203. I915_WRITE16(IMR, 0xffff);
  3204. I915_WRITE16(IER, 0x0);
  3205. POSTING_READ16(IER);
  3206. }
  3207. static int i8xx_irq_postinstall(struct drm_device *dev)
  3208. {
  3209. struct drm_i915_private *dev_priv = dev->dev_private;
  3210. I915_WRITE16(EMR,
  3211. ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
  3212. /* Unmask the interrupts that we always want on. */
  3213. dev_priv->irq_mask =
  3214. ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
  3215. I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
  3216. I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
  3217. I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
  3218. I915_WRITE16(IMR, dev_priv->irq_mask);
  3219. I915_WRITE16(IER,
  3220. I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
  3221. I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
  3222. I915_USER_INTERRUPT);
  3223. POSTING_READ16(IER);
  3224. /* Interrupt setup is already guaranteed to be single-threaded, this is
  3225. * just to make the assert_spin_locked check happy. */
  3226. spin_lock_irq(&dev_priv->irq_lock);
  3227. i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
  3228. i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
  3229. spin_unlock_irq(&dev_priv->irq_lock);
  3230. return 0;
  3231. }
  3232. /*
  3233. * Returns true when a page flip has completed.
  3234. */
  3235. static bool i8xx_handle_vblank(struct drm_i915_private *dev_priv,
  3236. int plane, int pipe, u32 iir)
  3237. {
  3238. u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
  3239. if (!intel_pipe_handle_vblank(dev_priv, pipe))
  3240. return false;
  3241. if ((iir & flip_pending) == 0)
  3242. goto check_page_flip;
  3243. /* We detect FlipDone by looking for the change in PendingFlip from '1'
  3244. * to '0' on the following vblank, i.e. IIR has the Pendingflip
  3245. * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
  3246. * the flip is completed (no longer pending). Since this doesn't raise
  3247. * an interrupt per se, we watch for the change at vblank.
  3248. */
  3249. if (I915_READ16(ISR) & flip_pending)
  3250. goto check_page_flip;
  3251. intel_finish_page_flip_cs(dev_priv, pipe);
  3252. return true;
  3253. check_page_flip:
  3254. intel_check_page_flip(dev_priv, pipe);
  3255. return false;
  3256. }
  3257. static irqreturn_t i8xx_irq_handler(int irq, void *arg)
  3258. {
  3259. struct drm_device *dev = arg;
  3260. struct drm_i915_private *dev_priv = dev->dev_private;
  3261. u16 iir, new_iir;
  3262. u32 pipe_stats[2];
  3263. int pipe;
  3264. u16 flip_mask =
  3265. I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
  3266. I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
  3267. irqreturn_t ret;
  3268. if (!intel_irqs_enabled(dev_priv))
  3269. return IRQ_NONE;
  3270. /* IRQs are synced during runtime_suspend, we don't require a wakeref */
  3271. disable_rpm_wakeref_asserts(dev_priv);
  3272. ret = IRQ_NONE;
  3273. iir = I915_READ16(IIR);
  3274. if (iir == 0)
  3275. goto out;
  3276. while (iir & ~flip_mask) {
  3277. /* Can't rely on pipestat interrupt bit in iir as it might
  3278. * have been cleared after the pipestat interrupt was received.
  3279. * It doesn't set the bit in iir again, but it still produces
  3280. * interrupts (for non-MSI).
