i915_cmd_parser.c 38 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293
  1. /*
  2. * Copyright © 2013 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Brad Volkin <bradley.d.volkin@intel.com>
  25. *
  26. */
  27. #include "i915_drv.h"
  28. /**
  29. * DOC: batch buffer command parser
  30. *
  31. * Motivation:
  32. * Certain OpenGL features (e.g. transform feedback, performance monitoring)
  33. * require userspace code to submit batches containing commands such as
  34. * MI_LOAD_REGISTER_IMM to access various registers. Unfortunately, some
  35. * generations of the hardware will noop these commands in "unsecure" batches
  36. * (which includes all userspace batches submitted via i915) even though the
  37. * commands may be safe and represent the intended programming model of the
  38. * device.
  39. *
  40. * The software command parser is similar in operation to the command parsing
  41. * done in hardware for unsecure batches. However, the software parser allows
  42. * some operations that would be noop'd by hardware, if the parser determines
  43. * the operation is safe, and submits the batch as "secure" to prevent hardware
  44. * parsing.
  45. *
  46. * Threats:
  47. * At a high level, the hardware (and software) checks attempt to prevent
  48. * granting userspace undue privileges. There are three categories of privilege.
  49. *
  50. * First, commands which are explicitly defined as privileged or which should
  51. * only be used by the kernel driver. The parser generally rejects such
  52. * commands, though it may allow some from the drm master process.
  53. *
  54. * Second, commands which access registers. To support correct/enhanced
  55. * userspace functionality, particularly certain OpenGL extensions, the parser
  56. * provides a whitelist of registers which userspace may safely access (for both
  57. * normal and drm master processes).
  58. *
  59. * Third, commands which access privileged memory (i.e. GGTT, HWS page, etc).
  60. * The parser always rejects such commands.
  61. *
  62. * The majority of the problematic commands fall in the MI_* range, with only a
  63. * few specific commands on each ring (e.g. PIPE_CONTROL and MI_FLUSH_DW).
  64. *
  65. * Implementation:
  66. * Each ring maintains tables of commands and registers which the parser uses in
  67. * scanning batch buffers submitted to that ring.
  68. *
  69. * Since the set of commands that the parser must check for is significantly
  70. * smaller than the number of commands supported, the parser tables contain only
  71. * those commands required by the parser. This generally works because command
  72. * opcode ranges have standard command length encodings. So for commands that
  73. * the parser does not need to check, it can easily skip them. This is
  74. * implemented via a per-ring length decoding vfunc.
  75. *
  76. * Unfortunately, there are a number of commands that do not follow the standard
  77. * length encoding for their opcode range, primarily amongst the MI_* commands.
  78. * To handle this, the parser provides a way to define explicit "skip" entries
  79. * in the per-ring command tables.
  80. *
  81. * Other command table entries map fairly directly to high level categories
