intel_pm.c 210 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438
  1. /*
  2. * Copyright © 2012 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eugeni Dodonov <eugeni.dodonov@intel.com>
  25. *
  26. */
  27. #include <linux/cpufreq.h>
  28. #include "i915_drv.h"
  29. #include "intel_drv.h"
  30. #include "../../../platform/x86/intel_ips.h"
  31. #include <linux/module.h>
  32. /**
  33. * DOC: RC6
  34. *
  35. * RC6 is a special power stage which allows the GPU to enter an very
  36. * low-voltage mode when idle, using down to 0V while at this stage. This
  37. * stage is entered automatically when the GPU is idle when RC6 support is
  38. * enabled, and as soon as new workload arises GPU wakes up automatically as well.
  39. *
  40. * There are different RC6 modes available in Intel GPU, which differentiate
  41. * among each other with the latency required to enter and leave RC6 and
  42. * voltage consumed by the GPU in different states.
  43. *
  44. * The combination of the following flags define which states GPU is allowed
  45. * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
  46. * RC6pp is deepest RC6. Their support by hardware varies according to the
  47. * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
  48. * which brings the most power savings; deeper states save more power, but
  49. * require higher latency to switch to and wake up.
  50. */
  51. #define INTEL_RC6_ENABLE (1<<0)
  52. #define INTEL_RC6p_ENABLE (1<<1)
  53. #define INTEL_RC6pp_ENABLE (1<<2)
  54. static void bxt_init_clock_gating(struct drm_device *dev)
  55. {
  56. struct drm_i915_private *dev_priv = dev->dev_private;
  57. /* WaDisableSDEUnitClockGating:bxt */
  58. I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
  59. GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
  60. /*
  61. * FIXME:
  62. * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
  63. */
  64. I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
  65. GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
  66. /*
  67. * Wa: Backlight PWM may stop in the asserted state, causing backlight
  68. * to stay fully on.
  69. */
  70. if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
  71. I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
  72. PWM1_GATING_DIS | PWM2_GATING_DIS);
  73. }
  74. static void i915_pineview_get_mem_freq(struct drm_device *dev)
  75. {
  76. struct drm_i915_private *dev_priv = dev->dev_private;
  77. u32 tmp;
  78. tmp = I915_READ(CLKCFG);
  79. switch (tmp & CLKCFG_FSB_MASK) {
  80. case CLKCFG_FSB_533:
  81. dev_priv->fsb_freq = 533; /* 133*4 */
  82. break;
  83. case CLKCFG_FSB_800:
  84. dev_priv->fsb_freq = 800; /* 200*4 */
  85. break;
  86. case CLKCFG_FSB_667:
  87. dev_priv->fsb_freq = 667; /* 167*4 */
  88. break;
  89. case CLKCFG_FSB_400:
  90. dev_priv->fsb_freq = 400; /* 100*4 */
  91. break;
  92. }
  93. switch (tmp & CLKCFG_MEM_MASK) {
  94. case CLKCFG_MEM_533:
  95. dev_priv->mem_freq = 533;
  96. break;
  97. case CLKCFG_MEM_667:
  98. dev_priv->mem_freq = 667;
  99. break;
  100. case CLKCFG_MEM_800:
  101. dev_priv->mem_freq = 800;
  102. break;
  103. }
  104. /* detect pineview DDR3 setting */
  105. tmp = I915_READ(CSHRDDR3CTL);
  106. dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
  107. }
  108. static void i915_ironlake_get_mem_freq(struct drm_device *dev)
  109. {
  110. struct drm_i915_private *dev_priv = dev->dev_private;
  111. u16 ddrpll, csipll;
  112. ddrpll = I915_READ16(DDRMPLL1);
  113. csipll = I915_READ16(CSIPLL0);
  114. switch (ddrpll & 0xff) {
  115. case 0xc:
  116. dev_priv->mem_freq = 800;
  117. break;
  118. case 0x10:
  119. dev_priv->mem_freq = 1066;
  120. break;
  121. case 0x14:
  122. dev_priv->mem_freq = 1333;
  123. break;
  124. case 0x18:
  125. dev_priv->mem_freq = 1600;
  126. break;
  127. default:
  128. DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
  129. ddrpll & 0xff);
  130. dev_priv->mem_freq = 0;
  131. break;
  132. }
  133. dev_priv->ips.r_t = dev_priv->mem_freq;
  134. switch (csipll & 0x3ff) {
  135. case 0x00c:
  136. dev_priv->fsb_freq = 3200;
  137. break;
  138. case 0x00e:
  139. dev_priv->fsb_freq = 3733;
  140. break;
  141. case 0x010:
  142. dev_priv->fsb_freq = 4266;
  143. break;
  144. case 0x012:
  145. dev_priv->fsb_freq = 4800;
  146. break;
  147. case 0x014:
  148. dev_priv->fsb_freq = 5333;
  149. break;
  150. case 0x016:
  151. dev_priv->fsb_freq = 5866;
  152. break;
  153. case 0x018:
  154. dev_priv->fsb_freq = 6400;
  155. break;
  156. default:
  157. DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
  158. csipll & 0x3ff);
  159. dev_priv->fsb_freq = 0;
  160. break;
  161. }
  162. if (dev_priv->fsb_freq == 3200) {
  163. dev_priv->ips.c_m = 0;
  164. } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
  165. dev_priv->ips.c_m = 1;
  166. } else {
  167. dev_priv->ips.c_m = 2;
  168. }
  169. }
  170. static const struct cxsr_latency cxsr_latency_table[] = {
  171. {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
  172. {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
  173. {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
  174. {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
  175. {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
  176. {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
  177. {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
  178. {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
  179. {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
  180. {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
  181. {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
  182. {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
  183. {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
  184. {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
  185. {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
  186. {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
  187. {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
  188. {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
  189. {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
  190. {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
  191. {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
  192. {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
  193. {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
  194. {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
  195. {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
  196. {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
  197. {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
  198. {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
  199. {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
  200. {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
  201. };
  202. static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
  203. int is_ddr3,
  204. int fsb,
  205. int mem)
  206. {
  207. const struct cxsr_latency *latency;
  208. int i;
  209. if (fsb == 0 || mem == 0)
  210. return NULL;
  211. for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
  212. latency = &cxsr_latency_table[i];
  213. if (is_desktop == latency->is_desktop &&
  214. is_ddr3 == latency->is_ddr3 &&
  215. fsb == latency->fsb_freq && mem == latency->mem_freq)
  216. return latency;
  217. }
  218. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  219. return NULL;
  220. }
  221. static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
  222. {
  223. u32 val;
  224. mutex_lock(&dev_priv->rps.hw_lock);
  225. val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
  226. if (enable)
  227. val &= ~FORCE_DDR_HIGH_FREQ;
  228. else
  229. val |= FORCE_DDR_HIGH_FREQ;
  230. val &= ~FORCE_DDR_LOW_FREQ;
  231. val |= FORCE_DDR_FREQ_REQ_ACK;
  232. vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
  233. if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
  234. FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
  235. DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
  236. mutex_unlock(&dev_priv->rps.hw_lock);
  237. }
  238. static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
  239. {
  240. u32 val;
  241. mutex_lock(&dev_priv->rps.hw_lock);
  242. val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
  243. if (enable)
  244. val |= DSP_MAXFIFO_PM5_ENABLE;
  245. else
  246. val &= ~DSP_MAXFIFO_PM5_ENABLE;
  247. vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
  248. mutex_unlock(&dev_priv->rps.hw_lock);
  249. }
  250. #define FW_WM(value, plane) \
  251. (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
  252. void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
  253. {
  254. struct drm_device *dev = dev_priv->dev;
  255. u32 val;
  256. if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
  257. I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
  258. POSTING_READ(FW_BLC_SELF_VLV);
  259. dev_priv->wm.vlv.cxsr = enable;
  260. } else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
  261. I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
  262. POSTING_READ(FW_BLC_SELF);
  263. } else if (IS_PINEVIEW(dev)) {
  264. val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
  265. val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
  266. I915_WRITE(DSPFW3, val);
  267. POSTING_READ(DSPFW3);
  268. } else if (IS_I945G(dev) || IS_I945GM(dev)) {
  269. val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
  270. _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
  271. I915_WRITE(FW_BLC_SELF, val);
  272. POSTING_READ(FW_BLC_SELF);
  273. } else if (IS_I915GM(dev)) {
  274. val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
  275. _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
  276. I915_WRITE(INSTPM, val);
  277. POSTING_READ(INSTPM);
  278. } else {
  279. return;
  280. }
  281. DRM_DEBUG_KMS("memory self-refresh is %s\n",
  282. enable ? "enabled" : "disabled");
  283. }
  284. /*
  285. * Latency for FIFO fetches is dependent on several factors:
  286. * - memory configuration (speed, channels)
  287. * - chipset
  288. * - current MCH state
  289. * It can be fairly high in some situations, so here we assume a fairly
  290. * pessimal value. It's a tradeoff between extra memory fetches (if we
  291. * set this value too high, the FIFO will fetch frequently to stay full)
  292. * and power consumption (set it too low to save power and we might see
  293. * FIFO underruns and display "flicker").
  294. *
  295. * A value of 5us seems to be a good balance; safe for very low end
  296. * platforms but not overly aggressive on lower latency configs.
  297. */
  298. static const int pessimal_latency_ns = 5000;
  299. #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
  300. ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
  301. static int vlv_get_fifo_size(struct drm_device *dev,
  302. enum pipe pipe, int plane)
  303. {
  304. struct drm_i915_private *dev_priv = dev->dev_private;
  305. int sprite0_start, sprite1_start, size;
  306. switch (pipe) {
  307. uint32_t dsparb, dsparb2, dsparb3;
  308. case PIPE_A:
  309. dsparb = I915_READ(DSPARB);
  310. dsparb2 = I915_READ(DSPARB2);
  311. sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
  312. sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
  313. break;
  314. case PIPE_B:
  315. dsparb = I915_READ(DSPARB);
  316. dsparb2 = I915_READ(DSPARB2);
  317. sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
  318. sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
  319. break;
  320. case PIPE_C:
  321. dsparb2 = I915_READ(DSPARB2);
  322. dsparb3 = I915_READ(DSPARB3);
  323. sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
  324. sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
  325. break;
  326. default:
  327. return 0;
  328. }
  329. switch (plane) {
  330. case 0:
  331. size = sprite0_start;
  332. break;
  333. case 1:
  334. size = sprite1_start - sprite0_start;
  335. break;
  336. case 2:
  337. size = 512 - 1 - sprite1_start;
  338. break;
  339. default:
  340. return 0;
  341. }
  342. DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
  343. pipe_name(pipe), plane == 0 ? "primary" : "sprite",
  344. plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
  345. size);
  346. return size;
  347. }
  348. static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
  349. {
  350. struct drm_i915_private *dev_priv = dev->dev_private;
  351. uint32_t dsparb = I915_READ(DSPARB);
  352. int size;
  353. size = dsparb & 0x7f;
  354. if (plane)
  355. size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
  356. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  357. plane ? "B" : "A", size);
  358. return size;
  359. }
  360. static int i830_get_fifo_size(struct drm_device *dev, int plane)
  361. {
  362. struct drm_i915_private *dev_priv = dev->dev_private;
  363. uint32_t dsparb = I915_READ(DSPARB);
  364. int size;
  365. size = dsparb & 0x1ff;
  366. if (plane)
  367. size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
  368. size >>= 1; /* Convert to cachelines */
  369. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  370. plane ? "B" : "A", size);
  371. return size;
  372. }
  373. static int i845_get_fifo_size(struct drm_device *dev, int plane)
  374. {
  375. struct drm_i915_private *dev_priv = dev->dev_private;
  376. uint32_t dsparb = I915_READ(DSPARB);
  377. int size;
  378. size = dsparb & 0x7f;
  379. size >>= 2; /* Convert to cachelines */
  380. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  381. plane ? "B" : "A",
  382. size);
  383. return size;
  384. }
  385. /* Pineview has different values for various configs */
  386. static const struct intel_watermark_params pineview_display_wm = {
  387. .fifo_size = PINEVIEW_DISPLAY_FIFO,
  388. .max_wm = PINEVIEW_MAX_WM,
  389. .default_wm = PINEVIEW_DFT_WM,
  390. .guard_size = PINEVIEW_GUARD_WM,
  391. .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
  392. };
  393. static const struct intel_watermark_params pineview_display_hplloff_wm = {
  394. .fifo_size = PINEVIEW_DISPLAY_FIFO,
  395. .max_wm = PINEVIEW_MAX_WM,
  396. .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
  397. .guard_size = PINEVIEW_GUARD_WM,
  398. .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
  399. };
  400. static const struct intel_watermark_params pineview_cursor_wm = {
  401. .fifo_size = PINEVIEW_CURSOR_FIFO,
  402. .max_wm = PINEVIEW_CURSOR_MAX_WM,
  403. .default_wm = PINEVIEW_CURSOR_DFT_WM,
  404. .guard_size = PINEVIEW_CURSOR_GUARD_WM,
  405. .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
  406. };
  407. static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
  408. .fifo_size = PINEVIEW_CURSOR_FIFO,
  409. .max_wm = PINEVIEW_CURSOR_MAX_WM,
  410. .default_wm = PINEVIEW_CURSOR_DFT_WM,
  411. .guard_size = PINEVIEW_CURSOR_GUARD_WM,
  412. .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
  413. };
  414. static const struct intel_watermark_params g4x_wm_info = {
  415. .fifo_size = G4X_FIFO_SIZE,
  416. .max_wm = G4X_MAX_WM,
  417. .default_wm = G4X_MAX_WM,
  418. .guard_size = 2,
  419. .cacheline_size = G4X_FIFO_LINE_SIZE,
  420. };
  421. static const struct intel_watermark_params g4x_cursor_wm_info = {
  422. .fifo_size = I965_CURSOR_FIFO,
  423. .max_wm = I965_CURSOR_MAX_WM,
  424. .default_wm = I965_CURSOR_DFT_WM,
  425. .guard_size = 2,
  426. .cacheline_size = G4X_FIFO_LINE_SIZE,
  427. };
  428. static const struct intel_watermark_params i965_cursor_wm_info = {
  429. .fifo_size = I965_CURSOR_FIFO,
  430. .max_wm = I965_CURSOR_MAX_WM,
  431. .default_wm = I965_CURSOR_DFT_WM,
  432. .guard_size = 2,
  433. .cacheline_size = I915_FIFO_LINE_SIZE,
  434. };
  435. static const struct intel_watermark_params i945_wm_info = {
  436. .fifo_size = I945_FIFO_SIZE,
  437. .max_wm = I915_MAX_WM,
  438. .default_wm = 1,
  439. .guard_size = 2,
  440. .cacheline_size = I915_FIFO_LINE_SIZE,
  441. };
  442. static const struct intel_watermark_params i915_wm_info = {
  443. .fifo_size = I915_FIFO_SIZE,
  444. .max_wm = I915_MAX_WM,
  445. .default_wm = 1,
  446. .guard_size = 2,
  447. .cacheline_size = I915_FIFO_LINE_SIZE,
  448. };
  449. static const struct intel_watermark_params i830_a_wm_info = {
  450. .fifo_size = I855GM_FIFO_SIZE,
  451. .max_wm = I915_MAX_WM,
  452. .default_wm = 1,
  453. .guard_size = 2,
  454. .cacheline_size = I830_FIFO_LINE_SIZE,
  455. };
  456. static const struct intel_watermark_params i830_bc_wm_info = {
  457. .fifo_size = I855GM_FIFO_SIZE,
  458. .max_wm = I915_MAX_WM/2,
  459. .default_wm = 1,
  460. .guard_size = 2,
  461. .cacheline_size = I830_FIFO_LINE_SIZE,
  462. };
  463. static const struct intel_watermark_params i845_wm_info = {
  464. .fifo_size = I830_FIFO_SIZE,
  465. .max_wm = I915_MAX_WM,
  466. .default_wm = 1,
  467. .guard_size = 2,
  468. .cacheline_size = I830_FIFO_LINE_SIZE,
  469. };
  470. /**
  471. * intel_calculate_wm - calculate watermark level
  472. * @clock_in_khz: pixel clock
  473. * @wm: chip FIFO params
  474. * @cpp: bytes per pixel
  475. * @latency_ns: memory latency for the platform
  476. *
  477. * Calculate the watermark level (the level at which the display plane will
  478. * start fetching from memory again). Each chip has a different display
  479. * FIFO size and allocation, so the caller needs to figure that out and pass
  480. * in the correct intel_watermark_params structure.
  481. *
  482. * As the pixel clock runs, the FIFO will be drained at a rate that depends
  483. * on the pixel size. When it reaches the watermark level, it'll start
  484. * fetching FIFO line sized based chunks from memory until the FIFO fills
  485. * past the watermark point. If the FIFO drains completely, a FIFO underrun
  486. * will occur, and a display engine hang could result.
  487. */
  488. static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
  489. const struct intel_watermark_params *wm,
  490. int fifo_size, int cpp,
  491. unsigned long latency_ns)
  492. {
  493. long entries_required, wm_size;
  494. /*
  495. * Note: we need to make sure we don't overflow for various clock &
  496. * latency values.
  497. * clocks go from a few thousand to several hundred thousand.
  498. * latency is usually a few thousand
  499. */
  500. entries_required = ((clock_in_khz / 1000) * cpp * latency_ns) /
  501. 1000;
  502. entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
  503. DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
  504. wm_size = fifo_size - (entries_required + wm->guard_size);
  505. DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
  506. /* Don't promote wm_size to unsigned... */
  507. if (wm_size > (long)wm->max_wm)
  508. wm_size = wm->max_wm;
  509. if (wm_size <= 0)
  510. wm_size = wm->default_wm;
  511. /*
  512. * Bspec seems to indicate that the value shouldn't be lower than
  513. * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
  514. * Lets go for 8 which is the burst size since certain platforms
  515. * already use a hardcoded 8 (which is what the spec says should be
  516. * done).
  517. */
  518. if (wm_size <= 8)
  519. wm_size = 8;
  520. return wm_size;
  521. }
  522. static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
  523. {
  524. struct drm_crtc *crtc, *enabled = NULL;
  525. for_each_crtc(dev, crtc) {
  526. if (intel_crtc_active(crtc)) {
  527. if (enabled)
  528. return NULL;
  529. enabled = crtc;
  530. }
  531. }
  532. return enabled;
  533. }
  534. static void pineview_update_wm(struct drm_crtc *unused_crtc)
  535. {
  536. struct drm_device *dev = unused_crtc->dev;
  537. struct drm_i915_private *dev_priv = dev->dev_private;
  538. struct drm_crtc *crtc;
  539. const struct cxsr_latency *latency;
  540. u32 reg;
  541. unsigned long wm;
  542. latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
  543. dev_priv->fsb_freq, dev_priv->mem_freq);
  544. if (!latency) {
  545. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  546. intel_set_memory_cxsr(dev_priv, false);
  547. return;
  548. }
  549. crtc = single_enabled_crtc(dev);
  550. if (crtc) {
  551. const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
  552. int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
  553. int clock = adjusted_mode->crtc_clock;
  554. /* Display SR */
  555. wm = intel_calculate_wm(clock, &pineview_display_wm,
  556. pineview_display_wm.fifo_size,
  557. cpp, latency->display_sr);
  558. reg = I915_READ(DSPFW1);
  559. reg &= ~DSPFW_SR_MASK;
  560. reg |= FW_WM(wm, SR);
  561. I915_WRITE(DSPFW1, reg);
  562. DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
  563. /* cursor SR */
  564. wm = intel_calculate_wm(clock, &pineview_cursor_wm,
  565. pineview_display_wm.fifo_size,
  566. cpp, latency->cursor_sr);
  567. reg = I915_READ(DSPFW3);
  568. reg &= ~DSPFW_CURSOR_SR_MASK;
  569. reg |= FW_WM(wm, CURSOR_SR);
  570. I915_WRITE(DSPFW3, reg);
  571. /* Display HPLL off SR */
  572. wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
  573. pineview_display_hplloff_wm.fifo_size,
  574. cpp, latency->display_hpll_disable);
  575. reg = I915_READ(DSPFW3);
  576. reg &= ~DSPFW_HPLL_SR_MASK;
  577. reg |= FW_WM(wm, HPLL_SR);
  578. I915_WRITE(DSPFW3, reg);
  579. /* cursor HPLL off SR */
  580. wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
  581. pineview_display_hplloff_wm.fifo_size,
  582. cpp, latency->cursor_hpll_disable);
  583. reg = I915_READ(DSPFW3);
  584. reg &= ~DSPFW_HPLL_CURSOR_MASK;
  585. reg |= FW_WM(wm, HPLL_CURSOR);
  586. I915_WRITE(DSPFW3, reg);
  587. DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
  588. intel_set_memory_cxsr(dev_priv, true);
  589. } else {
  590. intel_set_memory_cxsr(dev_priv, false);
  591. }
  592. }
  593. static bool g4x_compute_wm0(struct drm_device *dev,
  594. int plane,
  595. const struct intel_watermark_params *display,
  596. int display_latency_ns,
  597. const struct intel_watermark_params *cursor,
  598. int cursor_latency_ns,
  599. int *plane_wm,
  600. int *cursor_wm)
  601. {
  602. struct drm_crtc *crtc;
  603. const struct drm_display_mode *adjusted_mode;
  604. int htotal, hdisplay, clock, cpp;
  605. int line_time_us, line_count;
  606. int entries, tlb_miss;
  607. crtc = intel_get_crtc_for_plane(dev, plane);
  608. if (!intel_crtc_active(crtc)) {
  609. *cursor_wm = cursor->guard_size;
  610. *plane_wm = display->guard_size;
  611. return false;
  612. }
  613. adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
  614. clock = adjusted_mode->crtc_clock;
  615. htotal = adjusted_mode->crtc_htotal;
  616. hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
  617. cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
  618. /* Use the small buffer method to calculate plane watermark */
  619. entries = ((clock * cpp / 1000) * display_latency_ns) / 1000;
  620. tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
  621. if (tlb_miss > 0)
  622. entries += tlb_miss;
  623. entries = DIV_ROUND_UP(entries, display->cacheline_size);
  624. *plane_wm = entries + display->guard_size;
  625. if (*plane_wm > (int)display->max_wm)
  626. *plane_wm = display->max_wm;
  627. /* Use the large buffer method to calculate cursor watermark */
  628. line_time_us = max(htotal * 1000 / clock, 1);
  629. line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
  630. entries = line_count * crtc->cursor->state->crtc_w * cpp;
  631. tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
  632. if (tlb_miss > 0)
  633. entries += tlb_miss;
  634. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  635. *cursor_wm = entries + cursor->guard_size;
  636. if (*cursor_wm > (int)cursor->max_wm)
  637. *cursor_wm = (int)cursor->max_wm;
  638. return true;
  639. }
  640. /*
  641. * Check the wm result.
  642. *
  643. * If any calculated watermark values is larger than the maximum value that
  644. * can be programmed into the associated watermark register, that watermark
  645. * must be disabled.
  646. */
  647. static bool g4x_check_srwm(struct drm_device *dev,
  648. int display_wm, int cursor_wm,
  649. const struct intel_watermark_params *display,
  650. const struct intel_watermark_params *cursor)
  651. {
  652. DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
  653. display_wm, cursor_wm);
  654. if (display_wm > display->max_wm) {
  655. DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
  656. display_wm, display->max_wm);
  657. return false;
  658. }
  659. if (cursor_wm > cursor->max_wm) {
  660. DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
  661. cursor_wm, cursor->max_wm);
  662. return false;
  663. }
  664. if (!(display_wm || cursor_wm)) {
  665. DRM_DEBUG_KMS("SR latency is 0, disabling\n");
  666. return false;
  667. }
  668. return true;
  669. }
  670. static bool g4x_compute_srwm(struct drm_device *dev,
  671. int plane,
  672. int latency_ns,
  673. const struct intel_watermark_params *display,
  674. const struct intel_watermark_params *cursor,
  675. int *display_wm, int *cursor_wm)
  676. {
  677. struct drm_crtc *crtc;
  678. const struct drm_display_mode *adjusted_mode;
  679. int hdisplay, htotal, cpp, clock;
  680. unsigned long line_time_us;
  681. int line_count, line_size;
  682. int small, large;
  683. int entries;
  684. if (!latency_ns) {
  685. *display_wm = *cursor_wm = 0;
  686. return false;
  687. }
  688. crtc = intel_get_crtc_for_plane(dev, plane);
  689. adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
  690. clock = adjusted_mode->crtc_clock;
  691. htotal = adjusted_mode->crtc_htotal;
  692. hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
  693. cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
  694. line_time_us = max(htotal * 1000 / clock, 1);
  695. line_count = (latency_ns / line_time_us + 1000) / 1000;
  696. line_size = hdisplay * cpp;
  697. /* Use the minimum of the small and large buffer method for primary */
  698. small = ((clock * cpp / 1000) * latency_ns) / 1000;
  699. large = line_count * line_size;
  700. entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
  701. *display_wm = entries + display->guard_size;
  702. /* calculate the self-refresh watermark for display cursor */
  703. entries = line_count * cpp * crtc->cursor->state->crtc_w;
  704. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  705. *cursor_wm = entries + cursor->guard_size;
  706. return g4x_check_srwm(dev,
  707. *display_wm, *cursor_wm,
  708. display, cursor);
  709. }
  710. #define FW_WM_VLV(value, plane) \
  711. (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
  712. static void vlv_write_wm_values(struct intel_crtc *crtc,
  713. const struct vlv_wm_values *wm)
  714. {
  715. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  716. enum pipe pipe = crtc->pipe;
  717. I915_WRITE(VLV_DDL(pipe),
  718. (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
  719. (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
  720. (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
  721. (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));
  722. I915_WRITE(DSPFW1,
  723. FW_WM(wm->sr.plane, SR) |
  724. FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
  725. FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
  726. FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
  727. I915_WRITE(DSPFW2,
  728. FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
  729. FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
  730. FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
  731. I915_WRITE(DSPFW3,
  732. FW_WM(wm->sr.cursor, CURSOR_SR));
  733. if (IS_CHERRYVIEW(dev_priv)) {
  734. I915_WRITE(DSPFW7_CHV,
  735. FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
  736. FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
  737. I915_WRITE(DSPFW8_CHV,
  738. FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
  739. FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
  740. I915_WRITE(DSPFW9_CHV,
  741. FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
  742. FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
  743. I915_WRITE(DSPHOWM,
  744. FW_WM(wm->sr.plane >> 9, SR_HI) |
  745. FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
  746. FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
  747. FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
  748. FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
  749. FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
  750. FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
  751. FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
  752. FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
  753. FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
  754. } else {
  755. I915_WRITE(DSPFW7,
  756. FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
  757. FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
  758. I915_WRITE(DSPHOWM,
  759. FW_WM(wm->sr.plane >> 9, SR_HI) |
  760. FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
  761. FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
  762. FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
  763. FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
  764. FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
  765. FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
  766. }
  767. /* zero (unused) WM1 watermarks */
  768. I915_WRITE(DSPFW4, 0);
  769. I915_WRITE(DSPFW5, 0);
  770. I915_WRITE(DSPFW6, 0);
  771. I915_WRITE(DSPHOWM1, 0);
  772. POSTING_READ(DSPFW1);
  773. }
  774. #undef FW_WM_VLV
  775. enum vlv_wm_level {
  776. VLV_WM_LEVEL_PM2,
  777. VLV_WM_LEVEL_PM5,
  778. VLV_WM_LEVEL_DDR_DVFS,
  779. };
  780. /* latency must be in 0.1us units. */
  781. static unsigned int vlv_wm_method2(unsigned int pixel_rate,
  782. unsigned int pipe_htotal,
  783. unsigned int horiz_pixels,
  784. unsigned int cpp,
  785. unsigned int latency)
  786. {
  787. unsigned int ret;
  788. ret = (latency * pixel_rate) / (pipe_htotal * 10000);
  789. ret = (ret + 1) * horiz_pixels * cpp;
  790. ret = DIV_ROUND_UP(ret, 64);
  791. return ret;
  792. }
  793. static void vlv_setup_wm_latency(struct drm_device *dev)
  794. {
  795. struct drm_i915_private *dev_priv = dev->dev_private;
  796. /* all latencies in usec */
  797. dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
  798. dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
  799. if (IS_CHERRYVIEW(dev_priv)) {
  800. dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
  801. dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
  802. dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
  803. }
  804. }
  805. static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
  806. struct intel_crtc *crtc,
  807. const struct intel_plane_state *state,
  808. int level)
  809. {
  810. struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
  811. int clock, htotal, cpp, width, wm;
  812. if (dev_priv->wm.pri_latency[level] == 0)
  813. return USHRT_MAX;
  814. if (!state->visible)
  815. return 0;
  816. cpp = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
  817. clock = crtc->config->base.adjusted_mode.crtc_clock;
  818. htotal = crtc->config->base.adjusted_mode.crtc_htotal;
  819. width = crtc->config->pipe_src_w;
  820. if (WARN_ON(htotal == 0))
  821. htotal = 1;
  822. if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
  823. /*
  824. * FIXME the formula gives values that are
  825. * too big for the cursor FIFO, and hence we
  826. * would never be able to use cursors. For
  827. * now just hardcode the watermark.
