devmap.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544
  1. /* Copyright (c) 2017 Covalent IO, Inc. http://covalent.io
  2. *
  3. * This program is free software; you can redistribute it and/or
  4. * modify it under the terms of version 2 of the GNU General Public
  5. * License as published by the Free Software Foundation.
  6. *
  7. * This program is distributed in the hope that it will be useful, but
  8. * WITHOUT ANY WARRANTY; without even the implied warranty of
  9. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  10. * General Public License for more details.
  11. */
  12. /* Devmaps primary use is as a backend map for XDP BPF helper call
  13. * bpf_redirect_map(). Because XDP is mostly concerned with performance we
  14. * spent some effort to ensure the datapath with redirect maps does not use
  15. * any locking. This is a quick note on the details.
  16. *
  17. * We have three possible paths to get into the devmap control plane bpf
  18. * syscalls, bpf programs, and driver side xmit/flush operations. A bpf syscall
  19. * will invoke an update, delete, or lookup operation. To ensure updates and
  20. * deletes appear atomic from the datapath side xchg() is used to modify the
  21. * netdev_map array. Then because the datapath does a lookup into the netdev_map
  22. * array (read-only) from an RCU critical section we use call_rcu() to wait for
  23. * an rcu grace period before free'ing the old data structures. This ensures the
  24. * datapath always has a valid copy. However, the datapath does a "flush"
  25. * operation that pushes any pending packets in the driver outside the RCU
  26. * critical section. Each bpf_dtab_netdev tracks these pending operations using
  27. * an atomic per-cpu bitmap. The bpf_dtab_netdev object will not be destroyed
  28. * until all bits are cleared indicating outstanding flush operations have
  29. * completed.
  30. *
  31. * BPF syscalls may race with BPF program calls on any of the update, delete
  32. * or lookup operations. As noted above the xchg() operation also keep the
  33. * netdev_map consistent in this case. From the devmap side BPF programs
  34. * calling into these operations are the same as multiple user space threads
  35. * making system calls.
  36. *
  37. * Finally, any of the above may race with a netdev_unregister notifier. The
  38. * unregister notifier must search for net devices in the map structure that
  39. * contain a reference to the net device and remove them. This is a two step
  40. * process (a) dereference the bpf_dtab_netdev object in netdev_map and (b)
  41. * check to see if the ifindex is the same as the net_device being removed.
  42. * When removing the dev a cmpxchg() is used to ensure the correct dev is
  43. * removed, in the case of a concurrent update or delete operation it is
  44. * possible that the initially referenced dev is no longer in the map. As the
  45. * notifier hook walks the map we know that new dev references can not be
  46. * added by the user because core infrastructure ensures dev_get_by_index()
  47. * calls will fail at this point.
  48. */
  49. #include <linux/bpf.h>
  50. #include <net/xdp.h>
  51. #include <linux/filter.h>
  52. #include <trace/events/xdp.h>
  53. #define DEV_CREATE_FLAG_MASK \
  54. (BPF_F_NUMA_NODE | BPF_F_RDONLY | BPF_F_WRONLY)
  55. #define DEV_MAP_BULK_SIZE 16
  56. struct xdp_bulk_queue {
  57. struct xdp_frame *q[DEV_MAP_BULK_SIZE];
  58. struct net_device *dev_rx;
