segment.c 97 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898
  1. /*
  2. * fs/f2fs/segment.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/bio.h>
  14. #include <linux/blkdev.h>
  15. #include <linux/prefetch.h>
  16. #include <linux/kthread.h>
  17. #include <linux/swap.h>
  18. #include <linux/timer.h>
  19. #include <linux/freezer.h>
  20. #include <linux/sched/signal.h>
  21. #include "f2fs.h"
  22. #include "segment.h"
  23. #include "node.h"
  24. #include "gc.h"
  25. #include "trace.h"
  26. #include <trace/events/f2fs.h>
  27. #define __reverse_ffz(x) __reverse_ffs(~(x))
  28. static struct kmem_cache *discard_entry_slab;
  29. static struct kmem_cache *discard_cmd_slab;
  30. static struct kmem_cache *sit_entry_set_slab;
  31. static struct kmem_cache *inmem_entry_slab;
  32. static unsigned long __reverse_ulong(unsigned char *str)
  33. {
  34. unsigned long tmp = 0;
  35. int shift = 24, idx = 0;
  36. #if BITS_PER_LONG == 64
  37. shift = 56;
  38. #endif
  39. while (shift >= 0) {
  40. tmp |= (unsigned long)str[idx++] << shift;
  41. shift -= BITS_PER_BYTE;
  42. }
  43. return tmp;
  44. }
  45. /*
  46. * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
  47. * MSB and LSB are reversed in a byte by f2fs_set_bit.
  48. */
  49. static inline unsigned long __reverse_ffs(unsigned long word)
  50. {
  51. int num = 0;
  52. #if BITS_PER_LONG == 64
  53. if ((word & 0xffffffff00000000UL) == 0)
  54. num += 32;
  55. else
  56. word >>= 32;
  57. #endif
  58. if ((word & 0xffff0000) == 0)
  59. num += 16;
  60. else
  61. word >>= 16;
  62. if ((word & 0xff00) == 0)
  63. num += 8;
  64. else
  65. word >>= 8;
  66. if ((word & 0xf0) == 0)
  67. num += 4;
  68. else
  69. word >>= 4;
  70. if ((word & 0xc) == 0)
  71. num += 2;
  72. else
  73. word >>= 2;
  74. if ((word & 0x2) == 0)
  75. num += 1;
  76. return num;
  77. }
  78. /*
  79. * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
  80. * f2fs_set_bit makes MSB and LSB reversed in a byte.
  81. * @size must be integral times of unsigned long.
  82. * Example:
  83. * MSB <--> LSB
  84. * f2fs_set_bit(0, bitmap) => 1000 0000
  85. * f2fs_set_bit(7, bitmap) => 0000 0001
  86. */
  87. static unsigned long __find_rev_next_bit(const unsigned long *addr,
  88. unsigned long size, unsigned long offset)
  89. {
  90. const unsigned long *p = addr + BIT_WORD(offset);
  91. unsigned long result = size;
  92. unsigned long tmp;
  93. if (offset >= size)
  94. return size;
  95. size -= (offset & ~(BITS_PER_LONG - 1));
  96. offset %= BITS_PER_LONG;
  97. while (1) {
  98. if (*p == 0)
  99. goto pass;
  100. tmp = __reverse_ulong((unsigned char *)p);
  101. tmp &= ~0UL >> offset;
  102. if (size < BITS_PER_LONG)
  103. tmp &= (~0UL << (BITS_PER_LONG - size));
  104. if (tmp)
  105. goto found;
  106. pass:
  107. if (size <= BITS_PER_LONG)
  108. break;
  109. size -= BITS_PER_LONG;
  110. offset = 0;
  111. p++;
  112. }
  113. return result;
  114. found:
  115. return result - size + __reverse_ffs(tmp);
  116. }
  117. static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
  118. unsigned long size, unsigned long offset)
  119. {
  120. const unsigned long *p = addr + BIT_WORD(offset);
  121. unsigned long result = size;
  122. unsigned long tmp;
  123. if (offset >= size)
  124. return size;
  125. size -= (offset & ~(BITS_PER_LONG - 1));
  126. offset %= BITS_PER_LONG;
  127. while (1) {
  128. if (*p == ~0UL)
  129. goto pass;
  130. tmp = __reverse_ulong((unsigned char *)p);
  131. if (offset)
  132. tmp |= ~0UL << (BITS_PER_LONG - offset);
  133. if (size < BITS_PER_LONG)
  134. tmp |= ~0UL >> size;
  135. if (tmp != ~0UL)
  136. goto found;
  137. pass:
  138. if (size <= BITS_PER_LONG)
  139. break;
  140. size -= BITS_PER_LONG;
  141. offset = 0;
  142. p++;
  143. }
  144. return result;
  145. found:
  146. return result - size + __reverse_ffz(tmp);
  147. }
  148. bool need_SSR(struct f2fs_sb_info *sbi)
  149. {
  150. int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
  151. int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
  152. int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
  153. if (test_opt(sbi, LFS))
  154. return false;
  155. if (sbi->gc_thread && sbi->gc_thread->gc_urgent)
  156. return true;
  157. return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
  158. SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
  159. }
  160. void register_inmem_page(struct inode *inode, struct page *page)
  161. {
  162. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  163. struct f2fs_inode_info *fi = F2FS_I(inode);
  164. struct inmem_pages *new;
  165. f2fs_trace_pid(page);
  166. set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
  167. SetPagePrivate(page);
  168. new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
  169. /* add atomic page indices to the list */
  170. new->page = page;
  171. INIT_LIST_HEAD(&new->list);
  172. /* increase reference count with clean state */
  173. mutex_lock(&fi->inmem_lock);
  174. get_page(page);
  175. list_add_tail(&new->list, &fi->inmem_pages);
  176. spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
  177. if (list_empty(&fi->inmem_ilist))
  178. list_add_tail(&fi->inmem_ilist, &sbi->inode_list[ATOMIC_FILE]);
  179. spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
  180. inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
  181. mutex_unlock(&fi->inmem_lock);
  182. trace_f2fs_register_inmem_page(page, INMEM);
  183. }
  184. static int __revoke_inmem_pages(struct inode *inode,
  185. struct list_head *head, bool drop, bool recover)
  186. {
  187. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  188. struct inmem_pages *cur, *tmp;
  189. int err = 0;
  190. list_for_each_entry_safe(cur, tmp, head, list) {
  191. struct page *page = cur->page;
  192. if (drop)
  193. trace_f2fs_commit_inmem_page(page, INMEM_DROP);
  194. lock_page(page);
  195. if (recover) {
  196. struct dnode_of_data dn;
  197. struct node_info ni;
  198. trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
  199. retry:
  200. set_new_dnode(&dn, inode, NULL, NULL, 0);
  201. err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
  202. if (err) {
  203. if (err == -ENOMEM) {
  204. congestion_wait(BLK_RW_ASYNC, HZ/50);
  205. cond_resched();
  206. goto retry;
  207. }
  208. err = -EAGAIN;
  209. goto next;
  210. }
  211. get_node_info(sbi, dn.nid, &ni);
  212. f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
  213. cur->old_addr, ni.version, true, true);
  214. f2fs_put_dnode(&dn);
  215. }
  216. next:
  217. /* we don't need to invalidate this in the sccessful status */
  218. if (drop || recover)
  219. ClearPageUptodate(page);
  220. set_page_private(page, 0);
  221. ClearPagePrivate(page);
  222. f2fs_put_page(page, 1);
  223. list_del(&cur->list);
  224. kmem_cache_free(inmem_entry_slab, cur);
  225. dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
  226. }
  227. return err;
  228. }
  229. void drop_inmem_pages_all(struct f2fs_sb_info *sbi)
  230. {
  231. struct list_head *head = &sbi->inode_list[ATOMIC_FILE];
  232. struct inode *inode;
  233. struct f2fs_inode_info *fi;
  234. next:
  235. spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
  236. if (list_empty(head)) {
  237. spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
  238. return;
  239. }
  240. fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist);
  241. inode = igrab(&fi->vfs_inode);
  242. spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
  243. if (inode) {
  244. drop_inmem_pages(inode);
  245. iput(inode);
  246. }
  247. congestion_wait(BLK_RW_ASYNC, HZ/50);
  248. cond_resched();
  249. goto next;
  250. }
  251. void drop_inmem_pages(struct inode *inode)
  252. {
  253. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  254. struct f2fs_inode_info *fi = F2FS_I(inode);
  255. mutex_lock(&fi->inmem_lock);
  256. __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
  257. spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
  258. if (!list_empty(&fi->inmem_ilist))
  259. list_del_init(&fi->inmem_ilist);
  260. spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
  261. mutex_unlock(&fi->inmem_lock);
  262. clear_inode_flag(inode, FI_ATOMIC_FILE);
  263. clear_inode_flag(inode, FI_HOT_DATA);
  264. stat_dec_atomic_write(inode);
  265. }
  266. void drop_inmem_page(struct inode *inode, struct page *page)
  267. {
  268. struct f2fs_inode_info *fi = F2FS_I(inode);
  269. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  270. struct list_head *head = &fi->inmem_pages;
  271. struct inmem_pages *cur = NULL;
  272. f2fs_bug_on(sbi, !IS_ATOMIC_WRITTEN_PAGE(page));
  273. mutex_lock(&fi->inmem_lock);
  274. list_for_each_entry(cur, head, list) {
  275. if (cur->page == page)
  276. break;
  277. }
  278. f2fs_bug_on(sbi, !cur || cur->page != page);
  279. list_del(&cur->list);
  280. mutex_unlock(&fi->inmem_lock);
  281. dec_page_count(sbi, F2FS_INMEM_PAGES);
  282. kmem_cache_free(inmem_entry_slab, cur);
  283. ClearPageUptodate(page);
  284. set_page_private(page, 0);
  285. ClearPagePrivate(page);
  286. f2fs_put_page(page, 0);
  287. trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE);
  288. }
  289. static int __commit_inmem_pages(struct inode *inode,
  290. struct list_head *revoke_list)
  291. {
  292. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  293. struct f2fs_inode_info *fi = F2FS_I(inode);
  294. struct inmem_pages *cur, *tmp;
  295. struct f2fs_io_info fio = {
  296. .sbi = sbi,
  297. .ino = inode->i_ino,
  298. .type = DATA,
  299. .op = REQ_OP_WRITE,
  300. .op_flags = REQ_SYNC | REQ_PRIO,
  301. .io_type = FS_DATA_IO,
  302. };
  303. pgoff_t last_idx = ULONG_MAX;
  304. int err = 0;
  305. list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
  306. struct page *page = cur->page;
  307. lock_page(page);
  308. if (page->mapping == inode->i_mapping) {
  309. trace_f2fs_commit_inmem_page(page, INMEM);
  310. set_page_dirty(page);
  311. f2fs_wait_on_page_writeback(page, DATA, true);
  312. if (clear_page_dirty_for_io(page)) {
  313. inode_dec_dirty_pages(inode);
  314. remove_dirty_inode(inode);
  315. }
  316. retry:
  317. fio.page = page;
  318. fio.old_blkaddr = NULL_ADDR;
  319. fio.encrypted_page = NULL;
  320. fio.need_lock = LOCK_DONE;
  321. err = do_write_data_page(&fio);
  322. if (err) {
  323. if (err == -ENOMEM) {
  324. congestion_wait(BLK_RW_ASYNC, HZ/50);
  325. cond_resched();
  326. goto retry;
  327. }
  328. unlock_page(page);
  329. break;
  330. }
  331. /* record old blkaddr for revoking */
  332. cur->old_addr = fio.old_blkaddr;
  333. last_idx = page->index;
  334. }
  335. unlock_page(page);
  336. list_move_tail(&cur->list, revoke_list);
  337. }
  338. if (last_idx != ULONG_MAX)
  339. f2fs_submit_merged_write_cond(sbi, inode, 0, last_idx, DATA);
  340. if (!err)
  341. __revoke_inmem_pages(inode, revoke_list, false, false);
  342. return err;
  343. }
  344. int commit_inmem_pages(struct inode *inode)
  345. {
  346. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  347. struct f2fs_inode_info *fi = F2FS_I(inode);
  348. struct list_head revoke_list;
  349. int err;
  350. INIT_LIST_HEAD(&revoke_list);
  351. f2fs_balance_fs(sbi, true);
  352. f2fs_lock_op(sbi);
  353. set_inode_flag(inode, FI_ATOMIC_COMMIT);
  354. mutex_lock(&fi->inmem_lock);
  355. err = __commit_inmem_pages(inode, &revoke_list);
  356. if (err) {
  357. int ret;
  358. /*
  359. * try to revoke all committed pages, but still we could fail
  360. * due to no memory or other reason, if that happened, EAGAIN
  361. * will be returned, which means in such case, transaction is
  362. * already not integrity, caller should use journal to do the
  363. * recovery or rewrite & commit last transaction. For other
  364. * error number, revoking was done by filesystem itself.
  365. */
  366. ret = __revoke_inmem_pages(inode, &revoke_list, false, true);
  367. if (ret)
  368. err = ret;
  369. /* drop all uncommitted pages */
  370. __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
  371. }
  372. spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
  373. if (!list_empty(&fi->inmem_ilist))
  374. list_del_init(&fi->inmem_ilist);
  375. spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
  376. mutex_unlock(&fi->inmem_lock);
  377. clear_inode_flag(inode, FI_ATOMIC_COMMIT);
  378. f2fs_unlock_op(sbi);
  379. return err;
  380. }
  381. /*
  382. * This function balances dirty node and dentry pages.
  383. * In addition, it controls garbage collection.
  384. */
  385. void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
  386. {
  387. #ifdef CONFIG_F2FS_FAULT_INJECTION
  388. if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
  389. f2fs_show_injection_info(FAULT_CHECKPOINT);
  390. f2fs_stop_checkpoint(sbi, false);
  391. }
  392. #endif
  393. /* balance_fs_bg is able to be pending */
  394. if (need && excess_cached_nats(sbi))
  395. f2fs_balance_fs_bg(sbi);
  396. /*
  397. * We should do GC or end up with checkpoint, if there are so many dirty
  398. * dir/node pages without enough free segments.