  828. */
  829. wm = 63;
  830. } else {
  831. wm = vlv_wm_method2(clock, htotal, width, cpp,
  832. dev_priv->wm.pri_latency[level] * 10);
  833. }
  834. return min_t(int, wm, USHRT_MAX);
  835. }
  836. static void vlv_compute_fifo(struct intel_crtc *crtc)
  837. {
  838. struct drm_device *dev = crtc->base.dev;
  839. struct vlv_wm_state *wm_state = &crtc->wm_state;
  840. struct intel_plane *plane;
  841. unsigned int total_rate = 0;
  842. const int fifo_size = 512 - 1;
  843. int fifo_extra, fifo_left = fifo_size;
  844. for_each_intel_plane_on_crtc(dev, crtc, plane) {
  845. struct intel_plane_state *state =
  846. to_intel_plane_state(plane->base.state);
  847. if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
  848. continue;
  849. if (state->visible) {
  850. wm_state->num_active_planes++;
  851. total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
  852. }
  853. }
  854. for_each_intel_plane_on_crtc(dev, crtc, plane) {
  855. struct intel_plane_state *state =
  856. to_intel_plane_state(plane->base.state);
  857. unsigned int rate;
  858. if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
  859. plane->wm.fifo_size = 63;
  860. continue;
  861. }
  862. if (!state->visible) {
  863. plane->wm.fifo_size = 0;
  864. continue;
  865. }
  866. rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
  867. plane->wm.fifo_size = fifo_size * rate / total_rate;
  868. fifo_left -= plane->wm.fifo_size;
  869. }
  870. fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);
  871. /* spread the remainder evenly */
  872. for_each_intel_plane_on_crtc(dev, crtc, plane) {
  873. int plane_extra;
  874. if (fifo_left == 0)
  875. break;
  876. if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
  877. continue;
  878. /* give it all to the first plane if none are active */
  879. if (plane->wm.fifo_size == 0 &&
  880. wm_state->num_active_planes)
  881. continue;
  882. plane_extra = min(fifo_extra, fifo_left);
  883. plane->wm.fifo_size += plane_extra;
  884. fifo_left -= plane_extra;
  885. }
  886. WARN_ON(fifo_left != 0);
  887. }
  888. static void vlv_invert_wms(struct intel_crtc *crtc)
  889. {
  890. struct vlv_wm_state *wm_state = &crtc->wm_state;
  891. int level;
  892. for (level = 0; level < wm_state->num_levels; level++) {
  893. struct drm_device *dev = crtc->base.dev;
  894. const int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
  895. struct intel_plane *plane;
  896. wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
  897. wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;
  898. for_each_intel_plane_on_crtc(dev, crtc, plane) {
  899. switch (plane->base.type) {
  900. int sprite;
  901. case DRM_PLANE_TYPE_CURSOR:
  902. wm_state->wm[level].cursor = plane->wm.fifo_size -
  903. wm_state->wm[level].cursor;
  904. break;
  905. case DRM_PLANE_TYPE_PRIMARY:
  906. wm_state->wm[level].primary = plane->wm.fifo_size -
  907. wm_state->wm[level].primary;
  908. break;
  909. case DRM_PLANE_TYPE_OVERLAY:
  910. sprite = plane->plane;
  911. wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
  912. wm_state->wm[level].sprite[sprite];
  913. break;
  914. }
  915. }
  916. }
  917. }
  918. static void vlv_compute_wm(struct intel_crtc *crtc)
  919. {
  920. struct drm_device *dev = crtc->base.dev;
  921. struct vlv_wm_state *wm_state = &crtc->wm_state;
  922. struct intel_plane *plane;
  923. int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
  924. int level;
  925. memset(wm_state, 0, sizeof(*wm_state));
  926. wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
  927. wm_state->num_levels = to_i915(dev)->wm.max_level + 1;
  928. wm_state->num_active_planes = 0;
  929. vlv_compute_fifo(crtc);
  930. if (wm_state->num_active_planes != 1)
  931. wm_state->cxsr = false;
  932. if (wm_state->cxsr) {
  933. for (level = 0; level < wm_state->num_levels; level++) {
  934. wm_state->sr[level].plane = sr_fifo_size;
  935. wm_state->sr[level].cursor = 63;
  936. }
  937. }
  938. for_each_intel_plane_on_crtc(dev, crtc, plane) {
  939. struct intel_plane_state *state =
  940. to_intel_plane_state(plane->base.state);
  941. if (!state->visible)
  942. continue;
  943. /* normal watermarks */
  944. for (level = 0; level < wm_state->num_levels; level++) {
  945. int wm = vlv_compute_wm_level(plane, crtc, state, level);
  946. int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;
  947. /* hack */
  948. if (WARN_ON(level == 0 && wm > max_wm))
  949. wm = max_wm;
  950. if (wm > plane->wm.fifo_size)
  951. break;
  952. switch (plane->base.type) {
  953. int sprite;
  954. case DRM_PLANE_TYPE_CURSOR:
  955. wm_state->wm[level].cursor = wm;
  956. break;
  957. case DRM_PLANE_TYPE_PRIMARY:
  958. wm_state->wm[level].primary = wm;
  959. break;
  960. case DRM_PLANE_TYPE_OVERLAY:
  961. sprite = plane->plane;
  962. wm_state->wm[level].sprite[sprite] = wm;
  963. break;
  964. }
  965. }
  966. wm_state->num_levels = level;
  967. if (!wm_state->cxsr)
  968. continue;
  969. /* maxfifo watermarks */
  970. switch (plane->base.type) {
  971. int sprite, level;
  972. case DRM_PLANE_TYPE_CURSOR:
  973. for (level = 0; level < wm_state->num_levels; level++)
  974. wm_state->sr[level].cursor =
  975. wm_state->wm[level].cursor;
  976. break;
  977. case DRM_PLANE_TYPE_PRIMARY:
  978. for (level = 0; level < wm_state->num_levels; level++)
  979. wm_state->sr[level].plane =
  980. min(wm_state->sr[level].plane,
  981. wm_state->wm[level].primary);
  982. break;
  983. case DRM_PLANE_TYPE_OVERLAY:
  984. sprite = plane->plane;
  985. for (level = 0; level < wm_state->num_levels; level++)
  986. wm_state->sr[level].plane =
  987. min(wm_state->sr[level].plane,
  988. wm_state->wm[level].sprite[sprite]);
  989. break;
  990. }
  991. }
  992. /* clear any (partially) filled invalid levels */
  993. for (level = wm_state->num_levels; level < to_i915(dev)->wm.max_level + 1; level++) {
  994. memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
  995. memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
  996. }
  997. vlv_invert_wms(crtc);
  998. }
  999. #define VLV_FIFO(plane, value) \
  1000. (((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
  1001. static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
  1002. {
  1003. struct drm_device *dev = crtc->base.dev;
  1004. struct drm_i915_private *dev_priv = to_i915(dev);
  1005. struct intel_plane *plane;
  1006. int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;
  1007. for_each_intel_plane_on_crtc(dev, crtc, plane) {
  1008. if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
  1009. WARN_ON(plane->wm.fifo_size != 63);
  1010. continue;
  1011. }
  1012. if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
  1013. sprite0_start = plane->wm.fifo_size;
  1014. else if (plane->plane == 0)
  1015. sprite1_start = sprite0_start + plane->wm.fifo_size;
  1016. else
  1017. fifo_size = sprite1_start + plane->wm.fifo_size;
  1018. }
  1019. WARN_ON(fifo_size != 512 - 1);
  1020. DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
  1021. pipe_name(crtc->pipe), sprite0_start,
  1022. sprite1_start, fifo_size);
  1023. switch (crtc->pipe) {
  1024. uint32_t dsparb, dsparb2, dsparb3;
  1025. case PIPE_A:
  1026. dsparb = I915_READ(DSPARB);
  1027. dsparb2 = I915_READ(DSPARB2);
  1028. dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
  1029. VLV_FIFO(SPRITEB, 0xff));
  1030. dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
  1031. VLV_FIFO(SPRITEB, sprite1_start));
  1032. dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
  1033. VLV_FIFO(SPRITEB_HI, 0x1));
  1034. dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
  1035. VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
  1036. I915_WRITE(DSPARB, dsparb);
  1037. I915_WRITE(DSPARB2, dsparb2);
  1038. break;
  1039. case PIPE_B:
  1040. dsparb = I915_READ(DSPARB);
  1041. dsparb2 = I915_READ(DSPARB2);
  1042. dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
  1043. VLV_FIFO(SPRITED, 0xff));
  1044. dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
  1045. VLV_FIFO(SPRITED, sprite1_start));
  1046. dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
  1047. VLV_FIFO(SPRITED_HI, 0xff));
  1048. dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
  1049. VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
  1050. I915_WRITE(DSPARB, dsparb);
  1051. I915_WRITE(DSPARB2, dsparb2);
  1052. break;
  1053. case PIPE_C:
  1054. dsparb3 = I915_READ(DSPARB3);
  1055. dsparb2 = I915_READ(DSPARB2);
  1056. dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
  1057. VLV_FIFO(SPRITEF, 0xff));
  1058. dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
  1059. VLV_FIFO(SPRITEF, sprite1_start));
  1060. dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
  1061. VLV_FIFO(SPRITEF_HI, 0xff));
  1062. dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
  1063. VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
  1064. I915_WRITE(DSPARB3, dsparb3);
  1065. I915_WRITE(DSPARB2, dsparb2);
  1066. break;
  1067. default:
  1068. break;
  1069. }
  1070. }
  1071. #undef VLV_FIFO
  1072. static void vlv_merge_wm(struct drm_device *dev,
  1073. struct vlv_wm_values *wm)
  1074. {
  1075. struct intel_crtc *crtc;
  1076. int num_active_crtcs = 0;
  1077. wm->level = to_i915(dev)->wm.max_level;
  1078. wm->cxsr = true;
  1079. for_each_intel_crtc(dev, crtc) {
  1080. const struct vlv_wm_state *wm_state = &crtc->wm_state;
  1081. if (!crtc->active)
  1082. continue;
  1083. if (!wm_state->cxsr)
  1084. wm->cxsr = false;
  1085. num_active_crtcs++;
  1086. wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
  1087. }
  1088. if (num_active_crtcs != 1)
  1089. wm->cxsr = false;
  1090. if (num_active_crtcs > 1)
  1091. wm->level = VLV_WM_LEVEL_PM2;
  1092. for_each_intel_crtc(dev, crtc) {
  1093. struct vlv_wm_state *wm_state = &crtc->wm_state;
  1094. enum pipe pipe = crtc->pipe;
  1095. if (!crtc->active)
  1096. continue;
  1097. wm->pipe[pipe] = wm_state->wm[wm->level];
  1098. if (wm->cxsr)
  1099. wm->sr = wm_state->sr[wm->level];
  1100. wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
  1101. wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
  1102. wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
  1103. wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
  1104. }
  1105. }
  1106. static void vlv_update_wm(struct drm_crtc *crtc)
  1107. {
  1108. struct drm_device *dev = crtc->dev;
  1109. struct drm_i915_private *dev_priv = dev->dev_private;
  1110. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1111. enum pipe pipe = intel_crtc->pipe;
  1112. struct vlv_wm_values wm = {};
  1113. vlv_compute_wm(intel_crtc);
  1114. vlv_merge_wm(dev, &wm);
  1115. if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
  1116. /* FIXME should be part of crtc atomic commit */
  1117. vlv_pipe_set_fifo_size(intel_crtc);
  1118. return;
  1119. }
  1120. if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
  1121. dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
  1122. chv_set_memory_dvfs(dev_priv, false);
  1123. if (wm.level < VLV_WM_LEVEL_PM5 &&
  1124. dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
  1125. chv_set_memory_pm5(dev_priv, false);
  1126. if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
  1127. intel_set_memory_cxsr(dev_priv, false);
  1128. /* FIXME should be part of crtc atomic commit */
  1129. vlv_pipe_set_fifo_size(intel_crtc);
  1130. vlv_write_wm_values(intel_crtc, &wm);
  1131. DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
  1132. "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
  1133. pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
  1134. wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
  1135. wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);
  1136. if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
  1137. intel_set_memory_cxsr(dev_priv, true);
  1138. if (wm.level >= VLV_WM_LEVEL_PM5 &&
  1139. dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
  1140. chv_set_memory_pm5(dev_priv, true);
  1141. if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
  1142. dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
  1143. chv_set_memory_dvfs(dev_priv, true);
  1144. dev_priv->wm.vlv = wm;
  1145. }
  1146. #define single_plane_enabled(mask) is_power_of_2(mask)
  1147. static void g4x_update_wm(struct drm_crtc *crtc)
  1148. {
  1149. struct drm_device *dev = crtc->dev;
  1150. static const int sr_latency_ns = 12000;
  1151. struct drm_i915_private *dev_priv = dev->dev_private;
  1152. int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
  1153. int plane_sr, cursor_sr;
  1154. unsigned int enabled = 0;
  1155. bool cxsr_enabled;
  1156. if (g4x_compute_wm0(dev, PIPE_A,
  1157. &g4x_wm_info, pessimal_latency_ns,
  1158. &g4x_cursor_wm_info, pessimal_latency_ns,
  1159. &planea_wm, &cursora_wm))
  1160. enabled |= 1 << PIPE_A;
  1161. if (g4x_compute_wm0(dev, PIPE_B,
  1162. &g4x_wm_info, pessimal_latency_ns,
  1163. &g4x_cursor_wm_info, pessimal_latency_ns,
  1164. &planeb_wm, &cursorb_wm))
  1165. enabled |= 1 << PIPE_B;
  1166. if (single_plane_enabled(enabled) &&
  1167. g4x_compute_srwm(dev, ffs(enabled) - 1,
  1168. sr_latency_ns,
  1169. &g4x_wm_info,
  1170. &g4x_cursor_wm_info,
  1171. &plane_sr, &cursor_sr)) {
  1172. cxsr_enabled = true;
  1173. } else {
  1174. cxsr_enabled = false;
  1175. intel_set_memory_cxsr(dev_priv, false);
  1176. plane_sr = cursor_sr = 0;
  1177. }
  1178. DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
  1179. "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
  1180. planea_wm, cursora_wm,
  1181. planeb_wm, cursorb_wm,
  1182. plane_sr, cursor_sr);
  1183. I915_WRITE(DSPFW1,
  1184. FW_WM(plane_sr, SR) |
  1185. FW_WM(cursorb_wm, CURSORB) |
  1186. FW_WM(planeb_wm, PLANEB) |
  1187. FW_WM(planea_wm, PLANEA));
  1188. I915_WRITE(DSPFW2,
  1189. (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
  1190. FW_WM(cursora_wm, CURSORA));
  1191. /* HPLL off in SR has some issues on G4x... disable it */
  1192. I915_WRITE(DSPFW3,
  1193. (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
  1194. FW_WM(cursor_sr, CURSOR_SR));
  1195. if (cxsr_enabled)
  1196. intel_set_memory_cxsr(dev_priv, true);
  1197. }
  1198. static void i965_update_wm(struct drm_crtc *unused_crtc)
  1199. {
  1200. struct drm_device *dev = unused_crtc->dev;
  1201. struct drm_i915_private *dev_priv = dev->dev_private;
  1202. struct drm_crtc *crtc;
  1203. int srwm = 1;
  1204. int cursor_sr = 16;
  1205. bool cxsr_enabled;
  1206. /* Calc sr entries for one plane configs */
  1207. crtc = single_enabled_crtc(dev);
  1208. if (crtc) {
  1209. /* self-refresh has much higher latency */
  1210. static const int sr_latency_ns = 12000;
  1211. const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
  1212. int clock = adjusted_mode->crtc_clock;
  1213. int htotal = adjusted_mode->crtc_htotal;
  1214. int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
  1215. int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
  1216. unsigned long line_time_us;
  1217. int entries;
  1218. line_time_us = max(htotal * 1000 / clock, 1);
  1219. /* Use ns/us then divide to preserve precision */
  1220. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1221. cpp * hdisplay;
  1222. entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
  1223. srwm = I965_FIFO_SIZE - entries;
  1224. if (srwm < 0)
  1225. srwm = 1;
  1226. srwm &= 0x1ff;
  1227. DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
  1228. entries, srwm);
  1229. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1230. cpp * crtc->cursor->state->crtc_w;
  1231. entries = DIV_ROUND_UP(entries,
  1232. i965_cursor_wm_info.cacheline_size);
  1233. cursor_sr = i965_cursor_wm_info.fifo_size -
  1234. (entries + i965_cursor_wm_info.guard_size);
  1235. if (cursor_sr > i965_cursor_wm_info.max_wm)
  1236. cursor_sr = i965_cursor_wm_info.max_wm;
  1237. DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
  1238. "cursor %d\n", srwm, cursor_sr);
  1239. cxsr_enabled = true;
  1240. } else {
  1241. cxsr_enabled = false;
  1242. /* Turn off self refresh if both pipes are enabled */
  1243. intel_set_memory_cxsr(dev_priv, false);
  1244. }
  1245. DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
  1246. srwm);
  1247. /* 965 has limitations... */
  1248. I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
  1249. FW_WM(8, CURSORB) |
  1250. FW_WM(8, PLANEB) |
  1251. FW_WM(8, PLANEA));
  1252. I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
  1253. FW_WM(8, PLANEC_OLD));
  1254. /* update cursor SR watermark */
  1255. I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
  1256. if (cxsr_enabled)
  1257. intel_set_memory_cxsr(dev_priv, true);
  1258. }
  1259. #undef FW_WM
  1260. static void i9xx_update_wm(struct drm_crtc *unused_crtc)
  1261. {
  1262. struct drm_device *dev = unused_crtc->dev;
  1263. struct drm_i915_private *dev_priv = dev->dev_private;
  1264. const struct intel_watermark_params *wm_info;
  1265. uint32_t fwater_lo;
  1266. uint32_t fwater_hi;
  1267. int cwm, srwm = 1;
  1268. int fifo_size;
  1269. int planea_wm, planeb_wm;
  1270. struct drm_crtc *crtc, *enabled = NULL;
  1271. if (IS_I945GM(dev))
  1272. wm_info = &i945_wm_info;
  1273. else if (!IS_GEN2(dev))
  1274. wm_info = &i915_wm_info;
  1275. else
  1276. wm_info = &i830_a_wm_info;
  1277. fifo_size = dev_priv->display.get_fifo_size(dev, 0);
  1278. crtc = intel_get_crtc_for_plane(dev, 0);
  1279. if (intel_crtc_active(crtc)) {
  1280. const struct drm_display_mode *adjusted_mode;
  1281. int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
  1282. if (IS_GEN2(dev))
  1283. cpp = 4;
  1284. adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
  1285. planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
  1286. wm_info, fifo_size, cpp,
  1287. pessimal_latency_ns);
  1288. enabled = crtc;
  1289. } else {
  1290. planea_wm = fifo_size - wm_info->guard_size;
  1291. if (planea_wm > (long)wm_info->max_wm)
  1292. planea_wm = wm_info->max_wm;
  1293. }
  1294. if (IS_GEN2(dev))
  1295. wm_info = &i830_bc_wm_info;
  1296. fifo_size = dev_priv->display.get_fifo_size(dev, 1);
  1297. crtc = intel_get_crtc_for_plane(dev, 1);
  1298. if (intel_crtc_active(crtc)) {
  1299. const struct drm_display_mode *adjusted_mode;
  1300. int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
  1301. if (IS_GEN2(dev))
  1302. cpp = 4;
  1303. adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
  1304. planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
  1305. wm_info, fifo_size, cpp,
  1306. pessimal_latency_ns);
  1307. if (enabled == NULL)
  1308. enabled = crtc;
  1309. else
  1310. enabled = NULL;
  1311. } else {
  1312. planeb_wm = fifo_size - wm_info->guard_size;
  1313. if (planeb_wm > (long)wm_info->max_wm)
  1314. planeb_wm = wm_info->max_wm;
  1315. }
  1316. DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
  1317. if (IS_I915GM(dev) && enabled) {
  1318. struct drm_i915_gem_object *obj;
  1319. obj = intel_fb_obj(enabled->primary->state->fb);
  1320. /* self-refresh seems busted with untiled */
  1321. if (obj->tiling_mode == I915_TILING_NONE)
  1322. enabled = NULL;
  1323. }
  1324. /*
  1325. * Overlay gets an aggressive default since video jitter is bad.
  1326. */
  1327. cwm = 2;
  1328. /* Play safe and disable self-refresh before adjusting watermarks. */
  1329. intel_set_memory_cxsr(dev_priv, false);
  1330. /* Calc sr entries for one plane configs */
  1331. if (HAS_FW_BLC(dev) && enabled) {
  1332. /* self-refresh has much higher latency */
  1333. static const int sr_latency_ns = 6000;
  1334. const struct drm_display_mode *adjusted_mode = &to_intel_crtc(enabled)->config->base.adjusted_mode;
  1335. int clock = adjusted_mode->crtc_clock;
  1336. int htotal = adjusted_mode->crtc_htotal;
  1337. int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
  1338. int cpp = drm_format_plane_cpp(enabled->primary->state->fb->pixel_format, 0);
  1339. unsigned long line_time_us;
  1340. int entries;
  1341. line_time_us = max(htotal * 1000 / clock, 1);
  1342. /* Use ns/us then divide to preserve precision */
  1343. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1344. cpp * hdisplay;
  1345. entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
  1346. DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
  1347. srwm = wm_info->fifo_size - entries;
  1348. if (srwm < 0)
  1349. srwm = 1;
  1350. if (IS_I945G(dev) || IS_I945GM(dev))
  1351. I915_WRITE(FW_BLC_SELF,
  1352. FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
  1353. else if (IS_I915GM(dev))
  1354. I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
  1355. }
  1356. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
  1357. planea_wm, planeb_wm, cwm, srwm);
  1358. fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
  1359. fwater_hi = (cwm & 0x1f);
  1360. /* Set request length to 8 cachelines per fetch */
  1361. fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
  1362. fwater_hi = fwater_hi | (1 << 8);
  1363. I915_WRITE(FW_BLC, fwater_lo);
  1364. I915_WRITE(FW_BLC2, fwater_hi);
  1365. if (enabled)
  1366. intel_set_memory_cxsr(dev_priv, true);
  1367. }
  1368. static void i845_update_wm(struct drm_crtc *unused_crtc)
  1369. {
  1370. struct drm_device *dev = unused_crtc->dev;
  1371. struct drm_i915_private *dev_priv = dev->dev_private;
  1372. struct drm_crtc *crtc;
  1373. const struct drm_display_mode *adjusted_mode;
  1374. uint32_t fwater_lo;
  1375. int planea_wm;
  1376. crtc = single_enabled_crtc(dev);
  1377. if (crtc == NULL)
  1378. return;
  1379. adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
  1380. planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
  1381. &i845_wm_info,
  1382. dev_priv->display.get_fifo_size(dev, 0),
  1383. 4, pessimal_latency_ns);
  1384. fwater_lo = I915_READ(FW_BLC) & ~0xfff;
  1385. fwater_lo |= (3<<8) | planea_wm;
  1386. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
  1387. I915_WRITE(FW_BLC, fwater_lo);
  1388. }
  1389. uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
  1390. {
  1391. uint32_t pixel_rate;
  1392. pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
  1393. /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
  1394. * adjust the pixel_rate here. */
  1395. if (pipe_config->pch_pfit.enabled) {
  1396. uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
  1397. uint32_t pfit_size = pipe_config->pch_pfit.size;
  1398. pipe_w = pipe_config->pipe_src_w;
  1399. pipe_h = pipe_config->pipe_src_h;
  1400. pfit_w = (pfit_size >> 16) & 0xFFFF;
  1401. pfit_h = pfit_size & 0xFFFF;
  1402. if (pipe_w < pfit_w)
  1403. pipe_w = pfit_w;
  1404. if (pipe_h < pfit_h)
  1405. pipe_h = pfit_h;
  1406. if (WARN_ON(!pfit_w || !pfit_h))
  1407. return pixel_rate;
  1408. pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
  1409. pfit_w * pfit_h);
  1410. }
  1411. return pixel_rate;
  1412. }
  1413. /* latency must be in 0.1us units. */
  1414. static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
  1415. {
  1416. uint64_t ret;
  1417. if (WARN(latency == 0, "Latency value missing\n"))
  1418. return UINT_MAX;
  1419. ret = (uint64_t) pixel_rate * cpp * latency;
  1420. ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
  1421. return ret;
  1422. }
  1423. /* latency must be in 0.1us units. */
  1424. static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
  1425. uint32_t horiz_pixels, uint8_t cpp,
  1426. uint32_t latency)
  1427. {
  1428. uint32_t ret;
  1429. if (WARN(latency == 0, "Latency value missing\n"))
  1430. return UINT_MAX;
  1431. if (WARN_ON(!pipe_htotal))
  1432. return UINT_MAX;
  1433. ret = (latency * pixel_rate) / (pipe_htotal * 10000);
  1434. ret = (ret + 1) * horiz_pixels * cpp;
  1435. ret = DIV_ROUND_UP(ret, 64) + 2;
  1436. return ret;
  1437. }
  1438. static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
  1439. uint8_t cpp)
  1440. {
  1441. /*
  1442. * Neither of these should be possible since this function shouldn't be
  1443. * called if the CRTC is off or the plane is invisible. But let's be
  1444. * extra paranoid to avoid a potential divide-by-zero if we screw up
  1445. * elsewhere in the driver.
  1446. */
  1447. if (WARN_ON(!cpp))
  1448. return 0;
  1449. if (WARN_ON(!horiz_pixels))
  1450. return 0;
  1451. return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
  1452. }
  1453. struct ilk_wm_maximums {
  1454. uint16_t pri;
  1455. uint16_t spr;
  1456. uint16_t cur;
  1457. uint16_t fbc;
  1458. };
  1459. /*
  1460. * For both WM_PIPE and WM_LP.
  1461. * mem_value must be in 0.1us units.
  1462. */
  1463. static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
  1464. const struct intel_plane_state *pstate,
  1465. uint32_t mem_value,
  1466. bool is_lp)
  1467. {
  1468. int cpp = pstate->base.fb ?
  1469. drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
  1470. uint32_t method1, method2;
  1471. if (!cstate->base.active || !pstate->visible)
  1472. return 0;
  1473. method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
  1474. if (!is_lp)
  1475. return method1;
  1476. method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
  1477. cstate->base.adjusted_mode.crtc_htotal,
  1478. drm_rect_width(&pstate->dst),
  1479. cpp, mem_value);
  1480. return min(method1, method2);
  1481. }
  1482. /*
  1483. * For both WM_PIPE and WM_LP.
  1484. * mem_value must be in 0.1us units.
  1485. */
  1486. static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
  1487. const struct intel_plane_state *pstate,
  1488. uint32_t mem_value)
  1489. {
  1490. int cpp = pstate->base.fb ?
  1491. drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
  1492. uint32_t method1, method2;
  1493. if (!cstate->base.active || !pstate->visible)
  1494. return 0;
  1495. method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
  1496. method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
  1497. cstate->base.adjusted_mode.crtc_htotal,
  1498. drm_rect_width(&pstate->dst),
  1499. cpp, mem_value);
  1500. return min(method1, method2);
  1501. }
  1502. /*
  1503. * For both WM_PIPE and WM_LP.
  1504. * mem_value must be in 0.1us units.
  1505. */
  1506. static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
  1507. const struct intel_plane_state *pstate,
  1508. uint32_t mem_value)
  1509. {
  1510. /*
  1511. * We treat the cursor plane as always-on for the purposes of watermark
  1512. * calculation. Until we have two-stage watermark programming merged,
  1513. * this is necessary to avoid flickering.
  1514. */
  1515. int cpp = 4;
  1516. int width = pstate->visible ? pstate->base.crtc_w : 64;
  1517. if (!cstate->base.active)
  1518. return 0;
  1519. return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
  1520. cstate->base.adjusted_mode.crtc_htotal,
  1521. width, cpp, mem_value);
  1522. }
  1523. /* Only for WM_LP. */
  1524. static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
  1525. const struct intel_plane_state *pstate,
  1526. uint32_t pri_val)
  1527. {
  1528. int cpp = pstate->base.fb ?
  1529. drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
  1530. if (!cstate->base.active || !pstate->visible)
  1531. return 0;
  1532. return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->dst), cpp);
  1533. }
  1534. static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
  1535. {
  1536. if (INTEL_INFO(dev)->gen >= 8)
  1537. return 3072;
  1538. else if (INTEL_INFO(dev)->gen >= 7)
  1539. return 768;
  1540. else
  1541. return 512;
  1542. }
  1543. static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
  1544. int level, bool is_sprite)
  1545. {
  1546. if (INTEL_INFO(dev)->gen >= 8)
  1547. /* BDW primary/sprite plane watermarks */
  1548. return level == 0 ? 255 : 2047;
  1549. else if (INTEL_INFO(dev)->gen >= 7)
  1550. /* IVB/HSW primary/sprite plane watermarks */
  1551. return level == 0 ? 127 : 1023;
  1552. else if (!is_sprite)
  1553. /* ILK/SNB primary plane watermarks */
  1554. return level == 0 ? 127 : 511;
  1555. else
  1556. /* ILK/SNB sprite plane watermarks */
  1557. return level == 0 ? 63 : 255;
  1558. }
  1559. static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
  1560. int level)
  1561. {
  1562. if (INTEL_INFO(dev)->gen >= 7)
  1563. return level == 0 ? 63 : 255;
  1564. else
  1565. return level == 0 ? 31 : 63;
  1566. }
  1567. static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
  1568. {
  1569. if (INTEL_INFO(dev)->gen >= 8)
  1570. return 31;
  1571. else
  1572. return 15;
  1573. }
  1574. /* Calculate the maximum primary/sprite plane watermark */
  1575. static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
  1576. int level,
  1577. const struct intel_wm_config *config,
  1578. enum intel_ddb_partitioning ddb_partitioning,
  1579. bool is_sprite)
  1580. {
  1581. unsigned int fifo_size = ilk_display_fifo_size(dev);
  1582. /* if sprites aren't enabled, sprites get nothing */
  1583. if (is_sprite && !config->sprites_enabled)
  1584. return 0;
  1585. /* HSW allows LP1+ watermarks even with multiple pipes */
  1586. if (level == 0 || config->num_pipes_active > 1) {
  1587. fifo_size /= INTEL_INFO(dev)->num_pipes;
  1588. /*
  1589. * For some reason the non self refresh
  1590. * FIFO size is only half of the self
  1591. * refresh FIFO size on ILK/SNB.
  1592. */
  1593. if (INTEL_INFO(dev)->gen <= 6)
  1594. fifo_size /= 2;
  1595. }
  1596. if (config->sprites_enabled) {
  1597. /* level 0 is always calculated with 1:1 split */
  1598. if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
  1599. if (is_sprite)
  1600. fifo_size *= 5;
  1601. fifo_size /= 6;
  1602. } else {
  1603. fifo_size /= 2;
  1604. }
  1605. }
  1606. /* clamp to max that the registers can hold */
  1607. return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
  1608. }
  1609. /* Calculate the maximum cursor plane watermark */
  1610. static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
  1611. int level,
  1612. const struct intel_wm_config *config)
  1613. {
  1614. /* HSW LP1+ watermarks w/ multiple pipes */
  1615. if (level > 0 && config->num_pipes_active > 1)
  1616. return 64;
  1617. /* otherwise just report max that registers can hold */
  1618. return ilk_cursor_wm_reg_max(dev, level);
  1619. }
  1620. static void ilk_compute_wm_maximums(const struct drm_device *dev,
  1621. int level,
  1622. const struct intel_wm_config *config,
  1623. enum intel_ddb_partitioning ddb_partitioning,
  1624. struct ilk_wm_maximums *max)
  1625. {
  1626. max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
  1627. max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
  1628. max->cur = ilk_cursor_wm_max(dev, level, config);
  1629. max->fbc = ilk_fbc_wm_reg_max(dev);
  1630. }
  1631. static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
  1632. int level,
  1633. struct ilk_wm_maximums *max)
  1634. {
  1635. max->pri = ilk_plane_wm_reg_max(dev, level, false);
  1636. max->spr = ilk_plane_wm_reg_max(dev, level, true);
  1637. max->cur = ilk_cursor_wm_reg_max(dev, level);
  1638. max->fbc = ilk_fbc_wm_reg_max(dev);
  1639. }
  1640. static bool ilk_validate_wm_level(int level,
  1641. const struct ilk_wm_maximums *max,
  1642. struct intel_wm_level *result)
  1643. {
  1644. bool ret;
  1645. /* already determined to be invalid? */
  1646. if (!result->enable)
  1647. return false;
  1648. result->enable = result->pri_val <= max->pri &&
  1649. result->spr_val <= max->spr &&
  1650. result->cur_val <= max->cur;
  1651. ret = result->enable;
  1652. /*
  1653. * HACK until we can pre-compute everything,
  1654. * and thus fail gracefully if LP0 watermarks
  1655. * are exceeded...
