i915_debugfs.c 151 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. * Keith Packard <keithp@keithp.com>
  26. *
  27. */
  28. #include <linux/seq_file.h>
  29. #include <linux/circ_buf.h>
  30. #include <linux/ctype.h>
  31. #include <linux/debugfs.h>
  32. #include <linux/slab.h>
  33. #include <linux/export.h>
  34. #include <linux/list_sort.h>
  35. #include <asm/msr-index.h>
  36. #include <drm/drmP.h>
  37. #include "intel_drv.h"
  38. #include "intel_ringbuffer.h"
  39. #include <drm/i915_drm.h>
  40. #include "i915_drv.h"
  41. enum {
  42. ACTIVE_LIST,
  43. INACTIVE_LIST,
  44. PINNED_LIST,
  45. };
  46. /* As the drm_debugfs_init() routines are called before dev->dev_private is
  47. * allocated we need to hook into the minor for release. */
  48. static int
  49. drm_add_fake_info_node(struct drm_minor *minor,
  50. struct dentry *ent,
  51. const void *key)
  52. {
  53. struct drm_info_node *node;
  54. node = kmalloc(sizeof(*node), GFP_KERNEL);
  55. if (node == NULL) {
  56. debugfs_remove(ent);
  57. return -ENOMEM;
  58. }
  59. node->minor = minor;
  60. node->dent = ent;
  61. node->info_ent = (void *) key;
  62. mutex_lock(&minor->debugfs_lock);
  63. list_add(&node->list, &minor->debugfs_list);
  64. mutex_unlock(&minor->debugfs_lock);
  65. return 0;
  66. }
  67. static int i915_capabilities(struct seq_file *m, void *data)
  68. {
  69. struct drm_info_node *node = m->private;
  70. struct drm_device *dev = node->minor->dev;
  71. const struct intel_device_info *info = INTEL_INFO(dev);
  72. seq_printf(m, "gen: %d\n", info->gen);
  73. seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev));
  74. #define PRINT_FLAG(x) seq_printf(m, #x ": %s\n", yesno(info->x))
  75. #define SEP_SEMICOLON ;
  76. DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG, SEP_SEMICOLON);
  77. #undef PRINT_FLAG
  78. #undef SEP_SEMICOLON
  79. return 0;
  80. }
  81. static char get_active_flag(struct drm_i915_gem_object *obj)
  82. {
  83. return obj->active ? '*' : ' ';
  84. }
  85. static char get_pin_flag(struct drm_i915_gem_object *obj)
  86. {
  87. return obj->pin_display ? 'p' : ' ';
  88. }
  89. static char get_tiling_flag(struct drm_i915_gem_object *obj)
  90. {
  91. switch (obj->tiling_mode) {
  92. default:
  93. case I915_TILING_NONE: return ' ';
  94. case I915_TILING_X: return 'X';
  95. case I915_TILING_Y: return 'Y';
  96. }
  97. }
  98. static char get_global_flag(struct drm_i915_gem_object *obj)
  99. {
  100. return i915_gem_obj_to_ggtt(obj) ? 'g' : ' ';
  101. }
  102. static char get_pin_mapped_flag(struct drm_i915_gem_object *obj)
  103. {
  104. return obj->mapping ? 'M' : ' ';
  105. }
  106. static u64 i915_gem_obj_total_ggtt_size(struct drm_i915_gem_object *obj)
  107. {
  108. u64 size = 0;
  109. struct i915_vma *vma;
  110. list_for_each_entry(vma, &obj->vma_list, obj_link) {
  111. if (vma->is_ggtt && drm_mm_node_allocated(&vma->node))
  112. size += vma->node.size;
  113. }
  114. return size;
  115. }
  116. static void
  117. describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
  118. {
  119. struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
  120. struct intel_engine_cs *engine;
  121. struct i915_vma *vma;
  122. int pin_count = 0;
  123. enum intel_engine_id id;
  124. lockdep_assert_held(&obj->base.dev->struct_mutex);
  125. seq_printf(m, "%pK: %c%c%c%c%c %8zdKiB %02x %02x [ ",
  126. &obj->base,
  127. get_active_flag(obj),
  128. get_pin_flag(obj),
  129. get_tiling_flag(obj),
  130. get_global_flag(obj),
  131. get_pin_mapped_flag(obj),
  132. obj->base.size / 1024,
  133. obj->base.read_domains,
  134. obj->base.write_domain);
  135. for_each_engine_id(engine, dev_priv, id)
  136. seq_printf(m, "%x ",
  137. i915_gem_request_get_seqno(obj->last_read_req[id]));
  138. seq_printf(m, "] %x %x%s%s%s",
  139. i915_gem_request_get_seqno(obj->last_write_req),
  140. i915_gem_request_get_seqno(obj->last_fenced_req),
  141. i915_cache_level_str(to_i915(obj->base.dev), obj->cache_level),
  142. obj->dirty ? " dirty" : "",
  143. obj->madv == I915_MADV_DONTNEED ? " purgeable" : "");
  144. if (obj->base.name)
  145. seq_printf(m, " (name: %d)", obj->base.name);
  146. list_for_each_entry(vma, &obj->vma_list, obj_link) {
  147. if (vma->pin_count > 0)
  148. pin_count++;
  149. }
  150. seq_printf(m, " (pinned x %d)", pin_count);
  151. if (obj->pin_display)
  152. seq_printf(m, " (display)");
  153. if (obj->fence_reg != I915_FENCE_REG_NONE)
  154. seq_printf(m, " (fence: %d)", obj->fence_reg);
  155. list_for_each_entry(vma, &obj->vma_list, obj_link) {
  156. seq_printf(m, " (%sgtt offset: %08llx, size: %08llx",
  157. vma->is_ggtt ? "g" : "pp",
  158. vma->node.start, vma->node.size);
  159. if (vma->is_ggtt)
  160. seq_printf(m, ", type: %u", vma->ggtt_view.type);
  161. seq_puts(m, ")");
  162. }
  163. if (obj->stolen)
  164. seq_printf(m, " (stolen: %08llx)", obj->stolen->start);
  165. if (obj->pin_display || obj->fault_mappable) {
  166. char s[3], *t = s;
  167. if (obj->pin_display)
  168. *t++ = 'p';
  169. if (obj->fault_mappable)
  170. *t++ = 'f';
  171. *t = '\0';
  172. seq_printf(m, " (%s mappable)", s);
  173. }
  174. if (obj->last_write_req != NULL)
  175. seq_printf(m, " (%s)",
  176. i915_gem_request_get_engine(obj->last_write_req)->name);
  177. if (obj->frontbuffer_bits)
  178. seq_printf(m, " (frontbuffer: 0x%03x)", obj->frontbuffer_bits);
  179. }
  180. static int i915_gem_object_list_info(struct seq_file *m, void *data)
  181. {
  182. struct drm_info_node *node = m->private;
  183. uintptr_t list = (uintptr_t) node->info_ent->data;
  184. struct list_head *head;
  185. struct drm_device *dev = node->minor->dev;
  186. struct drm_i915_private *dev_priv = to_i915(dev);
  187. struct i915_ggtt *ggtt = &dev_priv->ggtt;
  188. struct i915_vma *vma;
  189. u64 total_obj_size, total_gtt_size;
  190. int count, ret;
  191. ret = mutex_lock_interruptible(&dev->struct_mutex);
  192. if (ret)
  193. return ret;
  194. /* FIXME: the user of this interface might want more than just GGTT */
  195. switch (list) {
  196. case ACTIVE_LIST:
  197. seq_puts(m, "Active:\n");
  198. head = &ggtt->base.active_list;
  199. break;
  200. case INACTIVE_LIST:
  201. seq_puts(m, "Inactive:\n");
  202. head = &ggtt->base.inactive_list;
  203. break;
  204. default:
  205. mutex_unlock(&dev->struct_mutex);
  206. return -EINVAL;
  207. }
  208. total_obj_size = total_gtt_size = count = 0;
  209. list_for_each_entry(vma, head, vm_link) {
  210. seq_printf(m, " ");
  211. describe_obj(m, vma->obj);
  212. seq_printf(m, "\n");
  213. total_obj_size += vma->obj->base.size;
  214. total_gtt_size += vma->node.size;
  215. count++;
  216. }
  217. mutex_unlock(&dev->struct_mutex);
  218. seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
  219. count, total_obj_size, total_gtt_size);
  220. return 0;
  221. }
  222. static int obj_rank_by_stolen(void *priv,
  223. struct list_head *A, struct list_head *B)
  224. {
  225. struct drm_i915_gem_object *a =
  226. container_of(A, struct drm_i915_gem_object, obj_exec_link);
  227. struct drm_i915_gem_object *b =
  228. container_of(B, struct drm_i915_gem_object, obj_exec_link);
  229. if (a->stolen->start < b->stolen->start)
  230. return -1;
  231. if (a->stolen->start > b->stolen->start)
  232. return 1;
  233. return 0;
  234. }
  235. static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
  236. {
  237. struct drm_info_node *node = m->private;
  238. struct drm_device *dev = node->minor->dev;
  239. struct drm_i915_private *dev_priv = dev->dev_private;
  240. struct drm_i915_gem_object *obj;
  241. u64 total_obj_size, total_gtt_size;
  242. LIST_HEAD(stolen);
  243. int count, ret;
  244. ret = mutex_lock_interruptible(&dev->struct_mutex);
  245. if (ret)
  246. return ret;
  247. total_obj_size = total_gtt_size = count = 0;
  248. list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
  249. if (obj->stolen == NULL)
  250. continue;
  251. list_add(&obj->obj_exec_link, &stolen);
  252. total_obj_size += obj->base.size;
  253. total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
  254. count++;
  255. }
  256. list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
  257. if (obj->stolen == NULL)
  258. continue;
  259. list_add(&obj->obj_exec_link, &stolen);
  260. total_obj_size += obj->base.size;
  261. count++;
  262. }
  263. list_sort(NULL, &stolen, obj_rank_by_stolen);
  264. seq_puts(m, "Stolen:\n");
  265. while (!list_empty(&stolen)) {
  266. obj = list_first_entry(&stolen, typeof(*obj), obj_exec_link);
  267. seq_puts(m, " ");
  268. describe_obj(m, obj);
  269. seq_putc(m, '\n');
  270. list_del_init(&obj->obj_exec_link);
  271. }
  272. mutex_unlock(&dev->struct_mutex);
  273. seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
  274. count, total_obj_size, total_gtt_size);
  275. return 0;
  276. }
  277. #define count_objects(list, member) do { \
  278. list_for_each_entry(obj, list, member) { \
  279. size += i915_gem_obj_total_ggtt_size(obj); \
  280. ++count; \
  281. if (obj->map_and_fenceable) { \
  282. mappable_size += i915_gem_obj_ggtt_size(obj); \
  283. ++mappable_count; \
  284. } \
  285. } \
  286. } while (0)
  287. struct file_stats {
  288. struct drm_i915_file_private *file_priv;
  289. unsigned long count;
  290. u64 total, unbound;
  291. u64 global, shared;
  292. u64 active, inactive;
  293. };
  294. static int per_file_stats(int id, void *ptr, void *data)
  295. {
  296. struct drm_i915_gem_object *obj = ptr;
  297. struct file_stats *stats = data;
  298. struct i915_vma *vma;
  299. stats->count++;
  300. stats->total += obj->base.size;
  301. if (obj->base.name || obj->base.dma_buf)
  302. stats->shared += obj->base.size;
  303. if (USES_FULL_PPGTT(obj->base.dev)) {
  304. list_for_each_entry(vma, &obj->vma_list, obj_link) {
  305. struct i915_hw_ppgtt *ppgtt;
  306. if (!drm_mm_node_allocated(&vma->node))
  307. continue;
  308. if (vma->is_ggtt) {
  309. stats->global += obj->base.size;
  310. continue;
  311. }
  312. ppgtt = container_of(vma->vm, struct i915_hw_ppgtt, base);
  313. if (ppgtt->file_priv != stats->file_priv)
  314. continue;
  315. if (obj->active) /* XXX per-vma statistic */
  316. stats->active += obj->base.size;
  317. else
  318. stats->inactive += obj->base.size;
  319. return 0;
  320. }
  321. } else {
  322. if (i915_gem_obj_ggtt_bound(obj)) {
  323. stats->global += obj->base.size;
  324. if (obj->active)
  325. stats->active += obj->base.size;
  326. else
  327. stats->inactive += obj->base.size;
  328. return 0;
  329. }
  330. }
  331. if (!list_empty(&obj->global_list))
  332. stats->unbound += obj->base.size;
  333. return 0;
  334. }
  335. #define print_file_stats(m, name, stats) do { \
  336. if (stats.count) \
  337. seq_printf(m, "%s: %lu objects, %llu bytes (%llu active, %llu inactive, %llu global, %llu shared, %llu unbound)\n", \
  338. name, \
  339. stats.count, \
  340. stats.total, \
  341. stats.active, \
  342. stats.inactive, \
  343. stats.global, \
  344. stats.shared, \
  345. stats.unbound); \
  346. } while (0)
  347. static void print_batch_pool_stats(struct seq_file *m,
  348. struct drm_i915_private *dev_priv)
  349. {
  350. struct drm_i915_gem_object *obj;
  351. struct file_stats stats;
  352. struct intel_engine_cs *engine;
  353. int j;
  354. memset(&stats, 0, sizeof(stats));
  355. for_each_engine(engine, dev_priv) {
  356. for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
  357. list_for_each_entry(obj,
  358. &engine->batch_pool.cache_list[j],
  359. batch_pool_link)
  360. per_file_stats(0, obj, &stats);
  361. }
  362. }
  363. print_file_stats(m, "[k]batch pool", stats);
  364. }
  365. static int per_file_ctx_stats(int id, void *ptr, void *data)
  366. {
  367. struct i915_gem_context *ctx = ptr;
  368. int n;
  369. for (n = 0; n < ARRAY_SIZE(ctx->engine); n++) {
  370. if (ctx->engine[n].state)
  371. per_file_stats(0, ctx->engine[n].state, data);
  372. if (ctx->engine[n].ringbuf)
  373. per_file_stats(0, ctx->engine[n].ringbuf->obj, data);
  374. }
  375. return 0;
  376. }
  377. static void print_context_stats(struct seq_file *m,
  378. struct drm_i915_private *dev_priv)
  379. {
  380. struct file_stats stats;
  381. struct drm_file *file;
  382. memset(&stats, 0, sizeof(stats));
  383. mutex_lock(&dev_priv->dev->struct_mutex);
  384. if (dev_priv->kernel_context)
  385. per_file_ctx_stats(0, dev_priv->kernel_context, &stats);
  386. list_for_each_entry(file, &dev_priv->dev->filelist, lhead) {
  387. struct drm_i915_file_private *fpriv = file->driver_priv;
  388. idr_for_each(&fpriv->context_idr, per_file_ctx_stats, &stats);
  389. }
  390. mutex_unlock(&dev_priv->dev->struct_mutex);
  391. print_file_stats(m, "[k]contexts", stats);
  392. }
  393. #define count_vmas(list, member) do { \
  394. list_for_each_entry(vma, list, member) { \
  395. size += i915_gem_obj_total_ggtt_size(vma->obj); \
  396. ++count; \
  397. if (vma->obj->map_and_fenceable) { \
  398. mappable_size += i915_gem_obj_ggtt_size(vma->obj); \
  399. ++mappable_count; \
  400. } \
  401. } \
  402. } while (0)
  403. static int i915_gem_object_info(struct seq_file *m, void* data)
  404. {
  405. struct drm_info_node *node = m->private;
  406. struct drm_device *dev = node->minor->dev;
  407. struct drm_i915_private *dev_priv = to_i915(dev);
  408. struct i915_ggtt *ggtt = &dev_priv->ggtt;
  409. u32 count, mappable_count, purgeable_count;
  410. u64 size, mappable_size, purgeable_size;
  411. unsigned long pin_mapped_count = 0, pin_mapped_purgeable_count = 0;
  412. u64 pin_mapped_size = 0, pin_mapped_purgeable_size = 0;
  413. struct drm_i915_gem_object *obj;
  414. struct drm_file *file;
  415. struct i915_vma *vma;
  416. int ret;
  417. ret = mutex_lock_interruptible(&dev->struct_mutex);
  418. if (ret)
  419. return ret;
  420. seq_printf(m, "%u objects, %zu bytes\n",
  421. dev_priv->mm.object_count,
  422. dev_priv->mm.object_memory);
  423. size = count = mappable_size = mappable_count = 0;
  424. count_objects(&dev_priv->mm.bound_list, global_list);
  425. seq_printf(m, "%u [%u] objects, %llu [%llu] bytes in gtt\n",
  426. count, mappable_count, size, mappable_size);
  427. size = count = mappable_size = mappable_count = 0;
  428. count_vmas(&ggtt->base.active_list, vm_link);
  429. seq_printf(m, " %u [%u] active objects, %llu [%llu] bytes\n",
  430. count, mappable_count, size, mappable_size);
  431. size = count = mappable_size = mappable_count = 0;
  432. count_vmas(&ggtt->base.inactive_list, vm_link);
  433. seq_printf(m, " %u [%u] inactive objects, %llu [%llu] bytes\n",
  434. count, mappable_count, size, mappable_size);
  435. size = count = purgeable_size = purgeable_count = 0;
  436. list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
  437. size += obj->base.size, ++count;
  438. if (obj->madv == I915_MADV_DONTNEED)
  439. purgeable_size += obj->base.size, ++purgeable_count;
  440. if (obj->mapping) {
  441. pin_mapped_count++;
  442. pin_mapped_size += obj->base.size;
  443. if (obj->pages_pin_count == 0) {
  444. pin_mapped_purgeable_count++;
  445. pin_mapped_purgeable_size += obj->base.size;
  446. }
  447. }
  448. }
  449. seq_printf(m, "%u unbound objects, %llu bytes\n", count, size);
  450. size = count = mappable_size = mappable_count = 0;
  451. list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
  452. if (obj->fault_mappable) {
  453. size += i915_gem_obj_ggtt_size(obj);
  454. ++count;
  455. }
  456. if (obj->pin_display) {
  457. mappable_size += i915_gem_obj_ggtt_size(obj);
  458. ++mappable_count;
  459. }
  460. if (obj->madv == I915_MADV_DONTNEED) {
  461. purgeable_size += obj->base.size;
  462. ++purgeable_count;
  463. }
  464. if (obj->mapping) {
  465. pin_mapped_count++;
  466. pin_mapped_size += obj->base.size;
  467. if (obj->pages_pin_count == 0) {
  468. pin_mapped_purgeable_count++;
  469. pin_mapped_purgeable_size += obj->base.size;
  470. }
  471. }
  472. }
  473. seq_printf(m, "%u purgeable objects, %llu bytes\n",
  474. purgeable_count, purgeable_size);
  475. seq_printf(m, "%u pinned mappable objects, %llu bytes\n",
  476. mappable_count, mappable_size);
  477. seq_printf(m, "%u fault mappable objects, %llu bytes\n",
  478. count, size);
  479. seq_printf(m,
  480. "%lu [%lu] pin mapped objects, %llu [%llu] bytes [purgeable]\n",
  481. pin_mapped_count, pin_mapped_purgeable_count,
  482. pin_mapped_size, pin_mapped_purgeable_size);
  483. seq_printf(m, "%llu [%llu] gtt total\n",
  484. ggtt->base.total, ggtt->mappable_end - ggtt->base.start);
  485. seq_putc(m, '\n');
  486. print_batch_pool_stats(m, dev_priv);
  487. mutex_unlock(&dev->struct_mutex);
  488. mutex_lock(&dev->filelist_mutex);
  489. print_context_stats(m, dev_priv);
  490. list_for_each_entry_reverse(file, &dev->filelist, lhead) {
  491. struct file_stats stats;
  492. struct task_struct *task;
  493. memset(&stats, 0, sizeof(stats));
  494. stats.file_priv = file->driver_priv;
  495. spin_lock(&file->table_lock);
  496. idr_for_each(&file->object_idr, per_file_stats, &stats);
  497. spin_unlock(&file->table_lock);
  498. /*
  499. * Although we have a valid reference on file->pid, that does
  500. * not guarantee that the task_struct who called get_pid() is
  501. * still alive (e.g. get_pid(current) => fork() => exit()).
  502. * Therefore, we need to protect this ->comm access using RCU.