  399. */
  400. if (has_not_enough_free_secs(sbi, 0, 0)) {
  401. mutex_lock(&sbi->gc_mutex);
  402. f2fs_gc(sbi, false, false, NULL_SEGNO);
  403. }
  404. }
  405. void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
  406. {
  407. /* try to shrink extent cache when there is no enough memory */
  408. if (!available_free_memory(sbi, EXTENT_CACHE))
  409. f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
  410. /* check the # of cached NAT entries */
  411. if (!available_free_memory(sbi, NAT_ENTRIES))
  412. try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
  413. if (!available_free_memory(sbi, FREE_NIDS))
  414. try_to_free_nids(sbi, MAX_FREE_NIDS);
  415. else
  416. build_free_nids(sbi, false, false);
  417. if (!is_idle(sbi) && !excess_dirty_nats(sbi))
  418. return;
  419. /* checkpoint is the only way to shrink partial cached entries */
  420. if (!available_free_memory(sbi, NAT_ENTRIES) ||
  421. !available_free_memory(sbi, INO_ENTRIES) ||
  422. excess_prefree_segs(sbi) ||
  423. excess_dirty_nats(sbi) ||
  424. f2fs_time_over(sbi, CP_TIME)) {
  425. if (test_opt(sbi, DATA_FLUSH)) {
  426. struct blk_plug plug;
  427. blk_start_plug(&plug);
  428. sync_dirty_inodes(sbi, FILE_INODE);
  429. blk_finish_plug(&plug);
  430. }
  431. f2fs_sync_fs(sbi->sb, true);
  432. stat_inc_bg_cp_count(sbi->stat_info);
  433. }
  434. }
  435. static int __submit_flush_wait(struct f2fs_sb_info *sbi,
  436. struct block_device *bdev)
  437. {
  438. struct bio *bio = f2fs_bio_alloc(sbi, 0, true);
  439. int ret;
  440. bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
  441. bio_set_dev(bio, bdev);
  442. ret = submit_bio_wait(bio);
  443. bio_put(bio);
  444. trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
  445. test_opt(sbi, FLUSH_MERGE), ret);
  446. return ret;
  447. }
  448. static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
  449. {
  450. int ret = 0;
  451. int i;
  452. if (!sbi->s_ndevs)
  453. return __submit_flush_wait(sbi, sbi->sb->s_bdev);
  454. for (i = 0; i < sbi->s_ndevs; i++) {
  455. if (!is_dirty_device(sbi, ino, i, FLUSH_INO))
  456. continue;
  457. ret = __submit_flush_wait(sbi, FDEV(i).bdev);
  458. if (ret)
  459. break;
  460. }
  461. return ret;
  462. }
  463. static int issue_flush_thread(void *data)
  464. {
  465. struct f2fs_sb_info *sbi = data;
  466. struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
  467. wait_queue_head_t *q = &fcc->flush_wait_queue;
  468. repeat:
  469. if (kthread_should_stop())
  470. return 0;
  471. sb_start_intwrite(sbi->sb);
  472. if (!llist_empty(&fcc->issue_list)) {
  473. struct flush_cmd *cmd, *next;
  474. int ret;
  475. fcc->dispatch_list = llist_del_all(&fcc->issue_list);
  476. fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
  477. cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
  478. ret = submit_flush_wait(sbi, cmd->ino);
  479. atomic_inc(&fcc->issued_flush);
  480. llist_for_each_entry_safe(cmd, next,
  481. fcc->dispatch_list, llnode) {
  482. cmd->ret = ret;
  483. complete(&cmd->wait);
  484. }
  485. fcc->dispatch_list = NULL;
  486. }
  487. sb_end_intwrite(sbi->sb);
  488. wait_event_interruptible(*q,
  489. kthread_should_stop() || !llist_empty(&fcc->issue_list));
  490. goto repeat;
  491. }
  492. int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
  493. {
  494. struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
  495. struct flush_cmd cmd;
  496. int ret;
  497. if (test_opt(sbi, NOBARRIER))
  498. return 0;
  499. if (!test_opt(sbi, FLUSH_MERGE)) {
  500. ret = submit_flush_wait(sbi, ino);
  501. atomic_inc(&fcc->issued_flush);
  502. return ret;
  503. }
  504. if (atomic_inc_return(&fcc->issing_flush) == 1 || sbi->s_ndevs > 1) {
  505. ret = submit_flush_wait(sbi, ino);
  506. atomic_dec(&fcc->issing_flush);
  507. atomic_inc(&fcc->issued_flush);
  508. return ret;
  509. }
  510. cmd.ino = ino;
  511. init_completion(&cmd.wait);
  512. llist_add(&cmd.llnode, &fcc->issue_list);
  513. /* update issue_list before we wake up issue_flush thread */
  514. smp_mb();
  515. if (waitqueue_active(&fcc->flush_wait_queue))
  516. wake_up(&fcc->flush_wait_queue);
  517. if (fcc->f2fs_issue_flush) {
  518. wait_for_completion(&cmd.wait);
  519. atomic_dec(&fcc->issing_flush);
  520. } else {
  521. struct llist_node *list;
  522. list = llist_del_all(&fcc->issue_list);
  523. if (!list) {
  524. wait_for_completion(&cmd.wait);
  525. atomic_dec(&fcc->issing_flush);
  526. } else {
  527. struct flush_cmd *tmp, *next;
  528. ret = submit_flush_wait(sbi, ino);
  529. llist_for_each_entry_safe(tmp, next, list, llnode) {
  530. if (tmp == &cmd) {
  531. cmd.ret = ret;
  532. atomic_dec(&fcc->issing_flush);
  533. continue;
  534. }
  535. tmp->ret = ret;
  536. complete(&tmp->wait);
  537. }
  538. }
  539. }
  540. return cmd.ret;
  541. }
  542. int create_flush_cmd_control(struct f2fs_sb_info *sbi)
  543. {
  544. dev_t dev = sbi->sb->s_bdev->bd_dev;
  545. struct flush_cmd_control *fcc;
  546. int err = 0;
  547. if (SM_I(sbi)->fcc_info) {
  548. fcc = SM_I(sbi)->fcc_info;
  549. if (fcc->f2fs_issue_flush)
  550. return err;
  551. goto init_thread;
  552. }
  553. fcc = kzalloc(sizeof(struct flush_cmd_control), GFP_KERNEL);
  554. if (!fcc)
  555. return -ENOMEM;
  556. atomic_set(&fcc->issued_flush, 0);
  557. atomic_set(&fcc->issing_flush, 0);
  558. init_waitqueue_head(&fcc->flush_wait_queue);
  559. init_llist_head(&fcc->issue_list);
  560. SM_I(sbi)->fcc_info = fcc;
  561. if (!test_opt(sbi, FLUSH_MERGE))
  562. return err;
  563. init_thread:
  564. fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
  565. "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
  566. if (IS_ERR(fcc->f2fs_issue_flush)) {
  567. err = PTR_ERR(fcc->f2fs_issue_flush);
  568. kfree(fcc);
  569. SM_I(sbi)->fcc_info = NULL;
  570. return err;
  571. }
  572. return err;
  573. }
  574. void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
  575. {
  576. struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
  577. if (fcc && fcc->f2fs_issue_flush) {
  578. struct task_struct *flush_thread = fcc->f2fs_issue_flush;
  579. fcc->f2fs_issue_flush = NULL;
  580. kthread_stop(flush_thread);
  581. }
  582. if (free) {
  583. kfree(fcc);
  584. SM_I(sbi)->fcc_info = NULL;
  585. }
  586. }
  587. int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
  588. {
  589. int ret = 0, i;
  590. if (!sbi->s_ndevs)
  591. return 0;
  592. for (i = 1; i < sbi->s_ndevs; i++) {
  593. if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
  594. continue;
  595. ret = __submit_flush_wait(sbi, FDEV(i).bdev);
  596. if (ret)
  597. break;
  598. spin_lock(&sbi->dev_lock);
  599. f2fs_clear_bit(i, (char *)&sbi->dirty_device);
  600. spin_unlock(&sbi->dev_lock);
  601. }
  602. return ret;
  603. }
  604. static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
  605. enum dirty_type dirty_type)
  606. {
  607. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  608. /* need not be added */
  609. if (IS_CURSEG(sbi, segno))
  610. return;
  611. if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
  612. dirty_i->nr_dirty[dirty_type]++;
  613. if (dirty_type == DIRTY) {
  614. struct seg_entry *sentry = get_seg_entry(sbi, segno);
  615. enum dirty_type t = sentry->type;
  616. if (unlikely(t >= DIRTY)) {
  617. f2fs_bug_on(sbi, 1);
  618. return;
  619. }
  620. if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
  621. dirty_i->nr_dirty[t]++;
  622. }
  623. }
  624. static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
  625. enum dirty_type dirty_type)
  626. {
  627. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  628. if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
  629. dirty_i->nr_dirty[dirty_type]--;
  630. if (dirty_type == DIRTY) {
  631. struct seg_entry *sentry = get_seg_entry(sbi, segno);
  632. enum dirty_type t = sentry->type;
  633. if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
  634. dirty_i->nr_dirty[t]--;
  635. if (get_valid_blocks(sbi, segno, true) == 0)
  636. clear_bit(GET_SEC_FROM_SEG(sbi, segno),
  637. dirty_i->victim_secmap);
  638. }
  639. }
  640. /*
  641. * Should not occur error such as -ENOMEM.
  642. * Adding dirty entry into seglist is not critical operation.
  643. * If a given segment is one of current working segments, it won't be added.
  644. */
  645. static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
  646. {
  647. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  648. unsigned short valid_blocks;
  649. if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
  650. return;
  651. mutex_lock(&dirty_i->seglist_lock);
  652. valid_blocks = get_valid_blocks(sbi, segno, false);
  653. if (valid_blocks == 0) {
  654. __locate_dirty_segment(sbi, segno, PRE);
  655. __remove_dirty_segment(sbi, segno, DIRTY);
  656. } else if (valid_blocks < sbi->blocks_per_seg) {
  657. __locate_dirty_segment(sbi, segno, DIRTY);
  658. } else {
  659. /* Recovery routine with SSR needs this */
  660. __remove_dirty_segment(sbi, segno, DIRTY);
  661. }
  662. mutex_unlock(&dirty_i->seglist_lock);
  663. }
  664. static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
  665. struct block_device *bdev, block_t lstart,
  666. block_t start, block_t len)
  667. {
  668. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  669. struct list_head *pend_list;
  670. struct discard_cmd *dc;
  671. f2fs_bug_on(sbi, !len);
  672. pend_list = &dcc->pend_list[plist_idx(len)];
  673. dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS);
  674. INIT_LIST_HEAD(&dc->list);
  675. dc->bdev = bdev;
  676. dc->lstart = lstart;
  677. dc->start = start;
  678. dc->len = len;
  679. dc->ref = 0;
  680. dc->state = D_PREP;
  681. dc->error = 0;
  682. init_completion(&dc->wait);
  683. list_add_tail(&dc->list, pend_list);
  684. atomic_inc(&dcc->discard_cmd_cnt);
  685. dcc->undiscard_blks += len;
  686. return dc;
  687. }
  688. static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
  689. struct block_device *bdev, block_t lstart,
  690. block_t start, block_t len,
  691. struct rb_node *parent, struct rb_node **p)
  692. {
  693. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  694. struct discard_cmd *dc;
  695. dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
  696. rb_link_node(&dc->rb_node, parent, p);
  697. rb_insert_color(&dc->rb_node, &dcc->root);
  698. return dc;
  699. }
  700. static void __detach_discard_cmd(struct discard_cmd_control *dcc,
  701. struct discard_cmd *dc)
  702. {
  703. if (dc->state == D_DONE)
  704. atomic_dec(&dcc->issing_discard);
  705. list_del(&dc->list);
  706. rb_erase(&dc->rb_node, &dcc->root);
  707. dcc->undiscard_blks -= dc->len;
  708. kmem_cache_free(discard_cmd_slab, dc);
  709. atomic_dec(&dcc->discard_cmd_cnt);
  710. }
  711. static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
  712. struct discard_cmd *dc)
  713. {
  714. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  715. trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
  716. f2fs_bug_on(sbi, dc->ref);
  717. if (dc->error == -EOPNOTSUPP)
  718. dc->error = 0;
  719. if (dc->error)
  720. f2fs_msg(sbi->sb, KERN_INFO,
  721. "Issue discard(%u, %u, %u) failed, ret: %d",
  722. dc->lstart, dc->start, dc->len, dc->error);
  723. __detach_discard_cmd(dcc, dc);
  724. }
  725. static void f2fs_submit_discard_endio(struct bio *bio)
  726. {
  727. struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
  728. dc->error = blk_status_to_errno(bio->bi_status);
  729. dc->state = D_DONE;
  730. complete_all(&dc->wait);
  731. bio_put(bio);
  732. }
  733. void __check_sit_bitmap(struct f2fs_sb_info *sbi,
  734. block_t start, block_t end)
  735. {
  736. #ifdef CONFIG_F2FS_CHECK_FS
  737. struct seg_entry *sentry;
  738. unsigned int segno;
  739. block_t blk = start;
  740. unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
  741. unsigned long *map;
  742. while (blk < end) {
  743. segno = GET_SEGNO(sbi, blk);
  744. sentry = get_seg_entry(sbi, segno);
  745. offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
  746. if (end < START_BLOCK(sbi, segno + 1))
  747. size = GET_BLKOFF_FROM_SEG0(sbi, end);
  748. else
  749. size = max_blocks;
  750. map = (unsigned long *)(sentry->cur_valid_map);
  751. offset = __find_rev_next_bit(map, size, offset);
  752. f2fs_bug_on(sbi, offset != size);
  753. blk = START_BLOCK(sbi, segno + 1);
  754. }
  755. #endif
  756. }
  757. /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
  758. static void __submit_discard_cmd(struct f2fs_sb_info *sbi,
  759. struct discard_policy *dpolicy,
  760. struct discard_cmd *dc)
  761. {
  762. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  763. struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
  764. &(dcc->fstrim_list) : &(dcc->wait_list);
  765. struct bio *bio = NULL;
  766. int flag = dpolicy->sync ? REQ_SYNC : 0;
  767. if (dc->state != D_PREP)
  768. return;
  769. trace_f2fs_issue_discard(dc->bdev, dc->start, dc->len);
  770. dc->error = __blkdev_issue_discard(dc->bdev,
  771. SECTOR_FROM_BLOCK(dc->start),
  772. SECTOR_FROM_BLOCK(dc->len),
  773. GFP_NOFS, 0, &bio);
  774. if (!dc->error) {
  775. /* should keep before submission to avoid D_DONE right away */
  776. dc->state = D_SUBMIT;
  777. atomic_inc(&dcc->issued_discard);
  778. atomic_inc(&dcc->issing_discard);
  779. if (bio) {
  780. bio->bi_private = dc;
  781. bio->bi_end_io = f2fs_submit_discard_endio;
  782. bio->bi_opf |= flag;
  783. submit_bio(bio);
  784. list_move_tail(&dc->list, wait_list);
  785. __check_sit_bitmap(sbi, dc->start, dc->start + dc->len);
  786. f2fs_update_iostat(sbi, FS_DISCARD, 1);
  787. }
  788. } else {
  789. __remove_discard_cmd(sbi, dc);
  790. }
  791. }
  792. static struct discard_cmd *__insert_discard_tree(struct f2fs_sb_info *sbi,
  793. struct block_device *bdev, block_t lstart,
  794. block_t start, block_t len,
  795. struct rb_node **insert_p,
  796. struct rb_node *insert_parent)
  797. {
  798. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  799. struct rb_node **p;
  800. struct rb_node *parent = NULL;
  801. struct discard_cmd *dc = NULL;
  802. if (insert_p && insert_parent) {
  803. parent = insert_parent;
  804. p = insert_p;
  805. goto do_insert;
  806. }
  807. p = __lookup_rb_tree_for_insert(sbi, &dcc->root, &parent, lstart);
  808. do_insert:
  809. dc = __attach_discard_cmd(sbi, bdev, lstart, start, len, parent, p);
  810. if (!dc)
  811. return NULL;
  812. return dc;
  813. }
  814. static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
  815. struct discard_cmd *dc)
  816. {
  817. list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
  818. }
  819. static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
  820. struct discard_cmd *dc, block_t blkaddr)
  821. {
  822. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  823. struct discard_info di = dc->di;
  824. bool modified = false;
  825. if (dc->state == D_DONE || dc->len == 1) {
  826. __remove_discard_cmd(sbi, dc);
  827. return;
  828. }
  829. dcc->undiscard_blks -= di.len;
  830. if (blkaddr > di.lstart) {
  831. dc->len = blkaddr - dc->lstart;
  832. dcc->undiscard_blks += dc->len;
  833. __relocate_discard_cmd(dcc, dc);
  834. modified = true;
  835. }
  836. if (blkaddr < di.lstart + di.len - 1) {
  837. if (modified) {
  838. __insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
  839. di.start + blkaddr + 1 - di.lstart,
  840. di.lstart + di.len - 1 - blkaddr,
  841. NULL, NULL);
  842. } else {
  843. dc->lstart++;
  844. dc->len--;
  845. dc->start++;
  846. dcc->undiscard_blks += dc->len;
  847. __relocate_discard_cmd(dcc, dc);
  848. }
  849. }
  850. }
  851. static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
  852. struct block_device *bdev, block_t lstart,
  853. block_t start, block_t len)
  854. {
  855. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  856. struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
  857. struct discard_cmd *dc;
  858. struct discard_info di = {0};
  859. struct rb_node **insert_p = NULL, *insert_parent = NULL;
  860. block_t end = lstart + len;
  861. mutex_lock(&dcc->cmd_lock);
  862. dc = (struct discard_cmd *)__lookup_rb_tree_ret(&dcc->root,