  1656. */
  1657. if (level == 0 && !result->enable) {
  1658. if (result->pri_val > max->pri)
  1659. DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
  1660. level, result->pri_val, max->pri);
  1661. if (result->spr_val > max->spr)
  1662. DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
  1663. level, result->spr_val, max->spr);
  1664. if (result->cur_val > max->cur)
  1665. DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
  1666. level, result->cur_val, max->cur);
  1667. result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
  1668. result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
  1669. result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
  1670. result->enable = true;
  1671. }
  1672. return ret;
  1673. }
  1674. static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
  1675. const struct intel_crtc *intel_crtc,
  1676. int level,
  1677. struct intel_crtc_state *cstate,
  1678. struct intel_plane_state *pristate,
  1679. struct intel_plane_state *sprstate,
  1680. struct intel_plane_state *curstate,
  1681. struct intel_wm_level *result)
  1682. {
  1683. uint16_t pri_latency = dev_priv->wm.pri_latency[level];
  1684. uint16_t spr_latency = dev_priv->wm.spr_latency[level];
  1685. uint16_t cur_latency = dev_priv->wm.cur_latency[level];
  1686. /* WM1+ latency values stored in 0.5us units */
  1687. if (level > 0) {
  1688. pri_latency *= 5;
  1689. spr_latency *= 5;
  1690. cur_latency *= 5;
  1691. }
  1692. if (pristate) {
  1693. result->pri_val = ilk_compute_pri_wm(cstate, pristate,
  1694. pri_latency, level);
  1695. result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
  1696. }
  1697. if (sprstate)
  1698. result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);
  1699. if (curstate)
  1700. result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);
  1701. result->enable = true;
  1702. }
  1703. static uint32_t
  1704. hsw_compute_linetime_wm(struct drm_device *dev,
  1705. struct intel_crtc_state *cstate)
  1706. {
  1707. struct drm_i915_private *dev_priv = dev->dev_private;
  1708. const struct drm_display_mode *adjusted_mode =
  1709. &cstate->base.adjusted_mode;
  1710. u32 linetime, ips_linetime;
  1711. if (!cstate->base.active)
  1712. return 0;
  1713. if (WARN_ON(adjusted_mode->crtc_clock == 0))
  1714. return 0;
  1715. if (WARN_ON(dev_priv->cdclk_freq == 0))
  1716. return 0;
  1717. /* The WM are computed with base on how long it takes to fill a single
  1718. * row at the given clock rate, multiplied by 8.
  1719. * */
  1720. linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
  1721. adjusted_mode->crtc_clock);
  1722. ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
  1723. dev_priv->cdclk_freq);
  1724. return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
  1725. PIPE_WM_LINETIME_TIME(linetime);
  1726. }
  1727. static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
  1728. {
  1729. struct drm_i915_private *dev_priv = dev->dev_private;
  1730. if (IS_GEN9(dev)) {
  1731. uint32_t val;
  1732. int ret, i;
  1733. int level, max_level = ilk_wm_max_level(dev);
  1734. /* read the first set of memory latencies[0:3] */
  1735. val = 0; /* data0 to be programmed to 0 for first set */
  1736. mutex_lock(&dev_priv->rps.hw_lock);
  1737. ret = sandybridge_pcode_read(dev_priv,
  1738. GEN9_PCODE_READ_MEM_LATENCY,
  1739. &val);
  1740. mutex_unlock(&dev_priv->rps.hw_lock);
  1741. if (ret) {
  1742. DRM_ERROR("SKL Mailbox read error = %d\n", ret);
  1743. return;
  1744. }
  1745. wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
  1746. wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
  1747. GEN9_MEM_LATENCY_LEVEL_MASK;
  1748. wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
  1749. GEN9_MEM_LATENCY_LEVEL_MASK;
  1750. wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
  1751. GEN9_MEM_LATENCY_LEVEL_MASK;
  1752. /* read the second set of memory latencies[4:7] */
  1753. val = 1; /* data0 to be programmed to 1 for second set */
  1754. mutex_lock(&dev_priv->rps.hw_lock);
  1755. ret = sandybridge_pcode_read(dev_priv,
  1756. GEN9_PCODE_READ_MEM_LATENCY,
  1757. &val);
  1758. mutex_unlock(&dev_priv->rps.hw_lock);
  1759. if (ret) {
  1760. DRM_ERROR("SKL Mailbox read error = %d\n", ret);
  1761. return;
  1762. }
  1763. wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
  1764. wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
  1765. GEN9_MEM_LATENCY_LEVEL_MASK;
  1766. wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
  1767. GEN9_MEM_LATENCY_LEVEL_MASK;
  1768. wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
  1769. GEN9_MEM_LATENCY_LEVEL_MASK;
  1770. /*
  1771. * WaWmMemoryReadLatency:skl
  1772. *
  1773. * punit doesn't take into account the read latency so we need
  1774. * to add 2us to the various latency levels we retrieve from
  1775. * the punit.
  1776. * - W0 is a bit special in that it's the only level that
  1777. * can't be disabled if we want to have display working, so
  1778. * we always add 2us there.
  1779. * - For levels >=1, punit returns 0us latency when they are
  1780. * disabled, so we respect that and don't add 2us then
  1781. *
  1782. * Additionally, if a level n (n > 1) has a 0us latency, all
  1783. * levels m (m >= n) need to be disabled. We make sure to
  1784. * sanitize the values out of the punit to satisfy this
  1785. * requirement.
  1786. */
  1787. wm[0] += 2;
  1788. for (level = 1; level <= max_level; level++)
  1789. if (wm[level] != 0)
  1790. wm[level] += 2;
  1791. else {
  1792. for (i = level + 1; i <= max_level; i++)
  1793. wm[i] = 0;
  1794. break;
  1795. }
  1796. } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
  1797. uint64_t sskpd = I915_READ64(MCH_SSKPD);
  1798. wm[0] = (sskpd >> 56) & 0xFF;
  1799. if (wm[0] == 0)
  1800. wm[0] = sskpd & 0xF;
  1801. wm[1] = (sskpd >> 4) & 0xFF;
  1802. wm[2] = (sskpd >> 12) & 0xFF;
  1803. wm[3] = (sskpd >> 20) & 0x1FF;
  1804. wm[4] = (sskpd >> 32) & 0x1FF;
  1805. } else if (INTEL_INFO(dev)->gen >= 6) {
  1806. uint32_t sskpd = I915_READ(MCH_SSKPD);
  1807. wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
  1808. wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
  1809. wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
  1810. wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
  1811. } else if (INTEL_INFO(dev)->gen >= 5) {
  1812. uint32_t mltr = I915_READ(MLTR_ILK);
  1813. /* ILK primary LP0 latency is 700 ns */
  1814. wm[0] = 7;
  1815. wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
  1816. wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
  1817. }
  1818. }
  1819. static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
  1820. {
  1821. /* ILK sprite LP0 latency is 1300 ns */
  1822. if (INTEL_INFO(dev)->gen == 5)
  1823. wm[0] = 13;
  1824. }
  1825. static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
  1826. {
  1827. /* ILK cursor LP0 latency is 1300 ns */
  1828. if (INTEL_INFO(dev)->gen == 5)
  1829. wm[0] = 13;
  1830. /* WaDoubleCursorLP3Latency:ivb */
  1831. if (IS_IVYBRIDGE(dev))
  1832. wm[3] *= 2;
  1833. }
  1834. int ilk_wm_max_level(const struct drm_device *dev)
  1835. {
  1836. /* how many WM levels are we expecting */
  1837. if (INTEL_INFO(dev)->gen >= 9)
  1838. return 7;
  1839. else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  1840. return 4;
  1841. else if (INTEL_INFO(dev)->gen >= 6)
  1842. return 3;
  1843. else
  1844. return 2;
  1845. }
  1846. static void intel_print_wm_latency(struct drm_device *dev,
  1847. const char *name,
  1848. const uint16_t wm[8])
  1849. {
  1850. int level, max_level = ilk_wm_max_level(dev);
  1851. for (level = 0; level <= max_level; level++) {
  1852. unsigned int latency = wm[level];
  1853. if (latency == 0) {
  1854. DRM_ERROR("%s WM%d latency not provided\n",
  1855. name, level);
  1856. continue;
  1857. }
  1858. /*
  1859. * - latencies are in us on gen9.
  1860. * - before then, WM1+ latency values are in 0.5us units
  1861. */
  1862. if (IS_GEN9(dev))
  1863. latency *= 10;
  1864. else if (level > 0)
  1865. latency *= 5;
  1866. DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
  1867. name, level, wm[level],
  1868. latency / 10, latency % 10);
  1869. }
  1870. }
  1871. static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
  1872. uint16_t wm[5], uint16_t min)
  1873. {
  1874. int level, max_level = ilk_wm_max_level(dev_priv->dev);
  1875. if (wm[0] >= min)
  1876. return false;
  1877. wm[0] = max(wm[0], min);
  1878. for (level = 1; level <= max_level; level++)
  1879. wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
  1880. return true;
  1881. }
  1882. static void snb_wm_latency_quirk(struct drm_device *dev)
  1883. {
  1884. struct drm_i915_private *dev_priv = dev->dev_private;
  1885. bool changed;
  1886. /*
  1887. * The BIOS provided WM memory latency values are often
  1888. * inadequate for high resolution displays. Adjust them.
  1889. */
  1890. changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
  1891. ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
  1892. ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
  1893. if (!changed)
  1894. return;
  1895. DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
  1896. intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
  1897. intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
  1898. intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
  1899. }
  1900. static void ilk_setup_wm_latency(struct drm_device *dev)
  1901. {
  1902. struct drm_i915_private *dev_priv = dev->dev_private;
  1903. intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
  1904. memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
  1905. sizeof(dev_priv->wm.pri_latency));
  1906. memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
  1907. sizeof(dev_priv->wm.pri_latency));
  1908. intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
  1909. intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
  1910. intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
  1911. intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
  1912. intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
  1913. if (IS_GEN6(dev))
  1914. snb_wm_latency_quirk(dev);
  1915. }
  1916. static void skl_setup_wm_latency(struct drm_device *dev)
  1917. {
  1918. struct drm_i915_private *dev_priv = dev->dev_private;
  1919. intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
  1920. intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
  1921. }
  1922. static bool ilk_validate_pipe_wm(struct drm_device *dev,
  1923. struct intel_pipe_wm *pipe_wm)
  1924. {
  1925. /* LP0 watermark maximums depend on this pipe alone */
  1926. const struct intel_wm_config config = {
  1927. .num_pipes_active = 1,
  1928. .sprites_enabled = pipe_wm->sprites_enabled,
  1929. .sprites_scaled = pipe_wm->sprites_scaled,
  1930. };
  1931. struct ilk_wm_maximums max;
  1932. /* LP0 watermarks always use 1/2 DDB partitioning */
  1933. ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
  1934. /* At least LP0 must be valid */
  1935. if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
  1936. DRM_DEBUG_KMS("LP0 watermark invalid\n");
  1937. return false;
  1938. }
  1939. return true;
  1940. }
  1941. /* Compute new watermarks for the pipe */
  1942. static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
  1943. {
  1944. struct drm_atomic_state *state = cstate->base.state;
  1945. struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
  1946. struct intel_pipe_wm *pipe_wm;
  1947. struct drm_device *dev = state->dev;
  1948. const struct drm_i915_private *dev_priv = dev->dev_private;
  1949. struct intel_plane *intel_plane;
  1950. struct intel_plane_state *pristate = NULL;
  1951. struct intel_plane_state *sprstate = NULL;
  1952. struct intel_plane_state *curstate = NULL;
  1953. int level, max_level = ilk_wm_max_level(dev), usable_level;
  1954. struct ilk_wm_maximums max;
  1955. pipe_wm = &cstate->wm.optimal.ilk;
  1956. for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
  1957. struct intel_plane_state *ps;
  1958. ps = intel_atomic_get_existing_plane_state(state,
  1959. intel_plane);
  1960. if (!ps)
  1961. continue;
  1962. if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
  1963. pristate = ps;
  1964. else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
  1965. sprstate = ps;
  1966. else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
  1967. curstate = ps;
  1968. }
  1969. pipe_wm->pipe_enabled = cstate->base.active;
  1970. if (sprstate) {
  1971. pipe_wm->sprites_enabled = sprstate->visible;
  1972. pipe_wm->sprites_scaled = sprstate->visible &&
  1973. (drm_rect_width(&sprstate->dst) != drm_rect_width(&sprstate->src) >> 16 ||
  1974. drm_rect_height(&sprstate->dst) != drm_rect_height(&sprstate->src) >> 16);
  1975. }
  1976. usable_level = max_level;
  1977. /* ILK/SNB: LP2+ watermarks only w/o sprites */
  1978. if (INTEL_INFO(dev)->gen <= 6 && pipe_wm->sprites_enabled)
  1979. usable_level = 1;
  1980. /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
  1981. if (pipe_wm->sprites_scaled)
  1982. usable_level = 0;
  1983. ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
  1984. pristate, sprstate, curstate, &pipe_wm->raw_wm[0]);
  1985. memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
  1986. pipe_wm->wm[0] = pipe_wm->raw_wm[0];
  1987. if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  1988. pipe_wm->linetime = hsw_compute_linetime_wm(dev, cstate);
  1989. if (!ilk_validate_pipe_wm(dev, pipe_wm))
  1990. return -EINVAL;
  1991. ilk_compute_wm_reg_maximums(dev, 1, &max);
  1992. for (level = 1; level <= max_level; level++) {
  1993. struct intel_wm_level *wm = &pipe_wm->raw_wm[level];
  1994. ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
  1995. pristate, sprstate, curstate, wm);
  1996. /*
  1997. * Disable any watermark level that exceeds the
  1998. * register maximums since such watermarks are
  1999. * always invalid.
  2000. */
  2001. if (level > usable_level)
  2002. continue;
  2003. if (ilk_validate_wm_level(level, &max, wm))
  2004. pipe_wm->wm[level] = *wm;
  2005. else
  2006. usable_level = level;
  2007. }
  2008. return 0;
  2009. }
  2010. /*
  2011. * Build a set of 'intermediate' watermark values that satisfy both the old
  2012. * state and the new state. These can be programmed to the hardware
  2013. * immediately.
  2014. */
  2015. static int ilk_compute_intermediate_wm(struct drm_device *dev,
  2016. struct intel_crtc *intel_crtc,
  2017. struct intel_crtc_state *newstate)
  2018. {
  2019. struct intel_pipe_wm *a = &newstate->wm.intermediate;
  2020. struct intel_pipe_wm *b = &intel_crtc->wm.active.ilk;
  2021. int level, max_level = ilk_wm_max_level(dev);
  2022. /*
  2023. * Start with the final, target watermarks, then combine with the
  2024. * currently active watermarks to get values that are safe both before
  2025. * and after the vblank.
  2026. */
  2027. *a = newstate->wm.optimal.ilk;
  2028. a->pipe_enabled |= b->pipe_enabled;
  2029. a->sprites_enabled |= b->sprites_enabled;
  2030. a->sprites_scaled |= b->sprites_scaled;
  2031. for (level = 0; level <= max_level; level++) {
  2032. struct intel_wm_level *a_wm = &a->wm[level];
  2033. const struct intel_wm_level *b_wm = &b->wm[level];
  2034. a_wm->enable &= b_wm->enable;
  2035. a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
  2036. a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
  2037. a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
  2038. a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
  2039. }
  2040. /*
  2041. * We need to make sure that these merged watermark values are
  2042. * actually a valid configuration themselves. If they're not,
  2043. * there's no safe way to transition from the old state to
  2044. * the new state, so we need to fail the atomic transaction.
  2045. */
  2046. if (!ilk_validate_pipe_wm(dev, a))
  2047. return -EINVAL;
  2048. /*
  2049. * If our intermediate WM are identical to the final WM, then we can
  2050. * omit the post-vblank programming; only update if it's different.
  2051. */
  2052. if (memcmp(a, &newstate->wm.optimal.ilk, sizeof(*a)) == 0)
  2053. newstate->wm.need_postvbl_update = false;
  2054. return 0;
  2055. }
  2056. /*
  2057. * Merge the watermarks from all active pipes for a specific level.
  2058. */
  2059. static void ilk_merge_wm_level(struct drm_device *dev,
  2060. int level,
  2061. struct intel_wm_level *ret_wm)
  2062. {
  2063. const struct intel_crtc *intel_crtc;
  2064. ret_wm->enable = true;
  2065. for_each_intel_crtc(dev, intel_crtc) {
  2066. const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
  2067. const struct intel_wm_level *wm = &active->wm[level];
  2068. if (!active->pipe_enabled)
  2069. continue;
  2070. /*
  2071. * The watermark values may have been used in the past,
  2072. * so we must maintain them in the registers for some
  2073. * time even if the level is now disabled.
  2074. */
  2075. if (!wm->enable)
  2076. ret_wm->enable = false;
  2077. ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
  2078. ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
  2079. ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
  2080. ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
  2081. }
  2082. }
  2083. /*
  2084. * Merge all low power watermarks for all active pipes.
  2085. */
  2086. static void ilk_wm_merge(struct drm_device *dev,
  2087. const struct intel_wm_config *config,
  2088. const struct ilk_wm_maximums *max,
  2089. struct intel_pipe_wm *merged)
  2090. {
  2091. struct drm_i915_private *dev_priv = dev->dev_private;
  2092. int level, max_level = ilk_wm_max_level(dev);
  2093. int last_enabled_level = max_level;
  2094. /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
  2095. if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
  2096. config->num_pipes_active > 1)
  2097. last_enabled_level = 0;
  2098. /* ILK: FBC WM must be disabled always */
  2099. merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
  2100. /* merge each WM1+ level */
  2101. for (level = 1; level <= max_level; level++) {
  2102. struct intel_wm_level *wm = &merged->wm[level];
  2103. ilk_merge_wm_level(dev, level, wm);
  2104. if (level > last_enabled_level)
  2105. wm->enable = false;
  2106. else if (!ilk_validate_wm_level(level, max, wm))
  2107. /* make sure all following levels get disabled */
  2108. last_enabled_level = level - 1;
  2109. /*
  2110. * The spec says it is preferred to disable
  2111. * FBC WMs instead of disabling a WM level.
  2112. */
  2113. if (wm->fbc_val > max->fbc) {
  2114. if (wm->enable)
  2115. merged->fbc_wm_enabled = false;
  2116. wm->fbc_val = 0;
  2117. }
  2118. }
  2119. /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
  2120. /*
  2121. * FIXME this is racy. FBC might get enabled later.
  2122. * What we should check here is whether FBC can be
  2123. * enabled sometime later.
  2124. */
  2125. if (IS_GEN5(dev) && !merged->fbc_wm_enabled &&
  2126. intel_fbc_is_active(dev_priv)) {
  2127. for (level = 2; level <= max_level; level++) {
  2128. struct intel_wm_level *wm = &merged->wm[level];
  2129. wm->enable = false;
  2130. }
  2131. }
  2132. }
  2133. static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
  2134. {
  2135. /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
  2136. return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
  2137. }
  2138. /* The value we need to program into the WM_LPx latency field */
  2139. static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
  2140. {
  2141. struct drm_i915_private *dev_priv = dev->dev_private;
  2142. if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  2143. return 2 * level;
  2144. else
  2145. return dev_priv->wm.pri_latency[level];
  2146. }
  2147. static void ilk_compute_wm_results(struct drm_device *dev,
  2148. const struct intel_pipe_wm *merged,
  2149. enum intel_ddb_partitioning partitioning,
  2150. struct ilk_wm_values *results)
  2151. {
  2152. struct intel_crtc *intel_crtc;
  2153. int level, wm_lp;
  2154. results->enable_fbc_wm = merged->fbc_wm_enabled;
  2155. results->partitioning = partitioning;
  2156. /* LP1+ register values */
  2157. for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
  2158. const struct intel_wm_level *r;
  2159. level = ilk_wm_lp_to_level(wm_lp, merged);
  2160. r = &merged->wm[level];
  2161. /*
  2162. * Maintain the watermark values even if the level is
  2163. * disabled. Doing otherwise could cause underruns.
  2164. */
  2165. results->wm_lp[wm_lp - 1] =
  2166. (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
  2167. (r->pri_val << WM1_LP_SR_SHIFT) |
  2168. r->cur_val;
  2169. if (r->enable)
  2170. results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
  2171. if (INTEL_INFO(dev)->gen >= 8)
  2172. results->wm_lp[wm_lp - 1] |=
  2173. r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
  2174. else
  2175. results->wm_lp[wm_lp - 1] |=
  2176. r->fbc_val << WM1_LP_FBC_SHIFT;
  2177. /*
  2178. * Always set WM1S_LP_EN when spr_val != 0, even if the
  2179. * level is disabled. Doing otherwise could cause underruns.
  2180. */
  2181. if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
  2182. WARN_ON(wm_lp != 1);
  2183. results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
  2184. } else
  2185. results->wm_lp_spr[wm_lp - 1] = r->spr_val;
  2186. }
  2187. /* LP0 register values */
  2188. for_each_intel_crtc(dev, intel_crtc) {
  2189. enum pipe pipe = intel_crtc->pipe;
  2190. const struct intel_wm_level *r =
  2191. &intel_crtc->wm.active.ilk.wm[0];
  2192. if (WARN_ON(!r->enable))
  2193. continue;
  2194. results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
  2195. results->wm_pipe[pipe] =
  2196. (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
  2197. (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
  2198. r->cur_val;
  2199. }
  2200. }
  2201. /* Find the result with the highest level enabled. Check for enable_fbc_wm in
  2202. * case both are at the same level. Prefer r1 in case they're the same. */
  2203. static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
  2204. struct intel_pipe_wm *r1,
  2205. struct intel_pipe_wm *r2)
  2206. {
  2207. int level, max_level = ilk_wm_max_level(dev);
  2208. int level1 = 0, level2 = 0;
  2209. for (level = 1; level <= max_level; level++) {
  2210. if (r1->wm[level].enable)
  2211. level1 = level;
  2212. if (r2->wm[level].enable)
  2213. level2 = level;
  2214. }
  2215. if (level1 == level2) {
  2216. if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
  2217. return r2;
  2218. else
  2219. return r1;
  2220. } else if (level1 > level2) {
  2221. return r1;
  2222. } else {
  2223. return r2;
  2224. }
  2225. }
  2226. /* dirty bits used to track which watermarks need changes */
  2227. #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
  2228. #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
  2229. #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
  2230. #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
  2231. #define WM_DIRTY_FBC (1 << 24)
  2232. #define WM_DIRTY_DDB (1 << 25)
  2233. static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
  2234. const struct ilk_wm_values *old,
  2235. const struct ilk_wm_values *new)
  2236. {
  2237. unsigned int dirty = 0;
  2238. enum pipe pipe;
  2239. int wm_lp;
  2240. for_each_pipe(dev_priv, pipe) {
  2241. if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
  2242. dirty |= WM_DIRTY_LINETIME(pipe);
  2243. /* Must disable LP1+ watermarks too */
  2244. dirty |= WM_DIRTY_LP_ALL;
  2245. }
  2246. if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
  2247. dirty |= WM_DIRTY_PIPE(pipe);
  2248. /* Must disable LP1+ watermarks too */
  2249. dirty |= WM_DIRTY_LP_ALL;
  2250. }
  2251. }
  2252. if (old->enable_fbc_wm != new->enable_fbc_wm) {
  2253. dirty |= WM_DIRTY_FBC;
  2254. /* Must disable LP1+ watermarks too */
  2255. dirty |= WM_DIRTY_LP_ALL;
  2256. }
  2257. if (old->partitioning != new->partitioning) {
  2258. dirty |= WM_DIRTY_DDB;
  2259. /* Must disable LP1+ watermarks too */
  2260. dirty |= WM_DIRTY_LP_ALL;
  2261. }
  2262. /* LP1+ watermarks already deemed dirty, no need to continue */
  2263. if (dirty & WM_DIRTY_LP_ALL)
  2264. return dirty;
  2265. /* Find the lowest numbered LP1+ watermark in need of an update... */
  2266. for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
  2267. if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
  2268. old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
  2269. break;
  2270. }
  2271. /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
  2272. for (; wm_lp <= 3; wm_lp++)
  2273. dirty |= WM_DIRTY_LP(wm_lp);
  2274. return dirty;
  2275. }
  2276. static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
  2277. unsigned int dirty)
  2278. {
  2279. struct ilk_wm_values *previous = &dev_priv->wm.hw;
  2280. bool changed = false;
  2281. if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
  2282. previous->wm_lp[2] &= ~WM1_LP_SR_EN;
  2283. I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
  2284. changed = true;
  2285. }
  2286. if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
  2287. previous->wm_lp[1] &= ~WM1_LP_SR_EN;
  2288. I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
  2289. changed = true;
  2290. }
  2291. if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
  2292. previous->wm_lp[0] &= ~WM1_LP_SR_EN;
  2293. I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
  2294. changed = true;
  2295. }
  2296. /*
  2297. * Don't touch WM1S_LP_EN here.
  2298. * Doing so could cause underruns.
  2299. */
  2300. return changed;
  2301. }
  2302. /*
  2303. * The spec says we shouldn't write when we don't need, because every write
  2304. * causes WMs to be re-evaluated, expending some power.
  2305. */
  2306. static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
  2307. struct ilk_wm_values *results)
  2308. {
  2309. struct drm_device *dev = dev_priv->dev;
  2310. struct ilk_wm_values *previous = &dev_priv->wm.hw;
  2311. unsigned int dirty;
  2312. uint32_t val;
  2313. dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
  2314. if (!dirty)
  2315. return;
  2316. _ilk_disable_lp_wm(dev_priv, dirty);
  2317. if (dirty & WM_DIRTY_PIPE(PIPE_A))
  2318. I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
  2319. if (dirty & WM_DIRTY_PIPE(PIPE_B))
  2320. I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
  2321. if (dirty & WM_DIRTY_PIPE(PIPE_C))
  2322. I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
  2323. if (dirty & WM_DIRTY_LINETIME(PIPE_A))
  2324. I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
  2325. if (dirty & WM_DIRTY_LINETIME(PIPE_B))
  2326. I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
  2327. if (dirty & WM_DIRTY_LINETIME(PIPE_C))
  2328. I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
  2329. if (dirty & WM_DIRTY_DDB) {
  2330. if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
  2331. val = I915_READ(WM_MISC);
  2332. if (results->partitioning == INTEL_DDB_PART_1_2)
  2333. val &= ~WM_MISC_DATA_PARTITION_5_6;
  2334. else
  2335. val |= WM_MISC_DATA_PARTITION_5_6;
  2336. I915_WRITE(WM_MISC, val);
  2337. } else {
  2338. val = I915_READ(DISP_ARB_CTL2);
  2339. if (results->partitioning == INTEL_DDB_PART_1_2)
  2340. val &= ~DISP_DATA_PARTITION_5_6;
  2341. else
  2342. val |= DISP_DATA_PARTITION_5_6;
  2343. I915_WRITE(DISP_ARB_CTL2, val);
  2344. }
  2345. }
  2346. if (dirty & WM_DIRTY_FBC) {
  2347. val = I915_READ(DISP_ARB_CTL);
  2348. if (results->enable_fbc_wm)
  2349. val &= ~DISP_FBC_WM_DIS;
  2350. else
  2351. val |= DISP_FBC_WM_DIS;
  2352. I915_WRITE(DISP_ARB_CTL, val);
  2353. }
  2354. if (dirty & WM_DIRTY_LP(1) &&
  2355. previous->wm_lp_spr[0] != results->wm_lp_spr[0])
  2356. I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
  2357. if (INTEL_INFO(dev)->gen >= 7) {
  2358. if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
  2359. I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
  2360. if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
  2361. I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
  2362. }
  2363. if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
  2364. I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
  2365. if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
  2366. I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
  2367. if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
  2368. I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
  2369. dev_priv->wm.hw = *results;
  2370. }
  2371. bool ilk_disable_lp_wm(struct drm_device *dev)
  2372. {
  2373. struct drm_i915_private *dev_priv = dev->dev_private;
  2374. return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
  2375. }
  2376. /*
  2377. * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
  2378. * different active planes.
  2379. */
  2380. #define SKL_DDB_SIZE 896 /* in blocks */
  2381. #define BXT_DDB_SIZE 512
  2382. /*
  2383. * Return the index of a plane in the SKL DDB and wm result arrays. Primary
  2384. * plane is always in slot 0, cursor is always in slot I915_MAX_PLANES-1, and
  2385. * other universal planes are in indices 1..n. Note that this may leave unused
  2386. * indices between the top "sprite" plane and the cursor.