  3281. */
  3282. spin_lock(&dev_priv->irq_lock);
  3283. if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
  3284. DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
  3285. for_each_pipe(dev_priv, pipe) {
  3286. i915_reg_t reg = PIPESTAT(pipe);
  3287. pipe_stats[pipe] = I915_READ(reg);
  3288. /*
  3289. * Clear the PIPE*STAT regs before the IIR
  3290. */
  3291. if (pipe_stats[pipe] & 0x8000ffff)
  3292. I915_WRITE(reg, pipe_stats[pipe]);
  3293. }
  3294. spin_unlock(&dev_priv->irq_lock);
  3295. I915_WRITE16(IIR, iir & ~flip_mask);
  3296. new_iir = I915_READ16(IIR); /* Flush posted writes */
  3297. if (iir & I915_USER_INTERRUPT)
  3298. notify_ring(&dev_priv->engine[RCS]);
  3299. for_each_pipe(dev_priv, pipe) {
  3300. int plane = pipe;
  3301. if (HAS_FBC(dev_priv))
  3302. plane = !plane;
  3303. if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
  3304. i8xx_handle_vblank(dev_priv, plane, pipe, iir))
  3305. flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
  3306. if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
  3307. i9xx_pipe_crc_irq_handler(dev_priv, pipe);
  3308. if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
  3309. intel_cpu_fifo_underrun_irq_handler(dev_priv,
  3310. pipe);
  3311. }
  3312. iir = new_iir;
  3313. }
  3314. ret = IRQ_HANDLED;
  3315. out:
  3316. enable_rpm_wakeref_asserts(dev_priv);
  3317. return ret;
  3318. }
  3319. static void i8xx_irq_uninstall(struct drm_device * dev)
  3320. {
  3321. struct drm_i915_private *dev_priv = dev->dev_private;
  3322. int pipe;
  3323. for_each_pipe(dev_priv, pipe) {
  3324. /* Clear enable bits; then clear status bits */
  3325. I915_WRITE(PIPESTAT(pipe), 0);
  3326. I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
  3327. }
  3328. I915_WRITE16(IMR, 0xffff);
  3329. I915_WRITE16(IER, 0x0);
  3330. I915_WRITE16(IIR, I915_READ16(IIR));
  3331. }
  3332. static void i915_irq_preinstall(struct drm_device * dev)
  3333. {
  3334. struct drm_i915_private *dev_priv = dev->dev_private;
  3335. int pipe;
  3336. if (I915_HAS_HOTPLUG(dev)) {
  3337. i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
  3338. I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
  3339. }
  3340. I915_WRITE16(HWSTAM, 0xeffe);
  3341. for_each_pipe(dev_priv, pipe)
  3342. I915_WRITE(PIPESTAT(pipe), 0);
  3343. I915_WRITE(IMR, 0xffffffff);
  3344. I915_WRITE(IER, 0x0);
  3345. POSTING_READ(IER);
  3346. }
  3347. static int i915_irq_postinstall(struct drm_device *dev)
  3348. {
  3349. struct drm_i915_private *dev_priv = dev->dev_private;
  3350. u32 enable_mask;
  3351. I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
  3352. /* Unmask the interrupts that we always want on. */
  3353. dev_priv->irq_mask =
  3354. ~(I915_ASLE_INTERRUPT |
  3355. I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
  3356. I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
  3357. I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
  3358. I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
  3359. enable_mask =
  3360. I915_ASLE_INTERRUPT |
  3361. I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
  3362. I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
  3363. I915_USER_INTERRUPT;
  3364. if (I915_HAS_HOTPLUG(dev)) {
  3365. i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
  3366. POSTING_READ(PORT_HOTPLUG_EN);
  3367. /* Enable in IER... */
  3368. enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
  3369. /* and unmask in IMR */
  3370. dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
  3371. }
  3372. I915_WRITE(IMR, dev_priv->irq_mask);
  3373. I915_WRITE(IER, enable_mask);
  3374. POSTING_READ(IER);
  3375. i915_enable_asle_pipestat(dev_priv);
  3376. /* Interrupt setup is already guaranteed to be single-threaded, this is
  3377. * just to make the assert_spin_locked check happy. */
  3378. spin_lock_irq(&dev_priv->irq_lock);
  3379. i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
  3380. i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
  3381. spin_unlock_irq(&dev_priv->irq_lock);
  3382. return 0;
  3383. }
  3384. /*
  3385. * Returns true when a page flip has completed.
  3386. */
  3387. static bool i915_handle_vblank(struct drm_i915_private *dev_priv,
  3388. int plane, int pipe, u32 iir)
  3389. {
  3390. u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
  3391. if (!intel_pipe_handle_vblank(dev_priv, pipe))
  3392. return false;
  3393. if ((iir & flip_pending) == 0)
  3394. goto check_page_flip;
  3395. /* We detect FlipDone by looking for the change in PendingFlip from '1'
  3396. * to '0' on the following vblank, i.e. IIR has the Pendingflip
  3397. * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
  3398. * the flip is completed (no longer pending). Since this doesn't raise
  3399. * an interrupt per se, we watch for the change at vblank.
