intel_ddi.c 69 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414
  1. /*
  2. * Copyright © 2012 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eugeni Dodonov <eugeni.dodonov@intel.com>
  25. *
  26. */
  27. #include "i915_drv.h"
  28. #include "intel_drv.h"
  29. struct ddi_buf_trans {
  30. u32 trans1; /* balance leg enable, de-emph level */
  31. u32 trans2; /* vref sel, vswing */
  32. u8 i_boost; /* SKL: I_boost; valid: 0x0, 0x1, 0x3, 0x7 */
  33. };
  34. /* HDMI/DVI modes ignore everything but the last 2 items. So we share
  35. * them for both DP and FDI transports, allowing those ports to
  36. * automatically adapt to HDMI connections as well
  37. */
  38. static const struct ddi_buf_trans hsw_ddi_translations_dp[] = {
  39. { 0x00FFFFFF, 0x0006000E, 0x0 },
  40. { 0x00D75FFF, 0x0005000A, 0x0 },
  41. { 0x00C30FFF, 0x00040006, 0x0 },
  42. { 0x80AAAFFF, 0x000B0000, 0x0 },
  43. { 0x00FFFFFF, 0x0005000A, 0x0 },
  44. { 0x00D75FFF, 0x000C0004, 0x0 },
  45. { 0x80C30FFF, 0x000B0000, 0x0 },
  46. { 0x00FFFFFF, 0x00040006, 0x0 },
  47. { 0x80D75FFF, 0x000B0000, 0x0 },
  48. };
  49. static const struct ddi_buf_trans hsw_ddi_translations_fdi[] = {
  50. { 0x00FFFFFF, 0x0007000E, 0x0 },
  51. { 0x00D75FFF, 0x000F000A, 0x0 },
  52. { 0x00C30FFF, 0x00060006, 0x0 },
  53. { 0x00AAAFFF, 0x001E0000, 0x0 },
  54. { 0x00FFFFFF, 0x000F000A, 0x0 },
  55. { 0x00D75FFF, 0x00160004, 0x0 },
  56. { 0x00C30FFF, 0x001E0000, 0x0 },
  57. { 0x00FFFFFF, 0x00060006, 0x0 },
  58. { 0x00D75FFF, 0x001E0000, 0x0 },
  59. };
  60. static const struct ddi_buf_trans hsw_ddi_translations_hdmi[] = {
  61. /* Idx NT mV d T mV d db */
  62. { 0x00FFFFFF, 0x0006000E, 0x0 },/* 0: 400 400 0 */
  63. { 0x00E79FFF, 0x000E000C, 0x0 },/* 1: 400 500 2 */
  64. { 0x00D75FFF, 0x0005000A, 0x0 },/* 2: 400 600 3.5 */
  65. { 0x00FFFFFF, 0x0005000A, 0x0 },/* 3: 600 600 0 */
  66. { 0x00E79FFF, 0x001D0007, 0x0 },/* 4: 600 750 2 */
  67. { 0x00D75FFF, 0x000C0004, 0x0 },/* 5: 600 900 3.5 */
  68. { 0x00FFFFFF, 0x00040006, 0x0 },/* 6: 800 800 0 */
  69. { 0x80E79FFF, 0x00030002, 0x0 },/* 7: 800 1000 2 */
  70. { 0x00FFFFFF, 0x00140005, 0x0 },/* 8: 850 850 0 */
  71. { 0x00FFFFFF, 0x000C0004, 0x0 },/* 9: 900 900 0 */
  72. { 0x00FFFFFF, 0x001C0003, 0x0 },/* 10: 950 950 0 */
  73. { 0x80FFFFFF, 0x00030002, 0x0 },/* 11: 1000 1000 0 */
  74. };
  75. static const struct ddi_buf_trans bdw_ddi_translations_edp[] = {
  76. { 0x00FFFFFF, 0x00000012, 0x0 },
  77. { 0x00EBAFFF, 0x00020011, 0x0 },
  78. { 0x00C71FFF, 0x0006000F, 0x0 },
  79. { 0x00AAAFFF, 0x000E000A, 0x0 },
  80. { 0x00FFFFFF, 0x00020011, 0x0 },
  81. { 0x00DB6FFF, 0x0005000F, 0x0 },
  82. { 0x00BEEFFF, 0x000A000C, 0x0 },
  83. { 0x00FFFFFF, 0x0005000F, 0x0 },
  84. { 0x00DB6FFF, 0x000A000C, 0x0 },
  85. };
  86. static const struct ddi_buf_trans bdw_ddi_translations_dp[] = {
  87. { 0x00FFFFFF, 0x0007000E, 0x0 },
  88. { 0x00D75FFF, 0x000E000A, 0x0 },
  89. { 0x00BEFFFF, 0x00140006, 0x0 },
  90. { 0x80B2CFFF, 0x001B0002, 0x0 },
  91. { 0x00FFFFFF, 0x000E000A, 0x0 },
  92. { 0x00DB6FFF, 0x00160005, 0x0 },
  93. { 0x80C71FFF, 0x001A0002, 0x0 },
  94. { 0x00F7DFFF, 0x00180004, 0x0 },
  95. { 0x80D75FFF, 0x001B0002, 0x0 },
  96. };
  97. static const struct ddi_buf_trans bdw_ddi_translations_fdi[] = {
  98. { 0x00FFFFFF, 0x0001000E, 0x0 },
  99. { 0x00D75FFF, 0x0004000A, 0x0 },
  100. { 0x00C30FFF, 0x00070006, 0x0 },
  101. { 0x00AAAFFF, 0x000C0000, 0x0 },
  102. { 0x00FFFFFF, 0x0004000A, 0x0 },
  103. { 0x00D75FFF, 0x00090004, 0x0 },
  104. { 0x00C30FFF, 0x000C0000, 0x0 },
  105. { 0x00FFFFFF, 0x00070006, 0x0 },
  106. { 0x00D75FFF, 0x000C0000, 0x0 },
  107. };
  108. static const struct ddi_buf_trans bdw_ddi_translations_hdmi[] = {
  109. /* Idx NT mV d T mV df db */
  110. { 0x00FFFFFF, 0x0007000E, 0x0 },/* 0: 400 400 0 */
  111. { 0x00D75FFF, 0x000E000A, 0x0 },/* 1: 400 600 3.5 */
  112. { 0x00BEFFFF, 0x00140006, 0x0 },/* 2: 400 800 6 */
  113. { 0x00FFFFFF, 0x0009000D, 0x0 },/* 3: 450 450 0 */
  114. { 0x00FFFFFF, 0x000E000A, 0x0 },/* 4: 600 600 0 */
  115. { 0x00D7FFFF, 0x00140006, 0x0 },/* 5: 600 800 2.5 */
  116. { 0x80CB2FFF, 0x001B0002, 0x0 },/* 6: 600 1000 4.5 */
  117. { 0x00FFFFFF, 0x00140006, 0x0 },/* 7: 800 800 0 */
  118. { 0x80E79FFF, 0x001B0002, 0x0 },/* 8: 800 1000 2 */
  119. { 0x80FFFFFF, 0x001B0002, 0x0 },/* 9: 1000 1000 0 */
  120. };
  121. /* Skylake H and S */
  122. static const struct ddi_buf_trans skl_ddi_translations_dp[] = {
  123. { 0x00002016, 0x000000A0, 0x0 },
  124. { 0x00005012, 0x0000009B, 0x0 },
  125. { 0x00007011, 0x00000088, 0x0 },
  126. { 0x80009010, 0x000000C0, 0x1 },
  127. { 0x00002016, 0x0000009B, 0x0 },
  128. { 0x00005012, 0x00000088, 0x0 },
  129. { 0x80007011, 0x000000C0, 0x1 },
  130. { 0x00002016, 0x000000DF, 0x0 },
  131. { 0x80005012, 0x000000C0, 0x1 },
  132. };
  133. /* Skylake U */
  134. static const struct ddi_buf_trans skl_u_ddi_translations_dp[] = {
  135. { 0x0000201B, 0x000000A2, 0x0 },
  136. { 0x00005012, 0x00000088, 0x0 },
  137. { 0x80007011, 0x000000CD, 0x0 },
  138. { 0x80009010, 0x000000C0, 0x1 },
  139. { 0x0000201B, 0x0000009D, 0x0 },
  140. { 0x80005012, 0x000000C0, 0x1 },
  141. { 0x80007011, 0x000000C0, 0x1 },
  142. { 0x00002016, 0x00000088, 0x0 },
  143. { 0x80005012, 0x000000C0, 0x1 },
  144. };
  145. /* Skylake Y */
  146. static const struct ddi_buf_trans skl_y_ddi_translations_dp[] = {
  147. { 0x00000018, 0x000000A2, 0x0 },
  148. { 0x00005012, 0x00000088, 0x0 },
  149. { 0x80007011, 0x000000CD, 0x0 },
  150. { 0x80009010, 0x000000C0, 0x3 },
  151. { 0x00000018, 0x0000009D, 0x0 },
  152. { 0x80005012, 0x000000C0, 0x3 },
  153. { 0x80007011, 0x000000C0, 0x3 },
  154. { 0x00000018, 0x00000088, 0x0 },
  155. { 0x80005012, 0x000000C0, 0x3 },
  156. };
  157. /*
  158. * Skylake H and S
  159. * eDP 1.4 low vswing translation parameters
  160. */
  161. static const struct ddi_buf_trans skl_ddi_translations_edp[] = {
  162. { 0x00000018, 0x000000A8, 0x0 },
  163. { 0x00004013, 0x000000A9, 0x0 },
  164. { 0x00007011, 0x000000A2, 0x0 },
  165. { 0x00009010, 0x0000009C, 0x0 },
  166. { 0x00000018, 0x000000A9, 0x0 },
  167. { 0x00006013, 0x000000A2, 0x0 },
  168. { 0x00007011, 0x000000A6, 0x0 },
  169. { 0x00000018, 0x000000AB, 0x0 },
  170. { 0x00007013, 0x0000009F, 0x0 },
  171. { 0x00000018, 0x000000DF, 0x0 },
  172. };
  173. /*
  174. * Skylake U
  175. * eDP 1.4 low vswing translation parameters
  176. */
  177. static const struct ddi_buf_trans skl_u_ddi_translations_edp[] = {
  178. { 0x00000018, 0x000000A8, 0x0 },
  179. { 0x00004013, 0x000000A9, 0x0 },
  180. { 0x00007011, 0x000000A2, 0x0 },
  181. { 0x00009010, 0x0000009C, 0x0 },
  182. { 0x00000018, 0x000000A9, 0x0 },
  183. { 0x00006013, 0x000000A2, 0x0 },
  184. { 0x00007011, 0x000000A6, 0x0 },
  185. { 0x00002016, 0x000000AB, 0x0 },
  186. { 0x00005013, 0x0000009F, 0x0 },
  187. { 0x00000018, 0x000000DF, 0x0 },
  188. };
  189. /*
  190. * Skylake Y
  191. * eDP 1.4 low vswing translation parameters
  192. */
  193. static const struct ddi_buf_trans skl_y_ddi_translations_edp[] = {
  194. { 0x00000018, 0x000000A8, 0x0 },
  195. { 0x00004013, 0x000000AB, 0x0 },
  196. { 0x00007011, 0x000000A4, 0x0 },
  197. { 0x00009010, 0x000000DF, 0x0 },
  198. { 0x00000018, 0x000000AA, 0x0 },
  199. { 0x00006013, 0x000000A4, 0x0 },
  200. { 0x00007011, 0x0000009D, 0x0 },
  201. { 0x00000018, 0x000000A0, 0x0 },
  202. { 0x00006012, 0x000000DF, 0x0 },
  203. { 0x00000018, 0x0000008A, 0x0 },
  204. };
  205. /* Skylake U, H and S */
  206. static const struct ddi_buf_trans skl_ddi_translations_hdmi[] = {
  207. { 0x00000018, 0x000000AC, 0x0 },
  208. { 0x00005012, 0x0000009D, 0x0 },
  209. { 0x00007011, 0x00000088, 0x0 },
  210. { 0x00000018, 0x000000A1, 0x0 },
  211. { 0x00000018, 0x00000098, 0x0 },
  212. { 0x00004013, 0x00000088, 0x0 },
  213. { 0x80006012, 0x000000CD, 0x1 },
  214. { 0x00000018, 0x000000DF, 0x0 },
  215. { 0x80003015, 0x000000CD, 0x1 }, /* Default */
  216. { 0x80003015, 0x000000C0, 0x1 },
  217. { 0x80000018, 0x000000C0, 0x1 },
  218. };
  219. /* Skylake Y */
  220. static const struct ddi_buf_trans skl_y_ddi_translations_hdmi[] = {
  221. { 0x00000018, 0x000000A1, 0x0 },
  222. { 0x00005012, 0x000000DF, 0x0 },
  223. { 0x80007011, 0x000000CB, 0x3 },
  224. { 0x00000018, 0x000000A4, 0x0 },
  225. { 0x00000018, 0x0000009D, 0x0 },
  226. { 0x00004013, 0x00000080, 0x0 },
  227. { 0x80006013, 0x000000C0, 0x3 },
  228. { 0x00000018, 0x0000008A, 0x0 },
  229. { 0x80003015, 0x000000C0, 0x3 }, /* Default */
  230. { 0x80003015, 0x000000C0, 0x3 },
  231. { 0x80000018, 0x000000C0, 0x3 },
  232. };
  233. struct bxt_ddi_buf_trans {
  234. u32 margin; /* swing value */
  235. u32 scale; /* scale value */
  236. u32 enable; /* scale enable */
  237. u32 deemphasis;
  238. bool default_index; /* true if the entry represents default value */
  239. };
  240. static const struct bxt_ddi_buf_trans bxt_ddi_translations_dp[] = {
  241. /* Idx NT mV diff db */
  242. { 52, 0x9A, 0, 128, true }, /* 0: 400 0 */
  243. { 78, 0x9A, 0, 85, false }, /* 1: 400 3.5 */
  244. { 104, 0x9A, 0, 64, false }, /* 2: 400 6 */
  245. { 154, 0x9A, 0, 43, false }, /* 3: 400 9.5 */
  246. { 77, 0x9A, 0, 128, false }, /* 4: 600 0 */
  247. { 116, 0x9A, 0, 85, false }, /* 5: 600 3.5 */
  248. { 154, 0x9A, 0, 64, false }, /* 6: 600 6 */
  249. { 102, 0x9A, 0, 128, false }, /* 7: 800 0 */
  250. { 154, 0x9A, 0, 85, false }, /* 8: 800 3.5 */
  251. { 154, 0x9A, 1, 128, false }, /* 9: 1200 0 */
  252. };
  253. static const struct bxt_ddi_buf_trans bxt_ddi_translations_edp[] = {
  254. /* Idx NT mV diff db */
  255. { 26, 0, 0, 128, false }, /* 0: 200 0 */
  256. { 38, 0, 0, 112, false }, /* 1: 200 1.5 */
  257. { 48, 0, 0, 96, false }, /* 2: 200 4 */
  258. { 54, 0, 0, 69, false }, /* 3: 200 6 */
  259. { 32, 0, 0, 128, false }, /* 4: 250 0 */
  260. { 48, 0, 0, 104, false }, /* 5: 250 1.5 */
  261. { 54, 0, 0, 85, false }, /* 6: 250 4 */
  262. { 43, 0, 0, 128, false }, /* 7: 300 0 */
  263. { 54, 0, 0, 101, false }, /* 8: 300 1.5 */
  264. { 48, 0, 0, 128, false }, /* 9: 300 0 */
  265. };
  266. /* BSpec has 2 recommended values - entries 0 and 8.