  82. * mentioned above: rejected, master-only, register whitelist. The parser
  83. * implements a number of checks, including the privileged memory checks, via a
  84. * general bitmasking mechanism.
  85. */
  86. #define STD_MI_OPCODE_MASK 0xFF800000
  87. #define STD_3D_OPCODE_MASK 0xFFFF0000
  88. #define STD_2D_OPCODE_MASK 0xFFC00000
  89. #define STD_MFX_OPCODE_MASK 0xFFFF0000
  90. #define CMD(op, opm, f, lm, fl, ...) \
  91. { \
  92. .flags = (fl) | ((f) ? CMD_DESC_FIXED : 0), \
  93. .cmd = { (op), (opm) }, \
  94. .length = { (lm) }, \
  95. __VA_ARGS__ \
  96. }
  97. /* Convenience macros to compress the tables */
  98. #define SMI STD_MI_OPCODE_MASK
  99. #define S3D STD_3D_OPCODE_MASK
  100. #define S2D STD_2D_OPCODE_MASK
  101. #define SMFX STD_MFX_OPCODE_MASK
  102. #define F true
  103. #define S CMD_DESC_SKIP
  104. #define R CMD_DESC_REJECT
  105. #define W CMD_DESC_REGISTER
  106. #define B CMD_DESC_BITMASK
  107. #define M CMD_DESC_MASTER
  108. /* Command Mask Fixed Len Action
  109. ---------------------------------------------------------- */
  110. static const struct drm_i915_cmd_descriptor common_cmds[] = {
  111. CMD( MI_NOOP, SMI, F, 1, S ),
  112. CMD( MI_USER_INTERRUPT, SMI, F, 1, R ),
  113. CMD( MI_WAIT_FOR_EVENT, SMI, F, 1, M ),
  114. CMD( MI_ARB_CHECK, SMI, F, 1, S ),
  115. CMD( MI_REPORT_HEAD, SMI, F, 1, S ),
  116. CMD( MI_SUSPEND_FLUSH, SMI, F, 1, S ),
  117. CMD( MI_SEMAPHORE_MBOX, SMI, !F, 0xFF, R ),
  118. CMD( MI_STORE_DWORD_INDEX, SMI, !F, 0xFF, R ),
  119. CMD( MI_LOAD_REGISTER_IMM(1), SMI, !F, 0xFF, W,
  120. .reg = { .offset = 1, .mask = 0x007FFFFC, .step = 2 } ),
  121. CMD( MI_STORE_REGISTER_MEM, SMI, F, 3, W | B,
  122. .reg = { .offset = 1, .mask = 0x007FFFFC },
  123. .bits = {{
  124. .offset = 0,
  125. .mask = MI_GLOBAL_GTT,
  126. .expected = 0,
  127. }}, ),
  128. CMD( MI_LOAD_REGISTER_MEM, SMI, F, 3, W | B,
  129. .reg = { .offset = 1, .mask = 0x007FFFFC },
  130. .bits = {{
  131. .offset = 0,
  132. .mask = MI_GLOBAL_GTT,
  133. .expected = 0,
  134. }}, ),
  135. /*
  136. * MI_BATCH_BUFFER_START requires some special handling. It's not
  137. * really a 'skip' action but it doesn't seem like it's worth adding
  138. * a new action. See i915_parse_cmds().
  139. */
  140. CMD( MI_BATCH_BUFFER_START, SMI, !F, 0xFF, S ),
  141. };
  142. static const struct drm_i915_cmd_descriptor render_cmds[] = {
  143. CMD( MI_FLUSH, SMI, F, 1, S ),
  144. CMD( MI_ARB_ON_OFF, SMI, F, 1, R ),
  145. CMD( MI_PREDICATE, SMI, F, 1, S ),
  146. CMD( MI_TOPOLOGY_FILTER, SMI, F, 1, S ),
  147. CMD( MI_SET_APPID, SMI, F, 1, S ),
  148. CMD( MI_DISPLAY_FLIP, SMI, !F, 0xFF, R ),
  149. CMD( MI_SET_CONTEXT, SMI, !F, 0xFF, R ),
  150. CMD( MI_URB_CLEAR, SMI, !F, 0xFF, S ),
  151. CMD( MI_STORE_DWORD_IMM, SMI, !F, 0x3F, B,
  152. .bits = {{
  153. .offset = 0,
  154. .mask = MI_GLOBAL_GTT,
  155. .expected = 0,
  156. }}, ),
  157. CMD( MI_UPDATE_GTT, SMI, !F, 0xFF, R ),
  158. CMD( MI_CLFLUSH, SMI, !F, 0x3FF, B,
  159. .bits = {{
  160. .offset = 0,
  161. .mask = MI_GLOBAL_GTT,
  162. .expected = 0,
  163. }}, ),
  164. CMD( MI_REPORT_PERF_COUNT, SMI, !F, 0x3F, B,
  165. .bits = {{
  166. .offset = 1,
  167. .mask = MI_REPORT_PERF_COUNT_GGTT,
  168. .expected = 0,