  3400. */
  3401. if (I915_READ(ISR) & flip_pending)
  3402. goto check_page_flip;
  3403. intel_finish_page_flip_cs(dev_priv, pipe);
  3404. return true;
  3405. check_page_flip:
  3406. intel_check_page_flip(dev_priv, pipe);
  3407. return false;
  3408. }
  3409. static irqreturn_t i915_irq_handler(int irq, void *arg)
  3410. {
  3411. struct drm_device *dev = arg;
  3412. struct drm_i915_private *dev_priv = dev->dev_private;
  3413. u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
  3414. u32 flip_mask =
  3415. I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
  3416. I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
  3417. int pipe, ret = IRQ_NONE;
  3418. if (!intel_irqs_enabled(dev_priv))
  3419. return IRQ_NONE;
  3420. /* IRQs are synced during runtime_suspend, we don't require a wakeref */
  3421. disable_rpm_wakeref_asserts(dev_priv);
  3422. iir = I915_READ(IIR);
  3423. do {
  3424. bool irq_received = (iir & ~flip_mask) != 0;
  3425. bool blc_event = false;
  3426. /* Can't rely on pipestat interrupt bit in iir as it might
  3427. * have been cleared after the pipestat interrupt was received.
  3428. * It doesn't set the bit in iir again, but it still produces
  3429. * interrupts (for non-MSI).
  3430. */
  3431. spin_lock(&dev_priv->irq_lock);
  3432. if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
  3433. DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
  3434. for_each_pipe(dev_priv, pipe) {
  3435. i915_reg_t reg = PIPESTAT(pipe);
  3436. pipe_stats[pipe] = I915_READ(reg);
  3437. /* Clear the PIPE*STAT regs before the IIR */
  3438. if (pipe_stats[pipe] & 0x8000ffff) {
  3439. I915_WRITE(reg, pipe_stats[pipe]);
  3440. irq_received = true;
  3441. }
  3442. }
  3443. spin_unlock(&dev_priv->irq_lock);
  3444. if (!irq_received)
  3445. break;
  3446. /* Consume port. Then clear IIR or we'll miss events */
  3447. if (I915_HAS_HOTPLUG(dev_priv) &&
  3448. iir & I915_DISPLAY_PORT_INTERRUPT) {
  3449. u32 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
  3450. if (hotplug_status)
  3451. i9xx_hpd_irq_handler(dev_priv, hotplug_status);
  3452. }
  3453. I915_WRITE(IIR, iir & ~flip_mask);
  3454. new_iir = I915_READ(IIR); /* Flush posted writes */
  3455. if (iir & I915_USER_INTERRUPT)
  3456. notify_ring(&dev_priv->engine[RCS]);
  3457. for_each_pipe(dev_priv, pipe) {
  3458. int plane = pipe;
  3459. if (HAS_FBC(dev_priv))
  3460. plane = !plane;
  3461. if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
  3462. i915_handle_vblank(dev_priv, plane, pipe, iir))
  3463. flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
  3464. if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
  3465. blc_event = true;
  3466. if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
  3467. i9xx_pipe_crc_irq_handler(dev_priv, pipe);
  3468. if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
  3469. intel_cpu_fifo_underrun_irq_handler(dev_priv,
  3470. pipe);
  3471. }
  3472. if (blc_event || (iir & I915_ASLE_INTERRUPT))
  3473. intel_opregion_asle_intr(dev_priv);
  3474. /* With MSI, interrupts are only generated when iir
  3475. * transitions from zero to nonzero. If another bit got
  3476. * set while we were handling the existing iir bits, then
  3477. * we would never get another interrupt.
  3478. *
  3479. * This is fine on non-MSI as well, as if we hit this path
  3480. * we avoid exiting the interrupt handler only to generate
  3481. * another one.
  3482. *
  3483. * Note that for MSI this could cause a stray interrupt report
  3484. * if an interrupt landed in the time between writing IIR and
  3485. * the posting read. This should be rare enough to never
  3486. * trigger the 99% of 100,000 interrupts test for disabling
  3487. * stray interrupts.