  267. * Using the entry with higher vswing.
  268. */
  269. static const struct bxt_ddi_buf_trans bxt_ddi_translations_hdmi[] = {
  270. /* Idx NT mV diff db */
  271. { 52, 0x9A, 0, 128, false }, /* 0: 400 0 */
  272. { 52, 0x9A, 0, 85, false }, /* 1: 400 3.5 */
  273. { 52, 0x9A, 0, 64, false }, /* 2: 400 6 */
  274. { 42, 0x9A, 0, 43, false }, /* 3: 400 9.5 */
  275. { 77, 0x9A, 0, 128, false }, /* 4: 600 0 */
  276. { 77, 0x9A, 0, 85, false }, /* 5: 600 3.5 */
  277. { 77, 0x9A, 0, 64, false }, /* 6: 600 6 */
  278. { 102, 0x9A, 0, 128, false }, /* 7: 800 0 */
  279. { 102, 0x9A, 0, 85, false }, /* 8: 800 3.5 */
  280. { 154, 0x9A, 1, 128, true }, /* 9: 1200 0 */
  281. };
  282. static void bxt_ddi_vswing_sequence(struct drm_i915_private *dev_priv,
  283. u32 level, enum port port, int type);
  284. static void ddi_get_encoder_port(struct intel_encoder *intel_encoder,
  285. struct intel_digital_port **dig_port,
  286. enum port *port)
  287. {
  288. struct drm_encoder *encoder = &intel_encoder->base;
  289. switch (intel_encoder->type) {
  290. case INTEL_OUTPUT_DP_MST:
  291. *dig_port = enc_to_mst(encoder)->primary;
  292. *port = (*dig_port)->port;
  293. break;
  294. default:
  295. WARN(1, "Invalid DDI encoder type %d\n", intel_encoder->type);
  296. /* fallthrough and treat as unknown */
  297. case INTEL_OUTPUT_DISPLAYPORT:
  298. case INTEL_OUTPUT_EDP:
  299. case INTEL_OUTPUT_HDMI:
  300. case INTEL_OUTPUT_UNKNOWN:
  301. *dig_port = enc_to_dig_port(encoder);
  302. *port = (*dig_port)->port;
  303. break;
  304. case INTEL_OUTPUT_ANALOG:
  305. *dig_port = NULL;
  306. *port = PORT_E;
  307. break;
  308. }
  309. }
  310. enum port intel_ddi_get_encoder_port(struct intel_encoder *intel_encoder)
  311. {
  312. struct intel_digital_port *dig_port;
  313. enum port port;
  314. ddi_get_encoder_port(intel_encoder, &dig_port, &port);
  315. return port;
  316. }
  317. static const struct ddi_buf_trans *
  318. skl_get_buf_trans_dp(struct drm_i915_private *dev_priv, int *n_entries)
  319. {
  320. if (IS_SKL_ULX(dev_priv) || IS_KBL_ULX(dev_priv)) {
  321. *n_entries = ARRAY_SIZE(skl_y_ddi_translations_dp);
  322. return skl_y_ddi_translations_dp;
  323. } else if (IS_SKL_ULT(dev_priv) || IS_KBL_ULT(dev_priv)) {
  324. *n_entries = ARRAY_SIZE(skl_u_ddi_translations_dp);
  325. return skl_u_ddi_translations_dp;
  326. } else {
  327. *n_entries = ARRAY_SIZE(skl_ddi_translations_dp);
  328. return skl_ddi_translations_dp;
  329. }
  330. }
  331. static const struct ddi_buf_trans *
  332. skl_get_buf_trans_edp(struct drm_i915_private *dev_priv, int *n_entries)
  333. {
  334. if (dev_priv->vbt.edp.low_vswing) {
  335. if (IS_SKL_ULX(dev_priv) || IS_KBL_ULX(dev_priv)) {
  336. *n_entries = ARRAY_SIZE(skl_y_ddi_translations_edp);
  337. return skl_y_ddi_translations_edp;
  338. } else if (IS_SKL_ULT(dev_priv) || IS_KBL_ULT(dev_priv)) {
  339. *n_entries = ARRAY_SIZE(skl_u_ddi_translations_edp);
  340. return skl_u_ddi_translations_edp;
  341. } else {
  342. *n_entries = ARRAY_SIZE(skl_ddi_translations_edp);
  343. return skl_ddi_translations_edp;
  344. }
  345. }
  346. return skl_get_buf_trans_dp(dev_priv, n_entries);
  347. }
  348. static const struct ddi_buf_trans *
  349. skl_get_buf_trans_hdmi(struct drm_i915_private *dev_priv, int *n_entries)
  350. {
  351. if (IS_SKL_ULX(dev_priv) || IS_KBL_ULX(dev_priv)) {
  352. *n_entries = ARRAY_SIZE(skl_y_ddi_translations_hdmi);
  353. return skl_y_ddi_translations_hdmi;
  354. } else {
  355. *n_entries = ARRAY_SIZE(skl_ddi_translations_hdmi);
  356. return skl_ddi_translations_hdmi;
  357. }
  358. }
  359. /*
  360. * Starting with Haswell, DDI port buffers must be programmed with correct
  361. * values in advance. The buffer values are different for FDI and DP modes,
  362. * but the HDMI/DVI fields are shared among those. So we program the DDI
  363. * in either FDI or DP modes only, as HDMI connections will work with both
  364. * of those
  365. */
  366. void intel_prepare_ddi_buffer(struct intel_encoder *encoder)
  367. {
  368. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  369. u32 iboost_bit = 0;
  370. int i, n_hdmi_entries, n_dp_entries, n_edp_entries, hdmi_default_entry,
  371. size;
  372. int hdmi_level;
  373. enum port port;
  374. const struct ddi_buf_trans *ddi_translations_fdi;
  375. const struct ddi_buf_trans *ddi_translations_dp;
  376. const struct ddi_buf_trans *ddi_translations_edp;
  377. const struct ddi_buf_trans *ddi_translations_hdmi;
  378. const struct ddi_buf_trans *ddi_translations;
  379. port = intel_ddi_get_encoder_port(encoder);
  380. hdmi_level = dev_priv->vbt.ddi_port_info[port].hdmi_level_shift;
  381. if (IS_BROXTON(dev_priv)) {
  382. if (encoder->type != INTEL_OUTPUT_HDMI)
  383. return;
  384. /* Vswing programming for HDMI */
  385. bxt_ddi_vswing_sequence(dev_priv, hdmi_level, port,
  386. INTEL_OUTPUT_HDMI);
  387. return;
  388. }
  389. if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
  390. ddi_translations_fdi = NULL;
  391. ddi_translations_dp =
  392. skl_get_buf_trans_dp(dev_priv, &n_dp_entries);
  393. ddi_translations_edp =
  394. skl_get_buf_trans_edp(dev_priv, &n_edp_entries);
  395. ddi_translations_hdmi =
  396. skl_get_buf_trans_hdmi(dev_priv, &n_hdmi_entries);
  397. hdmi_default_entry = 8;
  398. /* If we're boosting the current, set bit 31 of trans1 */
  399. if (dev_priv->vbt.ddi_port_info[port].hdmi_boost_level ||
  400. dev_priv->vbt.ddi_port_info[port].dp_boost_level)
  401. iboost_bit = 1<<31;
  402. if (WARN_ON(encoder->type == INTEL_OUTPUT_EDP &&
  403. port != PORT_A && port != PORT_E &&
  404. n_edp_entries > 9))
  405. n_edp_entries = 9;
  406. } else if (IS_BROADWELL(dev_priv)) {
  407. ddi_translations_fdi = bdw_ddi_translations_fdi;
  408. ddi_translations_dp = bdw_ddi_translations_dp;
  409. if (dev_priv->vbt.edp.low_vswing) {
  410. ddi_translations_edp = bdw_ddi_translations_edp;
  411. n_edp_entries = ARRAY_SIZE(bdw_ddi_translations_edp);
  412. } else {
  413. ddi_translations_edp = bdw_ddi_translations_dp;
  414. n_edp_entries = ARRAY_SIZE(bdw_ddi_translations_dp);
  415. }
  416. ddi_translations_hdmi = bdw_ddi_translations_hdmi;
  417. n_dp_entries = ARRAY_SIZE(bdw_ddi_translations_dp);
  418. n_hdmi_entries = ARRAY_SIZE(bdw_ddi_translations_hdmi);
  419. hdmi_default_entry = 7;
  420. } else if (IS_HASWELL(dev_priv)) {
  421. ddi_translations_fdi = hsw_ddi_translations_fdi;
  422. ddi_translations_dp = hsw_ddi_translations_dp;
  423. ddi_translations_edp = hsw_ddi_translations_dp;
  424. ddi_translations_hdmi = hsw_ddi_translations_hdmi;
  425. n_dp_entries = n_edp_entries = ARRAY_SIZE(hsw_ddi_translations_dp);
  426. n_hdmi_entries = ARRAY_SIZE(hsw_ddi_translations_hdmi);
  427. hdmi_default_entry = 6;
  428. } else {
  429. WARN(1, "ddi translation table missing\n");
  430. ddi_translations_edp = bdw_ddi_translations_dp;
  431. ddi_translations_fdi = bdw_ddi_translations_fdi;
  432. ddi_translations_dp = bdw_ddi_translations_dp;
  433. ddi_translations_hdmi = bdw_ddi_translations_hdmi;
  434. n_edp_entries = ARRAY_SIZE(bdw_ddi_translations_edp);
  435. n_dp_entries = ARRAY_SIZE(bdw_ddi_translations_dp);
  436. n_hdmi_entries = ARRAY_SIZE(bdw_ddi_translations_hdmi);
  437. hdmi_default_entry = 7;
  438. }
  439. switch (encoder->type) {
  440. case INTEL_OUTPUT_EDP:
  441. ddi_translations = ddi_translations_edp;
  442. size = n_edp_entries;
  443. break;
  444. case INTEL_OUTPUT_DISPLAYPORT:
  445. case INTEL_OUTPUT_HDMI:
  446. ddi_translations = ddi_translations_dp;
  447. size = n_dp_entries;
  448. break;
  449. case INTEL_OUTPUT_ANALOG:
  450. ddi_translations = ddi_translations_fdi;
  451. size = n_dp_entries;
  452. break;
  453. default:
  454. BUG();
  455. }
  456. for (i = 0; i < size; i++) {
  457. I915_WRITE(DDI_BUF_TRANS_LO(port, i),
  458. ddi_translations[i].trans1 | iboost_bit);
  459. I915_WRITE(DDI_BUF_TRANS_HI(port, i),
  460. ddi_translations[i].trans2);
  461. }
  462. if (encoder->type != INTEL_OUTPUT_HDMI)
  463. return;
  464. /* Choose a good default if VBT is badly populated */
  465. if (hdmi_level == HDMI_LEVEL_SHIFT_UNKNOWN ||
  466. hdmi_level >= n_hdmi_entries)
  467. hdmi_level = hdmi_default_entry;
  468. /* Entry 9 is for HDMI: */
  469. I915_WRITE(DDI_BUF_TRANS_LO(port, i),
  470. ddi_translations_hdmi[hdmi_level].trans1 | iboost_bit);
  471. I915_WRITE(DDI_BUF_TRANS_HI(port, i),
  472. ddi_translations_hdmi[hdmi_level].trans2);
  473. }
  474. static void intel_wait_ddi_buf_idle(struct drm_i915_private *dev_priv,
  475. enum port port)
  476. {
  477. i915_reg_t reg = DDI_BUF_CTL(port);
  478. int i;
  479. for (i = 0; i < 16; i++) {
  480. udelay(1);
  481. if (I915_READ(reg) & DDI_BUF_IS_IDLE)
  482. return;
  483. }
  484. DRM_ERROR("Timeout waiting for DDI BUF %c idle bit\n", port_name(port));
  485. }
  486. /* Starting with Haswell, different DDI ports can work in FDI mode for
  487. * connection to the PCH-located connectors. For this, it is necessary to train
  488. * both the DDI port and PCH receiver for the desired DDI buffer settings.