  863. NULL, lstart,
  864. (struct rb_entry **)&prev_dc,
  865. (struct rb_entry **)&next_dc,
  866. &insert_p, &insert_parent, true);
  867. if (dc)
  868. prev_dc = dc;
  869. if (!prev_dc) {
  870. di.lstart = lstart;
  871. di.len = next_dc ? next_dc->lstart - lstart : len;
  872. di.len = min(di.len, len);
  873. di.start = start;
  874. }
  875. while (1) {
  876. struct rb_node *node;
  877. bool merged = false;
  878. struct discard_cmd *tdc = NULL;
  879. if (prev_dc) {
  880. di.lstart = prev_dc->lstart + prev_dc->len;
  881. if (di.lstart < lstart)
  882. di.lstart = lstart;
  883. if (di.lstart >= end)
  884. break;
  885. if (!next_dc || next_dc->lstart > end)
  886. di.len = end - di.lstart;
  887. else
  888. di.len = next_dc->lstart - di.lstart;
  889. di.start = start + di.lstart - lstart;
  890. }
  891. if (!di.len)
  892. goto next;
  893. if (prev_dc && prev_dc->state == D_PREP &&
  894. prev_dc->bdev == bdev &&
  895. __is_discard_back_mergeable(&di, &prev_dc->di)) {
  896. prev_dc->di.len += di.len;
  897. dcc->undiscard_blks += di.len;
  898. __relocate_discard_cmd(dcc, prev_dc);
  899. di = prev_dc->di;
  900. tdc = prev_dc;
  901. merged = true;
  902. }
  903. if (next_dc && next_dc->state == D_PREP &&
  904. next_dc->bdev == bdev &&
  905. __is_discard_front_mergeable(&di, &next_dc->di)) {
  906. next_dc->di.lstart = di.lstart;
  907. next_dc->di.len += di.len;
  908. next_dc->di.start = di.start;
  909. dcc->undiscard_blks += di.len;
  910. __relocate_discard_cmd(dcc, next_dc);
  911. if (tdc)
  912. __remove_discard_cmd(sbi, tdc);
  913. merged = true;
  914. }
  915. if (!merged) {
  916. __insert_discard_tree(sbi, bdev, di.lstart, di.start,
  917. di.len, NULL, NULL);
  918. }
  919. next:
  920. prev_dc = next_dc;
  921. if (!prev_dc)
  922. break;
  923. node = rb_next(&prev_dc->rb_node);
  924. next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
  925. }
  926. mutex_unlock(&dcc->cmd_lock);
  927. }
  928. static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
  929. struct block_device *bdev, block_t blkstart, block_t blklen)
  930. {
  931. block_t lblkstart = blkstart;
  932. trace_f2fs_queue_discard(bdev, blkstart, blklen);
  933. if (sbi->s_ndevs) {
  934. int devi = f2fs_target_device_index(sbi, blkstart);
  935. blkstart -= FDEV(devi).start_blk;
  936. }
  937. __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
  938. return 0;
  939. }
  940. static void __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
  941. struct discard_policy *dpolicy,
  942. unsigned int start, unsigned int end)
  943. {
  944. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  945. struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
  946. struct rb_node **insert_p = NULL, *insert_parent = NULL;
  947. struct discard_cmd *dc;
  948. struct blk_plug plug;
  949. int issued;
  950. next:
  951. issued = 0;
  952. mutex_lock(&dcc->cmd_lock);
  953. f2fs_bug_on(sbi, !__check_rb_tree_consistence(sbi, &dcc->root));
  954. dc = (struct discard_cmd *)__lookup_rb_tree_ret(&dcc->root,
  955. NULL, start,
  956. (struct rb_entry **)&prev_dc,
  957. (struct rb_entry **)&next_dc,
  958. &insert_p, &insert_parent, true);
  959. if (!dc)
  960. dc = next_dc;
  961. blk_start_plug(&plug);
  962. while (dc && dc->lstart <= end) {
  963. struct rb_node *node;
  964. if (dc->len < dpolicy->granularity)
  965. goto skip;
  966. if (dc->state != D_PREP) {
  967. list_move_tail(&dc->list, &dcc->fstrim_list);
  968. goto skip;
  969. }
  970. __submit_discard_cmd(sbi, dpolicy, dc);
  971. if (++issued >= dpolicy->max_requests) {
  972. start = dc->lstart + dc->len;
  973. blk_finish_plug(&plug);
  974. mutex_unlock(&dcc->cmd_lock);
  975. schedule();
  976. goto next;
  977. }
  978. skip:
  979. node = rb_next(&dc->rb_node);
  980. dc = rb_entry_safe(node, struct discard_cmd, rb_node);
  981. if (fatal_signal_pending(current))
  982. break;
  983. }
  984. blk_finish_plug(&plug);
  985. mutex_unlock(&dcc->cmd_lock);
  986. }
  987. static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
  988. struct discard_policy *dpolicy)
  989. {
  990. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  991. struct list_head *pend_list;
  992. struct discard_cmd *dc, *tmp;
  993. struct blk_plug plug;
  994. int i, iter = 0, issued = 0;
  995. bool io_interrupted = false;
  996. for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
  997. if (i + 1 < dpolicy->granularity)
  998. break;
  999. pend_list = &dcc->pend_list[i];
  1000. mutex_lock(&dcc->cmd_lock);
  1001. f2fs_bug_on(sbi, !__check_rb_tree_consistence(sbi, &dcc->root));
  1002. blk_start_plug(&plug);
  1003. list_for_each_entry_safe(dc, tmp, pend_list, list) {
  1004. f2fs_bug_on(sbi, dc->state != D_PREP);
  1005. if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
  1006. !is_idle(sbi)) {
  1007. io_interrupted = true;
  1008. goto skip;
  1009. }
  1010. __submit_discard_cmd(sbi, dpolicy, dc);
  1011. issued++;
  1012. skip:
  1013. if (++iter >= dpolicy->max_requests)
  1014. break;
  1015. }
  1016. blk_finish_plug(&plug);
  1017. mutex_unlock(&dcc->cmd_lock);
  1018. if (iter >= dpolicy->max_requests)
  1019. break;
  1020. }
  1021. if (!issued && io_interrupted)
  1022. issued = -1;
  1023. return issued;
  1024. }
  1025. static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
  1026. {
  1027. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  1028. struct list_head *pend_list;
  1029. struct discard_cmd *dc, *tmp;
  1030. int i;
  1031. bool dropped = false;
  1032. mutex_lock(&dcc->cmd_lock);
  1033. for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
  1034. pend_list = &dcc->pend_list[i];
  1035. list_for_each_entry_safe(dc, tmp, pend_list, list) {
  1036. f2fs_bug_on(sbi, dc->state != D_PREP);
  1037. __remove_discard_cmd(sbi, dc);
  1038. dropped = true;
  1039. }
  1040. }
  1041. mutex_unlock(&dcc->cmd_lock);
  1042. return dropped;
  1043. }
  1044. static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
  1045. struct discard_cmd *dc)
  1046. {
  1047. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  1048. unsigned int len = 0;
  1049. wait_for_completion_io(&dc->wait);
  1050. mutex_lock(&dcc->cmd_lock);
  1051. f2fs_bug_on(sbi, dc->state != D_DONE);
  1052. dc->ref--;
  1053. if (!dc->ref) {
  1054. if (!dc->error)
  1055. len = dc->len;
  1056. __remove_discard_cmd(sbi, dc);
  1057. }
  1058. mutex_unlock(&dcc->cmd_lock);
  1059. return len;
  1060. }
  1061. static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
  1062. struct discard_policy *dpolicy,
  1063. block_t start, block_t end)
  1064. {
  1065. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  1066. struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
  1067. &(dcc->fstrim_list) : &(dcc->wait_list);
  1068. struct discard_cmd *dc, *tmp;
  1069. bool need_wait;
  1070. unsigned int trimmed = 0;
  1071. next:
  1072. need_wait = false;
  1073. mutex_lock(&dcc->cmd_lock);
  1074. list_for_each_entry_safe(dc, tmp, wait_list, list) {
  1075. if (dc->lstart + dc->len <= start || end <= dc->lstart)
  1076. continue;
  1077. if (dc->len < dpolicy->granularity)
  1078. continue;
  1079. if (dc->state == D_DONE && !dc->ref) {
  1080. wait_for_completion_io(&dc->wait);
  1081. if (!dc->error)
  1082. trimmed += dc->len;
  1083. __remove_discard_cmd(sbi, dc);
  1084. } else {
  1085. dc->ref++;
  1086. need_wait = true;
  1087. break;
  1088. }
  1089. }
  1090. mutex_unlock(&dcc->cmd_lock);
  1091. if (need_wait) {
  1092. trimmed += __wait_one_discard_bio(sbi, dc);
  1093. goto next;
  1094. }
  1095. return trimmed;
  1096. }
  1097. static void __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
  1098. struct discard_policy *dpolicy)
  1099. {
  1100. __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
  1101. }
  1102. /* This should be covered by global mutex, &sit_i->sentry_lock */
  1103. void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
  1104. {
  1105. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  1106. struct discard_cmd *dc;
  1107. bool need_wait = false;
  1108. mutex_lock(&dcc->cmd_lock);
  1109. dc = (struct discard_cmd *)__lookup_rb_tree(&dcc->root, NULL, blkaddr);
  1110. if (dc) {
  1111. if (dc->state == D_PREP) {
  1112. __punch_discard_cmd(sbi, dc, blkaddr);
  1113. } else {
  1114. dc->ref++;
  1115. need_wait = true;
  1116. }
  1117. }
  1118. mutex_unlock(&dcc->cmd_lock);
  1119. if (need_wait)
  1120. __wait_one_discard_bio(sbi, dc);
  1121. }
  1122. void stop_discard_thread(struct f2fs_sb_info *sbi)
  1123. {
  1124. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  1125. if (dcc && dcc->f2fs_issue_discard) {
  1126. struct task_struct *discard_thread = dcc->f2fs_issue_discard;
  1127. dcc->f2fs_issue_discard = NULL;
  1128. kthread_stop(discard_thread);
  1129. }
  1130. }
  1131. /* This comes from f2fs_put_super */
  1132. bool f2fs_wait_discard_bios(struct f2fs_sb_info *sbi)
  1133. {
  1134. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  1135. struct discard_policy dpolicy;
  1136. bool dropped;
  1137. init_discard_policy(&dpolicy, DPOLICY_UMOUNT, dcc->discard_granularity);
  1138. __issue_discard_cmd(sbi, &dpolicy);
  1139. dropped = __drop_discard_cmd(sbi);
  1140. __wait_all_discard_cmd(sbi, &dpolicy);
  1141. return dropped;
  1142. }
  1143. static int issue_discard_thread(void *data)
  1144. {
  1145. struct f2fs_sb_info *sbi = data;
  1146. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  1147. wait_queue_head_t *q = &dcc->discard_wait_queue;
  1148. struct discard_policy dpolicy;
  1149. unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME;
  1150. int issued;
  1151. set_freezable();
  1152. do {
  1153. init_discard_policy(&dpolicy, DPOLICY_BG,
  1154. dcc->discard_granularity);
  1155. wait_event_interruptible_timeout(*q,
  1156. kthread_should_stop() || freezing(current) ||
  1157. dcc->discard_wake,
  1158. msecs_to_jiffies(wait_ms));
  1159. if (try_to_freeze())
  1160. continue;
  1161. if (kthread_should_stop())
  1162. return 0;
  1163. if (dcc->discard_wake) {
  1164. dcc->discard_wake = 0;
  1165. if (sbi->gc_thread && sbi->gc_thread->gc_urgent)
  1166. init_discard_policy(&dpolicy,
  1167. DPOLICY_FORCE, 1);
  1168. }
  1169. sb_start_intwrite(sbi->sb);
  1170. issued = __issue_discard_cmd(sbi, &dpolicy);
  1171. if (issued) {
  1172. __wait_all_discard_cmd(sbi, &dpolicy);
  1173. wait_ms = dpolicy.min_interval;
  1174. } else {
  1175. wait_ms = dpolicy.max_interval;
  1176. }
  1177. sb_end_intwrite(sbi->sb);
  1178. } while (!kthread_should_stop());
  1179. return 0;
  1180. }
  1181. #ifdef CONFIG_BLK_DEV_ZONED
  1182. static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
  1183. struct block_device *bdev, block_t blkstart, block_t blklen)
  1184. {
  1185. sector_t sector, nr_sects;
  1186. block_t lblkstart = blkstart;
  1187. int devi = 0;
  1188. if (sbi->s_ndevs) {
  1189. devi = f2fs_target_device_index(sbi, blkstart);
  1190. blkstart -= FDEV(devi).start_blk;
  1191. }
  1192. /*
  1193. * We need to know the type of the zone: for conventional zones,
  1194. * use regular discard if the drive supports it. For sequential
  1195. * zones, reset the zone write pointer.
  1196. */
  1197. switch (get_blkz_type(sbi, bdev, blkstart)) {
  1198. case BLK_ZONE_TYPE_CONVENTIONAL:
  1199. if (!blk_queue_discard(bdev_get_queue(bdev)))
  1200. return 0;
  1201. return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
  1202. case BLK_ZONE_TYPE_SEQWRITE_REQ:
  1203. case BLK_ZONE_TYPE_SEQWRITE_PREF:
  1204. sector = SECTOR_FROM_BLOCK(blkstart);
  1205. nr_sects = SECTOR_FROM_BLOCK(blklen);
  1206. if (sector & (bdev_zone_sectors(bdev) - 1) ||
  1207. nr_sects != bdev_zone_sectors(bdev)) {
  1208. f2fs_msg(sbi->sb, KERN_INFO,
  1209. "(%d) %s: Unaligned discard attempted (block %x + %x)",
  1210. devi, sbi->s_ndevs ? FDEV(devi).path: "",
  1211. blkstart, blklen);
  1212. return -EIO;
  1213. }
  1214. trace_f2fs_issue_reset_zone(bdev, blkstart);
  1215. return blkdev_reset_zones(bdev, sector,
  1216. nr_sects, GFP_NOFS);
  1217. default:
  1218. /* Unknown zone type: broken device ? */
  1219. return -EIO;
  1220. }
  1221. }
  1222. #endif
  1223. static int __issue_discard_async(struct f2fs_sb_info *sbi,
  1224. struct block_device *bdev, block_t blkstart, block_t blklen)
  1225. {
  1226. #ifdef CONFIG_BLK_DEV_ZONED
  1227. if (f2fs_sb_mounted_blkzoned(sbi->sb) &&
  1228. bdev_zoned_model(bdev) != BLK_ZONED_NONE)
  1229. return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
  1230. #endif
  1231. return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
  1232. }
  1233. static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
  1234. block_t blkstart, block_t blklen)
  1235. {
  1236. sector_t start = blkstart, len = 0;
  1237. struct block_device *bdev;
  1238. struct seg_entry *se;
  1239. unsigned int offset;
  1240. block_t i;
  1241. int err = 0;
  1242. bdev = f2fs_target_device(sbi, blkstart, NULL);
  1243. for (i = blkstart; i < blkstart + blklen; i++, len++) {
  1244. if (i != start) {
  1245. struct block_device *bdev2 =
  1246. f2fs_target_device(sbi, i, NULL);
  1247. if (bdev2 != bdev) {
  1248. err = __issue_discard_async(sbi, bdev,
  1249. start, len);
  1250. if (err)
  1251. return err;
  1252. bdev = bdev2;
  1253. start = i;
  1254. len = 0;
  1255. }
  1256. }
  1257. se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
  1258. offset = GET_BLKOFF_FROM_SEG0(sbi, i);
  1259. if (!f2fs_test_and_set_bit(offset, se->discard_map))
  1260. sbi->discard_blks--;
  1261. }
  1262. if (len)
  1263. err = __issue_discard_async(sbi, bdev, start, len);
  1264. return err;
  1265. }
  1266. static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
  1267. bool check_only)
  1268. {
  1269. int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
  1270. int max_blocks = sbi->blocks_per_seg;
  1271. struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
  1272. unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
  1273. unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
  1274. unsigned long *discard_map = (unsigned long *)se->discard_map;
  1275. unsigned long *dmap = SIT_I(sbi)->tmp_map;
  1276. unsigned int start = 0, end = -1;
  1277. bool force = (cpc->reason & CP_DISCARD);
  1278. struct discard_entry *de = NULL;
  1279. struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
  1280. int i;
  1281. if (se->valid_blocks == max_blocks || !f2fs_discard_en(sbi))
  1282. return false;
  1283. if (!force) {
  1284. if (!test_opt(sbi, DISCARD) || !se->valid_blocks ||
  1285. SM_I(sbi)->dcc_info->nr_discards >=
  1286. SM_I(sbi)->dcc_info->max_discards)
  1287. return false;
  1288. }
  1289. /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
  1290. for (i = 0; i < entries; i++)
  1291. dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
  1292. (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
  1293. while (force || SM_I(sbi)->dcc_info->nr_discards <=
  1294. SM_I(sbi)->dcc_info->max_discards) {
  1295. start = __find_rev_next_bit(dmap, max_blocks, end + 1);
  1296. if (start >= max_blocks)
  1297. break;
  1298. end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
  1299. if (force && start && end != max_blocks
  1300. && (end - start) < cpc->trim_minlen)
  1301. continue;
  1302. if (check_only)
  1303. return true;
  1304. if (!de) {
  1305. de = f2fs_kmem_cache_alloc(discard_entry_slab,
  1306. GFP_F2FS_ZERO);
  1307. de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
  1308. list_add_tail(&de->list, head);
  1309. }
  1310. for (i = start; i < end; i++)
  1311. __set_bit_le(i, (void *)de->discard_map);
  1312. SM_I(sbi)->dcc_info->nr_discards += end - start;
  1313. }
  1314. return false;
  1315. }
  1316. void release_discard_addrs(struct f2fs_sb_info *sbi)
  1317. {
  1318. struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
  1319. struct discard_entry *entry, *this;
  1320. /* drop caches */
  1321. list_for_each_entry_safe(entry, this, head, list) {
  1322. list_del(&entry->list);
  1323. kmem_cache_free(discard_entry_slab, entry);
  1324. }
  1325. }
  1326. /*
  1327. * Should call clear_prefree_segments after checkpoint is done.