  3488. */
  3489. ret = IRQ_HANDLED;
  3490. iir = new_iir;
  3491. } while (iir & ~flip_mask);
  3492. enable_rpm_wakeref_asserts(dev_priv);
  3493. return ret;
  3494. }
  3495. static void i915_irq_uninstall(struct drm_device * dev)
  3496. {
  3497. struct drm_i915_private *dev_priv = dev->dev_private;
  3498. int pipe;
  3499. if (I915_HAS_HOTPLUG(dev)) {
  3500. i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
  3501. I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
  3502. }
  3503. I915_WRITE16(HWSTAM, 0xffff);
  3504. for_each_pipe(dev_priv, pipe) {
  3505. /* Clear enable bits; then clear status bits */
  3506. I915_WRITE(PIPESTAT(pipe), 0);
  3507. I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
  3508. }
  3509. I915_WRITE(IMR, 0xffffffff);
  3510. I915_WRITE(IER, 0x0);
  3511. I915_WRITE(IIR, I915_READ(IIR));
  3512. }
  3513. static void i965_irq_preinstall(struct drm_device * dev)
  3514. {
  3515. struct drm_i915_private *dev_priv = dev->dev_private;
  3516. int pipe;
  3517. i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
  3518. I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
  3519. I915_WRITE(HWSTAM, 0xeffe);
  3520. for_each_pipe(dev_priv, pipe)
  3521. I915_WRITE(PIPESTAT(pipe), 0);
  3522. I915_WRITE(IMR, 0xffffffff);
  3523. I915_WRITE(IER, 0x0);
  3524. POSTING_READ(IER);
  3525. }
  3526. static int i965_irq_postinstall(struct drm_device *dev)
  3527. {
  3528. struct drm_i915_private *dev_priv = dev->dev_private;
  3529. u32 enable_mask;
  3530. u32 error_mask;
  3531. /* Unmask the interrupts that we always want on. */
  3532. dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
  3533. I915_DISPLAY_PORT_INTERRUPT |
  3534. I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
  3535. I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
  3536. I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
  3537. I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
  3538. I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
  3539. enable_mask = ~dev_priv->irq_mask;
  3540. enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
  3541. I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
  3542. enable_mask |= I915_USER_INTERRUPT;
  3543. if (IS_G4X(dev_priv))
  3544. enable_mask |= I915_BSD_USER_INTERRUPT;
  3545. /* Interrupt setup is already guaranteed to be single-threaded, this is
  3546. * just to make the assert_spin_locked check happy. */
  3547. spin_lock_irq(&dev_priv->irq_lock);
  3548. i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
  3549. i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
  3550. i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
  3551. spin_unlock_irq(&dev_priv->irq_lock);
  3552. /*
  3553. * Enable some error detection, note the instruction error mask
  3554. * bit is reserved, so we leave it masked.
  3555. */
  3556. if (IS_G4X(dev_priv)) {
  3557. error_mask = ~(GM45_ERROR_PAGE_TABLE |
  3558. GM45_ERROR_MEM_PRIV |
  3559. GM45_ERROR_CP_PRIV |
  3560. I915_ERROR_MEMORY_REFRESH);
  3561. } else {
  3562. error_mask = ~(I915_ERROR_PAGE_TABLE |
  3563. I915_ERROR_MEMORY_REFRESH);
  3564. }
  3565. I915_WRITE(EMR, error_mask);
  3566. I915_WRITE(IMR, dev_priv->irq_mask);
  3567. I915_WRITE(IER, enable_mask);
  3568. POSTING_READ(IER);
  3569. i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
  3570. POSTING_READ(PORT_HOTPLUG_EN);
  3571. i915_enable_asle_pipestat(dev_priv);
  3572. return 0;
  3573. }
  3574. static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv)
  3575. {
  3576. u32 hotplug_en;
  3577. assert_spin_locked(&dev_priv->irq_lock);
  3578. /* Note HDMI and DP share hotplug bits */
  3579. /* enable bits are the same for all generations */
  3580. hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915);
  3581. /* Programming the CRT detection parameters tends
  3582. to generate a spurious hotplug event about three
  3583. seconds later. So just do it once.
  3584. */
  3585. if (IS_G4X(dev_priv))
  3586. hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
  3587. hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
  3588. /* Ignore TV since it's buggy */
  3589. i915_hotplug_interrupt_update_locked(dev_priv,
  3590. HOTPLUG_INT_EN_MASK |
  3591. CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
  3592. CRT_HOTPLUG_ACTIVATION_PERIOD_64,
  3593. hotplug_en);
  3594. }
  3595. static irqreturn_t i965_irq_handler(int irq, void *arg)
  3596. {
  3597. struct drm_device *dev = arg;
  3598. struct drm_i915_private *dev_priv = dev->dev_private;
  3599. u32 iir, new_iir;
  3600. u32 pipe_stats[I915_MAX_PIPES];
  3601. int ret = IRQ_NONE, pipe;
  3602. u32 flip_mask =
  3603. I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
  3604. I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
  3605. if (!intel_irqs_enabled(dev_priv))
  3606. return IRQ_NONE;
  3607. /* IRQs are synced during runtime_suspend, we don't require a wakeref */
  3608. disable_rpm_wakeref_asserts(dev_priv);
  3609. iir = I915_READ(IIR);
  3610. for (;;) {
  3611. bool irq_received = (iir & ~flip_mask) != 0;
  3612. bool blc_event = false;
  3613. /* Can't rely on pipestat interrupt bit in iir as it might
  3614. * have been cleared after the pipestat interrupt was received.