  489. *
  490. * The recommended port to work in FDI mode is DDI E, which we use here. Also,
  491. * please note that when FDI mode is active on DDI E, it shares 2 lines with
  492. * DDI A (which is used for eDP)
  493. */
  494. void hsw_fdi_link_train(struct drm_crtc *crtc)
  495. {
  496. struct drm_device *dev = crtc->dev;
  497. struct drm_i915_private *dev_priv = dev->dev_private;
  498. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  499. struct intel_encoder *encoder;
  500. u32 temp, i, rx_ctl_val;
  501. for_each_encoder_on_crtc(dev, crtc, encoder) {
  502. WARN_ON(encoder->type != INTEL_OUTPUT_ANALOG);
  503. intel_prepare_ddi_buffer(encoder);
  504. }
  505. /* Set the FDI_RX_MISC pwrdn lanes and the 2 workarounds listed at the
  506. * mode set "sequence for CRT port" document:
  507. * - TP1 to TP2 time with the default value
  508. * - FDI delay to 90h
  509. *
  510. * WaFDIAutoLinkSetTimingOverrride:hsw
  511. */
  512. I915_WRITE(FDI_RX_MISC(PIPE_A), FDI_RX_PWRDN_LANE1_VAL(2) |
  513. FDI_RX_PWRDN_LANE0_VAL(2) |
  514. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  515. /* Enable the PCH Receiver FDI PLL */
  516. rx_ctl_val = dev_priv->fdi_rx_config | FDI_RX_ENHANCE_FRAME_ENABLE |
  517. FDI_RX_PLL_ENABLE |
  518. FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
  519. I915_WRITE(FDI_RX_CTL(PIPE_A), rx_ctl_val);
  520. POSTING_READ(FDI_RX_CTL(PIPE_A));
  521. udelay(220);
  522. /* Switch from Rawclk to PCDclk */
  523. rx_ctl_val |= FDI_PCDCLK;
  524. I915_WRITE(FDI_RX_CTL(PIPE_A), rx_ctl_val);
  525. /* Configure Port Clock Select */
  526. I915_WRITE(PORT_CLK_SEL(PORT_E), intel_crtc->config->ddi_pll_sel);
  527. WARN_ON(intel_crtc->config->ddi_pll_sel != PORT_CLK_SEL_SPLL);
  528. /* Start the training iterating through available voltages and emphasis,
  529. * testing each value twice. */
  530. for (i = 0; i < ARRAY_SIZE(hsw_ddi_translations_fdi) * 2; i++) {
  531. /* Configure DP_TP_CTL with auto-training */
  532. I915_WRITE(DP_TP_CTL(PORT_E),
  533. DP_TP_CTL_FDI_AUTOTRAIN |
  534. DP_TP_CTL_ENHANCED_FRAME_ENABLE |
  535. DP_TP_CTL_LINK_TRAIN_PAT1 |
  536. DP_TP_CTL_ENABLE);
  537. /* Configure and enable DDI_BUF_CTL for DDI E with next voltage.
  538. * DDI E does not support port reversal, the functionality is
  539. * achieved on the PCH side in FDI_RX_CTL, so no need to set the
  540. * port reversal bit */
  541. I915_WRITE(DDI_BUF_CTL(PORT_E),
  542. DDI_BUF_CTL_ENABLE |
  543. ((intel_crtc->config->fdi_lanes - 1) << 1) |
  544. DDI_BUF_TRANS_SELECT(i / 2));
  545. POSTING_READ(DDI_BUF_CTL(PORT_E));
  546. udelay(600);
  547. /* Program PCH FDI Receiver TU */
  548. I915_WRITE(FDI_RX_TUSIZE1(PIPE_A), TU_SIZE(64));
  549. /* Enable PCH FDI Receiver with auto-training */
  550. rx_ctl_val |= FDI_RX_ENABLE | FDI_LINK_TRAIN_AUTO;
  551. I915_WRITE(FDI_RX_CTL(PIPE_A), rx_ctl_val);
  552. POSTING_READ(FDI_RX_CTL(PIPE_A));
  553. /* Wait for FDI receiver lane calibration */
  554. udelay(30);
  555. /* Unset FDI_RX_MISC pwrdn lanes */
  556. temp = I915_READ(FDI_RX_MISC(PIPE_A));
  557. temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
  558. I915_WRITE(FDI_RX_MISC(PIPE_A), temp);
  559. POSTING_READ(FDI_RX_MISC(PIPE_A));
  560. /* Wait for FDI auto training time */
  561. udelay(5);
  562. temp = I915_READ(DP_TP_STATUS(PORT_E));
  563. if (temp & DP_TP_STATUS_AUTOTRAIN_DONE) {
  564. DRM_DEBUG_KMS("FDI link training done on step %d\n", i);
  565. break;
  566. }
  567. /*
  568. * Leave things enabled even if we failed to train FDI.
  569. * Results in less fireworks from the state checker.
  570. */
  571. if (i == ARRAY_SIZE(hsw_ddi_translations_fdi) * 2 - 1) {
  572. DRM_ERROR("FDI link training failed!\n");
  573. break;
  574. }
  575. rx_ctl_val &= ~FDI_RX_ENABLE;
  576. I915_WRITE(FDI_RX_CTL(PIPE_A), rx_ctl_val);
  577. POSTING_READ(FDI_RX_CTL(PIPE_A));
  578. temp = I915_READ(DDI_BUF_CTL(PORT_E));
  579. temp &= ~DDI_BUF_CTL_ENABLE;
  580. I915_WRITE(DDI_BUF_CTL(PORT_E), temp);
  581. POSTING_READ(DDI_BUF_CTL(PORT_E));
  582. /* Disable DP_TP_CTL and FDI_RX_CTL and retry */
  583. temp = I915_READ(DP_TP_CTL(PORT_E));
  584. temp &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
  585. temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
  586. I915_WRITE(DP_TP_CTL(PORT_E), temp);
  587. POSTING_READ(DP_TP_CTL(PORT_E));
  588. intel_wait_ddi_buf_idle(dev_priv, PORT_E);
  589. /* Reset FDI_RX_MISC pwrdn lanes */
  590. temp = I915_READ(FDI_RX_MISC(PIPE_A));
  591. temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
  592. temp |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
  593. I915_WRITE(FDI_RX_MISC(PIPE_A), temp);
  594. POSTING_READ(FDI_RX_MISC(PIPE_A));
  595. }
  596. /* Enable normal pixel sending for FDI */
  597. I915_WRITE(DP_TP_CTL(PORT_E),
  598. DP_TP_CTL_FDI_AUTOTRAIN |
  599. DP_TP_CTL_LINK_TRAIN_NORMAL |
  600. DP_TP_CTL_ENHANCED_FRAME_ENABLE |
  601. DP_TP_CTL_ENABLE);
  602. }
  603. void intel_ddi_init_dp_buf_reg(struct intel_encoder *encoder)
  604. {
  605. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  606. struct intel_digital_port *intel_dig_port =
  607. enc_to_dig_port(&encoder->base);
  608. intel_dp->DP = intel_dig_port->saved_port_bits |
  609. DDI_BUF_CTL_ENABLE | DDI_BUF_TRANS_SELECT(0);
  610. intel_dp->DP |= DDI_PORT_WIDTH(intel_dp->lane_count);
  611. }
  612. static struct intel_encoder *
  613. intel_ddi_get_crtc_encoder(struct drm_crtc *crtc)
  614. {
  615. struct drm_device *dev = crtc->dev;
  616. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  617. struct intel_encoder *intel_encoder, *ret = NULL;
  618. int num_encoders = 0;
  619. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  620. ret = intel_encoder;
  621. num_encoders++;
  622. }
  623. if (num_encoders != 1)
  624. WARN(1, "%d encoders on crtc for pipe %c\n", num_encoders,
  625. pipe_name(intel_crtc->pipe));
  626. BUG_ON(ret == NULL);
  627. return ret;
  628. }
  629. struct intel_encoder *
  630. intel_ddi_get_crtc_new_encoder(struct intel_crtc_state *crtc_state)
  631. {
  632. struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
  633. struct intel_encoder *ret = NULL;
  634. struct drm_atomic_state *state;
  635. struct drm_connector *connector;
  636. struct drm_connector_state *connector_state;
  637. int num_encoders = 0;
  638. int i;
  639. state = crtc_state->base.state;
  640. for_each_connector_in_state(state, connector, connector_state, i) {
  641. if (connector_state->crtc != crtc_state->base.crtc)
  642. continue;
  643. ret = to_intel_encoder(connector_state->best_encoder);
  644. num_encoders++;
  645. }
  646. WARN(num_encoders != 1, "%d encoders on crtc for pipe %c\n", num_encoders,
  647. pipe_name(crtc->pipe));
  648. BUG_ON(ret == NULL);
  649. return ret;
  650. }
  651. #define LC_FREQ 2700
  652. static int hsw_ddi_calc_wrpll_link(struct drm_i915_private *dev_priv,
  653. i915_reg_t reg)
  654. {
  655. int refclk = LC_FREQ;
  656. int n, p, r;
  657. u32 wrpll;
  658. wrpll = I915_READ(reg);
  659. switch (wrpll & WRPLL_PLL_REF_MASK) {
  660. case WRPLL_PLL_SSC:
  661. case WRPLL_PLL_NON_SSC:
  662. /*
  663. * We could calculate spread here, but our checking
  664. * code only cares about 5% accuracy, and spread is a max of
  665. * 0.5% downspread.