  59. unsigned int count;
  60. };
  61. struct bpf_dtab_netdev {
  62. struct net_device *dev; /* must be first member, due to tracepoint */
  63. struct bpf_dtab *dtab;
  64. unsigned int bit;
  65. struct xdp_bulk_queue __percpu *bulkq;
  66. struct rcu_head rcu;
  67. };
  68. struct bpf_dtab {
  69. struct bpf_map map;
  70. struct bpf_dtab_netdev **netdev_map;
  71. unsigned long __percpu *flush_needed;
  72. struct list_head list;
  73. };
  74. static DEFINE_SPINLOCK(dev_map_lock);
  75. static LIST_HEAD(dev_map_list);
  76. static u64 dev_map_bitmap_size(const union bpf_attr *attr)
  77. {
  78. return BITS_TO_LONGS((u64) attr->max_entries) * sizeof(unsigned long);
  79. }
  80. static struct bpf_map *dev_map_alloc(union bpf_attr *attr)
  81. {
  82. struct bpf_dtab *dtab;
  83. int err = -EINVAL;
  84. u64 cost;
  85. if (!capable(CAP_NET_ADMIN))
  86. return ERR_PTR(-EPERM);
  87. /* check sanity of attributes */
  88. if (attr->max_entries == 0 || attr->key_size != 4 ||
  89. attr->value_size != 4 || attr->map_flags & ~DEV_CREATE_FLAG_MASK)
  90. return ERR_PTR(-EINVAL);
  91. dtab = kzalloc(sizeof(*dtab), GFP_USER);
  92. if (!dtab)
  93. return ERR_PTR(-ENOMEM);
  94. bpf_map_init_from_attr(&dtab->map, attr);
  95. /* make sure page count doesn't overflow */
  96. cost = (u64) dtab->map.max_entries * sizeof(struct bpf_dtab_netdev *);
  97. cost += dev_map_bitmap_size(attr) * num_possible_cpus();
  98. if (cost >= U32_MAX - PAGE_SIZE)
  99. goto free_dtab;
  100. dtab->map.pages = round_up(cost, PAGE_SIZE) >> PAGE_SHIFT;
  101. /* if map size is larger than memlock limit, reject it early */
  102. err = bpf_map_precharge_memlock(dtab->map.pages);
  103. if (err)
  104. goto free_dtab;
  105. err = -ENOMEM;
  106. /* A per cpu bitfield with a bit per possible net device */
  107. dtab->flush_needed = __alloc_percpu_gfp(dev_map_bitmap_size(attr),
  108. __alignof__(unsigned long),
  109. GFP_KERNEL | __GFP_NOWARN);
  110. if (!dtab->flush_needed)
  111. goto free_dtab;
  112. dtab->netdev_map = bpf_map_area_alloc(dtab->map.max_entries *
  113. sizeof(struct bpf_dtab_netdev *),
  114. dtab->map.numa_node);
  115. if (!dtab->netdev_map)
  116. goto free_dtab;
  117. spin_lock(&dev_map_lock);
  118. list_add_tail_rcu(&dtab->list, &dev_map_list);
  119. spin_unlock(&dev_map_lock);
  120. return &dtab->map;
  121. free_dtab:
  122. free_percpu(dtab->flush_needed);
  123. kfree(dtab);
  124. return ERR_PTR(err);
  125. }
  126. static void dev_map_free(struct bpf_map *map)
  127. {
  128. struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
  129. int i, cpu;
  130. /* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
  131. * so the programs (can be more than one that used this map) were
  132. * disconnected from events. Wait for outstanding critical sections in
  133. * these programs to complete. The rcu critical section only guarantees
  134. * no further reads against netdev_map. It does __not__ ensure pending
  135. * flush operations (if any) are complete.
  136. */
  137. spin_lock(&dev_map_lock);
  138. list_del_rcu(&dtab->list);
  139. spin_unlock(&dev_map_lock);
  140. bpf_clear_redirect_map(map);
  141. synchronize_rcu();
  142. /* To ensure all pending flush operations have completed wait for flush
  143. * bitmap to indicate all flush_needed bits to be zero on _all_ cpus.
  144. * Because the above synchronize_rcu() ensures the map is disconnected
  145. * from the program we can assume no new bits will be set.