  503. */
  504. rcu_read_lock();
  505. task = pid_task(file->pid, PIDTYPE_PID);
  506. print_file_stats(m, task ? task->comm : "<unknown>", stats);
  507. rcu_read_unlock();
  508. }
  509. mutex_unlock(&dev->filelist_mutex);
  510. return 0;
  511. }
  512. static int i915_gem_gtt_info(struct seq_file *m, void *data)
  513. {
  514. struct drm_info_node *node = m->private;
  515. struct drm_device *dev = node->minor->dev;
  516. uintptr_t list = (uintptr_t) node->info_ent->data;
  517. struct drm_i915_private *dev_priv = dev->dev_private;
  518. struct drm_i915_gem_object *obj;
  519. u64 total_obj_size, total_gtt_size;
  520. int count, ret;
  521. ret = mutex_lock_interruptible(&dev->struct_mutex);
  522. if (ret)
  523. return ret;
  524. total_obj_size = total_gtt_size = count = 0;
  525. list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
  526. if (list == PINNED_LIST && !i915_gem_obj_is_pinned(obj))
  527. continue;
  528. seq_puts(m, " ");
  529. describe_obj(m, obj);
  530. seq_putc(m, '\n');
  531. total_obj_size += obj->base.size;
  532. total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
  533. count++;
  534. }
  535. mutex_unlock(&dev->struct_mutex);
  536. seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
  537. count, total_obj_size, total_gtt_size);
  538. return 0;
  539. }
  540. static int i915_gem_pageflip_info(struct seq_file *m, void *data)
  541. {
  542. struct drm_info_node *node = m->private;
  543. struct drm_device *dev = node->minor->dev;
  544. struct drm_i915_private *dev_priv = dev->dev_private;
  545. struct intel_crtc *crtc;
  546. int ret;
  547. ret = mutex_lock_interruptible(&dev->struct_mutex);
  548. if (ret)
  549. return ret;
  550. for_each_intel_crtc(dev, crtc) {
  551. const char pipe = pipe_name(crtc->pipe);
  552. const char plane = plane_name(crtc->plane);
  553. struct intel_flip_work *work;
  554. spin_lock_irq(&dev->event_lock);
  555. work = crtc->flip_work;
  556. if (work == NULL) {
  557. seq_printf(m, "No flip due on pipe %c (plane %c)\n",
  558. pipe, plane);
  559. } else {
  560. u32 pending;
  561. u32 addr;
  562. pending = atomic_read(&work->pending);
  563. if (pending) {
  564. seq_printf(m, "Flip ioctl preparing on pipe %c (plane %c)\n",
  565. pipe, plane);
  566. } else {
  567. seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
  568. pipe, plane);
  569. }
  570. if (work->flip_queued_req) {
  571. struct intel_engine_cs *engine = i915_gem_request_get_engine(work->flip_queued_req);
  572. seq_printf(m, "Flip queued on %s at seqno %x, next seqno %x [current breadcrumb %x], completed? %d\n",
  573. engine->name,
  574. i915_gem_request_get_seqno(work->flip_queued_req),
  575. dev_priv->next_seqno,
  576. engine->get_seqno(engine),
  577. i915_gem_request_completed(work->flip_queued_req, true));
  578. } else
  579. seq_printf(m, "Flip not associated with any ring\n");
  580. seq_printf(m, "Flip queued on frame %d, (was ready on frame %d), now %d\n",
  581. work->flip_queued_vblank,
  582. work->flip_ready_vblank,
  583. intel_crtc_get_vblank_counter(crtc));
  584. seq_printf(m, "%d prepares\n", atomic_read(&work->pending));
  585. if (INTEL_INFO(dev)->gen >= 4)
  586. addr = I915_HI_DISPBASE(I915_READ(DSPSURF(crtc->plane)));
  587. else
  588. addr = I915_READ(DSPADDR(crtc->plane));
  589. seq_printf(m, "Current scanout address 0x%08x\n", addr);
  590. if (work->pending_flip_obj) {
  591. seq_printf(m, "New framebuffer address 0x%08lx\n", (long)work->gtt_offset);
  592. seq_printf(m, "MMIO update completed? %d\n", addr == work->gtt_offset);
  593. }
  594. }
  595. spin_unlock_irq(&dev->event_lock);
  596. }
  597. mutex_unlock(&dev->struct_mutex);
  598. return 0;
  599. }
  600. static int i915_gem_batch_pool_info(struct seq_file *m, void *data)
  601. {
  602. struct drm_info_node *node = m->private;
  603. struct drm_device *dev = node->minor->dev;
  604. struct drm_i915_private *dev_priv = dev->dev_private;
  605. struct drm_i915_gem_object *obj;
  606. struct intel_engine_cs *engine;
  607. int total = 0;
  608. int ret, j;
  609. ret = mutex_lock_interruptible(&dev->struct_mutex);
  610. if (ret)
  611. return ret;
  612. for_each_engine(engine, dev_priv) {
  613. for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
  614. int count;
  615. count = 0;
  616. list_for_each_entry(obj,
  617. &engine->batch_pool.cache_list[j],
  618. batch_pool_link)
  619. count++;
  620. seq_printf(m, "%s cache[%d]: %d objects\n",
  621. engine->name, j, count);
  622. list_for_each_entry(obj,
  623. &engine->batch_pool.cache_list[j],
  624. batch_pool_link) {
  625. seq_puts(m, " ");
  626. describe_obj(m, obj);
  627. seq_putc(m, '\n');
  628. }
  629. total += count;
  630. }
  631. }
  632. seq_printf(m, "total: %d\n", total);
  633. mutex_unlock(&dev->struct_mutex);
  634. return 0;
  635. }
  636. static int i915_gem_request_info(struct seq_file *m, void *data)
  637. {
  638. struct drm_info_node *node = m->private;
  639. struct drm_device *dev = node->minor->dev;
  640. struct drm_i915_private *dev_priv = dev->dev_private;
  641. struct intel_engine_cs *engine;
  642. struct drm_i915_gem_request *req;
  643. int ret, any;
  644. ret = mutex_lock_interruptible(&dev->struct_mutex);
  645. if (ret)
  646. return ret;
  647. any = 0;
  648. for_each_engine(engine, dev_priv) {
  649. int count;
  650. count = 0;
  651. list_for_each_entry(req, &engine->request_list, list)
  652. count++;
  653. if (count == 0)
  654. continue;
  655. seq_printf(m, "%s requests: %d\n", engine->name, count);
  656. list_for_each_entry(req, &engine->request_list, list) {
  657. struct task_struct *task;
  658. rcu_read_lock();
  659. task = NULL;
  660. if (req->pid)
  661. task = pid_task(req->pid, PIDTYPE_PID);
  662. seq_printf(m, " %x @ %d: %s [%d]\n",
  663. req->seqno,
  664. (int) (jiffies - req->emitted_jiffies),
  665. task ? task->comm : "<unknown>",
  666. task ? task->pid : -1);
  667. rcu_read_unlock();
  668. }
  669. any++;
  670. }
  671. mutex_unlock(&dev->struct_mutex);
  672. if (any == 0)
  673. seq_puts(m, "No requests\n");
  674. return 0;
  675. }
  676. static void i915_ring_seqno_info(struct seq_file *m,
  677. struct intel_engine_cs *engine)
  678. {
  679. seq_printf(m, "Current sequence (%s): %x\n",
  680. engine->name, engine->get_seqno(engine));
  681. seq_printf(m, "Current user interrupts (%s): %x\n",
  682. engine->name, READ_ONCE(engine->user_interrupts));
  683. }
  684. static int i915_gem_seqno_info(struct seq_file *m, void *data)
  685. {
  686. struct drm_info_node *node = m->private;
  687. struct drm_device *dev = node->minor->dev;
  688. struct drm_i915_private *dev_priv = dev->dev_private;
  689. struct intel_engine_cs *engine;
  690. int ret;
  691. ret = mutex_lock_interruptible(&dev->struct_mutex);
  692. if (ret)
  693. return ret;
  694. intel_runtime_pm_get(dev_priv);
  695. for_each_engine(engine, dev_priv)
  696. i915_ring_seqno_info(m, engine);
  697. intel_runtime_pm_put(dev_priv);
  698. mutex_unlock(&dev->struct_mutex);
  699. return 0;
  700. }
  701. static int i915_interrupt_info(struct seq_file *m, void *data)
  702. {
  703. struct drm_info_node *node = m->private;
  704. struct drm_device *dev = node->minor->dev;
  705. struct drm_i915_private *dev_priv = dev->dev_private;
  706. struct intel_engine_cs *engine;
  707. int ret, i, pipe;
  708. ret = mutex_lock_interruptible(&dev->struct_mutex);
  709. if (ret)
  710. return ret;
  711. intel_runtime_pm_get(dev_priv);
  712. if (IS_CHERRYVIEW(dev)) {
  713. seq_printf(m, "Master Interrupt Control:\t%08x\n",
  714. I915_READ(GEN8_MASTER_IRQ));
  715. seq_printf(m, "Display IER:\t%08x\n",
  716. I915_READ(VLV_IER));
  717. seq_printf(m, "Display IIR:\t%08x\n",
  718. I915_READ(VLV_IIR));
  719. seq_printf(m, "Display IIR_RW:\t%08x\n",
  720. I915_READ(VLV_IIR_RW));
  721. seq_printf(m, "Display IMR:\t%08x\n",
  722. I915_READ(VLV_IMR));
  723. for_each_pipe(dev_priv, pipe)
  724. seq_printf(m, "Pipe %c stat:\t%08x\n",
  725. pipe_name(pipe),
  726. I915_READ(PIPESTAT(pipe)));
  727. seq_printf(m, "Port hotplug:\t%08x\n",
  728. I915_READ(PORT_HOTPLUG_EN));
  729. seq_printf(m, "DPFLIPSTAT:\t%08x\n",
  730. I915_READ(VLV_DPFLIPSTAT));
  731. seq_printf(m, "DPINVGTT:\t%08x\n",
  732. I915_READ(DPINVGTT));
  733. for (i = 0; i < 4; i++) {
  734. seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
  735. i, I915_READ(GEN8_GT_IMR(i)));
  736. seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
  737. i, I915_READ(GEN8_GT_IIR(i)));
  738. seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
  739. i, I915_READ(GEN8_GT_IER(i)));
  740. }
  741. seq_printf(m, "PCU interrupt mask:\t%08x\n",
  742. I915_READ(GEN8_PCU_IMR));
  743. seq_printf(m, "PCU interrupt identity:\t%08x\n",
  744. I915_READ(GEN8_PCU_IIR));
  745. seq_printf(m, "PCU interrupt enable:\t%08x\n",
  746. I915_READ(GEN8_PCU_IER));
  747. } else if (INTEL_INFO(dev)->gen >= 8) {
  748. seq_printf(m, "Master Interrupt Control:\t%08x\n",
  749. I915_READ(GEN8_MASTER_IRQ));
  750. for (i = 0; i < 4; i++) {
  751. seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
  752. i, I915_READ(GEN8_GT_IMR(i)));
  753. seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
  754. i, I915_READ(GEN8_GT_IIR(i)));
  755. seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
  756. i, I915_READ(GEN8_GT_IER(i)));
  757. }
  758. for_each_pipe(dev_priv, pipe) {
  759. enum intel_display_power_domain power_domain;
  760. power_domain = POWER_DOMAIN_PIPE(pipe);
  761. if (!intel_display_power_get_if_enabled(dev_priv,
  762. power_domain)) {
  763. seq_printf(m, "Pipe %c power disabled\n",
  764. pipe_name(pipe));
  765. continue;
  766. }
  767. seq_printf(m, "Pipe %c IMR:\t%08x\n",
  768. pipe_name(pipe),
  769. I915_READ(GEN8_DE_PIPE_IMR(pipe)));
  770. seq_printf(m, "Pipe %c IIR:\t%08x\n",
  771. pipe_name(pipe),
  772. I915_READ(GEN8_DE_PIPE_IIR(pipe)));
  773. seq_printf(m, "Pipe %c IER:\t%08x\n",
  774. pipe_name(pipe),
  775. I915_READ(GEN8_DE_PIPE_IER(pipe)));
  776. intel_display_power_put(dev_priv, power_domain);
  777. }
  778. seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
  779. I915_READ(GEN8_DE_PORT_IMR));
  780. seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
  781. I915_READ(GEN8_DE_PORT_IIR));
  782. seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
  783. I915_READ(GEN8_DE_PORT_IER));
  784. seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
  785. I915_READ(GEN8_DE_MISC_IMR));
  786. seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
  787. I915_READ(GEN8_DE_MISC_IIR));
  788. seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
  789. I915_READ(GEN8_DE_MISC_IER));
  790. seq_printf(m, "PCU interrupt mask:\t%08x\n",
  791. I915_READ(GEN8_PCU_IMR));
  792. seq_printf(m, "PCU interrupt identity:\t%08x\n",
  793. I915_READ(GEN8_PCU_IIR));
  794. seq_printf(m, "PCU interrupt enable:\t%08x\n",
  795. I915_READ(GEN8_PCU_IER));
  796. } else if (IS_VALLEYVIEW(dev)) {
  797. seq_printf(m, "Display IER:\t%08x\n",
  798. I915_READ(VLV_IER));
  799. seq_printf(m, "Display IIR:\t%08x\n",
  800. I915_READ(VLV_IIR));
  801. seq_printf(m, "Display IIR_RW:\t%08x\n",
  802. I915_READ(VLV_IIR_RW));
  803. seq_printf(m, "Display IMR:\t%08x\n",
  804. I915_READ(VLV_IMR));
  805. for_each_pipe(dev_priv, pipe)
  806. seq_printf(m, "Pipe %c stat:\t%08x\n",
  807. pipe_name(pipe),
  808. I915_READ(PIPESTAT(pipe)));
  809. seq_printf(m, "Master IER:\t%08x\n",
  810. I915_READ(VLV_MASTER_IER));
  811. seq_printf(m, "Render IER:\t%08x\n",
  812. I915_READ(GTIER));
  813. seq_printf(m, "Render IIR:\t%08x\n",
  814. I915_READ(GTIIR));
  815. seq_printf(m, "Render IMR:\t%08x\n",
  816. I915_READ(GTIMR));
  817. seq_printf(m, "PM IER:\t\t%08x\n",
  818. I915_READ(GEN6_PMIER));
  819. seq_printf(m, "PM IIR:\t\t%08x\n",
  820. I915_READ(GEN6_PMIIR));
  821. seq_printf(m, "PM IMR:\t\t%08x\n",
  822. I915_READ(GEN6_PMIMR));
  823. seq_printf(m, "Port hotplug:\t%08x\n",
  824. I915_READ(PORT_HOTPLUG_EN));
  825. seq_printf(m, "DPFLIPSTAT:\t%08x\n",
  826. I915_READ(VLV_DPFLIPSTAT));
  827. seq_printf(m, "DPINVGTT:\t%08x\n",
  828. I915_READ(DPINVGTT));
  829. } else if (!HAS_PCH_SPLIT(dev)) {
  830. seq_printf(m, "Interrupt enable: %08x\n",
  831. I915_READ(IER));
  832. seq_printf(m, "Interrupt identity: %08x\n",
  833. I915_READ(IIR));
  834. seq_printf(m, "Interrupt mask: %08x\n",
  835. I915_READ(IMR));
  836. for_each_pipe(dev_priv, pipe)
  837. seq_printf(m, "Pipe %c stat: %08x\n",
  838. pipe_name(pipe),
  839. I915_READ(PIPESTAT(pipe)));
  840. } else {
  841. seq_printf(m, "North Display Interrupt enable: %08x\n",
  842. I915_READ(DEIER));
  843. seq_printf(m, "North Display Interrupt identity: %08x\n",
  844. I915_READ(DEIIR));
  845. seq_printf(m, "North Display Interrupt mask: %08x\n",
  846. I915_READ(DEIMR));
  847. seq_printf(m, "South Display Interrupt enable: %08x\n",
  848. I915_READ(SDEIER));
  849. seq_printf(m, "South Display Interrupt identity: %08x\n",
  850. I915_READ(SDEIIR));
  851. seq_printf(m, "South Display Interrupt mask: %08x\n",
  852. I915_READ(SDEIMR));
  853. seq_printf(m, "Graphics Interrupt enable: %08x\n",
  854. I915_READ(GTIER));
  855. seq_printf(m, "Graphics Interrupt identity: %08x\n",
  856. I915_READ(GTIIR));
  857. seq_printf(m, "Graphics Interrupt mask: %08x\n",
  858. I915_READ(GTIMR));
  859. }
  860. for_each_engine(engine, dev_priv) {
  861. if (INTEL_INFO(dev)->gen >= 6) {
  862. seq_printf(m,
  863. "Graphics Interrupt mask (%s): %08x\n",
  864. engine->name, I915_READ_IMR(engine));
  865. }
  866. i915_ring_seqno_info(m, engine);
  867. }
  868. intel_runtime_pm_put(dev_priv);
  869. mutex_unlock(&dev->struct_mutex);
  870. return 0;
  871. }
  872. static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
  873. {
  874. struct drm_info_node *node = m->private;
  875. struct drm_device *dev = node->minor->dev;
  876. struct drm_i915_private *dev_priv = dev->dev_private;
  877. int i, ret;
  878. ret = mutex_lock_interruptible(&dev->struct_mutex);
  879. if (ret)
  880. return ret;
  881. seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
  882. for (i = 0; i < dev_priv->num_fence_regs; i++) {
  883. struct drm_i915_gem_object *obj = dev_priv->fence_regs[i].obj;
  884. seq_printf(m, "Fence %d, pin count = %d, object = ",
  885. i, dev_priv->fence_regs[i].pin_count);
  886. if (obj == NULL)
  887. seq_puts(m, "unused");
  888. else
  889. describe_obj(m, obj);
  890. seq_putc(m, '\n');
  891. }
  892. mutex_unlock(&dev->struct_mutex);
  893. return 0;
  894. }
  895. static int i915_hws_info(struct seq_file *m, void *data)
  896. {
  897. struct drm_info_node *node = m->private;
  898. struct drm_device *dev = node->minor->dev;
  899. struct drm_i915_private *dev_priv = dev->dev_private;
  900. struct intel_engine_cs *engine;
  901. const u32 *hws;
  902. int i;
  903. engine = &dev_priv->engine[(uintptr_t)node->info_ent->data];
  904. hws = engine->status_page.page_addr;
  905. if (hws == NULL)
  906. return 0;
  907. for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) {
  908. seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
  909. i * 4,
  910. hws[i], hws[i + 1], hws[i + 2], hws[i + 3]);
  911. }
  912. return 0;
  913. }
  914. static ssize_t
  915. i915_error_state_write(struct file *filp,
  916. const char __user *ubuf,
  917. size_t cnt,
  918. loff_t *ppos)
  919. {
  920. struct i915_error_state_file_priv *error_priv = filp->private_data;
  921. struct drm_device *dev = error_priv->dev;
  922. int ret;
  923. DRM_DEBUG_DRIVER("Resetting error state\n");
  924. ret = mutex_lock_interruptible(&dev->struct_mutex);
  925. if (ret)
  926. return ret;
  927. i915_destroy_error_state(dev);
  928. mutex_unlock(&dev->struct_mutex);
  929. return cnt;
  930. }
  931. static int i915_error_state_open(struct inode *inode, struct file *file)
  932. {
  933. struct drm_device *dev = inode->i_private;
  934. struct i915_error_state_file_priv *error_priv;
  935. error_priv = kzalloc(sizeof(*error_priv), GFP_KERNEL);
  936. if (!error_priv)
  937. return -ENOMEM;
  938. error_priv->dev = dev;
  939. i915_error_state_get(dev, error_priv);
  940. file->private_data = error_priv;
  941. return 0;
  942. }
  943. static int i915_error_state_release(struct inode *inode, struct file *file)
  944. {
  945. struct i915_error_state_file_priv *error_priv = file->private_data;
  946. i915_error_state_put(error_priv);
  947. kfree(error_priv);
  948. return 0;
  949. }
  950. static ssize_t i915_error_state_read(struct file *file, char __user *userbuf,
  951. size_t count, loff_t *pos)
  952. {
  953. struct i915_error_state_file_priv *error_priv = file->private_data;
  954. struct drm_i915_error_state_buf error_str;
  955. loff_t tmp_pos = 0;
  956. ssize_t ret_count = 0;
  957. int ret;
  958. ret = i915_error_state_buf_init(&error_str, to_i915(error_priv->dev), count, *pos);
  959. if (ret)
  960. return ret;
  961. ret = i915_error_state_to_str(&error_str, error_priv);
  962. if (ret)
  963. goto out;
  964. ret_count = simple_read_from_buffer(userbuf, count, &tmp_pos,
  965. error_str.buf,
  966. error_str.bytes);
  967. if (ret_count < 0)
  968. ret = ret_count;
  969. else
  970. *pos = error_str.start + ret_count;
  971. out:
  972. i915_error_state_buf_release(&error_str);
  973. return ret ?: ret_count;
  974. }
  975. static const struct file_operations i915_error_state_fops = {
  976. .owner = THIS_MODULE,
  977. .open = i915_error_state_open,
  978. .read = i915_error_state_read,
  979. .write = i915_error_state_write,
  980. .llseek = default_llseek,
  981. .release = i915_error_state_release,
  982. };
  983. static int
  984. i915_next_seqno_get(void *data, u64 *val)
  985. {
  986. struct drm_device *dev = data;
  987. struct drm_i915_private *dev_priv = dev->dev_private;
  988. int ret;
  989. ret = mutex_lock_interruptible(&dev->struct_mutex);
  990. if (ret)
  991. return ret;
  992. *val = dev_priv->next_seqno;
  993. mutex_unlock(&dev->struct_mutex);
  994. return 0;
  995. }
  996. static int
  997. i915_next_seqno_set(void *data, u64 val)
  998. {
  999. struct drm_device *dev = data;
  1000. int ret;
  1001. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1002. if (ret)
  1003. return ret;
  1004. ret = i915_gem_set_seqno(dev, val);
  1005. mutex_unlock(&dev->struct_mutex);
  1006. return ret;
  1007. }
  1008. DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
  1009. i915_next_seqno_get, i915_next_seqno_set,
  1010. "0x%llx\n");
  1011. static int i915_frequency_info(struct seq_file *m, void *unused)
  1012. {
  1013. struct drm_info_node *node = m->private;
  1014. struct drm_device *dev = node->minor->dev;
  1015. struct drm_i915_private *dev_priv = dev->dev_private;
  1016. int ret = 0;
  1017. intel_runtime_pm_get(dev_priv);
  1018. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  1019. if (IS_GEN5(dev)) {
  1020. u16 rgvswctl = I915_READ16(MEMSWCTL);
  1021. u16 rgvstat = I915_READ16(MEMSTAT_ILK);
  1022. seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
  1023. seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
  1024. seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
  1025. MEMSTAT_VID_SHIFT);
  1026. seq_printf(m, "Current P-state: %d\n",
  1027. (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
  1028. } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
  1029. u32 freq_sts;
  1030. mutex_lock(&dev_priv->rps.hw_lock);
  1031. freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  1032. seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
  1033. seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
  1034. seq_printf(m, "actual GPU freq: %d MHz\n",
  1035. intel_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
  1036. seq_printf(m, "current GPU freq: %d MHz\n",
  1037. intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
  1038. seq_printf(m, "max GPU freq: %d MHz\n",
  1039. intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
  1040. seq_printf(m, "min GPU freq: %d MHz\n",
  1041. intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
  1042. seq_printf(m, "idle GPU freq: %d MHz\n",
  1043. intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
  1044. seq_printf(m,
  1045. "efficient (RPe) frequency: %d MHz\n",
  1046. intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
  1047. mutex_unlock(&dev_priv->rps.hw_lock);
  1048. } else if (INTEL_INFO(dev)->gen >= 6) {
  1049. u32 rp_state_limits;
  1050. u32 gt_perf_status;
  1051. u32 rp_state_cap;
  1052. u32 rpmodectl, rpinclimit, rpdeclimit;
  1053. u32 rpstat, cagf, reqf;
  1054. u32 rpupei, rpcurup, rpprevup;
  1055. u32 rpdownei, rpcurdown, rpprevdown;
  1056. u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
  1057. int max_freq;
  1058. rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
  1059. if (IS_BROXTON(dev)) {
  1060. rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
  1061. gt_perf_status = I915_READ(BXT_GT_PERF_STATUS);
  1062. } else {
  1063. rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  1064. gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
  1065. }
  1066. /* RPSTAT1 is in the GT power well */
  1067. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1068. if (ret)
  1069. goto out;
  1070. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  1071. reqf = I915_READ(GEN6_RPNSWREQ);
  1072. if (IS_GEN9(dev))
  1073. reqf >>= 23;
  1074. else {
  1075. reqf &= ~GEN6_TURBO_DISABLE;
  1076. if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  1077. reqf >>= 24;
  1078. else
  1079. reqf >>= 25;
  1080. }
  1081. reqf = intel_gpu_freq(dev_priv, reqf);
  1082. rpmodectl = I915_READ(GEN6_RP_CONTROL);
  1083. rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
  1084. rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
  1085. rpstat = I915_READ(GEN6_RPSTAT1);
  1086. rpupei = I915_READ(GEN6_RP_CUR_UP_EI) & GEN6_CURICONT_MASK;
  1087. rpcurup = I915_READ(GEN6_RP_CUR_UP) & GEN6_CURBSYTAVG_MASK;
  1088. rpprevup = I915_READ(GEN6_RP_PREV_UP) & GEN6_CURBSYTAVG_MASK;
  1089. rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI) & GEN6_CURIAVG_MASK;
  1090. rpcurdown = I915_READ(GEN6_RP_CUR_DOWN) & GEN6_CURBSYTAVG_MASK;
  1091. rpprevdown = I915_READ(GEN6_RP_PREV_DOWN) & GEN6_CURBSYTAVG_MASK;
  1092. if (IS_GEN9(dev))
  1093. cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
  1094. else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  1095. cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
  1096. else
  1097. cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
  1098. cagf = intel_gpu_freq(dev_priv, cagf);
  1099. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  1100. mutex_unlock(&dev->struct_mutex);
  1101. if (IS_GEN6(dev) || IS_GEN7(dev)) {
  1102. pm_ier = I915_READ(GEN6_PMIER);
  1103. pm_imr = I915_READ(GEN6_PMIMR);
  1104. pm_isr = I915_READ(GEN6_PMISR);
  1105. pm_iir = I915_READ(GEN6_PMIIR);
  1106. pm_mask = I915_READ(GEN6_PMINTRMSK);
  1107. } else {
  1108. pm_ier = I915_READ(GEN8_GT_IER(2));
  1109. pm_imr = I915_READ(GEN8_GT_IMR(2));
  1110. pm_isr = I915_READ(GEN8_GT_ISR(2));
  1111. pm_iir = I915_READ(GEN8_GT_IIR(2));
  1112. pm_mask = I915_READ(GEN6_PMINTRMSK);
  1113. }
  1114. seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
  1115. pm_ier, pm_imr, pm_isr, pm_iir, pm_mask);
  1116. seq_printf(m, "pm_intr_keep: 0x%08x\n", dev_priv->rps.pm_intr_keep);
  1117. seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
  1118. seq_printf(m, "Render p-state ratio: %d\n",
  1119. (gt_perf_status & (IS_GEN9(dev) ? 0x1ff00 : 0xff00)) >> 8);
  1120. seq_printf(m, "Render p-state VID: %d\n",
  1121. gt_perf_status & 0xff);
  1122. seq_printf(m, "Render p-state limit: %d\n",
  1123. rp_state_limits & 0xff);
  1124. seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
  1125. seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
  1126. seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
  1127. seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
  1128. seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
  1129. seq_printf(m, "CAGF: %dMHz\n", cagf);
  1130. seq_printf(m, "RP CUR UP EI: %d (%dus)\n",
  1131. rpupei, GT_PM_INTERVAL_TO_US(dev_priv, rpupei));
  1132. seq_printf(m, "RP CUR UP: %d (%dus)\n",
  1133. rpcurup, GT_PM_INTERVAL_TO_US(dev_priv, rpcurup));
  1134. seq_printf(m, "RP PREV UP: %d (%dus)\n",
  1135. rpprevup, GT_PM_INTERVAL_TO_US(dev_priv, rpprevup));
  1136. seq_printf(m, "Up threshold: %d%%\n",
  1137. dev_priv->rps.up_threshold);
  1138. seq_printf(m, "RP CUR DOWN EI: %d (%dus)\n",
  1139. rpdownei, GT_PM_INTERVAL_TO_US(dev_priv, rpdownei));
  1140. seq_printf(m, "RP CUR DOWN: %d (%dus)\n",
  1141. rpcurdown, GT_PM_INTERVAL_TO_US(dev_priv, rpcurdown));
  1142. seq_printf(m, "RP PREV DOWN: %d (%dus)\n",
  1143. rpprevdown, GT_PM_INTERVAL_TO_US(dev_priv, rpprevdown));