  169. }}, ),
  170. CMD( MI_CONDITIONAL_BATCH_BUFFER_END, SMI, !F, 0xFF, B,
  171. .bits = {{
  172. .offset = 0,
  173. .mask = MI_GLOBAL_GTT,
  174. .expected = 0,
  175. }}, ),
  176. CMD( GFX_OP_3DSTATE_VF_STATISTICS, S3D, F, 1, S ),
  177. CMD( PIPELINE_SELECT, S3D, F, 1, S ),
  178. CMD( MEDIA_VFE_STATE, S3D, !F, 0xFFFF, B,
  179. .bits = {{
  180. .offset = 2,
  181. .mask = MEDIA_VFE_STATE_MMIO_ACCESS_MASK,
  182. .expected = 0,
  183. }}, ),
  184. CMD( GPGPU_OBJECT, S3D, !F, 0xFF, S ),
  185. CMD( GPGPU_WALKER, S3D, !F, 0xFF, S ),
  186. CMD( GFX_OP_3DSTATE_SO_DECL_LIST, S3D, !F, 0x1FF, S ),
  187. CMD( GFX_OP_PIPE_CONTROL(5), S3D, !F, 0xFF, B,
  188. .bits = {{
  189. .offset = 1,
  190. .mask = (PIPE_CONTROL_MMIO_WRITE | PIPE_CONTROL_NOTIFY),
  191. .expected = 0,
  192. },
  193. {
  194. .offset = 1,
  195. .mask = (PIPE_CONTROL_GLOBAL_GTT_IVB |
  196. PIPE_CONTROL_STORE_DATA_INDEX),
  197. .expected = 0,
  198. .condition_offset = 1,
  199. .condition_mask = PIPE_CONTROL_POST_SYNC_OP_MASK,
  200. }}, ),
  201. };
  202. static const struct drm_i915_cmd_descriptor hsw_render_cmds[] = {
  203. CMD( MI_SET_PREDICATE, SMI, F, 1, S ),
  204. CMD( MI_RS_CONTROL, SMI, F, 1, S ),
  205. CMD( MI_URB_ATOMIC_ALLOC, SMI, F, 1, S ),
  206. CMD( MI_SET_APPID, SMI, F, 1, S ),
  207. CMD( MI_RS_CONTEXT, SMI, F, 1, S ),
  208. CMD( MI_LOAD_SCAN_LINES_INCL, SMI, !F, 0x3F, M ),
  209. CMD( MI_LOAD_SCAN_LINES_EXCL, SMI, !F, 0x3F, R ),
  210. CMD( MI_LOAD_REGISTER_REG, SMI, !F, 0xFF, R ),
  211. CMD( MI_RS_STORE_DATA_IMM, SMI, !F, 0xFF, S ),
  212. CMD( MI_LOAD_URB_MEM, SMI, !F, 0xFF, S ),
  213. CMD( MI_STORE_URB_MEM, SMI, !F, 0xFF, S ),
  214. CMD( GFX_OP_3DSTATE_DX9_CONSTANTF_VS, S3D, !F, 0x7FF, S ),
  215. CMD( GFX_OP_3DSTATE_DX9_CONSTANTF_PS, S3D, !F, 0x7FF, S ),
  216. CMD( GFX_OP_3DSTATE_BINDING_TABLE_EDIT_VS, S3D, !F, 0x1FF, S ),
  217. CMD( GFX_OP_3DSTATE_BINDING_TABLE_EDIT_GS, S3D, !F, 0x1FF, S ),
  218. CMD( GFX_OP_3DSTATE_BINDING_TABLE_EDIT_HS, S3D, !F, 0x1FF, S ),
  219. CMD( GFX_OP_3DSTATE_BINDING_TABLE_EDIT_DS, S3D, !F, 0x1FF, S ),
  220. CMD( GFX_OP_3DSTATE_BINDING_TABLE_EDIT_PS, S3D, !F, 0x1FF, S ),
  221. };
  222. static const struct drm_i915_cmd_descriptor video_cmds[] = {
  223. CMD( MI_ARB_ON_OFF, SMI, F, 1, R ),
  224. CMD( MI_SET_APPID, SMI, F, 1, S ),
  225. CMD( MI_STORE_DWORD_IMM, SMI, !F, 0xFF, B,
  226. .bits = {{
  227. .offset = 0,
  228. .mask = MI_GLOBAL_GTT,
  229. .expected = 0,
  230. }}, ),
  231. CMD( MI_UPDATE_GTT, SMI, !F, 0x3F, R ),
  232. CMD( MI_FLUSH_DW, SMI, !F, 0x3F, B,
  233. .bits = {{
  234. .offset = 0,
  235. .mask = MI_FLUSH_DW_NOTIFY,
  236. .expected = 0,
  237. },
  238. {
  239. .offset = 1,
  240. .mask = MI_FLUSH_DW_USE_GTT,
  241. .expected = 0,
  242. .condition_offset = 0,
  243. .condition_mask = MI_FLUSH_DW_OP_MASK,
  244. },
  245. {
  246. .offset = 0,
  247. .mask = MI_FLUSH_DW_STORE_INDEX,
  248. .expected = 0,
  249. .condition_offset = 0,
  250. .condition_mask = MI_FLUSH_DW_OP_MASK,
  251. }}, ),
  252. CMD( MI_CONDITIONAL_BATCH_BUFFER_END, SMI, !F, 0xFF, B,
  253. .bits = {{
  254. .offset = 0,
  255. .mask = MI_GLOBAL_GTT,
  256. .expected = 0,
  257. }}, ),
  258. /*
  259. * MFX_WAIT doesn't fit the way we handle length for most commands.