  146. */
  147. for_each_online_cpu(cpu) {
  148. unsigned long *bitmap = per_cpu_ptr(dtab->flush_needed, cpu);
  149. while (!bitmap_empty(bitmap, dtab->map.max_entries))
  150. cond_resched();
  151. }
  152. for (i = 0; i < dtab->map.max_entries; i++) {
  153. struct bpf_dtab_netdev *dev;
  154. dev = dtab->netdev_map[i];
  155. if (!dev)
  156. continue;
  157. dev_put(dev->dev);
  158. kfree(dev);
  159. }
  160. free_percpu(dtab->flush_needed);
  161. bpf_map_area_free(dtab->netdev_map);
  162. kfree(dtab);
  163. }
  164. static int dev_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
  165. {
  166. struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
  167. u32 index = key ? *(u32 *)key : U32_MAX;
  168. u32 *next = next_key;
  169. if (index >= dtab->map.max_entries) {
  170. *next = 0;
  171. return 0;
  172. }
  173. if (index == dtab->map.max_entries - 1)
  174. return -ENOENT;
  175. *next = index + 1;
  176. return 0;
  177. }
  178. void __dev_map_insert_ctx(struct bpf_map *map, u32 bit)
  179. {
  180. struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
  181. unsigned long *bitmap = this_cpu_ptr(dtab->flush_needed);
  182. __set_bit(bit, bitmap);
  183. }
  184. static int bq_xmit_all(struct bpf_dtab_netdev *obj,
  185. struct xdp_bulk_queue *bq, u32 flags,
  186. bool in_napi_ctx)
  187. {
  188. struct net_device *dev = obj->dev;
  189. int sent = 0, drops = 0, err = 0;
  190. int i;
  191. if (unlikely(!bq->count))
  192. return 0;
  193. for (i = 0; i < bq->count; i++) {
  194. struct xdp_frame *xdpf = bq->q[i];
  195. prefetch(xdpf);
  196. }
  197. sent = dev->netdev_ops->ndo_xdp_xmit(dev, bq->count, bq->q, flags);
  198. if (sent < 0) {
  199. err = sent;
  200. sent = 0;
  201. goto error;
  202. }
  203. drops = bq->count - sent;
  204. out:
  205. bq->count = 0;
  206. trace_xdp_devmap_xmit(&obj->dtab->map, obj->bit,
  207. sent, drops, bq->dev_rx, dev, err);
  208. bq->dev_rx = NULL;
  209. return 0;
  210. error:
  211. /* If ndo_xdp_xmit fails with an errno, no frames have been
  212. * xmit'ed and it's our responsibility to them free all.
  213. */
  214. for (i = 0; i < bq->count; i++) {
  215. struct xdp_frame *xdpf = bq->q[i];
  216. /* RX path under NAPI protection, can return frames faster */
  217. if (likely(in_napi_ctx))
  218. xdp_return_frame_rx_napi(xdpf);
  219. else
  220. xdp_return_frame(xdpf);
  221. drops++;
  222. }
  223. goto out;
  224. }
  225. /* __dev_map_flush is called from xdp_do_flush_map() which _must_ be signaled
  226. * from the driver before returning from its napi->poll() routine. The poll()
  227. * routine is called either from busy_poll context or net_rx_action signaled
  228. * from NET_RX_SOFTIRQ. Either way the poll routine must complete before the
  229. * net device can be torn down. On devmap tear down we ensure the ctx bitmap
  230. * is zeroed before completing to ensure all flush operations have completed.
  231. */
  232. void __dev_map_flush(struct bpf_map *map)
  233. {
  234. struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
  235. unsigned long *bitmap = this_cpu_ptr(dtab->flush_needed);
  236. u32 bit;
  237. for_each_set_bit(bit, bitmap, map->max_entries) {
  238. struct bpf_dtab_netdev *dev = READ_ONCE(dtab->netdev_map[bit]);
  239. struct xdp_bulk_queue *bq;
  240. /* This is possible if the dev entry is removed by user space
  241. * between xdp redirect and flush op.
  242. */
  243. if (unlikely(!dev))
  244. continue;
  245. __clear_bit(bit, bitmap);
  246. bq = this_cpu_ptr(dev->bulkq);
  247. bq_xmit_all(dev, bq, XDP_XMIT_FLUSH, true);
  248. }
  249. }
  250. /* rcu_read_lock (from syscall and BPF contexts) ensures that if a delete and/or
  251. * update happens in parallel here a dev_put wont happen until after reading the
  252. * ifindex.
  253. */
  254. struct bpf_dtab_netdev *__dev_map_lookup_elem(struct bpf_map *map, u32 key)
  255. {
  256. struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
  257. struct bpf_dtab_netdev *obj;
  258. if (key >= map->max_entries)
  259. return NULL;
  260. obj = READ_ONCE(dtab->netdev_map[key]);
  261. return obj;
  262. }
  263. /* Runs under RCU-read-side, plus in softirq under NAPI protection.
  264. * Thus, safe percpu variable access.