  1144. seq_printf(m, "Down threshold: %d%%\n",
  1145. dev_priv->rps.down_threshold);
  1146. max_freq = (IS_BROXTON(dev) ? rp_state_cap >> 0 :
  1147. rp_state_cap >> 16) & 0xff;
  1148. max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
  1149. GEN9_FREQ_SCALER : 1);
  1150. seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
  1151. intel_gpu_freq(dev_priv, max_freq));
  1152. max_freq = (rp_state_cap & 0xff00) >> 8;
  1153. max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
  1154. GEN9_FREQ_SCALER : 1);
  1155. seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
  1156. intel_gpu_freq(dev_priv, max_freq));
  1157. max_freq = (IS_BROXTON(dev) ? rp_state_cap >> 16 :
  1158. rp_state_cap >> 0) & 0xff;
  1159. max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
  1160. GEN9_FREQ_SCALER : 1);
  1161. seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
  1162. intel_gpu_freq(dev_priv, max_freq));
  1163. seq_printf(m, "Max overclocked frequency: %dMHz\n",
  1164. intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
  1165. seq_printf(m, "Current freq: %d MHz\n",
  1166. intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
  1167. seq_printf(m, "Actual freq: %d MHz\n", cagf);
  1168. seq_printf(m, "Idle freq: %d MHz\n",
  1169. intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
  1170. seq_printf(m, "Min freq: %d MHz\n",
  1171. intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
  1172. seq_printf(m, "Max freq: %d MHz\n",
  1173. intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
  1174. seq_printf(m,
  1175. "efficient (RPe) frequency: %d MHz\n",
  1176. intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
  1177. } else {
  1178. seq_puts(m, "no P-state info available\n");
  1179. }
  1180. seq_printf(m, "Current CD clock frequency: %d kHz\n", dev_priv->cdclk_freq);
  1181. seq_printf(m, "Max CD clock frequency: %d kHz\n", dev_priv->max_cdclk_freq);
  1182. seq_printf(m, "Max pixel clock frequency: %d kHz\n", dev_priv->max_dotclk_freq);
  1183. out:
  1184. intel_runtime_pm_put(dev_priv);
  1185. return ret;
  1186. }
  1187. static int i915_hangcheck_info(struct seq_file *m, void *unused)
  1188. {
  1189. struct drm_info_node *node = m->private;
  1190. struct drm_device *dev = node->minor->dev;
  1191. struct drm_i915_private *dev_priv = dev->dev_private;
  1192. struct intel_engine_cs *engine;
  1193. u64 acthd[I915_NUM_ENGINES];
  1194. u32 seqno[I915_NUM_ENGINES];
  1195. u32 instdone[I915_NUM_INSTDONE_REG];
  1196. enum intel_engine_id id;
  1197. int j;
  1198. if (!i915.enable_hangcheck) {
  1199. seq_printf(m, "Hangcheck disabled\n");
  1200. return 0;
  1201. }
  1202. intel_runtime_pm_get(dev_priv);
  1203. for_each_engine_id(engine, dev_priv, id) {
  1204. acthd[id] = intel_ring_get_active_head(engine);
  1205. seqno[id] = engine->get_seqno(engine);
  1206. }
  1207. i915_get_extra_instdone(dev_priv, instdone);
  1208. intel_runtime_pm_put(dev_priv);
  1209. if (delayed_work_pending(&dev_priv->gpu_error.hangcheck_work)) {
  1210. seq_printf(m, "Hangcheck active, fires in %dms\n",
  1211. jiffies_to_msecs(dev_priv->gpu_error.hangcheck_work.timer.expires -
  1212. jiffies));
  1213. } else
  1214. seq_printf(m, "Hangcheck inactive\n");
  1215. for_each_engine_id(engine, dev_priv, id) {
  1216. seq_printf(m, "%s:\n", engine->name);
  1217. seq_printf(m, "\tseqno = %x [current %x, last %x]\n",
  1218. engine->hangcheck.seqno,
  1219. seqno[id],
  1220. engine->last_submitted_seqno);
  1221. seq_printf(m, "\tuser interrupts = %x [current %x]\n",
  1222. engine->hangcheck.user_interrupts,
  1223. READ_ONCE(engine->user_interrupts));
  1224. seq_printf(m, "\tACTHD = 0x%08llx [current 0x%08llx]\n",
  1225. (long long)engine->hangcheck.acthd,
  1226. (long long)acthd[id]);
  1227. seq_printf(m, "\tscore = %d\n", engine->hangcheck.score);
  1228. seq_printf(m, "\taction = %d\n", engine->hangcheck.action);
  1229. if (engine->id == RCS) {
  1230. seq_puts(m, "\tinstdone read =");
  1231. for (j = 0; j < I915_NUM_INSTDONE_REG; j++)
  1232. seq_printf(m, " 0x%08x", instdone[j]);
  1233. seq_puts(m, "\n\tinstdone accu =");
  1234. for (j = 0; j < I915_NUM_INSTDONE_REG; j++)
  1235. seq_printf(m, " 0x%08x",
  1236. engine->hangcheck.instdone[j]);
  1237. seq_puts(m, "\n");
  1238. }
  1239. }
  1240. return 0;
  1241. }
  1242. static int ironlake_drpc_info(struct seq_file *m)
  1243. {
  1244. struct drm_info_node *node = m->private;
  1245. struct drm_device *dev = node->minor->dev;
  1246. struct drm_i915_private *dev_priv = dev->dev_private;
  1247. u32 rgvmodectl, rstdbyctl;
  1248. u16 crstandvid;
  1249. int ret;
  1250. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1251. if (ret)
  1252. return ret;
  1253. intel_runtime_pm_get(dev_priv);
  1254. rgvmodectl = I915_READ(MEMMODECTL);
  1255. rstdbyctl = I915_READ(RSTDBYCTL);
  1256. crstandvid = I915_READ16(CRSTANDVID);
  1257. intel_runtime_pm_put(dev_priv);
  1258. mutex_unlock(&dev->struct_mutex);
  1259. seq_printf(m, "HD boost: %s\n", yesno(rgvmodectl & MEMMODE_BOOST_EN));
  1260. seq_printf(m, "Boost freq: %d\n",
  1261. (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
  1262. MEMMODE_BOOST_FREQ_SHIFT);
  1263. seq_printf(m, "HW control enabled: %s\n",
  1264. yesno(rgvmodectl & MEMMODE_HWIDLE_EN));
  1265. seq_printf(m, "SW control enabled: %s\n",
  1266. yesno(rgvmodectl & MEMMODE_SWMODE_EN));
  1267. seq_printf(m, "Gated voltage change: %s\n",
  1268. yesno(rgvmodectl & MEMMODE_RCLK_GATE));
  1269. seq_printf(m, "Starting frequency: P%d\n",
  1270. (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
  1271. seq_printf(m, "Max P-state: P%d\n",
  1272. (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
  1273. seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
  1274. seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
  1275. seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
  1276. seq_printf(m, "Render standby enabled: %s\n",
  1277. yesno(!(rstdbyctl & RCX_SW_EXIT)));
  1278. seq_puts(m, "Current RS state: ");
  1279. switch (rstdbyctl & RSX_STATUS_MASK) {
  1280. case RSX_STATUS_ON:
  1281. seq_puts(m, "on\n");
  1282. break;
  1283. case RSX_STATUS_RC1:
  1284. seq_puts(m, "RC1\n");
  1285. break;
  1286. case RSX_STATUS_RC1E:
  1287. seq_puts(m, "RC1E\n");
  1288. break;
  1289. case RSX_STATUS_RS1:
  1290. seq_puts(m, "RS1\n");
  1291. break;
  1292. case RSX_STATUS_RS2:
  1293. seq_puts(m, "RS2 (RC6)\n");
  1294. break;
  1295. case RSX_STATUS_RS3:
  1296. seq_puts(m, "RC3 (RC6+)\n");
  1297. break;
  1298. default:
  1299. seq_puts(m, "unknown\n");
  1300. break;
  1301. }
  1302. return 0;
  1303. }
  1304. static int i915_forcewake_domains(struct seq_file *m, void *data)
  1305. {
  1306. struct drm_info_node *node = m->private;
  1307. struct drm_device *dev = node->minor->dev;
  1308. struct drm_i915_private *dev_priv = dev->dev_private;
  1309. struct intel_uncore_forcewake_domain *fw_domain;
  1310. spin_lock_irq(&dev_priv->uncore.lock);
  1311. for_each_fw_domain(fw_domain, dev_priv) {
  1312. seq_printf(m, "%s.wake_count = %u\n",
  1313. intel_uncore_forcewake_domain_to_str(fw_domain->id),
  1314. fw_domain->wake_count);
  1315. }
  1316. spin_unlock_irq(&dev_priv->uncore.lock);
  1317. return 0;
  1318. }
  1319. static int vlv_drpc_info(struct seq_file *m)
  1320. {
  1321. struct drm_info_node *node = m->private;
  1322. struct drm_device *dev = node->minor->dev;
  1323. struct drm_i915_private *dev_priv = dev->dev_private;
  1324. u32 rpmodectl1, rcctl1, pw_status;
  1325. intel_runtime_pm_get(dev_priv);
  1326. pw_status = I915_READ(VLV_GTLC_PW_STATUS);
  1327. rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
  1328. rcctl1 = I915_READ(GEN6_RC_CONTROL);
  1329. intel_runtime_pm_put(dev_priv);
  1330. seq_printf(m, "Video Turbo Mode: %s\n",
  1331. yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
  1332. seq_printf(m, "Turbo enabled: %s\n",
  1333. yesno(rpmodectl1 & GEN6_RP_ENABLE));
  1334. seq_printf(m, "HW control enabled: %s\n",
  1335. yesno(rpmodectl1 & GEN6_RP_ENABLE));
  1336. seq_printf(m, "SW control enabled: %s\n",
  1337. yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
  1338. GEN6_RP_MEDIA_SW_MODE));
  1339. seq_printf(m, "RC6 Enabled: %s\n",
  1340. yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
  1341. GEN6_RC_CTL_EI_MODE(1))));
  1342. seq_printf(m, "Render Power Well: %s\n",
  1343. (pw_status & VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
  1344. seq_printf(m, "Media Power Well: %s\n",
  1345. (pw_status & VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
  1346. seq_printf(m, "Render RC6 residency since boot: %u\n",
  1347. I915_READ(VLV_GT_RENDER_RC6));
  1348. seq_printf(m, "Media RC6 residency since boot: %u\n",
  1349. I915_READ(VLV_GT_MEDIA_RC6));
  1350. return i915_forcewake_domains(m, NULL);
  1351. }
  1352. static int gen6_drpc_info(struct seq_file *m)
  1353. {
  1354. struct drm_info_node *node = m->private;
  1355. struct drm_device *dev = node->minor->dev;
  1356. struct drm_i915_private *dev_priv = dev->dev_private;
  1357. u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
  1358. unsigned forcewake_count;
  1359. int count = 0, ret;
  1360. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1361. if (ret)
  1362. return ret;
  1363. intel_runtime_pm_get(dev_priv);
  1364. spin_lock_irq(&dev_priv->uncore.lock);
  1365. forcewake_count = dev_priv->uncore.fw_domain[FW_DOMAIN_ID_RENDER].wake_count;
  1366. spin_unlock_irq(&dev_priv->uncore.lock);
  1367. if (forcewake_count) {
  1368. seq_puts(m, "RC information inaccurate because somebody "
  1369. "holds a forcewake reference \n");
  1370. } else {
  1371. /* NB: we cannot use forcewake, else we read the wrong values */
  1372. while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
  1373. udelay(10);
  1374. seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
  1375. }
  1376. gt_core_status = I915_READ_FW(GEN6_GT_CORE_STATUS);
  1377. trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
  1378. rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
  1379. rcctl1 = I915_READ(GEN6_RC_CONTROL);
  1380. mutex_unlock(&dev->struct_mutex);
  1381. mutex_lock(&dev_priv->rps.hw_lock);
  1382. sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
  1383. mutex_unlock(&dev_priv->rps.hw_lock);
  1384. intel_runtime_pm_put(dev_priv);
  1385. seq_printf(m, "Video Turbo Mode: %s\n",
  1386. yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
  1387. seq_printf(m, "HW control enabled: %s\n",
  1388. yesno(rpmodectl1 & GEN6_RP_ENABLE));
  1389. seq_printf(m, "SW control enabled: %s\n",
  1390. yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
  1391. GEN6_RP_MEDIA_SW_MODE));
  1392. seq_printf(m, "RC1e Enabled: %s\n",
  1393. yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
  1394. seq_printf(m, "RC6 Enabled: %s\n",
  1395. yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
  1396. seq_printf(m, "Deep RC6 Enabled: %s\n",
  1397. yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
  1398. seq_printf(m, "Deepest RC6 Enabled: %s\n",
  1399. yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
  1400. seq_puts(m, "Current RC state: ");
  1401. switch (gt_core_status & GEN6_RCn_MASK) {
  1402. case GEN6_RC0:
  1403. if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
  1404. seq_puts(m, "Core Power Down\n");
  1405. else
  1406. seq_puts(m, "on\n");
  1407. break;
  1408. case GEN6_RC3:
  1409. seq_puts(m, "RC3\n");
  1410. break;
  1411. case GEN6_RC6:
  1412. seq_puts(m, "RC6\n");
  1413. break;
  1414. case GEN6_RC7:
  1415. seq_puts(m, "RC7\n");
  1416. break;
  1417. default:
  1418. seq_puts(m, "Unknown\n");
  1419. break;
  1420. }
  1421. seq_printf(m, "Core Power Down: %s\n",
  1422. yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
  1423. /* Not exactly sure what this is */
  1424. seq_printf(m, "RC6 \"Locked to RPn\" residency since boot: %u\n",
  1425. I915_READ(GEN6_GT_GFX_RC6_LOCKED));
  1426. seq_printf(m, "RC6 residency since boot: %u\n",
  1427. I915_READ(GEN6_GT_GFX_RC6));
  1428. seq_printf(m, "RC6+ residency since boot: %u\n",
  1429. I915_READ(GEN6_GT_GFX_RC6p));
  1430. seq_printf(m, "RC6++ residency since boot: %u\n",
  1431. I915_READ(GEN6_GT_GFX_RC6pp));
  1432. seq_printf(m, "RC6 voltage: %dmV\n",
  1433. GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
  1434. seq_printf(m, "RC6+ voltage: %dmV\n",
  1435. GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
  1436. seq_printf(m, "RC6++ voltage: %dmV\n",
  1437. GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
  1438. return 0;
  1439. }
  1440. static int i915_drpc_info(struct seq_file *m, void *unused)
  1441. {
  1442. struct drm_info_node *node = m->private;
  1443. struct drm_device *dev = node->minor->dev;
  1444. if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
  1445. return vlv_drpc_info(m);
  1446. else if (INTEL_INFO(dev)->gen >= 6)
  1447. return gen6_drpc_info(m);
  1448. else
  1449. return ironlake_drpc_info(m);
  1450. }
  1451. static int i915_frontbuffer_tracking(struct seq_file *m, void *unused)
  1452. {
  1453. struct drm_info_node *node = m->private;
  1454. struct drm_device *dev = node->minor->dev;
  1455. struct drm_i915_private *dev_priv = dev->dev_private;
  1456. seq_printf(m, "FB tracking busy bits: 0x%08x\n",
  1457. dev_priv->fb_tracking.busy_bits);
  1458. seq_printf(m, "FB tracking flip bits: 0x%08x\n",
  1459. dev_priv->fb_tracking.flip_bits);
  1460. return 0;
  1461. }
  1462. static int i915_fbc_status(struct seq_file *m, void *unused)
  1463. {
  1464. struct drm_info_node *node = m->private;
  1465. struct drm_device *dev = node->minor->dev;
  1466. struct drm_i915_private *dev_priv = dev->dev_private;
  1467. if (!HAS_FBC(dev)) {
  1468. seq_puts(m, "FBC unsupported on this chipset\n");
  1469. return 0;
  1470. }
  1471. intel_runtime_pm_get(dev_priv);
  1472. mutex_lock(&dev_priv->fbc.lock);
  1473. if (intel_fbc_is_active(dev_priv))
  1474. seq_puts(m, "FBC enabled\n");
  1475. else
  1476. seq_printf(m, "FBC disabled: %s\n",
  1477. dev_priv->fbc.no_fbc_reason);
  1478. if (INTEL_INFO(dev_priv)->gen >= 7)
  1479. seq_printf(m, "Compressing: %s\n",
  1480. yesno(I915_READ(FBC_STATUS2) &
  1481. FBC_COMPRESSION_MASK));
  1482. mutex_unlock(&dev_priv->fbc.lock);
  1483. intel_runtime_pm_put(dev_priv);
  1484. return 0;
  1485. }
  1486. static int i915_fbc_fc_get(void *data, u64 *val)
  1487. {
  1488. struct drm_device *dev = data;
  1489. struct drm_i915_private *dev_priv = dev->dev_private;
  1490. if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
  1491. return -ENODEV;
  1492. *val = dev_priv->fbc.false_color;
  1493. return 0;
  1494. }
  1495. static int i915_fbc_fc_set(void *data, u64 val)
  1496. {
  1497. struct drm_device *dev = data;
  1498. struct drm_i915_private *dev_priv = dev->dev_private;
  1499. u32 reg;
  1500. if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
  1501. return -ENODEV;
  1502. mutex_lock(&dev_priv->fbc.lock);
  1503. reg = I915_READ(ILK_DPFC_CONTROL);
  1504. dev_priv->fbc.false_color = val;
  1505. I915_WRITE(ILK_DPFC_CONTROL, val ?
  1506. (reg | FBC_CTL_FALSE_COLOR) :
  1507. (reg & ~FBC_CTL_FALSE_COLOR));
  1508. mutex_unlock(&dev_priv->fbc.lock);
  1509. return 0;
  1510. }
  1511. DEFINE_SIMPLE_ATTRIBUTE(i915_fbc_fc_fops,
  1512. i915_fbc_fc_get, i915_fbc_fc_set,
  1513. "%llu\n");
  1514. static int i915_ips_status(struct seq_file *m, void *unused)
  1515. {
  1516. struct drm_info_node *node = m->private;
  1517. struct drm_device *dev = node->minor->dev;
  1518. struct drm_i915_private *dev_priv = dev->dev_private;
  1519. if (!HAS_IPS(dev)) {
  1520. seq_puts(m, "not supported\n");
  1521. return 0;
  1522. }
  1523. intel_runtime_pm_get(dev_priv);
  1524. seq_printf(m, "Enabled by kernel parameter: %s\n",
  1525. yesno(i915.enable_ips));
  1526. if (INTEL_INFO(dev)->gen >= 8) {
  1527. seq_puts(m, "Currently: unknown\n");
  1528. } else {
  1529. if (I915_READ(IPS_CTL) & IPS_ENABLE)
  1530. seq_puts(m, "Currently: enabled\n");
  1531. else
  1532. seq_puts(m, "Currently: disabled\n");
  1533. }
  1534. intel_runtime_pm_put(dev_priv);
  1535. return 0;
  1536. }
  1537. static int i915_sr_status(struct seq_file *m, void *unused)
  1538. {
  1539. struct drm_info_node *node = m->private;
  1540. struct drm_device *dev = node->minor->dev;
  1541. struct drm_i915_private *dev_priv = dev->dev_private;
  1542. bool sr_enabled = false;
  1543. intel_runtime_pm_get(dev_priv);
  1544. if (HAS_PCH_SPLIT(dev))
  1545. sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
  1546. else if (IS_CRESTLINE(dev) || IS_G4X(dev) ||
  1547. IS_I945G(dev) || IS_I945GM(dev))
  1548. sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
  1549. else if (IS_I915GM(dev))
  1550. sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
  1551. else if (IS_PINEVIEW(dev))
  1552. sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
  1553. else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
  1554. sr_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
  1555. intel_runtime_pm_put(dev_priv);
  1556. seq_printf(m, "self-refresh: %s\n",
  1557. sr_enabled ? "enabled" : "disabled");
  1558. return 0;
  1559. }
  1560. static int i915_emon_status(struct seq_file *m, void *unused)
  1561. {
  1562. struct drm_info_node *node = m->private;
  1563. struct drm_device *dev = node->minor->dev;
  1564. struct drm_i915_private *dev_priv = dev->dev_private;
  1565. unsigned long temp, chipset, gfx;
  1566. int ret;
  1567. if (!IS_GEN5(dev))
  1568. return -ENODEV;
  1569. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1570. if (ret)
  1571. return ret;
  1572. temp = i915_mch_val(dev_priv);
  1573. chipset = i915_chipset_val(dev_priv);
  1574. gfx = i915_gfx_val(dev_priv);
  1575. mutex_unlock(&dev->struct_mutex);
  1576. seq_printf(m, "GMCH temp: %ld\n", temp);
  1577. seq_printf(m, "Chipset power: %ld\n", chipset);
  1578. seq_printf(m, "GFX power: %ld\n", gfx);
  1579. seq_printf(m, "Total power: %ld\n", chipset + gfx);
  1580. return 0;
  1581. }
  1582. static int i915_ring_freq_table(struct seq_file *m, void *unused)
  1583. {
  1584. struct drm_info_node *node = m->private;
  1585. struct drm_device *dev = node->minor->dev;
  1586. struct drm_i915_private *dev_priv = dev->dev_private;
  1587. int ret = 0;
  1588. int gpu_freq, ia_freq;
  1589. unsigned int max_gpu_freq, min_gpu_freq;
  1590. if (!HAS_CORE_RING_FREQ(dev)) {
  1591. seq_puts(m, "unsupported on this chipset\n");
  1592. return 0;
  1593. }
  1594. intel_runtime_pm_get(dev_priv);
  1595. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  1596. ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
  1597. if (ret)
  1598. goto out;
  1599. if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
  1600. /* Convert GT frequency to 50 HZ units */
  1601. min_gpu_freq =
  1602. dev_priv->rps.min_freq_softlimit / GEN9_FREQ_SCALER;
  1603. max_gpu_freq =
  1604. dev_priv->rps.max_freq_softlimit / GEN9_FREQ_SCALER;
  1605. } else {
  1606. min_gpu_freq = dev_priv->rps.min_freq_softlimit;
  1607. max_gpu_freq = dev_priv->rps.max_freq_softlimit;
  1608. }
  1609. seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
  1610. for (gpu_freq = min_gpu_freq; gpu_freq <= max_gpu_freq; gpu_freq++) {
  1611. ia_freq = gpu_freq;
  1612. sandybridge_pcode_read(dev_priv,
  1613. GEN6_PCODE_READ_MIN_FREQ_TABLE,
  1614. &ia_freq);
  1615. seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
  1616. intel_gpu_freq(dev_priv, (gpu_freq *
  1617. (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
  1618. GEN9_FREQ_SCALER : 1))),
  1619. ((ia_freq >> 0) & 0xff) * 100,
  1620. ((ia_freq >> 8) & 0xff) * 100);
  1621. }
  1622. mutex_unlock(&dev_priv->rps.hw_lock);
  1623. out:
  1624. intel_runtime_pm_put(dev_priv);
  1625. return ret;
  1626. }
  1627. static int i915_opregion(struct seq_file *m, void *unused)
  1628. {
  1629. struct drm_info_node *node = m->private;
  1630. struct drm_device *dev = node->minor->dev;
  1631. struct drm_i915_private *dev_priv = dev->dev_private;
  1632. struct intel_opregion *opregion = &dev_priv->opregion;
  1633. int ret;
  1634. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1635. if (ret)
  1636. goto out;
  1637. if (opregion->header)
  1638. seq_write(m, opregion->header, OPREGION_SIZE);
  1639. mutex_unlock(&dev->struct_mutex);
  1640. out:
  1641. return 0;
  1642. }
  1643. static int i915_vbt(struct seq_file *m, void *unused)
  1644. {
  1645. struct drm_info_node *node = m->private;
  1646. struct drm_device *dev = node->minor->dev;
  1647. struct drm_i915_private *dev_priv = dev->dev_private;
  1648. struct intel_opregion *opregion = &dev_priv->opregion;
  1649. if (opregion->vbt)
  1650. seq_write(m, opregion->vbt, opregion->vbt_size);
  1651. return 0;
  1652. }
  1653. static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
  1654. {
  1655. struct drm_info_node *node = m->private;
  1656. struct drm_device *dev = node->minor->dev;
  1657. struct intel_framebuffer *fbdev_fb = NULL;
  1658. struct drm_framebuffer *drm_fb;
  1659. int ret;
  1660. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1661. if (ret)
  1662. return ret;
  1663. #ifdef CONFIG_DRM_FBDEV_EMULATION
  1664. if (to_i915(dev)->fbdev) {
  1665. fbdev_fb = to_intel_framebuffer(to_i915(dev)->fbdev->helper.fb);
  1666. seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
  1667. fbdev_fb->base.width,
  1668. fbdev_fb->base.height,
  1669. fbdev_fb->base.depth,
  1670. fbdev_fb->base.bits_per_pixel,
  1671. fbdev_fb->base.modifier[0],
  1672. drm_framebuffer_read_refcount(&fbdev_fb->base));
  1673. describe_obj(m, fbdev_fb->obj);
  1674. seq_putc(m, '\n');
  1675. }
  1676. #endif
  1677. mutex_lock(&dev->mode_config.fb_lock);
  1678. drm_for_each_fb(drm_fb, dev) {
  1679. struct intel_framebuffer *fb = to_intel_framebuffer(drm_fb);
  1680. if (fb == fbdev_fb)
  1681. continue;
  1682. seq_printf(m, "user size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
  1683. fb->base.width,
  1684. fb->base.height,
  1685. fb->base.depth,
  1686. fb->base.bits_per_pixel,
  1687. fb->base.modifier[0],
  1688. drm_framebuffer_read_refcount(&fb->base));
  1689. describe_obj(m, fb->obj);
  1690. seq_putc(m, '\n');
  1691. }
  1692. mutex_unlock(&dev->mode_config.fb_lock);
  1693. mutex_unlock(&dev->struct_mutex);
  1694. return 0;
  1695. }
  1696. static void describe_ctx_ringbuf(struct seq_file *m,
  1697. struct intel_ringbuffer *ringbuf)
  1698. {
  1699. seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u, last head: %d)",
  1700. ringbuf->space, ringbuf->head, ringbuf->tail,
  1701. ringbuf->last_retired_head);
  1702. }
  1703. static int i915_context_status(struct seq_file *m, void *unused)
  1704. {
  1705. struct drm_info_node *node = m->private;
  1706. struct drm_device *dev = node->minor->dev;
  1707. struct drm_i915_private *dev_priv = dev->dev_private;
  1708. struct intel_engine_cs *engine;
  1709. struct i915_gem_context *ctx;
  1710. int ret;
  1711. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1712. if (ret)
  1713. return ret;
  1714. list_for_each_entry(ctx, &dev_priv->context_list, link) {
  1715. seq_printf(m, "HW context %u ", ctx->hw_id);
  1716. if (IS_ERR(ctx->file_priv)) {
  1717. seq_puts(m, "(deleted) ");
  1718. } else if (ctx->file_priv) {
  1719. struct pid *pid = ctx->file_priv->file->pid;
  1720. struct task_struct *task;
  1721. task = get_pid_task(pid, PIDTYPE_PID);
  1722. if (task) {
  1723. seq_printf(m, "(%s [%d]) ",
  1724. task->comm, task->pid);
  1725. put_task_struct(task);
  1726. }
  1727. } else {
  1728. seq_puts(m, "(kernel) ");
  1729. }
  1730. seq_putc(m, ctx->remap_slice ? 'R' : 'r');
  1731. seq_putc(m, '\n');
  1732. for_each_engine(engine, dev_priv) {
  1733. struct intel_context *ce = &ctx->engine[engine->id];
  1734. seq_printf(m, "%s: ", engine->name);
  1735. seq_putc(m, ce->initialised ? 'I' : 'i');
  1736. if (ce->state)
  1737. describe_obj(m, ce->state);
  1738. if (ce->ringbuf)
  1739. describe_ctx_ringbuf(m, ce->ringbuf);
  1740. seq_putc(m, '\n');
  1741. }
  1742. seq_putc(m, '\n');
  1743. }
  1744. mutex_unlock(&dev->struct_mutex);
  1745. return 0;
  1746. }
  1747. static void i915_dump_lrc_obj(struct seq_file *m,
  1748. struct i915_gem_context *ctx,
  1749. struct intel_engine_cs *engine)
  1750. {
  1751. struct drm_i915_gem_object *ctx_obj = ctx->engine[engine->id].state;
  1752. struct page *page;
  1753. uint32_t *reg_state;
  1754. int j;
  1755. unsigned long ggtt_offset = 0;
  1756. seq_printf(m, "CONTEXT: %s %u\n", engine->name, ctx->hw_id);
  1757. if (ctx_obj == NULL) {
  1758. seq_puts(m, "\tNot allocated\n");
  1759. return;
  1760. }
  1761. if (!i915_gem_obj_ggtt_bound(ctx_obj))
  1762. seq_puts(m, "\tNot bound in GGTT\n");
  1763. else
  1764. ggtt_offset = i915_gem_obj_ggtt_offset(ctx_obj);