  2387. */
  2388. static int
  2389. skl_wm_plane_id(const struct intel_plane *plane)
  2390. {
  2391. switch (plane->base.type) {
  2392. case DRM_PLANE_TYPE_PRIMARY:
  2393. return 0;
  2394. case DRM_PLANE_TYPE_CURSOR:
  2395. return PLANE_CURSOR;
  2396. case DRM_PLANE_TYPE_OVERLAY:
  2397. return plane->plane + 1;
  2398. default:
  2399. MISSING_CASE(plane->base.type);
  2400. return plane->plane;
  2401. }
  2402. }
  2403. static void
  2404. skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
  2405. const struct intel_crtc_state *cstate,
  2406. const struct intel_wm_config *config,
  2407. struct skl_ddb_entry *alloc /* out */)
  2408. {
  2409. struct drm_crtc *for_crtc = cstate->base.crtc;
  2410. struct drm_crtc *crtc;
  2411. unsigned int pipe_size, ddb_size;
  2412. int nth_active_pipe;
  2413. if (!cstate->base.active) {
  2414. alloc->start = 0;
  2415. alloc->end = 0;
  2416. return;
  2417. }
  2418. if (IS_BROXTON(dev))
  2419. ddb_size = BXT_DDB_SIZE;
  2420. else
  2421. ddb_size = SKL_DDB_SIZE;
  2422. ddb_size -= 4; /* 4 blocks for bypass path allocation */
  2423. nth_active_pipe = 0;
  2424. for_each_crtc(dev, crtc) {
  2425. if (!to_intel_crtc(crtc)->active)
  2426. continue;
  2427. if (crtc == for_crtc)
  2428. break;
  2429. nth_active_pipe++;
  2430. }
  2431. pipe_size = ddb_size / config->num_pipes_active;
  2432. alloc->start = nth_active_pipe * ddb_size / config->num_pipes_active;
  2433. alloc->end = alloc->start + pipe_size;
  2434. }
  2435. static unsigned int skl_cursor_allocation(const struct intel_wm_config *config)
  2436. {
  2437. if (config->num_pipes_active == 1)
  2438. return 32;
  2439. return 8;
  2440. }
  2441. static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
  2442. {
  2443. entry->start = reg & 0x3ff;
  2444. entry->end = (reg >> 16) & 0x3ff;
  2445. if (entry->end)
  2446. entry->end += 1;
  2447. }
  2448. void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
  2449. struct skl_ddb_allocation *ddb /* out */)
  2450. {
  2451. enum pipe pipe;
  2452. int plane;
  2453. u32 val;
  2454. memset(ddb, 0, sizeof(*ddb));
  2455. for_each_pipe(dev_priv, pipe) {
  2456. enum intel_display_power_domain power_domain;
  2457. power_domain = POWER_DOMAIN_PIPE(pipe);
  2458. if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
  2459. continue;
  2460. for_each_plane(dev_priv, pipe, plane) {
  2461. val = I915_READ(PLANE_BUF_CFG(pipe, plane));
  2462. skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
  2463. val);
  2464. }
  2465. val = I915_READ(CUR_BUF_CFG(pipe));
  2466. skl_ddb_entry_init_from_hw(&ddb->plane[pipe][PLANE_CURSOR],
  2467. val);
  2468. intel_display_power_put(dev_priv, power_domain);
  2469. }
  2470. }
  2471. static unsigned int
  2472. skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
  2473. const struct drm_plane_state *pstate,
  2474. int y)
  2475. {
  2476. struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
  2477. struct drm_framebuffer *fb = pstate->fb;
  2478. uint32_t width = 0, height = 0;
  2479. width = drm_rect_width(&intel_pstate->src) >> 16;
  2480. height = drm_rect_height(&intel_pstate->src) >> 16;
  2481. if (intel_rotation_90_or_270(pstate->rotation))
  2482. swap(width, height);
  2483. /* for planar format */
  2484. if (fb->pixel_format == DRM_FORMAT_NV12) {
  2485. if (y) /* y-plane data rate */
  2486. return width * height *
  2487. drm_format_plane_cpp(fb->pixel_format, 0);
  2488. else /* uv-plane data rate */
  2489. return (width / 2) * (height / 2) *
  2490. drm_format_plane_cpp(fb->pixel_format, 1);
  2491. }
  2492. /* for packed formats */
  2493. return width * height * drm_format_plane_cpp(fb->pixel_format, 0);
  2494. }
  2495. /*
  2496. * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
  2497. * a 8192x4096@32bpp framebuffer:
  2498. * 3 * 4096 * 8192 * 4 < 2^32
  2499. */
  2500. static unsigned int
  2501. skl_get_total_relative_data_rate(const struct intel_crtc_state *cstate)
  2502. {
  2503. struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
  2504. struct drm_device *dev = intel_crtc->base.dev;
  2505. const struct intel_plane *intel_plane;
  2506. unsigned int total_data_rate = 0;
  2507. for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
  2508. const struct drm_plane_state *pstate = intel_plane->base.state;
  2509. if (pstate->fb == NULL)
  2510. continue;
  2511. if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
  2512. continue;
  2513. /* packed/uv */
  2514. total_data_rate += skl_plane_relative_data_rate(cstate,
  2515. pstate,
  2516. 0);
  2517. if (pstate->fb->pixel_format == DRM_FORMAT_NV12)
  2518. /* y-plane */
  2519. total_data_rate += skl_plane_relative_data_rate(cstate,
  2520. pstate,
  2521. 1);
  2522. }
  2523. return total_data_rate;
  2524. }
  2525. static void
  2526. skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
  2527. struct skl_ddb_allocation *ddb /* out */)
  2528. {
  2529. struct drm_crtc *crtc = cstate->base.crtc;
  2530. struct drm_device *dev = crtc->dev;
  2531. struct drm_i915_private *dev_priv = to_i915(dev);
  2532. struct intel_wm_config *config = &dev_priv->wm.config;
  2533. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2534. struct intel_plane *intel_plane;
  2535. enum pipe pipe = intel_crtc->pipe;
  2536. struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
  2537. uint16_t alloc_size, start, cursor_blocks;
  2538. uint16_t minimum[I915_MAX_PLANES];
  2539. uint16_t y_minimum[I915_MAX_PLANES];
  2540. unsigned int total_data_rate;
  2541. skl_ddb_get_pipe_allocation_limits(dev, cstate, config, alloc);
  2542. alloc_size = skl_ddb_entry_size(alloc);
  2543. if (alloc_size == 0) {
  2544. memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
  2545. memset(&ddb->plane[pipe][PLANE_CURSOR], 0,
  2546. sizeof(ddb->plane[pipe][PLANE_CURSOR]));
  2547. return;
  2548. }
  2549. cursor_blocks = skl_cursor_allocation(config);
  2550. ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - cursor_blocks;
  2551. ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
  2552. alloc_size -= cursor_blocks;
  2553. alloc->end -= cursor_blocks;
  2554. /* 1. Allocate the mininum required blocks for each active plane */
  2555. for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
  2556. struct drm_plane *plane = &intel_plane->base;
  2557. struct drm_framebuffer *fb = plane->state->fb;
  2558. int id = skl_wm_plane_id(intel_plane);
  2559. if (!to_intel_plane_state(plane->state)->visible)
  2560. continue;
  2561. if (plane->type == DRM_PLANE_TYPE_CURSOR)
  2562. continue;
  2563. minimum[id] = 8;
  2564. alloc_size -= minimum[id];
  2565. y_minimum[id] = (fb->pixel_format == DRM_FORMAT_NV12) ? 8 : 0;
  2566. alloc_size -= y_minimum[id];
  2567. }
  2568. /*
  2569. * 2. Distribute the remaining space in proportion to the amount of
  2570. * data each plane needs to fetch from memory.
  2571. *
  2572. * FIXME: we may not allocate every single block here.
  2573. */
  2574. total_data_rate = skl_get_total_relative_data_rate(cstate);
  2575. start = alloc->start;
  2576. for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
  2577. struct drm_plane *plane = &intel_plane->base;
  2578. struct drm_plane_state *pstate = intel_plane->base.state;
  2579. unsigned int data_rate, y_data_rate;
  2580. uint16_t plane_blocks, y_plane_blocks = 0;
  2581. int id = skl_wm_plane_id(intel_plane);
  2582. if (!to_intel_plane_state(pstate)->visible)
  2583. continue;
  2584. if (plane->type == DRM_PLANE_TYPE_CURSOR)
  2585. continue;
  2586. data_rate = skl_plane_relative_data_rate(cstate, pstate, 0);
  2587. /*
  2588. * allocation for (packed formats) or (uv-plane part of planar format):
  2589. * promote the expression to 64 bits to avoid overflowing, the
  2590. * result is < available as data_rate / total_data_rate < 1
  2591. */
  2592. plane_blocks = minimum[id];
  2593. plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
  2594. total_data_rate);
  2595. ddb->plane[pipe][id].start = start;
  2596. ddb->plane[pipe][id].end = start + plane_blocks;
  2597. start += plane_blocks;
  2598. /*
  2599. * allocation for y_plane part of planar format:
  2600. */
  2601. if (pstate->fb->pixel_format == DRM_FORMAT_NV12) {
  2602. y_data_rate = skl_plane_relative_data_rate(cstate,
  2603. pstate,
  2604. 1);
  2605. y_plane_blocks = y_minimum[id];
  2606. y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
  2607. total_data_rate);
  2608. ddb->y_plane[pipe][id].start = start;
  2609. ddb->y_plane[pipe][id].end = start + y_plane_blocks;
  2610. start += y_plane_blocks;
  2611. }
  2612. }
  2613. }
  2614. static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
  2615. {
  2616. /* TODO: Take into account the scalers once we support them */
  2617. return config->base.adjusted_mode.crtc_clock;
  2618. }
  2619. /*
  2620. * The max latency should be 257 (max the punit can code is 255 and we add 2us
  2621. * for the read latency) and cpp should always be <= 8, so that
  2622. * should allow pixel_rate up to ~2 GHz which seems sufficient since max
  2623. * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
  2624. */
  2625. static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
  2626. {
  2627. uint32_t wm_intermediate_val, ret;
  2628. if (latency == 0)
  2629. return UINT_MAX;
  2630. wm_intermediate_val = latency * pixel_rate * cpp / 512;
  2631. ret = DIV_ROUND_UP(wm_intermediate_val, 1000);
  2632. return ret;
  2633. }
  2634. static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
  2635. uint32_t horiz_pixels, uint8_t cpp,
  2636. uint64_t tiling, uint32_t latency)
  2637. {
  2638. uint32_t ret;
  2639. uint32_t plane_bytes_per_line, plane_blocks_per_line;
  2640. uint32_t wm_intermediate_val;
  2641. if (latency == 0)
  2642. return UINT_MAX;
  2643. plane_bytes_per_line = horiz_pixels * cpp;
  2644. if (tiling == I915_FORMAT_MOD_Y_TILED ||
  2645. tiling == I915_FORMAT_MOD_Yf_TILED) {
  2646. plane_bytes_per_line *= 4;
  2647. plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
  2648. plane_blocks_per_line /= 4;
  2649. } else {
  2650. plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
  2651. }
  2652. wm_intermediate_val = latency * pixel_rate;
  2653. ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
  2654. plane_blocks_per_line;
  2655. return ret;
  2656. }
  2657. static bool skl_ddb_allocation_changed(const struct skl_ddb_allocation *new_ddb,
  2658. const struct intel_crtc *intel_crtc)
  2659. {
  2660. struct drm_device *dev = intel_crtc->base.dev;
  2661. struct drm_i915_private *dev_priv = dev->dev_private;
  2662. const struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
  2663. /*
  2664. * If ddb allocation of pipes changed, it may require recalculation of
  2665. * watermarks
  2666. */
  2667. if (memcmp(new_ddb->pipe, cur_ddb->pipe, sizeof(new_ddb->pipe)))
  2668. return true;
  2669. return false;
  2670. }
  2671. static bool skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
  2672. struct intel_crtc_state *cstate,
  2673. struct intel_plane *intel_plane,
  2674. uint16_t ddb_allocation,
  2675. int level,
  2676. uint16_t *out_blocks, /* out */
  2677. uint8_t *out_lines /* out */)
  2678. {
  2679. struct drm_plane *plane = &intel_plane->base;
  2680. struct drm_framebuffer *fb = plane->state->fb;
  2681. struct intel_plane_state *intel_pstate =
  2682. to_intel_plane_state(plane->state);
  2683. uint32_t latency = dev_priv->wm.skl_latency[level];
  2684. uint32_t method1, method2;
  2685. uint32_t plane_bytes_per_line, plane_blocks_per_line;
  2686. uint32_t res_blocks, res_lines;
  2687. uint32_t selected_result;
  2688. uint8_t cpp;
  2689. uint32_t width = 0, height = 0;
  2690. if (latency == 0 || !cstate->base.active || !intel_pstate->visible)
  2691. return false;
  2692. width = drm_rect_width(&intel_pstate->src) >> 16;
  2693. height = drm_rect_height(&intel_pstate->src) >> 16;
  2694. if (intel_rotation_90_or_270(plane->state->rotation))
  2695. swap(width, height);
  2696. cpp = drm_format_plane_cpp(fb->pixel_format, 0);
  2697. method1 = skl_wm_method1(skl_pipe_pixel_rate(cstate),
  2698. cpp, latency);
  2699. method2 = skl_wm_method2(skl_pipe_pixel_rate(cstate),
  2700. cstate->base.adjusted_mode.crtc_htotal,
  2701. width,
  2702. cpp,
  2703. fb->modifier[0],
  2704. latency);
  2705. plane_bytes_per_line = width * cpp;
  2706. plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
  2707. if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
  2708. fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
  2709. uint32_t min_scanlines = 4;
  2710. uint32_t y_tile_minimum;
  2711. if (intel_rotation_90_or_270(plane->state->rotation)) {
  2712. int cpp = (fb->pixel_format == DRM_FORMAT_NV12) ?
  2713. drm_format_plane_cpp(fb->pixel_format, 1) :
  2714. drm_format_plane_cpp(fb->pixel_format, 0);
  2715. switch (cpp) {
  2716. case 1:
  2717. min_scanlines = 16;
  2718. break;
  2719. case 2:
  2720. min_scanlines = 8;
  2721. break;
  2722. case 8:
  2723. WARN(1, "Unsupported pixel depth for rotation");
  2724. }
  2725. }
  2726. y_tile_minimum = plane_blocks_per_line * min_scanlines;
  2727. selected_result = max(method2, y_tile_minimum);
  2728. } else {
  2729. if ((ddb_allocation / plane_blocks_per_line) >= 1)
  2730. selected_result = min(method1, method2);
  2731. else
  2732. selected_result = method1;
  2733. }
  2734. res_blocks = selected_result + 1;
  2735. res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
  2736. if (level >= 1 && level <= 7) {
  2737. if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
  2738. fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED)
  2739. res_lines += 4;
  2740. else
  2741. res_blocks++;
  2742. }
  2743. if (res_blocks >= ddb_allocation || res_lines > 31)
  2744. return false;
  2745. *out_blocks = res_blocks;
  2746. *out_lines = res_lines;
  2747. return true;
  2748. }
  2749. static void skl_compute_wm_level(const struct drm_i915_private *dev_priv,
  2750. struct skl_ddb_allocation *ddb,
  2751. struct intel_crtc_state *cstate,
  2752. int level,
  2753. struct skl_wm_level *result)
  2754. {
  2755. struct drm_device *dev = dev_priv->dev;
  2756. struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
  2757. struct intel_plane *intel_plane;
  2758. uint16_t ddb_blocks;
  2759. enum pipe pipe = intel_crtc->pipe;
  2760. for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
  2761. int i = skl_wm_plane_id(intel_plane);
  2762. ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);
  2763. result->plane_en[i] = skl_compute_plane_wm(dev_priv,
  2764. cstate,
  2765. intel_plane,
  2766. ddb_blocks,
  2767. level,
  2768. &result->plane_res_b[i],
  2769. &result->plane_res_l[i]);
  2770. }
  2771. }
  2772. static uint32_t
  2773. skl_compute_linetime_wm(struct intel_crtc_state *cstate)
  2774. {
  2775. if (!cstate->base.active)
  2776. return 0;
  2777. if (WARN_ON(skl_pipe_pixel_rate(cstate) == 0))
  2778. return 0;
  2779. return DIV_ROUND_UP(8 * cstate->base.adjusted_mode.crtc_htotal * 1000,
  2780. skl_pipe_pixel_rate(cstate));
  2781. }
  2782. static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
  2783. struct skl_wm_level *trans_wm /* out */)
  2784. {
  2785. struct drm_crtc *crtc = cstate->base.crtc;
  2786. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2787. struct intel_plane *intel_plane;
  2788. if (!cstate->base.active)
  2789. return;
  2790. /* Until we know more, just disable transition WMs */
  2791. for_each_intel_plane_on_crtc(crtc->dev, intel_crtc, intel_plane) {
  2792. int i = skl_wm_plane_id(intel_plane);
  2793. trans_wm->plane_en[i] = false;
  2794. }
  2795. }
  2796. static void skl_compute_pipe_wm(struct intel_crtc_state *cstate,
  2797. struct skl_ddb_allocation *ddb,
  2798. struct skl_pipe_wm *pipe_wm)
  2799. {
  2800. struct drm_device *dev = cstate->base.crtc->dev;
  2801. const struct drm_i915_private *dev_priv = dev->dev_private;
  2802. int level, max_level = ilk_wm_max_level(dev);
  2803. for (level = 0; level <= max_level; level++) {
  2804. skl_compute_wm_level(dev_priv, ddb, cstate,
  2805. level, &pipe_wm->wm[level]);
  2806. }
  2807. pipe_wm->linetime = skl_compute_linetime_wm(cstate);
  2808. skl_compute_transition_wm(cstate, &pipe_wm->trans_wm);
  2809. }
  2810. static void skl_compute_wm_results(struct drm_device *dev,
  2811. struct skl_pipe_wm *p_wm,
  2812. struct skl_wm_values *r,
  2813. struct intel_crtc *intel_crtc)
  2814. {
  2815. int level, max_level = ilk_wm_max_level(dev);
  2816. enum pipe pipe = intel_crtc->pipe;
  2817. uint32_t temp;
  2818. int i;
  2819. for (level = 0; level <= max_level; level++) {
  2820. for (i = 0; i < intel_num_planes(intel_crtc); i++) {
  2821. temp = 0;
  2822. temp |= p_wm->wm[level].plane_res_l[i] <<
  2823. PLANE_WM_LINES_SHIFT;
  2824. temp |= p_wm->wm[level].plane_res_b[i];
  2825. if (p_wm->wm[level].plane_en[i])
  2826. temp |= PLANE_WM_EN;
  2827. r->plane[pipe][i][level] = temp;
  2828. }
  2829. temp = 0;
  2830. temp |= p_wm->wm[level].plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
  2831. temp |= p_wm->wm[level].plane_res_b[PLANE_CURSOR];
  2832. if (p_wm->wm[level].plane_en[PLANE_CURSOR])
  2833. temp |= PLANE_WM_EN;
  2834. r->plane[pipe][PLANE_CURSOR][level] = temp;
  2835. }
  2836. /* transition WMs */
  2837. for (i = 0; i < intel_num_planes(intel_crtc); i++) {
  2838. temp = 0;
  2839. temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
  2840. temp |= p_wm->trans_wm.plane_res_b[i];
  2841. if (p_wm->trans_wm.plane_en[i])
  2842. temp |= PLANE_WM_EN;
  2843. r->plane_trans[pipe][i] = temp;
  2844. }
  2845. temp = 0;
  2846. temp |= p_wm->trans_wm.plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
  2847. temp |= p_wm->trans_wm.plane_res_b[PLANE_CURSOR];
  2848. if (p_wm->trans_wm.plane_en[PLANE_CURSOR])
  2849. temp |= PLANE_WM_EN;
  2850. r->plane_trans[pipe][PLANE_CURSOR] = temp;
  2851. r->wm_linetime[pipe] = p_wm->linetime;
  2852. }
  2853. static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
  2854. i915_reg_t reg,
  2855. const struct skl_ddb_entry *entry)
  2856. {
  2857. if (entry->end)
  2858. I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
  2859. else
  2860. I915_WRITE(reg, 0);
  2861. }
  2862. static void skl_write_wm_values(struct drm_i915_private *dev_priv,
  2863. const struct skl_wm_values *new)
  2864. {
  2865. struct drm_device *dev = dev_priv->dev;
  2866. struct intel_crtc *crtc;
  2867. for_each_intel_crtc(dev, crtc) {
  2868. int i, level, max_level = ilk_wm_max_level(dev);
  2869. enum pipe pipe = crtc->pipe;
  2870. if (!new->dirty[pipe])
  2871. continue;
  2872. I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
  2873. for (level = 0; level <= max_level; level++) {
  2874. for (i = 0; i < intel_num_planes(crtc); i++)
  2875. I915_WRITE(PLANE_WM(pipe, i, level),
  2876. new->plane[pipe][i][level]);
  2877. I915_WRITE(CUR_WM(pipe, level),
  2878. new->plane[pipe][PLANE_CURSOR][level]);
  2879. }
  2880. for (i = 0; i < intel_num_planes(crtc); i++)
  2881. I915_WRITE(PLANE_WM_TRANS(pipe, i),
  2882. new->plane_trans[pipe][i]);
  2883. I915_WRITE(CUR_WM_TRANS(pipe),
  2884. new->plane_trans[pipe][PLANE_CURSOR]);
  2885. for (i = 0; i < intel_num_planes(crtc); i++) {
  2886. skl_ddb_entry_write(dev_priv,
  2887. PLANE_BUF_CFG(pipe, i),
  2888. &new->ddb.plane[pipe][i]);
  2889. skl_ddb_entry_write(dev_priv,
  2890. PLANE_NV12_BUF_CFG(pipe, i),
  2891. &new->ddb.y_plane[pipe][i]);
  2892. }
  2893. skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
  2894. &new->ddb.plane[pipe][PLANE_CURSOR]);
  2895. }
  2896. }
  2897. /*
  2898. * When setting up a new DDB allocation arrangement, we need to correctly
  2899. * sequence the times at which the new allocations for the pipes are taken into
  2900. * account or we'll have pipes fetching from space previously allocated to
  2901. * another pipe.
  2902. *
  2903. * Roughly the sequence looks like:
  2904. * 1. re-allocate the pipe(s) with the allocation being reduced and not
  2905. * overlapping with a previous light-up pipe (another way to put it is:
  2906. * pipes with their new allocation strickly included into their old ones).
  2907. * 2. re-allocate the other pipes that get their allocation reduced
  2908. * 3. allocate the pipes having their allocation increased
  2909. *
  2910. * Steps 1. and 2. are here to take care of the following case:
  2911. * - Initially DDB looks like this:
  2912. * | B | C |
  2913. * - enable pipe A.
  2914. * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
  2915. * allocation
  2916. * | A | B | C |
  2917. *
  2918. * We need to sequence the re-allocation: C, B, A (and not B, C, A).
  2919. */
  2920. static void
  2921. skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, int pass)
  2922. {
  2923. int plane;
  2924. DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);
  2925. for_each_plane(dev_priv, pipe, plane) {
  2926. I915_WRITE(PLANE_SURF(pipe, plane),
  2927. I915_READ(PLANE_SURF(pipe, plane)));
  2928. }
  2929. I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
  2930. }
  2931. static bool
  2932. skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
  2933. const struct skl_ddb_allocation *new,
  2934. enum pipe pipe)
  2935. {
  2936. uint16_t old_size, new_size;
  2937. old_size = skl_ddb_entry_size(&old->pipe[pipe]);
  2938. new_size = skl_ddb_entry_size(&new->pipe[pipe]);
  2939. return old_size != new_size &&
  2940. new->pipe[pipe].start >= old->pipe[pipe].start &&
  2941. new->pipe[pipe].end <= old->pipe[pipe].end;
  2942. }
  2943. static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
  2944. struct skl_wm_values *new_values)
  2945. {
  2946. struct drm_device *dev = dev_priv->dev;
  2947. struct skl_ddb_allocation *cur_ddb, *new_ddb;
  2948. bool reallocated[I915_MAX_PIPES] = {};
  2949. struct intel_crtc *crtc;
  2950. enum pipe pipe;
  2951. new_ddb = &new_values->ddb;
  2952. cur_ddb = &dev_priv->wm.skl_hw.ddb;
  2953. /*
  2954. * First pass: flush the pipes with the new allocation contained into
  2955. * the old space.
  2956. *
  2957. * We'll wait for the vblank on those pipes to ensure we can safely
  2958. * re-allocate the freed space without this pipe fetching from it.
  2959. */
  2960. for_each_intel_crtc(dev, crtc) {
  2961. if (!crtc->active)
  2962. continue;
  2963. pipe = crtc->pipe;
  2964. if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
  2965. continue;
  2966. skl_wm_flush_pipe(dev_priv, pipe, 1);
  2967. intel_wait_for_vblank(dev, pipe);
  2968. reallocated[pipe] = true;
  2969. }
  2970. /*
  2971. * Second pass: flush the pipes that are having their allocation
  2972. * reduced, but overlapping with a previous allocation.
  2973. *
  2974. * Here as well we need to wait for the vblank to make sure the freed
  2975. * space is not used anymore.
  2976. */
  2977. for_each_intel_crtc(dev, crtc) {
  2978. if (!crtc->active)
  2979. continue;
  2980. pipe = crtc->pipe;
  2981. if (reallocated[pipe])
  2982. continue;
  2983. if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
  2984. skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
  2985. skl_wm_flush_pipe(dev_priv, pipe, 2);
  2986. intel_wait_for_vblank(dev, pipe);
  2987. reallocated[pipe] = true;
  2988. }
  2989. }
  2990. /*
  2991. * Third pass: flush the pipes that got more space allocated.
  2992. *
  2993. * We don't need to actively wait for the update here, next vblank
  2994. * will just get more DDB space with the correct WM values.
  2995. */
  2996. for_each_intel_crtc(dev, crtc) {
  2997. if (!crtc->active)
  2998. continue;
  2999. pipe = crtc->pipe;
  3000. /*
  3001. * At this point, only the pipes more space than before are
  3002. * left to re-allocate.
  3003. */
  3004. if (reallocated[pipe])
  3005. continue;
  3006. skl_wm_flush_pipe(dev_priv, pipe, 3);
  3007. }
  3008. }
  3009. static bool skl_update_pipe_wm(struct drm_crtc *crtc,
  3010. struct skl_ddb_allocation *ddb, /* out */
  3011. struct skl_pipe_wm *pipe_wm /* out */)
  3012. {
  3013. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3014. struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
  3015. skl_allocate_pipe_ddb(cstate, ddb);
  3016. skl_compute_pipe_wm(cstate, ddb, pipe_wm);
  3017. if (!memcmp(&intel_crtc->wm.active.skl, pipe_wm, sizeof(*pipe_wm)))
  3018. return false;
  3019. intel_crtc->wm.active.skl = *pipe_wm;
  3020. return true;
  3021. }
  3022. static void skl_update_other_pipe_wm(struct drm_device *dev,
  3023. struct drm_crtc *crtc,
  3024. struct skl_wm_values *r)
  3025. {
  3026. struct intel_crtc *intel_crtc;
  3027. struct intel_crtc *this_crtc = to_intel_crtc(crtc);
  3028. /*
  3029. * If the WM update hasn't changed the allocation for this_crtc (the
  3030. * crtc we are currently computing the new WM values for), other
  3031. * enabled crtcs will keep the same allocation and we don't need to
  3032. * recompute anything for them.
  3033. */
  3034. if (!skl_ddb_allocation_changed(&r->ddb, this_crtc))
  3035. return;
  3036. /*
  3037. * Otherwise, because of this_crtc being freshly enabled/disabled, the
  3038. * other active pipes need new DDB allocation and WM values.
  3039. */
  3040. for_each_intel_crtc(dev, intel_crtc) {
  3041. struct skl_pipe_wm pipe_wm = {};
  3042. bool wm_changed;
  3043. if (this_crtc->pipe == intel_crtc->pipe)
  3044. continue;
  3045. if (!intel_crtc->active)
  3046. continue;
  3047. wm_changed = skl_update_pipe_wm(&intel_crtc->base,
  3048. &r->ddb, &pipe_wm);
  3049. /*
  3050. * If we end up re-computing the other pipe WM values, it's
  3051. * because it was really needed, so we expect the WM values to
  3052. * be different.
  3053. */
  3054. WARN_ON(!wm_changed);
  3055. skl_compute_wm_results(dev, &pipe_wm, r, intel_crtc);
  3056. r->dirty[intel_crtc->pipe] = true;
  3057. }
  3058. }
  3059. static void skl_clear_wm(struct skl_wm_values *watermarks, enum pipe pipe)
  3060. {
  3061. watermarks->wm_linetime[pipe] = 0;
  3062. memset(watermarks->plane[pipe], 0,
  3063. sizeof(uint32_t) * 8 * I915_MAX_PLANES);
  3064. memset(watermarks->plane_trans[pipe],
  3065. 0, sizeof(uint32_t) * I915_MAX_PLANES);
  3066. watermarks->plane_trans[pipe][PLANE_CURSOR] = 0;
  3067. /* Clear ddb entries for pipe */
  3068. memset(&watermarks->ddb.pipe[pipe], 0, sizeof(struct skl_ddb_entry));
  3069. memset(&watermarks->ddb.plane[pipe], 0,
  3070. sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
  3071. memset(&watermarks->ddb.y_plane[pipe], 0,
  3072. sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
  3073. memset(&watermarks->ddb.plane[pipe][PLANE_CURSOR], 0,
  3074. sizeof(struct skl_ddb_entry));
  3075. }
  3076. static void skl_update_wm(struct drm_crtc *crtc)
  3077. {
  3078. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3079. struct drm_device *dev = crtc->dev;
  3080. struct drm_i915_private *dev_priv = dev->dev_private;
  3081. struct skl_wm_values *results = &dev_priv->wm.skl_results;
  3082. struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
  3083. struct skl_pipe_wm *pipe_wm = &cstate->wm.optimal.skl;
  3084. /* Clear all dirty flags */
  3085. memset(results->dirty, 0, sizeof(bool) * I915_MAX_PIPES);
  3086. skl_clear_wm(results, intel_crtc->pipe);
  3087. if (!skl_update_pipe_wm(crtc, &results->ddb, pipe_wm))
  3088. return;
  3089. skl_compute_wm_results(dev, pipe_wm, results, intel_crtc);
  3090. results->dirty[intel_crtc->pipe] = true;
  3091. skl_update_other_pipe_wm(dev, crtc, results);
  3092. skl_write_wm_values(dev_priv, results);
  3093. skl_flush_wm_values(dev_priv, results);
  3094. /* store the new configuration */
  3095. dev_priv->wm.skl_hw = *results;
  3096. }
  3097. static void ilk_compute_wm_config(struct drm_device *dev,
  3098. struct intel_wm_config *config)
  3099. {
  3100. struct intel_crtc *crtc;
  3101. /* Compute the currently _active_ config */
  3102. for_each_intel_crtc(dev, crtc) {
  3103. const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;
  3104. if (!wm->pipe_enabled)
  3105. continue;
  3106. config->sprites_enabled |= wm->sprites_enabled;
  3107. config->sprites_scaled |= wm->sprites_scaled;
  3108. config->num_pipes_active++;
  3109. }
  3110. }
  3111. static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
  3112. {
  3113. struct drm_device *dev = dev_priv->dev;
  3114. struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
  3115. struct ilk_wm_maximums max;
  3116. struct intel_wm_config config = {};
  3117. struct ilk_wm_values results = {};
  3118. enum intel_ddb_partitioning partitioning;
  3119. ilk_compute_wm_config(dev, &config);
  3120. ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
  3121. ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
  3122. /* 5/6 split only in single pipe config on IVB+ */
  3123. if (INTEL_INFO(dev)->gen >= 7 &&
  3124. config.num_pipes_active == 1 && config.sprites_enabled) {
  3125. ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
  3126. ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
  3127. best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
  3128. } else {
  3129. best_lp_wm = &lp_wm_1_2;
  3130. }
  3131. partitioning = (best_lp_wm == &lp_wm_1_2) ?