  265. */
  266. static int bq_enqueue(struct bpf_dtab_netdev *obj, struct xdp_frame *xdpf,
  267. struct net_device *dev_rx)
  268. {
  269. struct xdp_bulk_queue *bq = this_cpu_ptr(obj->bulkq);
  270. if (unlikely(bq->count == DEV_MAP_BULK_SIZE))
  271. bq_xmit_all(obj, bq, 0, true);
  272. /* Ingress dev_rx will be the same for all xdp_frame's in
  273. * bulk_queue, because bq stored per-CPU and must be flushed
  274. * from net_device drivers NAPI func end.
  275. */
  276. if (!bq->dev_rx)
  277. bq->dev_rx = dev_rx;
  278. bq->q[bq->count++] = xdpf;
  279. return 0;
  280. }
  281. int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_buff *xdp,
  282. struct net_device *dev_rx)
  283. {
  284. struct net_device *dev = dst->dev;
  285. struct xdp_frame *xdpf;
  286. int err;
  287. if (!dev->netdev_ops->ndo_xdp_xmit)
  288. return -EOPNOTSUPP;
  289. err = xdp_ok_fwd_dev(dev, xdp->data_end - xdp->data);
  290. if (unlikely(err))
  291. return err;
  292. xdpf = convert_to_xdp_frame(xdp);
  293. if (unlikely(!xdpf))
  294. return -EOVERFLOW;
  295. return bq_enqueue(dst, xdpf, dev_rx);
  296. }
  297. int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb,
  298. struct bpf_prog *xdp_prog)
  299. {
  300. int err;
  301. err = xdp_ok_fwd_dev(dst->dev, skb->len);
  302. if (unlikely(err))
  303. return err;
  304. skb->dev = dst->dev;
  305. generic_xdp_tx(skb, xdp_prog);
  306. return 0;
  307. }
  308. static void *dev_map_lookup_elem(struct bpf_map *map, void *key)
  309. {
  310. struct bpf_dtab_netdev *obj = __dev_map_lookup_elem(map, *(u32 *)key);
  311. struct net_device *dev = obj ? obj->dev : NULL;
  312. return dev ? &dev->ifindex : NULL;
  313. }
  314. static void dev_map_flush_old(struct bpf_dtab_netdev *dev)
  315. {
  316. if (dev->dev->netdev_ops->ndo_xdp_xmit) {
  317. struct xdp_bulk_queue *bq;
  318. unsigned long *bitmap;
  319. int cpu;
  320. for_each_online_cpu(cpu) {
  321. bitmap = per_cpu_ptr(dev->dtab->flush_needed, cpu);
  322. __clear_bit(dev->bit, bitmap);
  323. bq = per_cpu_ptr(dev->bulkq, cpu);
  324. bq_xmit_all(dev, bq, XDP_XMIT_FLUSH, false);
  325. }
  326. }
  327. }
  328. static void __dev_map_entry_free(struct rcu_head *rcu)
  329. {
  330. struct bpf_dtab_netdev *dev;
  331. dev = container_of(rcu, struct bpf_dtab_netdev, rcu);
  332. dev_map_flush_old(dev);
  333. free_percpu(dev->bulkq);
  334. dev_put(dev->dev);
  335. kfree(dev);
  336. }
  337. static int dev_map_delete_elem(struct bpf_map *map, void *key)
  338. {
  339. struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
  340. struct bpf_dtab_netdev *old_dev;
  341. int k = *(u32 *)key;
  342. if (k >= map->max_entries)
  343. return -EINVAL;
  344. /* Use call_rcu() here to ensure any rcu critical sections have
  345. * completed, but this does not guarantee a flush has happened
  346. * yet. Because driver side rcu_read_lock/unlock only protects the
  347. * running XDP program. However, for pending flush operations the
  348. * dev and ctx are stored in another per cpu map. And additionally,
  349. * the driver tear down ensures all soft irqs are complete before
  350. * removing the net device in the case of dev_put equals zero.