  1328. */
  1329. static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
  1330. {
  1331. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  1332. unsigned int segno;
  1333. mutex_lock(&dirty_i->seglist_lock);
  1334. for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
  1335. __set_test_and_free(sbi, segno);
  1336. mutex_unlock(&dirty_i->seglist_lock);
  1337. }
  1338. void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc)
  1339. {
  1340. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  1341. struct list_head *head = &dcc->entry_list;
  1342. struct discard_entry *entry, *this;
  1343. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  1344. unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
  1345. unsigned int start = 0, end = -1;
  1346. unsigned int secno, start_segno;
  1347. bool force = (cpc->reason & CP_DISCARD);
  1348. mutex_lock(&dirty_i->seglist_lock);
  1349. while (1) {
  1350. int i;
  1351. start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
  1352. if (start >= MAIN_SEGS(sbi))
  1353. break;
  1354. end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
  1355. start + 1);
  1356. for (i = start; i < end; i++)
  1357. clear_bit(i, prefree_map);
  1358. dirty_i->nr_dirty[PRE] -= end - start;
  1359. if (!test_opt(sbi, DISCARD))
  1360. continue;
  1361. if (force && start >= cpc->trim_start &&
  1362. (end - 1) <= cpc->trim_end)
  1363. continue;
  1364. if (!test_opt(sbi, LFS) || sbi->segs_per_sec == 1) {
  1365. f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
  1366. (end - start) << sbi->log_blocks_per_seg);
  1367. continue;
  1368. }
  1369. next:
  1370. secno = GET_SEC_FROM_SEG(sbi, start);
  1371. start_segno = GET_SEG_FROM_SEC(sbi, secno);
  1372. if (!IS_CURSEC(sbi, secno) &&
  1373. !get_valid_blocks(sbi, start, true))
  1374. f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
  1375. sbi->segs_per_sec << sbi->log_blocks_per_seg);
  1376. start = start_segno + sbi->segs_per_sec;
  1377. if (start < end)
  1378. goto next;
  1379. else
  1380. end = start - 1;
  1381. }
  1382. mutex_unlock(&dirty_i->seglist_lock);
  1383. /* send small discards */
  1384. list_for_each_entry_safe(entry, this, head, list) {
  1385. unsigned int cur_pos = 0, next_pos, len, total_len = 0;
  1386. bool is_valid = test_bit_le(0, entry->discard_map);
  1387. find_next:
  1388. if (is_valid) {
  1389. next_pos = find_next_zero_bit_le(entry->discard_map,
  1390. sbi->blocks_per_seg, cur_pos);
  1391. len = next_pos - cur_pos;
  1392. if (f2fs_sb_mounted_blkzoned(sbi->sb) ||
  1393. (force && len < cpc->trim_minlen))
  1394. goto skip;
  1395. f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
  1396. len);
  1397. total_len += len;
  1398. } else {
  1399. next_pos = find_next_bit_le(entry->discard_map,
  1400. sbi->blocks_per_seg, cur_pos);
  1401. }
  1402. skip:
  1403. cur_pos = next_pos;
  1404. is_valid = !is_valid;
  1405. if (cur_pos < sbi->blocks_per_seg)
  1406. goto find_next;
  1407. list_del(&entry->list);
  1408. dcc->nr_discards -= total_len;
  1409. kmem_cache_free(discard_entry_slab, entry);
  1410. }
  1411. wake_up_discard_thread(sbi, false);
  1412. }
  1413. void init_discard_policy(struct discard_policy *dpolicy,
  1414. int discard_type, unsigned int granularity)
  1415. {
  1416. /* common policy */
  1417. dpolicy->type = discard_type;
  1418. dpolicy->sync = true;
  1419. dpolicy->granularity = granularity;
  1420. if (discard_type == DPOLICY_BG) {
  1421. dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
  1422. dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
  1423. dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST;
  1424. dpolicy->io_aware_gran = MAX_PLIST_NUM;
  1425. dpolicy->io_aware = true;
  1426. } else if (discard_type == DPOLICY_FORCE) {
  1427. dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
  1428. dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
  1429. dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST;
  1430. dpolicy->io_aware_gran = MAX_PLIST_NUM;
  1431. dpolicy->io_aware = true;
  1432. } else if (discard_type == DPOLICY_FSTRIM) {
  1433. dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST;
  1434. dpolicy->io_aware_gran = MAX_PLIST_NUM;
  1435. dpolicy->io_aware = false;
  1436. } else if (discard_type == DPOLICY_UMOUNT) {
  1437. dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST;
  1438. dpolicy->io_aware_gran = MAX_PLIST_NUM;
  1439. dpolicy->io_aware = false;
  1440. }
  1441. }
  1442. static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
  1443. {
  1444. dev_t dev = sbi->sb->s_bdev->bd_dev;
  1445. struct discard_cmd_control *dcc;
  1446. int err = 0, i;
  1447. if (SM_I(sbi)->dcc_info) {
  1448. dcc = SM_I(sbi)->dcc_info;
  1449. goto init_thread;
  1450. }
  1451. dcc = kzalloc(sizeof(struct discard_cmd_control), GFP_KERNEL);
  1452. if (!dcc)
  1453. return -ENOMEM;
  1454. dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
  1455. INIT_LIST_HEAD(&dcc->entry_list);
  1456. for (i = 0; i < MAX_PLIST_NUM; i++)
  1457. INIT_LIST_HEAD(&dcc->pend_list[i]);
  1458. INIT_LIST_HEAD(&dcc->wait_list);
  1459. INIT_LIST_HEAD(&dcc->fstrim_list);
  1460. mutex_init(&dcc->cmd_lock);
  1461. atomic_set(&dcc->issued_discard, 0);
  1462. atomic_set(&dcc->issing_discard, 0);
  1463. atomic_set(&dcc->discard_cmd_cnt, 0);
  1464. dcc->nr_discards = 0;
  1465. dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
  1466. dcc->undiscard_blks = 0;
  1467. dcc->root = RB_ROOT;
  1468. init_waitqueue_head(&dcc->discard_wait_queue);
  1469. SM_I(sbi)->dcc_info = dcc;
  1470. init_thread:
  1471. dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
  1472. "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
  1473. if (IS_ERR(dcc->f2fs_issue_discard)) {
  1474. err = PTR_ERR(dcc->f2fs_issue_discard);
  1475. kfree(dcc);
  1476. SM_I(sbi)->dcc_info = NULL;
  1477. return err;
  1478. }
  1479. return err;
  1480. }
  1481. static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
  1482. {
  1483. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  1484. if (!dcc)
  1485. return;
  1486. stop_discard_thread(sbi);
  1487. kfree(dcc);
  1488. SM_I(sbi)->dcc_info = NULL;
  1489. }
  1490. static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
  1491. {
  1492. struct sit_info *sit_i = SIT_I(sbi);
  1493. if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
  1494. sit_i->dirty_sentries++;
  1495. return false;
  1496. }
  1497. return true;
  1498. }
  1499. static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
  1500. unsigned int segno, int modified)
  1501. {
  1502. struct seg_entry *se = get_seg_entry(sbi, segno);
  1503. se->type = type;
  1504. if (modified)
  1505. __mark_sit_entry_dirty(sbi, segno);
  1506. }
  1507. static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
  1508. {
  1509. struct seg_entry *se;
  1510. unsigned int segno, offset;
  1511. long int new_vblocks;
  1512. bool exist;
  1513. #ifdef CONFIG_F2FS_CHECK_FS
  1514. bool mir_exist;
  1515. #endif
  1516. segno = GET_SEGNO(sbi, blkaddr);
  1517. se = get_seg_entry(sbi, segno);
  1518. new_vblocks = se->valid_blocks + del;
  1519. offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
  1520. f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
  1521. (new_vblocks > sbi->blocks_per_seg)));
  1522. se->valid_blocks = new_vblocks;
  1523. se->mtime = get_mtime(sbi);
  1524. SIT_I(sbi)->max_mtime = se->mtime;
  1525. /* Update valid block bitmap */
  1526. if (del > 0) {
  1527. exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
  1528. #ifdef CONFIG_F2FS_CHECK_FS
  1529. mir_exist = f2fs_test_and_set_bit(offset,
  1530. se->cur_valid_map_mir);
  1531. if (unlikely(exist != mir_exist)) {
  1532. f2fs_msg(sbi->sb, KERN_ERR, "Inconsistent error "
  1533. "when setting bitmap, blk:%u, old bit:%d",
  1534. blkaddr, exist);
  1535. f2fs_bug_on(sbi, 1);
  1536. }
  1537. #endif
  1538. if (unlikely(exist)) {
  1539. f2fs_msg(sbi->sb, KERN_ERR,
  1540. "Bitmap was wrongly set, blk:%u", blkaddr);
  1541. f2fs_bug_on(sbi, 1);
  1542. se->valid_blocks--;
  1543. del = 0;
  1544. }
  1545. if (f2fs_discard_en(sbi) &&
  1546. !f2fs_test_and_set_bit(offset, se->discard_map))
  1547. sbi->discard_blks--;
  1548. /* don't overwrite by SSR to keep node chain */
  1549. if (se->type == CURSEG_WARM_NODE) {
  1550. if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
  1551. se->ckpt_valid_blocks++;
  1552. }
  1553. } else {
  1554. exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
  1555. #ifdef CONFIG_F2FS_CHECK_FS
  1556. mir_exist = f2fs_test_and_clear_bit(offset,
  1557. se->cur_valid_map_mir);
  1558. if (unlikely(exist != mir_exist)) {
  1559. f2fs_msg(sbi->sb, KERN_ERR, "Inconsistent error "
  1560. "when clearing bitmap, blk:%u, old bit:%d",
  1561. blkaddr, exist);
  1562. f2fs_bug_on(sbi, 1);
  1563. }
  1564. #endif
  1565. if (unlikely(!exist)) {
  1566. f2fs_msg(sbi->sb, KERN_ERR,
  1567. "Bitmap was wrongly cleared, blk:%u", blkaddr);
  1568. f2fs_bug_on(sbi, 1);
  1569. se->valid_blocks++;
  1570. del = 0;
  1571. }
  1572. if (f2fs_discard_en(sbi) &&
  1573. f2fs_test_and_clear_bit(offset, se->discard_map))
  1574. sbi->discard_blks++;
  1575. }
  1576. if (!f2fs_test_bit(offset, se->ckpt_valid_map))
  1577. se->ckpt_valid_blocks += del;
  1578. __mark_sit_entry_dirty(sbi, segno);
  1579. /* update total number of valid blocks to be written in ckpt area */
  1580. SIT_I(sbi)->written_valid_blocks += del;
  1581. if (sbi->segs_per_sec > 1)
  1582. get_sec_entry(sbi, segno)->valid_blocks += del;
  1583. }
  1584. void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
  1585. {
  1586. unsigned int segno = GET_SEGNO(sbi, addr);
  1587. struct sit_info *sit_i = SIT_I(sbi);
  1588. f2fs_bug_on(sbi, addr == NULL_ADDR);
  1589. if (addr == NEW_ADDR)
  1590. return;
  1591. /* add it into sit main buffer */
  1592. down_write(&sit_i->sentry_lock);
  1593. update_sit_entry(sbi, addr, -1);
  1594. /* add it into dirty seglist */
  1595. locate_dirty_segment(sbi, segno);
  1596. up_write(&sit_i->sentry_lock);
  1597. }
  1598. bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
  1599. {
  1600. struct sit_info *sit_i = SIT_I(sbi);
  1601. unsigned int segno, offset;
  1602. struct seg_entry *se;
  1603. bool is_cp = false;
  1604. if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
  1605. return true;
  1606. down_read(&sit_i->sentry_lock);
  1607. segno = GET_SEGNO(sbi, blkaddr);
  1608. se = get_seg_entry(sbi, segno);
  1609. offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
  1610. if (f2fs_test_bit(offset, se->ckpt_valid_map))
  1611. is_cp = true;
  1612. up_read(&sit_i->sentry_lock);
  1613. return is_cp;
  1614. }
  1615. /*
  1616. * This function should be resided under the curseg_mutex lock
  1617. */
  1618. static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
  1619. struct f2fs_summary *sum)
  1620. {
  1621. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1622. void *addr = curseg->sum_blk;
  1623. addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
  1624. memcpy(addr, sum, sizeof(struct f2fs_summary));
  1625. }
  1626. /*
  1627. * Calculate the number of current summary pages for writing
  1628. */
  1629. int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
  1630. {
  1631. int valid_sum_count = 0;
  1632. int i, sum_in_page;
  1633. for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
  1634. if (sbi->ckpt->alloc_type[i] == SSR)
  1635. valid_sum_count += sbi->blocks_per_seg;
  1636. else {
  1637. if (for_ra)
  1638. valid_sum_count += le16_to_cpu(
  1639. F2FS_CKPT(sbi)->cur_data_blkoff[i]);
  1640. else
  1641. valid_sum_count += curseg_blkoff(sbi, i);
  1642. }
  1643. }
  1644. sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
  1645. SUM_FOOTER_SIZE) / SUMMARY_SIZE;
  1646. if (valid_sum_count <= sum_in_page)
  1647. return 1;
  1648. else if ((valid_sum_count - sum_in_page) <=
  1649. (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
  1650. return 2;
  1651. return 3;
  1652. }
  1653. /*
  1654. * Caller should put this summary page
  1655. */
  1656. struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
  1657. {
  1658. return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
  1659. }
  1660. void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr)
  1661. {
  1662. struct page *page = grab_meta_page(sbi, blk_addr);
  1663. memcpy(page_address(page), src, PAGE_SIZE);
  1664. set_page_dirty(page);
  1665. f2fs_put_page(page, 1);
  1666. }
  1667. static void write_sum_page(struct f2fs_sb_info *sbi,
  1668. struct f2fs_summary_block *sum_blk, block_t blk_addr)
  1669. {
  1670. update_meta_page(sbi, (void *)sum_blk, blk_addr);
  1671. }
  1672. static void write_current_sum_page(struct f2fs_sb_info *sbi,
  1673. int type, block_t blk_addr)
  1674. {
  1675. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1676. struct page *page = grab_meta_page(sbi, blk_addr);
  1677. struct f2fs_summary_block *src = curseg->sum_blk;
  1678. struct f2fs_summary_block *dst;
  1679. dst = (struct f2fs_summary_block *)page_address(page);
  1680. mutex_lock(&curseg->curseg_mutex);
  1681. down_read(&curseg->journal_rwsem);
  1682. memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
  1683. up_read(&curseg->journal_rwsem);
  1684. memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
  1685. memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
  1686. mutex_unlock(&curseg->curseg_mutex);
  1687. set_page_dirty(page);
  1688. f2fs_put_page(page, 1);
  1689. }
  1690. static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
  1691. {
  1692. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1693. unsigned int segno = curseg->segno + 1;
  1694. struct free_segmap_info *free_i = FREE_I(sbi);
  1695. if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
  1696. return !test_bit(segno, free_i->free_segmap);
  1697. return 0;
  1698. }
  1699. /*
  1700. * Find a new segment from the free segments bitmap to right order
  1701. * This function should be returned with success, otherwise BUG
  1702. */
  1703. static void get_new_segment(struct f2fs_sb_info *sbi,
  1704. unsigned int *newseg, bool new_sec, int dir)
  1705. {
  1706. struct free_segmap_info *free_i = FREE_I(sbi);
  1707. unsigned int segno, secno, zoneno;
  1708. unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
  1709. unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
  1710. unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
  1711. unsigned int left_start = hint;
  1712. bool init = true;
  1713. int go_left = 0;
  1714. int i;
  1715. spin_lock(&free_i->segmap_lock);
  1716. if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
  1717. segno = find_next_zero_bit(free_i->free_segmap,
  1718. GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