  3615. * It doesn't set the bit in iir again, but it still produces
  3616. * interrupts (for non-MSI).
  3617. */
  3618. spin_lock(&dev_priv->irq_lock);
  3619. if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
  3620. DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
  3621. for_each_pipe(dev_priv, pipe) {
  3622. i915_reg_t reg = PIPESTAT(pipe);
  3623. pipe_stats[pipe] = I915_READ(reg);
  3624. /*
  3625. * Clear the PIPE*STAT regs before the IIR
  3626. */
  3627. if (pipe_stats[pipe] & 0x8000ffff) {
  3628. I915_WRITE(reg, pipe_stats[pipe]);
  3629. irq_received = true;
  3630. }
  3631. }
  3632. spin_unlock(&dev_priv->irq_lock);
  3633. if (!irq_received)
  3634. break;
  3635. ret = IRQ_HANDLED;
  3636. /* Consume port. Then clear IIR or we'll miss events */
  3637. if (iir & I915_DISPLAY_PORT_INTERRUPT) {
  3638. u32 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
  3639. if (hotplug_status)
  3640. i9xx_hpd_irq_handler(dev_priv, hotplug_status);
  3641. }
  3642. I915_WRITE(IIR, iir & ~flip_mask);
  3643. new_iir = I915_READ(IIR); /* Flush posted writes */
  3644. if (iir & I915_USER_INTERRUPT)
  3645. notify_ring(&dev_priv->engine[RCS]);
  3646. if (iir & I915_BSD_USER_INTERRUPT)
  3647. notify_ring(&dev_priv->engine[VCS]);
  3648. for_each_pipe(dev_priv, pipe) {
  3649. if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
  3650. i915_handle_vblank(dev_priv, pipe, pipe, iir))
  3651. flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
  3652. if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
  3653. blc_event = true;
  3654. if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
  3655. i9xx_pipe_crc_irq_handler(dev_priv, pipe);
  3656. if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
  3657. intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
  3658. }
  3659. if (blc_event || (iir & I915_ASLE_INTERRUPT))
  3660. intel_opregion_asle_intr(dev_priv);
  3661. if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
  3662. gmbus_irq_handler(dev_priv);
  3663. /* With MSI, interrupts are only generated when iir
  3664. * transitions from zero to nonzero. If another bit got
  3665. * set while we were handling the existing iir bits, then
  3666. * we would never get another interrupt.
  3667. *
  3668. * This is fine on non-MSI as well, as if we hit this path
  3669. * we avoid exiting the interrupt handler only to generate
  3670. * another one.
  3671. *
  3672. * Note that for MSI this could cause a stray interrupt report
  3673. * if an interrupt landed in the time between writing IIR and
  3674. * the posting read. This should be rare enough to never
  3675. * trigger the 99% of 100,000 interrupts test for disabling
  3676. * stray interrupts.
  3677. */
  3678. iir = new_iir;
  3679. }
  3680. enable_rpm_wakeref_asserts(dev_priv);
  3681. return ret;
  3682. }
  3683. static void i965_irq_uninstall(struct drm_device * dev)
  3684. {
  3685. struct drm_i915_private *dev_priv = dev->dev_private;
  3686. int pipe;
  3687. if (!dev_priv)
  3688. return;
  3689. i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
  3690. I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
  3691. I915_WRITE(HWSTAM, 0xffffffff);
  3692. for_each_pipe(dev_priv, pipe)
  3693. I915_WRITE(PIPESTAT(pipe), 0);
  3694. I915_WRITE(IMR, 0xffffffff);
  3695. I915_WRITE(IER, 0x0);
  3696. for_each_pipe(dev_priv, pipe)
  3697. I915_WRITE(PIPESTAT(pipe),
  3698. I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
  3699. I915_WRITE(IIR, I915_READ(IIR));
  3700. }
  3701. /**
  3702. * intel_irq_init - initializes irq support
  3703. * @dev_priv: i915 device instance
  3704. *
  3705. * This function initializes all the irq support including work items, timers
  3706. * and all the vtables. It does not setup the interrupt itself though.