  1765. if (i915_gem_object_get_pages(ctx_obj)) {
  1766. seq_puts(m, "\tFailed to get pages for context object\n");
  1767. return;
  1768. }
  1769. page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
  1770. if (!WARN_ON(page == NULL)) {
  1771. reg_state = kmap_atomic(page);
  1772. for (j = 0; j < 0x600 / sizeof(u32) / 4; j += 4) {
  1773. seq_printf(m, "\t[0x%08lx] 0x%08x 0x%08x 0x%08x 0x%08x\n",
  1774. ggtt_offset + 4096 + (j * 4),
  1775. reg_state[j], reg_state[j + 1],
  1776. reg_state[j + 2], reg_state[j + 3]);
  1777. }
  1778. kunmap_atomic(reg_state);
  1779. }
  1780. seq_putc(m, '\n');
  1781. }
  1782. static int i915_dump_lrc(struct seq_file *m, void *unused)
  1783. {
  1784. struct drm_info_node *node = (struct drm_info_node *) m->private;
  1785. struct drm_device *dev = node->minor->dev;
  1786. struct drm_i915_private *dev_priv = dev->dev_private;
  1787. struct intel_engine_cs *engine;
  1788. struct i915_gem_context *ctx;
  1789. int ret;
  1790. if (!i915.enable_execlists) {
  1791. seq_printf(m, "Logical Ring Contexts are disabled\n");
  1792. return 0;
  1793. }
  1794. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1795. if (ret)
  1796. return ret;
  1797. list_for_each_entry(ctx, &dev_priv->context_list, link)
  1798. for_each_engine(engine, dev_priv)
  1799. i915_dump_lrc_obj(m, ctx, engine);
  1800. mutex_unlock(&dev->struct_mutex);
  1801. return 0;
  1802. }
  1803. static int i915_execlists(struct seq_file *m, void *data)
  1804. {
  1805. struct drm_info_node *node = (struct drm_info_node *)m->private;
  1806. struct drm_device *dev = node->minor->dev;
  1807. struct drm_i915_private *dev_priv = dev->dev_private;
  1808. struct intel_engine_cs *engine;
  1809. u32 status_pointer;
  1810. u8 read_pointer;
  1811. u8 write_pointer;
  1812. u32 status;
  1813. u32 ctx_id;
  1814. struct list_head *cursor;
  1815. int i, ret;
  1816. if (!i915.enable_execlists) {
  1817. seq_puts(m, "Logical Ring Contexts are disabled\n");
  1818. return 0;
  1819. }
  1820. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1821. if (ret)
  1822. return ret;
  1823. intel_runtime_pm_get(dev_priv);
  1824. for_each_engine(engine, dev_priv) {
  1825. struct drm_i915_gem_request *head_req = NULL;
  1826. int count = 0;
  1827. seq_printf(m, "%s\n", engine->name);
  1828. status = I915_READ(RING_EXECLIST_STATUS_LO(engine));
  1829. ctx_id = I915_READ(RING_EXECLIST_STATUS_HI(engine));
  1830. seq_printf(m, "\tExeclist status: 0x%08X, context: %u\n",
  1831. status, ctx_id);
  1832. status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(engine));
  1833. seq_printf(m, "\tStatus pointer: 0x%08X\n", status_pointer);
  1834. read_pointer = engine->next_context_status_buffer;
  1835. write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
  1836. if (read_pointer > write_pointer)
  1837. write_pointer += GEN8_CSB_ENTRIES;
  1838. seq_printf(m, "\tRead pointer: 0x%08X, write pointer 0x%08X\n",
  1839. read_pointer, write_pointer);
  1840. for (i = 0; i < GEN8_CSB_ENTRIES; i++) {
  1841. status = I915_READ(RING_CONTEXT_STATUS_BUF_LO(engine, i));
  1842. ctx_id = I915_READ(RING_CONTEXT_STATUS_BUF_HI(engine, i));
  1843. seq_printf(m, "\tStatus buffer %d: 0x%08X, context: %u\n",
  1844. i, status, ctx_id);
  1845. }
  1846. spin_lock_bh(&engine->execlist_lock);
  1847. list_for_each(cursor, &engine->execlist_queue)
  1848. count++;
  1849. head_req = list_first_entry_or_null(&engine->execlist_queue,
  1850. struct drm_i915_gem_request,
  1851. execlist_link);
  1852. spin_unlock_bh(&engine->execlist_lock);
  1853. seq_printf(m, "\t%d requests in queue\n", count);
  1854. if (head_req) {
  1855. seq_printf(m, "\tHead request context: %u\n",
  1856. head_req->ctx->hw_id);
  1857. seq_printf(m, "\tHead request tail: %u\n",
  1858. head_req->tail);
  1859. }
  1860. seq_putc(m, '\n');
  1861. }
  1862. intel_runtime_pm_put(dev_priv);
  1863. mutex_unlock(&dev->struct_mutex);
  1864. return 0;
  1865. }
  1866. static const char *swizzle_string(unsigned swizzle)
  1867. {
  1868. switch (swizzle) {
  1869. case I915_BIT_6_SWIZZLE_NONE:
  1870. return "none";
  1871. case I915_BIT_6_SWIZZLE_9:
  1872. return "bit9";
  1873. case I915_BIT_6_SWIZZLE_9_10:
  1874. return "bit9/bit10";
  1875. case I915_BIT_6_SWIZZLE_9_11:
  1876. return "bit9/bit11";
  1877. case I915_BIT_6_SWIZZLE_9_10_11:
  1878. return "bit9/bit10/bit11";
  1879. case I915_BIT_6_SWIZZLE_9_17:
  1880. return "bit9/bit17";
  1881. case I915_BIT_6_SWIZZLE_9_10_17:
  1882. return "bit9/bit10/bit17";
  1883. case I915_BIT_6_SWIZZLE_UNKNOWN:
  1884. return "unknown";
  1885. }
  1886. return "bug";
  1887. }
  1888. static int i915_swizzle_info(struct seq_file *m, void *data)
  1889. {
  1890. struct drm_info_node *node = m->private;
  1891. struct drm_device *dev = node->minor->dev;
  1892. struct drm_i915_private *dev_priv = dev->dev_private;
  1893. int ret;
  1894. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1895. if (ret)
  1896. return ret;
  1897. intel_runtime_pm_get(dev_priv);
  1898. seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
  1899. swizzle_string(dev_priv->mm.bit_6_swizzle_x));
  1900. seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
  1901. swizzle_string(dev_priv->mm.bit_6_swizzle_y));
  1902. if (IS_GEN3(dev) || IS_GEN4(dev)) {
  1903. seq_printf(m, "DDC = 0x%08x\n",
  1904. I915_READ(DCC));
  1905. seq_printf(m, "DDC2 = 0x%08x\n",
  1906. I915_READ(DCC2));
  1907. seq_printf(m, "C0DRB3 = 0x%04x\n",
  1908. I915_READ16(C0DRB3));
  1909. seq_printf(m, "C1DRB3 = 0x%04x\n",
  1910. I915_READ16(C1DRB3));
  1911. } else if (INTEL_INFO(dev)->gen >= 6) {
  1912. seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
  1913. I915_READ(MAD_DIMM_C0));
  1914. seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
  1915. I915_READ(MAD_DIMM_C1));
  1916. seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
  1917. I915_READ(MAD_DIMM_C2));
  1918. seq_printf(m, "TILECTL = 0x%08x\n",
  1919. I915_READ(TILECTL));
  1920. if (INTEL_INFO(dev)->gen >= 8)
  1921. seq_printf(m, "GAMTARBMODE = 0x%08x\n",
  1922. I915_READ(GAMTARBMODE));
  1923. else
  1924. seq_printf(m, "ARB_MODE = 0x%08x\n",
  1925. I915_READ(ARB_MODE));
  1926. seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
  1927. I915_READ(DISP_ARB_CTL));
  1928. }
  1929. if (dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
  1930. seq_puts(m, "L-shaped memory detected\n");
  1931. intel_runtime_pm_put(dev_priv);
  1932. mutex_unlock(&dev->struct_mutex);
  1933. return 0;
  1934. }
  1935. static int per_file_ctx(int id, void *ptr, void *data)
  1936. {
  1937. struct i915_gem_context *ctx = ptr;
  1938. struct seq_file *m = data;
  1939. struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
  1940. if (!ppgtt) {
  1941. seq_printf(m, " no ppgtt for context %d\n",
  1942. ctx->user_handle);
  1943. return 0;
  1944. }
  1945. if (i915_gem_context_is_default(ctx))
  1946. seq_puts(m, " default context:\n");
  1947. else
  1948. seq_printf(m, " context %d:\n", ctx->user_handle);
  1949. ppgtt->debug_dump(ppgtt, m);
  1950. return 0;
  1951. }
  1952. static void gen8_ppgtt_info(struct seq_file *m, struct drm_device *dev)
  1953. {
  1954. struct drm_i915_private *dev_priv = dev->dev_private;
  1955. struct intel_engine_cs *engine;
  1956. struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
  1957. int i;
  1958. if (!ppgtt)
  1959. return;
  1960. for_each_engine(engine, dev_priv) {
  1961. seq_printf(m, "%s\n", engine->name);
  1962. for (i = 0; i < 4; i++) {
  1963. u64 pdp = I915_READ(GEN8_RING_PDP_UDW(engine, i));
  1964. pdp <<= 32;
  1965. pdp |= I915_READ(GEN8_RING_PDP_LDW(engine, i));
  1966. seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
  1967. }
  1968. }
  1969. }
  1970. static void gen6_ppgtt_info(struct seq_file *m, struct drm_device *dev)
  1971. {
  1972. struct drm_i915_private *dev_priv = dev->dev_private;
  1973. struct intel_engine_cs *engine;
  1974. if (IS_GEN6(dev_priv))
  1975. seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
  1976. for_each_engine(engine, dev_priv) {
  1977. seq_printf(m, "%s\n", engine->name);
  1978. if (IS_GEN7(dev_priv))
  1979. seq_printf(m, "GFX_MODE: 0x%08x\n",
  1980. I915_READ(RING_MODE_GEN7(engine)));
  1981. seq_printf(m, "PP_DIR_BASE: 0x%08x\n",
  1982. I915_READ(RING_PP_DIR_BASE(engine)));
  1983. seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n",
  1984. I915_READ(RING_PP_DIR_BASE_READ(engine)));
  1985. seq_printf(m, "PP_DIR_DCLV: 0x%08x\n",
  1986. I915_READ(RING_PP_DIR_DCLV(engine)));
  1987. }
  1988. if (dev_priv->mm.aliasing_ppgtt) {
  1989. struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
  1990. seq_puts(m, "aliasing PPGTT:\n");
  1991. seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd.base.ggtt_offset);
  1992. ppgtt->debug_dump(ppgtt, m);
  1993. }
  1994. seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
  1995. }
  1996. static int i915_ppgtt_info(struct seq_file *m, void *data)
  1997. {
  1998. struct drm_info_node *node = m->private;
  1999. struct drm_device *dev = node->minor->dev;
  2000. struct drm_i915_private *dev_priv = dev->dev_private;
  2001. struct drm_file *file;
  2002. int ret = mutex_lock_interruptible(&dev->struct_mutex);
  2003. if (ret)
  2004. return ret;
  2005. intel_runtime_pm_get(dev_priv);
  2006. if (INTEL_INFO(dev)->gen >= 8)
  2007. gen8_ppgtt_info(m, dev);
  2008. else if (INTEL_INFO(dev)->gen >= 6)
  2009. gen6_ppgtt_info(m, dev);
  2010. mutex_lock(&dev->filelist_mutex);
  2011. list_for_each_entry_reverse(file, &dev->filelist, lhead) {
  2012. struct drm_i915_file_private *file_priv = file->driver_priv;
  2013. struct task_struct *task;
  2014. task = get_pid_task(file->pid, PIDTYPE_PID);
  2015. if (!task) {
  2016. ret = -ESRCH;
  2017. goto out_put;
  2018. }
  2019. seq_printf(m, "\nproc: %s\n", task->comm);
  2020. put_task_struct(task);
  2021. idr_for_each(&file_priv->context_idr, per_file_ctx,
  2022. (void *)(unsigned long)m);
  2023. }
  2024. mutex_unlock(&dev->filelist_mutex);
  2025. out_put:
  2026. intel_runtime_pm_put(dev_priv);
  2027. mutex_unlock(&dev->struct_mutex);
  2028. return ret;
  2029. }
  2030. static int count_irq_waiters(struct drm_i915_private *i915)
  2031. {
  2032. struct intel_engine_cs *engine;
  2033. int count = 0;
  2034. for_each_engine(engine, i915)
  2035. count += engine->irq_refcount;
  2036. return count;
  2037. }
  2038. static int i915_rps_boost_info(struct seq_file *m, void *data)
  2039. {
  2040. struct drm_info_node *node = m->private;
  2041. struct drm_device *dev = node->minor->dev;
  2042. struct drm_i915_private *dev_priv = dev->dev_private;
  2043. struct drm_file *file;
  2044. seq_printf(m, "RPS enabled? %d\n", dev_priv->rps.enabled);
  2045. seq_printf(m, "GPU busy? %d\n", dev_priv->mm.busy);
  2046. seq_printf(m, "CPU waiting? %d\n", count_irq_waiters(dev_priv));
  2047. seq_printf(m, "Frequency requested %d; min hard:%d, soft:%d; max soft:%d, hard:%d\n",
  2048. intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
  2049. intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
  2050. intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit),
  2051. intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit),
  2052. intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
  2053. mutex_lock(&dev->filelist_mutex);
  2054. spin_lock(&dev_priv->rps.client_lock);
  2055. list_for_each_entry_reverse(file, &dev->filelist, lhead) {
  2056. struct drm_i915_file_private *file_priv = file->driver_priv;
  2057. struct task_struct *task;
  2058. rcu_read_lock();
  2059. task = pid_task(file->pid, PIDTYPE_PID);
  2060. seq_printf(m, "%s [%d]: %d boosts%s\n",
  2061. task ? task->comm : "<unknown>",
  2062. task ? task->pid : -1,
  2063. file_priv->rps.boosts,
  2064. list_empty(&file_priv->rps.link) ? "" : ", active");
  2065. rcu_read_unlock();
  2066. }
  2067. seq_printf(m, "Semaphore boosts: %d%s\n",
  2068. dev_priv->rps.semaphores.boosts,
  2069. list_empty(&dev_priv->rps.semaphores.link) ? "" : ", active");
  2070. seq_printf(m, "MMIO flip boosts: %d%s\n",
  2071. dev_priv->rps.mmioflips.boosts,
  2072. list_empty(&dev_priv->rps.mmioflips.link) ? "" : ", active");
  2073. seq_printf(m, "Kernel boosts: %d\n", dev_priv->rps.boosts);
  2074. spin_unlock(&dev_priv->rps.client_lock);
  2075. mutex_unlock(&dev->filelist_mutex);
  2076. return 0;
  2077. }
  2078. static int i915_llc(struct seq_file *m, void *data)
  2079. {
  2080. struct drm_info_node *node = m->private;
  2081. struct drm_device *dev = node->minor->dev;
  2082. struct drm_i915_private *dev_priv = dev->dev_private;
  2083. const bool edram = INTEL_GEN(dev_priv) > 8;
  2084. seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev)));
  2085. seq_printf(m, "%s: %lluMB\n", edram ? "eDRAM" : "eLLC",
  2086. intel_uncore_edram_size(dev_priv)/1024/1024);
  2087. return 0;
  2088. }
  2089. static int i915_guc_load_status_info(struct seq_file *m, void *data)
  2090. {
  2091. struct drm_info_node *node = m->private;
  2092. struct drm_i915_private *dev_priv = node->minor->dev->dev_private;
  2093. struct intel_guc_fw *guc_fw = &dev_priv->guc.guc_fw;
  2094. u32 tmp, i;
  2095. if (!HAS_GUC_UCODE(dev_priv))
  2096. return 0;
  2097. seq_printf(m, "GuC firmware status:\n");
  2098. seq_printf(m, "\tpath: %s\n",
  2099. guc_fw->guc_fw_path);
  2100. seq_printf(m, "\tfetch: %s\n",
  2101. intel_guc_fw_status_repr(guc_fw->guc_fw_fetch_status));
  2102. seq_printf(m, "\tload: %s\n",
  2103. intel_guc_fw_status_repr(guc_fw->guc_fw_load_status));
  2104. seq_printf(m, "\tversion wanted: %d.%d\n",
  2105. guc_fw->guc_fw_major_wanted, guc_fw->guc_fw_minor_wanted);
  2106. seq_printf(m, "\tversion found: %d.%d\n",
  2107. guc_fw->guc_fw_major_found, guc_fw->guc_fw_minor_found);
  2108. seq_printf(m, "\theader: offset is %d; size = %d\n",
  2109. guc_fw->header_offset, guc_fw->header_size);
  2110. seq_printf(m, "\tuCode: offset is %d; size = %d\n",
  2111. guc_fw->ucode_offset, guc_fw->ucode_size);
  2112. seq_printf(m, "\tRSA: offset is %d; size = %d\n",
  2113. guc_fw->rsa_offset, guc_fw->rsa_size);
  2114. tmp = I915_READ(GUC_STATUS);
  2115. seq_printf(m, "\nGuC status 0x%08x:\n", tmp);
  2116. seq_printf(m, "\tBootrom status = 0x%x\n",
  2117. (tmp & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT);
  2118. seq_printf(m, "\tuKernel status = 0x%x\n",
  2119. (tmp & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT);
  2120. seq_printf(m, "\tMIA Core status = 0x%x\n",
  2121. (tmp & GS_MIA_MASK) >> GS_MIA_SHIFT);
  2122. seq_puts(m, "\nScratch registers:\n");
  2123. for (i = 0; i < 16; i++)
  2124. seq_printf(m, "\t%2d: \t0x%x\n", i, I915_READ(SOFT_SCRATCH(i)));
  2125. return 0;
  2126. }
  2127. static void i915_guc_client_info(struct seq_file *m,
  2128. struct drm_i915_private *dev_priv,
  2129. struct i915_guc_client *client)
  2130. {
  2131. struct intel_engine_cs *engine;
  2132. uint64_t tot = 0;
  2133. seq_printf(m, "\tPriority %d, GuC ctx index: %u, PD offset 0x%x\n",
  2134. client->priority, client->ctx_index, client->proc_desc_offset);
  2135. seq_printf(m, "\tDoorbell id %d, offset: 0x%x, cookie 0x%x\n",
  2136. client->doorbell_id, client->doorbell_offset, client->cookie);
  2137. seq_printf(m, "\tWQ size %d, offset: 0x%x, tail %d\n",
  2138. client->wq_size, client->wq_offset, client->wq_tail);
  2139. seq_printf(m, "\tWork queue full: %u\n", client->no_wq_space);
  2140. seq_printf(m, "\tFailed to queue: %u\n", client->q_fail);
  2141. seq_printf(m, "\tFailed doorbell: %u\n", client->b_fail);
  2142. seq_printf(m, "\tLast submission result: %d\n", client->retcode);
  2143. for_each_engine(engine, dev_priv) {
  2144. seq_printf(m, "\tSubmissions: %llu %s\n",
  2145. client->submissions[engine->guc_id],
  2146. engine->name);
  2147. tot += client->submissions[engine->guc_id];
  2148. }
  2149. seq_printf(m, "\tTotal: %llu\n", tot);
  2150. }
  2151. static int i915_guc_info(struct seq_file *m, void *data)
  2152. {
  2153. struct drm_info_node *node = m->private;
  2154. struct drm_device *dev = node->minor->dev;
  2155. struct drm_i915_private *dev_priv = dev->dev_private;
  2156. struct intel_guc guc;
  2157. struct i915_guc_client client = {};
  2158. struct intel_engine_cs *engine;
  2159. u64 total = 0;
  2160. if (!HAS_GUC_SCHED(dev_priv))
  2161. return 0;
  2162. if (mutex_lock_interruptible(&dev->struct_mutex))
  2163. return 0;
  2164. /* Take a local copy of the GuC data, so we can dump it at leisure */
  2165. guc = dev_priv->guc;
  2166. if (guc.execbuf_client)
  2167. client = *guc.execbuf_client;
  2168. mutex_unlock(&dev->struct_mutex);
  2169. seq_printf(m, "GuC total action count: %llu\n", guc.action_count);
  2170. seq_printf(m, "GuC action failure count: %u\n", guc.action_fail);
  2171. seq_printf(m, "GuC last action command: 0x%x\n", guc.action_cmd);
  2172. seq_printf(m, "GuC last action status: 0x%x\n", guc.action_status);
  2173. seq_printf(m, "GuC last action error code: %d\n", guc.action_err);
  2174. seq_printf(m, "\nGuC submissions:\n");
  2175. for_each_engine(engine, dev_priv) {
  2176. seq_printf(m, "\t%-24s: %10llu, last seqno 0x%08x\n",
  2177. engine->name, guc.submissions[engine->guc_id],
  2178. guc.last_seqno[engine->guc_id]);
  2179. total += guc.submissions[engine->guc_id];
  2180. }
  2181. seq_printf(m, "\t%s: %llu\n", "Total", total);
  2182. seq_printf(m, "\nGuC execbuf client @ %p:\n", guc.execbuf_client);
  2183. i915_guc_client_info(m, dev_priv, &client);
  2184. /* Add more as required ... */
  2185. return 0;
  2186. }
  2187. static int i915_guc_log_dump(struct seq_file *m, void *data)
  2188. {
  2189. struct drm_info_node *node = m->private;
  2190. struct drm_device *dev = node->minor->dev;
  2191. struct drm_i915_private *dev_priv = dev->dev_private;
  2192. struct drm_i915_gem_object *log_obj = dev_priv->guc.log_obj;
  2193. u32 *log;
  2194. int i = 0, pg;
  2195. if (!log_obj)
  2196. return 0;
  2197. for (pg = 0; pg < log_obj->base.size / PAGE_SIZE; pg++) {
  2198. log = kmap_atomic(i915_gem_object_get_page(log_obj, pg));
  2199. for (i = 0; i < PAGE_SIZE / sizeof(u32); i += 4)
  2200. seq_printf(m, "0x%08x 0x%08x 0x%08x 0x%08x\n",
  2201. *(log + i), *(log + i + 1),
  2202. *(log + i + 2), *(log + i + 3));
  2203. kunmap_atomic(log);
  2204. }
  2205. seq_putc(m, '\n');
  2206. return 0;
  2207. }
  2208. static int i915_edp_psr_status(struct seq_file *m, void *data)
  2209. {
  2210. struct drm_info_node *node = m->private;
  2211. struct drm_device *dev = node->minor->dev;
  2212. struct drm_i915_private *dev_priv = dev->dev_private;
  2213. u32 psrperf = 0;
  2214. u32 stat[3];
  2215. enum pipe pipe;
  2216. bool enabled = false;
  2217. if (!HAS_PSR(dev)) {
  2218. seq_puts(m, "PSR not supported\n");
  2219. return 0;
  2220. }
  2221. intel_runtime_pm_get(dev_priv);
  2222. mutex_lock(&dev_priv->psr.lock);
  2223. seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
  2224. seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
  2225. seq_printf(m, "Enabled: %s\n", yesno((bool)dev_priv->psr.enabled));
  2226. seq_printf(m, "Active: %s\n", yesno(dev_priv->psr.active));
  2227. seq_printf(m, "Busy frontbuffer bits: 0x%03x\n",
  2228. dev_priv->psr.busy_frontbuffer_bits);
  2229. seq_printf(m, "Re-enable work scheduled: %s\n",
  2230. yesno(work_busy(&dev_priv->psr.work.work)));
  2231. if (HAS_DDI(dev))
  2232. enabled = I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE;
  2233. else {
  2234. for_each_pipe(dev_priv, pipe) {
  2235. stat[pipe] = I915_READ(VLV_PSRSTAT(pipe)) &
  2236. VLV_EDP_PSR_CURR_STATE_MASK;
  2237. if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
  2238. (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
  2239. enabled = true;
  2240. }
  2241. }
  2242. seq_printf(m, "Main link in standby mode: %s\n",
  2243. yesno(dev_priv->psr.link_standby));
  2244. seq_printf(m, "HW Enabled & Active bit: %s", yesno(enabled));
  2245. if (!HAS_DDI(dev))
  2246. for_each_pipe(dev_priv, pipe) {
  2247. if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
  2248. (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
  2249. seq_printf(m, " pipe %c", pipe_name(pipe));
  2250. }
  2251. seq_puts(m, "\n");
  2252. /*
  2253. * VLV/CHV PSR has no kind of performance counter
  2254. * SKL+ Perf counter is reset to 0 everytime DC state is entered
  2255. */
  2256. if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
  2257. psrperf = I915_READ(EDP_PSR_PERF_CNT) &
  2258. EDP_PSR_PERF_CNT_MASK;
  2259. seq_printf(m, "Performance_Counter: %u\n", psrperf);
  2260. }
  2261. mutex_unlock(&dev_priv->psr.lock);
  2262. intel_runtime_pm_put(dev_priv);
  2263. return 0;
  2264. }
  2265. static int i915_sink_crc(struct seq_file *m, void *data)
  2266. {
  2267. struct drm_info_node *node = m->private;
  2268. struct drm_device *dev = node->minor->dev;
  2269. struct intel_encoder *encoder;
  2270. struct intel_connector *connector;
  2271. struct intel_dp *intel_dp = NULL;
  2272. int ret;
  2273. u8 crc[6];
  2274. drm_modeset_lock_all(dev);
  2275. for_each_intel_connector(dev, connector) {
  2276. if (connector->base.dpms != DRM_MODE_DPMS_ON)
  2277. continue;
  2278. if (!connector->base.encoder)
  2279. continue;
  2280. encoder = to_intel_encoder(connector->base.encoder);
  2281. if (encoder->type != INTEL_OUTPUT_EDP)
  2282. continue;
  2283. intel_dp = enc_to_intel_dp(&encoder->base);
  2284. ret = intel_dp_sink_crc(intel_dp, crc);
  2285. if (ret)
  2286. goto out;
  2287. seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
  2288. crc[0], crc[1], crc[2],
  2289. crc[3], crc[4], crc[5]);
  2290. goto out;
  2291. }
  2292. ret = -ENODEV;
  2293. out:
  2294. drm_modeset_unlock_all(dev);
  2295. return ret;
  2296. }
  2297. static int i915_energy_uJ(struct seq_file *m, void *data)
  2298. {
  2299. struct drm_info_node *node = m->private;
  2300. struct drm_device *dev = node->minor->dev;
  2301. struct drm_i915_private *dev_priv = dev->dev_private;
  2302. u64 power;
  2303. u32 units;
  2304. if (INTEL_INFO(dev)->gen < 6)
  2305. return -ENODEV;
  2306. intel_runtime_pm_get(dev_priv);
  2307. rdmsrl(MSR_RAPL_POWER_UNIT, power);
  2308. power = (power & 0x1f00) >> 8;
  2309. units = 1000000 / (1 << power); /* convert to uJ */
  2310. power = I915_READ(MCH_SECP_NRG_STTS);
  2311. power *= units;
  2312. intel_runtime_pm_put(dev_priv);
  2313. seq_printf(m, "%llu", (long long unsigned)power);
  2314. return 0;
  2315. }
  2316. static int i915_runtime_pm_status(struct seq_file *m, void *unused)
  2317. {
  2318. struct drm_info_node *node = m->private;
  2319. struct drm_device *dev = node->minor->dev;
  2320. struct drm_i915_private *dev_priv = dev->dev_private;
  2321. if (!HAS_RUNTIME_PM(dev_priv))
  2322. seq_puts(m, "Runtime power management not supported\n");
  2323. seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->mm.busy));
  2324. seq_printf(m, "IRQs disabled: %s\n",
  2325. yesno(!intel_irqs_enabled(dev_priv)));
  2326. #ifdef CONFIG_PM
  2327. seq_printf(m, "Usage count: %d\n",
  2328. atomic_read(&dev->dev->power.usage_count));
  2329. #else
  2330. seq_printf(m, "Device Power Management (CONFIG_PM) disabled\n");
  2331. #endif
  2332. seq_printf(m, "PCI device power state: %s [%d]\n",
  2333. pci_power_name(dev_priv->dev->pdev->current_state),
  2334. dev_priv->dev->pdev->current_state);
  2335. return 0;
  2336. }
  2337. static int i915_power_domain_info(struct seq_file *m, void *unused)
  2338. {
  2339. struct drm_info_node *node = m->private;
  2340. struct drm_device *dev = node->minor->dev;
  2341. struct drm_i915_private *dev_priv = dev->dev_private;
  2342. struct i915_power_domains *power_domains = &dev_priv->power_domains;
  2343. int i;
  2344. mutex_lock(&power_domains->lock);
  2345. seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
  2346. for (i = 0; i < power_domains->power_well_count; i++) {
  2347. struct i915_power_well *power_well;
  2348. enum intel_display_power_domain power_domain;
  2349. power_well = &power_domains->power_wells[i];
  2350. seq_printf(m, "%-25s %d\n", power_well->name,
  2351. power_well->count);
  2352. for (power_domain = 0; power_domain < POWER_DOMAIN_NUM;
  2353. power_domain++) {
  2354. if (!(BIT(power_domain) & power_well->domains))
  2355. continue;
  2356. seq_printf(m, " %-23s %d\n",
  2357. intel_display_power_domain_str(power_domain),
  2358. power_domains->domain_use_count[power_domain]);
  2359. }
  2360. }
  2361. mutex_unlock(&power_domains->lock);
  2362. return 0;
  2363. }
  2364. static int i915_dmc_info(struct seq_file *m, void *unused)
  2365. {
  2366. struct drm_info_node *node = m->private;
  2367. struct drm_device *dev = node->minor->dev;
  2368. struct drm_i915_private *dev_priv = dev->dev_private;
  2369. struct intel_csr *csr;
  2370. if (!HAS_CSR(dev)) {