  666. */
  667. refclk = 135;
  668. break;
  669. case WRPLL_PLL_LCPLL:
  670. refclk = LC_FREQ;
  671. break;
  672. default:
  673. WARN(1, "bad wrpll refclk\n");
  674. return 0;
  675. }
  676. r = wrpll & WRPLL_DIVIDER_REF_MASK;
  677. p = (wrpll & WRPLL_DIVIDER_POST_MASK) >> WRPLL_DIVIDER_POST_SHIFT;
  678. n = (wrpll & WRPLL_DIVIDER_FB_MASK) >> WRPLL_DIVIDER_FB_SHIFT;
  679. /* Convert to KHz, p & r have a fixed point portion */
  680. return (refclk * n * 100) / (p * r);
  681. }
  682. static int skl_calc_wrpll_link(struct drm_i915_private *dev_priv,
  683. uint32_t dpll)
  684. {
  685. i915_reg_t cfgcr1_reg, cfgcr2_reg;
  686. uint32_t cfgcr1_val, cfgcr2_val;
  687. uint32_t p0, p1, p2, dco_freq;
  688. cfgcr1_reg = DPLL_CFGCR1(dpll);
  689. cfgcr2_reg = DPLL_CFGCR2(dpll);
  690. cfgcr1_val = I915_READ(cfgcr1_reg);
  691. cfgcr2_val = I915_READ(cfgcr2_reg);
  692. p0 = cfgcr2_val & DPLL_CFGCR2_PDIV_MASK;
  693. p2 = cfgcr2_val & DPLL_CFGCR2_KDIV_MASK;
  694. if (cfgcr2_val & DPLL_CFGCR2_QDIV_MODE(1))
  695. p1 = (cfgcr2_val & DPLL_CFGCR2_QDIV_RATIO_MASK) >> 8;
  696. else
  697. p1 = 1;
  698. switch (p0) {
  699. case DPLL_CFGCR2_PDIV_1:
  700. p0 = 1;
  701. break;
  702. case DPLL_CFGCR2_PDIV_2:
  703. p0 = 2;
  704. break;
  705. case DPLL_CFGCR2_PDIV_3:
  706. p0 = 3;
  707. break;
  708. case DPLL_CFGCR2_PDIV_7:
  709. p0 = 7;
  710. break;
  711. }
  712. switch (p2) {
  713. case DPLL_CFGCR2_KDIV_5:
  714. p2 = 5;
  715. break;
  716. case DPLL_CFGCR2_KDIV_2:
  717. p2 = 2;
  718. break;
  719. case DPLL_CFGCR2_KDIV_3:
  720. p2 = 3;
  721. break;
  722. case DPLL_CFGCR2_KDIV_1:
  723. p2 = 1;
  724. break;
  725. }
  726. dco_freq = (cfgcr1_val & DPLL_CFGCR1_DCO_INTEGER_MASK) * 24 * 1000;
  727. dco_freq += (((cfgcr1_val & DPLL_CFGCR1_DCO_FRACTION_MASK) >> 9) * 24 *
  728. 1000) / 0x8000;
  729. return dco_freq / (p0 * p1 * p2 * 5);
  730. }
  731. static void ddi_dotclock_get(struct intel_crtc_state *pipe_config)
  732. {
  733. int dotclock;
  734. if (pipe_config->has_pch_encoder)
  735. dotclock = intel_dotclock_calculate(pipe_config->port_clock,
  736. &pipe_config->fdi_m_n);
  737. else if (pipe_config->has_dp_encoder)
  738. dotclock = intel_dotclock_calculate(pipe_config->port_clock,
  739. &pipe_config->dp_m_n);
  740. else if (pipe_config->has_hdmi_sink && pipe_config->pipe_bpp == 36)
  741. dotclock = pipe_config->port_clock * 2 / 3;
  742. else
  743. dotclock = pipe_config->port_clock;
  744. if (pipe_config->pixel_multiplier)
  745. dotclock /= pipe_config->pixel_multiplier;
  746. pipe_config->base.adjusted_mode.crtc_clock = dotclock;
  747. }
  748. static void skl_ddi_clock_get(struct intel_encoder *encoder,
  749. struct intel_crtc_state *pipe_config)
  750. {
  751. struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
  752. int link_clock = 0;
  753. uint32_t dpll_ctl1, dpll;
  754. dpll = pipe_config->ddi_pll_sel;
  755. dpll_ctl1 = I915_READ(DPLL_CTRL1);
  756. if (dpll_ctl1 & DPLL_CTRL1_HDMI_MODE(dpll)) {
  757. link_clock = skl_calc_wrpll_link(dev_priv, dpll);
  758. } else {
  759. link_clock = dpll_ctl1 & DPLL_CTRL1_LINK_RATE_MASK(dpll);
  760. link_clock >>= DPLL_CTRL1_LINK_RATE_SHIFT(dpll);
  761. switch (link_clock) {
  762. case DPLL_CTRL1_LINK_RATE_810:
  763. link_clock = 81000;
  764. break;
  765. case DPLL_CTRL1_LINK_RATE_1080:
  766. link_clock = 108000;
  767. break;
  768. case DPLL_CTRL1_LINK_RATE_1350:
  769. link_clock = 135000;
  770. break;
  771. case DPLL_CTRL1_LINK_RATE_1620:
  772. link_clock = 162000;
  773. break;
  774. case DPLL_CTRL1_LINK_RATE_2160:
  775. link_clock = 216000;
  776. break;
  777. case DPLL_CTRL1_LINK_RATE_2700:
  778. link_clock = 270000;
  779. break;
  780. default:
  781. WARN(1, "Unsupported link rate\n");
  782. break;
  783. }
  784. link_clock *= 2;
  785. }
  786. pipe_config->port_clock = link_clock;
  787. ddi_dotclock_get(pipe_config);
  788. }
  789. static void hsw_ddi_clock_get(struct intel_encoder *encoder,
  790. struct intel_crtc_state *pipe_config)
  791. {
  792. struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
  793. int link_clock = 0;
  794. u32 val, pll;
  795. val = pipe_config->ddi_pll_sel;
  796. switch (val & PORT_CLK_SEL_MASK) {
  797. case PORT_CLK_SEL_LCPLL_810:
  798. link_clock = 81000;
  799. break;
  800. case PORT_CLK_SEL_LCPLL_1350:
  801. link_clock = 135000;
  802. break;
  803. case PORT_CLK_SEL_LCPLL_2700:
  804. link_clock = 270000;
  805. break;
  806. case PORT_CLK_SEL_WRPLL1:
  807. link_clock = hsw_ddi_calc_wrpll_link(dev_priv, WRPLL_CTL(0));
  808. break;
  809. case PORT_CLK_SEL_WRPLL2:
  810. link_clock = hsw_ddi_calc_wrpll_link(dev_priv, WRPLL_CTL(1));
  811. break;
  812. case PORT_CLK_SEL_SPLL:
  813. pll = I915_READ(SPLL_CTL) & SPLL_PLL_FREQ_MASK;
  814. if (pll == SPLL_PLL_FREQ_810MHz)
  815. link_clock = 81000;
  816. else if (pll == SPLL_PLL_FREQ_1350MHz)
  817. link_clock = 135000;
  818. else if (pll == SPLL_PLL_FREQ_2700MHz)
  819. link_clock = 270000;
  820. else {
  821. WARN(1, "bad spll freq\n");
  822. return;
  823. }
  824. break;
  825. default:
  826. WARN(1, "bad port clock sel\n");
  827. return;
  828. }
  829. pipe_config->port_clock = link_clock * 2;
  830. ddi_dotclock_get(pipe_config);
  831. }
  832. static int bxt_calc_pll_link(struct drm_i915_private *dev_priv,
  833. enum intel_dpll_id dpll)
  834. {
  835. struct intel_shared_dpll *pll;
  836. struct intel_dpll_hw_state *state;
  837. intel_clock_t clock;
  838. /* For DDI ports we always use a shared PLL. */
  839. if (WARN_ON(dpll == DPLL_ID_PRIVATE))
  840. return 0;
  841. pll = &dev_priv->shared_dplls[dpll];
  842. state = &pll->config.hw_state;
  843. clock.m1 = 2;
  844. clock.m2 = (state->pll0 & PORT_PLL_M2_MASK) << 22;
  845. if (state->pll3 & PORT_PLL_M2_FRAC_ENABLE)
  846. clock.m2 |= state->pll2 & PORT_PLL_M2_FRAC_MASK;
  847. clock.n = (state->pll1 & PORT_PLL_N_MASK) >> PORT_PLL_N_SHIFT;
  848. clock.p1 = (state->ebb0 & PORT_PLL_P1_MASK) >> PORT_PLL_P1_SHIFT;
  849. clock.p2 = (state->ebb0 & PORT_PLL_P2_MASK) >> PORT_PLL_P2_SHIFT;
  850. return chv_calc_dpll_params(100000, &clock);
  851. }
  852. static void bxt_ddi_clock_get(struct intel_encoder *encoder,
  853. struct intel_crtc_state *pipe_config)
  854. {
  855. struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
  856. enum port port = intel_ddi_get_encoder_port(encoder);
  857. uint32_t dpll = port;
  858. pipe_config->port_clock = bxt_calc_pll_link(dev_priv, dpll);
  859. ddi_dotclock_get(pipe_config);
  860. }
  861. void intel_ddi_clock_get(struct intel_encoder *encoder,
  862. struct intel_crtc_state *pipe_config)
  863. {
  864. struct drm_device *dev = encoder->base.dev;
  865. if (INTEL_INFO(dev)->gen <= 8)
  866. hsw_ddi_clock_get(encoder, pipe_config);
  867. else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
  868. skl_ddi_clock_get(encoder, pipe_config);
  869. else if (IS_BROXTON(dev))
  870. bxt_ddi_clock_get(encoder, pipe_config);
  871. }
  872. static bool
  873. hsw_ddi_pll_select(struct intel_crtc *intel_crtc,
  874. struct intel_crtc_state *crtc_state,
  875. struct intel_encoder *intel_encoder)
  876. {
  877. struct intel_shared_dpll *pll;
  878. pll = intel_get_shared_dpll(intel_crtc, crtc_state,
  879. intel_encoder);
  880. if (!pll)
  881. DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
  882. pipe_name(intel_crtc->pipe));
  883. return pll;
  884. }
  885. static bool
  886. skl_ddi_pll_select(struct intel_crtc *intel_crtc,
  887. struct intel_crtc_state *crtc_state,
  888. struct intel_encoder *intel_encoder)
  889. {
  890. struct intel_shared_dpll *pll;
  891. pll = intel_get_shared_dpll(intel_crtc, crtc_state, intel_encoder);
  892. if (pll == NULL) {
  893. DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
  894. pipe_name(intel_crtc->pipe));
  895. return false;
  896. }
  897. return true;
  898. }
  899. static bool
  900. bxt_ddi_pll_select(struct intel_crtc *intel_crtc,
  901. struct intel_crtc_state *crtc_state,
  902. struct intel_encoder *intel_encoder)
  903. {
  904. return !!intel_get_shared_dpll(intel_crtc, crtc_state, intel_encoder);
  905. }
  906. /*
  907. * Tries to find a *shared* PLL for the CRTC and store it in
  908. * intel_crtc->ddi_pll_sel.
  909. *
  910. * For private DPLLs, compute_config() should do the selection for us. This
  911. * function should be folded into compute_config() eventually.