  3132. INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
  3133. ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
  3134. ilk_write_wm_values(dev_priv, &results);
  3135. }
  3136. static void ilk_initial_watermarks(struct intel_crtc_state *cstate)
  3137. {
  3138. struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
  3139. struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
  3140. mutex_lock(&dev_priv->wm.wm_mutex);
  3141. intel_crtc->wm.active.ilk = cstate->wm.intermediate;
  3142. ilk_program_watermarks(dev_priv);
  3143. mutex_unlock(&dev_priv->wm.wm_mutex);
  3144. }
  3145. static void ilk_optimize_watermarks(struct intel_crtc_state *cstate)
  3146. {
  3147. struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
  3148. struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
  3149. mutex_lock(&dev_priv->wm.wm_mutex);
  3150. if (cstate->wm.need_postvbl_update) {
  3151. intel_crtc->wm.active.ilk = cstate->wm.optimal.ilk;
  3152. ilk_program_watermarks(dev_priv);
  3153. }
  3154. mutex_unlock(&dev_priv->wm.wm_mutex);
  3155. }
  3156. static void skl_pipe_wm_active_state(uint32_t val,
  3157. struct skl_pipe_wm *active,
  3158. bool is_transwm,
  3159. bool is_cursor,
  3160. int i,
  3161. int level)
  3162. {
  3163. bool is_enabled = (val & PLANE_WM_EN) != 0;
  3164. if (!is_transwm) {
  3165. if (!is_cursor) {
  3166. active->wm[level].plane_en[i] = is_enabled;
  3167. active->wm[level].plane_res_b[i] =
  3168. val & PLANE_WM_BLOCKS_MASK;
  3169. active->wm[level].plane_res_l[i] =
  3170. (val >> PLANE_WM_LINES_SHIFT) &
  3171. PLANE_WM_LINES_MASK;
  3172. } else {
  3173. active->wm[level].plane_en[PLANE_CURSOR] = is_enabled;
  3174. active->wm[level].plane_res_b[PLANE_CURSOR] =
  3175. val & PLANE_WM_BLOCKS_MASK;
  3176. active->wm[level].plane_res_l[PLANE_CURSOR] =
  3177. (val >> PLANE_WM_LINES_SHIFT) &
  3178. PLANE_WM_LINES_MASK;
  3179. }
  3180. } else {
  3181. if (!is_cursor) {
  3182. active->trans_wm.plane_en[i] = is_enabled;
  3183. active->trans_wm.plane_res_b[i] =
  3184. val & PLANE_WM_BLOCKS_MASK;
  3185. active->trans_wm.plane_res_l[i] =
  3186. (val >> PLANE_WM_LINES_SHIFT) &
  3187. PLANE_WM_LINES_MASK;
  3188. } else {
  3189. active->trans_wm.plane_en[PLANE_CURSOR] = is_enabled;
  3190. active->trans_wm.plane_res_b[PLANE_CURSOR] =
  3191. val & PLANE_WM_BLOCKS_MASK;
  3192. active->trans_wm.plane_res_l[PLANE_CURSOR] =
  3193. (val >> PLANE_WM_LINES_SHIFT) &
  3194. PLANE_WM_LINES_MASK;
  3195. }
  3196. }
  3197. }
  3198. static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
  3199. {
  3200. struct drm_device *dev = crtc->dev;
  3201. struct drm_i915_private *dev_priv = dev->dev_private;
  3202. struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
  3203. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3204. struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
  3205. struct skl_pipe_wm *active = &cstate->wm.optimal.skl;
  3206. enum pipe pipe = intel_crtc->pipe;
  3207. int level, i, max_level;
  3208. uint32_t temp;
  3209. max_level = ilk_wm_max_level(dev);
  3210. hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
  3211. for (level = 0; level <= max_level; level++) {
  3212. for (i = 0; i < intel_num_planes(intel_crtc); i++)
  3213. hw->plane[pipe][i][level] =
  3214. I915_READ(PLANE_WM(pipe, i, level));
  3215. hw->plane[pipe][PLANE_CURSOR][level] = I915_READ(CUR_WM(pipe, level));
  3216. }
  3217. for (i = 0; i < intel_num_planes(intel_crtc); i++)
  3218. hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
  3219. hw->plane_trans[pipe][PLANE_CURSOR] = I915_READ(CUR_WM_TRANS(pipe));
  3220. if (!intel_crtc->active)
  3221. return;
  3222. hw->dirty[pipe] = true;
  3223. active->linetime = hw->wm_linetime[pipe];
  3224. for (level = 0; level <= max_level; level++) {
  3225. for (i = 0; i < intel_num_planes(intel_crtc); i++) {
  3226. temp = hw->plane[pipe][i][level];
  3227. skl_pipe_wm_active_state(temp, active, false,
  3228. false, i, level);
  3229. }
  3230. temp = hw->plane[pipe][PLANE_CURSOR][level];
  3231. skl_pipe_wm_active_state(temp, active, false, true, i, level);
  3232. }
  3233. for (i = 0; i < intel_num_planes(intel_crtc); i++) {
  3234. temp = hw->plane_trans[pipe][i];
  3235. skl_pipe_wm_active_state(temp, active, true, false, i, 0);
  3236. }
  3237. temp = hw->plane_trans[pipe][PLANE_CURSOR];
  3238. skl_pipe_wm_active_state(temp, active, true, true, i, 0);
  3239. intel_crtc->wm.active.skl = *active;
  3240. }
  3241. void skl_wm_get_hw_state(struct drm_device *dev)
  3242. {
  3243. struct drm_i915_private *dev_priv = dev->dev_private;
  3244. struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
  3245. struct drm_crtc *crtc;
  3246. skl_ddb_get_hw_state(dev_priv, ddb);
  3247. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
  3248. skl_pipe_wm_get_hw_state(crtc);
  3249. }
  3250. static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
  3251. {
  3252. struct drm_device *dev = crtc->dev;
  3253. struct drm_i915_private *dev_priv = dev->dev_private;
  3254. struct ilk_wm_values *hw = &dev_priv->wm.hw;
  3255. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3256. struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
  3257. struct intel_pipe_wm *active = &cstate->wm.optimal.ilk;
  3258. enum pipe pipe = intel_crtc->pipe;
  3259. static const i915_reg_t wm0_pipe_reg[] = {
  3260. [PIPE_A] = WM0_PIPEA_ILK,
  3261. [PIPE_B] = WM0_PIPEB_ILK,
  3262. [PIPE_C] = WM0_PIPEC_IVB,
  3263. };
  3264. hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
  3265. if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  3266. hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
  3267. memset(active, 0, sizeof(*active));
  3268. active->pipe_enabled = intel_crtc->active;
  3269. if (active->pipe_enabled) {
  3270. u32 tmp = hw->wm_pipe[pipe];
  3271. /*
  3272. * For active pipes LP0 watermark is marked as
  3273. * enabled, and LP1+ watermaks as disabled since
  3274. * we can't really reverse compute them in case
  3275. * multiple pipes are active.
  3276. */
  3277. active->wm[0].enable = true;
  3278. active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
  3279. active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
  3280. active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
  3281. active->linetime = hw->wm_linetime[pipe];
  3282. } else {
  3283. int level, max_level = ilk_wm_max_level(dev);
  3284. /*
  3285. * For inactive pipes, all watermark levels
  3286. * should be marked as enabled but zeroed,
  3287. * which is what we'd compute them to.
  3288. */
  3289. for (level = 0; level <= max_level; level++)
  3290. active->wm[level].enable = true;
  3291. }
  3292. intel_crtc->wm.active.ilk = *active;
  3293. }
  3294. #define _FW_WM(value, plane) \
  3295. (((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
  3296. #define _FW_WM_VLV(value, plane) \
  3297. (((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
  3298. static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
  3299. struct vlv_wm_values *wm)
  3300. {
  3301. enum pipe pipe;
  3302. uint32_t tmp;
  3303. for_each_pipe(dev_priv, pipe) {
  3304. tmp = I915_READ(VLV_DDL(pipe));
  3305. wm->ddl[pipe].primary =
  3306. (tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
  3307. wm->ddl[pipe].cursor =
  3308. (tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
  3309. wm->ddl[pipe].sprite[0] =
  3310. (tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
  3311. wm->ddl[pipe].sprite[1] =
  3312. (tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
  3313. }
  3314. tmp = I915_READ(DSPFW1);
  3315. wm->sr.plane = _FW_WM(tmp, SR);
  3316. wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
  3317. wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
  3318. wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);
  3319. tmp = I915_READ(DSPFW2);
  3320. wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
  3321. wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
  3322. wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);
  3323. tmp = I915_READ(DSPFW3);
  3324. wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
  3325. if (IS_CHERRYVIEW(dev_priv)) {
  3326. tmp = I915_READ(DSPFW7_CHV);
  3327. wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
  3328. wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
  3329. tmp = I915_READ(DSPFW8_CHV);
  3330. wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
  3331. wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);
  3332. tmp = I915_READ(DSPFW9_CHV);
  3333. wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
  3334. wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);
  3335. tmp = I915_READ(DSPHOWM);
  3336. wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
  3337. wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
  3338. wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
  3339. wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
  3340. wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
  3341. wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
  3342. wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
  3343. wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
  3344. wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
  3345. wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
  3346. } else {
  3347. tmp = I915_READ(DSPFW7);
  3348. wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
  3349. wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
  3350. tmp = I915_READ(DSPHOWM);
  3351. wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
  3352. wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
  3353. wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
  3354. wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
  3355. wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
  3356. wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
  3357. wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
  3358. }
  3359. }
  3360. #undef _FW_WM
  3361. #undef _FW_WM_VLV
  3362. void vlv_wm_get_hw_state(struct drm_device *dev)
  3363. {
  3364. struct drm_i915_private *dev_priv = to_i915(dev);
  3365. struct vlv_wm_values *wm = &dev_priv->wm.vlv;
  3366. struct intel_plane *plane;
  3367. enum pipe pipe;
  3368. u32 val;
  3369. vlv_read_wm_values(dev_priv, wm);
  3370. for_each_intel_plane(dev, plane) {
  3371. switch (plane->base.type) {
  3372. int sprite;
  3373. case DRM_PLANE_TYPE_CURSOR:
  3374. plane->wm.fifo_size = 63;
  3375. break;
  3376. case DRM_PLANE_TYPE_PRIMARY:
  3377. plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, 0);
  3378. break;
  3379. case DRM_PLANE_TYPE_OVERLAY:
  3380. sprite = plane->plane;
  3381. plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, sprite + 1);
  3382. break;
  3383. }
  3384. }
  3385. wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
  3386. wm->level = VLV_WM_LEVEL_PM2;
  3387. if (IS_CHERRYVIEW(dev_priv)) {
  3388. mutex_lock(&dev_priv->rps.hw_lock);
  3389. val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
  3390. if (val & DSP_MAXFIFO_PM5_ENABLE)
  3391. wm->level = VLV_WM_LEVEL_PM5;
  3392. /*
  3393. * If DDR DVFS is disabled in the BIOS, Punit
  3394. * will never ack the request. So if that happens
  3395. * assume we don't have to enable/disable DDR DVFS
  3396. * dynamically. To test that just set the REQ_ACK
  3397. * bit to poke the Punit, but don't change the
  3398. * HIGH/LOW bits so that we don't actually change
  3399. * the current state.
  3400. */
  3401. val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
  3402. val |= FORCE_DDR_FREQ_REQ_ACK;
  3403. vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
  3404. if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
  3405. FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
  3406. DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
  3407. "assuming DDR DVFS is disabled\n");
  3408. dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
  3409. } else {
  3410. val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
  3411. if ((val & FORCE_DDR_HIGH_FREQ) == 0)
  3412. wm->level = VLV_WM_LEVEL_DDR_DVFS;
  3413. }
  3414. mutex_unlock(&dev_priv->rps.hw_lock);
  3415. }
  3416. for_each_pipe(dev_priv, pipe)
  3417. DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
  3418. pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
  3419. wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);
  3420. DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
  3421. wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
  3422. }
  3423. void ilk_wm_get_hw_state(struct drm_device *dev)
  3424. {
  3425. struct drm_i915_private *dev_priv = dev->dev_private;
  3426. struct ilk_wm_values *hw = &dev_priv->wm.hw;
  3427. struct drm_crtc *crtc;
  3428. for_each_crtc(dev, crtc)
  3429. ilk_pipe_wm_get_hw_state(crtc);
  3430. hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
  3431. hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
  3432. hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
  3433. hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
  3434. if (INTEL_INFO(dev)->gen >= 7) {
  3435. hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
  3436. hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
  3437. }
  3438. if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  3439. hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
  3440. INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
  3441. else if (IS_IVYBRIDGE(dev))
  3442. hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
  3443. INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
  3444. hw->enable_fbc_wm =
  3445. !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
  3446. }
  3447. /**
  3448. * intel_update_watermarks - update FIFO watermark values based on current modes
  3449. *
  3450. * Calculate watermark values for the various WM regs based on current mode
  3451. * and plane configuration.
  3452. *
  3453. * There are several cases to deal with here:
  3454. * - normal (i.e. non-self-refresh)
  3455. * - self-refresh (SR) mode
  3456. * - lines are large relative to FIFO size (buffer can hold up to 2)
  3457. * - lines are small relative to FIFO size (buffer can hold more than 2
  3458. * lines), so need to account for TLB latency
  3459. *
  3460. * The normal calculation is:
  3461. * watermark = dotclock * bytes per pixel * latency
  3462. * where latency is platform & configuration dependent (we assume pessimal
  3463. * values here).
  3464. *
  3465. * The SR calculation is:
  3466. * watermark = (trunc(latency/line time)+1) * surface width *
  3467. * bytes per pixel
  3468. * where
  3469. * line time = htotal / dotclock
  3470. * surface width = hdisplay for normal plane and 64 for cursor
  3471. * and latency is assumed to be high, as above.
  3472. *
  3473. * The final value programmed to the register should always be rounded up,
  3474. * and include an extra 2 entries to account for clock crossings.
  3475. *
  3476. * We don't use the sprite, so we can ignore that. And on Crestline we have
  3477. * to set the non-SR watermarks to 8.
  3478. */
  3479. void intel_update_watermarks(struct drm_crtc *crtc)
  3480. {
  3481. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  3482. if (dev_priv->display.update_wm)
  3483. dev_priv->display.update_wm(crtc);
  3484. }
  3485. /*
  3486. * Lock protecting IPS related data structures
  3487. */
  3488. DEFINE_SPINLOCK(mchdev_lock);
  3489. /* Global for IPS driver to get at the current i915 device. Protected by
  3490. * mchdev_lock. */
  3491. static struct drm_i915_private *i915_mch_dev;
  3492. bool ironlake_set_drps(struct drm_device *dev, u8 val)
  3493. {
  3494. struct drm_i915_private *dev_priv = dev->dev_private;
  3495. u16 rgvswctl;
  3496. assert_spin_locked(&mchdev_lock);
  3497. rgvswctl = I915_READ16(MEMSWCTL);
  3498. if (rgvswctl & MEMCTL_CMD_STS) {
  3499. DRM_DEBUG("gpu busy, RCS change rejected\n");
  3500. return false; /* still busy with another command */
  3501. }
  3502. rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
  3503. (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
  3504. I915_WRITE16(MEMSWCTL, rgvswctl);
  3505. POSTING_READ16(MEMSWCTL);
  3506. rgvswctl |= MEMCTL_CMD_STS;
  3507. I915_WRITE16(MEMSWCTL, rgvswctl);
  3508. return true;
  3509. }
  3510. static void ironlake_enable_drps(struct drm_device *dev)
  3511. {
  3512. struct drm_i915_private *dev_priv = dev->dev_private;
  3513. u32 rgvmodectl;
  3514. u8 fmax, fmin, fstart, vstart;
  3515. spin_lock_irq(&mchdev_lock);
  3516. rgvmodectl = I915_READ(MEMMODECTL);
  3517. /* Enable temp reporting */
  3518. I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
  3519. I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
  3520. /* 100ms RC evaluation intervals */
  3521. I915_WRITE(RCUPEI, 100000);
  3522. I915_WRITE(RCDNEI, 100000);
  3523. /* Set max/min thresholds to 90ms and 80ms respectively */
  3524. I915_WRITE(RCBMAXAVG, 90000);
  3525. I915_WRITE(RCBMINAVG, 80000);
  3526. I915_WRITE(MEMIHYST, 1);
  3527. /* Set up min, max, and cur for interrupt handling */
  3528. fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
  3529. fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
  3530. fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
  3531. MEMMODE_FSTART_SHIFT;
  3532. vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
  3533. PXVFREQ_PX_SHIFT;
  3534. dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
  3535. dev_priv->ips.fstart = fstart;
  3536. dev_priv->ips.max_delay = fstart;
  3537. dev_priv->ips.min_delay = fmin;
  3538. dev_priv->ips.cur_delay = fstart;
  3539. DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
  3540. fmax, fmin, fstart);
  3541. I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
  3542. /*
  3543. * Interrupts will be enabled in ironlake_irq_postinstall
  3544. */
  3545. I915_WRITE(VIDSTART, vstart);
  3546. POSTING_READ(VIDSTART);
  3547. rgvmodectl |= MEMMODE_SWMODE_EN;
  3548. I915_WRITE(MEMMODECTL, rgvmodectl);
  3549. if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
  3550. DRM_ERROR("stuck trying to change perf mode\n");
  3551. mdelay(1);
  3552. ironlake_set_drps(dev, fstart);
  3553. dev_priv->ips.last_count1 = I915_READ(DMIEC) +
  3554. I915_READ(DDREC) + I915_READ(CSIEC);
  3555. dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
  3556. dev_priv->ips.last_count2 = I915_READ(GFXEC);
  3557. dev_priv->ips.last_time2 = ktime_get_raw_ns();
  3558. spin_unlock_irq(&mchdev_lock);
  3559. }
  3560. static void ironlake_disable_drps(struct drm_device *dev)
  3561. {
  3562. struct drm_i915_private *dev_priv = dev->dev_private;
  3563. u16 rgvswctl;
  3564. spin_lock_irq(&mchdev_lock);
  3565. rgvswctl = I915_READ16(MEMSWCTL);
  3566. /* Ack interrupts, disable EFC interrupt */
  3567. I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
  3568. I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
  3569. I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
  3570. I915_WRITE(DEIIR, DE_PCU_EVENT);
  3571. I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
  3572. /* Go back to the starting frequency */
  3573. ironlake_set_drps(dev, dev_priv->ips.fstart);
  3574. mdelay(1);
  3575. rgvswctl |= MEMCTL_CMD_STS;
  3576. I915_WRITE(MEMSWCTL, rgvswctl);
  3577. mdelay(1);
  3578. spin_unlock_irq(&mchdev_lock);
  3579. }
  3580. /* There's a funny hw issue where the hw returns all 0 when reading from
  3581. * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
  3582. * ourselves, instead of doing a rmw cycle (which might result in us clearing
  3583. * all limits and the gpu stuck at whatever frequency it is at atm).
  3584. */
  3585. static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
  3586. {
  3587. u32 limits;
  3588. /* Only set the down limit when we've reached the lowest level to avoid
  3589. * getting more interrupts, otherwise leave this clear. This prevents a
  3590. * race in the hw when coming out of rc6: There's a tiny window where
  3591. * the hw runs at the minimal clock before selecting the desired
  3592. * frequency, if the down threshold expires in that window we will not
  3593. * receive a down interrupt. */
  3594. if (IS_GEN9(dev_priv)) {
  3595. limits = (dev_priv->rps.max_freq_softlimit) << 23;
  3596. if (val <= dev_priv->rps.min_freq_softlimit)
  3597. limits |= (dev_priv->rps.min_freq_softlimit) << 14;
  3598. } else {
  3599. limits = dev_priv->rps.max_freq_softlimit << 24;
  3600. if (val <= dev_priv->rps.min_freq_softlimit)
  3601. limits |= dev_priv->rps.min_freq_softlimit << 16;
  3602. }
  3603. return limits;
  3604. }
  3605. static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
  3606. {
  3607. int new_power;
  3608. u32 threshold_up = 0, threshold_down = 0; /* in % */
  3609. u32 ei_up = 0, ei_down = 0;
  3610. new_power = dev_priv->rps.power;
  3611. switch (dev_priv->rps.power) {
  3612. case LOW_POWER:
  3613. if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
  3614. new_power = BETWEEN;
  3615. break;
  3616. case BETWEEN:
  3617. if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
  3618. new_power = LOW_POWER;
  3619. else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
  3620. new_power = HIGH_POWER;
  3621. break;
  3622. case HIGH_POWER:
  3623. if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
  3624. new_power = BETWEEN;
  3625. break;
  3626. }
  3627. /* Max/min bins are special */
  3628. if (val <= dev_priv->rps.min_freq_softlimit)
  3629. new_power = LOW_POWER;
  3630. if (val >= dev_priv->rps.max_freq_softlimit)
  3631. new_power = HIGH_POWER;
  3632. if (new_power == dev_priv->rps.power)
  3633. return;
  3634. /* Note the units here are not exactly 1us, but 1280ns. */
  3635. switch (new_power) {
  3636. case LOW_POWER:
  3637. /* Upclock if more than 95% busy over 16ms */
  3638. ei_up = 16000;
  3639. threshold_up = 95;
  3640. /* Downclock if less than 85% busy over 32ms */
  3641. ei_down = 32000;
  3642. threshold_down = 85;
  3643. break;
  3644. case BETWEEN:
  3645. /* Upclock if more than 90% busy over 13ms */
  3646. ei_up = 13000;
  3647. threshold_up = 90;
  3648. /* Downclock if less than 75% busy over 32ms */
  3649. ei_down = 32000;
  3650. threshold_down = 75;
  3651. break;
  3652. case HIGH_POWER:
  3653. /* Upclock if more than 85% busy over 10ms */
  3654. ei_up = 10000;
  3655. threshold_up = 85;
  3656. /* Downclock if less than 60% busy over 32ms */
  3657. ei_down = 32000;
  3658. threshold_down = 60;
  3659. break;
  3660. }
  3661. I915_WRITE(GEN6_RP_UP_EI,
  3662. GT_INTERVAL_FROM_US(dev_priv, ei_up));
  3663. I915_WRITE(GEN6_RP_UP_THRESHOLD,
  3664. GT_INTERVAL_FROM_US(dev_priv, (ei_up * threshold_up / 100)));
  3665. I915_WRITE(GEN6_RP_DOWN_EI,
  3666. GT_INTERVAL_FROM_US(dev_priv, ei_down));
  3667. I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
  3668. GT_INTERVAL_FROM_US(dev_priv, (ei_down * threshold_down / 100)));
  3669. I915_WRITE(GEN6_RP_CONTROL,
  3670. GEN6_RP_MEDIA_TURBO |
  3671. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  3672. GEN6_RP_MEDIA_IS_GFX |
  3673. GEN6_RP_ENABLE |
  3674. GEN6_RP_UP_BUSY_AVG |
  3675. GEN6_RP_DOWN_IDLE_AVG);
  3676. dev_priv->rps.power = new_power;
  3677. dev_priv->rps.up_threshold = threshold_up;
  3678. dev_priv->rps.down_threshold = threshold_down;
  3679. dev_priv->rps.last_adj = 0;
  3680. }
  3681. static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
  3682. {
  3683. u32 mask = 0;
  3684. if (val > dev_priv->rps.min_freq_softlimit)
  3685. mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
  3686. if (val < dev_priv->rps.max_freq_softlimit)
  3687. mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
  3688. mask &= dev_priv->pm_rps_events;
  3689. return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
  3690. }
  3691. /* gen6_set_rps is called to update the frequency request, but should also be
  3692. * called when the range (min_delay and max_delay) is modified so that we can
  3693. * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
  3694. static void gen6_set_rps(struct drm_device *dev, u8 val)
  3695. {
  3696. struct drm_i915_private *dev_priv = dev->dev_private;
  3697. /* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
  3698. if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
  3699. return;
  3700. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  3701. WARN_ON(val > dev_priv->rps.max_freq);
  3702. WARN_ON(val < dev_priv->rps.min_freq);
  3703. /* min/max delay may still have been modified so be sure to
  3704. * write the limits value.
  3705. */
  3706. if (val != dev_priv->rps.cur_freq) {
  3707. gen6_set_rps_thresholds(dev_priv, val);
  3708. if (IS_GEN9(dev))
  3709. I915_WRITE(GEN6_RPNSWREQ,
  3710. GEN9_FREQUENCY(val));
  3711. else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  3712. I915_WRITE(GEN6_RPNSWREQ,
  3713. HSW_FREQUENCY(val));
  3714. else
  3715. I915_WRITE(GEN6_RPNSWREQ,
  3716. GEN6_FREQUENCY(val) |
  3717. GEN6_OFFSET(0) |
  3718. GEN6_AGGRESSIVE_TURBO);
  3719. }
  3720. /* Make sure we continue to get interrupts
  3721. * until we hit the minimum or maximum frequencies.
  3722. */
  3723. I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
  3724. I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
  3725. POSTING_READ(GEN6_RPNSWREQ);
  3726. dev_priv->rps.cur_freq = val;
  3727. trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
  3728. }
  3729. static void valleyview_set_rps(struct drm_device *dev, u8 val)
  3730. {
  3731. struct drm_i915_private *dev_priv = dev->dev_private;
  3732. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  3733. WARN_ON(val > dev_priv->rps.max_freq);
  3734. WARN_ON(val < dev_priv->rps.min_freq);
  3735. if (WARN_ONCE(IS_CHERRYVIEW(dev) && (val & 1),
  3736. "Odd GPU freq value\n"))
  3737. val &= ~1;
  3738. I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
  3739. if (val != dev_priv->rps.cur_freq) {
  3740. vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
  3741. if (!IS_CHERRYVIEW(dev_priv))
  3742. gen6_set_rps_thresholds(dev_priv, val);
  3743. }
  3744. dev_priv->rps.cur_freq = val;
  3745. trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
  3746. }
  3747. /* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
  3748. *
  3749. * * If Gfx is Idle, then
  3750. * 1. Forcewake Media well.
  3751. * 2. Request idle freq.
  3752. * 3. Release Forcewake of Media well.
  3753. */
  3754. static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
  3755. {
  3756. u32 val = dev_priv->rps.idle_freq;
  3757. if (dev_priv->rps.cur_freq <= val)
  3758. return;
  3759. /* Wake up the media well, as that takes a lot less
  3760. * power than the Render well. */
  3761. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
  3762. valleyview_set_rps(dev_priv->dev, val);
  3763. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
  3764. }
  3765. void gen6_rps_busy(struct drm_i915_private *dev_priv)
  3766. {
  3767. mutex_lock(&dev_priv->rps.hw_lock);
  3768. if (dev_priv->rps.enabled) {
  3769. if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
  3770. gen6_rps_reset_ei(dev_priv);
  3771. I915_WRITE(GEN6_PMINTRMSK,
  3772. gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
  3773. }
  3774. mutex_unlock(&dev_priv->rps.hw_lock);
  3775. }
  3776. void gen6_rps_idle(struct drm_i915_private *dev_priv)
  3777. {
  3778. struct drm_device *dev = dev_priv->dev;
  3779. mutex_lock(&dev_priv->rps.hw_lock);
  3780. if (dev_priv->rps.enabled) {
  3781. if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
  3782. vlv_set_rps_idle(dev_priv);
  3783. else
  3784. gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
  3785. dev_priv->rps.last_adj = 0;
  3786. I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
  3787. }
  3788. mutex_unlock(&dev_priv->rps.hw_lock);
  3789. spin_lock(&dev_priv->rps.client_lock);
  3790. while (!list_empty(&dev_priv->rps.clients))
  3791. list_del_init(dev_priv->rps.clients.next);
  3792. spin_unlock(&dev_priv->rps.client_lock);
  3793. }
  3794. void gen6_rps_boost(struct drm_i915_private *dev_priv,
  3795. struct intel_rps_client *rps,
  3796. unsigned long submitted)
  3797. {
  3798. /* This is intentionally racy! We peek at the state here, then
  3799. * validate inside the RPS worker.
  3800. */
  3801. if (!(dev_priv->mm.busy &&
  3802. dev_priv->rps.enabled &&
  3803. dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit))
  3804. return;
  3805. /* Force a RPS boost (and don't count it against the client) if
  3806. * the GPU is severely congested.
  3807. */
  3808. if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
  3809. rps = NULL;
  3810. spin_lock(&dev_priv->rps.client_lock);
  3811. if (rps == NULL || list_empty(&rps->link)) {
  3812. spin_lock_irq(&dev_priv->irq_lock);
  3813. if (dev_priv->rps.interrupts_enabled) {
  3814. dev_priv->rps.client_boost = true;
  3815. queue_work(dev_priv->wq, &dev_priv->rps.work);
  3816. }
  3817. spin_unlock_irq(&dev_priv->irq_lock);
  3818. if (rps != NULL) {
  3819. list_add(&rps->link, &dev_priv->rps.clients);
  3820. rps->boosts++;
  3821. } else
  3822. dev_priv->rps.boosts++;
  3823. }
  3824. spin_unlock(&dev_priv->rps.client_lock);
  3825. }
  3826. void intel_set_rps(struct drm_device *dev, u8 val)
  3827. {
  3828. if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
  3829. valleyview_set_rps(dev, val);
  3830. else
  3831. gen6_set_rps(dev, val);
  3832. }
  3833. static void gen9_disable_rc6(struct drm_device *dev)
  3834. {
  3835. struct drm_i915_private *dev_priv = dev->dev_private;
  3836. I915_WRITE(GEN6_RC_CONTROL, 0);
  3837. I915_WRITE(GEN9_PG_ENABLE, 0);
  3838. }
  3839. static void gen9_disable_rps(struct drm_device *dev)
  3840. {
  3841. struct drm_i915_private *dev_priv = dev->dev_private;
  3842. I915_WRITE(GEN6_RP_CONTROL, 0);
  3843. }
  3844. static void gen6_disable_rps(struct drm_device *dev)
  3845. {
  3846. struct drm_i915_private *dev_priv = dev->dev_private;
  3847. I915_WRITE(GEN6_RC_CONTROL, 0);
  3848. I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
  3849. I915_WRITE(GEN6_RP_CONTROL, 0);
  3850. }
  3851. static void cherryview_disable_rps(struct drm_device *dev)
  3852. {
  3853. struct drm_i915_private *dev_priv = dev->dev_private;
  3854. I915_WRITE(GEN6_RC_CONTROL, 0);
  3855. }
  3856. static void valleyview_disable_rps(struct drm_device *dev)
  3857. {
  3858. struct drm_i915_private *dev_priv = dev->dev_private;
  3859. /* we're doing forcewake before Disabling RC6,
  3860. * This what the BIOS expects when going into suspend */
  3861. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  3862. I915_WRITE(GEN6_RC_CONTROL, 0);
  3863. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  3864. }
  3865. static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
  3866. {
  3867. if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
  3868. if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
  3869. mode = GEN6_RC_CTL_RC6_ENABLE;
  3870. else
  3871. mode = 0;
  3872. }
  3873. if (HAS_RC6p(dev))
  3874. DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s RC6p %s RC6pp %s\n",
  3875. onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
  3876. onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
  3877. onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
  3878. else
  3879. DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s\n",
  3880. onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
  3881. }
  3882. static bool bxt_check_bios_rc6_setup(const struct drm_device *dev)
  3883. {
  3884. struct drm_i915_private *dev_priv = to_i915(dev);
  3885. struct i915_ggtt *ggtt = &dev_priv->ggtt;
  3886. bool enable_rc6 = true;
  3887. unsigned long rc6_ctx_base;
  3888. if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
  3889. DRM_DEBUG_KMS("RC6 Base location not set properly.\n");
  3890. enable_rc6 = false;
  3891. }
  3892. /*
  3893. * The exact context size is not known for BXT, so assume a page size
  3894. * for this check.