  2371. seq_puts(m, "not supported\n");
  2372. return 0;
  2373. }
  2374. csr = &dev_priv->csr;
  2375. intel_runtime_pm_get(dev_priv);
  2376. seq_printf(m, "fw loaded: %s\n", yesno(csr->dmc_payload != NULL));
  2377. seq_printf(m, "path: %s\n", csr->fw_path);
  2378. if (!csr->dmc_payload)
  2379. goto out;
  2380. seq_printf(m, "version: %d.%d\n", CSR_VERSION_MAJOR(csr->version),
  2381. CSR_VERSION_MINOR(csr->version));
  2382. if (IS_SKYLAKE(dev) && csr->version >= CSR_VERSION(1, 6)) {
  2383. seq_printf(m, "DC3 -> DC5 count: %d\n",
  2384. I915_READ(SKL_CSR_DC3_DC5_COUNT));
  2385. seq_printf(m, "DC5 -> DC6 count: %d\n",
  2386. I915_READ(SKL_CSR_DC5_DC6_COUNT));
  2387. } else if (IS_BROXTON(dev) && csr->version >= CSR_VERSION(1, 4)) {
  2388. seq_printf(m, "DC3 -> DC5 count: %d\n",
  2389. I915_READ(BXT_CSR_DC3_DC5_COUNT));
  2390. }
  2391. out:
  2392. seq_printf(m, "program base: 0x%08x\n", I915_READ(CSR_PROGRAM(0)));
  2393. seq_printf(m, "ssp base: 0x%08x\n", I915_READ(CSR_SSP_BASE));
  2394. seq_printf(m, "htp: 0x%08x\n", I915_READ(CSR_HTP_SKL));
  2395. intel_runtime_pm_put(dev_priv);
  2396. return 0;
  2397. }
  2398. static void intel_seq_print_mode(struct seq_file *m, int tabs,
  2399. struct drm_display_mode *mode)
  2400. {
  2401. int i;
  2402. for (i = 0; i < tabs; i++)
  2403. seq_putc(m, '\t');
  2404. seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
  2405. mode->base.id, mode->name,
  2406. mode->vrefresh, mode->clock,
  2407. mode->hdisplay, mode->hsync_start,
  2408. mode->hsync_end, mode->htotal,
  2409. mode->vdisplay, mode->vsync_start,
  2410. mode->vsync_end, mode->vtotal,
  2411. mode->type, mode->flags);
  2412. }
  2413. static void intel_encoder_info(struct seq_file *m,
  2414. struct intel_crtc *intel_crtc,
  2415. struct intel_encoder *intel_encoder)
  2416. {
  2417. struct drm_info_node *node = m->private;
  2418. struct drm_device *dev = node->minor->dev;
  2419. struct drm_crtc *crtc = &intel_crtc->base;
  2420. struct intel_connector *intel_connector;
  2421. struct drm_encoder *encoder;
  2422. encoder = &intel_encoder->base;
  2423. seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
  2424. encoder->base.id, encoder->name);
  2425. for_each_connector_on_encoder(dev, encoder, intel_connector) {
  2426. struct drm_connector *connector = &intel_connector->base;
  2427. seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
  2428. connector->base.id,
  2429. connector->name,
  2430. drm_get_connector_status_name(connector->status));
  2431. if (connector->status == connector_status_connected) {
  2432. struct drm_display_mode *mode = &crtc->mode;
  2433. seq_printf(m, ", mode:\n");
  2434. intel_seq_print_mode(m, 2, mode);
  2435. } else {
  2436. seq_putc(m, '\n');
  2437. }
  2438. }
  2439. }
  2440. static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
  2441. {
  2442. struct drm_info_node *node = m->private;
  2443. struct drm_device *dev = node->minor->dev;
  2444. struct drm_crtc *crtc = &intel_crtc->base;
  2445. struct intel_encoder *intel_encoder;
  2446. struct drm_plane_state *plane_state = crtc->primary->state;
  2447. struct drm_framebuffer *fb = plane_state->fb;
  2448. if (fb)
  2449. seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
  2450. fb->base.id, plane_state->src_x >> 16,
  2451. plane_state->src_y >> 16, fb->width, fb->height);
  2452. else
  2453. seq_puts(m, "\tprimary plane disabled\n");
  2454. for_each_encoder_on_crtc(dev, crtc, intel_encoder)
  2455. intel_encoder_info(m, intel_crtc, intel_encoder);
  2456. }
  2457. static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
  2458. {
  2459. struct drm_display_mode *mode = panel->fixed_mode;
  2460. seq_printf(m, "\tfixed mode:\n");
  2461. intel_seq_print_mode(m, 2, mode);
  2462. }
  2463. static void intel_dp_info(struct seq_file *m,
  2464. struct intel_connector *intel_connector)
  2465. {
  2466. struct intel_encoder *intel_encoder = intel_connector->encoder;
  2467. struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
  2468. seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
  2469. seq_printf(m, "\taudio support: %s\n", yesno(intel_dp->has_audio));
  2470. if (intel_encoder->type == INTEL_OUTPUT_EDP)
  2471. intel_panel_info(m, &intel_connector->panel);
  2472. }
  2473. static void intel_hdmi_info(struct seq_file *m,
  2474. struct intel_connector *intel_connector)
  2475. {
  2476. struct intel_encoder *intel_encoder = intel_connector->encoder;
  2477. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
  2478. seq_printf(m, "\taudio support: %s\n", yesno(intel_hdmi->has_audio));
  2479. }
  2480. static void intel_lvds_info(struct seq_file *m,
  2481. struct intel_connector *intel_connector)
  2482. {
  2483. intel_panel_info(m, &intel_connector->panel);
  2484. }
  2485. static void intel_connector_info(struct seq_file *m,
  2486. struct drm_connector *connector)
  2487. {
  2488. struct intel_connector *intel_connector = to_intel_connector(connector);
  2489. struct intel_encoder *intel_encoder = intel_connector->encoder;
  2490. struct drm_display_mode *mode;
  2491. seq_printf(m, "connector %d: type %s, status: %s\n",
  2492. connector->base.id, connector->name,
  2493. drm_get_connector_status_name(connector->status));
  2494. if (connector->status == connector_status_connected) {
  2495. seq_printf(m, "\tname: %s\n", connector->display_info.name);
  2496. seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
  2497. connector->display_info.width_mm,
  2498. connector->display_info.height_mm);
  2499. seq_printf(m, "\tsubpixel order: %s\n",
  2500. drm_get_subpixel_order_name(connector->display_info.subpixel_order));
  2501. seq_printf(m, "\tCEA rev: %d\n",
  2502. connector->display_info.cea_rev);
  2503. }
  2504. if (intel_encoder) {
  2505. if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
  2506. intel_encoder->type == INTEL_OUTPUT_EDP)
  2507. intel_dp_info(m, intel_connector);
  2508. else if (intel_encoder->type == INTEL_OUTPUT_HDMI)
  2509. intel_hdmi_info(m, intel_connector);
  2510. else if (intel_encoder->type == INTEL_OUTPUT_LVDS)
  2511. intel_lvds_info(m, intel_connector);
  2512. }
  2513. seq_printf(m, "\tmodes:\n");
  2514. list_for_each_entry(mode, &connector->modes, head)
  2515. intel_seq_print_mode(m, 2, mode);
  2516. }
  2517. static bool cursor_active(struct drm_device *dev, int pipe)
  2518. {
  2519. struct drm_i915_private *dev_priv = dev->dev_private;
  2520. u32 state;
  2521. if (IS_845G(dev) || IS_I865G(dev))
  2522. state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
  2523. else
  2524. state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
  2525. return state;
  2526. }
  2527. static bool cursor_position(struct drm_device *dev, int pipe, int *x, int *y)
  2528. {
  2529. struct drm_i915_private *dev_priv = dev->dev_private;
  2530. u32 pos;
  2531. pos = I915_READ(CURPOS(pipe));
  2532. *x = (pos >> CURSOR_X_SHIFT) & CURSOR_POS_MASK;
  2533. if (pos & (CURSOR_POS_SIGN << CURSOR_X_SHIFT))
  2534. *x = -*x;
  2535. *y = (pos >> CURSOR_Y_SHIFT) & CURSOR_POS_MASK;
  2536. if (pos & (CURSOR_POS_SIGN << CURSOR_Y_SHIFT))
  2537. *y = -*y;
  2538. return cursor_active(dev, pipe);
  2539. }
  2540. static const char *plane_type(enum drm_plane_type type)
  2541. {
  2542. switch (type) {
  2543. case DRM_PLANE_TYPE_OVERLAY:
  2544. return "OVL";
  2545. case DRM_PLANE_TYPE_PRIMARY:
  2546. return "PRI";
  2547. case DRM_PLANE_TYPE_CURSOR:
  2548. return "CUR";
  2549. /*
  2550. * Deliberately omitting default: to generate compiler warnings
  2551. * when a new drm_plane_type gets added.
  2552. */
  2553. }
  2554. return "unknown";
  2555. }
  2556. static const char *plane_rotation(unsigned int rotation)
  2557. {
  2558. static char buf[48];
  2559. /*
  2560. * According to doc only one DRM_ROTATE_ is allowed but this
  2561. * will print them all to visualize if the values are misused
  2562. */
  2563. snprintf(buf, sizeof(buf),
  2564. "%s%s%s%s%s%s(0x%08x)",
  2565. (rotation & BIT(DRM_ROTATE_0)) ? "0 " : "",
  2566. (rotation & BIT(DRM_ROTATE_90)) ? "90 " : "",
  2567. (rotation & BIT(DRM_ROTATE_180)) ? "180 " : "",
  2568. (rotation & BIT(DRM_ROTATE_270)) ? "270 " : "",
  2569. (rotation & BIT(DRM_REFLECT_X)) ? "FLIPX " : "",
  2570. (rotation & BIT(DRM_REFLECT_Y)) ? "FLIPY " : "",
  2571. rotation);
  2572. return buf;
  2573. }
  2574. static void intel_plane_info(struct seq_file *m, struct intel_crtc *intel_crtc)
  2575. {
  2576. struct drm_info_node *node = m->private;
  2577. struct drm_device *dev = node->minor->dev;
  2578. struct intel_plane *intel_plane;
  2579. for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
  2580. struct drm_plane_state *state;
  2581. struct drm_plane *plane = &intel_plane->base;
  2582. if (!plane->state) {
  2583. seq_puts(m, "plane->state is NULL!\n");
  2584. continue;
  2585. }
  2586. state = plane->state;
  2587. seq_printf(m, "\t--Plane id %d: type=%s, crtc_pos=%4dx%4d, crtc_size=%4dx%4d, src_pos=%d.%04ux%d.%04u, src_size=%d.%04ux%d.%04u, format=%s, rotation=%s\n",
  2588. plane->base.id,
  2589. plane_type(intel_plane->base.type),
  2590. state->crtc_x, state->crtc_y,
  2591. state->crtc_w, state->crtc_h,
  2592. (state->src_x >> 16),
  2593. ((state->src_x & 0xffff) * 15625) >> 10,
  2594. (state->src_y >> 16),
  2595. ((state->src_y & 0xffff) * 15625) >> 10,
  2596. (state->src_w >> 16),
  2597. ((state->src_w & 0xffff) * 15625) >> 10,
  2598. (state->src_h >> 16),
  2599. ((state->src_h & 0xffff) * 15625) >> 10,
  2600. state->fb ? drm_get_format_name(state->fb->pixel_format) : "N/A",
  2601. plane_rotation(state->rotation));
  2602. }
  2603. }
  2604. static void intel_scaler_info(struct seq_file *m, struct intel_crtc *intel_crtc)
  2605. {
  2606. struct intel_crtc_state *pipe_config;
  2607. int num_scalers = intel_crtc->num_scalers;
  2608. int i;
  2609. pipe_config = to_intel_crtc_state(intel_crtc->base.state);
  2610. /* Not all platformas have a scaler */
  2611. if (num_scalers) {
  2612. seq_printf(m, "\tnum_scalers=%d, scaler_users=%x scaler_id=%d",
  2613. num_scalers,
  2614. pipe_config->scaler_state.scaler_users,
  2615. pipe_config->scaler_state.scaler_id);
  2616. for (i = 0; i < SKL_NUM_SCALERS; i++) {
  2617. struct intel_scaler *sc =
  2618. &pipe_config->scaler_state.scalers[i];
  2619. seq_printf(m, ", scalers[%d]: use=%s, mode=%x",
  2620. i, yesno(sc->in_use), sc->mode);
  2621. }
  2622. seq_puts(m, "\n");
  2623. } else {
  2624. seq_puts(m, "\tNo scalers available on this platform\n");
  2625. }
  2626. }
  2627. static int i915_display_info(struct seq_file *m, void *unused)
  2628. {
  2629. struct drm_info_node *node = m->private;
  2630. struct drm_device *dev = node->minor->dev;
  2631. struct drm_i915_private *dev_priv = dev->dev_private;
  2632. struct intel_crtc *crtc;
  2633. struct drm_connector *connector;
  2634. intel_runtime_pm_get(dev_priv);
  2635. drm_modeset_lock_all(dev);
  2636. seq_printf(m, "CRTC info\n");
  2637. seq_printf(m, "---------\n");
  2638. for_each_intel_crtc(dev, crtc) {
  2639. bool active;
  2640. struct intel_crtc_state *pipe_config;
  2641. int x, y;
  2642. pipe_config = to_intel_crtc_state(crtc->base.state);
  2643. seq_printf(m, "CRTC %d: pipe: %c, active=%s, (size=%dx%d), dither=%s, bpp=%d\n",
  2644. crtc->base.base.id, pipe_name(crtc->pipe),
  2645. yesno(pipe_config->base.active),
  2646. pipe_config->pipe_src_w, pipe_config->pipe_src_h,
  2647. yesno(pipe_config->dither), pipe_config->pipe_bpp);
  2648. if (pipe_config->base.active) {
  2649. intel_crtc_info(m, crtc);
  2650. active = cursor_position(dev, crtc->pipe, &x, &y);
  2651. seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x, active? %s\n",
  2652. yesno(crtc->cursor_base),
  2653. x, y, crtc->base.cursor->state->crtc_w,
  2654. crtc->base.cursor->state->crtc_h,
  2655. crtc->cursor_addr, yesno(active));
  2656. intel_scaler_info(m, crtc);
  2657. intel_plane_info(m, crtc);
  2658. }
  2659. seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
  2660. yesno(!crtc->cpu_fifo_underrun_disabled),
  2661. yesno(!crtc->pch_fifo_underrun_disabled));
  2662. }
  2663. seq_printf(m, "\n");
  2664. seq_printf(m, "Connector info\n");
  2665. seq_printf(m, "--------------\n");
  2666. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  2667. intel_connector_info(m, connector);
  2668. }
  2669. drm_modeset_unlock_all(dev);
  2670. intel_runtime_pm_put(dev_priv);
  2671. return 0;
  2672. }
  2673. static int i915_semaphore_status(struct seq_file *m, void *unused)
  2674. {
  2675. struct drm_info_node *node = (struct drm_info_node *) m->private;
  2676. struct drm_device *dev = node->minor->dev;
  2677. struct drm_i915_private *dev_priv = dev->dev_private;
  2678. struct intel_engine_cs *engine;
  2679. int num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  2680. enum intel_engine_id id;
  2681. int j, ret;
  2682. if (!i915_semaphore_is_enabled(dev_priv)) {
  2683. seq_puts(m, "Semaphores are disabled\n");
  2684. return 0;
  2685. }
  2686. ret = mutex_lock_interruptible(&dev->struct_mutex);
  2687. if (ret)
  2688. return ret;
  2689. intel_runtime_pm_get(dev_priv);
  2690. if (IS_BROADWELL(dev)) {
  2691. struct page *page;
  2692. uint64_t *seqno;
  2693. page = i915_gem_object_get_page(dev_priv->semaphore_obj, 0);
  2694. seqno = (uint64_t *)kmap_atomic(page);
  2695. for_each_engine_id(engine, dev_priv, id) {
  2696. uint64_t offset;
  2697. seq_printf(m, "%s\n", engine->name);
  2698. seq_puts(m, " Last signal:");
  2699. for (j = 0; j < num_rings; j++) {
  2700. offset = id * I915_NUM_ENGINES + j;
  2701. seq_printf(m, "0x%08llx (0x%02llx) ",
  2702. seqno[offset], offset * 8);
  2703. }
  2704. seq_putc(m, '\n');
  2705. seq_puts(m, " Last wait: ");
  2706. for (j = 0; j < num_rings; j++) {
  2707. offset = id + (j * I915_NUM_ENGINES);
  2708. seq_printf(m, "0x%08llx (0x%02llx) ",
  2709. seqno[offset], offset * 8);
  2710. }
  2711. seq_putc(m, '\n');
  2712. }
  2713. kunmap_atomic(seqno);
  2714. } else {
  2715. seq_puts(m, " Last signal:");
  2716. for_each_engine(engine, dev_priv)
  2717. for (j = 0; j < num_rings; j++)
  2718. seq_printf(m, "0x%08x\n",
  2719. I915_READ(engine->semaphore.mbox.signal[j]));
  2720. seq_putc(m, '\n');
  2721. }
  2722. seq_puts(m, "\nSync seqno:\n");
  2723. for_each_engine(engine, dev_priv) {
  2724. for (j = 0; j < num_rings; j++)
  2725. seq_printf(m, " 0x%08x ",
  2726. engine->semaphore.sync_seqno[j]);
  2727. seq_putc(m, '\n');
  2728. }
  2729. seq_putc(m, '\n');
  2730. intel_runtime_pm_put(dev_priv);
  2731. mutex_unlock(&dev->struct_mutex);
  2732. return 0;
  2733. }
  2734. static int i915_shared_dplls_info(struct seq_file *m, void *unused)
  2735. {
  2736. struct drm_info_node *node = (struct drm_info_node *) m->private;
  2737. struct drm_device *dev = node->minor->dev;
  2738. struct drm_i915_private *dev_priv = dev->dev_private;
  2739. int i;
  2740. drm_modeset_lock_all(dev);
  2741. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  2742. struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
  2743. seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->name, pll->id);
  2744. seq_printf(m, " crtc_mask: 0x%08x, active: 0x%x, on: %s\n",
  2745. pll->config.crtc_mask, pll->active_mask, yesno(pll->on));
  2746. seq_printf(m, " tracked hardware state:\n");
  2747. seq_printf(m, " dpll: 0x%08x\n", pll->config.hw_state.dpll);
  2748. seq_printf(m, " dpll_md: 0x%08x\n",
  2749. pll->config.hw_state.dpll_md);
  2750. seq_printf(m, " fp0: 0x%08x\n", pll->config.hw_state.fp0);
  2751. seq_printf(m, " fp1: 0x%08x\n", pll->config.hw_state.fp1);
  2752. seq_printf(m, " wrpll: 0x%08x\n", pll->config.hw_state.wrpll);
  2753. }
  2754. drm_modeset_unlock_all(dev);
  2755. return 0;
  2756. }
  2757. static int i915_wa_registers(struct seq_file *m, void *unused)
  2758. {
  2759. int i;
  2760. int ret;
  2761. struct intel_engine_cs *engine;
  2762. struct drm_info_node *node = (struct drm_info_node *) m->private;
  2763. struct drm_device *dev = node->minor->dev;
  2764. struct drm_i915_private *dev_priv = dev->dev_private;
  2765. struct i915_workarounds *workarounds = &dev_priv->workarounds;
  2766. enum intel_engine_id id;
  2767. ret = mutex_lock_interruptible(&dev->struct_mutex);
  2768. if (ret)
  2769. return ret;
  2770. intel_runtime_pm_get(dev_priv);
  2771. seq_printf(m, "Workarounds applied: %d\n", workarounds->count);
  2772. for_each_engine_id(engine, dev_priv, id)
  2773. seq_printf(m, "HW whitelist count for %s: %d\n",
  2774. engine->name, workarounds->hw_whitelist_count[id]);
  2775. for (i = 0; i < workarounds->count; ++i) {
  2776. i915_reg_t addr;
  2777. u32 mask, value, read;
  2778. bool ok;
  2779. addr = workarounds->reg[i].addr;
  2780. mask = workarounds->reg[i].mask;
  2781. value = workarounds->reg[i].value;
  2782. read = I915_READ(addr);
  2783. ok = (value & mask) == (read & mask);
  2784. seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X, read: 0x%08x, status: %s\n",
  2785. i915_mmio_reg_offset(addr), value, mask, read, ok ? "OK" : "FAIL");
  2786. }
  2787. intel_runtime_pm_put(dev_priv);
  2788. mutex_unlock(&dev->struct_mutex);
  2789. return 0;
  2790. }
  2791. static int i915_ddb_info(struct seq_file *m, void *unused)
  2792. {
  2793. struct drm_info_node *node = m->private;
  2794. struct drm_device *dev = node->minor->dev;
  2795. struct drm_i915_private *dev_priv = dev->dev_private;
  2796. struct skl_ddb_allocation *ddb;
  2797. struct skl_ddb_entry *entry;
  2798. enum pipe pipe;
  2799. int plane;
  2800. if (INTEL_INFO(dev)->gen < 9)
  2801. return 0;
  2802. drm_modeset_lock_all(dev);
  2803. ddb = &dev_priv->wm.skl_hw.ddb;
  2804. seq_printf(m, "%-15s%8s%8s%8s\n", "", "Start", "End", "Size");
  2805. for_each_pipe(dev_priv, pipe) {
  2806. seq_printf(m, "Pipe %c\n", pipe_name(pipe));
  2807. for_each_plane(dev_priv, pipe, plane) {
  2808. entry = &ddb->plane[pipe][plane];
  2809. seq_printf(m, " Plane%-8d%8u%8u%8u\n", plane + 1,
  2810. entry->start, entry->end,
  2811. skl_ddb_entry_size(entry));
  2812. }
  2813. entry = &ddb->plane[pipe][PLANE_CURSOR];
  2814. seq_printf(m, " %-13s%8u%8u%8u\n", "Cursor", entry->start,
  2815. entry->end, skl_ddb_entry_size(entry));
  2816. }
  2817. drm_modeset_unlock_all(dev);
  2818. return 0;
  2819. }
  2820. static void drrs_status_per_crtc(struct seq_file *m,
  2821. struct drm_device *dev, struct intel_crtc *intel_crtc)
  2822. {
  2823. struct intel_encoder *intel_encoder;
  2824. struct drm_i915_private *dev_priv = dev->dev_private;
  2825. struct i915_drrs *drrs = &dev_priv->drrs;
  2826. int vrefresh = 0;
  2827. for_each_encoder_on_crtc(dev, &intel_crtc->base, intel_encoder) {
  2828. /* Encoder connected on this CRTC */
  2829. switch (intel_encoder->type) {
  2830. case INTEL_OUTPUT_EDP:
  2831. seq_puts(m, "eDP:\n");
  2832. break;
  2833. case INTEL_OUTPUT_DSI:
  2834. seq_puts(m, "DSI:\n");
  2835. break;
  2836. case INTEL_OUTPUT_HDMI:
  2837. seq_puts(m, "HDMI:\n");
  2838. break;
  2839. case INTEL_OUTPUT_DISPLAYPORT:
  2840. seq_puts(m, "DP:\n");
  2841. break;
  2842. default:
  2843. seq_printf(m, "Other encoder (id=%d).\n",
  2844. intel_encoder->type);
  2845. return;
  2846. }
  2847. }
  2848. if (dev_priv->vbt.drrs_type == STATIC_DRRS_SUPPORT)
  2849. seq_puts(m, "\tVBT: DRRS_type: Static");
  2850. else if (dev_priv->vbt.drrs_type == SEAMLESS_DRRS_SUPPORT)
  2851. seq_puts(m, "\tVBT: DRRS_type: Seamless");
  2852. else if (dev_priv->vbt.drrs_type == DRRS_NOT_SUPPORTED)
  2853. seq_puts(m, "\tVBT: DRRS_type: None");
  2854. else
  2855. seq_puts(m, "\tVBT: DRRS_type: FIXME: Unrecognized Value");
  2856. seq_puts(m, "\n\n");
  2857. if (to_intel_crtc_state(intel_crtc->base.state)->has_drrs) {
  2858. struct intel_panel *panel;
  2859. mutex_lock(&drrs->mutex);
  2860. /* DRRS Supported */
  2861. seq_puts(m, "\tDRRS Supported: Yes\n");
  2862. /* disable_drrs() will make drrs->dp NULL */
  2863. if (!drrs->dp) {
  2864. seq_puts(m, "Idleness DRRS: Disabled");
  2865. mutex_unlock(&drrs->mutex);
  2866. return;
  2867. }
  2868. panel = &drrs->dp->attached_connector->panel;
  2869. seq_printf(m, "\t\tBusy_frontbuffer_bits: 0x%X",
  2870. drrs->busy_frontbuffer_bits);
  2871. seq_puts(m, "\n\t\t");
  2872. if (drrs->refresh_rate_type == DRRS_HIGH_RR) {
  2873. seq_puts(m, "DRRS_State: DRRS_HIGH_RR\n");
  2874. vrefresh = panel->fixed_mode->vrefresh;
  2875. } else if (drrs->refresh_rate_type == DRRS_LOW_RR) {
  2876. seq_puts(m, "DRRS_State: DRRS_LOW_RR\n");
  2877. vrefresh = panel->downclock_mode->vrefresh;
  2878. } else {
  2879. seq_printf(m, "DRRS_State: Unknown(%d)\n",
  2880. drrs->refresh_rate_type);
  2881. mutex_unlock(&drrs->mutex);
  2882. return;
  2883. }
  2884. seq_printf(m, "\t\tVrefresh: %d", vrefresh);
  2885. seq_puts(m, "\n\t\t");
  2886. mutex_unlock(&drrs->mutex);
  2887. } else {
  2888. /* DRRS not supported. Print the VBT parameter*/
  2889. seq_puts(m, "\tDRRS Supported : No");
  2890. }
  2891. seq_puts(m, "\n");
  2892. }
  2893. static int i915_drrs_status(struct seq_file *m, void *unused)
  2894. {
  2895. struct drm_info_node *node = m->private;
  2896. struct drm_device *dev = node->minor->dev;
  2897. struct intel_crtc *intel_crtc;
  2898. int active_crtc_cnt = 0;
  2899. for_each_intel_crtc(dev, intel_crtc) {
  2900. drm_modeset_lock(&intel_crtc->base.mutex, NULL);
  2901. if (intel_crtc->base.state->active) {
  2902. active_crtc_cnt++;
  2903. seq_printf(m, "\nCRTC %d: ", active_crtc_cnt);
  2904. drrs_status_per_crtc(m, dev, intel_crtc);
  2905. }
  2906. drm_modeset_unlock(&intel_crtc->base.mutex);
  2907. }
  2908. if (!active_crtc_cnt)
  2909. seq_puts(m, "No active crtc found\n");
  2910. return 0;
  2911. }
  2912. struct pipe_crc_info {
  2913. const char *name;
  2914. struct drm_device *dev;
  2915. enum pipe pipe;
  2916. };
  2917. static int i915_dp_mst_info(struct seq_file *m, void *unused)
  2918. {
  2919. struct drm_info_node *node = (struct drm_info_node *) m->private;
  2920. struct drm_device *dev = node->minor->dev;
  2921. struct drm_encoder *encoder;
  2922. struct intel_encoder *intel_encoder;
  2923. struct intel_digital_port *intel_dig_port;
  2924. drm_modeset_lock_all(dev);
  2925. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
  2926. intel_encoder = to_intel_encoder(encoder);
  2927. if (intel_encoder->type != INTEL_OUTPUT_DISPLAYPORT)
  2928. continue;
  2929. intel_dig_port = enc_to_dig_port(encoder);
  2930. if (!intel_dig_port->dp.can_mst)
  2931. continue;
  2932. seq_printf(m, "MST Source Port %c\n",
  2933. port_name(intel_dig_port->port));
  2934. drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr);
  2935. }
  2936. drm_modeset_unlock_all(dev);
  2937. return 0;
  2938. }
  2939. static int i915_pipe_crc_open(struct inode *inode, struct file *filep)
  2940. {
  2941. struct pipe_crc_info *info = inode->i_private;
  2942. struct drm_i915_private *dev_priv = info->dev->dev_private;
  2943. struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
  2944. if (info->pipe >= INTEL_INFO(info->dev)->num_pipes)
  2945. return -ENODEV;
  2946. spin_lock_irq(&pipe_crc->lock);
  2947. if (pipe_crc->opened) {
  2948. spin_unlock_irq(&pipe_crc->lock);
  2949. return -EBUSY; /* already open */
  2950. }
  2951. pipe_crc->opened = true;
  2952. filep->private_data = inode->i_private;
  2953. spin_unlock_irq(&pipe_crc->lock);
  2954. return 0;
  2955. }
  2956. static int i915_pipe_crc_release(struct inode *inode, struct file *filep)
  2957. {
  2958. struct pipe_crc_info *info = inode->i_private;
  2959. struct drm_i915_private *dev_priv = info->dev->dev_private;
  2960. struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
  2961. spin_lock_irq(&pipe_crc->lock);
  2962. pipe_crc->opened = false;
  2963. spin_unlock_irq(&pipe_crc->lock);
  2964. return 0;
  2965. }
  2966. /* (6 fields, 8 chars each, space separated (5) + '\n') */
  2967. #define PIPE_CRC_LINE_LEN (6 * 8 + 5 + 1)
  2968. /* account for \'0' */
  2969. #define PIPE_CRC_BUFFER_LEN (PIPE_CRC_LINE_LEN + 1)
  2970. static int pipe_crc_data_count(struct intel_pipe_crc *pipe_crc)
  2971. {
  2972. assert_spin_locked(&pipe_crc->lock);
  2973. return CIRC_CNT(pipe_crc->head, pipe_crc->tail,
  2974. INTEL_PIPE_CRC_ENTRIES_NR);
  2975. }
  2976. static ssize_t
  2977. i915_pipe_crc_read(struct file *filep, char __user *user_buf, size_t count,
  2978. loff_t *pos)
  2979. {
  2980. struct pipe_crc_info *info = filep->private_data;
  2981. struct drm_device *dev = info->dev;
  2982. struct drm_i915_private *dev_priv = dev->dev_private;
  2983. struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
  2984. char buf[PIPE_CRC_BUFFER_LEN];
  2985. int n_entries;
  2986. ssize_t bytes_read;
  2987. /*
  2988. * Don't allow user space to provide buffers not big enough to hold
  2989. * a line of data.