  351. */
  352. old_dev = xchg(&dtab->netdev_map[k], NULL);
  353. if (old_dev)
  354. call_rcu(&old_dev->rcu, __dev_map_entry_free);
  355. return 0;
  356. }
  357. static int dev_map_update_elem(struct bpf_map *map, void *key, void *value,
  358. u64 map_flags)
  359. {
  360. struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
  361. struct net *net = current->nsproxy->net_ns;
  362. gfp_t gfp = GFP_ATOMIC | __GFP_NOWARN;
  363. struct bpf_dtab_netdev *dev, *old_dev;
  364. u32 i = *(u32 *)key;
  365. u32 ifindex = *(u32 *)value;
  366. if (unlikely(map_flags > BPF_EXIST))
  367. return -EINVAL;
  368. if (unlikely(i >= dtab->map.max_entries))
  369. return -E2BIG;
  370. if (unlikely(map_flags == BPF_NOEXIST))
  371. return -EEXIST;
  372. if (!ifindex) {
  373. dev = NULL;
  374. } else {
  375. dev = kmalloc_node(sizeof(*dev), gfp, map->numa_node);
  376. if (!dev)
  377. return -ENOMEM;
  378. dev->bulkq = __alloc_percpu_gfp(sizeof(*dev->bulkq),
  379. sizeof(void *), gfp);
  380. if (!dev->bulkq) {
  381. kfree(dev);
  382. return -ENOMEM;
  383. }
  384. dev->dev = dev_get_by_index(net, ifindex);
  385. if (!dev->dev) {
  386. free_percpu(dev->bulkq);
  387. kfree(dev);
  388. return -EINVAL;
  389. }
  390. dev->bit = i;
  391. dev->dtab = dtab;
  392. }
  393. /* Use call_rcu() here to ensure rcu critical sections have completed
  394. * Remembering the driver side flush operation will happen before the
  395. * net device is removed.
  396. */
  397. old_dev = xchg(&dtab->netdev_map[i], dev);
  398. if (old_dev)
  399. call_rcu(&old_dev->rcu, __dev_map_entry_free);
  400. return 0;
  401. }
  402. const struct bpf_map_ops dev_map_ops = {
  403. .map_alloc = dev_map_alloc,
  404. .map_free = dev_map_free,
  405. .map_get_next_key = dev_map_get_next_key,
  406. .map_lookup_elem = dev_map_lookup_elem,
  407. .map_update_elem = dev_map_update_elem,
  408. .map_delete_elem = dev_map_delete_elem,
  409. .map_check_btf = map_check_no_btf,
  410. };
  411. static int dev_map_notification(struct notifier_block *notifier,
  412. ulong event, void *ptr)
  413. {
  414. struct net_device *netdev = netdev_notifier_info_to_dev(ptr);
  415. struct bpf_dtab *dtab;
  416. int i;
  417. switch (event) {
  418. case NETDEV_UNREGISTER:
  419. /* This rcu_read_lock/unlock pair is needed because
  420. * dev_map_list is an RCU list AND to ensure a delete
  421. * operation does not free a netdev_map entry while we
  422. * are comparing it against the netdev being unregistered.
  423. */
  424. rcu_read_lock();
  425. list_for_each_entry_rcu(dtab, &dev_map_list, list) {
  426. for (i = 0; i < dtab->map.max_entries; i++) {
  427. struct bpf_dtab_netdev *dev, *odev;
  428. dev = READ_ONCE(dtab->netdev_map[i]);
  429. if (!dev || netdev != dev->dev)
  430. continue;
  431. odev = cmpxchg(&dtab->netdev_map[i], dev, NULL);
  432. if (dev == odev)
  433. call_rcu(&dev->rcu,
  434. __dev_map_entry_free);
  435. }
  436. }
  437. rcu_read_unlock();
  438. break;
  439. default:
  440. break;
  441. }
  442. return NOTIFY_OK;
  443. }
  444. static struct notifier_block dev_map_notifier = {
  445. .notifier_call = dev_map_notification,
  446. };
  447. static int __init dev_map_init(void)
  448. {
  449. /* Assure tracepoint shadow struct _bpf_dtab_netdev is in sync */
  450. BUILD_BUG_ON(offsetof(struct bpf_dtab_netdev, dev) !=
  451. offsetof(struct _bpf_dtab_netdev, dev));
  452. register_netdevice_notifier(&dev_map_notifier);
  453. return 0;
  454. }
  455. subsys_initcall(dev_map_init);