  912. */
  913. bool intel_ddi_pll_select(struct intel_crtc *intel_crtc,
  914. struct intel_crtc_state *crtc_state)
  915. {
  916. struct drm_device *dev = intel_crtc->base.dev;
  917. struct intel_encoder *intel_encoder =
  918. intel_ddi_get_crtc_new_encoder(crtc_state);
  919. if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
  920. return skl_ddi_pll_select(intel_crtc, crtc_state,
  921. intel_encoder);
  922. else if (IS_BROXTON(dev))
  923. return bxt_ddi_pll_select(intel_crtc, crtc_state,
  924. intel_encoder);
  925. else
  926. return hsw_ddi_pll_select(intel_crtc, crtc_state,
  927. intel_encoder);
  928. }
  929. void intel_ddi_set_pipe_settings(struct drm_crtc *crtc)
  930. {
  931. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  932. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  933. struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
  934. enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
  935. int type = intel_encoder->type;
  936. uint32_t temp;
  937. if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP || type == INTEL_OUTPUT_DP_MST) {
  938. WARN_ON(transcoder_is_dsi(cpu_transcoder));
  939. temp = TRANS_MSA_SYNC_CLK;
  940. switch (intel_crtc->config->pipe_bpp) {
  941. case 18:
  942. temp |= TRANS_MSA_6_BPC;
  943. break;
  944. case 24:
  945. temp |= TRANS_MSA_8_BPC;
  946. break;
  947. case 30:
  948. temp |= TRANS_MSA_10_BPC;
  949. break;
  950. case 36:
  951. temp |= TRANS_MSA_12_BPC;
  952. break;
  953. default:
  954. BUG();
  955. }
  956. I915_WRITE(TRANS_MSA_MISC(cpu_transcoder), temp);
  957. }
  958. }
  959. void intel_ddi_set_vc_payload_alloc(struct drm_crtc *crtc, bool state)
  960. {
  961. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  962. struct drm_device *dev = crtc->dev;
  963. struct drm_i915_private *dev_priv = dev->dev_private;
  964. enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
  965. uint32_t temp;
  966. temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
  967. if (state == true)
  968. temp |= TRANS_DDI_DP_VC_PAYLOAD_ALLOC;
  969. else
  970. temp &= ~TRANS_DDI_DP_VC_PAYLOAD_ALLOC;
  971. I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp);
  972. }
  973. void intel_ddi_enable_transcoder_func(struct drm_crtc *crtc)
  974. {
  975. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  976. struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
  977. struct drm_encoder *encoder = &intel_encoder->base;
  978. struct drm_device *dev = crtc->dev;
  979. struct drm_i915_private *dev_priv = dev->dev_private;
  980. enum pipe pipe = intel_crtc->pipe;
  981. enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
  982. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  983. int type = intel_encoder->type;
  984. uint32_t temp;
  985. /* Enable TRANS_DDI_FUNC_CTL for the pipe to work in HDMI mode */
  986. temp = TRANS_DDI_FUNC_ENABLE;
  987. temp |= TRANS_DDI_SELECT_PORT(port);
  988. switch (intel_crtc->config->pipe_bpp) {
  989. case 18:
  990. temp |= TRANS_DDI_BPC_6;
  991. break;
  992. case 24:
  993. temp |= TRANS_DDI_BPC_8;
  994. break;
  995. case 30:
  996. temp |= TRANS_DDI_BPC_10;
  997. break;
  998. case 36:
  999. temp |= TRANS_DDI_BPC_12;
  1000. break;
  1001. default:
  1002. BUG();
  1003. }
  1004. if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_PVSYNC)
  1005. temp |= TRANS_DDI_PVSYNC;
  1006. if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_PHSYNC)
  1007. temp |= TRANS_DDI_PHSYNC;
  1008. if (cpu_transcoder == TRANSCODER_EDP) {
  1009. switch (pipe) {
  1010. case PIPE_A:
  1011. /* On Haswell, can only use the always-on power well for
  1012. * eDP when not using the panel fitter, and when not
  1013. * using motion blur mitigation (which we don't
  1014. * support). */
  1015. if (IS_HASWELL(dev) &&
  1016. (intel_crtc->config->pch_pfit.enabled ||
  1017. intel_crtc->config->pch_pfit.force_thru))
  1018. temp |= TRANS_DDI_EDP_INPUT_A_ONOFF;
  1019. else
  1020. temp |= TRANS_DDI_EDP_INPUT_A_ON;
  1021. break;
  1022. case PIPE_B:
  1023. temp |= TRANS_DDI_EDP_INPUT_B_ONOFF;
  1024. break;
  1025. case PIPE_C:
  1026. temp |= TRANS_DDI_EDP_INPUT_C_ONOFF;
  1027. break;
  1028. default:
  1029. BUG();
  1030. break;
  1031. }
  1032. }
  1033. if (type == INTEL_OUTPUT_HDMI) {
  1034. if (intel_crtc->config->has_hdmi_sink)
  1035. temp |= TRANS_DDI_MODE_SELECT_HDMI;
  1036. else
  1037. temp |= TRANS_DDI_MODE_SELECT_DVI;
  1038. } else if (type == INTEL_OUTPUT_ANALOG) {
  1039. temp |= TRANS_DDI_MODE_SELECT_FDI;
  1040. temp |= (intel_crtc->config->fdi_lanes - 1) << 1;
  1041. } else if (type == INTEL_OUTPUT_DISPLAYPORT ||
  1042. type == INTEL_OUTPUT_EDP) {
  1043. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  1044. if (intel_dp->is_mst) {
  1045. temp |= TRANS_DDI_MODE_SELECT_DP_MST;
  1046. } else
  1047. temp |= TRANS_DDI_MODE_SELECT_DP_SST;
  1048. temp |= DDI_PORT_WIDTH(intel_crtc->config->lane_count);
  1049. } else if (type == INTEL_OUTPUT_DP_MST) {
  1050. struct intel_dp *intel_dp = &enc_to_mst(encoder)->primary->dp;
  1051. if (intel_dp->is_mst) {
  1052. temp |= TRANS_DDI_MODE_SELECT_DP_MST;
  1053. } else
  1054. temp |= TRANS_DDI_MODE_SELECT_DP_SST;
  1055. temp |= DDI_PORT_WIDTH(intel_crtc->config->lane_count);
  1056. } else {
  1057. WARN(1, "Invalid encoder type %d for pipe %c\n",
  1058. intel_encoder->type, pipe_name(pipe));
  1059. }
  1060. I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp);
  1061. }
  1062. void intel_ddi_disable_transcoder_func(struct drm_i915_private *dev_priv,
  1063. enum transcoder cpu_transcoder)
  1064. {
  1065. i915_reg_t reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
  1066. uint32_t val = I915_READ(reg);
  1067. val &= ~(TRANS_DDI_FUNC_ENABLE | TRANS_DDI_PORT_MASK | TRANS_DDI_DP_VC_PAYLOAD_ALLOC);
  1068. val |= TRANS_DDI_PORT_NONE;
  1069. I915_WRITE(reg, val);
  1070. }
  1071. bool intel_ddi_connector_get_hw_state(struct intel_connector *intel_connector)
  1072. {
  1073. struct drm_device *dev = intel_connector->base.dev;
  1074. struct drm_i915_private *dev_priv = dev->dev_private;
  1075. struct intel_encoder *intel_encoder = intel_connector->encoder;
  1076. int type = intel_connector->base.connector_type;
  1077. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  1078. enum pipe pipe = 0;
  1079. enum transcoder cpu_transcoder;
  1080. enum intel_display_power_domain power_domain;
  1081. uint32_t tmp;
  1082. bool ret;
  1083. power_domain = intel_display_port_power_domain(intel_encoder);
  1084. if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
  1085. return false;
  1086. if (!intel_encoder->get_hw_state(intel_encoder, &pipe)) {
  1087. ret = false;
  1088. goto out;
  1089. }
  1090. if (port == PORT_A)
  1091. cpu_transcoder = TRANSCODER_EDP;
  1092. else
  1093. cpu_transcoder = (enum transcoder) pipe;
  1094. tmp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
  1095. switch (tmp & TRANS_DDI_MODE_SELECT_MASK) {
  1096. case TRANS_DDI_MODE_SELECT_HDMI:
  1097. case TRANS_DDI_MODE_SELECT_DVI:
  1098. ret = type == DRM_MODE_CONNECTOR_HDMIA;
  1099. break;
  1100. case TRANS_DDI_MODE_SELECT_DP_SST:
  1101. ret = type == DRM_MODE_CONNECTOR_eDP ||
  1102. type == DRM_MODE_CONNECTOR_DisplayPort;
  1103. break;
  1104. case TRANS_DDI_MODE_SELECT_DP_MST:
  1105. /* if the transcoder is in MST state then
  1106. * connector isn't connected */
  1107. ret = false;
  1108. break;
  1109. case TRANS_DDI_MODE_SELECT_FDI:
  1110. ret = type == DRM_MODE_CONNECTOR_VGA;
  1111. break;
  1112. default:
  1113. ret = false;
  1114. break;
  1115. }
  1116. out:
  1117. intel_display_power_put(dev_priv, power_domain);
  1118. return ret;
  1119. }
  1120. bool intel_ddi_get_hw_state(struct intel_encoder *encoder,
  1121. enum pipe *pipe)
  1122. {
  1123. struct drm_device *dev = encoder->base.dev;
  1124. struct drm_i915_private *dev_priv = dev->dev_private;
  1125. enum port port = intel_ddi_get_encoder_port(encoder);
  1126. enum intel_display_power_domain power_domain;
  1127. u32 tmp;
  1128. int i;
  1129. bool ret;
  1130. power_domain = intel_display_port_power_domain(encoder);
  1131. if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
  1132. return false;
  1133. ret = false;
  1134. tmp = I915_READ(DDI_BUF_CTL(port));
  1135. if (!(tmp & DDI_BUF_CTL_ENABLE))
  1136. goto out;
  1137. if (port == PORT_A) {
  1138. tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
  1139. switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
  1140. case TRANS_DDI_EDP_INPUT_A_ON:
  1141. case TRANS_DDI_EDP_INPUT_A_ONOFF:
  1142. *pipe = PIPE_A;
  1143. break;
  1144. case TRANS_DDI_EDP_INPUT_B_ONOFF:
  1145. *pipe = PIPE_B;
  1146. break;
  1147. case TRANS_DDI_EDP_INPUT_C_ONOFF:
  1148. *pipe = PIPE_C;
  1149. break;
  1150. }
  1151. ret = true;
  1152. goto out;
  1153. }
  1154. for (i = TRANSCODER_A; i <= TRANSCODER_C; i++) {
  1155. tmp = I915_READ(TRANS_DDI_FUNC_CTL(i));
  1156. if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(port)) {
  1157. if ((tmp & TRANS_DDI_MODE_SELECT_MASK) ==
  1158. TRANS_DDI_MODE_SELECT_DP_MST)
  1159. goto out;
  1160. *pipe = i;
  1161. ret = true;
  1162. goto out;
  1163. }
  1164. }
  1165. DRM_DEBUG_KMS("No pipe for ddi port %c found\n", port_name(port));
  1166. out:
  1167. intel_display_power_put(dev_priv, power_domain);
  1168. return ret;
  1169. }
  1170. void intel_ddi_enable_pipe_clock(struct intel_crtc *intel_crtc)
  1171. {
  1172. struct drm_crtc *crtc = &intel_crtc->base;
  1173. struct drm_device *dev = crtc->dev;
  1174. struct drm_i915_private *dev_priv = dev->dev_private;
  1175. struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
  1176. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  1177. enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
  1178. if (cpu_transcoder != TRANSCODER_EDP)
  1179. I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
  1180. TRANS_CLK_SEL_PORT(port));
  1181. }
  1182. void intel_ddi_disable_pipe_clock(struct intel_crtc *intel_crtc)
  1183. {
  1184. struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
  1185. enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
  1186. if (cpu_transcoder != TRANSCODER_EDP)
  1187. I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
  1188. TRANS_CLK_SEL_DISABLED);
  1189. }
  1190. static void skl_ddi_set_iboost(struct drm_i915_private *dev_priv,
  1191. u32 level, enum port port, int type)
  1192. {
  1193. const struct ddi_buf_trans *ddi_translations;
  1194. uint8_t iboost;
  1195. uint8_t dp_iboost, hdmi_iboost;
  1196. int n_entries;
  1197. u32 reg;
  1198. /* VBT may override standard boost values */
  1199. dp_iboost = dev_priv->vbt.ddi_port_info[port].dp_boost_level;
  1200. hdmi_iboost = dev_priv->vbt.ddi_port_info[port].hdmi_boost_level;
  1201. if (type == INTEL_OUTPUT_DISPLAYPORT) {
  1202. if (dp_iboost) {
  1203. iboost = dp_iboost;
  1204. } else {
  1205. ddi_translations = skl_get_buf_trans_dp(dev_priv, &n_entries);
  1206. iboost = ddi_translations[level].i_boost;
  1207. }
  1208. } else if (type == INTEL_OUTPUT_EDP) {
  1209. if (dp_iboost) {
  1210. iboost = dp_iboost;
  1211. } else {
  1212. ddi_translations = skl_get_buf_trans_edp(dev_priv, &n_entries);
  1213. if (WARN_ON(port != PORT_A &&
  1214. port != PORT_E && n_entries > 9))
  1215. n_entries = 9;
  1216. iboost = ddi_translations[level].i_boost;
  1217. }
  1218. } else if (type == INTEL_OUTPUT_HDMI) {
  1219. if (hdmi_iboost) {
  1220. iboost = hdmi_iboost;
  1221. } else {
  1222. ddi_translations = skl_get_buf_trans_hdmi(dev_priv, &n_entries);
  1223. iboost = ddi_translations[level].i_boost;
  1224. }
  1225. } else {
  1226. return;
  1227. }
  1228. /* Make sure that the requested I_boost is valid */
  1229. if (iboost && iboost != 0x1 && iboost != 0x3 && iboost != 0x7) {
  1230. DRM_ERROR("Invalid I_boost value %u\n", iboost);
  1231. return;
  1232. }
  1233. reg = I915_READ(DISPIO_CR_TX_BMU_CR0);
  1234. reg &= ~BALANCE_LEG_MASK(port);
  1235. reg &= ~(1 << (BALANCE_LEG_DISABLE_SHIFT + port));
  1236. if (iboost)
  1237. reg |= iboost << BALANCE_LEG_SHIFT(port);
  1238. else
  1239. reg |= 1 << (BALANCE_LEG_DISABLE_SHIFT + port);
  1240. I915_WRITE(DISPIO_CR_TX_BMU_CR0, reg);
  1241. }
  1242. static void bxt_ddi_vswing_sequence(struct drm_i915_private *dev_priv,
  1243. u32 level, enum port port, int type)
  1244. {
  1245. const struct bxt_ddi_buf_trans *ddi_translations;
  1246. u32 n_entries, i;
  1247. uint32_t val;
  1248. if (type == INTEL_OUTPUT_EDP && dev_priv->vbt.edp.low_vswing) {
  1249. n_entries = ARRAY_SIZE(bxt_ddi_translations_edp);
  1250. ddi_translations = bxt_ddi_translations_edp;
  1251. } else if (type == INTEL_OUTPUT_DISPLAYPORT
  1252. || type == INTEL_OUTPUT_EDP) {
  1253. n_entries = ARRAY_SIZE(bxt_ddi_translations_dp);
  1254. ddi_translations = bxt_ddi_translations_dp;
  1255. } else if (type == INTEL_OUTPUT_HDMI) {
  1256. n_entries = ARRAY_SIZE(bxt_ddi_translations_hdmi);
  1257. ddi_translations = bxt_ddi_translations_hdmi;
  1258. } else {
  1259. DRM_DEBUG_KMS("Vswing programming not done for encoder %d\n",
  1260. type);
  1261. return;
  1262. }
  1263. /* Check if default value has to be used */
  1264. if (level >= n_entries ||
  1265. (type == INTEL_OUTPUT_HDMI && level == HDMI_LEVEL_SHIFT_UNKNOWN)) {
  1266. for (i = 0; i < n_entries; i++) {
  1267. if (ddi_translations[i].default_index) {
  1268. level = i;
  1269. break;
  1270. }
  1271. }
  1272. }
  1273. /*
  1274. * While we write to the group register to program all lanes at once we
  1275. * can read only lane registers and we pick lanes 0/1 for that.