  2990. */
  2991. if (count < PIPE_CRC_LINE_LEN)
  2992. return -EINVAL;
  2993. if (pipe_crc->source == INTEL_PIPE_CRC_SOURCE_NONE)
  2994. return 0;
  2995. /* nothing to read */
  2996. spin_lock_irq(&pipe_crc->lock);
  2997. while (pipe_crc_data_count(pipe_crc) == 0) {
  2998. int ret;
  2999. if (filep->f_flags & O_NONBLOCK) {
  3000. spin_unlock_irq(&pipe_crc->lock);
  3001. return -EAGAIN;
  3002. }
  3003. ret = wait_event_interruptible_lock_irq(pipe_crc->wq,
  3004. pipe_crc_data_count(pipe_crc), pipe_crc->lock);
  3005. if (ret) {
  3006. spin_unlock_irq(&pipe_crc->lock);
  3007. return ret;
  3008. }
  3009. }
  3010. /* We now have one or more entries to read */
  3011. n_entries = count / PIPE_CRC_LINE_LEN;
  3012. bytes_read = 0;
  3013. while (n_entries > 0) {
  3014. struct intel_pipe_crc_entry *entry =
  3015. &pipe_crc->entries[pipe_crc->tail];
  3016. int ret;
  3017. if (CIRC_CNT(pipe_crc->head, pipe_crc->tail,
  3018. INTEL_PIPE_CRC_ENTRIES_NR) < 1)
  3019. break;
  3020. BUILD_BUG_ON_NOT_POWER_OF_2(INTEL_PIPE_CRC_ENTRIES_NR);
  3021. pipe_crc->tail = (pipe_crc->tail + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
  3022. bytes_read += snprintf(buf, PIPE_CRC_BUFFER_LEN,
  3023. "%8u %8x %8x %8x %8x %8x\n",
  3024. entry->frame, entry->crc[0],
  3025. entry->crc[1], entry->crc[2],
  3026. entry->crc[3], entry->crc[4]);
  3027. spin_unlock_irq(&pipe_crc->lock);
  3028. ret = copy_to_user(user_buf, buf, PIPE_CRC_LINE_LEN);
  3029. if (ret == PIPE_CRC_LINE_LEN)
  3030. return -EFAULT;
  3031. user_buf += PIPE_CRC_LINE_LEN;
  3032. n_entries--;
  3033. spin_lock_irq(&pipe_crc->lock);
  3034. }
  3035. spin_unlock_irq(&pipe_crc->lock);
  3036. return bytes_read;
  3037. }
  3038. static const struct file_operations i915_pipe_crc_fops = {
  3039. .owner = THIS_MODULE,
  3040. .open = i915_pipe_crc_open,
  3041. .read = i915_pipe_crc_read,
  3042. .release = i915_pipe_crc_release,
  3043. };
  3044. static struct pipe_crc_info i915_pipe_crc_data[I915_MAX_PIPES] = {
  3045. {
  3046. .name = "i915_pipe_A_crc",
  3047. .pipe = PIPE_A,
  3048. },
  3049. {
  3050. .name = "i915_pipe_B_crc",
  3051. .pipe = PIPE_B,
  3052. },
  3053. {
  3054. .name = "i915_pipe_C_crc",
  3055. .pipe = PIPE_C,
  3056. },
  3057. };
  3058. static int i915_pipe_crc_create(struct dentry *root, struct drm_minor *minor,
  3059. enum pipe pipe)
  3060. {
  3061. struct drm_device *dev = minor->dev;
  3062. struct dentry *ent;
  3063. struct pipe_crc_info *info = &i915_pipe_crc_data[pipe];
  3064. info->dev = dev;
  3065. ent = debugfs_create_file(info->name, S_IRUGO, root, info,
  3066. &i915_pipe_crc_fops);
  3067. if (!ent)
  3068. return -ENOMEM;
  3069. return drm_add_fake_info_node(minor, ent, info);
  3070. }
  3071. static const char * const pipe_crc_sources[] = {
  3072. "none",
  3073. "plane1",
  3074. "plane2",
  3075. "pf",
  3076. "pipe",
  3077. "TV",
  3078. "DP-B",
  3079. "DP-C",
  3080. "DP-D",
  3081. "auto",
  3082. };
  3083. static const char *pipe_crc_source_name(enum intel_pipe_crc_source source)
  3084. {
  3085. BUILD_BUG_ON(ARRAY_SIZE(pipe_crc_sources) != INTEL_PIPE_CRC_SOURCE_MAX);
  3086. return pipe_crc_sources[source];
  3087. }
  3088. static int display_crc_ctl_show(struct seq_file *m, void *data)
  3089. {
  3090. struct drm_device *dev = m->private;
  3091. struct drm_i915_private *dev_priv = dev->dev_private;
  3092. int i;
  3093. for (i = 0; i < I915_MAX_PIPES; i++)
  3094. seq_printf(m, "%c %s\n", pipe_name(i),
  3095. pipe_crc_source_name(dev_priv->pipe_crc[i].source));
  3096. return 0;
  3097. }
  3098. static int display_crc_ctl_open(struct inode *inode, struct file *file)
  3099. {
  3100. struct drm_device *dev = inode->i_private;
  3101. return single_open(file, display_crc_ctl_show, dev);
  3102. }
  3103. static int i8xx_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
  3104. uint32_t *val)
  3105. {
  3106. if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
  3107. *source = INTEL_PIPE_CRC_SOURCE_PIPE;
  3108. switch (*source) {
  3109. case INTEL_PIPE_CRC_SOURCE_PIPE:
  3110. *val = PIPE_CRC_ENABLE | PIPE_CRC_INCLUDE_BORDER_I8XX;
  3111. break;
  3112. case INTEL_PIPE_CRC_SOURCE_NONE:
  3113. *val = 0;
  3114. break;
  3115. default:
  3116. return -EINVAL;
  3117. }
  3118. return 0;
  3119. }
  3120. static int i9xx_pipe_crc_auto_source(struct drm_device *dev, enum pipe pipe,
  3121. enum intel_pipe_crc_source *source)
  3122. {
  3123. struct intel_encoder *encoder;
  3124. struct intel_crtc *crtc;
  3125. struct intel_digital_port *dig_port;
  3126. int ret = 0;
  3127. *source = INTEL_PIPE_CRC_SOURCE_PIPE;
  3128. drm_modeset_lock_all(dev);
  3129. for_each_intel_encoder(dev, encoder) {
  3130. if (!encoder->base.crtc)
  3131. continue;
  3132. crtc = to_intel_crtc(encoder->base.crtc);
  3133. if (crtc->pipe != pipe)
  3134. continue;
  3135. switch (encoder->type) {
  3136. case INTEL_OUTPUT_TVOUT:
  3137. *source = INTEL_PIPE_CRC_SOURCE_TV;
  3138. break;
  3139. case INTEL_OUTPUT_DISPLAYPORT:
  3140. case INTEL_OUTPUT_EDP:
  3141. dig_port = enc_to_dig_port(&encoder->base);
  3142. switch (dig_port->port) {
  3143. case PORT_B:
  3144. *source = INTEL_PIPE_CRC_SOURCE_DP_B;
  3145. break;
  3146. case PORT_C:
  3147. *source = INTEL_PIPE_CRC_SOURCE_DP_C;
  3148. break;
  3149. case PORT_D:
  3150. *source = INTEL_PIPE_CRC_SOURCE_DP_D;
  3151. break;
  3152. default:
  3153. WARN(1, "nonexisting DP port %c\n",
  3154. port_name(dig_port->port));
  3155. break;
  3156. }
  3157. break;
  3158. default:
  3159. break;
  3160. }
  3161. }
  3162. drm_modeset_unlock_all(dev);
  3163. return ret;
  3164. }
  3165. static int vlv_pipe_crc_ctl_reg(struct drm_device *dev,
  3166. enum pipe pipe,
  3167. enum intel_pipe_crc_source *source,
  3168. uint32_t *val)
  3169. {
  3170. struct drm_i915_private *dev_priv = dev->dev_private;
  3171. bool need_stable_symbols = false;
  3172. if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
  3173. int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
  3174. if (ret)
  3175. return ret;
  3176. }
  3177. switch (*source) {
  3178. case INTEL_PIPE_CRC_SOURCE_PIPE:
  3179. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_VLV;
  3180. break;
  3181. case INTEL_PIPE_CRC_SOURCE_DP_B:
  3182. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_VLV;
  3183. need_stable_symbols = true;
  3184. break;
  3185. case INTEL_PIPE_CRC_SOURCE_DP_C:
  3186. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_VLV;
  3187. need_stable_symbols = true;
  3188. break;
  3189. case INTEL_PIPE_CRC_SOURCE_DP_D:
  3190. if (!IS_CHERRYVIEW(dev))
  3191. return -EINVAL;
  3192. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_VLV;
  3193. need_stable_symbols = true;
  3194. break;
  3195. case INTEL_PIPE_CRC_SOURCE_NONE:
  3196. *val = 0;
  3197. break;
  3198. default:
  3199. return -EINVAL;
  3200. }
  3201. /*
  3202. * When the pipe CRC tap point is after the transcoders we need
  3203. * to tweak symbol-level features to produce a deterministic series of
  3204. * symbols for a given frame. We need to reset those features only once
  3205. * a frame (instead of every nth symbol):
  3206. * - DC-balance: used to ensure a better clock recovery from the data
  3207. * link (SDVO)
  3208. * - DisplayPort scrambling: used for EMI reduction
  3209. */
  3210. if (need_stable_symbols) {
  3211. uint32_t tmp = I915_READ(PORT_DFT2_G4X);
  3212. tmp |= DC_BALANCE_RESET_VLV;
  3213. switch (pipe) {
  3214. case PIPE_A:
  3215. tmp |= PIPE_A_SCRAMBLE_RESET;
  3216. break;
  3217. case PIPE_B:
  3218. tmp |= PIPE_B_SCRAMBLE_RESET;
  3219. break;
  3220. case PIPE_C:
  3221. tmp |= PIPE_C_SCRAMBLE_RESET;
  3222. break;
  3223. default:
  3224. return -EINVAL;
  3225. }
  3226. I915_WRITE(PORT_DFT2_G4X, tmp);
  3227. }
  3228. return 0;
  3229. }
  3230. static int i9xx_pipe_crc_ctl_reg(struct drm_device *dev,
  3231. enum pipe pipe,
  3232. enum intel_pipe_crc_source *source,
  3233. uint32_t *val)
  3234. {
  3235. struct drm_i915_private *dev_priv = dev->dev_private;
  3236. bool need_stable_symbols = false;
  3237. if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
  3238. int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
  3239. if (ret)
  3240. return ret;
  3241. }
  3242. switch (*source) {
  3243. case INTEL_PIPE_CRC_SOURCE_PIPE:
  3244. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_I9XX;
  3245. break;
  3246. case INTEL_PIPE_CRC_SOURCE_TV:
  3247. if (!SUPPORTS_TV(dev))
  3248. return -EINVAL;
  3249. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_TV_PRE;
  3250. break;
  3251. case INTEL_PIPE_CRC_SOURCE_DP_B:
  3252. if (!IS_G4X(dev))
  3253. return -EINVAL;
  3254. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_G4X;
  3255. need_stable_symbols = true;
  3256. break;
  3257. case INTEL_PIPE_CRC_SOURCE_DP_C:
  3258. if (!IS_G4X(dev))
  3259. return -EINVAL;
  3260. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_G4X;
  3261. need_stable_symbols = true;
  3262. break;
  3263. case INTEL_PIPE_CRC_SOURCE_DP_D:
  3264. if (!IS_G4X(dev))
  3265. return -EINVAL;
  3266. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_G4X;
  3267. need_stable_symbols = true;
  3268. break;
  3269. case INTEL_PIPE_CRC_SOURCE_NONE:
  3270. *val = 0;
  3271. break;
  3272. default:
  3273. return -EINVAL;
  3274. }
  3275. /*
  3276. * When the pipe CRC tap point is after the transcoders we need
  3277. * to tweak symbol-level features to produce a deterministic series of
  3278. * symbols for a given frame. We need to reset those features only once
  3279. * a frame (instead of every nth symbol):
  3280. * - DC-balance: used to ensure a better clock recovery from the data
  3281. * link (SDVO)
  3282. * - DisplayPort scrambling: used for EMI reduction
  3283. */
  3284. if (need_stable_symbols) {
  3285. uint32_t tmp = I915_READ(PORT_DFT2_G4X);
  3286. WARN_ON(!IS_G4X(dev));
  3287. I915_WRITE(PORT_DFT_I9XX,
  3288. I915_READ(PORT_DFT_I9XX) | DC_BALANCE_RESET);
  3289. if (pipe == PIPE_A)
  3290. tmp |= PIPE_A_SCRAMBLE_RESET;
  3291. else
  3292. tmp |= PIPE_B_SCRAMBLE_RESET;
  3293. I915_WRITE(PORT_DFT2_G4X, tmp);
  3294. }
  3295. return 0;
  3296. }
  3297. static void vlv_undo_pipe_scramble_reset(struct drm_device *dev,
  3298. enum pipe pipe)
  3299. {
  3300. struct drm_i915_private *dev_priv = dev->dev_private;
  3301. uint32_t tmp = I915_READ(PORT_DFT2_G4X);
  3302. switch (pipe) {
  3303. case PIPE_A:
  3304. tmp &= ~PIPE_A_SCRAMBLE_RESET;
  3305. break;
  3306. case PIPE_B:
  3307. tmp &= ~PIPE_B_SCRAMBLE_RESET;
  3308. break;
  3309. case PIPE_C:
  3310. tmp &= ~PIPE_C_SCRAMBLE_RESET;
  3311. break;
  3312. default:
  3313. return;
  3314. }
  3315. if (!(tmp & PIPE_SCRAMBLE_RESET_MASK))
  3316. tmp &= ~DC_BALANCE_RESET_VLV;
  3317. I915_WRITE(PORT_DFT2_G4X, tmp);
  3318. }
  3319. static void g4x_undo_pipe_scramble_reset(struct drm_device *dev,
  3320. enum pipe pipe)
  3321. {
  3322. struct drm_i915_private *dev_priv = dev->dev_private;
  3323. uint32_t tmp = I915_READ(PORT_DFT2_G4X);
  3324. if (pipe == PIPE_A)
  3325. tmp &= ~PIPE_A_SCRAMBLE_RESET;
  3326. else
  3327. tmp &= ~PIPE_B_SCRAMBLE_RESET;
  3328. I915_WRITE(PORT_DFT2_G4X, tmp);
  3329. if (!(tmp & PIPE_SCRAMBLE_RESET_MASK)) {
  3330. I915_WRITE(PORT_DFT_I9XX,
  3331. I915_READ(PORT_DFT_I9XX) & ~DC_BALANCE_RESET);
  3332. }
  3333. }
  3334. static int ilk_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
  3335. uint32_t *val)
  3336. {
  3337. if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
  3338. *source = INTEL_PIPE_CRC_SOURCE_PIPE;
  3339. switch (*source) {
  3340. case INTEL_PIPE_CRC_SOURCE_PLANE1:
  3341. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_ILK;
  3342. break;
  3343. case INTEL_PIPE_CRC_SOURCE_PLANE2:
  3344. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_ILK;
  3345. break;
  3346. case INTEL_PIPE_CRC_SOURCE_PIPE:
  3347. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_ILK;
  3348. break;
  3349. case INTEL_PIPE_CRC_SOURCE_NONE:
  3350. *val = 0;
  3351. break;
  3352. default:
  3353. return -EINVAL;
  3354. }
  3355. return 0;
  3356. }
  3357. static void hsw_trans_edp_pipe_A_crc_wa(struct drm_device *dev, bool enable)
  3358. {
  3359. struct drm_i915_private *dev_priv = dev->dev_private;
  3360. struct intel_crtc *crtc =
  3361. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]);
  3362. struct intel_crtc_state *pipe_config;
  3363. struct drm_atomic_state *state;
  3364. int ret = 0;
  3365. drm_modeset_lock_all(dev);
  3366. state = drm_atomic_state_alloc(dev);
  3367. if (!state) {
  3368. ret = -ENOMEM;
  3369. goto out;
  3370. }
  3371. state->acquire_ctx = drm_modeset_legacy_acquire_ctx(&crtc->base);
  3372. pipe_config = intel_atomic_get_crtc_state(state, crtc);
  3373. if (IS_ERR(pipe_config)) {
  3374. ret = PTR_ERR(pipe_config);
  3375. goto out;
  3376. }
  3377. pipe_config->pch_pfit.force_thru = enable;
  3378. if (pipe_config->cpu_transcoder == TRANSCODER_EDP &&
  3379. pipe_config->pch_pfit.enabled != enable)
  3380. pipe_config->base.connectors_changed = true;
  3381. ret = drm_atomic_commit(state);
  3382. out:
  3383. drm_modeset_unlock_all(dev);
  3384. WARN(ret, "Toggling workaround to %i returns %i\n", enable, ret);
  3385. if (ret)
  3386. drm_atomic_state_free(state);
  3387. }
  3388. static int ivb_pipe_crc_ctl_reg(struct drm_device *dev,
  3389. enum pipe pipe,
  3390. enum intel_pipe_crc_source *source,
  3391. uint32_t *val)
  3392. {
  3393. if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
  3394. *source = INTEL_PIPE_CRC_SOURCE_PF;
  3395. switch (*source) {
  3396. case INTEL_PIPE_CRC_SOURCE_PLANE1:
  3397. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_IVB;
  3398. break;
  3399. case INTEL_PIPE_CRC_SOURCE_PLANE2:
  3400. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_IVB;
  3401. break;
  3402. case INTEL_PIPE_CRC_SOURCE_PF:
  3403. if (IS_HASWELL(dev) && pipe == PIPE_A)
  3404. hsw_trans_edp_pipe_A_crc_wa(dev, true);
  3405. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PF_IVB;
  3406. break;
  3407. case INTEL_PIPE_CRC_SOURCE_NONE:
  3408. *val = 0;
  3409. break;
  3410. default:
  3411. return -EINVAL;
  3412. }
  3413. return 0;
  3414. }
  3415. static int pipe_crc_set_source(struct drm_device *dev, enum pipe pipe,
  3416. enum intel_pipe_crc_source source)
  3417. {
  3418. struct drm_i915_private *dev_priv = dev->dev_private;
  3419. struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
  3420. struct intel_crtc *crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev,
  3421. pipe));
  3422. enum intel_display_power_domain power_domain;
  3423. u32 val = 0; /* shut up gcc */
  3424. int ret;
  3425. if (pipe_crc->source == source)
  3426. return 0;
  3427. /* forbid changing the source without going back to 'none' */
  3428. if (pipe_crc->source && source)
  3429. return -EINVAL;
  3430. power_domain = POWER_DOMAIN_PIPE(pipe);
  3431. if (!intel_display_power_get_if_enabled(dev_priv, power_domain)) {
  3432. DRM_DEBUG_KMS("Trying to capture CRC while pipe is off\n");
  3433. return -EIO;
  3434. }
  3435. if (IS_GEN2(dev))
  3436. ret = i8xx_pipe_crc_ctl_reg(&source, &val);
  3437. else if (INTEL_INFO(dev)->gen < 5)
  3438. ret = i9xx_pipe_crc_ctl_reg(dev, pipe, &source, &val);
  3439. else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
  3440. ret = vlv_pipe_crc_ctl_reg(dev, pipe, &source, &val);
  3441. else if (IS_GEN5(dev) || IS_GEN6(dev))
  3442. ret = ilk_pipe_crc_ctl_reg(&source, &val);
  3443. else
  3444. ret = ivb_pipe_crc_ctl_reg(dev, pipe, &source, &val);
  3445. if (ret != 0)
  3446. goto out;
  3447. /* none -> real source transition */
  3448. if (source) {
  3449. struct intel_pipe_crc_entry *entries;
  3450. DRM_DEBUG_DRIVER("collecting CRCs for pipe %c, %s\n",
  3451. pipe_name(pipe), pipe_crc_source_name(source));
  3452. entries = kcalloc(INTEL_PIPE_CRC_ENTRIES_NR,
  3453. sizeof(pipe_crc->entries[0]),
  3454. GFP_KERNEL);
  3455. if (!entries) {
  3456. ret = -ENOMEM;
  3457. goto out;
  3458. }
  3459. /*
  3460. * When IPS gets enabled, the pipe CRC changes. Since IPS gets
  3461. * enabled and disabled dynamically based on package C states,
  3462. * user space can't make reliable use of the CRCs, so let's just
  3463. * completely disable it.