  1719. if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
  1720. goto got_it;
  1721. }
  1722. find_other_zone:
  1723. secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
  1724. if (secno >= MAIN_SECS(sbi)) {
  1725. if (dir == ALLOC_RIGHT) {
  1726. secno = find_next_zero_bit(free_i->free_secmap,
  1727. MAIN_SECS(sbi), 0);
  1728. f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
  1729. } else {
  1730. go_left = 1;
  1731. left_start = hint - 1;
  1732. }
  1733. }
  1734. if (go_left == 0)
  1735. goto skip_left;
  1736. while (test_bit(left_start, free_i->free_secmap)) {
  1737. if (left_start > 0) {
  1738. left_start--;
  1739. continue;
  1740. }
  1741. left_start = find_next_zero_bit(free_i->free_secmap,
  1742. MAIN_SECS(sbi), 0);
  1743. f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
  1744. break;
  1745. }
  1746. secno = left_start;
  1747. skip_left:
  1748. segno = GET_SEG_FROM_SEC(sbi, secno);
  1749. zoneno = GET_ZONE_FROM_SEC(sbi, secno);
  1750. /* give up on finding another zone */
  1751. if (!init)
  1752. goto got_it;
  1753. if (sbi->secs_per_zone == 1)
  1754. goto got_it;
  1755. if (zoneno == old_zoneno)
  1756. goto got_it;
  1757. if (dir == ALLOC_LEFT) {
  1758. if (!go_left && zoneno + 1 >= total_zones)
  1759. goto got_it;
  1760. if (go_left && zoneno == 0)
  1761. goto got_it;
  1762. }
  1763. for (i = 0; i < NR_CURSEG_TYPE; i++)
  1764. if (CURSEG_I(sbi, i)->zone == zoneno)
  1765. break;
  1766. if (i < NR_CURSEG_TYPE) {
  1767. /* zone is in user, try another */
  1768. if (go_left)
  1769. hint = zoneno * sbi->secs_per_zone - 1;
  1770. else if (zoneno + 1 >= total_zones)
  1771. hint = 0;
  1772. else
  1773. hint = (zoneno + 1) * sbi->secs_per_zone;
  1774. init = false;
  1775. goto find_other_zone;
  1776. }
  1777. got_it:
  1778. /* set it as dirty segment in free segmap */
  1779. f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
  1780. __set_inuse(sbi, segno);
  1781. *newseg = segno;
  1782. spin_unlock(&free_i->segmap_lock);
  1783. }
  1784. static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
  1785. {
  1786. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1787. struct summary_footer *sum_footer;
  1788. curseg->segno = curseg->next_segno;
  1789. curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
  1790. curseg->next_blkoff = 0;
  1791. curseg->next_segno = NULL_SEGNO;
  1792. sum_footer = &(curseg->sum_blk->footer);
  1793. memset(sum_footer, 0, sizeof(struct summary_footer));
  1794. if (IS_DATASEG(type))
  1795. SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
  1796. if (IS_NODESEG(type))
  1797. SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
  1798. __set_sit_entry_type(sbi, type, curseg->segno, modified);
  1799. }
  1800. static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
  1801. {
  1802. /* if segs_per_sec is large than 1, we need to keep original policy. */
  1803. if (sbi->segs_per_sec != 1)
  1804. return CURSEG_I(sbi, type)->segno;
  1805. if (type == CURSEG_HOT_DATA || IS_NODESEG(type))
  1806. return 0;
  1807. if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
  1808. return SIT_I(sbi)->last_victim[ALLOC_NEXT];
  1809. return CURSEG_I(sbi, type)->segno;
  1810. }
  1811. /*
  1812. * Allocate a current working segment.
  1813. * This function always allocates a free segment in LFS manner.
  1814. */
  1815. static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
  1816. {
  1817. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1818. unsigned int segno = curseg->segno;
  1819. int dir = ALLOC_LEFT;
  1820. write_sum_page(sbi, curseg->sum_blk,
  1821. GET_SUM_BLOCK(sbi, segno));
  1822. if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
  1823. dir = ALLOC_RIGHT;
  1824. if (test_opt(sbi, NOHEAP))
  1825. dir = ALLOC_RIGHT;
  1826. segno = __get_next_segno(sbi, type);
  1827. get_new_segment(sbi, &segno, new_sec, dir);
  1828. curseg->next_segno = segno;
  1829. reset_curseg(sbi, type, 1);
  1830. curseg->alloc_type = LFS;
  1831. }
  1832. static void __next_free_blkoff(struct f2fs_sb_info *sbi,
  1833. struct curseg_info *seg, block_t start)
  1834. {
  1835. struct seg_entry *se = get_seg_entry(sbi, seg->segno);
  1836. int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
  1837. unsigned long *target_map = SIT_I(sbi)->tmp_map;
  1838. unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
  1839. unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
  1840. int i, pos;
  1841. for (i = 0; i < entries; i++)
  1842. target_map[i] = ckpt_map[i] | cur_map[i];
  1843. pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
  1844. seg->next_blkoff = pos;
  1845. }
  1846. /*
  1847. * If a segment is written by LFS manner, next block offset is just obtained
  1848. * by increasing the current block offset. However, if a segment is written by
  1849. * SSR manner, next block offset obtained by calling __next_free_blkoff
  1850. */
  1851. static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
  1852. struct curseg_info *seg)
  1853. {
  1854. if (seg->alloc_type == SSR)
  1855. __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
  1856. else
  1857. seg->next_blkoff++;
  1858. }
  1859. /*
  1860. * This function always allocates a used segment(from dirty seglist) by SSR
  1861. * manner, so it should recover the existing segment information of valid blocks
  1862. */
  1863. static void change_curseg(struct f2fs_sb_info *sbi, int type)
  1864. {
  1865. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  1866. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1867. unsigned int new_segno = curseg->next_segno;
  1868. struct f2fs_summary_block *sum_node;
  1869. struct page *sum_page;
  1870. write_sum_page(sbi, curseg->sum_blk,
  1871. GET_SUM_BLOCK(sbi, curseg->segno));
  1872. __set_test_and_inuse(sbi, new_segno);
  1873. mutex_lock(&dirty_i->seglist_lock);
  1874. __remove_dirty_segment(sbi, new_segno, PRE);
  1875. __remove_dirty_segment(sbi, new_segno, DIRTY);
  1876. mutex_unlock(&dirty_i->seglist_lock);
  1877. reset_curseg(sbi, type, 1);
  1878. curseg->alloc_type = SSR;
  1879. __next_free_blkoff(sbi, curseg, 0);
  1880. sum_page = get_sum_page(sbi, new_segno);
  1881. sum_node = (struct f2fs_summary_block *)page_address(sum_page);
  1882. memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
  1883. f2fs_put_page(sum_page, 1);
  1884. }
  1885. static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
  1886. {
  1887. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1888. const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
  1889. unsigned segno = NULL_SEGNO;
  1890. int i, cnt;
  1891. bool reversed = false;
  1892. /* need_SSR() already forces to do this */
  1893. if (v_ops->get_victim(sbi, &segno, BG_GC, type, SSR)) {
  1894. curseg->next_segno = segno;
  1895. return 1;
  1896. }
  1897. /* For node segments, let's do SSR more intensively */
  1898. if (IS_NODESEG(type)) {
  1899. if (type >= CURSEG_WARM_NODE) {
  1900. reversed = true;
  1901. i = CURSEG_COLD_NODE;
  1902. } else {
  1903. i = CURSEG_HOT_NODE;
  1904. }
  1905. cnt = NR_CURSEG_NODE_TYPE;
  1906. } else {
  1907. if (type >= CURSEG_WARM_DATA) {
  1908. reversed = true;
  1909. i = CURSEG_COLD_DATA;
  1910. } else {
  1911. i = CURSEG_HOT_DATA;
  1912. }
  1913. cnt = NR_CURSEG_DATA_TYPE;
  1914. }
  1915. for (; cnt-- > 0; reversed ? i-- : i++) {
  1916. if (i == type)
  1917. continue;
  1918. if (v_ops->get_victim(sbi, &segno, BG_GC, i, SSR)) {
  1919. curseg->next_segno = segno;
  1920. return 1;
  1921. }
  1922. }
  1923. return 0;
  1924. }
  1925. /*
  1926. * flush out current segment and replace it with new segment
  1927. * This function should be returned with success, otherwise BUG
  1928. */
  1929. static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
  1930. int type, bool force)
  1931. {
  1932. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1933. if (force)
  1934. new_curseg(sbi, type, true);
  1935. else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
  1936. type == CURSEG_WARM_NODE)
  1937. new_curseg(sbi, type, false);
  1938. else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
  1939. new_curseg(sbi, type, false);
  1940. else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
  1941. change_curseg(sbi, type);
  1942. else
  1943. new_curseg(sbi, type, false);
  1944. stat_inc_seg_type(sbi, curseg);
  1945. }
  1946. void allocate_new_segments(struct f2fs_sb_info *sbi)
  1947. {
  1948. struct curseg_info *curseg;
  1949. unsigned int old_segno;
  1950. int i;
  1951. down_write(&SIT_I(sbi)->sentry_lock);
  1952. for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
  1953. curseg = CURSEG_I(sbi, i);
  1954. old_segno = curseg->segno;
  1955. SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
  1956. locate_dirty_segment(sbi, old_segno);
  1957. }
  1958. up_write(&SIT_I(sbi)->sentry_lock);
  1959. }
  1960. static const struct segment_allocation default_salloc_ops = {
  1961. .allocate_segment = allocate_segment_by_default,
  1962. };
  1963. bool exist_trim_candidates(struct f2fs_sb_info *sbi, struct cp_control *cpc)
  1964. {
  1965. __u64 trim_start = cpc->trim_start;
  1966. bool has_candidate = false;
  1967. down_write(&SIT_I(sbi)->sentry_lock);
  1968. for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
  1969. if (add_discard_addrs(sbi, cpc, true)) {
  1970. has_candidate = true;
  1971. break;
  1972. }
  1973. }
  1974. up_write(&SIT_I(sbi)->sentry_lock);
  1975. cpc->trim_start = trim_start;
  1976. return has_candidate;
  1977. }
  1978. int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
  1979. {
  1980. __u64 start = F2FS_BYTES_TO_BLK(range->start);
  1981. __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
  1982. unsigned int start_segno, end_segno, cur_segno;
  1983. block_t start_block, end_block;
  1984. struct cp_control cpc;
  1985. struct discard_policy dpolicy;
  1986. unsigned long long trimmed = 0;
  1987. int err = 0;
  1988. if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
  1989. return -EINVAL;
  1990. if (end <= MAIN_BLKADDR(sbi))
  1991. goto out;
  1992. if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
  1993. f2fs_msg(sbi->sb, KERN_WARNING,
  1994. "Found FS corruption, run fsck to fix.");
  1995. goto out;
  1996. }
  1997. /* start/end segment number in main_area */
  1998. start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
  1999. end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
  2000. GET_SEGNO(sbi, end);
  2001. cpc.reason = CP_DISCARD;
  2002. cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
  2003. /* do checkpoint to issue discard commands safely */
  2004. for (cur_segno = start_segno; cur_segno <= end_segno;
  2005. cur_segno = cpc.trim_end + 1) {
  2006. cpc.trim_start = cur_segno;
  2007. if (sbi->discard_blks == 0)
  2008. break;
  2009. else if (sbi->discard_blks < BATCHED_TRIM_BLOCKS(sbi))
  2010. cpc.trim_end = end_segno;
  2011. else
  2012. cpc.trim_end = min_t(unsigned int,
  2013. rounddown(cur_segno +
  2014. BATCHED_TRIM_SEGMENTS(sbi),
  2015. sbi->segs_per_sec) - 1, end_segno);
  2016. mutex_lock(&sbi->gc_mutex);
  2017. err = write_checkpoint(sbi, &cpc);
  2018. mutex_unlock(&sbi->gc_mutex);
  2019. if (err)
  2020. break;
  2021. schedule();
  2022. }
  2023. start_block = START_BLOCK(sbi, start_segno);
  2024. end_block = START_BLOCK(sbi, min(cur_segno, end_segno) + 1);
  2025. init_discard_policy(&dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
  2026. __issue_discard_cmd_range(sbi, &dpolicy, start_block, end_block);
  2027. trimmed = __wait_discard_cmd_range(sbi, &dpolicy,
  2028. start_block, end_block);
  2029. out:
  2030. range->len = F2FS_BLK_TO_BYTES(trimmed);
  2031. return err;
  2032. }
  2033. static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
  2034. {
  2035. struct curseg_info *curseg = CURSEG_I(sbi, type);
  2036. if (curseg->next_blkoff < sbi->blocks_per_seg)
  2037. return true;
  2038. return false;
  2039. }
  2040. int rw_hint_to_seg_type(enum rw_hint hint)
  2041. {
  2042. switch (hint) {
  2043. case WRITE_LIFE_SHORT:
  2044. return CURSEG_HOT_DATA;
  2045. case WRITE_LIFE_EXTREME:
  2046. return CURSEG_COLD_DATA;
  2047. default:
  2048. return CURSEG_WARM_DATA;
  2049. }
  2050. }
  2051. static int __get_segment_type_2(struct f2fs_io_info *fio)
  2052. {
  2053. if (fio->type == DATA)
  2054. return CURSEG_HOT_DATA;
  2055. else
  2056. return CURSEG_HOT_NODE;
  2057. }
  2058. static int __get_segment_type_4(struct f2fs_io_info *fio)
  2059. {
  2060. if (fio->type == DATA) {
  2061. struct inode *inode = fio->page->mapping->host;
  2062. if (S_ISDIR(inode->i_mode))
  2063. return CURSEG_HOT_DATA;
  2064. else
  2065. return CURSEG_COLD_DATA;
  2066. } else {
  2067. if (IS_DNODE(fio->page) && is_cold_node(fio->page))
  2068. return CURSEG_WARM_NODE;
  2069. else
  2070. return CURSEG_COLD_NODE;
  2071. }
  2072. }
  2073. static int __get_segment_type_6(struct f2fs_io_info *fio)
  2074. {
  2075. if (fio->type == DATA) {
  2076. struct inode *inode = fio->page->mapping->host;
  2077. if (is_cold_data(fio->page) || file_is_cold(inode))
  2078. return CURSEG_COLD_DATA;
  2079. if (is_inode_flag_set(inode, FI_HOT_DATA))
  2080. return CURSEG_HOT_DATA;
  2081. return rw_hint_to_seg_type(inode->i_write_hint);
  2082. } else {
  2083. if (IS_DNODE(fio->page))
  2084. return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
  2085. CURSEG_HOT_NODE;
  2086. return CURSEG_COLD_NODE;
  2087. }
  2088. }
  2089. static int __get_segment_type(struct f2fs_io_info *fio)
  2090. {
  2091. int type = 0;
  2092. switch (fio->sbi->active_logs) {
  2093. case 2:
  2094. type = __get_segment_type_2(fio);
  2095. break;
  2096. case 4:
  2097. type = __get_segment_type_4(fio);
  2098. break;
  2099. case 6:
  2100. type = __get_segment_type_6(fio);
  2101. break;
  2102. default:
  2103. f2fs_bug_on(fio->sbi, true);
  2104. }
  2105. if (IS_HOT(type))
  2106. fio->temp = HOT;
  2107. else if (IS_WARM(type))
  2108. fio->temp = WARM;
  2109. else
  2110. fio->temp = COLD;
  2111. return type;
  2112. }
  2113. void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
  2114. block_t old_blkaddr, block_t *new_blkaddr,
  2115. struct f2fs_summary *sum, int type,
  2116. struct f2fs_io_info *fio, bool add_list)
  2117. {
  2118. struct sit_info *sit_i = SIT_I(sbi);
  2119. struct curseg_info *curseg = CURSEG_I(sbi, type);
  2120. down_read(&SM_I(sbi)->curseg_lock);
  2121. mutex_lock(&curseg->curseg_mutex);
  2122. down_write(&sit_i->sentry_lock);
  2123. *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
  2124. f2fs_wait_discard_bio(sbi, *new_blkaddr);
  2125. /*
  2126. * __add_sum_entry should be resided under the curseg_mutex
  2127. * because, this function updates a summary entry in the
  2128. * current summary block.