  1276. */
  1277. val = I915_READ(BXT_PORT_PCS_DW10_LN01(port));
  1278. val &= ~(TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT);
  1279. I915_WRITE(BXT_PORT_PCS_DW10_GRP(port), val);
  1280. val = I915_READ(BXT_PORT_TX_DW2_LN0(port));
  1281. val &= ~(MARGIN_000 | UNIQ_TRANS_SCALE);
  1282. val |= ddi_translations[level].margin << MARGIN_000_SHIFT |
  1283. ddi_translations[level].scale << UNIQ_TRANS_SCALE_SHIFT;
  1284. I915_WRITE(BXT_PORT_TX_DW2_GRP(port), val);
  1285. val = I915_READ(BXT_PORT_TX_DW3_LN0(port));
  1286. val &= ~SCALE_DCOMP_METHOD;
  1287. if (ddi_translations[level].enable)
  1288. val |= SCALE_DCOMP_METHOD;
  1289. if ((val & UNIQUE_TRANGE_EN_METHOD) && !(val & SCALE_DCOMP_METHOD))
  1290. DRM_ERROR("Disabled scaling while ouniqetrangenmethod was set");
  1291. I915_WRITE(BXT_PORT_TX_DW3_GRP(port), val);
  1292. val = I915_READ(BXT_PORT_TX_DW4_LN0(port));
  1293. val &= ~DE_EMPHASIS;
  1294. val |= ddi_translations[level].deemphasis << DEEMPH_SHIFT;
  1295. I915_WRITE(BXT_PORT_TX_DW4_GRP(port), val);
  1296. val = I915_READ(BXT_PORT_PCS_DW10_LN01(port));
  1297. val |= TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT;
  1298. I915_WRITE(BXT_PORT_PCS_DW10_GRP(port), val);
  1299. }
  1300. static uint32_t translate_signal_level(int signal_levels)
  1301. {
  1302. uint32_t level;
  1303. switch (signal_levels) {
  1304. default:
  1305. DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level: 0x%x\n",
  1306. signal_levels);
  1307. case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
  1308. level = 0;
  1309. break;
  1310. case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
  1311. level = 1;
  1312. break;
  1313. case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
  1314. level = 2;
  1315. break;
  1316. case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_3:
  1317. level = 3;
  1318. break;
  1319. case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
  1320. level = 4;
  1321. break;
  1322. case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
  1323. level = 5;
  1324. break;
  1325. case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
  1326. level = 6;
  1327. break;
  1328. case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
  1329. level = 7;
  1330. break;
  1331. case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
  1332. level = 8;
  1333. break;
  1334. case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
  1335. level = 9;
  1336. break;
  1337. }
  1338. return level;
  1339. }
  1340. uint32_t ddi_signal_levels(struct intel_dp *intel_dp)
  1341. {
  1342. struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
  1343. struct drm_i915_private *dev_priv = to_i915(dport->base.base.dev);
  1344. struct intel_encoder *encoder = &dport->base;
  1345. uint8_t train_set = intel_dp->train_set[0];
  1346. int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
  1347. DP_TRAIN_PRE_EMPHASIS_MASK);
  1348. enum port port = dport->port;
  1349. uint32_t level;
  1350. level = translate_signal_level(signal_levels);
  1351. if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
  1352. skl_ddi_set_iboost(dev_priv, level, port, encoder->type);
  1353. else if (IS_BROXTON(dev_priv))
  1354. bxt_ddi_vswing_sequence(dev_priv, level, port, encoder->type);
  1355. return DDI_BUF_TRANS_SELECT(level);
  1356. }
  1357. void intel_ddi_clk_select(struct intel_encoder *encoder,
  1358. const struct intel_crtc_state *pipe_config)
  1359. {
  1360. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  1361. enum port port = intel_ddi_get_encoder_port(encoder);
  1362. if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
  1363. uint32_t dpll = pipe_config->ddi_pll_sel;
  1364. uint32_t val;
  1365. /* DDI -> PLL mapping */
  1366. val = I915_READ(DPLL_CTRL2);
  1367. val &= ~(DPLL_CTRL2_DDI_CLK_OFF(port) |
  1368. DPLL_CTRL2_DDI_CLK_SEL_MASK(port));
  1369. val |= (DPLL_CTRL2_DDI_CLK_SEL(dpll, port) |
  1370. DPLL_CTRL2_DDI_SEL_OVERRIDE(port));
  1371. I915_WRITE(DPLL_CTRL2, val);
  1372. } else if (INTEL_INFO(dev_priv)->gen < 9) {
  1373. WARN_ON(pipe_config->ddi_pll_sel == PORT_CLK_SEL_NONE);
  1374. I915_WRITE(PORT_CLK_SEL(port), pipe_config->ddi_pll_sel);
  1375. }
  1376. }
  1377. static void intel_ddi_pre_enable(struct intel_encoder *intel_encoder)
  1378. {
  1379. struct drm_encoder *encoder = &intel_encoder->base;
  1380. struct drm_i915_private *dev_priv = to_i915(encoder->dev);
  1381. struct intel_crtc *crtc = to_intel_crtc(encoder->crtc);
  1382. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  1383. int type = intel_encoder->type;
  1384. if (type == INTEL_OUTPUT_HDMI) {
  1385. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
  1386. intel_dp_dual_mode_set_tmds_output(intel_hdmi, true);
  1387. }
  1388. intel_prepare_ddi_buffer(intel_encoder);
  1389. if (type == INTEL_OUTPUT_EDP) {
  1390. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  1391. intel_edp_panel_on(intel_dp);
  1392. }
  1393. intel_ddi_clk_select(intel_encoder, crtc->config);
  1394. if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
  1395. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  1396. intel_dp_set_link_params(intel_dp, crtc->config);
  1397. intel_ddi_init_dp_buf_reg(intel_encoder);
  1398. intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
  1399. intel_dp_start_link_train(intel_dp);
  1400. if (port != PORT_A || INTEL_INFO(dev_priv)->gen >= 9)
  1401. intel_dp_stop_link_train(intel_dp);
  1402. } else if (type == INTEL_OUTPUT_HDMI) {
  1403. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
  1404. intel_hdmi->set_infoframes(encoder,
  1405. crtc->config->has_hdmi_sink,
  1406. &crtc->config->base.adjusted_mode);
  1407. }
  1408. }
  1409. static void intel_ddi_post_disable(struct intel_encoder *intel_encoder)
  1410. {
  1411. struct drm_encoder *encoder = &intel_encoder->base;
  1412. struct drm_device *dev = encoder->dev;
  1413. struct drm_i915_private *dev_priv = dev->dev_private;
  1414. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  1415. int type = intel_encoder->type;
  1416. uint32_t val;
  1417. bool wait = false;
  1418. val = I915_READ(DDI_BUF_CTL(port));
  1419. if (val & DDI_BUF_CTL_ENABLE) {
  1420. val &= ~DDI_BUF_CTL_ENABLE;
  1421. I915_WRITE(DDI_BUF_CTL(port), val);
  1422. wait = true;
  1423. }
  1424. val = I915_READ(DP_TP_CTL(port));
  1425. val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
  1426. val |= DP_TP_CTL_LINK_TRAIN_PAT1;
  1427. I915_WRITE(DP_TP_CTL(port), val);
  1428. if (wait)
  1429. intel_wait_ddi_buf_idle(dev_priv, port);
  1430. if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
  1431. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  1432. intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
  1433. intel_edp_panel_vdd_on(intel_dp);
  1434. intel_edp_panel_off(intel_dp);
  1435. }
  1436. if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
  1437. I915_WRITE(DPLL_CTRL2, (I915_READ(DPLL_CTRL2) |
  1438. DPLL_CTRL2_DDI_CLK_OFF(port)));
  1439. else if (INTEL_INFO(dev)->gen < 9)
  1440. I915_WRITE(PORT_CLK_SEL(port), PORT_CLK_SEL_NONE);
  1441. if (type == INTEL_OUTPUT_HDMI) {
  1442. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
  1443. intel_dp_dual_mode_set_tmds_output(intel_hdmi, false);
  1444. }
  1445. }
  1446. static void intel_enable_ddi(struct intel_encoder *intel_encoder)
  1447. {
  1448. struct drm_encoder *encoder = &intel_encoder->base;
  1449. struct drm_crtc *crtc = encoder->crtc;
  1450. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1451. struct drm_device *dev = encoder->dev;
  1452. struct drm_i915_private *dev_priv = dev->dev_private;
  1453. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  1454. int type = intel_encoder->type;
  1455. if (type == INTEL_OUTPUT_HDMI) {
  1456. struct intel_digital_port *intel_dig_port =
  1457. enc_to_dig_port(encoder);
  1458. /* In HDMI/DVI mode, the port width, and swing/emphasis values
  1459. * are ignored so nothing special needs to be done besides
  1460. * enabling the port.
  1461. */
  1462. I915_WRITE(DDI_BUF_CTL(port),
  1463. intel_dig_port->saved_port_bits |
  1464. DDI_BUF_CTL_ENABLE);
  1465. } else if (type == INTEL_OUTPUT_EDP) {
  1466. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  1467. if (port == PORT_A && INTEL_INFO(dev)->gen < 9)
  1468. intel_dp_stop_link_train(intel_dp);
  1469. intel_edp_backlight_on(intel_dp);
  1470. intel_psr_enable(intel_dp);
  1471. intel_edp_drrs_enable(intel_dp);
  1472. }
  1473. if (intel_crtc->config->has_audio) {
  1474. intel_display_power_get(dev_priv, POWER_DOMAIN_AUDIO);
  1475. intel_audio_codec_enable(intel_encoder);
  1476. }
  1477. }
  1478. static void intel_disable_ddi(struct intel_encoder *intel_encoder)
  1479. {
  1480. struct drm_encoder *encoder = &intel_encoder->base;
  1481. struct drm_crtc *crtc = encoder->crtc;
  1482. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1483. int type = intel_encoder->type;
  1484. struct drm_device *dev = encoder->dev;
  1485. struct drm_i915_private *dev_priv = dev->dev_private;
  1486. if (intel_crtc->config->has_audio) {
  1487. intel_audio_codec_disable(intel_encoder);
  1488. intel_display_power_put(dev_priv, POWER_DOMAIN_AUDIO);
  1489. }
  1490. if (type == INTEL_OUTPUT_EDP) {
  1491. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  1492. intel_edp_drrs_disable(intel_dp);
  1493. intel_psr_disable(intel_dp);
  1494. intel_edp_backlight_off(intel_dp);
  1495. }
  1496. }
  1497. static bool broxton_phy_is_enabled(struct drm_i915_private *dev_priv,
  1498. enum dpio_phy phy)
  1499. {
  1500. if (!(I915_READ(BXT_P_CR_GT_DISP_PWRON) & GT_DISPLAY_POWER_ON(phy)))
  1501. return false;
  1502. if ((I915_READ(BXT_PORT_CL1CM_DW0(phy)) &
  1503. (PHY_POWER_GOOD | PHY_RESERVED)) != PHY_POWER_GOOD) {
  1504. DRM_DEBUG_DRIVER("DDI PHY %d powered, but power hasn't settled\n",
  1505. phy);
  1506. return false;
  1507. }
  1508. if (phy == DPIO_PHY1 &&
  1509. !(I915_READ(BXT_PORT_REF_DW3(DPIO_PHY1)) & GRC_DONE)) {
  1510. DRM_DEBUG_DRIVER("DDI PHY 1 powered, but GRC isn't done\n");
  1511. return false;
  1512. }
  1513. if (!(I915_READ(BXT_PHY_CTL_FAMILY(phy)) & COMMON_RESET_DIS)) {
  1514. DRM_DEBUG_DRIVER("DDI PHY %d powered, but still in reset\n",
  1515. phy);
  1516. return false;
  1517. }
  1518. return true;
  1519. }
  1520. static u32 broxton_get_grc(struct drm_i915_private *dev_priv, enum dpio_phy phy)
  1521. {
  1522. u32 val = I915_READ(BXT_PORT_REF_DW6(phy));
  1523. return (val & GRC_CODE_MASK) >> GRC_CODE_SHIFT;
  1524. }
  1525. static void broxton_phy_wait_grc_done(struct drm_i915_private *dev_priv,
  1526. enum dpio_phy phy)
  1527. {
  1528. if (wait_for(I915_READ(BXT_PORT_REF_DW3(phy)) & GRC_DONE, 10))
  1529. DRM_ERROR("timeout waiting for PHY%d GRC\n", phy);
  1530. }
  1531. static bool broxton_phy_verify_state(struct drm_i915_private *dev_priv,
  1532. enum dpio_phy phy);
  1533. static void broxton_phy_init(struct drm_i915_private *dev_priv,
  1534. enum dpio_phy phy)
  1535. {
  1536. enum port port;
  1537. u32 ports, val;
  1538. if (broxton_phy_is_enabled(dev_priv, phy)) {
  1539. /* Still read out the GRC value for state verification */
  1540. if (phy == DPIO_PHY0)
  1541. dev_priv->bxt_phy_grc = broxton_get_grc(dev_priv, phy);
  1542. if (broxton_phy_verify_state(dev_priv, phy)) {
  1543. DRM_DEBUG_DRIVER("DDI PHY %d already enabled, "
  1544. "won't reprogram it\n", phy);
  1545. return;
  1546. }
  1547. DRM_DEBUG_DRIVER("DDI PHY %d enabled with invalid state, "
  1548. "force reprogramming it\n", phy);
  1549. } else {
  1550. DRM_DEBUG_DRIVER("DDI PHY %d not enabled, enabling it\n", phy);
  1551. }
  1552. val = I915_READ(BXT_P_CR_GT_DISP_PWRON);
  1553. val |= GT_DISPLAY_POWER_ON(phy);
  1554. I915_WRITE(BXT_P_CR_GT_DISP_PWRON, val);
  1555. /*
  1556. * The PHY registers start out inaccessible and respond to reads with
  1557. * all 1s. Eventually they become accessible as they power up, then
  1558. * the reserved bit will give the default 0. Poll on the reserved bit
  1559. * becoming 0 to find when the PHY is accessible.