  260. * It has a length field but it uses a non-standard length bias.
  261. * It is always 1 dword though, so just treat it as fixed length.
  262. */
  263. CMD( MFX_WAIT, SMFX, F, 1, S ),
  264. };
  265. static const struct drm_i915_cmd_descriptor vecs_cmds[] = {
  266. CMD( MI_ARB_ON_OFF, SMI, F, 1, R ),
  267. CMD( MI_SET_APPID, SMI, F, 1, S ),
  268. CMD( MI_STORE_DWORD_IMM, SMI, !F, 0xFF, B,
  269. .bits = {{
  270. .offset = 0,
  271. .mask = MI_GLOBAL_GTT,
  272. .expected = 0,
  273. }}, ),
  274. CMD( MI_UPDATE_GTT, SMI, !F, 0x3F, R ),
  275. CMD( MI_FLUSH_DW, SMI, !F, 0x3F, B,
  276. .bits = {{
  277. .offset = 0,
  278. .mask = MI_FLUSH_DW_NOTIFY,
  279. .expected = 0,
  280. },
  281. {
  282. .offset = 1,
  283. .mask = MI_FLUSH_DW_USE_GTT,
  284. .expected = 0,
  285. .condition_offset = 0,
  286. .condition_mask = MI_FLUSH_DW_OP_MASK,
  287. },
  288. {
  289. .offset = 0,
  290. .mask = MI_FLUSH_DW_STORE_INDEX,
  291. .expected = 0,
  292. .condition_offset = 0,
  293. .condition_mask = MI_FLUSH_DW_OP_MASK,
  294. }}, ),
  295. CMD( MI_CONDITIONAL_BATCH_BUFFER_END, SMI, !F, 0xFF, B,
  296. .bits = {{
  297. .offset = 0,
  298. .mask = MI_GLOBAL_GTT,
  299. .expected = 0,
  300. }}, ),
  301. };
  302. static const struct drm_i915_cmd_descriptor blt_cmds[] = {
  303. CMD( MI_DISPLAY_FLIP, SMI, !F, 0xFF, R ),
  304. CMD( MI_STORE_DWORD_IMM, SMI, !F, 0x3FF, B,
  305. .bits = {{
  306. .offset = 0,
  307. .mask = MI_GLOBAL_GTT,
  308. .expected = 0,
  309. }}, ),
  310. CMD( MI_UPDATE_GTT, SMI, !F, 0x3F, R ),
  311. CMD( MI_FLUSH_DW, SMI, !F, 0x3F, B,
  312. .bits = {{
  313. .offset = 0,
  314. .mask = MI_FLUSH_DW_NOTIFY,
  315. .expected = 0,
  316. },
  317. {
  318. .offset = 1,
  319. .mask = MI_FLUSH_DW_USE_GTT,
  320. .expected = 0,
  321. .condition_offset = 0,
  322. .condition_mask = MI_FLUSH_DW_OP_MASK,
  323. },
  324. {
  325. .offset = 0,
  326. .mask = MI_FLUSH_DW_STORE_INDEX,
  327. .expected = 0,
  328. .condition_offset = 0,
  329. .condition_mask = MI_FLUSH_DW_OP_MASK,
  330. }}, ),
  331. CMD( COLOR_BLT, S2D, !F, 0x3F, S ),
  332. CMD( SRC_COPY_BLT, S2D, !F, 0x3F, S ),
  333. };
  334. static const struct drm_i915_cmd_descriptor hsw_blt_cmds[] = {
  335. CMD( MI_LOAD_SCAN_LINES_INCL, SMI, !F, 0x3F, M ),
  336. CMD( MI_LOAD_SCAN_LINES_EXCL, SMI, !F, 0x3F, R ),
  337. };
  338. #undef CMD
  339. #undef SMI
  340. #undef S3D
  341. #undef S2D
  342. #undef SMFX
  343. #undef F
  344. #undef S
  345. #undef R
  346. #undef W
  347. #undef B
  348. #undef M
  349. static const struct drm_i915_cmd_table gen7_render_cmds[] = {
  350. { common_cmds, ARRAY_SIZE(common_cmds) },
  351. { render_cmds, ARRAY_SIZE(render_cmds) },
  352. };
  353. static const struct drm_i915_cmd_table hsw_render_ring_cmds[] = {
  354. { common_cmds, ARRAY_SIZE(common_cmds) },