  2129. */
  2130. __add_sum_entry(sbi, type, sum);
  2131. __refresh_next_blkoff(sbi, curseg);
  2132. stat_inc_block_count(sbi, curseg);
  2133. /*
  2134. * SIT information should be updated before segment allocation,
  2135. * since SSR needs latest valid block information.
  2136. */
  2137. update_sit_entry(sbi, *new_blkaddr, 1);
  2138. if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
  2139. update_sit_entry(sbi, old_blkaddr, -1);
  2140. if (!__has_curseg_space(sbi, type))
  2141. sit_i->s_ops->allocate_segment(sbi, type, false);
  2142. /*
  2143. * segment dirty status should be updated after segment allocation,
  2144. * so we just need to update status only one time after previous
  2145. * segment being closed.
  2146. */
  2147. locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
  2148. locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
  2149. up_write(&sit_i->sentry_lock);
  2150. if (page && IS_NODESEG(type)) {
  2151. fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
  2152. f2fs_inode_chksum_set(sbi, page);
  2153. }
  2154. if (add_list) {
  2155. struct f2fs_bio_info *io;
  2156. INIT_LIST_HEAD(&fio->list);
  2157. fio->in_list = true;
  2158. io = sbi->write_io[fio->type] + fio->temp;
  2159. spin_lock(&io->io_lock);
  2160. list_add_tail(&fio->list, &io->io_list);
  2161. spin_unlock(&io->io_lock);
  2162. }
  2163. mutex_unlock(&curseg->curseg_mutex);
  2164. up_read(&SM_I(sbi)->curseg_lock);
  2165. }
  2166. static void update_device_state(struct f2fs_io_info *fio)
  2167. {
  2168. struct f2fs_sb_info *sbi = fio->sbi;
  2169. unsigned int devidx;
  2170. if (!sbi->s_ndevs)
  2171. return;
  2172. devidx = f2fs_target_device_index(sbi, fio->new_blkaddr);
  2173. /* update device state for fsync */
  2174. set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO);
  2175. /* update device state for checkpoint */
  2176. if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
  2177. spin_lock(&sbi->dev_lock);
  2178. f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
  2179. spin_unlock(&sbi->dev_lock);
  2180. }
  2181. }
  2182. static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
  2183. {
  2184. int type = __get_segment_type(fio);
  2185. int err;
  2186. reallocate:
  2187. allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
  2188. &fio->new_blkaddr, sum, type, fio, true);
  2189. /* writeout dirty page into bdev */
  2190. err = f2fs_submit_page_write(fio);
  2191. if (err == -EAGAIN) {
  2192. fio->old_blkaddr = fio->new_blkaddr;
  2193. goto reallocate;
  2194. } else if (!err) {
  2195. update_device_state(fio);
  2196. }
  2197. }
  2198. void write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
  2199. enum iostat_type io_type)
  2200. {
  2201. struct f2fs_io_info fio = {
  2202. .sbi = sbi,
  2203. .type = META,
  2204. .op = REQ_OP_WRITE,
  2205. .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
  2206. .old_blkaddr = page->index,
  2207. .new_blkaddr = page->index,
  2208. .page = page,
  2209. .encrypted_page = NULL,
  2210. .in_list = false,
  2211. };
  2212. if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
  2213. fio.op_flags &= ~REQ_META;
  2214. set_page_writeback(page);
  2215. f2fs_submit_page_write(&fio);
  2216. f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE);
  2217. }
  2218. void write_node_page(unsigned int nid, struct f2fs_io_info *fio)
  2219. {
  2220. struct f2fs_summary sum;
  2221. set_summary(&sum, nid, 0, 0);
  2222. do_write_page(&sum, fio);
  2223. f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
  2224. }
  2225. void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio)
  2226. {
  2227. struct f2fs_sb_info *sbi = fio->sbi;
  2228. struct f2fs_summary sum;
  2229. struct node_info ni;
  2230. f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
  2231. get_node_info(sbi, dn->nid, &ni);
  2232. set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
  2233. do_write_page(&sum, fio);
  2234. f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
  2235. f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE);
  2236. }
  2237. int rewrite_data_page(struct f2fs_io_info *fio)
  2238. {
  2239. int err;
  2240. fio->new_blkaddr = fio->old_blkaddr;
  2241. stat_inc_inplace_blocks(fio->sbi);
  2242. err = f2fs_submit_page_bio(fio);
  2243. if (!err)
  2244. update_device_state(fio);
  2245. f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
  2246. return err;
  2247. }
  2248. static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
  2249. unsigned int segno)
  2250. {
  2251. int i;
  2252. for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
  2253. if (CURSEG_I(sbi, i)->segno == segno)
  2254. break;
  2255. }
  2256. return i;
  2257. }
  2258. void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
  2259. block_t old_blkaddr, block_t new_blkaddr,
  2260. bool recover_curseg, bool recover_newaddr)
  2261. {
  2262. struct sit_info *sit_i = SIT_I(sbi);
  2263. struct curseg_info *curseg;
  2264. unsigned int segno, old_cursegno;
  2265. struct seg_entry *se;
  2266. int type;
  2267. unsigned short old_blkoff;
  2268. segno = GET_SEGNO(sbi, new_blkaddr);
  2269. se = get_seg_entry(sbi, segno);
  2270. type = se->type;
  2271. down_write(&SM_I(sbi)->curseg_lock);
  2272. if (!recover_curseg) {
  2273. /* for recovery flow */
  2274. if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
  2275. if (old_blkaddr == NULL_ADDR)
  2276. type = CURSEG_COLD_DATA;
  2277. else
  2278. type = CURSEG_WARM_DATA;
  2279. }
  2280. } else {
  2281. if (IS_CURSEG(sbi, segno)) {
  2282. /* se->type is volatile as SSR allocation */
  2283. type = __f2fs_get_curseg(sbi, segno);
  2284. f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
  2285. } else {
  2286. type = CURSEG_WARM_DATA;
  2287. }
  2288. }
  2289. curseg = CURSEG_I(sbi, type);
  2290. mutex_lock(&curseg->curseg_mutex);
  2291. down_write(&sit_i->sentry_lock);
  2292. old_cursegno = curseg->segno;
  2293. old_blkoff = curseg->next_blkoff;
  2294. /* change the current segment */
  2295. if (segno != curseg->segno) {
  2296. curseg->next_segno = segno;
  2297. change_curseg(sbi, type);
  2298. }
  2299. curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
  2300. __add_sum_entry(sbi, type, sum);
  2301. if (!recover_curseg || recover_newaddr)
  2302. update_sit_entry(sbi, new_blkaddr, 1);
  2303. if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
  2304. update_sit_entry(sbi, old_blkaddr, -1);
  2305. locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
  2306. locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
  2307. locate_dirty_segment(sbi, old_cursegno);
  2308. if (recover_curseg) {
  2309. if (old_cursegno != curseg->segno) {
  2310. curseg->next_segno = old_cursegno;
  2311. change_curseg(sbi, type);
  2312. }
  2313. curseg->next_blkoff = old_blkoff;
  2314. }
  2315. up_write(&sit_i->sentry_lock);
  2316. mutex_unlock(&curseg->curseg_mutex);
  2317. up_write(&SM_I(sbi)->curseg_lock);
  2318. }
  2319. void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
  2320. block_t old_addr, block_t new_addr,
  2321. unsigned char version, bool recover_curseg,
  2322. bool recover_newaddr)
  2323. {
  2324. struct f2fs_summary sum;
  2325. set_summary(&sum, dn->nid, dn->ofs_in_node, version);
  2326. __f2fs_replace_block(sbi, &sum, old_addr, new_addr,
  2327. recover_curseg, recover_newaddr);
  2328. f2fs_update_data_blkaddr(dn, new_addr);
  2329. }
  2330. void f2fs_wait_on_page_writeback(struct page *page,
  2331. enum page_type type, bool ordered)
  2332. {
  2333. if (PageWriteback(page)) {
  2334. struct f2fs_sb_info *sbi = F2FS_P_SB(page);
  2335. f2fs_submit_merged_write_cond(sbi, page->mapping->host,
  2336. 0, page->index, type);
  2337. if (ordered)
  2338. wait_on_page_writeback(page);
  2339. else
  2340. wait_for_stable_page(page);
  2341. }
  2342. }
  2343. void f2fs_wait_on_block_writeback(struct f2fs_sb_info *sbi, block_t blkaddr)
  2344. {
  2345. struct page *cpage;
  2346. if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
  2347. return;
  2348. cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
  2349. if (cpage) {
  2350. f2fs_wait_on_page_writeback(cpage, DATA, true);
  2351. f2fs_put_page(cpage, 1);
  2352. }
  2353. }
  2354. static int read_compacted_summaries(struct f2fs_sb_info *sbi)
  2355. {
  2356. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  2357. struct curseg_info *seg_i;
  2358. unsigned char *kaddr;
  2359. struct page *page;
  2360. block_t start;
  2361. int i, j, offset;
  2362. start = start_sum_block(sbi);
  2363. page = get_meta_page(sbi, start++);
  2364. kaddr = (unsigned char *)page_address(page);
  2365. /* Step 1: restore nat cache */
  2366. seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
  2367. memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
  2368. /* Step 2: restore sit cache */
  2369. seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
  2370. memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
  2371. offset = 2 * SUM_JOURNAL_SIZE;
  2372. /* Step 3: restore summary entries */
  2373. for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
  2374. unsigned short blk_off;
  2375. unsigned int segno;
  2376. seg_i = CURSEG_I(sbi, i);
  2377. segno = le32_to_cpu(ckpt->cur_data_segno[i]);
  2378. blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
  2379. seg_i->next_segno = segno;
  2380. reset_curseg(sbi, i, 0);
  2381. seg_i->alloc_type = ckpt->alloc_type[i];
  2382. seg_i->next_blkoff = blk_off;
  2383. if (seg_i->alloc_type == SSR)
  2384. blk_off = sbi->blocks_per_seg;
  2385. for (j = 0; j < blk_off; j++) {
  2386. struct f2fs_summary *s;
  2387. s = (struct f2fs_summary *)(kaddr + offset);
  2388. seg_i->sum_blk->entries[j] = *s;
  2389. offset += SUMMARY_SIZE;
  2390. if (offset + SUMMARY_SIZE <= PAGE_SIZE -
  2391. SUM_FOOTER_SIZE)
  2392. continue;
  2393. f2fs_put_page(page, 1);
  2394. page = NULL;
  2395. page = get_meta_page(sbi, start++);
  2396. kaddr = (unsigned char *)page_address(page);
  2397. offset = 0;
  2398. }
  2399. }
  2400. f2fs_put_page(page, 1);
  2401. return 0;
  2402. }
  2403. static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
  2404. {
  2405. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  2406. struct f2fs_summary_block *sum;
  2407. struct curseg_info *curseg;
  2408. struct page *new;
  2409. unsigned short blk_off;
  2410. unsigned int segno = 0;
  2411. block_t blk_addr = 0;
  2412. /* get segment number and block addr */
  2413. if (IS_DATASEG(type)) {
  2414. segno = le32_to_cpu(ckpt->cur_data_segno[type]);
  2415. blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
  2416. CURSEG_HOT_DATA]);
  2417. if (__exist_node_summaries(sbi))
  2418. blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
  2419. else
  2420. blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
  2421. } else {
  2422. segno = le32_to_cpu(ckpt->cur_node_segno[type -
  2423. CURSEG_HOT_NODE]);
  2424. blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
  2425. CURSEG_HOT_NODE]);
  2426. if (__exist_node_summaries(sbi))
  2427. blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
  2428. type - CURSEG_HOT_NODE);
  2429. else
  2430. blk_addr = GET_SUM_BLOCK(sbi, segno);
  2431. }
  2432. new = get_meta_page(sbi, blk_addr);
  2433. sum = (struct f2fs_summary_block *)page_address(new);
  2434. if (IS_NODESEG(type)) {
  2435. if (__exist_node_summaries(sbi)) {
  2436. struct f2fs_summary *ns = &sum->entries[0];
  2437. int i;
  2438. for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
  2439. ns->version = 0;
  2440. ns->ofs_in_node = 0;
  2441. }
  2442. } else {
  2443. int err;
  2444. err = restore_node_summary(sbi, segno, sum);
  2445. if (err) {
  2446. f2fs_put_page(new, 1);
  2447. return err;
  2448. }
  2449. }
  2450. }
  2451. /* set uncompleted segment to curseg */
  2452. curseg = CURSEG_I(sbi, type);
  2453. mutex_lock(&curseg->curseg_mutex);
  2454. /* update journal info */
  2455. down_write(&curseg->journal_rwsem);
  2456. memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
  2457. up_write(&curseg->journal_rwsem);
  2458. memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
  2459. memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
  2460. curseg->next_segno = segno;
  2461. reset_curseg(sbi, type, 0);
  2462. curseg->alloc_type = ckpt->alloc_type[type];
  2463. curseg->next_blkoff = blk_off;
  2464. mutex_unlock(&curseg->curseg_mutex);
  2465. f2fs_put_page(new, 1);
  2466. return 0;
  2467. }
  2468. static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
  2469. {
  2470. struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
  2471. struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
  2472. int type = CURSEG_HOT_DATA;
  2473. int err;
  2474. if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
  2475. int npages = npages_for_summary_flush(sbi, true);
  2476. if (npages >= 2)
  2477. ra_meta_pages(sbi, start_sum_block(sbi), npages,
  2478. META_CP, true);
  2479. /* restore for compacted data summary */
  2480. if (read_compacted_summaries(sbi))
  2481. return -EINVAL;
  2482. type = CURSEG_HOT_NODE;
  2483. }
  2484. if (__exist_node_summaries(sbi))
  2485. ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
  2486. NR_CURSEG_TYPE - type, META_CP, true);
  2487. for (; type <= CURSEG_COLD_NODE; type++) {
  2488. err = read_normal_summaries(sbi, type);
  2489. if (err)
  2490. return err;
  2491. }
  2492. /* sanity check for summary blocks */
  2493. if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
  2494. sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES)
  2495. return -EINVAL;
  2496. return 0;
  2497. }
  2498. static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
  2499. {
  2500. struct page *page;
  2501. unsigned char *kaddr;
  2502. struct f2fs_summary *summary;