  3707. */
  3708. void intel_irq_init(struct drm_i915_private *dev_priv)
  3709. {
  3710. struct drm_device *dev = dev_priv->dev;
  3711. intel_hpd_init_work(dev_priv);
  3712. INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
  3713. INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
  3714. /* Let's track the enabled rps events */
  3715. if (IS_VALLEYVIEW(dev_priv))
  3716. /* WaGsvRC0ResidencyMethod:vlv */
  3717. dev_priv->pm_rps_events = GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED;
  3718. else
  3719. dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
  3720. dev_priv->rps.pm_intr_keep = 0;
  3721. /*
  3722. * SNB,IVB can while VLV,CHV may hard hang on looping batchbuffer
  3723. * if GEN6_PM_UP_EI_EXPIRED is masked.
  3724. *
  3725. * TODO: verify if this can be reproduced on VLV,CHV.
  3726. */
  3727. if (INTEL_INFO(dev_priv)->gen <= 7 && !IS_HASWELL(dev_priv))
  3728. dev_priv->rps.pm_intr_keep |= GEN6_PM_RP_UP_EI_EXPIRED;
  3729. if (INTEL_INFO(dev_priv)->gen >= 8)
  3730. dev_priv->rps.pm_intr_keep |= GEN8_PMINTR_REDIRECT_TO_NON_DISP;
  3731. INIT_DELAYED_WORK(&dev_priv->gpu_error.hangcheck_work,
  3732. i915_hangcheck_elapsed);
  3733. if (IS_GEN2(dev_priv)) {
  3734. dev->max_vblank_count = 0;
  3735. dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
  3736. } else if (IS_G4X(dev_priv) || INTEL_INFO(dev_priv)->gen >= 5) {
  3737. dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
  3738. dev->driver->get_vblank_counter = g4x_get_vblank_counter;
  3739. } else {
  3740. dev->driver->get_vblank_counter = i915_get_vblank_counter;
  3741. dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
  3742. }
  3743. /*
  3744. * Opt out of the vblank disable timer on everything except gen2.
  3745. * Gen2 doesn't have a hardware frame counter and so depends on
  3746. * vblank interrupts to produce sane vblank seuquence numbers.
  3747. */
  3748. if (!IS_GEN2(dev_priv))
  3749. dev->vblank_disable_immediate = true;
  3750. dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
  3751. dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
  3752. if (IS_CHERRYVIEW(dev_priv)) {
  3753. dev->driver->irq_handler = cherryview_irq_handler;
  3754. dev->driver->irq_preinstall = cherryview_irq_preinstall;
  3755. dev->driver->irq_postinstall = cherryview_irq_postinstall;
  3756. dev->driver->irq_uninstall = cherryview_irq_uninstall;
  3757. dev->driver->enable_vblank = valleyview_enable_vblank;
  3758. dev->driver->disable_vblank = valleyview_disable_vblank;
  3759. dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
  3760. } else if (IS_VALLEYVIEW(dev_priv)) {
  3761. dev->driver->irq_handler = valleyview_irq_handler;
  3762. dev->driver->irq_preinstall = valleyview_irq_preinstall;
  3763. dev->driver->irq_postinstall = valleyview_irq_postinstall;
  3764. dev->driver->irq_uninstall = valleyview_irq_uninstall;
  3765. dev->driver->enable_vblank = valleyview_enable_vblank;
  3766. dev->driver->disable_vblank = valleyview_disable_vblank;
  3767. dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
  3768. } else if (INTEL_INFO(dev_priv)->gen >= 8) {
  3769. dev->driver->irq_handler = gen8_irq_handler;
  3770. dev->driver->irq_preinstall = gen8_irq_reset;
  3771. dev->driver->irq_postinstall = gen8_irq_postinstall;
  3772. dev->driver->irq_uninstall = gen8_irq_uninstall;
  3773. dev->driver->enable_vblank = gen8_enable_vblank;
  3774. dev->driver->disable_vblank = gen8_disable_vblank;
  3775. if (IS_BROXTON(dev))
  3776. dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
  3777. else if (HAS_PCH_SPT(dev))
  3778. dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
  3779. else
  3780. dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
  3781. } else if (HAS_PCH_SPLIT(dev)) {
  3782. dev->driver->irq_handler = ironlake_irq_handler;