  1560. * HW team confirmed that the time to reach phypowergood status is
  1561. * anywhere between 50 us and 100us.
  1562. */
  1563. if (wait_for_us(((I915_READ(BXT_PORT_CL1CM_DW0(phy)) &
  1564. (PHY_RESERVED | PHY_POWER_GOOD)) == PHY_POWER_GOOD), 100)) {
  1565. DRM_ERROR("timeout during PHY%d power on\n", phy);
  1566. }
  1567. if (phy == DPIO_PHY0)
  1568. ports = BIT(PORT_B) | BIT(PORT_C);
  1569. else
  1570. ports = BIT(PORT_A);
  1571. for_each_port_masked(port, ports) {
  1572. int lane;
  1573. for (lane = 0; lane < 4; lane++) {
  1574. val = I915_READ(BXT_PORT_TX_DW14_LN(port, lane));
  1575. /*
  1576. * Note that on CHV this flag is called UPAR, but has
  1577. * the same function.
  1578. */
  1579. val &= ~LATENCY_OPTIM;
  1580. if (lane != 1)
  1581. val |= LATENCY_OPTIM;
  1582. I915_WRITE(BXT_PORT_TX_DW14_LN(port, lane), val);
  1583. }
  1584. }
  1585. /* Program PLL Rcomp code offset */
  1586. val = I915_READ(BXT_PORT_CL1CM_DW9(phy));
  1587. val &= ~IREF0RC_OFFSET_MASK;
  1588. val |= 0xE4 << IREF0RC_OFFSET_SHIFT;
  1589. I915_WRITE(BXT_PORT_CL1CM_DW9(phy), val);
  1590. val = I915_READ(BXT_PORT_CL1CM_DW10(phy));
  1591. val &= ~IREF1RC_OFFSET_MASK;
  1592. val |= 0xE4 << IREF1RC_OFFSET_SHIFT;
  1593. I915_WRITE(BXT_PORT_CL1CM_DW10(phy), val);
  1594. /* Program power gating */
  1595. val = I915_READ(BXT_PORT_CL1CM_DW28(phy));
  1596. val |= OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN |
  1597. SUS_CLK_CONFIG;
  1598. I915_WRITE(BXT_PORT_CL1CM_DW28(phy), val);
  1599. if (phy == DPIO_PHY0) {
  1600. val = I915_READ(BXT_PORT_CL2CM_DW6_BC);
  1601. val |= DW6_OLDO_DYN_PWR_DOWN_EN;
  1602. I915_WRITE(BXT_PORT_CL2CM_DW6_BC, val);
  1603. }
  1604. val = I915_READ(BXT_PORT_CL1CM_DW30(phy));
  1605. val &= ~OCL2_LDOFUSE_PWR_DIS;
  1606. /*
  1607. * On PHY1 disable power on the second channel, since no port is
  1608. * connected there. On PHY0 both channels have a port, so leave it
  1609. * enabled.
  1610. * TODO: port C is only connected on BXT-P, so on BXT0/1 we should
  1611. * power down the second channel on PHY0 as well.
  1612. *
  1613. * FIXME: Clarify programming of the following, the register is
  1614. * read-only with bit 6 fixed at 0 at least in stepping A.
  1615. */
  1616. if (phy == DPIO_PHY1)
  1617. val |= OCL2_LDOFUSE_PWR_DIS;
  1618. I915_WRITE(BXT_PORT_CL1CM_DW30(phy), val);
  1619. if (phy == DPIO_PHY0) {
  1620. uint32_t grc_code;
  1621. /*
  1622. * PHY0 isn't connected to an RCOMP resistor so copy over
  1623. * the corresponding calibrated value from PHY1, and disable
  1624. * the automatic calibration on PHY0.
  1625. */
  1626. broxton_phy_wait_grc_done(dev_priv, DPIO_PHY1);
  1627. val = dev_priv->bxt_phy_grc = broxton_get_grc(dev_priv,
  1628. DPIO_PHY1);
  1629. grc_code = val << GRC_CODE_FAST_SHIFT |
  1630. val << GRC_CODE_SLOW_SHIFT |
  1631. val;
  1632. I915_WRITE(BXT_PORT_REF_DW6(DPIO_PHY0), grc_code);
  1633. val = I915_READ(BXT_PORT_REF_DW8(DPIO_PHY0));
  1634. val |= GRC_DIS | GRC_RDY_OVRD;
  1635. I915_WRITE(BXT_PORT_REF_DW8(DPIO_PHY0), val);
  1636. }
  1637. /*
  1638. * During PHY1 init delay waiting for GRC calibration to finish, since
  1639. * it can happen in parallel with the subsequent PHY0 init.
  1640. */
  1641. val = I915_READ(BXT_PHY_CTL_FAMILY(phy));
  1642. val |= COMMON_RESET_DIS;
  1643. I915_WRITE(BXT_PHY_CTL_FAMILY(phy), val);
  1644. }
  1645. void broxton_ddi_phy_init(struct drm_i915_private *dev_priv)
  1646. {
  1647. /* Enable PHY1 first since it provides Rcomp for PHY0 */
  1648. broxton_phy_init(dev_priv, DPIO_PHY1);
  1649. broxton_phy_init(dev_priv, DPIO_PHY0);
  1650. /*
  1651. * If BIOS enabled only PHY0 and not PHY1, we skipped waiting for the
  1652. * PHY1 GRC calibration to finish, so wait for it here.
  1653. */
  1654. broxton_phy_wait_grc_done(dev_priv, DPIO_PHY1);
  1655. }
  1656. static void broxton_phy_uninit(struct drm_i915_private *dev_priv,
  1657. enum dpio_phy phy)
  1658. {
  1659. uint32_t val;
  1660. val = I915_READ(BXT_PHY_CTL_FAMILY(phy));
  1661. val &= ~COMMON_RESET_DIS;
  1662. I915_WRITE(BXT_PHY_CTL_FAMILY(phy), val);
  1663. val = I915_READ(BXT_P_CR_GT_DISP_PWRON);
  1664. val &= ~GT_DISPLAY_POWER_ON(phy);
  1665. I915_WRITE(BXT_P_CR_GT_DISP_PWRON, val);
  1666. }
  1667. void broxton_ddi_phy_uninit(struct drm_i915_private *dev_priv)
  1668. {
  1669. broxton_phy_uninit(dev_priv, DPIO_PHY1);
  1670. broxton_phy_uninit(dev_priv, DPIO_PHY0);
  1671. }
  1672. static bool __printf(6, 7)
  1673. __phy_reg_verify_state(struct drm_i915_private *dev_priv, enum dpio_phy phy,
  1674. i915_reg_t reg, u32 mask, u32 expected,
  1675. const char *reg_fmt, ...)
  1676. {
  1677. struct va_format vaf;
  1678. va_list args;
  1679. u32 val;
  1680. val = I915_READ(reg);
  1681. if ((val & mask) == expected)
  1682. return true;
  1683. va_start(args, reg_fmt);
  1684. vaf.fmt = reg_fmt;
  1685. vaf.va = &args;
  1686. DRM_DEBUG_DRIVER("DDI PHY %d reg %pV [%08x] state mismatch: "
  1687. "current %08x, expected %08x (mask %08x)\n",
  1688. phy, &vaf, reg.reg, val, (val & ~mask) | expected,
  1689. mask);
  1690. va_end(args);
  1691. return false;
  1692. }
  1693. static bool broxton_phy_verify_state(struct drm_i915_private *dev_priv,
  1694. enum dpio_phy phy)
  1695. {
  1696. enum port port;
  1697. u32 ports;
  1698. uint32_t mask;
  1699. bool ok;
  1700. #define _CHK(reg, mask, exp, fmt, ...) \
  1701. __phy_reg_verify_state(dev_priv, phy, reg, mask, exp, fmt, \
  1702. ## __VA_ARGS__)
  1703. /* We expect the PHY to be always enabled */
  1704. if (!broxton_phy_is_enabled(dev_priv, phy))
  1705. return false;
  1706. ok = true;
  1707. if (phy == DPIO_PHY0)
  1708. ports = BIT(PORT_B) | BIT(PORT_C);
  1709. else
  1710. ports = BIT(PORT_A);
  1711. for_each_port_masked(port, ports) {
  1712. int lane;
  1713. for (lane = 0; lane < 4; lane++)
  1714. ok &= _CHK(BXT_PORT_TX_DW14_LN(port, lane),
  1715. LATENCY_OPTIM,
  1716. lane != 1 ? LATENCY_OPTIM : 0,
  1717. "BXT_PORT_TX_DW14_LN(%d, %d)", port, lane);
  1718. }
  1719. /* PLL Rcomp code offset */
  1720. ok &= _CHK(BXT_PORT_CL1CM_DW9(phy),
  1721. IREF0RC_OFFSET_MASK, 0xe4 << IREF0RC_OFFSET_SHIFT,
  1722. "BXT_PORT_CL1CM_DW9(%d)", phy);
  1723. ok &= _CHK(BXT_PORT_CL1CM_DW10(phy),
  1724. IREF1RC_OFFSET_MASK, 0xe4 << IREF1RC_OFFSET_SHIFT,
  1725. "BXT_PORT_CL1CM_DW10(%d)", phy);
  1726. /* Power gating */
  1727. mask = OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN | SUS_CLK_CONFIG;
  1728. ok &= _CHK(BXT_PORT_CL1CM_DW28(phy), mask, mask,
  1729. "BXT_PORT_CL1CM_DW28(%d)", phy);
  1730. if (phy == DPIO_PHY0)
  1731. ok &= _CHK(BXT_PORT_CL2CM_DW6_BC,
  1732. DW6_OLDO_DYN_PWR_DOWN_EN, DW6_OLDO_DYN_PWR_DOWN_EN,
  1733. "BXT_PORT_CL2CM_DW6_BC");
  1734. /*
  1735. * TODO: Verify BXT_PORT_CL1CM_DW30 bit OCL2_LDOFUSE_PWR_DIS,
  1736. * at least on stepping A this bit is read-only and fixed at 0.
  1737. */
  1738. if (phy == DPIO_PHY0) {
  1739. u32 grc_code = dev_priv->bxt_phy_grc;
  1740. grc_code = grc_code << GRC_CODE_FAST_SHIFT |
  1741. grc_code << GRC_CODE_SLOW_SHIFT |
  1742. grc_code;
  1743. mask = GRC_CODE_FAST_MASK | GRC_CODE_SLOW_MASK |
  1744. GRC_CODE_NOM_MASK;
  1745. ok &= _CHK(BXT_PORT_REF_DW6(DPIO_PHY0), mask, grc_code,
  1746. "BXT_PORT_REF_DW6(%d)", DPIO_PHY0);
  1747. mask = GRC_DIS | GRC_RDY_OVRD;
  1748. ok &= _CHK(BXT_PORT_REF_DW8(DPIO_PHY0), mask, mask,
  1749. "BXT_PORT_REF_DW8(%d)", DPIO_PHY0);
  1750. }
  1751. return ok;
  1752. #undef _CHK
  1753. }
  1754. void broxton_ddi_phy_verify_state(struct drm_i915_private *dev_priv)
  1755. {
  1756. if (!broxton_phy_verify_state(dev_priv, DPIO_PHY0) ||
  1757. !broxton_phy_verify_state(dev_priv, DPIO_PHY1))
  1758. i915_report_error(dev_priv, "DDI PHY state mismatch\n");
  1759. }
  1760. void intel_ddi_prepare_link_retrain(struct intel_dp *intel_dp)
  1761. {
  1762. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  1763. struct drm_i915_private *dev_priv =
  1764. to_i915(intel_dig_port->base.base.dev);
  1765. enum port port = intel_dig_port->port;
  1766. uint32_t val;
  1767. bool wait = false;
  1768. if (I915_READ(DP_TP_CTL(port)) & DP_TP_CTL_ENABLE) {
  1769. val = I915_READ(DDI_BUF_CTL(port));
  1770. if (val & DDI_BUF_CTL_ENABLE) {
  1771. val &= ~DDI_BUF_CTL_ENABLE;
  1772. I915_WRITE(DDI_BUF_CTL(port), val);
  1773. wait = true;
  1774. }
  1775. val = I915_READ(DP_TP_CTL(port));
  1776. val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
  1777. val |= DP_TP_CTL_LINK_TRAIN_PAT1;
  1778. I915_WRITE(DP_TP_CTL(port), val);
  1779. POSTING_READ(DP_TP_CTL(port));
  1780. if (wait)
  1781. intel_wait_ddi_buf_idle(dev_priv, port);
  1782. }
  1783. val = DP_TP_CTL_ENABLE |
  1784. DP_TP_CTL_LINK_TRAIN_PAT1 | DP_TP_CTL_SCRAMBLE_DISABLE;
  1785. if (intel_dp->is_mst)
  1786. val |= DP_TP_CTL_MODE_MST;
  1787. else {
  1788. val |= DP_TP_CTL_MODE_SST;
  1789. if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
  1790. val |= DP_TP_CTL_ENHANCED_FRAME_ENABLE;
  1791. }
  1792. I915_WRITE(DP_TP_CTL(port), val);
  1793. POSTING_READ(DP_TP_CTL(port));
  1794. intel_dp->DP |= DDI_BUF_CTL_ENABLE;
  1795. I915_WRITE(DDI_BUF_CTL(port), intel_dp->DP);
  1796. POSTING_READ(DDI_BUF_CTL(port));
  1797. udelay(600);
  1798. }
  1799. void intel_ddi_fdi_disable(struct drm_crtc *crtc)
  1800. {
  1801. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  1802. struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
  1803. uint32_t val;
  1804. /*
  1805. * Bspec lists this as both step 13 (before DDI_BUF_CTL disable)
  1806. * and step 18 (after clearing PORT_CLK_SEL). Based on a BUN,
  1807. * step 13 is the correct place for it. Step 18 is where it was
  1808. * originally before the BUN.