  2503. struct curseg_info *seg_i;
  2504. int written_size = 0;
  2505. int i, j;
  2506. page = grab_meta_page(sbi, blkaddr++);
  2507. kaddr = (unsigned char *)page_address(page);
  2508. /* Step 1: write nat cache */
  2509. seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
  2510. memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
  2511. written_size += SUM_JOURNAL_SIZE;
  2512. /* Step 2: write sit cache */
  2513. seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
  2514. memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
  2515. written_size += SUM_JOURNAL_SIZE;
  2516. /* Step 3: write summary entries */
  2517. for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
  2518. unsigned short blkoff;
  2519. seg_i = CURSEG_I(sbi, i);
  2520. if (sbi->ckpt->alloc_type[i] == SSR)
  2521. blkoff = sbi->blocks_per_seg;
  2522. else
  2523. blkoff = curseg_blkoff(sbi, i);
  2524. for (j = 0; j < blkoff; j++) {
  2525. if (!page) {
  2526. page = grab_meta_page(sbi, blkaddr++);
  2527. kaddr = (unsigned char *)page_address(page);
  2528. written_size = 0;
  2529. }
  2530. summary = (struct f2fs_summary *)(kaddr + written_size);
  2531. *summary = seg_i->sum_blk->entries[j];
  2532. written_size += SUMMARY_SIZE;
  2533. if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
  2534. SUM_FOOTER_SIZE)
  2535. continue;
  2536. set_page_dirty(page);
  2537. f2fs_put_page(page, 1);
  2538. page = NULL;
  2539. }
  2540. }
  2541. if (page) {
  2542. set_page_dirty(page);
  2543. f2fs_put_page(page, 1);
  2544. }
  2545. }
  2546. static void write_normal_summaries(struct f2fs_sb_info *sbi,
  2547. block_t blkaddr, int type)
  2548. {
  2549. int i, end;
  2550. if (IS_DATASEG(type))
  2551. end = type + NR_CURSEG_DATA_TYPE;
  2552. else
  2553. end = type + NR_CURSEG_NODE_TYPE;
  2554. for (i = type; i < end; i++)
  2555. write_current_sum_page(sbi, i, blkaddr + (i - type));
  2556. }
  2557. void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
  2558. {
  2559. if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
  2560. write_compacted_summaries(sbi, start_blk);
  2561. else
  2562. write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
  2563. }
  2564. void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
  2565. {
  2566. write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
  2567. }
  2568. int lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
  2569. unsigned int val, int alloc)
  2570. {
  2571. int i;
  2572. if (type == NAT_JOURNAL) {
  2573. for (i = 0; i < nats_in_cursum(journal); i++) {
  2574. if (le32_to_cpu(nid_in_journal(journal, i)) == val)
  2575. return i;
  2576. }
  2577. if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
  2578. return update_nats_in_cursum(journal, 1);
  2579. } else if (type == SIT_JOURNAL) {
  2580. for (i = 0; i < sits_in_cursum(journal); i++)
  2581. if (le32_to_cpu(segno_in_journal(journal, i)) == val)
  2582. return i;
  2583. if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
  2584. return update_sits_in_cursum(journal, 1);
  2585. }
  2586. return -1;
  2587. }
  2588. static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
  2589. unsigned int segno)
  2590. {
  2591. return get_meta_page(sbi, current_sit_addr(sbi, segno));
  2592. }
  2593. static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
  2594. unsigned int start)
  2595. {
  2596. struct sit_info *sit_i = SIT_I(sbi);
  2597. struct page *src_page, *dst_page;
  2598. pgoff_t src_off, dst_off;
  2599. void *src_addr, *dst_addr;
  2600. src_off = current_sit_addr(sbi, start);
  2601. dst_off = next_sit_addr(sbi, src_off);
  2602. /* get current sit block page without lock */
  2603. src_page = get_meta_page(sbi, src_off);
  2604. dst_page = grab_meta_page(sbi, dst_off);
  2605. f2fs_bug_on(sbi, PageDirty(src_page));
  2606. src_addr = page_address(src_page);
  2607. dst_addr = page_address(dst_page);
  2608. memcpy(dst_addr, src_addr, PAGE_SIZE);
  2609. set_page_dirty(dst_page);
  2610. f2fs_put_page(src_page, 1);
  2611. set_to_next_sit(sit_i, start);
  2612. return dst_page;
  2613. }
  2614. static struct sit_entry_set *grab_sit_entry_set(void)
  2615. {
  2616. struct sit_entry_set *ses =
  2617. f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
  2618. ses->entry_cnt = 0;
  2619. INIT_LIST_HEAD(&ses->set_list);
  2620. return ses;
  2621. }
  2622. static void release_sit_entry_set(struct sit_entry_set *ses)
  2623. {
  2624. list_del(&ses->set_list);
  2625. kmem_cache_free(sit_entry_set_slab, ses);
  2626. }
  2627. static void adjust_sit_entry_set(struct sit_entry_set *ses,
  2628. struct list_head *head)
  2629. {
  2630. struct sit_entry_set *next = ses;
  2631. if (list_is_last(&ses->set_list, head))
  2632. return;
  2633. list_for_each_entry_continue(next, head, set_list)
  2634. if (ses->entry_cnt <= next->entry_cnt)
  2635. break;
  2636. list_move_tail(&ses->set_list, &next->set_list);
  2637. }
  2638. static void add_sit_entry(unsigned int segno, struct list_head *head)
  2639. {
  2640. struct sit_entry_set *ses;
  2641. unsigned int start_segno = START_SEGNO(segno);
  2642. list_for_each_entry(ses, head, set_list) {
  2643. if (ses->start_segno == start_segno) {
  2644. ses->entry_cnt++;
  2645. adjust_sit_entry_set(ses, head);
  2646. return;
  2647. }
  2648. }
  2649. ses = grab_sit_entry_set();
  2650. ses->start_segno = start_segno;
  2651. ses->entry_cnt++;
  2652. list_add(&ses->set_list, head);
  2653. }
  2654. static void add_sits_in_set(struct f2fs_sb_info *sbi)
  2655. {
  2656. struct f2fs_sm_info *sm_info = SM_I(sbi);
  2657. struct list_head *set_list = &sm_info->sit_entry_set;
  2658. unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
  2659. unsigned int segno;
  2660. for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
  2661. add_sit_entry(segno, set_list);
  2662. }
  2663. static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
  2664. {
  2665. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
  2666. struct f2fs_journal *journal = curseg->journal;
  2667. int i;
  2668. down_write(&curseg->journal_rwsem);
  2669. for (i = 0; i < sits_in_cursum(journal); i++) {
  2670. unsigned int segno;
  2671. bool dirtied;
  2672. segno = le32_to_cpu(segno_in_journal(journal, i));
  2673. dirtied = __mark_sit_entry_dirty(sbi, segno);
  2674. if (!dirtied)
  2675. add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
  2676. }
  2677. update_sits_in_cursum(journal, -i);
  2678. up_write(&curseg->journal_rwsem);
  2679. }
  2680. /*
  2681. * CP calls this function, which flushes SIT entries including sit_journal,
  2682. * and moves prefree segs to free segs.
  2683. */
  2684. void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
  2685. {
  2686. struct sit_info *sit_i = SIT_I(sbi);
  2687. unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
  2688. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
  2689. struct f2fs_journal *journal = curseg->journal;
  2690. struct sit_entry_set *ses, *tmp;
  2691. struct list_head *head = &SM_I(sbi)->sit_entry_set;
  2692. bool to_journal = true;
  2693. struct seg_entry *se;
  2694. down_write(&sit_i->sentry_lock);
  2695. if (!sit_i->dirty_sentries)
  2696. goto out;
  2697. /*
  2698. * add and account sit entries of dirty bitmap in sit entry
  2699. * set temporarily
  2700. */
  2701. add_sits_in_set(sbi);
  2702. /*
  2703. * if there are no enough space in journal to store dirty sit
  2704. * entries, remove all entries from journal and add and account
  2705. * them in sit entry set.
  2706. */
  2707. if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL))
  2708. remove_sits_in_journal(sbi);
  2709. /*
  2710. * there are two steps to flush sit entries:
  2711. * #1, flush sit entries to journal in current cold data summary block.
  2712. * #2, flush sit entries to sit page.
  2713. */
  2714. list_for_each_entry_safe(ses, tmp, head, set_list) {
  2715. struct page *page = NULL;
  2716. struct f2fs_sit_block *raw_sit = NULL;
  2717. unsigned int start_segno = ses->start_segno;
  2718. unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
  2719. (unsigned long)MAIN_SEGS(sbi));
  2720. unsigned int segno = start_segno;
  2721. if (to_journal &&
  2722. !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
  2723. to_journal = false;
  2724. if (to_journal) {
  2725. down_write(&curseg->journal_rwsem);
  2726. } else {
  2727. page = get_next_sit_page(sbi, start_segno);
  2728. raw_sit = page_address(page);
  2729. }
  2730. /* flush dirty sit entries in region of current sit set */
  2731. for_each_set_bit_from(segno, bitmap, end) {
  2732. int offset, sit_offset;
  2733. se = get_seg_entry(sbi, segno);
  2734. /* add discard candidates */
  2735. if (!(cpc->reason & CP_DISCARD)) {
  2736. cpc->trim_start = segno;
  2737. add_discard_addrs(sbi, cpc, false);
  2738. }
  2739. if (to_journal) {
  2740. offset = lookup_journal_in_cursum(journal,
  2741. SIT_JOURNAL, segno, 1);
  2742. f2fs_bug_on(sbi, offset < 0);
  2743. segno_in_journal(journal, offset) =
  2744. cpu_to_le32(segno);
  2745. seg_info_to_raw_sit(se,
  2746. &sit_in_journal(journal, offset));
  2747. } else {
  2748. sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
  2749. seg_info_to_raw_sit(se,
  2750. &raw_sit->entries[sit_offset]);
  2751. }
  2752. __clear_bit(segno, bitmap);
  2753. sit_i->dirty_sentries--;
  2754. ses->entry_cnt--;
  2755. }
  2756. if (to_journal)
  2757. up_write(&curseg->journal_rwsem);
  2758. else
  2759. f2fs_put_page(page, 1);
  2760. f2fs_bug_on(sbi, ses->entry_cnt);
  2761. release_sit_entry_set(ses);
  2762. }
  2763. f2fs_bug_on(sbi, !list_empty(head));
  2764. f2fs_bug_on(sbi, sit_i->dirty_sentries);
  2765. out:
  2766. if (cpc->reason & CP_DISCARD) {
  2767. __u64 trim_start = cpc->trim_start;
  2768. for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
  2769. add_discard_addrs(sbi, cpc, false);
  2770. cpc->trim_start = trim_start;
  2771. }
  2772. up_write(&sit_i->sentry_lock);
  2773. set_prefree_as_free_segments(sbi);
  2774. }
  2775. static int build_sit_info(struct f2fs_sb_info *sbi)
  2776. {
  2777. struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
  2778. struct sit_info *sit_i;
  2779. unsigned int sit_segs, start;
  2780. char *src_bitmap;
  2781. unsigned int bitmap_size;
  2782. /* allocate memory for SIT information */
  2783. sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
  2784. if (!sit_i)
  2785. return -ENOMEM;
  2786. SM_I(sbi)->sit_info = sit_i;
  2787. sit_i->sentries = kvzalloc(MAIN_SEGS(sbi) *
  2788. sizeof(struct seg_entry), GFP_KERNEL);
  2789. if (!sit_i->sentries)
  2790. return -ENOMEM;
  2791. bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
  2792. sit_i->dirty_sentries_bitmap = kvzalloc(bitmap_size, GFP_KERNEL);
  2793. if (!sit_i->dirty_sentries_bitmap)
  2794. return -ENOMEM;
  2795. for (start = 0; start < MAIN_SEGS(sbi); start++) {
  2796. sit_i->sentries[start].cur_valid_map
  2797. = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
  2798. sit_i->sentries[start].ckpt_valid_map
  2799. = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
  2800. if (!sit_i->sentries[start].cur_valid_map ||
  2801. !sit_i->sentries[start].ckpt_valid_map)
  2802. return -ENOMEM;
  2803. #ifdef CONFIG_F2FS_CHECK_FS
  2804. sit_i->sentries[start].cur_valid_map_mir
  2805. = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
  2806. if (!sit_i->sentries[start].cur_valid_map_mir)
  2807. return -ENOMEM;
  2808. #endif
  2809. if (f2fs_discard_en(sbi)) {
  2810. sit_i->sentries[start].discard_map
  2811. = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
  2812. if (!sit_i->sentries[start].discard_map)
  2813. return -ENOMEM;
  2814. }
  2815. }
  2816. sit_i->tmp_map = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
  2817. if (!sit_i->tmp_map)
  2818. return -ENOMEM;
  2819. if (sbi->segs_per_sec > 1) {
  2820. sit_i->sec_entries = kvzalloc(MAIN_SECS(sbi) *
  2821. sizeof(struct sec_entry), GFP_KERNEL);
  2822. if (!sit_i->sec_entries)
  2823. return -ENOMEM;
  2824. }
  2825. /* get information related with SIT */
  2826. sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
  2827. /* setup SIT bitmap from ckeckpoint pack */
  2828. bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
  2829. src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
  2830. sit_i->sit_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
  2831. if (!sit_i->sit_bitmap)
  2832. return -ENOMEM;
  2833. #ifdef CONFIG_F2FS_CHECK_FS
  2834. sit_i->sit_bitmap_mir = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
  2835. if (!sit_i->sit_bitmap_mir)
  2836. return -ENOMEM;
  2837. #endif
  2838. /* init SIT information */
  2839. sit_i->s_ops = &default_salloc_ops;
  2840. sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
  2841. sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
  2842. sit_i->written_valid_blocks = 0;
  2843. sit_i->bitmap_size = bitmap_size;
  2844. sit_i->dirty_sentries = 0;
  2845. sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
  2846. sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
  2847. sit_i->mounted_time = ktime_get_real_seconds();
  2848. init_rwsem(&sit_i->sentry_lock);
  2849. return 0;
  2850. }
  2851. static int build_free_segmap(struct f2fs_sb_info *sbi)
  2852. {
  2853. struct free_segmap_info *free_i;
  2854. unsigned int bitmap_size, sec_bitmap_size;
  2855. /* allocate memory for free segmap information */
  2856. free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
  2857. if (!free_i)
  2858. return -ENOMEM;
  2859. SM_I(sbi)->free_info = free_i;
  2860. bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
  2861. free_i->free_segmap = kvmalloc(bitmap_size, GFP_KERNEL);
  2862. if (!free_i->free_segmap)
  2863. return -ENOMEM;
  2864. sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
  2865. free_i->free_secmap = kvmalloc(sec_bitmap_size, GFP_KERNEL);