  3783. dev->driver->irq_preinstall = ironlake_irq_reset;
  3784. dev->driver->irq_postinstall = ironlake_irq_postinstall;
  3785. dev->driver->irq_uninstall = ironlake_irq_uninstall;
  3786. dev->driver->enable_vblank = ironlake_enable_vblank;
  3787. dev->driver->disable_vblank = ironlake_disable_vblank;
  3788. dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
  3789. } else {
  3790. if (IS_GEN2(dev_priv)) {
  3791. dev->driver->irq_preinstall = i8xx_irq_preinstall;
  3792. dev->driver->irq_postinstall = i8xx_irq_postinstall;
  3793. dev->driver->irq_handler = i8xx_irq_handler;
  3794. dev->driver->irq_uninstall = i8xx_irq_uninstall;
  3795. } else if (IS_GEN3(dev_priv)) {
  3796. dev->driver->irq_preinstall = i915_irq_preinstall;
  3797. dev->driver->irq_postinstall = i915_irq_postinstall;
  3798. dev->driver->irq_uninstall = i915_irq_uninstall;
  3799. dev->driver->irq_handler = i915_irq_handler;
  3800. } else {
  3801. dev->driver->irq_preinstall = i965_irq_preinstall;
  3802. dev->driver->irq_postinstall = i965_irq_postinstall;
  3803. dev->driver->irq_uninstall = i965_irq_uninstall;
  3804. dev->driver->irq_handler = i965_irq_handler;
  3805. }
  3806. if (I915_HAS_HOTPLUG(dev_priv))
  3807. dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
  3808. dev->driver->enable_vblank = i915_enable_vblank;
  3809. dev->driver->disable_vblank = i915_disable_vblank;
  3810. }
  3811. }
  3812. /**
  3813. * intel_irq_install - enables the hardware interrupt
  3814. * @dev_priv: i915 device instance
  3815. *
  3816. * This function enables the hardware interrupt handling, but leaves the hotplug
  3817. * handling still disabled. It is called after intel_irq_init().
  3818. *
  3819. * In the driver load and resume code we need working interrupts in a few places
  3820. * but don't want to deal with the hassle of concurrent probe and hotplug
  3821. * workers. Hence the split into this two-stage approach.
  3822. */
  3823. int intel_irq_install(struct drm_i915_private *dev_priv)
  3824. {
  3825. /*
  3826. * We enable some interrupt sources in our postinstall hooks, so mark
  3827. * interrupts as enabled _before_ actually enabling them to avoid
  3828. * special cases in our ordering checks.
  3829. */
  3830. dev_priv->pm.irqs_enabled = true;
  3831. return drm_irq_install(dev_priv->dev, dev_priv->dev->pdev->irq);
  3832. }
  3833. /**
  3834. * intel_irq_uninstall - finilizes all irq handling
  3835. * @dev_priv: i915 device instance
  3836. *
  3837. * This stops interrupt and hotplug handling and unregisters and frees all
  3838. * resources acquired in the init functions.
  3839. */
  3840. void intel_irq_uninstall(struct drm_i915_private *dev_priv)
  3841. {
  3842. drm_irq_uninstall(dev_priv->dev);
  3843. intel_hpd_cancel_work(dev_priv);
  3844. dev_priv->pm.irqs_enabled = false;
  3845. }
  3846. /**
  3847. * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
  3848. * @dev_priv: i915 device instance
  3849. *
  3850. * This function is used to disable interrupts at runtime, both in the runtime
  3851. * pm and the system suspend/resume code.
  3852. */
  3853. void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
  3854. {
  3855. dev_priv->dev->driver->irq_uninstall(dev_priv->dev);
  3856. dev_priv->pm.irqs_enabled = false;
  3857. synchronize_irq(dev_priv->dev->irq);
  3858. }
  3859. /**
  3860. * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
  3861. * @dev_priv: i915 device instance
  3862. *
  3863. * This function is used to enable interrupts at runtime, both in the runtime
  3864. * pm and the system suspend/resume code.
  3865. */
  3866. void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
  3867. {
  3868. dev_priv->pm.irqs_enabled = true;
  3869. dev_priv->dev->driver->irq_preinstall(dev_priv->dev);
  3870. dev_priv->dev->driver->irq_postinstall(dev_priv->dev);
  3871. }