  1809. */
  1810. val = I915_READ(FDI_RX_CTL(PIPE_A));
  1811. val &= ~FDI_RX_ENABLE;
  1812. I915_WRITE(FDI_RX_CTL(PIPE_A), val);
  1813. intel_ddi_post_disable(intel_encoder);
  1814. val = I915_READ(FDI_RX_MISC(PIPE_A));
  1815. val &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
  1816. val |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
  1817. I915_WRITE(FDI_RX_MISC(PIPE_A), val);
  1818. val = I915_READ(FDI_RX_CTL(PIPE_A));
  1819. val &= ~FDI_PCDCLK;
  1820. I915_WRITE(FDI_RX_CTL(PIPE_A), val);
  1821. val = I915_READ(FDI_RX_CTL(PIPE_A));
  1822. val &= ~FDI_RX_PLL_ENABLE;
  1823. I915_WRITE(FDI_RX_CTL(PIPE_A), val);
  1824. }
  1825. void intel_ddi_get_config(struct intel_encoder *encoder,
  1826. struct intel_crtc_state *pipe_config)
  1827. {
  1828. struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
  1829. struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
  1830. enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
  1831. struct intel_hdmi *intel_hdmi;
  1832. u32 temp, flags = 0;
  1833. /* XXX: DSI transcoder paranoia */
  1834. if (WARN_ON(transcoder_is_dsi(cpu_transcoder)))
  1835. return;
  1836. temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
  1837. if (temp & TRANS_DDI_PHSYNC)
  1838. flags |= DRM_MODE_FLAG_PHSYNC;
  1839. else
  1840. flags |= DRM_MODE_FLAG_NHSYNC;
  1841. if (temp & TRANS_DDI_PVSYNC)
  1842. flags |= DRM_MODE_FLAG_PVSYNC;
  1843. else
  1844. flags |= DRM_MODE_FLAG_NVSYNC;
  1845. pipe_config->base.adjusted_mode.flags |= flags;
  1846. switch (temp & TRANS_DDI_BPC_MASK) {
  1847. case TRANS_DDI_BPC_6:
  1848. pipe_config->pipe_bpp = 18;
  1849. break;
  1850. case TRANS_DDI_BPC_8:
  1851. pipe_config->pipe_bpp = 24;
  1852. break;
  1853. case TRANS_DDI_BPC_10:
  1854. pipe_config->pipe_bpp = 30;
  1855. break;
  1856. case TRANS_DDI_BPC_12:
  1857. pipe_config->pipe_bpp = 36;
  1858. break;
  1859. default:
  1860. break;
  1861. }
  1862. switch (temp & TRANS_DDI_MODE_SELECT_MASK) {
  1863. case TRANS_DDI_MODE_SELECT_HDMI:
  1864. pipe_config->has_hdmi_sink = true;
  1865. intel_hdmi = enc_to_intel_hdmi(&encoder->base);
  1866. if (intel_hdmi->infoframe_enabled(&encoder->base, pipe_config))
  1867. pipe_config->has_infoframe = true;
  1868. /* fall through */
  1869. case TRANS_DDI_MODE_SELECT_DVI:
  1870. pipe_config->lane_count = 4;
  1871. break;
  1872. case TRANS_DDI_MODE_SELECT_FDI:
  1873. break;
  1874. case TRANS_DDI_MODE_SELECT_DP_SST:
  1875. case TRANS_DDI_MODE_SELECT_DP_MST:
  1876. pipe_config->has_dp_encoder = true;
  1877. pipe_config->lane_count =
  1878. ((temp & DDI_PORT_WIDTH_MASK) >> DDI_PORT_WIDTH_SHIFT) + 1;
  1879. intel_dp_get_m_n(intel_crtc, pipe_config);
  1880. break;
  1881. default:
  1882. break;
  1883. }
  1884. if (intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_AUDIO)) {
  1885. temp = I915_READ(HSW_AUD_PIN_ELD_CP_VLD);
  1886. if (temp & AUDIO_OUTPUT_ENABLE(intel_crtc->pipe))
  1887. pipe_config->has_audio = true;
  1888. }
  1889. if (encoder->type == INTEL_OUTPUT_EDP && dev_priv->vbt.edp.bpp &&
  1890. pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
  1891. /*
  1892. * This is a big fat ugly hack.
  1893. *
  1894. * Some machines in UEFI boot mode provide us a VBT that has 18
  1895. * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
  1896. * unknown we fail to light up. Yet the same BIOS boots up with
  1897. * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
  1898. * max, not what it tells us to use.
  1899. *
  1900. * Note: This will still be broken if the eDP panel is not lit
  1901. * up by the BIOS, and thus we can't get the mode at module
  1902. * load.
  1903. */
  1904. DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
  1905. pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
  1906. dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
  1907. }
  1908. intel_ddi_clock_get(encoder, pipe_config);
  1909. }
  1910. static bool intel_ddi_compute_config(struct intel_encoder *encoder,
  1911. struct intel_crtc_state *pipe_config)
  1912. {
  1913. int type = encoder->type;
  1914. int port = intel_ddi_get_encoder_port(encoder);
  1915. WARN(type == INTEL_OUTPUT_UNKNOWN, "compute_config() on unknown output!\n");
  1916. if (port == PORT_A)
  1917. pipe_config->cpu_transcoder = TRANSCODER_EDP;
  1918. if (type == INTEL_OUTPUT_HDMI)
  1919. return intel_hdmi_compute_config(encoder, pipe_config);
  1920. else
  1921. return intel_dp_compute_config(encoder, pipe_config);
  1922. }
  1923. static const struct drm_encoder_funcs intel_ddi_funcs = {
  1924. .reset = intel_dp_encoder_reset,
  1925. .destroy = intel_dp_encoder_destroy,
  1926. };
  1927. static struct intel_connector *
  1928. intel_ddi_init_dp_connector(struct intel_digital_port *intel_dig_port)
  1929. {
  1930. struct intel_connector *connector;
  1931. enum port port = intel_dig_port->port;
  1932. connector = intel_connector_alloc();
  1933. if (!connector)
  1934. return NULL;
  1935. intel_dig_port->dp.output_reg = DDI_BUF_CTL(port);
  1936. if (!intel_dp_init_connector(intel_dig_port, connector)) {
  1937. kfree(connector);
  1938. return NULL;
  1939. }
  1940. return connector;
  1941. }
  1942. static struct intel_connector *
  1943. intel_ddi_init_hdmi_connector(struct intel_digital_port *intel_dig_port)
  1944. {
  1945. struct intel_connector *connector;
  1946. enum port port = intel_dig_port->port;
  1947. connector = intel_connector_alloc();
  1948. if (!connector)
  1949. return NULL;
  1950. intel_dig_port->hdmi.hdmi_reg = DDI_BUF_CTL(port);
  1951. intel_hdmi_init_connector(intel_dig_port, connector);
  1952. return connector;
  1953. }
  1954. void intel_ddi_init(struct drm_device *dev, enum port port)
  1955. {
  1956. struct drm_i915_private *dev_priv = dev->dev_private;
  1957. struct intel_digital_port *intel_dig_port;
  1958. struct intel_encoder *intel_encoder;
  1959. struct drm_encoder *encoder;
  1960. bool init_hdmi, init_dp;
  1961. int max_lanes;
  1962. if (I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES) {
  1963. switch (port) {
  1964. case PORT_A:
  1965. max_lanes = 4;
  1966. break;
  1967. case PORT_E:
  1968. max_lanes = 0;
  1969. break;
  1970. default:
  1971. max_lanes = 4;
  1972. break;
  1973. }
  1974. } else {
  1975. switch (port) {
  1976. case PORT_A:
  1977. max_lanes = 2;
  1978. break;
  1979. case PORT_E:
  1980. max_lanes = 2;
  1981. break;
  1982. default:
  1983. max_lanes = 4;
  1984. break;
  1985. }
  1986. }
  1987. init_hdmi = (dev_priv->vbt.ddi_port_info[port].supports_dvi ||
  1988. dev_priv->vbt.ddi_port_info[port].supports_hdmi);
  1989. init_dp = dev_priv->vbt.ddi_port_info[port].supports_dp;
  1990. if (!init_dp && !init_hdmi) {
  1991. DRM_DEBUG_KMS("VBT says port %c is not DVI/HDMI/DP compatible, respect it\n",
  1992. port_name(port));
  1993. return;
  1994. }
  1995. intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
  1996. if (!intel_dig_port)
  1997. return;
  1998. intel_encoder = &intel_dig_port->base;
  1999. encoder = &intel_encoder->base;
  2000. drm_encoder_init(dev, encoder, &intel_ddi_funcs,
  2001. DRM_MODE_ENCODER_TMDS, NULL);
  2002. intel_encoder->compute_config = intel_ddi_compute_config;
  2003. intel_encoder->enable = intel_enable_ddi;
  2004. intel_encoder->pre_enable = intel_ddi_pre_enable;
  2005. intel_encoder->disable = intel_disable_ddi;
  2006. intel_encoder->post_disable = intel_ddi_post_disable;
  2007. intel_encoder->get_hw_state = intel_ddi_get_hw_state;
  2008. intel_encoder->get_config = intel_ddi_get_config;
  2009. intel_encoder->suspend = intel_dp_encoder_suspend;
  2010. intel_dig_port->port = port;
  2011. intel_dig_port->saved_port_bits = I915_READ(DDI_BUF_CTL(port)) &
  2012. (DDI_BUF_PORT_REVERSAL |
  2013. DDI_A_4_LANES);
  2014. /*
  2015. * Bspec says that DDI_A_4_LANES is the only supported configuration
  2016. * for Broxton. Yet some BIOS fail to set this bit on port A if eDP
  2017. * wasn't lit up at boot. Force this bit on in our internal
  2018. * configuration so that we use the proper lane count for our
  2019. * calculations.
  2020. */
  2021. if (IS_BROXTON(dev) && port == PORT_A) {
  2022. if (!(intel_dig_port->saved_port_bits & DDI_A_4_LANES)) {
  2023. DRM_DEBUG_KMS("BXT BIOS forgot to set DDI_A_4_LANES for port A; fixing\n");
  2024. intel_dig_port->saved_port_bits |= DDI_A_4_LANES;
  2025. max_lanes = 4;
  2026. }
  2027. }
  2028. intel_dig_port->max_lanes = max_lanes;
  2029. intel_encoder->type = INTEL_OUTPUT_UNKNOWN;
  2030. intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
  2031. intel_encoder->cloneable = 0;
  2032. if (init_dp) {
  2033. if (!intel_ddi_init_dp_connector(intel_dig_port))
  2034. goto err;
  2035. intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
  2036. /*
  2037. * On BXT A0/A1, sw needs to activate DDIA HPD logic and
  2038. * interrupts to check the external panel connection.
  2039. */
  2040. if (IS_BXT_REVID(dev, 0, BXT_REVID_A1) && port == PORT_B)
  2041. dev_priv->hotplug.irq_port[PORT_A] = intel_dig_port;
  2042. else
  2043. dev_priv->hotplug.irq_port[port] = intel_dig_port;
  2044. }
  2045. /* In theory we don't need the encoder->type check, but leave it just in
  2046. * case we have some really bad VBTs... */
  2047. if (intel_encoder->type != INTEL_OUTPUT_EDP && init_hdmi) {
  2048. if (!intel_ddi_init_hdmi_connector(intel_dig_port))
  2049. goto err;
  2050. }
  2051. return;
  2052. err:
  2053. drm_encoder_cleanup(encoder);
  2054. kfree(intel_dig_port);
  2055. }