  3895. */
  3896. rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
  3897. if (!((rc6_ctx_base >= ggtt->stolen_reserved_base) &&
  3898. (rc6_ctx_base + PAGE_SIZE <= ggtt->stolen_reserved_base +
  3899. ggtt->stolen_reserved_size))) {
  3900. DRM_DEBUG_KMS("RC6 Base address not as expected.\n");
  3901. enable_rc6 = false;
  3902. }
  3903. if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
  3904. ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
  3905. ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
  3906. ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
  3907. DRM_DEBUG_KMS("Engine Idle wait time not set properly.\n");
  3908. enable_rc6 = false;
  3909. }
  3910. if (!(I915_READ(GEN6_RC_CONTROL) & (GEN6_RC_CTL_RC6_ENABLE |
  3911. GEN6_RC_CTL_HW_ENABLE)) &&
  3912. ((I915_READ(GEN6_RC_CONTROL) & GEN6_RC_CTL_HW_ENABLE) ||
  3913. !(I915_READ(GEN6_RC_STATE) & RC6_STATE))) {
  3914. DRM_DEBUG_KMS("HW/SW RC6 is not enabled by BIOS.\n");
  3915. enable_rc6 = false;
  3916. }
  3917. return enable_rc6;
  3918. }
  3919. int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
  3920. {
  3921. /* No RC6 before Ironlake and code is gone for ilk. */
  3922. if (INTEL_INFO(dev)->gen < 6)
  3923. return 0;
  3924. if (!enable_rc6)
  3925. return 0;
  3926. if (IS_BROXTON(dev) && !bxt_check_bios_rc6_setup(dev)) {
  3927. DRM_INFO("RC6 disabled by BIOS\n");
  3928. return 0;
  3929. }
  3930. /* Respect the kernel parameter if it is set */
  3931. if (enable_rc6 >= 0) {
  3932. int mask;
  3933. if (HAS_RC6p(dev))
  3934. mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
  3935. INTEL_RC6pp_ENABLE;
  3936. else
  3937. mask = INTEL_RC6_ENABLE;
  3938. if ((enable_rc6 & mask) != enable_rc6)
  3939. DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
  3940. enable_rc6 & mask, enable_rc6, mask);
  3941. return enable_rc6 & mask;
  3942. }
  3943. if (IS_IVYBRIDGE(dev))
  3944. return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
  3945. return INTEL_RC6_ENABLE;
  3946. }
  3947. int intel_enable_rc6(const struct drm_device *dev)
  3948. {
  3949. return i915.enable_rc6;
  3950. }
  3951. static void gen6_init_rps_frequencies(struct drm_device *dev)
  3952. {
  3953. struct drm_i915_private *dev_priv = dev->dev_private;
  3954. uint32_t rp_state_cap;
  3955. u32 ddcc_status = 0;
  3956. int ret;
  3957. /* All of these values are in units of 50MHz */
  3958. dev_priv->rps.cur_freq = 0;
  3959. /* static values from HW: RP0 > RP1 > RPn (min_freq) */
  3960. if (IS_BROXTON(dev)) {
  3961. rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
  3962. dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
  3963. dev_priv->rps.rp1_freq = (rp_state_cap >> 8) & 0xff;
  3964. dev_priv->rps.min_freq = (rp_state_cap >> 0) & 0xff;
  3965. } else {
  3966. rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  3967. dev_priv->rps.rp0_freq = (rp_state_cap >> 0) & 0xff;
  3968. dev_priv->rps.rp1_freq = (rp_state_cap >> 8) & 0xff;
  3969. dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
  3970. }
  3971. /* hw_max = RP0 until we check for overclocking */
  3972. dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
  3973. dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
  3974. if (IS_HASWELL(dev) || IS_BROADWELL(dev) ||
  3975. IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
  3976. ret = sandybridge_pcode_read(dev_priv,
  3977. HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
  3978. &ddcc_status);
  3979. if (0 == ret)
  3980. dev_priv->rps.efficient_freq =
  3981. clamp_t(u8,
  3982. ((ddcc_status >> 8) & 0xff),
  3983. dev_priv->rps.min_freq,
  3984. dev_priv->rps.max_freq);
  3985. }
  3986. if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
  3987. /* Store the frequency values in 16.66 MHZ units, which is
  3988. the natural hardware unit for SKL */
  3989. dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
  3990. dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
  3991. dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
  3992. dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
  3993. dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
  3994. }
  3995. dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
  3996. /* Preserve min/max settings in case of re-init */
  3997. if (dev_priv->rps.max_freq_softlimit == 0)
  3998. dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
  3999. if (dev_priv->rps.min_freq_softlimit == 0) {
  4000. if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  4001. dev_priv->rps.min_freq_softlimit =
  4002. max_t(int, dev_priv->rps.efficient_freq,
  4003. intel_freq_opcode(dev_priv, 450));
  4004. else
  4005. dev_priv->rps.min_freq_softlimit =
  4006. dev_priv->rps.min_freq;
  4007. }
  4008. }
  4009. /* See the Gen9_GT_PM_Programming_Guide doc for the below */
  4010. static void gen9_enable_rps(struct drm_device *dev)
  4011. {
  4012. struct drm_i915_private *dev_priv = dev->dev_private;
  4013. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  4014. gen6_init_rps_frequencies(dev);
  4015. /* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
  4016. if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
  4017. /*
  4018. * BIOS could leave the Hw Turbo enabled, so need to explicitly
  4019. * clear out the Control register just to avoid inconsitency
  4020. * with debugfs interface, which will show Turbo as enabled
  4021. * only and that is not expected by the User after adding the
  4022. * WaGsvDisableTurbo. Apart from this there is no problem even
  4023. * if the Turbo is left enabled in the Control register, as the
  4024. * Up/Down interrupts would remain masked.
  4025. */
  4026. gen9_disable_rps(dev);
  4027. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  4028. return;
  4029. }
  4030. /* Program defaults and thresholds for RPS*/
  4031. I915_WRITE(GEN6_RC_VIDEO_FREQ,
  4032. GEN9_FREQUENCY(dev_priv->rps.rp1_freq));
  4033. /* 1 second timeout*/
  4034. I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
  4035. GT_INTERVAL_FROM_US(dev_priv, 1000000));
  4036. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
  4037. /* Leaning on the below call to gen6_set_rps to program/setup the
  4038. * Up/Down EI & threshold registers, as well as the RP_CONTROL,
  4039. * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
  4040. dev_priv->rps.power = HIGH_POWER; /* force a reset */
  4041. gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
  4042. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  4043. }
  4044. static void gen9_enable_rc6(struct drm_device *dev)
  4045. {
  4046. struct drm_i915_private *dev_priv = dev->dev_private;
  4047. struct intel_engine_cs *engine;
  4048. uint32_t rc6_mask = 0;
  4049. /* 1a: Software RC state - RC0 */
  4050. I915_WRITE(GEN6_RC_STATE, 0);
  4051. /* 1b: Get forcewake during program sequence. Although the driver
  4052. * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
  4053. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  4054. /* 2a: Disable RC states. */
  4055. I915_WRITE(GEN6_RC_CONTROL, 0);
  4056. /* 2b: Program RC6 thresholds.*/
  4057. /* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
  4058. if (IS_SKYLAKE(dev))
  4059. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
  4060. else
  4061. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
  4062. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
  4063. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
  4064. for_each_engine(engine, dev_priv)
  4065. I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
  4066. if (HAS_GUC_UCODE(dev))
  4067. I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
  4068. I915_WRITE(GEN6_RC_SLEEP, 0);
  4069. /* 2c: Program Coarse Power Gating Policies. */
  4070. I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
  4071. I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);
  4072. /* 3a: Enable RC6 */
  4073. if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
  4074. rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
  4075. DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
  4076. /* WaRsUseTimeoutMode */
  4077. if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
  4078. IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
  4079. I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
  4080. I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
  4081. GEN7_RC_CTL_TO_MODE |
  4082. rc6_mask);
  4083. } else {
  4084. I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
  4085. I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
  4086. GEN6_RC_CTL_EI_MODE(1) |
  4087. rc6_mask);
  4088. }
  4089. /*
  4090. * 3b: Enable Coarse Power Gating only when RC6 is enabled.
  4091. * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
  4092. */
  4093. if (NEEDS_WaRsDisableCoarsePowerGating(dev))
  4094. I915_WRITE(GEN9_PG_ENABLE, 0);
  4095. else
  4096. I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
  4097. (GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
  4098. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  4099. }
  4100. static void gen8_enable_rps(struct drm_device *dev)
  4101. {
  4102. struct drm_i915_private *dev_priv = dev->dev_private;
  4103. struct intel_engine_cs *engine;
  4104. uint32_t rc6_mask = 0;
  4105. /* 1a: Software RC state - RC0 */
  4106. I915_WRITE(GEN6_RC_STATE, 0);
  4107. /* 1c & 1d: Get forcewake during program sequence. Although the driver
  4108. * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
  4109. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  4110. /* 2a: Disable RC states. */
  4111. I915_WRITE(GEN6_RC_CONTROL, 0);
  4112. /* Initialize rps frequencies */
  4113. gen6_init_rps_frequencies(dev);
  4114. /* 2b: Program RC6 thresholds.*/
  4115. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
  4116. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
  4117. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
  4118. for_each_engine(engine, dev_priv)
  4119. I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
  4120. I915_WRITE(GEN6_RC_SLEEP, 0);
  4121. if (IS_BROADWELL(dev))
  4122. I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
  4123. else
  4124. I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
  4125. /* 3: Enable RC6 */
  4126. if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
  4127. rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
  4128. intel_print_rc6_info(dev, rc6_mask);
  4129. if (IS_BROADWELL(dev))
  4130. I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
  4131. GEN7_RC_CTL_TO_MODE |
  4132. rc6_mask);
  4133. else
  4134. I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
  4135. GEN6_RC_CTL_EI_MODE(1) |
  4136. rc6_mask);
  4137. /* 4 Program defaults and thresholds for RPS*/
  4138. I915_WRITE(GEN6_RPNSWREQ,
  4139. HSW_FREQUENCY(dev_priv->rps.rp1_freq));
  4140. I915_WRITE(GEN6_RC_VIDEO_FREQ,
  4141. HSW_FREQUENCY(dev_priv->rps.rp1_freq));
  4142. /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
  4143. I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
  4144. /* Docs recommend 900MHz, and 300 MHz respectively */
  4145. I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
  4146. dev_priv->rps.max_freq_softlimit << 24 |
  4147. dev_priv->rps.min_freq_softlimit << 16);
  4148. I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
  4149. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
  4150. I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
  4151. I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
  4152. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  4153. /* 5: Enable RPS */
  4154. I915_WRITE(GEN6_RP_CONTROL,
  4155. GEN6_RP_MEDIA_TURBO |
  4156. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  4157. GEN6_RP_MEDIA_IS_GFX |
  4158. GEN6_RP_ENABLE |
  4159. GEN6_RP_UP_BUSY_AVG |
  4160. GEN6_RP_DOWN_IDLE_AVG);
  4161. /* 6: Ring frequency + overclocking (our driver does this later */
  4162. dev_priv->rps.power = HIGH_POWER; /* force a reset */
  4163. gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
  4164. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  4165. }
  4166. static void gen6_enable_rps(struct drm_device *dev)
  4167. {
  4168. struct drm_i915_private *dev_priv = dev->dev_private;
  4169. struct intel_engine_cs *engine;
  4170. u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
  4171. u32 gtfifodbg;
  4172. int rc6_mode;
  4173. int ret;
  4174. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  4175. /* Here begins a magic sequence of register writes to enable
  4176. * auto-downclocking.
  4177. *
  4178. * Perhaps there might be some value in exposing these to
  4179. * userspace...
  4180. */
  4181. I915_WRITE(GEN6_RC_STATE, 0);
  4182. /* Clear the DBG now so we don't confuse earlier errors */
  4183. gtfifodbg = I915_READ(GTFIFODBG);
  4184. if (gtfifodbg) {
  4185. DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
  4186. I915_WRITE(GTFIFODBG, gtfifodbg);
  4187. }
  4188. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  4189. /* Initialize rps frequencies */
  4190. gen6_init_rps_frequencies(dev);
  4191. /* disable the counters and set deterministic thresholds */
  4192. I915_WRITE(GEN6_RC_CONTROL, 0);
  4193. I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
  4194. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
  4195. I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
  4196. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
  4197. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
  4198. for_each_engine(engine, dev_priv)
  4199. I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
  4200. I915_WRITE(GEN6_RC_SLEEP, 0);
  4201. I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
  4202. if (IS_IVYBRIDGE(dev))
  4203. I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
  4204. else
  4205. I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
  4206. I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
  4207. I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
  4208. /* Check if we are enabling RC6 */
  4209. rc6_mode = intel_enable_rc6(dev_priv->dev);
  4210. if (rc6_mode & INTEL_RC6_ENABLE)
  4211. rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
  4212. /* We don't use those on Haswell */
  4213. if (!IS_HASWELL(dev)) {
  4214. if (rc6_mode & INTEL_RC6p_ENABLE)
  4215. rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
  4216. if (rc6_mode & INTEL_RC6pp_ENABLE)
  4217. rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
  4218. }
  4219. intel_print_rc6_info(dev, rc6_mask);
  4220. I915_WRITE(GEN6_RC_CONTROL,
  4221. rc6_mask |
  4222. GEN6_RC_CTL_EI_MODE(1) |
  4223. GEN6_RC_CTL_HW_ENABLE);
  4224. /* Power down if completely idle for over 50ms */
  4225. I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
  4226. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  4227. ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
  4228. if (ret)
  4229. DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
  4230. ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
  4231. if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
  4232. DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
  4233. (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
  4234. (pcu_mbox & 0xff) * 50);
  4235. dev_priv->rps.max_freq = pcu_mbox & 0xff;
  4236. }
  4237. dev_priv->rps.power = HIGH_POWER; /* force a reset */
  4238. gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
  4239. rc6vids = 0;
  4240. ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
  4241. if (IS_GEN6(dev) && ret) {
  4242. DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
  4243. } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
  4244. DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
  4245. GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
  4246. rc6vids &= 0xffff00;
  4247. rc6vids |= GEN6_ENCODE_RC6_VID(450);
  4248. ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
  4249. if (ret)
  4250. DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
  4251. }
  4252. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  4253. }
  4254. static void __gen6_update_ring_freq(struct drm_device *dev)
  4255. {
  4256. struct drm_i915_private *dev_priv = dev->dev_private;
  4257. int min_freq = 15;
  4258. unsigned int gpu_freq;
  4259. unsigned int max_ia_freq, min_ring_freq;
  4260. unsigned int max_gpu_freq, min_gpu_freq;
  4261. int scaling_factor = 180;
  4262. struct cpufreq_policy *policy;
  4263. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  4264. policy = cpufreq_cpu_get(0);
  4265. if (policy) {
  4266. max_ia_freq = policy->cpuinfo.max_freq;
  4267. cpufreq_cpu_put(policy);
  4268. } else {
  4269. /*
  4270. * Default to measured freq if none found, PCU will ensure we
  4271. * don't go over
  4272. */
  4273. max_ia_freq = tsc_khz;
  4274. }
  4275. /* Convert from kHz to MHz */
  4276. max_ia_freq /= 1000;
  4277. min_ring_freq = I915_READ(DCLK) & 0xf;
  4278. /* convert DDR frequency from units of 266.6MHz to bandwidth */
  4279. min_ring_freq = mult_frac(min_ring_freq, 8, 3);
  4280. if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
  4281. /* Convert GT frequency to 50 HZ units */
  4282. min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
  4283. max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
  4284. } else {
  4285. min_gpu_freq = dev_priv->rps.min_freq;
  4286. max_gpu_freq = dev_priv->rps.max_freq;
  4287. }
  4288. /*
  4289. * For each potential GPU frequency, load a ring frequency we'd like
  4290. * to use for memory access. We do this by specifying the IA frequency
  4291. * the PCU should use as a reference to determine the ring frequency.
  4292. */
  4293. for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
  4294. int diff = max_gpu_freq - gpu_freq;
  4295. unsigned int ia_freq = 0, ring_freq = 0;
  4296. if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
  4297. /*
  4298. * ring_freq = 2 * GT. ring_freq is in 100MHz units
  4299. * No floor required for ring frequency on SKL.
  4300. */
  4301. ring_freq = gpu_freq;
  4302. } else if (INTEL_INFO(dev)->gen >= 8) {
  4303. /* max(2 * GT, DDR). NB: GT is 50MHz units */
  4304. ring_freq = max(min_ring_freq, gpu_freq);
  4305. } else if (IS_HASWELL(dev)) {
  4306. ring_freq = mult_frac(gpu_freq, 5, 4);
  4307. ring_freq = max(min_ring_freq, ring_freq);
  4308. /* leave ia_freq as the default, chosen by cpufreq */
  4309. } else {
  4310. /* On older processors, there is no separate ring
  4311. * clock domain, so in order to boost the bandwidth
  4312. * of the ring, we need to upclock the CPU (ia_freq).
  4313. *
  4314. * For GPU frequencies less than 750MHz,
  4315. * just use the lowest ring freq.
  4316. */
  4317. if (gpu_freq < min_freq)
  4318. ia_freq = 800;
  4319. else
  4320. ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
  4321. ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
  4322. }
  4323. sandybridge_pcode_write(dev_priv,
  4324. GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
  4325. ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
  4326. ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
  4327. gpu_freq);
  4328. }
  4329. }
  4330. void gen6_update_ring_freq(struct drm_device *dev)
  4331. {
  4332. struct drm_i915_private *dev_priv = dev->dev_private;
  4333. if (!HAS_CORE_RING_FREQ(dev))
  4334. return;
  4335. mutex_lock(&dev_priv->rps.hw_lock);
  4336. __gen6_update_ring_freq(dev);
  4337. mutex_unlock(&dev_priv->rps.hw_lock);
  4338. }
  4339. static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
  4340. {
  4341. struct drm_device *dev = dev_priv->dev;
  4342. u32 val, rp0;
  4343. val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
  4344. switch (INTEL_INFO(dev)->eu_total) {
  4345. case 8:
  4346. /* (2 * 4) config */
  4347. rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
  4348. break;
  4349. case 12:
  4350. /* (2 * 6) config */
  4351. rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
  4352. break;
  4353. case 16:
  4354. /* (2 * 8) config */
  4355. default:
  4356. /* Setting (2 * 8) Min RP0 for any other combination */
  4357. rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
  4358. break;
  4359. }
  4360. rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
  4361. return rp0;
  4362. }
  4363. static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
  4364. {
  4365. u32 val, rpe;
  4366. val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
  4367. rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
  4368. return rpe;
  4369. }
  4370. static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
  4371. {
  4372. u32 val, rp1;
  4373. val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
  4374. rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
  4375. return rp1;
  4376. }
  4377. static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
  4378. {
  4379. u32 val, rp1;
  4380. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
  4381. rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
  4382. return rp1;
  4383. }
  4384. static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
  4385. {
  4386. u32 val, rp0;
  4387. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
  4388. rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
  4389. /* Clamp to max */
  4390. rp0 = min_t(u32, rp0, 0xea);
  4391. return rp0;
  4392. }
  4393. static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
  4394. {
  4395. u32 val, rpe;
  4396. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
  4397. rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
  4398. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
  4399. rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
  4400. return rpe;
  4401. }
  4402. static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
  4403. {
  4404. u32 val;
  4405. val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
  4406. /*
  4407. * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
  4408. * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
  4409. * a BYT-M B0 the above register contains 0xbf. Moreover when setting
  4410. * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
  4411. * to make sure it matches what Punit accepts.
  4412. */
  4413. return max_t(u32, val, 0xc0);
  4414. }
  4415. /* Check that the pctx buffer wasn't move under us. */
  4416. static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
  4417. {
  4418. unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
  4419. WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
  4420. dev_priv->vlv_pctx->stolen->start);
  4421. }
  4422. /* Check that the pcbr address is not empty. */
  4423. static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
  4424. {
  4425. unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
  4426. WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
  4427. }
  4428. static void cherryview_setup_pctx(struct drm_device *dev)
  4429. {
  4430. struct drm_i915_private *dev_priv = to_i915(dev);
  4431. struct i915_ggtt *ggtt = &dev_priv->ggtt;
  4432. unsigned long pctx_paddr, paddr;
  4433. u32 pcbr;
  4434. int pctx_size = 32*1024;
  4435. pcbr = I915_READ(VLV_PCBR);
  4436. if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
  4437. DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
  4438. paddr = (dev_priv->mm.stolen_base +
  4439. (ggtt->stolen_size - pctx_size));
  4440. pctx_paddr = (paddr & (~4095));
  4441. I915_WRITE(VLV_PCBR, pctx_paddr);
  4442. }
  4443. DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
  4444. }
  4445. static void valleyview_setup_pctx(struct drm_device *dev)
  4446. {
  4447. struct drm_i915_private *dev_priv = dev->dev_private;
  4448. struct drm_i915_gem_object *pctx;
  4449. unsigned long pctx_paddr;
  4450. u32 pcbr;
  4451. int pctx_size = 24*1024;
  4452. mutex_lock(&dev->struct_mutex);
  4453. pcbr = I915_READ(VLV_PCBR);
  4454. if (pcbr) {
  4455. /* BIOS set it up already, grab the pre-alloc'd space */
  4456. int pcbr_offset;
  4457. pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
  4458. pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
  4459. pcbr_offset,
  4460. I915_GTT_OFFSET_NONE,
  4461. pctx_size);
  4462. goto out;
  4463. }
  4464. DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
  4465. /*
  4466. * From the Gunit register HAS:
  4467. * The Gfx driver is expected to program this register and ensure
  4468. * proper allocation within Gfx stolen memory. For example, this
  4469. * register should be programmed such than the PCBR range does not
  4470. * overlap with other ranges, such as the frame buffer, protected
  4471. * memory, or any other relevant ranges.
  4472. */
  4473. pctx = i915_gem_object_create_stolen(dev, pctx_size);
  4474. if (!pctx) {
  4475. DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
  4476. goto out;
  4477. }
  4478. pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
  4479. I915_WRITE(VLV_PCBR, pctx_paddr);
  4480. out:
  4481. DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
  4482. dev_priv->vlv_pctx = pctx;
  4483. mutex_unlock(&dev->struct_mutex);
  4484. }
  4485. static void valleyview_cleanup_pctx(struct drm_device *dev)
  4486. {
  4487. struct drm_i915_private *dev_priv = dev->dev_private;
  4488. if (WARN_ON(!dev_priv->vlv_pctx))
  4489. return;
  4490. drm_gem_object_unreference_unlocked(&dev_priv->vlv_pctx->base);
  4491. dev_priv->vlv_pctx = NULL;
  4492. }
  4493. static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
  4494. {
  4495. dev_priv->rps.gpll_ref_freq =
  4496. vlv_get_cck_clock(dev_priv, "GPLL ref",
  4497. CCK_GPLL_CLOCK_CONTROL,
  4498. dev_priv->czclk_freq);
  4499. DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
  4500. dev_priv->rps.gpll_ref_freq);
  4501. }
  4502. static void valleyview_init_gt_powersave(struct drm_device *dev)
  4503. {
  4504. struct drm_i915_private *dev_priv = dev->dev_private;
  4505. u32 val;
  4506. valleyview_setup_pctx(dev);
  4507. vlv_init_gpll_ref_freq(dev_priv);
  4508. mutex_lock(&dev_priv->rps.hw_lock);
  4509. val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  4510. switch ((val >> 6) & 3) {
  4511. case 0:
  4512. case 1:
  4513. dev_priv->mem_freq = 800;
  4514. break;
  4515. case 2:
  4516. dev_priv->mem_freq = 1066;
  4517. break;
  4518. case 3:
  4519. dev_priv->mem_freq = 1333;
  4520. break;
  4521. }
  4522. DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
  4523. dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
  4524. dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
  4525. DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
  4526. intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
  4527. dev_priv->rps.max_freq);
  4528. dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
  4529. DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
  4530. intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
  4531. dev_priv->rps.efficient_freq);
  4532. dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
  4533. DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
  4534. intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
  4535. dev_priv->rps.rp1_freq);
  4536. dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
  4537. DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
  4538. intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
  4539. dev_priv->rps.min_freq);
  4540. dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
  4541. /* Preserve min/max settings in case of re-init */
  4542. if (dev_priv->rps.max_freq_softlimit == 0)
  4543. dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
  4544. if (dev_priv->rps.min_freq_softlimit == 0)
  4545. dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
  4546. mutex_unlock(&dev_priv->rps.hw_lock);
  4547. }
  4548. static void cherryview_init_gt_powersave(struct drm_device *dev)
  4549. {
  4550. struct drm_i915_private *dev_priv = dev->dev_private;
  4551. u32 val;
  4552. cherryview_setup_pctx(dev);
  4553. vlv_init_gpll_ref_freq(dev_priv);
  4554. mutex_lock(&dev_priv->rps.hw_lock);
  4555. mutex_lock(&dev_priv->sb_lock);
  4556. val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
  4557. mutex_unlock(&dev_priv->sb_lock);
  4558. switch ((val >> 2) & 0x7) {
  4559. case 3:
  4560. dev_priv->mem_freq = 2000;
  4561. break;
  4562. default:
  4563. dev_priv->mem_freq = 1600;
  4564. break;
  4565. }
  4566. DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
  4567. dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
  4568. dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
  4569. DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
  4570. intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
  4571. dev_priv->rps.max_freq);
  4572. dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
  4573. DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
  4574. intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
  4575. dev_priv->rps.efficient_freq);
  4576. dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
  4577. DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
  4578. intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
  4579. dev_priv->rps.rp1_freq);
  4580. /* PUnit validated range is only [RPe, RP0] */
  4581. dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
  4582. DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
  4583. intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
  4584. dev_priv->rps.min_freq);
  4585. WARN_ONCE((dev_priv->rps.max_freq |
  4586. dev_priv->rps.efficient_freq |
  4587. dev_priv->rps.rp1_freq |
  4588. dev_priv->rps.min_freq) & 1,
  4589. "Odd GPU freq values\n");
  4590. dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
  4591. /* Preserve min/max settings in case of re-init */
  4592. if (dev_priv->rps.max_freq_softlimit == 0)
  4593. dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
  4594. if (dev_priv->rps.min_freq_softlimit == 0)
  4595. dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
  4596. mutex_unlock(&dev_priv->rps.hw_lock);
  4597. }
  4598. static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
  4599. {
  4600. valleyview_cleanup_pctx(dev);
  4601. }
  4602. static void cherryview_enable_rps(struct drm_device *dev)
  4603. {
  4604. struct drm_i915_private *dev_priv = dev->dev_private;
  4605. struct intel_engine_cs *engine;
  4606. u32 gtfifodbg, val, rc6_mode = 0, pcbr;
  4607. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  4608. gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
  4609. GT_FIFO_FREE_ENTRIES_CHV);
  4610. if (gtfifodbg) {
  4611. DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
  4612. gtfifodbg);
  4613. I915_WRITE(GTFIFODBG, gtfifodbg);
  4614. }
  4615. cherryview_check_pctx(dev_priv);
  4616. /* 1a & 1b: Get forcewake during program sequence. Although the driver
  4617. * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
  4618. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  4619. /* Disable RC states. */
  4620. I915_WRITE(GEN6_RC_CONTROL, 0);
  4621. /* 2a: Program RC6 thresholds.*/
  4622. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
  4623. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
  4624. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
  4625. for_each_engine(engine, dev_priv)
  4626. I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
  4627. I915_WRITE(GEN6_RC_SLEEP, 0);
  4628. /* TO threshold set to 500 us ( 0x186 * 1.28 us) */
  4629. I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
  4630. /* allows RC6 residency counter to work */
  4631. I915_WRITE(VLV_COUNTER_CONTROL,
  4632. _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
  4633. VLV_MEDIA_RC6_COUNT_EN |
  4634. VLV_RENDER_RC6_COUNT_EN));
  4635. /* For now we assume BIOS is allocating and populating the PCBR */
  4636. pcbr = I915_READ(VLV_PCBR);
  4637. /* 3: Enable RC6 */
  4638. if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
  4639. (pcbr >> VLV_PCBR_ADDR_SHIFT))
  4640. rc6_mode = GEN7_RC_CTL_TO_MODE;
  4641. I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
  4642. /* 4 Program defaults and thresholds for RPS*/
  4643. I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
  4644. I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
  4645. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
  4646. I915_WRITE(GEN6_RP_UP_EI, 66000);
  4647. I915_WRITE(GEN6_RP_DOWN_EI, 350000);
  4648. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  4649. /* 5: Enable RPS */
  4650. I915_WRITE(GEN6_RP_CONTROL,
  4651. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  4652. GEN6_RP_MEDIA_IS_GFX |
  4653. GEN6_RP_ENABLE |
  4654. GEN6_RP_UP_BUSY_AVG |
  4655. GEN6_RP_DOWN_IDLE_AVG);
  4656. /* Setting Fixed Bias */
  4657. val = VLV_OVERRIDE_EN |
  4658. VLV_SOC_TDP_EN |
  4659. CHV_BIAS_CPU_50_SOC_50;
  4660. vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
  4661. val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  4662. /* RPS code assumes GPLL is used */
  4663. WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
  4664. DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
  4665. DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
  4666. dev_priv->rps.cur_freq = (val >> 8) & 0xff;
  4667. DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
  4668. intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
  4669. dev_priv->rps.cur_freq);
  4670. DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
  4671. intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq),
  4672. dev_priv->rps.idle_freq);
  4673. valleyview_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
  4674. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  4675. }
  4676. static void valleyview_enable_rps(struct drm_device *dev)
  4677. {
  4678. struct drm_i915_private *dev_priv = dev->dev_private;
  4679. struct intel_engine_cs *engine;
  4680. u32 gtfifodbg, val, rc6_mode = 0;
  4681. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  4682. valleyview_check_pctx(dev_priv);
  4683. gtfifodbg = I915_READ(GTFIFODBG);
  4684. if (gtfifodbg) {
  4685. DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
  4686. gtfifodbg);
  4687. I915_WRITE(GTFIFODBG, gtfifodbg);
  4688. }
  4689. /* If VLV, Forcewake all wells, else re-direct to regular path */
  4690. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  4691. /* Disable RC states. */
  4692. I915_WRITE(GEN6_RC_CONTROL, 0);
  4693. I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
  4694. I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
  4695. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
  4696. I915_WRITE(GEN6_RP_UP_EI, 66000);
  4697. I915_WRITE(GEN6_RP_DOWN_EI, 350000);
  4698. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  4699. I915_WRITE(GEN6_RP_CONTROL,
  4700. GEN6_RP_MEDIA_TURBO |
  4701. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  4702. GEN6_RP_MEDIA_IS_GFX |
  4703. GEN6_RP_ENABLE |
  4704. GEN6_RP_UP_BUSY_AVG |
  4705. GEN6_RP_DOWN_IDLE_CONT);
  4706. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
  4707. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
  4708. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
  4709. for_each_engine(engine, dev_priv)
  4710. I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
  4711. I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
  4712. /* allows RC6 residency counter to work */
  4713. I915_WRITE(VLV_COUNTER_CONTROL,
  4714. _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
  4715. VLV_RENDER_RC0_COUNT_EN |
  4716. VLV_MEDIA_RC6_COUNT_EN |
  4717. VLV_RENDER_RC6_COUNT_EN));
  4718. if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
  4719. rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
  4720. intel_print_rc6_info(dev, rc6_mode);
  4721. I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
  4722. /* Setting Fixed Bias */
  4723. val = VLV_OVERRIDE_EN |
  4724. VLV_SOC_TDP_EN |
  4725. VLV_BIAS_CPU_125_SOC_875;
  4726. vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
  4727. val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  4728. /* RPS code assumes GPLL is used */
  4729. WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
  4730. DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
  4731. DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
  4732. dev_priv->rps.cur_freq = (val >> 8) & 0xff;
  4733. DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
  4734. intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
  4735. dev_priv->rps.cur_freq);
  4736. DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
  4737. intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq),
  4738. dev_priv->rps.idle_freq);
  4739. valleyview_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
  4740. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  4741. }
  4742. static unsigned long intel_pxfreq(u32 vidfreq)
  4743. {
  4744. unsigned long freq;
  4745. int div = (vidfreq & 0x3f0000) >> 16;
  4746. int post = (vidfreq & 0x3000) >> 12;
  4747. int pre = (vidfreq & 0x7);
  4748. if (!pre)
  4749. return 0;
  4750. freq = ((div * 133333) / ((1<<post) * pre));
  4751. return freq;
  4752. }
  4753. static const struct cparams {
  4754. u16 i;
  4755. u16 t;
  4756. u16 m;
  4757. u16 c;
  4758. } cparams[] = {
  4759. { 1, 1333, 301, 28664 },
  4760. { 1, 1066, 294, 24460 },
  4761. { 1, 800, 294, 25192 },
  4762. { 0, 1333, 276, 27605 },
  4763. { 0, 1066, 276, 27605 },
  4764. { 0, 800, 231, 23784 },
  4765. };
  4766. static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
  4767. {
  4768. u64 total_count, diff, ret;
  4769. u32 count1, count2, count3, m = 0, c = 0;
  4770. unsigned long now = jiffies_to_msecs(jiffies), diff1;
  4771. int i;
  4772. assert_spin_locked(&mchdev_lock);
  4773. diff1 = now - dev_priv->ips.last_time1;
  4774. /* Prevent division-by-zero if we are asking too fast.