  3464. */
  3465. hsw_disable_ips(crtc);
  3466. spin_lock_irq(&pipe_crc->lock);
  3467. kfree(pipe_crc->entries);
  3468. pipe_crc->entries = entries;
  3469. pipe_crc->head = 0;
  3470. pipe_crc->tail = 0;
  3471. spin_unlock_irq(&pipe_crc->lock);
  3472. }
  3473. pipe_crc->source = source;
  3474. I915_WRITE(PIPE_CRC_CTL(pipe), val);
  3475. POSTING_READ(PIPE_CRC_CTL(pipe));
  3476. /* real source -> none transition */
  3477. if (source == INTEL_PIPE_CRC_SOURCE_NONE) {
  3478. struct intel_pipe_crc_entry *entries;
  3479. struct intel_crtc *crtc =
  3480. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  3481. DRM_DEBUG_DRIVER("stopping CRCs for pipe %c\n",
  3482. pipe_name(pipe));
  3483. drm_modeset_lock(&crtc->base.mutex, NULL);
  3484. if (crtc->base.state->active)
  3485. intel_wait_for_vblank(dev, pipe);
  3486. drm_modeset_unlock(&crtc->base.mutex);
  3487. spin_lock_irq(&pipe_crc->lock);
  3488. entries = pipe_crc->entries;
  3489. pipe_crc->entries = NULL;
  3490. pipe_crc->head = 0;
  3491. pipe_crc->tail = 0;
  3492. spin_unlock_irq(&pipe_crc->lock);
  3493. kfree(entries);
  3494. if (IS_G4X(dev))
  3495. g4x_undo_pipe_scramble_reset(dev, pipe);
  3496. else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
  3497. vlv_undo_pipe_scramble_reset(dev, pipe);
  3498. else if (IS_HASWELL(dev) && pipe == PIPE_A)
  3499. hsw_trans_edp_pipe_A_crc_wa(dev, false);
  3500. hsw_enable_ips(crtc);
  3501. }
  3502. ret = 0;
  3503. out:
  3504. intel_display_power_put(dev_priv, power_domain);
  3505. return ret;
  3506. }
  3507. /*
  3508. * Parse pipe CRC command strings:
  3509. * command: wsp* object wsp+ name wsp+ source wsp*
  3510. * object: 'pipe'
  3511. * name: (A | B | C)
  3512. * source: (none | plane1 | plane2 | pf)
  3513. * wsp: (#0x20 | #0x9 | #0xA)+
  3514. *
  3515. * eg.:
  3516. * "pipe A plane1" -> Start CRC computations on plane1 of pipe A
  3517. * "pipe A none" -> Stop CRC
  3518. */
  3519. static int display_crc_ctl_tokenize(char *buf, char *words[], int max_words)
  3520. {
  3521. int n_words = 0;
  3522. while (*buf) {
  3523. char *end;
  3524. /* skip leading white space */
  3525. buf = skip_spaces(buf);
  3526. if (!*buf)
  3527. break; /* end of buffer */
  3528. /* find end of word */
  3529. for (end = buf; *end && !isspace(*end); end++)
  3530. ;
  3531. if (n_words == max_words) {
  3532. DRM_DEBUG_DRIVER("too many words, allowed <= %d\n",
  3533. max_words);
  3534. return -EINVAL; /* ran out of words[] before bytes */
  3535. }
  3536. if (*end)
  3537. *end++ = '\0';
  3538. words[n_words++] = buf;
  3539. buf = end;
  3540. }
  3541. return n_words;
  3542. }
  3543. enum intel_pipe_crc_object {
  3544. PIPE_CRC_OBJECT_PIPE,
  3545. };
  3546. static const char * const pipe_crc_objects[] = {
  3547. "pipe",
  3548. };
  3549. static int
  3550. display_crc_ctl_parse_object(const char *buf, enum intel_pipe_crc_object *o)
  3551. {
  3552. int i;
  3553. for (i = 0; i < ARRAY_SIZE(pipe_crc_objects); i++)
  3554. if (!strcmp(buf, pipe_crc_objects[i])) {
  3555. *o = i;
  3556. return 0;
  3557. }
  3558. return -EINVAL;
  3559. }
  3560. static int display_crc_ctl_parse_pipe(const char *buf, enum pipe *pipe)
  3561. {
  3562. const char name = buf[0];
  3563. if (name < 'A' || name >= pipe_name(I915_MAX_PIPES))
  3564. return -EINVAL;
  3565. *pipe = name - 'A';
  3566. return 0;
  3567. }
  3568. static int
  3569. display_crc_ctl_parse_source(const char *buf, enum intel_pipe_crc_source *s)
  3570. {
  3571. int i;
  3572. for (i = 0; i < ARRAY_SIZE(pipe_crc_sources); i++)
  3573. if (!strcmp(buf, pipe_crc_sources[i])) {
  3574. *s = i;
  3575. return 0;
  3576. }
  3577. return -EINVAL;
  3578. }
  3579. static int display_crc_ctl_parse(struct drm_device *dev, char *buf, size_t len)
  3580. {
  3581. #define N_WORDS 3
  3582. int n_words;
  3583. char *words[N_WORDS];
  3584. enum pipe pipe;
  3585. enum intel_pipe_crc_object object;
  3586. enum intel_pipe_crc_source source;
  3587. n_words = display_crc_ctl_tokenize(buf, words, N_WORDS);
  3588. if (n_words != N_WORDS) {
  3589. DRM_DEBUG_DRIVER("tokenize failed, a command is %d words\n",
  3590. N_WORDS);
  3591. return -EINVAL;
  3592. }
  3593. if (display_crc_ctl_parse_object(words[0], &object) < 0) {
  3594. DRM_DEBUG_DRIVER("unknown object %s\n", words[0]);
  3595. return -EINVAL;
  3596. }
  3597. if (display_crc_ctl_parse_pipe(words[1], &pipe) < 0) {
  3598. DRM_DEBUG_DRIVER("unknown pipe %s\n", words[1]);
  3599. return -EINVAL;
  3600. }
  3601. if (display_crc_ctl_parse_source(words[2], &source) < 0) {
  3602. DRM_DEBUG_DRIVER("unknown source %s\n", words[2]);
  3603. return -EINVAL;
  3604. }
  3605. return pipe_crc_set_source(dev, pipe, source);
  3606. }
  3607. static ssize_t display_crc_ctl_write(struct file *file, const char __user *ubuf,
  3608. size_t len, loff_t *offp)
  3609. {
  3610. struct seq_file *m = file->private_data;
  3611. struct drm_device *dev = m->private;
  3612. char *tmpbuf;
  3613. int ret;
  3614. if (len == 0)
  3615. return 0;
  3616. if (len > PAGE_SIZE - 1) {
  3617. DRM_DEBUG_DRIVER("expected <%lu bytes into pipe crc control\n",
  3618. PAGE_SIZE);
  3619. return -E2BIG;
  3620. }
  3621. tmpbuf = kmalloc(len + 1, GFP_KERNEL);
  3622. if (!tmpbuf)
  3623. return -ENOMEM;
  3624. if (copy_from_user(tmpbuf, ubuf, len)) {
  3625. ret = -EFAULT;
  3626. goto out;
  3627. }
  3628. tmpbuf[len] = '\0';
  3629. ret = display_crc_ctl_parse(dev, tmpbuf, len);
  3630. out:
  3631. kfree(tmpbuf);
  3632. if (ret < 0)
  3633. return ret;
  3634. *offp += len;
  3635. return len;
  3636. }
  3637. static const struct file_operations i915_display_crc_ctl_fops = {
  3638. .owner = THIS_MODULE,
  3639. .open = display_crc_ctl_open,
  3640. .read = seq_read,
  3641. .llseek = seq_lseek,
  3642. .release = single_release,
  3643. .write = display_crc_ctl_write
  3644. };
  3645. static ssize_t i915_displayport_test_active_write(struct file *file,
  3646. const char __user *ubuf,
  3647. size_t len, loff_t *offp)
  3648. {
  3649. char *input_buffer;
  3650. int status = 0;
  3651. struct drm_device *dev;
  3652. struct drm_connector *connector;
  3653. struct list_head *connector_list;
  3654. struct intel_dp *intel_dp;
  3655. int val = 0;
  3656. dev = ((struct seq_file *)file->private_data)->private;
  3657. connector_list = &dev->mode_config.connector_list;
  3658. if (len == 0)
  3659. return 0;
  3660. input_buffer = kmalloc(len + 1, GFP_KERNEL);
  3661. if (!input_buffer)
  3662. return -ENOMEM;
  3663. if (copy_from_user(input_buffer, ubuf, len)) {
  3664. status = -EFAULT;
  3665. goto out;
  3666. }
  3667. input_buffer[len] = '\0';
  3668. DRM_DEBUG_DRIVER("Copied %d bytes from user\n", (unsigned int)len);
  3669. list_for_each_entry(connector, connector_list, head) {
  3670. if (connector->connector_type !=
  3671. DRM_MODE_CONNECTOR_DisplayPort)
  3672. continue;
  3673. if (connector->status == connector_status_connected &&
  3674. connector->encoder != NULL) {
  3675. intel_dp = enc_to_intel_dp(connector->encoder);
  3676. status = kstrtoint(input_buffer, 10, &val);
  3677. if (status < 0)
  3678. goto out;
  3679. DRM_DEBUG_DRIVER("Got %d for test active\n", val);
  3680. /* To prevent erroneous activation of the compliance
  3681. * testing code, only accept an actual value of 1 here
  3682. */
  3683. if (val == 1)
  3684. intel_dp->compliance_test_active = 1;
  3685. else
  3686. intel_dp->compliance_test_active = 0;
  3687. }
  3688. }
  3689. out:
  3690. kfree(input_buffer);
  3691. if (status < 0)
  3692. return status;
  3693. *offp += len;
  3694. return len;
  3695. }
  3696. static int i915_displayport_test_active_show(struct seq_file *m, void *data)
  3697. {
  3698. struct drm_device *dev = m->private;
  3699. struct drm_connector *connector;
  3700. struct list_head *connector_list = &dev->mode_config.connector_list;
  3701. struct intel_dp *intel_dp;
  3702. list_for_each_entry(connector, connector_list, head) {
  3703. if (connector->connector_type !=
  3704. DRM_MODE_CONNECTOR_DisplayPort)
  3705. continue;
  3706. if (connector->status == connector_status_connected &&
  3707. connector->encoder != NULL) {
  3708. intel_dp = enc_to_intel_dp(connector->encoder);
  3709. if (intel_dp->compliance_test_active)
  3710. seq_puts(m, "1");
  3711. else
  3712. seq_puts(m, "0");
  3713. } else
  3714. seq_puts(m, "0");
  3715. }
  3716. return 0;
  3717. }
  3718. static int i915_displayport_test_active_open(struct inode *inode,
  3719. struct file *file)
  3720. {
  3721. struct drm_device *dev = inode->i_private;
  3722. return single_open(file, i915_displayport_test_active_show, dev);
  3723. }
  3724. static const struct file_operations i915_displayport_test_active_fops = {
  3725. .owner = THIS_MODULE,
  3726. .open = i915_displayport_test_active_open,
  3727. .read = seq_read,
  3728. .llseek = seq_lseek,
  3729. .release = single_release,
  3730. .write = i915_displayport_test_active_write
  3731. };
  3732. static int i915_displayport_test_data_show(struct seq_file *m, void *data)
  3733. {
  3734. struct drm_device *dev = m->private;
  3735. struct drm_connector *connector;
  3736. struct list_head *connector_list = &dev->mode_config.connector_list;
  3737. struct intel_dp *intel_dp;
  3738. list_for_each_entry(connector, connector_list, head) {
  3739. if (connector->connector_type !=
  3740. DRM_MODE_CONNECTOR_DisplayPort)
  3741. continue;
  3742. if (connector->status == connector_status_connected &&
  3743. connector->encoder != NULL) {
  3744. intel_dp = enc_to_intel_dp(connector->encoder);
  3745. seq_printf(m, "%lx", intel_dp->compliance_test_data);
  3746. } else
  3747. seq_puts(m, "0");
  3748. }
  3749. return 0;
  3750. }
  3751. static int i915_displayport_test_data_open(struct inode *inode,
  3752. struct file *file)
  3753. {
  3754. struct drm_device *dev = inode->i_private;
  3755. return single_open(file, i915_displayport_test_data_show, dev);
  3756. }
  3757. static const struct file_operations i915_displayport_test_data_fops = {
  3758. .owner = THIS_MODULE,
  3759. .open = i915_displayport_test_data_open,
  3760. .read = seq_read,
  3761. .llseek = seq_lseek,
  3762. .release = single_release
  3763. };
  3764. static int i915_displayport_test_type_show(struct seq_file *m, void *data)
  3765. {
  3766. struct drm_device *dev = m->private;
  3767. struct drm_connector *connector;
  3768. struct list_head *connector_list = &dev->mode_config.connector_list;
  3769. struct intel_dp *intel_dp;
  3770. list_for_each_entry(connector, connector_list, head) {
  3771. if (connector->connector_type !=
  3772. DRM_MODE_CONNECTOR_DisplayPort)
  3773. continue;
  3774. if (connector->status == connector_status_connected &&
  3775. connector->encoder != NULL) {
  3776. intel_dp = enc_to_intel_dp(connector->encoder);
  3777. seq_printf(m, "%02lx", intel_dp->compliance_test_type);
  3778. } else
  3779. seq_puts(m, "0");
  3780. }
  3781. return 0;
  3782. }
  3783. static int i915_displayport_test_type_open(struct inode *inode,
  3784. struct file *file)
  3785. {
  3786. struct drm_device *dev = inode->i_private;
  3787. return single_open(file, i915_displayport_test_type_show, dev);
  3788. }
  3789. static const struct file_operations i915_displayport_test_type_fops = {
  3790. .owner = THIS_MODULE,
  3791. .open = i915_displayport_test_type_open,
  3792. .read = seq_read,
  3793. .llseek = seq_lseek,
  3794. .release = single_release
  3795. };
  3796. static void wm_latency_show(struct seq_file *m, const uint16_t wm[8])
  3797. {
  3798. struct drm_device *dev = m->private;
  3799. int level;
  3800. int num_levels;
  3801. if (IS_CHERRYVIEW(dev))
  3802. num_levels = 3;
  3803. else if (IS_VALLEYVIEW(dev))
  3804. num_levels = 1;
  3805. else
  3806. num_levels = ilk_wm_max_level(dev) + 1;
  3807. drm_modeset_lock_all(dev);
  3808. for (level = 0; level < num_levels; level++) {
  3809. unsigned int latency = wm[level];
  3810. /*
  3811. * - WM1+ latency values in 0.5us units
  3812. * - latencies are in us on gen9/vlv/chv
  3813. */
  3814. if (INTEL_INFO(dev)->gen >= 9 || IS_VALLEYVIEW(dev) ||
  3815. IS_CHERRYVIEW(dev))
  3816. latency *= 10;
  3817. else if (level > 0)
  3818. latency *= 5;
  3819. seq_printf(m, "WM%d %u (%u.%u usec)\n",
  3820. level, wm[level], latency / 10, latency % 10);
  3821. }
  3822. drm_modeset_unlock_all(dev);
  3823. }
  3824. static int pri_wm_latency_show(struct seq_file *m, void *data)
  3825. {
  3826. struct drm_device *dev = m->private;
  3827. struct drm_i915_private *dev_priv = dev->dev_private;
  3828. const uint16_t *latencies;
  3829. if (INTEL_INFO(dev)->gen >= 9)
  3830. latencies = dev_priv->wm.skl_latency;
  3831. else
  3832. latencies = to_i915(dev)->wm.pri_latency;
  3833. wm_latency_show(m, latencies);
  3834. return 0;
  3835. }
  3836. static int spr_wm_latency_show(struct seq_file *m, void *data)
  3837. {
  3838. struct drm_device *dev = m->private;
  3839. struct drm_i915_private *dev_priv = dev->dev_private;
  3840. const uint16_t *latencies;
  3841. if (INTEL_INFO(dev)->gen >= 9)
  3842. latencies = dev_priv->wm.skl_latency;
  3843. else
  3844. latencies = to_i915(dev)->wm.spr_latency;
  3845. wm_latency_show(m, latencies);
  3846. return 0;
  3847. }
  3848. static int cur_wm_latency_show(struct seq_file *m, void *data)
  3849. {
  3850. struct drm_device *dev = m->private;
  3851. struct drm_i915_private *dev_priv = dev->dev_private;
  3852. const uint16_t *latencies;
  3853. if (INTEL_INFO(dev)->gen >= 9)
  3854. latencies = dev_priv->wm.skl_latency;
  3855. else
  3856. latencies = to_i915(dev)->wm.cur_latency;
  3857. wm_latency_show(m, latencies);
  3858. return 0;
  3859. }
  3860. static int pri_wm_latency_open(struct inode *inode, struct file *file)
  3861. {
  3862. struct drm_device *dev = inode->i_private;
  3863. if (INTEL_INFO(dev)->gen < 5)
  3864. return -ENODEV;
  3865. return single_open(file, pri_wm_latency_show, dev);
  3866. }
  3867. static int spr_wm_latency_open(struct inode *inode, struct file *file)
  3868. {
  3869. struct drm_device *dev = inode->i_private;
  3870. if (HAS_GMCH_DISPLAY(dev))
  3871. return -ENODEV;
  3872. return single_open(file, spr_wm_latency_show, dev);
  3873. }
  3874. static int cur_wm_latency_open(struct inode *inode, struct file *file)
  3875. {
  3876. struct drm_device *dev = inode->i_private;
  3877. if (HAS_GMCH_DISPLAY(dev))
  3878. return -ENODEV;
  3879. return single_open(file, cur_wm_latency_show, dev);
  3880. }
  3881. static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
  3882. size_t len, loff_t *offp, uint16_t wm[8])
  3883. {
  3884. struct seq_file *m = file->private_data;
  3885. struct drm_device *dev = m->private;
  3886. uint16_t new[8] = { 0 };
  3887. int num_levels;
  3888. int level;
  3889. int ret;
  3890. char tmp[32];
  3891. if (IS_CHERRYVIEW(dev))
  3892. num_levels = 3;
  3893. else if (IS_VALLEYVIEW(dev))
  3894. num_levels = 1;
  3895. else
  3896. num_levels = ilk_wm_max_level(dev) + 1;
  3897. if (len >= sizeof(tmp))
  3898. return -EINVAL;
  3899. if (copy_from_user(tmp, ubuf, len))
  3900. return -EFAULT;
  3901. tmp[len] = '\0';
  3902. ret = sscanf(tmp, "%hu %hu %hu %hu %hu %hu %hu %hu",
  3903. &new[0], &new[1], &new[2], &new[3],
  3904. &new[4], &new[5], &new[6], &new[7]);
  3905. if (ret != num_levels)
  3906. return -EINVAL;
  3907. drm_modeset_lock_all(dev);
  3908. for (level = 0; level < num_levels; level++)
  3909. wm[level] = new[level];
  3910. drm_modeset_unlock_all(dev);
  3911. return len;
  3912. }
  3913. static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
  3914. size_t len, loff_t *offp)
  3915. {
  3916. struct seq_file *m = file->private_data;
  3917. struct drm_device *dev = m->private;
  3918. struct drm_i915_private *dev_priv = dev->dev_private;
  3919. uint16_t *latencies;
  3920. if (INTEL_INFO(dev)->gen >= 9)
  3921. latencies = dev_priv->wm.skl_latency;
  3922. else
  3923. latencies = to_i915(dev)->wm.pri_latency;
  3924. return wm_latency_write(file, ubuf, len, offp, latencies);
  3925. }
  3926. static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
  3927. size_t len, loff_t *offp)
  3928. {
  3929. struct seq_file *m = file->private_data;
  3930. struct drm_device *dev = m->private;
  3931. struct drm_i915_private *dev_priv = dev->dev_private;
  3932. uint16_t *latencies;
  3933. if (INTEL_INFO(dev)->gen >= 9)
  3934. latencies = dev_priv->wm.skl_latency;
  3935. else
  3936. latencies = to_i915(dev)->wm.spr_latency;
  3937. return wm_latency_write(file, ubuf, len, offp, latencies);
  3938. }
  3939. static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
  3940. size_t len, loff_t *offp)
  3941. {
  3942. struct seq_file *m = file->private_data;
  3943. struct drm_device *dev = m->private;
  3944. struct drm_i915_private *dev_priv = dev->dev_private;
  3945. uint16_t *latencies;
  3946. if (INTEL_INFO(dev)->gen >= 9)
  3947. latencies = dev_priv->wm.skl_latency;
  3948. else
  3949. latencies = to_i915(dev)->wm.cur_latency;
  3950. return wm_latency_write(file, ubuf, len, offp, latencies);
  3951. }
  3952. static const struct file_operations i915_pri_wm_latency_fops = {
  3953. .owner = THIS_MODULE,
  3954. .open = pri_wm_latency_open,
  3955. .read = seq_read,
  3956. .llseek = seq_lseek,
  3957. .release = single_release,
  3958. .write = pri_wm_latency_write
  3959. };
  3960. static const struct file_operations i915_spr_wm_latency_fops = {
  3961. .owner = THIS_MODULE,
  3962. .open = spr_wm_latency_open,
  3963. .read = seq_read,
  3964. .llseek = seq_lseek,
  3965. .release = single_release,
  3966. .write = spr_wm_latency_write
  3967. };
  3968. static const struct file_operations i915_cur_wm_latency_fops = {
  3969. .owner = THIS_MODULE,
  3970. .open = cur_wm_latency_open,
  3971. .read = seq_read,
  3972. .llseek = seq_lseek,
  3973. .release = single_release,
  3974. .write = cur_wm_latency_write
  3975. };
  3976. static int
  3977. i915_wedged_get(void *data, u64 *val)
  3978. {
  3979. struct drm_device *dev = data;
  3980. struct drm_i915_private *dev_priv = dev->dev_private;
  3981. *val = i915_terminally_wedged(&dev_priv->gpu_error);
  3982. return 0;
  3983. }
  3984. static int
  3985. i915_wedged_set(void *data, u64 val)
  3986. {
  3987. struct drm_device *dev = data;
  3988. struct drm_i915_private *dev_priv = dev->dev_private;
  3989. /*
  3990. * There is no safeguard against this debugfs entry colliding
  3991. * with the hangcheck calling same i915_handle_error() in
  3992. * parallel, causing an explosion. For now we assume that the
  3993. * test harness is responsible enough not to inject gpu hangs
  3994. * while it is writing to 'i915_wedged'
  3995. */
  3996. if (i915_reset_in_progress(&dev_priv->gpu_error))
  3997. return -EAGAIN;
  3998. intel_runtime_pm_get(dev_priv);
  3999. i915_handle_error(dev_priv, val,
  4000. "Manually setting wedged to %llu", val);
  4001. intel_runtime_pm_put(dev_priv);
  4002. return 0;
  4003. }
  4004. DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
  4005. i915_wedged_get, i915_wedged_set,
  4006. "%llu\n");
  4007. static int
  4008. i915_ring_stop_get(void *data, u64 *val)
  4009. {
  4010. struct drm_device *dev = data;
  4011. struct drm_i915_private *dev_priv = dev->dev_private;
  4012. *val = dev_priv->gpu_error.stop_rings;
  4013. return 0;
  4014. }
  4015. static int
  4016. i915_ring_stop_set(void *data, u64 val)
  4017. {
  4018. struct drm_device *dev = data;
  4019. struct drm_i915_private *dev_priv = dev->dev_private;
  4020. int ret;
  4021. DRM_DEBUG_DRIVER("Stopping rings 0x%08llx\n", val);
  4022. ret = mutex_lock_interruptible(&dev->struct_mutex);
  4023. if (ret)
  4024. return ret;
  4025. dev_priv->gpu_error.stop_rings = val;
  4026. mutex_unlock(&dev->struct_mutex);
  4027. return 0;
  4028. }
  4029. DEFINE_SIMPLE_ATTRIBUTE(i915_ring_stop_fops,
  4030. i915_ring_stop_get, i915_ring_stop_set,
  4031. "0x%08llx\n");
  4032. static int
  4033. i915_ring_missed_irq_get(void *data, u64 *val)
  4034. {
  4035. struct drm_device *dev = data;
  4036. struct drm_i915_private *dev_priv = dev->dev_private;
  4037. *val = dev_priv->gpu_error.missed_irq_rings;
  4038. return 0;
  4039. }
  4040. static int
  4041. i915_ring_missed_irq_set(void *data, u64 val)
  4042. {
  4043. struct drm_device *dev = data;
  4044. struct drm_i915_private *dev_priv = dev->dev_private;
  4045. int ret;
  4046. /* Lock against concurrent debugfs callers */
  4047. ret = mutex_lock_interruptible(&dev->struct_mutex);
  4048. if (ret)
  4049. return ret;
  4050. dev_priv->gpu_error.missed_irq_rings = val;
  4051. mutex_unlock(&dev->struct_mutex);
  4052. return 0;
  4053. }
  4054. DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
  4055. i915_ring_missed_irq_get, i915_ring_missed_irq_set,
  4056. "0x%08llx\n");
  4057. static int
  4058. i915_ring_test_irq_get(void *data, u64 *val)
  4059. {
  4060. struct drm_device *dev = data;
  4061. struct drm_i915_private *dev_priv = dev->dev_private;
  4062. *val = dev_priv->gpu_error.test_irq_rings;
  4063. return 0;
  4064. }
  4065. static int
  4066. i915_ring_test_irq_set(void *data, u64 val)
  4067. {
  4068. struct drm_device *dev = data;
  4069. struct drm_i915_private *dev_priv = dev->dev_private;
  4070. int ret;
  4071. DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
  4072. /* Lock against concurrent debugfs callers */
  4073. ret = mutex_lock_interruptible(&dev->struct_mutex);
  4074. if (ret)
  4075. return ret;
  4076. dev_priv->gpu_error.test_irq_rings = val;
  4077. mutex_unlock(&dev->struct_mutex);
  4078. return 0;
  4079. }
  4080. DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
  4081. i915_ring_test_irq_get, i915_ring_test_irq_set,
  4082. "0x%08llx\n");
  4083. #define DROP_UNBOUND 0x1
  4084. #define DROP_BOUND 0x2
  4085. #define DROP_RETIRE 0x4
  4086. #define DROP_ACTIVE 0x8
  4087. #define DROP_ALL (DROP_UNBOUND | \
  4088. DROP_BOUND | \
  4089. DROP_RETIRE | \
  4090. DROP_ACTIVE)
  4091. static int
  4092. i915_drop_caches_get(void *data, u64 *val)
  4093. {
  4094. *val = DROP_ALL;
  4095. return 0;
  4096. }
  4097. static int
  4098. i915_drop_caches_set(void *data, u64 val)
  4099. {
  4100. struct drm_device *dev = data;
  4101. struct drm_i915_private *dev_priv = dev->dev_private;
  4102. int ret;
  4103. DRM_DEBUG("Dropping caches: 0x%08llx\n", val);
  4104. /* No need to check and wait for gpu resets, only libdrm auto-restarts
  4105. * on ioctls on -EAGAIN. */
  4106. ret = mutex_lock_interruptible(&dev->struct_mutex);
  4107. if (ret)
  4108. return ret;
  4109. if (val & DROP_ACTIVE) {
  4110. ret = i915_gpu_idle(dev);
  4111. if (ret)
  4112. goto unlock;
  4113. }
  4114. if (val & (DROP_RETIRE | DROP_ACTIVE))
  4115. i915_gem_retire_requests(dev_priv);
  4116. if (val & DROP_BOUND)
  4117. i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_BOUND);
  4118. if (val & DROP_UNBOUND)
  4119. i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_UNBOUND);
  4120. unlock:
  4121. mutex_unlock(&dev->struct_mutex);
  4122. return ret;
  4123. }
  4124. DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
  4125. i915_drop_caches_get, i915_drop_caches_set,
  4126. "0x%08llx\n");
  4127. static int
  4128. i915_max_freq_get(void *data, u64 *val)
  4129. {
  4130. struct drm_device *dev = data;
  4131. struct drm_i915_private *dev_priv = dev->dev_private;
  4132. int ret;
  4133. if (INTEL_INFO(dev)->gen < 6)
  4134. return -ENODEV;
  4135. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  4136. ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
  4137. if (ret)
  4138. return ret;
  4139. *val = intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit);
  4140. mutex_unlock(&dev_priv->rps.hw_lock);
  4141. return 0;
  4142. }
  4143. static int
  4144. i915_max_freq_set(void *data, u64 val)
  4145. {
  4146. struct drm_device *dev = data;
  4147. struct drm_i915_private *dev_priv = dev->dev_private;
  4148. u32 hw_max, hw_min;
  4149. int ret;
  4150. if (INTEL_INFO(dev)->gen < 6)
  4151. return -ENODEV;
  4152. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  4153. DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
  4154. ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
  4155. if (ret)
  4156. return ret;
  4157. /*
  4158. * Turbo will still be enabled, but won't go above the set value.