  2866. if (!free_i->free_secmap)
  2867. return -ENOMEM;
  2868. /* set all segments as dirty temporarily */
  2869. memset(free_i->free_segmap, 0xff, bitmap_size);
  2870. memset(free_i->free_secmap, 0xff, sec_bitmap_size);
  2871. /* init free segmap information */
  2872. free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
  2873. free_i->free_segments = 0;
  2874. free_i->free_sections = 0;
  2875. spin_lock_init(&free_i->segmap_lock);
  2876. return 0;
  2877. }
  2878. static int build_curseg(struct f2fs_sb_info *sbi)
  2879. {
  2880. struct curseg_info *array;
  2881. int i;
  2882. array = kcalloc(NR_CURSEG_TYPE, sizeof(*array), GFP_KERNEL);
  2883. if (!array)
  2884. return -ENOMEM;
  2885. SM_I(sbi)->curseg_array = array;
  2886. for (i = 0; i < NR_CURSEG_TYPE; i++) {
  2887. mutex_init(&array[i].curseg_mutex);
  2888. array[i].sum_blk = kzalloc(PAGE_SIZE, GFP_KERNEL);
  2889. if (!array[i].sum_blk)
  2890. return -ENOMEM;
  2891. init_rwsem(&array[i].journal_rwsem);
  2892. array[i].journal = kzalloc(sizeof(struct f2fs_journal),
  2893. GFP_KERNEL);
  2894. if (!array[i].journal)
  2895. return -ENOMEM;
  2896. array[i].segno = NULL_SEGNO;
  2897. array[i].next_blkoff = 0;
  2898. }
  2899. return restore_curseg_summaries(sbi);
  2900. }
  2901. static void build_sit_entries(struct f2fs_sb_info *sbi)
  2902. {
  2903. struct sit_info *sit_i = SIT_I(sbi);
  2904. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
  2905. struct f2fs_journal *journal = curseg->journal;
  2906. struct seg_entry *se;
  2907. struct f2fs_sit_entry sit;
  2908. int sit_blk_cnt = SIT_BLK_CNT(sbi);
  2909. unsigned int i, start, end;
  2910. unsigned int readed, start_blk = 0;
  2911. do {
  2912. readed = ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES,
  2913. META_SIT, true);
  2914. start = start_blk * sit_i->sents_per_block;
  2915. end = (start_blk + readed) * sit_i->sents_per_block;
  2916. for (; start < end && start < MAIN_SEGS(sbi); start++) {
  2917. struct f2fs_sit_block *sit_blk;
  2918. struct page *page;
  2919. se = &sit_i->sentries[start];
  2920. page = get_current_sit_page(sbi, start);
  2921. sit_blk = (struct f2fs_sit_block *)page_address(page);
  2922. sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
  2923. f2fs_put_page(page, 1);
  2924. check_block_count(sbi, start, &sit);
  2925. seg_info_from_raw_sit(se, &sit);
  2926. /* build discard map only one time */
  2927. if (f2fs_discard_en(sbi)) {
  2928. if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
  2929. memset(se->discard_map, 0xff,
  2930. SIT_VBLOCK_MAP_SIZE);
  2931. } else {
  2932. memcpy(se->discard_map,
  2933. se->cur_valid_map,
  2934. SIT_VBLOCK_MAP_SIZE);
  2935. sbi->discard_blks +=
  2936. sbi->blocks_per_seg -
  2937. se->valid_blocks;
  2938. }
  2939. }
  2940. if (sbi->segs_per_sec > 1)
  2941. get_sec_entry(sbi, start)->valid_blocks +=
  2942. se->valid_blocks;
  2943. }
  2944. start_blk += readed;
  2945. } while (start_blk < sit_blk_cnt);
  2946. down_read(&curseg->journal_rwsem);
  2947. for (i = 0; i < sits_in_cursum(journal); i++) {
  2948. unsigned int old_valid_blocks;
  2949. start = le32_to_cpu(segno_in_journal(journal, i));
  2950. se = &sit_i->sentries[start];
  2951. sit = sit_in_journal(journal, i);
  2952. old_valid_blocks = se->valid_blocks;
  2953. check_block_count(sbi, start, &sit);
  2954. seg_info_from_raw_sit(se, &sit);
  2955. if (f2fs_discard_en(sbi)) {
  2956. if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
  2957. memset(se->discard_map, 0xff,
  2958. SIT_VBLOCK_MAP_SIZE);
  2959. } else {
  2960. memcpy(se->discard_map, se->cur_valid_map,
  2961. SIT_VBLOCK_MAP_SIZE);
  2962. sbi->discard_blks += old_valid_blocks -
  2963. se->valid_blocks;
  2964. }
  2965. }
  2966. if (sbi->segs_per_sec > 1)
  2967. get_sec_entry(sbi, start)->valid_blocks +=
  2968. se->valid_blocks - old_valid_blocks;
  2969. }
  2970. up_read(&curseg->journal_rwsem);
  2971. }
  2972. static void init_free_segmap(struct f2fs_sb_info *sbi)
  2973. {
  2974. unsigned int start;
  2975. int type;
  2976. for (start = 0; start < MAIN_SEGS(sbi); start++) {
  2977. struct seg_entry *sentry = get_seg_entry(sbi, start);
  2978. if (!sentry->valid_blocks)
  2979. __set_free(sbi, start);
  2980. else
  2981. SIT_I(sbi)->written_valid_blocks +=
  2982. sentry->valid_blocks;
  2983. }
  2984. /* set use the current segments */
  2985. for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
  2986. struct curseg_info *curseg_t = CURSEG_I(sbi, type);
  2987. __set_test_and_inuse(sbi, curseg_t->segno);
  2988. }
  2989. }
  2990. static void init_dirty_segmap(struct f2fs_sb_info *sbi)
  2991. {
  2992. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  2993. struct free_segmap_info *free_i = FREE_I(sbi);
  2994. unsigned int segno = 0, offset = 0;
  2995. unsigned short valid_blocks;
  2996. while (1) {
  2997. /* find dirty segment based on free segmap */
  2998. segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
  2999. if (segno >= MAIN_SEGS(sbi))
  3000. break;
  3001. offset = segno + 1;
  3002. valid_blocks = get_valid_blocks(sbi, segno, false);
  3003. if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
  3004. continue;
  3005. if (valid_blocks > sbi->blocks_per_seg) {
  3006. f2fs_bug_on(sbi, 1);
  3007. continue;
  3008. }
  3009. mutex_lock(&dirty_i->seglist_lock);
  3010. __locate_dirty_segment(sbi, segno, DIRTY);
  3011. mutex_unlock(&dirty_i->seglist_lock);
  3012. }
  3013. }
  3014. static int init_victim_secmap(struct f2fs_sb_info *sbi)
  3015. {
  3016. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  3017. unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
  3018. dirty_i->victim_secmap = kvzalloc(bitmap_size, GFP_KERNEL);
  3019. if (!dirty_i->victim_secmap)
  3020. return -ENOMEM;
  3021. return 0;
  3022. }
  3023. static int build_dirty_segmap(struct f2fs_sb_info *sbi)
  3024. {
  3025. struct dirty_seglist_info *dirty_i;
  3026. unsigned int bitmap_size, i;
  3027. /* allocate memory for dirty segments list information */
  3028. dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
  3029. if (!dirty_i)
  3030. return -ENOMEM;
  3031. SM_I(sbi)->dirty_info = dirty_i;
  3032. mutex_init(&dirty_i->seglist_lock);
  3033. bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
  3034. for (i = 0; i < NR_DIRTY_TYPE; i++) {
  3035. dirty_i->dirty_segmap[i] = kvzalloc(bitmap_size, GFP_KERNEL);
  3036. if (!dirty_i->dirty_segmap[i])
  3037. return -ENOMEM;
  3038. }
  3039. init_dirty_segmap(sbi);
  3040. return init_victim_secmap(sbi);
  3041. }
  3042. /*
  3043. * Update min, max modified time for cost-benefit GC algorithm
  3044. */
  3045. static void init_min_max_mtime(struct f2fs_sb_info *sbi)
  3046. {
  3047. struct sit_info *sit_i = SIT_I(sbi);
  3048. unsigned int segno;
  3049. down_write(&sit_i->sentry_lock);
  3050. sit_i->min_mtime = LLONG_MAX;
  3051. for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
  3052. unsigned int i;
  3053. unsigned long long mtime = 0;
  3054. for (i = 0; i < sbi->segs_per_sec; i++)
  3055. mtime += get_seg_entry(sbi, segno + i)->mtime;
  3056. mtime = div_u64(mtime, sbi->segs_per_sec);
  3057. if (sit_i->min_mtime > mtime)
  3058. sit_i->min_mtime = mtime;
  3059. }
  3060. sit_i->max_mtime = get_mtime(sbi);
  3061. up_write(&sit_i->sentry_lock);
  3062. }
  3063. int build_segment_manager(struct f2fs_sb_info *sbi)
  3064. {
  3065. struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
  3066. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  3067. struct f2fs_sm_info *sm_info;
  3068. int err;
  3069. sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
  3070. if (!sm_info)
  3071. return -ENOMEM;
  3072. /* init sm info */
  3073. sbi->sm_info = sm_info;
  3074. sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
  3075. sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
  3076. sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
  3077. sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
  3078. sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
  3079. sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
  3080. sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
  3081. sm_info->rec_prefree_segments = sm_info->main_segments *
  3082. DEF_RECLAIM_PREFREE_SEGMENTS / 100;
  3083. if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
  3084. sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
  3085. if (!test_opt(sbi, LFS))
  3086. sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
  3087. sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
  3088. sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
  3089. sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
  3090. sm_info->min_ssr_sections = reserved_sections(sbi);
  3091. sm_info->trim_sections = DEF_BATCHED_TRIM_SECTIONS;
  3092. INIT_LIST_HEAD(&sm_info->sit_entry_set);
  3093. init_rwsem(&sm_info->curseg_lock);
  3094. if (!f2fs_readonly(sbi->sb)) {
  3095. err = create_flush_cmd_control(sbi);
  3096. if (err)
  3097. return err;
  3098. }
  3099. err = create_discard_cmd_control(sbi);
  3100. if (err)
  3101. return err;
  3102. err = build_sit_info(sbi);
  3103. if (err)
  3104. return err;
  3105. err = build_free_segmap(sbi);
  3106. if (err)
  3107. return err;
  3108. err = build_curseg(sbi);
  3109. if (err)
  3110. return err;
  3111. /* reinit free segmap based on SIT */
  3112. build_sit_entries(sbi);
  3113. init_free_segmap(sbi);
  3114. err = build_dirty_segmap(sbi);
  3115. if (err)
  3116. return err;
  3117. init_min_max_mtime(sbi);
  3118. return 0;
  3119. }
  3120. static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
  3121. enum dirty_type dirty_type)
  3122. {
  3123. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  3124. mutex_lock(&dirty_i->seglist_lock);
  3125. kvfree(dirty_i->dirty_segmap[dirty_type]);
  3126. dirty_i->nr_dirty[dirty_type] = 0;
  3127. mutex_unlock(&dirty_i->seglist_lock);
  3128. }
  3129. static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
  3130. {
  3131. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  3132. kvfree(dirty_i->victim_secmap);
  3133. }
  3134. static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
  3135. {
  3136. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  3137. int i;
  3138. if (!dirty_i)
  3139. return;
  3140. /* discard pre-free/dirty segments list */
  3141. for (i = 0; i < NR_DIRTY_TYPE; i++)
  3142. discard_dirty_segmap(sbi, i);
  3143. destroy_victim_secmap(sbi);
  3144. SM_I(sbi)->dirty_info = NULL;
  3145. kfree(dirty_i);
  3146. }
  3147. static void destroy_curseg(struct f2fs_sb_info *sbi)
  3148. {
  3149. struct curseg_info *array = SM_I(sbi)->curseg_array;
  3150. int i;
  3151. if (!array)
  3152. return;
  3153. SM_I(sbi)->curseg_array = NULL;
  3154. for (i = 0; i < NR_CURSEG_TYPE; i++) {
  3155. kfree(array[i].sum_blk);
  3156. kfree(array[i].journal);
  3157. }
  3158. kfree(array);
  3159. }
  3160. static void destroy_free_segmap(struct f2fs_sb_info *sbi)
  3161. {
  3162. struct free_segmap_info *free_i = SM_I(sbi)->free_info;
  3163. if (!free_i)
  3164. return;
  3165. SM_I(sbi)->free_info = NULL;
  3166. kvfree(free_i->free_segmap);
  3167. kvfree(free_i->free_secmap);
  3168. kfree(free_i);
  3169. }
  3170. static void destroy_sit_info(struct f2fs_sb_info *sbi)
  3171. {
  3172. struct sit_info *sit_i = SIT_I(sbi);
  3173. unsigned int start;
  3174. if (!sit_i)
  3175. return;
  3176. if (sit_i->sentries) {
  3177. for (start = 0; start < MAIN_SEGS(sbi); start++) {
  3178. kfree(sit_i->sentries[start].cur_valid_map);
  3179. #ifdef CONFIG_F2FS_CHECK_FS
  3180. kfree(sit_i->sentries[start].cur_valid_map_mir);
  3181. #endif
  3182. kfree(sit_i->sentries[start].ckpt_valid_map);
  3183. kfree(sit_i->sentries[start].discard_map);
  3184. }
  3185. }
  3186. kfree(sit_i->tmp_map);
  3187. kvfree(sit_i->sentries);
  3188. kvfree(sit_i->sec_entries);
  3189. kvfree(sit_i->dirty_sentries_bitmap);
  3190. SM_I(sbi)->sit_info = NULL;
  3191. kfree(sit_i->sit_bitmap);
  3192. #ifdef CONFIG_F2FS_CHECK_FS
  3193. kfree(sit_i->sit_bitmap_mir);
  3194. #endif
  3195. kfree(sit_i);
  3196. }
  3197. void destroy_segment_manager(struct f2fs_sb_info *sbi)
  3198. {
  3199. struct f2fs_sm_info *sm_info = SM_I(sbi);
  3200. if (!sm_info)
  3201. return;
  3202. destroy_flush_cmd_control(sbi, true);
  3203. destroy_discard_cmd_control(sbi);
  3204. destroy_dirty_segmap(sbi);
  3205. destroy_curseg(sbi);
  3206. destroy_free_segmap(sbi);
  3207. destroy_sit_info(sbi);
  3208. sbi->sm_info = NULL;
  3209. kfree(sm_info);
  3210. }
  3211. int __init create_segment_manager_caches(void)
  3212. {
  3213. discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
  3214. sizeof(struct discard_entry));
  3215. if (!discard_entry_slab)
  3216. goto fail;
  3217. discard_cmd_slab = f2fs_kmem_cache_create("discard_cmd",
  3218. sizeof(struct discard_cmd));
  3219. if (!discard_cmd_slab)
  3220. goto destroy_discard_entry;
  3221. sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
  3222. sizeof(struct sit_entry_set));
  3223. if (!sit_entry_set_slab)
  3224. goto destroy_discard_cmd;
  3225. inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
  3226. sizeof(struct inmem_pages));
  3227. if (!inmem_entry_slab)
  3228. goto destroy_sit_entry_set;
  3229. return 0;
  3230. destroy_sit_entry_set:
  3231. kmem_cache_destroy(sit_entry_set_slab);
  3232. destroy_discard_cmd:
  3233. kmem_cache_destroy(discard_cmd_slab);
  3234. destroy_discard_entry:
  3235. kmem_cache_destroy(discard_entry_slab);
  3236. fail:
  3237. return -ENOMEM;
  3238. }
  3239. void destroy_segment_manager_caches(void)
  3240. {
  3241. kmem_cache_destroy(sit_entry_set_slab);
  3242. kmem_cache_destroy(discard_cmd_slab);
  3243. kmem_cache_destroy(discard_entry_slab);
  3244. kmem_cache_destroy(inmem_entry_slab);
  3245. }