  4775. * Also, we don't get interesting results if we are polling
  4776. * faster than once in 10ms, so just return the saved value
  4777. * in such cases.
  4778. */
  4779. if (diff1 <= 10)
  4780. return dev_priv->ips.chipset_power;
  4781. count1 = I915_READ(DMIEC);
  4782. count2 = I915_READ(DDREC);
  4783. count3 = I915_READ(CSIEC);
  4784. total_count = count1 + count2 + count3;
  4785. /* FIXME: handle per-counter overflow */
  4786. if (total_count < dev_priv->ips.last_count1) {
  4787. diff = ~0UL - dev_priv->ips.last_count1;
  4788. diff += total_count;
  4789. } else {
  4790. diff = total_count - dev_priv->ips.last_count1;
  4791. }
  4792. for (i = 0; i < ARRAY_SIZE(cparams); i++) {
  4793. if (cparams[i].i == dev_priv->ips.c_m &&
  4794. cparams[i].t == dev_priv->ips.r_t) {
  4795. m = cparams[i].m;
  4796. c = cparams[i].c;
  4797. break;
  4798. }
  4799. }
  4800. diff = div_u64(diff, diff1);
  4801. ret = ((m * diff) + c);
  4802. ret = div_u64(ret, 10);
  4803. dev_priv->ips.last_count1 = total_count;
  4804. dev_priv->ips.last_time1 = now;
  4805. dev_priv->ips.chipset_power = ret;
  4806. return ret;
  4807. }
  4808. unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
  4809. {
  4810. struct drm_device *dev = dev_priv->dev;
  4811. unsigned long val;
  4812. if (INTEL_INFO(dev)->gen != 5)
  4813. return 0;
  4814. spin_lock_irq(&mchdev_lock);
  4815. val = __i915_chipset_val(dev_priv);
  4816. spin_unlock_irq(&mchdev_lock);
  4817. return val;
  4818. }
  4819. unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
  4820. {
  4821. unsigned long m, x, b;
  4822. u32 tsfs;
  4823. tsfs = I915_READ(TSFS);
  4824. m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
  4825. x = I915_READ8(TR1);
  4826. b = tsfs & TSFS_INTR_MASK;
  4827. return ((m * x) / 127) - b;
  4828. }
  4829. static int _pxvid_to_vd(u8 pxvid)
  4830. {
  4831. if (pxvid == 0)
  4832. return 0;
  4833. if (pxvid >= 8 && pxvid < 31)
  4834. pxvid = 31;
  4835. return (pxvid + 2) * 125;
  4836. }
  4837. static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
  4838. {
  4839. struct drm_device *dev = dev_priv->dev;
  4840. const int vd = _pxvid_to_vd(pxvid);
  4841. const int vm = vd - 1125;
  4842. if (INTEL_INFO(dev)->is_mobile)
  4843. return vm > 0 ? vm : 0;
  4844. return vd;
  4845. }
  4846. static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
  4847. {
  4848. u64 now, diff, diffms;
  4849. u32 count;
  4850. assert_spin_locked(&mchdev_lock);
  4851. now = ktime_get_raw_ns();
  4852. diffms = now - dev_priv->ips.last_time2;
  4853. do_div(diffms, NSEC_PER_MSEC);
  4854. /* Don't divide by 0 */
  4855. if (!diffms)
  4856. return;
  4857. count = I915_READ(GFXEC);
  4858. if (count < dev_priv->ips.last_count2) {
  4859. diff = ~0UL - dev_priv->ips.last_count2;
  4860. diff += count;
  4861. } else {
  4862. diff = count - dev_priv->ips.last_count2;
  4863. }
  4864. dev_priv->ips.last_count2 = count;
  4865. dev_priv->ips.last_time2 = now;
  4866. /* More magic constants... */
  4867. diff = diff * 1181;
  4868. diff = div_u64(diff, diffms * 10);
  4869. dev_priv->ips.gfx_power = diff;
  4870. }
  4871. void i915_update_gfx_val(struct drm_i915_private *dev_priv)
  4872. {
  4873. struct drm_device *dev = dev_priv->dev;
  4874. if (INTEL_INFO(dev)->gen != 5)
  4875. return;
  4876. spin_lock_irq(&mchdev_lock);
  4877. __i915_update_gfx_val(dev_priv);
  4878. spin_unlock_irq(&mchdev_lock);
  4879. }
  4880. static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
  4881. {
  4882. unsigned long t, corr, state1, corr2, state2;
  4883. u32 pxvid, ext_v;
  4884. assert_spin_locked(&mchdev_lock);
  4885. pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
  4886. pxvid = (pxvid >> 24) & 0x7f;
  4887. ext_v = pvid_to_extvid(dev_priv, pxvid);
  4888. state1 = ext_v;
  4889. t = i915_mch_val(dev_priv);
  4890. /* Revel in the empirically derived constants */
  4891. /* Correction factor in 1/100000 units */
  4892. if (t > 80)
  4893. corr = ((t * 2349) + 135940);
  4894. else if (t >= 50)
  4895. corr = ((t * 964) + 29317);
  4896. else /* < 50 */
  4897. corr = ((t * 301) + 1004);
  4898. corr = corr * ((150142 * state1) / 10000 - 78642);
  4899. corr /= 100000;
  4900. corr2 = (corr * dev_priv->ips.corr);
  4901. state2 = (corr2 * state1) / 10000;
  4902. state2 /= 100; /* convert to mW */
  4903. __i915_update_gfx_val(dev_priv);
  4904. return dev_priv->ips.gfx_power + state2;
  4905. }
  4906. unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
  4907. {
  4908. struct drm_device *dev = dev_priv->dev;
  4909. unsigned long val;
  4910. if (INTEL_INFO(dev)->gen != 5)
  4911. return 0;
  4912. spin_lock_irq(&mchdev_lock);
  4913. val = __i915_gfx_val(dev_priv);
  4914. spin_unlock_irq(&mchdev_lock);
  4915. return val;
  4916. }
  4917. /**
  4918. * i915_read_mch_val - return value for IPS use
  4919. *
  4920. * Calculate and return a value for the IPS driver to use when deciding whether
  4921. * we have thermal and power headroom to increase CPU or GPU power budget.
  4922. */
  4923. unsigned long i915_read_mch_val(void)
  4924. {
  4925. struct drm_i915_private *dev_priv;
  4926. unsigned long chipset_val, graphics_val, ret = 0;
  4927. spin_lock_irq(&mchdev_lock);
  4928. if (!i915_mch_dev)
  4929. goto out_unlock;
  4930. dev_priv = i915_mch_dev;
  4931. chipset_val = __i915_chipset_val(dev_priv);
  4932. graphics_val = __i915_gfx_val(dev_priv);
  4933. ret = chipset_val + graphics_val;
  4934. out_unlock:
  4935. spin_unlock_irq(&mchdev_lock);
  4936. return ret;
  4937. }
  4938. EXPORT_SYMBOL_GPL(i915_read_mch_val);
  4939. /**
  4940. * i915_gpu_raise - raise GPU frequency limit
  4941. *
  4942. * Raise the limit; IPS indicates we have thermal headroom.
  4943. */
  4944. bool i915_gpu_raise(void)
  4945. {
  4946. struct drm_i915_private *dev_priv;
  4947. bool ret = true;
  4948. spin_lock_irq(&mchdev_lock);
  4949. if (!i915_mch_dev) {
  4950. ret = false;
  4951. goto out_unlock;
  4952. }
  4953. dev_priv = i915_mch_dev;
  4954. if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
  4955. dev_priv->ips.max_delay--;
  4956. out_unlock:
  4957. spin_unlock_irq(&mchdev_lock);
  4958. return ret;
  4959. }
  4960. EXPORT_SYMBOL_GPL(i915_gpu_raise);
  4961. /**
  4962. * i915_gpu_lower - lower GPU frequency limit
  4963. *
  4964. * IPS indicates we're close to a thermal limit, so throttle back the GPU
  4965. * frequency maximum.
  4966. */
  4967. bool i915_gpu_lower(void)
  4968. {
  4969. struct drm_i915_private *dev_priv;
  4970. bool ret = true;
  4971. spin_lock_irq(&mchdev_lock);
  4972. if (!i915_mch_dev) {
  4973. ret = false;
  4974. goto out_unlock;
  4975. }
  4976. dev_priv = i915_mch_dev;
  4977. if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
  4978. dev_priv->ips.max_delay++;
  4979. out_unlock:
  4980. spin_unlock_irq(&mchdev_lock);
  4981. return ret;
  4982. }
  4983. EXPORT_SYMBOL_GPL(i915_gpu_lower);
  4984. /**
  4985. * i915_gpu_busy - indicate GPU business to IPS
  4986. *
  4987. * Tell the IPS driver whether or not the GPU is busy.
  4988. */
  4989. bool i915_gpu_busy(void)
  4990. {
  4991. struct drm_i915_private *dev_priv;
  4992. struct intel_engine_cs *engine;
  4993. bool ret = false;
  4994. spin_lock_irq(&mchdev_lock);
  4995. if (!i915_mch_dev)
  4996. goto out_unlock;
  4997. dev_priv = i915_mch_dev;
  4998. for_each_engine(engine, dev_priv)
  4999. ret |= !list_empty(&engine->request_list);
  5000. out_unlock:
  5001. spin_unlock_irq(&mchdev_lock);
  5002. return ret;
  5003. }
  5004. EXPORT_SYMBOL_GPL(i915_gpu_busy);
  5005. /**
  5006. * i915_gpu_turbo_disable - disable graphics turbo
  5007. *
  5008. * Disable graphics turbo by resetting the max frequency and setting the
  5009. * current frequency to the default.
  5010. */
  5011. bool i915_gpu_turbo_disable(void)
  5012. {
  5013. struct drm_i915_private *dev_priv;
  5014. bool ret = true;
  5015. spin_lock_irq(&mchdev_lock);
  5016. if (!i915_mch_dev) {
  5017. ret = false;
  5018. goto out_unlock;
  5019. }
  5020. dev_priv = i915_mch_dev;
  5021. dev_priv->ips.max_delay = dev_priv->ips.fstart;
  5022. if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
  5023. ret = false;
  5024. out_unlock:
  5025. spin_unlock_irq(&mchdev_lock);
  5026. return ret;
  5027. }
  5028. EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
  5029. /**
  5030. * Tells the intel_ips driver that the i915 driver is now loaded, if
  5031. * IPS got loaded first.
  5032. *
  5033. * This awkward dance is so that neither module has to depend on the
  5034. * other in order for IPS to do the appropriate communication of
  5035. * GPU turbo limits to i915.
  5036. */
  5037. static void
  5038. ips_ping_for_i915_load(void)
  5039. {
  5040. void (*link)(void);
  5041. link = symbol_get(ips_link_to_i915_driver);
  5042. if (link) {
  5043. link();
  5044. symbol_put(ips_link_to_i915_driver);
  5045. }
  5046. }
  5047. void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
  5048. {
  5049. /* We only register the i915 ips part with intel-ips once everything is
  5050. * set up, to avoid intel-ips sneaking in and reading bogus values. */
  5051. spin_lock_irq(&mchdev_lock);
  5052. i915_mch_dev = dev_priv;
  5053. spin_unlock_irq(&mchdev_lock);
  5054. ips_ping_for_i915_load();
  5055. }
  5056. void intel_gpu_ips_teardown(void)
  5057. {
  5058. spin_lock_irq(&mchdev_lock);
  5059. i915_mch_dev = NULL;
  5060. spin_unlock_irq(&mchdev_lock);
  5061. }
  5062. static void intel_init_emon(struct drm_device *dev)
  5063. {
  5064. struct drm_i915_private *dev_priv = dev->dev_private;
  5065. u32 lcfuse;
  5066. u8 pxw[16];
  5067. int i;
  5068. /* Disable to program */
  5069. I915_WRITE(ECR, 0);
  5070. POSTING_READ(ECR);
  5071. /* Program energy weights for various events */
  5072. I915_WRITE(SDEW, 0x15040d00);
  5073. I915_WRITE(CSIEW0, 0x007f0000);
  5074. I915_WRITE(CSIEW1, 0x1e220004);
  5075. I915_WRITE(CSIEW2, 0x04000004);
  5076. for (i = 0; i < 5; i++)
  5077. I915_WRITE(PEW(i), 0);
  5078. for (i = 0; i < 3; i++)
  5079. I915_WRITE(DEW(i), 0);
  5080. /* Program P-state weights to account for frequency power adjustment */
  5081. for (i = 0; i < 16; i++) {
  5082. u32 pxvidfreq = I915_READ(PXVFREQ(i));
  5083. unsigned long freq = intel_pxfreq(pxvidfreq);
  5084. unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
  5085. PXVFREQ_PX_SHIFT;
  5086. unsigned long val;
  5087. val = vid * vid;
  5088. val *= (freq / 1000);
  5089. val *= 255;
  5090. val /= (127*127*900);
  5091. if (val > 0xff)
  5092. DRM_ERROR("bad pxval: %ld\n", val);
  5093. pxw[i] = val;
  5094. }
  5095. /* Render standby states get 0 weight */
  5096. pxw[14] = 0;
  5097. pxw[15] = 0;
  5098. for (i = 0; i < 4; i++) {
  5099. u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
  5100. (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
  5101. I915_WRITE(PXW(i), val);
  5102. }
  5103. /* Adjust magic regs to magic values (more experimental results) */
  5104. I915_WRITE(OGW0, 0);
  5105. I915_WRITE(OGW1, 0);
  5106. I915_WRITE(EG0, 0x00007f00);
  5107. I915_WRITE(EG1, 0x0000000e);
  5108. I915_WRITE(EG2, 0x000e0000);
  5109. I915_WRITE(EG3, 0x68000300);
  5110. I915_WRITE(EG4, 0x42000000);
  5111. I915_WRITE(EG5, 0x00140031);
  5112. I915_WRITE(EG6, 0);
  5113. I915_WRITE(EG7, 0);
  5114. for (i = 0; i < 8; i++)
  5115. I915_WRITE(PXWL(i), 0);
  5116. /* Enable PMON + select events */
  5117. I915_WRITE(ECR, 0x80000019);
  5118. lcfuse = I915_READ(LCFUSE02);
  5119. dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
  5120. }
  5121. void intel_init_gt_powersave(struct drm_device *dev)
  5122. {
  5123. struct drm_i915_private *dev_priv = dev->dev_private;
  5124. /*
  5125. * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
  5126. * requirement.
  5127. */
  5128. if (!i915.enable_rc6) {
  5129. DRM_INFO("RC6 disabled, disabling runtime PM support\n");
  5130. intel_runtime_pm_get(dev_priv);
  5131. }
  5132. if (IS_CHERRYVIEW(dev))
  5133. cherryview_init_gt_powersave(dev);
  5134. else if (IS_VALLEYVIEW(dev))
  5135. valleyview_init_gt_powersave(dev);
  5136. }
  5137. void intel_cleanup_gt_powersave(struct drm_device *dev)
  5138. {
  5139. struct drm_i915_private *dev_priv = dev->dev_private;
  5140. if (IS_CHERRYVIEW(dev))
  5141. return;
  5142. else if (IS_VALLEYVIEW(dev))
  5143. valleyview_cleanup_gt_powersave(dev);
  5144. if (!i915.enable_rc6)
  5145. intel_runtime_pm_put(dev_priv);
  5146. }
  5147. static void gen6_suspend_rps(struct drm_device *dev)
  5148. {
  5149. struct drm_i915_private *dev_priv = dev->dev_private;
  5150. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  5151. gen6_disable_rps_interrupts(dev);
  5152. }
  5153. /**
  5154. * intel_suspend_gt_powersave - suspend PM work and helper threads
  5155. * @dev: drm device
  5156. *
  5157. * We don't want to disable RC6 or other features here, we just want
  5158. * to make sure any work we've queued has finished and won't bother
  5159. * us while we're suspended.
  5160. */
  5161. void intel_suspend_gt_powersave(struct drm_device *dev)
  5162. {
  5163. struct drm_i915_private *dev_priv = dev->dev_private;
  5164. if (INTEL_INFO(dev)->gen < 6)
  5165. return;
  5166. gen6_suspend_rps(dev);
  5167. /* Force GPU to min freq during suspend */
  5168. gen6_rps_idle(dev_priv);
  5169. }
  5170. void intel_disable_gt_powersave(struct drm_device *dev)
  5171. {
  5172. struct drm_i915_private *dev_priv = dev->dev_private;
  5173. if (IS_IRONLAKE_M(dev)) {
  5174. ironlake_disable_drps(dev);
  5175. } else if (INTEL_INFO(dev)->gen >= 6) {
  5176. intel_suspend_gt_powersave(dev);
  5177. mutex_lock(&dev_priv->rps.hw_lock);
  5178. if (INTEL_INFO(dev)->gen >= 9) {
  5179. gen9_disable_rc6(dev);
  5180. gen9_disable_rps(dev);
  5181. } else if (IS_CHERRYVIEW(dev))
  5182. cherryview_disable_rps(dev);
  5183. else if (IS_VALLEYVIEW(dev))
  5184. valleyview_disable_rps(dev);
  5185. else
  5186. gen6_disable_rps(dev);
  5187. dev_priv->rps.enabled = false;
  5188. mutex_unlock(&dev_priv->rps.hw_lock);
  5189. }
  5190. }
  5191. static void intel_gen6_powersave_work(struct work_struct *work)
  5192. {
  5193. struct drm_i915_private *dev_priv =
  5194. container_of(work, struct drm_i915_private,
  5195. rps.delayed_resume_work.work);
  5196. struct drm_device *dev = dev_priv->dev;
  5197. mutex_lock(&dev_priv->rps.hw_lock);
  5198. gen6_reset_rps_interrupts(dev);
  5199. if (IS_CHERRYVIEW(dev)) {
  5200. cherryview_enable_rps(dev);
  5201. } else if (IS_VALLEYVIEW(dev)) {
  5202. valleyview_enable_rps(dev);
  5203. } else if (INTEL_INFO(dev)->gen >= 9) {
  5204. gen9_enable_rc6(dev);
  5205. gen9_enable_rps(dev);
  5206. if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
  5207. __gen6_update_ring_freq(dev);
  5208. } else if (IS_BROADWELL(dev)) {
  5209. gen8_enable_rps(dev);
  5210. __gen6_update_ring_freq(dev);
  5211. } else {
  5212. gen6_enable_rps(dev);
  5213. __gen6_update_ring_freq(dev);
  5214. }
  5215. WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
  5216. WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);
  5217. WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
  5218. WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);
  5219. dev_priv->rps.enabled = true;
  5220. gen6_enable_rps_interrupts(dev);
  5221. mutex_unlock(&dev_priv->rps.hw_lock);
  5222. intel_runtime_pm_put(dev_priv);
  5223. }
  5224. void intel_enable_gt_powersave(struct drm_device *dev)
  5225. {
  5226. struct drm_i915_private *dev_priv = dev->dev_private;
  5227. /* Powersaving is controlled by the host when inside a VM */
  5228. if (intel_vgpu_active(dev))
  5229. return;
  5230. if (IS_IRONLAKE_M(dev)) {
  5231. ironlake_enable_drps(dev);
  5232. mutex_lock(&dev->struct_mutex);
  5233. intel_init_emon(dev);
  5234. mutex_unlock(&dev->struct_mutex);
  5235. } else if (INTEL_INFO(dev)->gen >= 6) {
  5236. /*
  5237. * PCU communication is slow and this doesn't need to be
  5238. * done at any specific time, so do this out of our fast path
  5239. * to make resume and init faster.
  5240. *
  5241. * We depend on the HW RC6 power context save/restore
  5242. * mechanism when entering D3 through runtime PM suspend. So
  5243. * disable RPM until RPS/RC6 is properly setup. We can only
  5244. * get here via the driver load/system resume/runtime resume
  5245. * paths, so the _noresume version is enough (and in case of
  5246. * runtime resume it's necessary).
  5247. */
  5248. if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
  5249. round_jiffies_up_relative(HZ)))
  5250. intel_runtime_pm_get_noresume(dev_priv);
  5251. }
  5252. }
  5253. void intel_reset_gt_powersave(struct drm_device *dev)
  5254. {
  5255. struct drm_i915_private *dev_priv = dev->dev_private;
  5256. if (INTEL_INFO(dev)->gen < 6)
  5257. return;
  5258. gen6_suspend_rps(dev);
  5259. dev_priv->rps.enabled = false;
  5260. }
  5261. static void ibx_init_clock_gating(struct drm_device *dev)
  5262. {
  5263. struct drm_i915_private *dev_priv = dev->dev_private;
  5264. /*
  5265. * On Ibex Peak and Cougar Point, we need to disable clock
  5266. * gating for the panel power sequencer or it will fail to
  5267. * start up when no ports are active.
  5268. */
  5269. I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
  5270. }
  5271. static void g4x_disable_trickle_feed(struct drm_device *dev)
  5272. {
  5273. struct drm_i915_private *dev_priv = dev->dev_private;
  5274. enum pipe pipe;
  5275. for_each_pipe(dev_priv, pipe) {
  5276. I915_WRITE(DSPCNTR(pipe),
  5277. I915_READ(DSPCNTR(pipe)) |
  5278. DISPPLANE_TRICKLE_FEED_DISABLE);
  5279. I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
  5280. POSTING_READ(DSPSURF(pipe));
  5281. }
  5282. }
  5283. static void ilk_init_lp_watermarks(struct drm_device *dev)
  5284. {
  5285. struct drm_i915_private *dev_priv = dev->dev_private;
  5286. I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
  5287. I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
  5288. I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
  5289. /*
  5290. * Don't touch WM1S_LP_EN here.
  5291. * Doing so could cause underruns.
  5292. */
  5293. }
  5294. static void ironlake_init_clock_gating(struct drm_device *dev)
  5295. {
  5296. struct drm_i915_private *dev_priv = dev->dev_private;
  5297. uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
  5298. /*
  5299. * Required for FBC
  5300. * WaFbcDisableDpfcClockGating:ilk
  5301. */
  5302. dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
  5303. ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
  5304. ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
  5305. I915_WRITE(PCH_3DCGDIS0,
  5306. MARIUNIT_CLOCK_GATE_DISABLE |
  5307. SVSMUNIT_CLOCK_GATE_DISABLE);
  5308. I915_WRITE(PCH_3DCGDIS1,
  5309. VFMUNIT_CLOCK_GATE_DISABLE);
  5310. /*
  5311. * According to the spec the following bits should be set in
  5312. * order to enable memory self-refresh
  5313. * The bit 22/21 of 0x42004
  5314. * The bit 5 of 0x42020
  5315. * The bit 15 of 0x45000
  5316. */
  5317. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  5318. (I915_READ(ILK_DISPLAY_CHICKEN2) |
  5319. ILK_DPARB_GATE | ILK_VSDPFD_FULL));
  5320. dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
  5321. I915_WRITE(DISP_ARB_CTL,
  5322. (I915_READ(DISP_ARB_CTL) |
  5323. DISP_FBC_WM_DIS));
  5324. ilk_init_lp_watermarks(dev);
  5325. /*
  5326. * Based on the document from hardware guys the following bits
  5327. * should be set unconditionally in order to enable FBC.
  5328. * The bit 22 of 0x42000
  5329. * The bit 22 of 0x42004
  5330. * The bit 7,8,9 of 0x42020.
  5331. */
  5332. if (IS_IRONLAKE_M(dev)) {
  5333. /* WaFbcAsynchFlipDisableFbcQueue:ilk */
  5334. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  5335. I915_READ(ILK_DISPLAY_CHICKEN1) |
  5336. ILK_FBCQ_DIS);
  5337. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  5338. I915_READ(ILK_DISPLAY_CHICKEN2) |
  5339. ILK_DPARB_GATE);
  5340. }
  5341. I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
  5342. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  5343. I915_READ(ILK_DISPLAY_CHICKEN2) |
  5344. ILK_ELPIN_409_SELECT);
  5345. I915_WRITE(_3D_CHICKEN2,
  5346. _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
  5347. _3D_CHICKEN2_WM_READ_PIPELINED);
  5348. /* WaDisableRenderCachePipelinedFlush:ilk */
  5349. I915_WRITE(CACHE_MODE_0,
  5350. _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
  5351. /* WaDisable_RenderCache_OperationalFlush:ilk */
  5352. I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  5353. g4x_disable_trickle_feed(dev);
  5354. ibx_init_clock_gating(dev);
  5355. }
  5356. static void cpt_init_clock_gating(struct drm_device *dev)
  5357. {
  5358. struct drm_i915_private *dev_priv = dev->dev_private;
  5359. int pipe;
  5360. uint32_t val;
  5361. /*
  5362. * On Ibex Peak and Cougar Point, we need to disable clock
  5363. * gating for the panel power sequencer or it will fail to
  5364. * start up when no ports are active.
  5365. */
  5366. I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
  5367. PCH_DPLUNIT_CLOCK_GATE_DISABLE |
  5368. PCH_CPUNIT_CLOCK_GATE_DISABLE);
  5369. I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
  5370. DPLS_EDP_PPS_FIX_DIS);
  5371. /* The below fixes the weird display corruption, a few pixels shifted
  5372. * downward, on (only) LVDS of some HP laptops with IVY.
  5373. */
  5374. for_each_pipe(dev_priv, pipe) {
  5375. val = I915_READ(TRANS_CHICKEN2(pipe));
  5376. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  5377. val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
  5378. if (dev_priv->vbt.fdi_rx_polarity_inverted)
  5379. val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
  5380. val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
  5381. val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
  5382. val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
  5383. I915_WRITE(TRANS_CHICKEN2(pipe), val);
  5384. }
  5385. /* WADP0ClockGatingDisable */
  5386. for_each_pipe(dev_priv, pipe) {
  5387. I915_WRITE(TRANS_CHICKEN1(pipe),
  5388. TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
  5389. }
  5390. }
  5391. static void gen6_check_mch_setup(struct drm_device *dev)
  5392. {
  5393. struct drm_i915_private *dev_priv = dev->dev_private;
  5394. uint32_t tmp;
  5395. tmp = I915_READ(MCH_SSKPD);
  5396. if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
  5397. DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
  5398. tmp);
  5399. }
  5400. static void gen6_init_clock_gating(struct drm_device *dev)
  5401. {
  5402. struct drm_i915_private *dev_priv = dev->dev_private;
  5403. uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
  5404. I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
  5405. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  5406. I915_READ(ILK_DISPLAY_CHICKEN2) |
  5407. ILK_ELPIN_409_SELECT);
  5408. /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
  5409. I915_WRITE(_3D_CHICKEN,
  5410. _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
  5411. /* WaDisable_RenderCache_OperationalFlush:snb */
  5412. I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  5413. /*
  5414. * BSpec recoomends 8x4 when MSAA is used,
  5415. * however in practice 16x4 seems fastest.