  355. { render_cmds, ARRAY_SIZE(render_cmds) },
  356. { hsw_render_cmds, ARRAY_SIZE(hsw_render_cmds) },
  357. };
  358. static const struct drm_i915_cmd_table gen7_video_cmds[] = {
  359. { common_cmds, ARRAY_SIZE(common_cmds) },
  360. { video_cmds, ARRAY_SIZE(video_cmds) },
  361. };
  362. static const struct drm_i915_cmd_table hsw_vebox_cmds[] = {
  363. { common_cmds, ARRAY_SIZE(common_cmds) },
  364. { vecs_cmds, ARRAY_SIZE(vecs_cmds) },
  365. };
  366. static const struct drm_i915_cmd_table gen7_blt_cmds[] = {
  367. { common_cmds, ARRAY_SIZE(common_cmds) },
  368. { blt_cmds, ARRAY_SIZE(blt_cmds) },
  369. };
  370. static const struct drm_i915_cmd_table hsw_blt_ring_cmds[] = {
  371. { common_cmds, ARRAY_SIZE(common_cmds) },
  372. { blt_cmds, ARRAY_SIZE(blt_cmds) },
  373. { hsw_blt_cmds, ARRAY_SIZE(hsw_blt_cmds) },
  374. };
  375. /*
  376. * Register whitelists, sorted by increasing register offset.
  377. */
  378. /*
  379. * An individual whitelist entry granting access to register addr. If
  380. * mask is non-zero the argument of immediate register writes will be
  381. * AND-ed with mask, and the command will be rejected if the result
  382. * doesn't match value.
  383. *
  384. * Registers with non-zero mask are only allowed to be written using
  385. * LRI.
  386. */
  387. struct drm_i915_reg_descriptor {
  388. i915_reg_t addr;
  389. u32 mask;
  390. u32 value;
  391. };
  392. /* Convenience macro for adding 32-bit registers. */
  393. #define REG32(_reg, ...) \
  394. { .addr = (_reg), __VA_ARGS__ }
  395. /*
  396. * Convenience macro for adding 64-bit registers.
  397. *
  398. * Some registers that userspace accesses are 64 bits. The register
  399. * access commands only allow 32-bit accesses. Hence, we have to include
  400. * entries for both halves of the 64-bit registers.
  401. */
  402. #define REG64(_reg) \
  403. { .addr = _reg }, \
  404. { .addr = _reg ## _UDW }
  405. #define REG64_IDX(_reg, idx) \
  406. { .addr = _reg(idx) }, \
  407. { .addr = _reg ## _UDW(idx) }
  408. static const struct drm_i915_reg_descriptor gen7_render_regs[] = {
  409. REG64(GPGPU_THREADS_DISPATCHED),
  410. REG64(HS_INVOCATION_COUNT),
  411. REG64(DS_INVOCATION_COUNT),
  412. REG64(IA_VERTICES_COUNT),
  413. REG64(IA_PRIMITIVES_COUNT),
  414. REG64(VS_INVOCATION_COUNT),
  415. REG64(GS_INVOCATION_COUNT),
  416. REG64(GS_PRIMITIVES_COUNT),
  417. REG64(CL_INVOCATION_COUNT),
  418. REG64(CL_PRIMITIVES_COUNT),
  419. REG64(PS_INVOCATION_COUNT),
  420. REG64(PS_DEPTH_COUNT),
  421. REG64_IDX(RING_TIMESTAMP, RENDER_RING_BASE),
  422. REG32(OACONTROL), /* Only allowed for LRI and SRM. See below. */
  423. REG64(MI_PREDICATE_SRC0),
  424. REG64(MI_PREDICATE_SRC1),
  425. REG32(GEN7_3DPRIM_END_OFFSET),
  426. REG32(GEN7_3DPRIM_START_VERTEX),
  427. REG32(GEN7_3DPRIM_VERTEX_COUNT),