  4159. */
  4160. val = intel_freq_opcode(dev_priv, val);
  4161. hw_max = dev_priv->rps.max_freq;
  4162. hw_min = dev_priv->rps.min_freq;
  4163. if (val < hw_min || val > hw_max || val < dev_priv->rps.min_freq_softlimit) {
  4164. mutex_unlock(&dev_priv->rps.hw_lock);
  4165. return -EINVAL;
  4166. }
  4167. dev_priv->rps.max_freq_softlimit = val;
  4168. intel_set_rps(dev_priv, val);
  4169. mutex_unlock(&dev_priv->rps.hw_lock);
  4170. return 0;
  4171. }
  4172. DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
  4173. i915_max_freq_get, i915_max_freq_set,
  4174. "%llu\n");
  4175. static int
  4176. i915_min_freq_get(void *data, u64 *val)
  4177. {
  4178. struct drm_device *dev = data;
  4179. struct drm_i915_private *dev_priv = dev->dev_private;
  4180. int ret;
  4181. if (INTEL_INFO(dev)->gen < 6)
  4182. return -ENODEV;
  4183. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  4184. ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
  4185. if (ret)
  4186. return ret;
  4187. *val = intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit);
  4188. mutex_unlock(&dev_priv->rps.hw_lock);
  4189. return 0;
  4190. }
  4191. static int
  4192. i915_min_freq_set(void *data, u64 val)
  4193. {
  4194. struct drm_device *dev = data;
  4195. struct drm_i915_private *dev_priv = dev->dev_private;
  4196. u32 hw_max, hw_min;
  4197. int ret;
  4198. if (INTEL_INFO(dev)->gen < 6)
  4199. return -ENODEV;
  4200. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  4201. DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
  4202. ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
  4203. if (ret)
  4204. return ret;
  4205. /*
  4206. * Turbo will still be enabled, but won't go below the set value.
  4207. */
  4208. val = intel_freq_opcode(dev_priv, val);
  4209. hw_max = dev_priv->rps.max_freq;
  4210. hw_min = dev_priv->rps.min_freq;
  4211. if (val < hw_min || val > hw_max || val > dev_priv->rps.max_freq_softlimit) {
  4212. mutex_unlock(&dev_priv->rps.hw_lock);
  4213. return -EINVAL;
  4214. }
  4215. dev_priv->rps.min_freq_softlimit = val;
  4216. intel_set_rps(dev_priv, val);
  4217. mutex_unlock(&dev_priv->rps.hw_lock);
  4218. return 0;
  4219. }
  4220. DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
  4221. i915_min_freq_get, i915_min_freq_set,
  4222. "%llu\n");
  4223. static int
  4224. i915_cache_sharing_get(void *data, u64 *val)
  4225. {
  4226. struct drm_device *dev = data;
  4227. struct drm_i915_private *dev_priv = dev->dev_private;
  4228. u32 snpcr;
  4229. int ret;
  4230. if (!(IS_GEN6(dev) || IS_GEN7(dev)))
  4231. return -ENODEV;
  4232. ret = mutex_lock_interruptible(&dev->struct_mutex);
  4233. if (ret)
  4234. return ret;
  4235. intel_runtime_pm_get(dev_priv);
  4236. snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
  4237. intel_runtime_pm_put(dev_priv);
  4238. mutex_unlock(&dev_priv->dev->struct_mutex);
  4239. *val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
  4240. return 0;
  4241. }
  4242. static int
  4243. i915_cache_sharing_set(void *data, u64 val)
  4244. {
  4245. struct drm_device *dev = data;
  4246. struct drm_i915_private *dev_priv = dev->dev_private;
  4247. u32 snpcr;
  4248. if (!(IS_GEN6(dev) || IS_GEN7(dev)))
  4249. return -ENODEV;
  4250. if (val > 3)
  4251. return -EINVAL;
  4252. intel_runtime_pm_get(dev_priv);
  4253. DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
  4254. /* Update the cache sharing policy here as well */
  4255. snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
  4256. snpcr &= ~GEN6_MBC_SNPCR_MASK;
  4257. snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
  4258. I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
  4259. intel_runtime_pm_put(dev_priv);
  4260. return 0;
  4261. }
  4262. DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
  4263. i915_cache_sharing_get, i915_cache_sharing_set,
  4264. "%llu\n");
  4265. struct sseu_dev_status {
  4266. unsigned int slice_total;
  4267. unsigned int subslice_total;
  4268. unsigned int subslice_per_slice;
  4269. unsigned int eu_total;
  4270. unsigned int eu_per_subslice;
  4271. };
  4272. static void cherryview_sseu_device_status(struct drm_device *dev,
  4273. struct sseu_dev_status *stat)
  4274. {
  4275. struct drm_i915_private *dev_priv = dev->dev_private;
  4276. int ss_max = 2;
  4277. int ss;
  4278. u32 sig1[ss_max], sig2[ss_max];
  4279. sig1[0] = I915_READ(CHV_POWER_SS0_SIG1);
  4280. sig1[1] = I915_READ(CHV_POWER_SS1_SIG1);
  4281. sig2[0] = I915_READ(CHV_POWER_SS0_SIG2);
  4282. sig2[1] = I915_READ(CHV_POWER_SS1_SIG2);
  4283. for (ss = 0; ss < ss_max; ss++) {
  4284. unsigned int eu_cnt;
  4285. if (sig1[ss] & CHV_SS_PG_ENABLE)
  4286. /* skip disabled subslice */
  4287. continue;
  4288. stat->slice_total = 1;
  4289. stat->subslice_per_slice++;
  4290. eu_cnt = ((sig1[ss] & CHV_EU08_PG_ENABLE) ? 0 : 2) +
  4291. ((sig1[ss] & CHV_EU19_PG_ENABLE) ? 0 : 2) +
  4292. ((sig1[ss] & CHV_EU210_PG_ENABLE) ? 0 : 2) +
  4293. ((sig2[ss] & CHV_EU311_PG_ENABLE) ? 0 : 2);
  4294. stat->eu_total += eu_cnt;
  4295. stat->eu_per_subslice = max(stat->eu_per_subslice, eu_cnt);
  4296. }
  4297. stat->subslice_total = stat->subslice_per_slice;
  4298. }
  4299. static void gen9_sseu_device_status(struct drm_device *dev,
  4300. struct sseu_dev_status *stat)
  4301. {
  4302. struct drm_i915_private *dev_priv = dev->dev_private;
  4303. int s_max = 3, ss_max = 4;
  4304. int s, ss;
  4305. u32 s_reg[s_max], eu_reg[2*s_max], eu_mask[2];
  4306. /* BXT has a single slice and at most 3 subslices. */
  4307. if (IS_BROXTON(dev)) {
  4308. s_max = 1;
  4309. ss_max = 3;
  4310. }
  4311. for (s = 0; s < s_max; s++) {
  4312. s_reg[s] = I915_READ(GEN9_SLICE_PGCTL_ACK(s));
  4313. eu_reg[2*s] = I915_READ(GEN9_SS01_EU_PGCTL_ACK(s));
  4314. eu_reg[2*s + 1] = I915_READ(GEN9_SS23_EU_PGCTL_ACK(s));
  4315. }
  4316. eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
  4317. GEN9_PGCTL_SSA_EU19_ACK |
  4318. GEN9_PGCTL_SSA_EU210_ACK |
  4319. GEN9_PGCTL_SSA_EU311_ACK;
  4320. eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
  4321. GEN9_PGCTL_SSB_EU19_ACK |
  4322. GEN9_PGCTL_SSB_EU210_ACK |
  4323. GEN9_PGCTL_SSB_EU311_ACK;
  4324. for (s = 0; s < s_max; s++) {
  4325. unsigned int ss_cnt = 0;
  4326. if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
  4327. /* skip disabled slice */
  4328. continue;
  4329. stat->slice_total++;
  4330. if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
  4331. ss_cnt = INTEL_INFO(dev)->subslice_per_slice;
  4332. for (ss = 0; ss < ss_max; ss++) {
  4333. unsigned int eu_cnt;
  4334. if (IS_BROXTON(dev) &&
  4335. !(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
  4336. /* skip disabled subslice */
  4337. continue;
  4338. if (IS_BROXTON(dev))
  4339. ss_cnt++;
  4340. eu_cnt = 2 * hweight32(eu_reg[2*s + ss/2] &
  4341. eu_mask[ss%2]);
  4342. stat->eu_total += eu_cnt;
  4343. stat->eu_per_subslice = max(stat->eu_per_subslice,
  4344. eu_cnt);
  4345. }
  4346. stat->subslice_total += ss_cnt;
  4347. stat->subslice_per_slice = max(stat->subslice_per_slice,
  4348. ss_cnt);
  4349. }
  4350. }
  4351. static void broadwell_sseu_device_status(struct drm_device *dev,
  4352. struct sseu_dev_status *stat)
  4353. {
  4354. struct drm_i915_private *dev_priv = dev->dev_private;
  4355. int s;
  4356. u32 slice_info = I915_READ(GEN8_GT_SLICE_INFO);
  4357. stat->slice_total = hweight32(slice_info & GEN8_LSLICESTAT_MASK);
  4358. if (stat->slice_total) {
  4359. stat->subslice_per_slice = INTEL_INFO(dev)->subslice_per_slice;
  4360. stat->subslice_total = stat->slice_total *
  4361. stat->subslice_per_slice;
  4362. stat->eu_per_subslice = INTEL_INFO(dev)->eu_per_subslice;
  4363. stat->eu_total = stat->eu_per_subslice * stat->subslice_total;
  4364. /* subtract fused off EU(s) from enabled slice(s) */
  4365. for (s = 0; s < stat->slice_total; s++) {
  4366. u8 subslice_7eu = INTEL_INFO(dev)->subslice_7eu[s];
  4367. stat->eu_total -= hweight8(subslice_7eu);
  4368. }
  4369. }
  4370. }
  4371. static int i915_sseu_status(struct seq_file *m, void *unused)
  4372. {
  4373. struct drm_info_node *node = (struct drm_info_node *) m->private;
  4374. struct drm_device *dev = node->minor->dev;
  4375. struct sseu_dev_status stat;
  4376. if (INTEL_INFO(dev)->gen < 8)
  4377. return -ENODEV;
  4378. seq_puts(m, "SSEU Device Info\n");
  4379. seq_printf(m, " Available Slice Total: %u\n",
  4380. INTEL_INFO(dev)->slice_total);
  4381. seq_printf(m, " Available Subslice Total: %u\n",
  4382. INTEL_INFO(dev)->subslice_total);
  4383. seq_printf(m, " Available Subslice Per Slice: %u\n",
  4384. INTEL_INFO(dev)->subslice_per_slice);
  4385. seq_printf(m, " Available EU Total: %u\n",
  4386. INTEL_INFO(dev)->eu_total);
  4387. seq_printf(m, " Available EU Per Subslice: %u\n",
  4388. INTEL_INFO(dev)->eu_per_subslice);
  4389. seq_printf(m, " Has Slice Power Gating: %s\n",
  4390. yesno(INTEL_INFO(dev)->has_slice_pg));
  4391. seq_printf(m, " Has Subslice Power Gating: %s\n",
  4392. yesno(INTEL_INFO(dev)->has_subslice_pg));
  4393. seq_printf(m, " Has EU Power Gating: %s\n",
  4394. yesno(INTEL_INFO(dev)->has_eu_pg));
  4395. seq_puts(m, "SSEU Device Status\n");
  4396. memset(&stat, 0, sizeof(stat));
  4397. if (IS_CHERRYVIEW(dev)) {
  4398. cherryview_sseu_device_status(dev, &stat);
  4399. } else if (IS_BROADWELL(dev)) {
  4400. broadwell_sseu_device_status(dev, &stat);
  4401. } else if (INTEL_INFO(dev)->gen >= 9) {
  4402. gen9_sseu_device_status(dev, &stat);
  4403. }
  4404. seq_printf(m, " Enabled Slice Total: %u\n",
  4405. stat.slice_total);
  4406. seq_printf(m, " Enabled Subslice Total: %u\n",
  4407. stat.subslice_total);
  4408. seq_printf(m, " Enabled Subslice Per Slice: %u\n",
  4409. stat.subslice_per_slice);
  4410. seq_printf(m, " Enabled EU Total: %u\n",
  4411. stat.eu_total);
  4412. seq_printf(m, " Enabled EU Per Subslice: %u\n",
  4413. stat.eu_per_subslice);
  4414. return 0;
  4415. }
  4416. static int i915_forcewake_open(struct inode *inode, struct file *file)
  4417. {
  4418. struct drm_device *dev = inode->i_private;
  4419. struct drm_i915_private *dev_priv = dev->dev_private;
  4420. if (INTEL_INFO(dev)->gen < 6)
  4421. return 0;
  4422. intel_runtime_pm_get(dev_priv);
  4423. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  4424. return 0;
  4425. }
  4426. static int i915_forcewake_release(struct inode *inode, struct file *file)
  4427. {
  4428. struct drm_device *dev = inode->i_private;
  4429. struct drm_i915_private *dev_priv = dev->dev_private;
  4430. if (INTEL_INFO(dev)->gen < 6)
  4431. return 0;
  4432. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  4433. intel_runtime_pm_put(dev_priv);
  4434. return 0;
  4435. }
  4436. static const struct file_operations i915_forcewake_fops = {
  4437. .owner = THIS_MODULE,
  4438. .open = i915_forcewake_open,
  4439. .release = i915_forcewake_release,
  4440. };
  4441. static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor)
  4442. {
  4443. struct drm_device *dev = minor->dev;
  4444. struct dentry *ent;
  4445. ent = debugfs_create_file("i915_forcewake_user",
  4446. S_IRUSR,
  4447. root, dev,
  4448. &i915_forcewake_fops);
  4449. if (!ent)
  4450. return -ENOMEM;
  4451. return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops);
  4452. }
  4453. static int i915_debugfs_create(struct dentry *root,
  4454. struct drm_minor *minor,
  4455. const char *name,
  4456. const struct file_operations *fops)
  4457. {
  4458. struct drm_device *dev = minor->dev;
  4459. struct dentry *ent;
  4460. ent = debugfs_create_file(name,
  4461. S_IRUGO | S_IWUSR,
  4462. root, dev,
  4463. fops);
  4464. if (!ent)
  4465. return -ENOMEM;
  4466. return drm_add_fake_info_node(minor, ent, fops);
  4467. }
  4468. static const struct drm_info_list i915_debugfs_list[] = {
  4469. {"i915_capabilities", i915_capabilities, 0},
  4470. {"i915_gem_objects", i915_gem_object_info, 0},
  4471. {"i915_gem_gtt", i915_gem_gtt_info, 0},
  4472. {"i915_gem_pinned", i915_gem_gtt_info, 0, (void *) PINNED_LIST},
  4473. {"i915_gem_active", i915_gem_object_list_info, 0, (void *) ACTIVE_LIST},
  4474. {"i915_gem_inactive", i915_gem_object_list_info, 0, (void *) INACTIVE_LIST},
  4475. {"i915_gem_stolen", i915_gem_stolen_list_info },
  4476. {"i915_gem_pageflip", i915_gem_pageflip_info, 0},
  4477. {"i915_gem_request", i915_gem_request_info, 0},
  4478. {"i915_gem_seqno", i915_gem_seqno_info, 0},
  4479. {"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
  4480. {"i915_gem_interrupt", i915_interrupt_info, 0},
  4481. {"i915_gem_hws", i915_hws_info, 0, (void *)RCS},
  4482. {"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS},
  4483. {"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS},
  4484. {"i915_gem_hws_vebox", i915_hws_info, 0, (void *)VECS},
  4485. {"i915_gem_batch_pool", i915_gem_batch_pool_info, 0},
  4486. {"i915_guc_info", i915_guc_info, 0},
  4487. {"i915_guc_load_status", i915_guc_load_status_info, 0},
  4488. {"i915_guc_log_dump", i915_guc_log_dump, 0},
  4489. {"i915_frequency_info", i915_frequency_info, 0},
  4490. {"i915_hangcheck_info", i915_hangcheck_info, 0},
  4491. {"i915_drpc_info", i915_drpc_info, 0},
  4492. {"i915_emon_status", i915_emon_status, 0},
  4493. {"i915_ring_freq_table", i915_ring_freq_table, 0},
  4494. {"i915_frontbuffer_tracking", i915_frontbuffer_tracking, 0},
  4495. {"i915_fbc_status", i915_fbc_status, 0},
  4496. {"i915_ips_status", i915_ips_status, 0},
  4497. {"i915_sr_status", i915_sr_status, 0},
  4498. {"i915_opregion", i915_opregion, 0},
  4499. {"i915_vbt", i915_vbt, 0},
  4500. {"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
  4501. {"i915_context_status", i915_context_status, 0},
  4502. {"i915_dump_lrc", i915_dump_lrc, 0},
  4503. {"i915_execlists", i915_execlists, 0},
  4504. {"i915_forcewake_domains", i915_forcewake_domains, 0},
  4505. {"i915_swizzle_info", i915_swizzle_info, 0},
  4506. {"i915_ppgtt_info", i915_ppgtt_info, 0},
  4507. {"i915_llc", i915_llc, 0},
  4508. {"i915_edp_psr_status", i915_edp_psr_status, 0},
  4509. {"i915_sink_crc_eDP1", i915_sink_crc, 0},
  4510. {"i915_energy_uJ", i915_energy_uJ, 0},
  4511. {"i915_runtime_pm_status", i915_runtime_pm_status, 0},
  4512. {"i915_power_domain_info", i915_power_domain_info, 0},
  4513. {"i915_dmc_info", i915_dmc_info, 0},
  4514. {"i915_display_info", i915_display_info, 0},
  4515. {"i915_semaphore_status", i915_semaphore_status, 0},
  4516. {"i915_shared_dplls_info", i915_shared_dplls_info, 0},
  4517. {"i915_dp_mst_info", i915_dp_mst_info, 0},
  4518. {"i915_wa_registers", i915_wa_registers, 0},
  4519. {"i915_ddb_info", i915_ddb_info, 0},
  4520. {"i915_sseu_status", i915_sseu_status, 0},
  4521. {"i915_drrs_status", i915_drrs_status, 0},
  4522. {"i915_rps_boost_info", i915_rps_boost_info, 0},
  4523. };
  4524. #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
  4525. static const struct i915_debugfs_files {
  4526. const char *name;
  4527. const struct file_operations *fops;
  4528. } i915_debugfs_files[] = {
  4529. {"i915_wedged", &i915_wedged_fops},
  4530. {"i915_max_freq", &i915_max_freq_fops},
  4531. {"i915_min_freq", &i915_min_freq_fops},
  4532. {"i915_cache_sharing", &i915_cache_sharing_fops},
  4533. {"i915_ring_stop", &i915_ring_stop_fops},
  4534. {"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
  4535. {"i915_ring_test_irq", &i915_ring_test_irq_fops},
  4536. {"i915_gem_drop_caches", &i915_drop_caches_fops},
  4537. {"i915_error_state", &i915_error_state_fops},
  4538. {"i915_next_seqno", &i915_next_seqno_fops},
  4539. {"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
  4540. {"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
  4541. {"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
  4542. {"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
  4543. {"i915_fbc_false_color", &i915_fbc_fc_fops},
  4544. {"i915_dp_test_data", &i915_displayport_test_data_fops},
  4545. {"i915_dp_test_type", &i915_displayport_test_type_fops},
  4546. {"i915_dp_test_active", &i915_displayport_test_active_fops}
  4547. };
  4548. void intel_display_crc_init(struct drm_device *dev)
  4549. {
  4550. struct drm_i915_private *dev_priv = dev->dev_private;
  4551. enum pipe pipe;
  4552. for_each_pipe(dev_priv, pipe) {
  4553. struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
  4554. pipe_crc->opened = false;
  4555. spin_lock_init(&pipe_crc->lock);
  4556. init_waitqueue_head(&pipe_crc->wq);
  4557. }
  4558. }
  4559. int i915_debugfs_init(struct drm_minor *minor)
  4560. {
  4561. int ret, i;
  4562. ret = i915_forcewake_create(minor->debugfs_root, minor);
  4563. if (ret)
  4564. return ret;
  4565. for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
  4566. ret = i915_pipe_crc_create(minor->debugfs_root, minor, i);
  4567. if (ret)
  4568. return ret;
  4569. }
  4570. for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
  4571. ret = i915_debugfs_create(minor->debugfs_root, minor,
  4572. i915_debugfs_files[i].name,
  4573. i915_debugfs_files[i].fops);
  4574. if (ret)
  4575. return ret;
  4576. }
  4577. return drm_debugfs_create_files(i915_debugfs_list,
  4578. I915_DEBUGFS_ENTRIES,
  4579. minor->debugfs_root, minor);
  4580. }
  4581. void i915_debugfs_cleanup(struct drm_minor *minor)
  4582. {
  4583. int i;
  4584. drm_debugfs_remove_files(i915_debugfs_list,
  4585. I915_DEBUGFS_ENTRIES, minor);
  4586. drm_debugfs_remove_files((struct drm_info_list *) &i915_forcewake_fops,
  4587. 1, minor);
  4588. for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
  4589. struct drm_info_list *info_list =
  4590. (struct drm_info_list *)&i915_pipe_crc_data[i];
  4591. drm_debugfs_remove_files(info_list, 1, minor);
  4592. }
  4593. for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
  4594. struct drm_info_list *info_list =
  4595. (struct drm_info_list *) i915_debugfs_files[i].fops;
  4596. drm_debugfs_remove_files(info_list, 1, minor);
  4597. }
  4598. }
  4599. struct dpcd_block {
  4600. /* DPCD dump start address. */
  4601. unsigned int offset;
  4602. /* DPCD dump end address, inclusive. If unset, .size will be used. */
  4603. unsigned int end;
  4604. /* DPCD dump size. Used if .end is unset. If unset, defaults to 1. */
  4605. size_t size;
  4606. /* Only valid for eDP. */
  4607. bool edp;
  4608. };
  4609. static const struct dpcd_block i915_dpcd_debug[] = {
  4610. { .offset = DP_DPCD_REV, .size = DP_RECEIVER_CAP_SIZE },
  4611. { .offset = DP_PSR_SUPPORT, .end = DP_PSR_CAPS },
  4612. { .offset = DP_DOWNSTREAM_PORT_0, .size = 16 },
  4613. { .offset = DP_LINK_BW_SET, .end = DP_EDP_CONFIGURATION_SET },
  4614. { .offset = DP_SINK_COUNT, .end = DP_ADJUST_REQUEST_LANE2_3 },
  4615. { .offset = DP_SET_POWER },
  4616. { .offset = DP_EDP_DPCD_REV },
  4617. { .offset = DP_EDP_GENERAL_CAP_1, .end = DP_EDP_GENERAL_CAP_3 },
  4618. { .offset = DP_EDP_DISPLAY_CONTROL_REGISTER, .end = DP_EDP_BACKLIGHT_FREQ_CAP_MAX_LSB },
  4619. { .offset = DP_EDP_DBC_MINIMUM_BRIGHTNESS_SET, .end = DP_EDP_DBC_MAXIMUM_BRIGHTNESS_SET },
  4620. };
  4621. static int i915_dpcd_show(struct seq_file *m, void *data)
  4622. {
  4623. struct drm_connector *connector = m->private;
  4624. struct intel_dp *intel_dp =
  4625. enc_to_intel_dp(&intel_attached_encoder(connector)->base);
  4626. uint8_t buf[16];
  4627. ssize_t err;
  4628. int i;
  4629. if (connector->status != connector_status_connected)
  4630. return -ENODEV;
  4631. for (i = 0; i < ARRAY_SIZE(i915_dpcd_debug); i++) {
  4632. const struct dpcd_block *b = &i915_dpcd_debug[i];
  4633. size_t size = b->end ? b->end - b->offset + 1 : (b->size ?: 1);
  4634. if (b->edp &&
  4635. connector->connector_type != DRM_MODE_CONNECTOR_eDP)
  4636. continue;
  4637. /* low tech for now */
  4638. if (WARN_ON(size > sizeof(buf)))
  4639. continue;
  4640. err = drm_dp_dpcd_read(&intel_dp->aux, b->offset, buf, size);
  4641. if (err <= 0) {
  4642. DRM_ERROR("dpcd read (%zu bytes at %u) failed (%zd)\n",
  4643. size, b->offset, err);
  4644. continue;
  4645. }
  4646. seq_printf(m, "%04x: %*ph\n", b->offset, (int) size, buf);
  4647. }
  4648. return 0;
  4649. }
  4650. static int i915_dpcd_open(struct inode *inode, struct file *file)
  4651. {
  4652. return single_open(file, i915_dpcd_show, inode->i_private);
  4653. }
  4654. static const struct file_operations i915_dpcd_fops = {
  4655. .owner = THIS_MODULE,
  4656. .open = i915_dpcd_open,
  4657. .read = seq_read,
  4658. .llseek = seq_lseek,
  4659. .release = single_release,
  4660. };
  4661. /**
  4662. * i915_debugfs_connector_add - add i915 specific connector debugfs files
  4663. * @connector: pointer to a registered drm_connector
  4664. *
  4665. * Cleanup will be done by drm_connector_unregister() through a call to
  4666. * drm_debugfs_connector_remove().
  4667. *
  4668. * Returns 0 on success, negative error codes on error.
  4669. */
  4670. int i915_debugfs_connector_add(struct drm_connector *connector)
  4671. {
  4672. struct dentry *root = connector->debugfs_entry;
  4673. /* The connector must have been registered beforehands. */
  4674. if (!root)
  4675. return -ENODEV;
  4676. if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
  4677. connector->connector_type == DRM_MODE_CONNECTOR_eDP)
  4678. debugfs_create_file("i915_dpcd", S_IRUGO, root, connector,
  4679. &i915_dpcd_fops);
  4680. return 0;
  4681. }