  5416. *
  5417. * Note that PS/WM thread counts depend on the WIZ hashing
  5418. * disable bit, which we don't touch here, but it's good
  5419. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  5420. */
  5421. I915_WRITE(GEN6_GT_MODE,
  5422. _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
  5423. ilk_init_lp_watermarks(dev);
  5424. I915_WRITE(CACHE_MODE_0,
  5425. _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  5426. I915_WRITE(GEN6_UCGCTL1,
  5427. I915_READ(GEN6_UCGCTL1) |
  5428. GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
  5429. GEN6_CSUNIT_CLOCK_GATE_DISABLE);
  5430. /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
  5431. * gating disable must be set. Failure to set it results in
  5432. * flickering pixels due to Z write ordering failures after
  5433. * some amount of runtime in the Mesa "fire" demo, and Unigine
  5434. * Sanctuary and Tropics, and apparently anything else with
  5435. * alpha test or pixel discard.
  5436. *
  5437. * According to the spec, bit 11 (RCCUNIT) must also be set,
  5438. * but we didn't debug actual testcases to find it out.
  5439. *
  5440. * WaDisableRCCUnitClockGating:snb
  5441. * WaDisableRCPBUnitClockGating:snb
  5442. */
  5443. I915_WRITE(GEN6_UCGCTL2,
  5444. GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
  5445. GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
  5446. /* WaStripsFansDisableFastClipPerformanceFix:snb */
  5447. I915_WRITE(_3D_CHICKEN3,
  5448. _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
  5449. /*
  5450. * Bspec says:
  5451. * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
  5452. * 3DSTATE_SF number of SF output attributes is more than 16."
  5453. */
  5454. I915_WRITE(_3D_CHICKEN3,
  5455. _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
  5456. /*
  5457. * According to the spec the following bits should be
  5458. * set in order to enable memory self-refresh and fbc:
  5459. * The bit21 and bit22 of 0x42000
  5460. * The bit21 and bit22 of 0x42004
  5461. * The bit5 and bit7 of 0x42020
  5462. * The bit14 of 0x70180
  5463. * The bit14 of 0x71180
  5464. *
  5465. * WaFbcAsynchFlipDisableFbcQueue:snb
  5466. */
  5467. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  5468. I915_READ(ILK_DISPLAY_CHICKEN1) |
  5469. ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
  5470. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  5471. I915_READ(ILK_DISPLAY_CHICKEN2) |
  5472. ILK_DPARB_GATE | ILK_VSDPFD_FULL);
  5473. I915_WRITE(ILK_DSPCLK_GATE_D,
  5474. I915_READ(ILK_DSPCLK_GATE_D) |
  5475. ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
  5476. ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
  5477. g4x_disable_trickle_feed(dev);
  5478. cpt_init_clock_gating(dev);
  5479. gen6_check_mch_setup(dev);
  5480. }
  5481. static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
  5482. {
  5483. uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
  5484. /*
  5485. * WaVSThreadDispatchOverride:ivb,vlv
  5486. *
  5487. * This actually overrides the dispatch
  5488. * mode for all thread types.
  5489. */
  5490. reg &= ~GEN7_FF_SCHED_MASK;
  5491. reg |= GEN7_FF_TS_SCHED_HW;
  5492. reg |= GEN7_FF_VS_SCHED_HW;
  5493. reg |= GEN7_FF_DS_SCHED_HW;
  5494. I915_WRITE(GEN7_FF_THREAD_MODE, reg);
  5495. }
  5496. static void lpt_init_clock_gating(struct drm_device *dev)
  5497. {
  5498. struct drm_i915_private *dev_priv = dev->dev_private;
  5499. /*
  5500. * TODO: this bit should only be enabled when really needed, then
  5501. * disabled when not needed anymore in order to save power.
  5502. */
  5503. if (HAS_PCH_LPT_LP(dev))
  5504. I915_WRITE(SOUTH_DSPCLK_GATE_D,
  5505. I915_READ(SOUTH_DSPCLK_GATE_D) |
  5506. PCH_LP_PARTITION_LEVEL_DISABLE);
  5507. /* WADPOClockGatingDisable:hsw */
  5508. I915_WRITE(TRANS_CHICKEN1(PIPE_A),
  5509. I915_READ(TRANS_CHICKEN1(PIPE_A)) |
  5510. TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
  5511. }
  5512. static void lpt_suspend_hw(struct drm_device *dev)
  5513. {
  5514. struct drm_i915_private *dev_priv = dev->dev_private;
  5515. if (HAS_PCH_LPT_LP(dev)) {
  5516. uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
  5517. val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
  5518. I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
  5519. }
  5520. }
  5521. static void broadwell_init_clock_gating(struct drm_device *dev)
  5522. {
  5523. struct drm_i915_private *dev_priv = dev->dev_private;
  5524. enum pipe pipe;
  5525. uint32_t misccpctl;
  5526. ilk_init_lp_watermarks(dev);
  5527. /* WaSwitchSolVfFArbitrationPriority:bdw */
  5528. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
  5529. /* WaPsrDPAMaskVBlankInSRD:bdw */
  5530. I915_WRITE(CHICKEN_PAR1_1,
  5531. I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
  5532. /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
  5533. for_each_pipe(dev_priv, pipe) {
  5534. I915_WRITE(CHICKEN_PIPESL_1(pipe),
  5535. I915_READ(CHICKEN_PIPESL_1(pipe)) |
  5536. BDW_DPRS_MASK_VBLANK_SRD);
  5537. }
  5538. /* WaVSRefCountFullforceMissDisable:bdw */
  5539. /* WaDSRefCountFullforceMissDisable:bdw */
  5540. I915_WRITE(GEN7_FF_THREAD_MODE,
  5541. I915_READ(GEN7_FF_THREAD_MODE) &
  5542. ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
  5543. I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
  5544. _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
  5545. /* WaDisableSDEUnitClockGating:bdw */
  5546. I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
  5547. GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
  5548. /*
  5549. * WaProgramL3SqcReg1Default:bdw
  5550. * WaTempDisableDOPClkGating:bdw
  5551. */
  5552. misccpctl = I915_READ(GEN7_MISCCPCTL);
  5553. I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
  5554. I915_WRITE(GEN8_L3SQCREG1, BDW_WA_L3SQCREG1_DEFAULT);
  5555. /*
  5556. * Wait at least 100 clocks before re-enabling clock gating. See
  5557. * the definition of L3SQCREG1 in BSpec.
  5558. */
  5559. POSTING_READ(GEN8_L3SQCREG1);
  5560. udelay(1);
  5561. I915_WRITE(GEN7_MISCCPCTL, misccpctl);
  5562. /*
  5563. * WaGttCachingOffByDefault:bdw
  5564. * GTT cache may not work with big pages, so if those
  5565. * are ever enabled GTT cache may need to be disabled.
  5566. */
  5567. I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
  5568. lpt_init_clock_gating(dev);
  5569. }
  5570. static void haswell_init_clock_gating(struct drm_device *dev)
  5571. {
  5572. struct drm_i915_private *dev_priv = dev->dev_private;
  5573. ilk_init_lp_watermarks(dev);
  5574. /* L3 caching of data atomics doesn't work -- disable it. */
  5575. I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
  5576. I915_WRITE(HSW_ROW_CHICKEN3,
  5577. _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
  5578. /* This is required by WaCatErrorRejectionIssue:hsw */
  5579. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  5580. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  5581. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  5582. /* WaVSRefCountFullforceMissDisable:hsw */
  5583. I915_WRITE(GEN7_FF_THREAD_MODE,
  5584. I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
  5585. /* WaDisable_RenderCache_OperationalFlush:hsw */
  5586. I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  5587. /* enable HiZ Raw Stall Optimization */
  5588. I915_WRITE(CACHE_MODE_0_GEN7,
  5589. _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
  5590. /* WaDisable4x2SubspanOptimization:hsw */
  5591. I915_WRITE(CACHE_MODE_1,
  5592. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  5593. /*
  5594. * BSpec recommends 8x4 when MSAA is used,
  5595. * however in practice 16x4 seems fastest.
  5596. *
  5597. * Note that PS/WM thread counts depend on the WIZ hashing
  5598. * disable bit, which we don't touch here, but it's good
  5599. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  5600. */
  5601. I915_WRITE(GEN7_GT_MODE,
  5602. _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
  5603. /* WaSampleCChickenBitEnable:hsw */
  5604. I915_WRITE(HALF_SLICE_CHICKEN3,
  5605. _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
  5606. /* WaSwitchSolVfFArbitrationPriority:hsw */
  5607. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
  5608. /* WaRsPkgCStateDisplayPMReq:hsw */
  5609. I915_WRITE(CHICKEN_PAR1_1,
  5610. I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
  5611. lpt_init_clock_gating(dev);
  5612. }
  5613. static void ivybridge_init_clock_gating(struct drm_device *dev)
  5614. {
  5615. struct drm_i915_private *dev_priv = dev->dev_private;
  5616. uint32_t snpcr;
  5617. ilk_init_lp_watermarks(dev);
  5618. I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
  5619. /* WaDisableEarlyCull:ivb */
  5620. I915_WRITE(_3D_CHICKEN3,
  5621. _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
  5622. /* WaDisableBackToBackFlipFix:ivb */
  5623. I915_WRITE(IVB_CHICKEN3,
  5624. CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
  5625. CHICKEN3_DGMG_DONE_FIX_DISABLE);
  5626. /* WaDisablePSDDualDispatchEnable:ivb */
  5627. if (IS_IVB_GT1(dev))
  5628. I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
  5629. _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
  5630. /* WaDisable_RenderCache_OperationalFlush:ivb */
  5631. I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  5632. /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
  5633. I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
  5634. GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
  5635. /* WaApplyL3ControlAndL3ChickenMode:ivb */
  5636. I915_WRITE(GEN7_L3CNTLREG1,
  5637. GEN7_WA_FOR_GEN7_L3_CONTROL);
  5638. I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
  5639. GEN7_WA_L3_CHICKEN_MODE);
  5640. if (IS_IVB_GT1(dev))
  5641. I915_WRITE(GEN7_ROW_CHICKEN2,
  5642. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  5643. else {
  5644. /* must write both registers */
  5645. I915_WRITE(GEN7_ROW_CHICKEN2,
  5646. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  5647. I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
  5648. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  5649. }
  5650. /* WaForceL3Serialization:ivb */
  5651. I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
  5652. ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
  5653. /*
  5654. * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
  5655. * This implements the WaDisableRCZUnitClockGating:ivb workaround.
  5656. */
  5657. I915_WRITE(GEN6_UCGCTL2,
  5658. GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
  5659. /* This is required by WaCatErrorRejectionIssue:ivb */
  5660. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  5661. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  5662. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  5663. g4x_disable_trickle_feed(dev);
  5664. gen7_setup_fixed_func_scheduler(dev_priv);
  5665. if (0) { /* causes HiZ corruption on ivb:gt1 */
  5666. /* enable HiZ Raw Stall Optimization */
  5667. I915_WRITE(CACHE_MODE_0_GEN7,
  5668. _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
  5669. }
  5670. /* WaDisable4x2SubspanOptimization:ivb */
  5671. I915_WRITE(CACHE_MODE_1,
  5672. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  5673. /*
  5674. * BSpec recommends 8x4 when MSAA is used,
  5675. * however in practice 16x4 seems fastest.
  5676. *
  5677. * Note that PS/WM thread counts depend on the WIZ hashing
  5678. * disable bit, which we don't touch here, but it's good
  5679. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  5680. */
  5681. I915_WRITE(GEN7_GT_MODE,
  5682. _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
  5683. snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
  5684. snpcr &= ~GEN6_MBC_SNPCR_MASK;
  5685. snpcr |= GEN6_MBC_SNPCR_MED;
  5686. I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
  5687. if (!HAS_PCH_NOP(dev))
  5688. cpt_init_clock_gating(dev);
  5689. gen6_check_mch_setup(dev);
  5690. }
  5691. static void valleyview_init_clock_gating(struct drm_device *dev)
  5692. {
  5693. struct drm_i915_private *dev_priv = dev->dev_private;
  5694. /* WaDisableEarlyCull:vlv */
  5695. I915_WRITE(_3D_CHICKEN3,
  5696. _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
  5697. /* WaDisableBackToBackFlipFix:vlv */
  5698. I915_WRITE(IVB_CHICKEN3,
  5699. CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
  5700. CHICKEN3_DGMG_DONE_FIX_DISABLE);
  5701. /* WaPsdDispatchEnable:vlv */
  5702. /* WaDisablePSDDualDispatchEnable:vlv */
  5703. I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
  5704. _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
  5705. GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
  5706. /* WaDisable_RenderCache_OperationalFlush:vlv */
  5707. I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  5708. /* WaForceL3Serialization:vlv */
  5709. I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
  5710. ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
  5711. /* WaDisableDopClockGating:vlv */
  5712. I915_WRITE(GEN7_ROW_CHICKEN2,
  5713. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  5714. /* This is required by WaCatErrorRejectionIssue:vlv */
  5715. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  5716. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  5717. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  5718. gen7_setup_fixed_func_scheduler(dev_priv);
  5719. /*
  5720. * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
  5721. * This implements the WaDisableRCZUnitClockGating:vlv workaround.
  5722. */
  5723. I915_WRITE(GEN6_UCGCTL2,
  5724. GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
  5725. /* WaDisableL3Bank2xClockGate:vlv
  5726. * Disabling L3 clock gating- MMIO 940c[25] = 1
  5727. * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
  5728. I915_WRITE(GEN7_UCGCTL4,
  5729. I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
  5730. /*
  5731. * BSpec says this must be set, even though
  5732. * WaDisable4x2SubspanOptimization isn't listed for VLV.
  5733. */
  5734. I915_WRITE(CACHE_MODE_1,
  5735. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  5736. /*
  5737. * BSpec recommends 8x4 when MSAA is used,
  5738. * however in practice 16x4 seems fastest.
  5739. *
  5740. * Note that PS/WM thread counts depend on the WIZ hashing
  5741. * disable bit, which we don't touch here, but it's good
  5742. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  5743. */
  5744. I915_WRITE(GEN7_GT_MODE,
  5745. _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
  5746. /*
  5747. * WaIncreaseL3CreditsForVLVB0:vlv
  5748. * This is the hardware default actually.
  5749. */
  5750. I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
  5751. /*
  5752. * WaDisableVLVClockGating_VBIIssue:vlv
  5753. * Disable clock gating on th GCFG unit to prevent a delay
  5754. * in the reporting of vblank events.
  5755. */
  5756. I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
  5757. }
  5758. static void cherryview_init_clock_gating(struct drm_device *dev)
  5759. {
  5760. struct drm_i915_private *dev_priv = dev->dev_private;
  5761. /* WaVSRefCountFullforceMissDisable:chv */
  5762. /* WaDSRefCountFullforceMissDisable:chv */
  5763. I915_WRITE(GEN7_FF_THREAD_MODE,
  5764. I915_READ(GEN7_FF_THREAD_MODE) &
  5765. ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
  5766. /* WaDisableSemaphoreAndSyncFlipWait:chv */
  5767. I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
  5768. _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
  5769. /* WaDisableCSUnitClockGating:chv */
  5770. I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
  5771. GEN6_CSUNIT_CLOCK_GATE_DISABLE);
  5772. /* WaDisableSDEUnitClockGating:chv */
  5773. I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
  5774. GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
  5775. /*
  5776. * GTT cache may not work with big pages, so if those
  5777. * are ever enabled GTT cache may need to be disabled.
  5778. */
  5779. I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
  5780. }
  5781. static void g4x_init_clock_gating(struct drm_device *dev)
  5782. {
  5783. struct drm_i915_private *dev_priv = dev->dev_private;
  5784. uint32_t dspclk_gate;
  5785. I915_WRITE(RENCLK_GATE_D1, 0);
  5786. I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
  5787. GS_UNIT_CLOCK_GATE_DISABLE |
  5788. CL_UNIT_CLOCK_GATE_DISABLE);
  5789. I915_WRITE(RAMCLK_GATE_D, 0);
  5790. dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
  5791. OVRUNIT_CLOCK_GATE_DISABLE |
  5792. OVCUNIT_CLOCK_GATE_DISABLE;
  5793. if (IS_GM45(dev))
  5794. dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
  5795. I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
  5796. /* WaDisableRenderCachePipelinedFlush */
  5797. I915_WRITE(CACHE_MODE_0,
  5798. _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
  5799. /* WaDisable_RenderCache_OperationalFlush:g4x */
  5800. I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  5801. g4x_disable_trickle_feed(dev);
  5802. }
  5803. static void crestline_init_clock_gating(struct drm_device *dev)
  5804. {
  5805. struct drm_i915_private *dev_priv = dev->dev_private;
  5806. I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
  5807. I915_WRITE(RENCLK_GATE_D2, 0);
  5808. I915_WRITE(DSPCLK_GATE_D, 0);
  5809. I915_WRITE(RAMCLK_GATE_D, 0);
  5810. I915_WRITE16(DEUC, 0);
  5811. I915_WRITE(MI_ARB_STATE,
  5812. _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
  5813. /* WaDisable_RenderCache_OperationalFlush:gen4 */
  5814. I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  5815. }
  5816. static void broadwater_init_clock_gating(struct drm_device *dev)
  5817. {
  5818. struct drm_i915_private *dev_priv = dev->dev_private;
  5819. I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
  5820. I965_RCC_CLOCK_GATE_DISABLE |
  5821. I965_RCPB_CLOCK_GATE_DISABLE |
  5822. I965_ISC_CLOCK_GATE_DISABLE |
  5823. I965_FBC_CLOCK_GATE_DISABLE);
  5824. I915_WRITE(RENCLK_GATE_D2, 0);
  5825. I915_WRITE(MI_ARB_STATE,
  5826. _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
  5827. /* WaDisable_RenderCache_OperationalFlush:gen4 */
  5828. I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  5829. }
  5830. static void gen3_init_clock_gating(struct drm_device *dev)
  5831. {
  5832. struct drm_i915_private *dev_priv = dev->dev_private;
  5833. u32 dstate = I915_READ(D_STATE);
  5834. dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
  5835. DSTATE_DOT_CLOCK_GATING;
  5836. I915_WRITE(D_STATE, dstate);
  5837. if (IS_PINEVIEW(dev))
  5838. I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
  5839. /* IIR "flip pending" means done if this bit is set */
  5840. I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
  5841. /* interrupts should cause a wake up from C3 */
  5842. I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
  5843. /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  5844. I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
  5845. I915_WRITE(MI_ARB_STATE,
  5846. _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
  5847. }
  5848. static void i85x_init_clock_gating(struct drm_device *dev)
  5849. {
  5850. struct drm_i915_private *dev_priv = dev->dev_private;
  5851. I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
  5852. /* interrupts should cause a wake up from C3 */
  5853. I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
  5854. _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
  5855. I915_WRITE(MEM_MODE,
  5856. _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
  5857. }
  5858. static void i830_init_clock_gating(struct drm_device *dev)
  5859. {
  5860. struct drm_i915_private *dev_priv = dev->dev_private;
  5861. I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
  5862. I915_WRITE(MEM_MODE,
  5863. _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
  5864. _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
  5865. }
  5866. void intel_init_clock_gating(struct drm_device *dev)
  5867. {
  5868. struct drm_i915_private *dev_priv = dev->dev_private;
  5869. dev_priv->display.init_clock_gating(dev);
  5870. }
  5871. void intel_suspend_hw(struct drm_device *dev)
  5872. {
  5873. if (HAS_PCH_LPT(dev))
  5874. lpt_suspend_hw(dev);
  5875. }
  5876. static void nop_init_clock_gating(struct drm_device *dev)
  5877. {
  5878. DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
  5879. }
  5880. /**
  5881. * intel_init_clock_gating_hooks - setup the clock gating hooks
  5882. * @dev_priv: device private
  5883. *
  5884. * Setup the hooks that configure which clocks of a given platform can be
  5885. * gated and also apply various GT and display specific workarounds for these
  5886. * platforms. Note that some GT specific workarounds are applied separately
  5887. * when GPU contexts or batchbuffers start their execution.
  5888. */
  5889. void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
  5890. {
  5891. if (IS_SKYLAKE(dev_priv))
  5892. dev_priv->display.init_clock_gating = nop_init_clock_gating;
  5893. else if (IS_KABYLAKE(dev_priv))
  5894. dev_priv->display.init_clock_gating = nop_init_clock_gating;
  5895. else if (IS_BROXTON(dev_priv))
  5896. dev_priv->display.init_clock_gating = bxt_init_clock_gating;
  5897. else if (IS_BROADWELL(dev_priv))
  5898. dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
  5899. else if (IS_CHERRYVIEW(dev_priv))
  5900. dev_priv->display.init_clock_gating = cherryview_init_clock_gating;
  5901. else if (IS_HASWELL(dev_priv))
  5902. dev_priv->display.init_clock_gating = haswell_init_clock_gating;
  5903. else if (IS_IVYBRIDGE(dev_priv))
  5904. dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
  5905. else if (IS_VALLEYVIEW(dev_priv))
  5906. dev_priv->display.init_clock_gating = valleyview_init_clock_gating;
  5907. else if (IS_GEN6(dev_priv))
  5908. dev_priv->display.init_clock_gating = gen6_init_clock_gating;
  5909. else if (IS_GEN5(dev_priv))
  5910. dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
  5911. else if (IS_G4X(dev_priv))
  5912. dev_priv->display.init_clock_gating = g4x_init_clock_gating;
  5913. else if (IS_CRESTLINE(dev_priv))
  5914. dev_priv->display.init_clock_gating = crestline_init_clock_gating;
  5915. else if (IS_BROADWATER(dev_priv))
  5916. dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
  5917. else if (IS_GEN3(dev_priv))
  5918. dev_priv->display.init_clock_gating = gen3_init_clock_gating;
  5919. else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
  5920. dev_priv->display.init_clock_gating = i85x_init_clock_gating;
  5921. else if (IS_GEN2(dev_priv))
  5922. dev_priv->display.init_clock_gating = i830_init_clock_gating;
  5923. else {
  5924. MISSING_CASE(INTEL_DEVID(dev_priv));
  5925. dev_priv->display.init_clock_gating = nop_init_clock_gating;
  5926. }
  5927. }
  5928. /* Set up chip specific power management-related functions */
  5929. void intel_init_pm(struct drm_device *dev)
  5930. {
  5931. struct drm_i915_private *dev_priv = dev->dev_private;
  5932. intel_fbc_init(dev_priv);
  5933. /* For cxsr */
  5934. if (IS_PINEVIEW(dev))
  5935. i915_pineview_get_mem_freq(dev);
  5936. else if (IS_GEN5(dev))
  5937. i915_ironlake_get_mem_freq(dev);
  5938. /* For FIFO watermark updates */
  5939. if (INTEL_INFO(dev)->gen >= 9) {
  5940. skl_setup_wm_latency(dev);
  5941. dev_priv->display.update_wm = skl_update_wm;
  5942. } else if (HAS_PCH_SPLIT(dev)) {
  5943. ilk_setup_wm_latency(dev);
  5944. if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
  5945. dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
  5946. (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
  5947. dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
  5948. dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
  5949. dev_priv->display.compute_intermediate_wm =
  5950. ilk_compute_intermediate_wm;
  5951. dev_priv->display.initial_watermarks =
  5952. ilk_initial_watermarks;
  5953. dev_priv->display.optimize_watermarks =
  5954. ilk_optimize_watermarks;
  5955. } else {
  5956. DRM_DEBUG_KMS("Failed to read display plane latency. "
  5957. "Disable CxSR\n");
  5958. }
  5959. } else if (IS_CHERRYVIEW(dev)) {
  5960. vlv_setup_wm_latency(dev);
  5961. dev_priv->display.update_wm = vlv_update_wm;
  5962. } else if (IS_VALLEYVIEW(dev)) {
  5963. vlv_setup_wm_latency(dev);
  5964. dev_priv->display.update_wm = vlv_update_wm;
  5965. } else if (IS_PINEVIEW(dev)) {
  5966. if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
  5967. dev_priv->is_ddr3,
  5968. dev_priv->fsb_freq,
  5969. dev_priv->mem_freq)) {
  5970. DRM_INFO("failed to find known CxSR latency "
  5971. "(found ddr%s fsb freq %d, mem freq %d), "
  5972. "disabling CxSR\n",
  5973. (dev_priv->is_ddr3 == 1) ? "3" : "2",
  5974. dev_priv->fsb_freq, dev_priv->mem_freq);
  5975. /* Disable CxSR and never update its watermark again */
  5976. intel_set_memory_cxsr(dev_priv, false);
  5977. dev_priv->display.update_wm = NULL;
  5978. } else
  5979. dev_priv->display.update_wm = pineview_update_wm;
  5980. } else if (IS_G4X(dev)) {
  5981. dev_priv->display.update_wm = g4x_update_wm;
  5982. } else if (IS_GEN4(dev)) {
  5983. dev_priv->display.update_wm = i965_update_wm;
  5984. } else if (IS_GEN3(dev)) {
  5985. dev_priv->display.update_wm = i9xx_update_wm;
  5986. dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
  5987. } else if (IS_GEN2(dev)) {
  5988. if (INTEL_INFO(dev)->num_pipes == 1) {
  5989. dev_priv->display.update_wm = i845_update_wm;
  5990. dev_priv->display.get_fifo_size = i845_get_fifo_size;
  5991. } else {
  5992. dev_priv->display.update_wm = i9xx_update_wm;
  5993. dev_priv->display.get_fifo_size = i830_get_fifo_size;
  5994. }
  5995. } else {
  5996. DRM_ERROR("unexpected fall-through in intel_init_pm\n");
  5997. }
  5998. }
  5999. int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
  6000. {
  6001. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  6002. if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
  6003. DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
  6004. return -EAGAIN;
  6005. }
  6006. I915_WRITE(GEN6_PCODE_DATA, *val);
  6007. I915_WRITE(GEN6_PCODE_DATA1, 0);
  6008. I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
  6009. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  6010. 500)) {
  6011. DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
  6012. return -ETIMEDOUT;
  6013. }
  6014. *val = I915_READ(GEN6_PCODE_DATA);
  6015. I915_WRITE(GEN6_PCODE_DATA, 0);
  6016. return 0;
  6017. }
  6018. int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val)
  6019. {
  6020. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  6021. if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
  6022. DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
  6023. return -EAGAIN;
  6024. }
  6025. I915_WRITE(GEN6_PCODE_DATA, val);
  6026. I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
  6027. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  6028. 500)) {
  6029. DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
  6030. return -ETIMEDOUT;
  6031. }
  6032. I915_WRITE(GEN6_PCODE_DATA, 0);
  6033. return 0;
  6034. }
  6035. static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
  6036. {
  6037. /*
  6038. * N = val - 0xb7
  6039. * Slow = Fast = GPLL ref * N
  6040. */
  6041. return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * (val - 0xb7), 1000);
  6042. }
  6043. static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
  6044. {
  6045. return DIV_ROUND_CLOSEST(1000 * val, dev_priv->rps.gpll_ref_freq) + 0xb7;
  6046. }
  6047. static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
  6048. {
  6049. /*
  6050. * N = val / 2
  6051. * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
  6052. */
  6053. return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * val, 2 * 2 * 1000);
  6054. }
  6055. static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
  6056. {
  6057. /* CHV needs even values */
  6058. return DIV_ROUND_CLOSEST(2 * 1000 * val, dev_priv->rps.gpll_ref_freq) * 2;
  6059. }
  6060. int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
  6061. {
  6062. if (IS_GEN9(dev_priv))
  6063. return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
  6064. GEN9_FREQ_SCALER);
  6065. else if (IS_CHERRYVIEW(dev_priv))
  6066. return chv_gpu_freq(dev_priv, val);
  6067. else if (IS_VALLEYVIEW(dev_priv))
  6068. return byt_gpu_freq(dev_priv, val);
  6069. else
  6070. return val * GT_FREQUENCY_MULTIPLIER;
  6071. }
  6072. int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
  6073. {
  6074. if (IS_GEN9(dev_priv))
  6075. return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
  6076. GT_FREQUENCY_MULTIPLIER);
  6077. else if (IS_CHERRYVIEW(dev_priv))
  6078. return chv_freq_opcode(dev_priv, val);
  6079. else if (IS_VALLEYVIEW(dev_priv))
  6080. return byt_freq_opcode(dev_priv, val);
  6081. else
  6082. return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
  6083. }
  6084. struct request_boost {
  6085. struct work_struct work;
  6086. struct drm_i915_gem_request *req;
  6087. };
  6088. static void __intel_rps_boost_work(struct work_struct *work)
  6089. {
  6090. struct request_boost *boost = container_of(work, struct request_boost, work);
  6091. struct drm_i915_gem_request *req = boost->req;
  6092. if (!i915_gem_request_completed(req, true))
  6093. gen6_rps_boost(to_i915(req->engine->dev), NULL,
  6094. req->emitted_jiffies);
  6095. i915_gem_request_unreference__unlocked(req);
  6096. kfree(boost);
  6097. }
  6098. void intel_queue_rps_boost_for_request(struct drm_device *dev,
  6099. struct drm_i915_gem_request *req)
  6100. {
  6101. struct request_boost *boost;
  6102. if (req == NULL || INTEL_INFO(dev)->gen < 6)
  6103. return;
  6104. if (i915_gem_request_completed(req, true))
  6105. return;
  6106. boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
  6107. if (boost == NULL)
  6108. return;
  6109. i915_gem_request_reference(req);
  6110. boost->req = req;
  6111. INIT_WORK(&boost->work, __intel_rps_boost_work);
  6112. queue_work(to_i915(dev)->wq, &boost->work);
  6113. }
  6114. void intel_pm_setup(struct drm_device *dev)
  6115. {
  6116. struct drm_i915_private *dev_priv = dev->dev_private;
  6117. mutex_init(&dev_priv->rps.hw_lock);
  6118. spin_lock_init(&dev_priv->rps.client_lock);
  6119. INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
  6120. intel_gen6_powersave_work);
  6121. INIT_LIST_HEAD(&dev_priv->rps.clients);
  6122. INIT_LIST_HEAD(&dev_priv->rps.semaphores.link);
  6123. INIT_LIST_HEAD(&dev_priv->rps.mmioflips.link);
  6124. dev_priv->pm.suspended = false;
  6125. atomic_set(&dev_priv->pm.wakeref_count, 0);
  6126. atomic_set(&dev_priv->pm.atomic_seq, 0);
  6127. }