  428. REG32(GEN7_3DPRIM_INSTANCE_COUNT),
  429. REG32(GEN7_3DPRIM_START_INSTANCE),
  430. REG32(GEN7_3DPRIM_BASE_VERTEX),
  431. REG32(GEN7_GPGPU_DISPATCHDIMX),
  432. REG32(GEN7_GPGPU_DISPATCHDIMY),
  433. REG32(GEN7_GPGPU_DISPATCHDIMZ),
  434. REG64_IDX(GEN7_SO_NUM_PRIMS_WRITTEN, 0),
  435. REG64_IDX(GEN7_SO_NUM_PRIMS_WRITTEN, 1),
  436. REG64_IDX(GEN7_SO_NUM_PRIMS_WRITTEN, 2),
  437. REG64_IDX(GEN7_SO_NUM_PRIMS_WRITTEN, 3),
  438. REG64_IDX(GEN7_SO_PRIM_STORAGE_NEEDED, 0),
  439. REG64_IDX(GEN7_SO_PRIM_STORAGE_NEEDED, 1),
  440. REG64_IDX(GEN7_SO_PRIM_STORAGE_NEEDED, 2),
  441. REG64_IDX(GEN7_SO_PRIM_STORAGE_NEEDED, 3),
  442. REG32(GEN7_SO_WRITE_OFFSET(0)),
  443. REG32(GEN7_SO_WRITE_OFFSET(1)),
  444. REG32(GEN7_SO_WRITE_OFFSET(2)),
  445. REG32(GEN7_SO_WRITE_OFFSET(3)),
  446. REG32(GEN7_L3SQCREG1),
  447. REG32(GEN7_L3CNTLREG2),
  448. REG32(GEN7_L3CNTLREG3),
  449. };
  450. static const struct drm_i915_reg_descriptor hsw_render_regs[] = {
  451. REG64_IDX(HSW_CS_GPR, 0),
  452. REG64_IDX(HSW_CS_GPR, 1),
  453. REG64_IDX(HSW_CS_GPR, 2),
  454. REG64_IDX(HSW_CS_GPR, 3),
  455. REG64_IDX(HSW_CS_GPR, 4),
  456. REG64_IDX(HSW_CS_GPR, 5),
  457. REG64_IDX(HSW_CS_GPR, 6),
  458. REG64_IDX(HSW_CS_GPR, 7),
  459. REG64_IDX(HSW_CS_GPR, 8),
  460. REG64_IDX(HSW_CS_GPR, 9),
  461. REG64_IDX(HSW_CS_GPR, 10),
  462. REG64_IDX(HSW_CS_GPR, 11),
  463. REG64_IDX(HSW_CS_GPR, 12),
  464. REG64_IDX(HSW_CS_GPR, 13),
  465. REG64_IDX(HSW_CS_GPR, 14),
  466. REG64_IDX(HSW_CS_GPR, 15),
  467. REG32(HSW_SCRATCH1,
  468. .mask = ~HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE,
  469. .value = 0),
  470. REG32(HSW_ROW_CHICKEN3,
  471. .mask = ~(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE << 16 |
  472. HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE),
  473. .value = 0),
  474. };
  475. static const struct drm_i915_reg_descriptor gen7_blt_regs[] = {
  476. REG32(BCS_SWCTRL),
  477. };
  478. static const struct drm_i915_reg_descriptor ivb_master_regs[] = {
  479. REG32(FORCEWAKE_MT),
  480. REG32(DERRMR),
  481. REG32(GEN7_PIPE_DE_LOAD_SL(PIPE_A)),
  482. REG32(GEN7_PIPE_DE_LOAD_SL(PIPE_B)),
  483. REG32(GEN7_PIPE_DE_LOAD_SL(PIPE_C)),
  484. };
  485. static const struct drm_i915_reg_descriptor hsw_master_regs[] = {
  486. REG32(FORCEWAKE_MT),
  487. REG32(DERRMR),
  488. };
  489. #undef REG64
  490. #undef REG32
  491. struct drm_i915_reg_table {
  492. const struct drm_i915_reg_descriptor *regs;
  493. int num_regs;
  494. bool master;
  495. };
  496. static const struct drm_i915_reg_table ivb_render_reg_tables[] = {
  497. { gen7_render_regs, ARRAY_SIZE(gen7_render_regs), false },
  498. { ivb_master_regs, ARRAY_SIZE(ivb_master_regs), true },
  499. };
  500. static const struct drm_i915_reg_table ivb_blt_reg_tables[] = {
  501. { gen7_blt_regs, ARRAY_SIZE(gen7_blt_regs), false },
  502. { ivb_master_regs, ARRAY_SIZE(ivb_master_regs), true },
  503. };
  504. static const struct drm_i915_reg_table hsw_render_reg_tables[] = {
  505. { gen7_render_regs, ARRAY_SIZE(gen7_render_regs), false },
  506. { hsw_render_regs, ARRAY_SIZE(hsw_render_regs), false },
  507. { hsw_master_regs, ARRAY_SIZE(hsw_master_regs), true },
  508. };
  509. static const struct drm_i915_reg_table hsw_blt_reg_tables[] = {
  510. { gen7_blt_regs, ARRAY_SIZE(gen7_blt_regs), false },
  511. { hsw_master_regs, ARRAY_SIZE(hsw_master_regs), true },
  512. };
  513. static u32 gen7_render_get_cmd_length_mask(u32 cmd_header)
  514. {
  515. u32 client = (cmd_header & INSTR_CLIENT_MASK) >> INSTR_CLIENT_SHIFT;
  516. u32 subclient =
  517. (cmd_header & INSTR_SUBCLIENT_MASK) >> INSTR_SUBCLIENT_SHIFT;
  518. if (client == INSTR_MI_CLIENT)
  519. return 0x3F;
  520. else if (client == INSTR_RC_CLIENT) {
  521. if (subclient == INSTR_MEDIA_SUBCLIENT)
  522. return 0xFFFF;
  523. else
  524. return 0xFF;
  525. }
  526. DRM_DEBUG_DRIVER("CMD: Abnormal rcs cmd length! 0x%08X\n", cmd_header);
  527. return 0;
  528. }
  529. static u32 gen7_bsd_get_cmd_length_mask(u32 cmd_header)
  530. {
  531. u32 client = (cmd_header & INSTR_CLIENT_MASK) >> INSTR_CLIENT_SHIFT;
  532. u32 subclient =
  533. (cmd_header & INSTR_SUBCLIENT_MASK) >> INSTR_SUBCLIENT_SHIFT;
  534. u32 op = (cmd_header & INSTR_26_TO_24_MASK) >> INSTR_26_TO_24_SHIFT;
  535. if (client == INSTR_MI_CLIENT)
  536. return 0x3F;
  537. else if (client == INSTR_RC_CLIENT) {
  538. if (subclient == INSTR_MEDIA_SUBCLIENT) {
  539. if (op == 6)
  540. return 0xFFFF;
  541. else
  542. return 0xFFF;
  543. } else
  544. return 0xFF;
  545. }
  546. DRM_DEBUG_DRIVER("CMD: Abnormal bsd cmd length! 0x%08X\n", cmd_header);
  547. return 0;
  548. }
  549. static u32 gen7_blt_get_cmd_length_mask(u32 cmd_header)
  550. {
  551. u32 client = (cmd_header & INSTR_CLIENT_MASK) >> INSTR_CLIENT_SHIFT;
  552. if (client == INSTR_MI_CLIENT)
  553. return 0x3F;
  554. else if (client == INSTR_BC_CLIENT)
  555. return 0xFF;
  556. DRM_DEBUG_DRIVER("CMD: Abnormal blt cmd length! 0x%08X\n", cmd_header);
  557. return 0;
  558. }
  559. static bool validate_cmds_sorted(struct intel_engine_cs *engine,
  560. const struct drm_i915_cmd_table *cmd_tables,
  561. int cmd_table_count)
  562. {
  563. int i;
  564. bool ret = true;
  565. if (!cmd_tables || cmd_table_count == 0)
  566. return true;
  567. for (i = 0; i < cmd_table_count; i++) {
  568. const struct drm_i915_cmd_table *table = &cmd_tables[i];
  569. u32 previous = 0;
  570. int j;
  571. for (j = 0; j < table->count; j++) {
  572. const struct drm_i915_cmd_descriptor *desc =
  573. &table->table[j];
  574. u32 curr = desc->cmd.value & desc->cmd.mask;
  575. if (curr < previous) {
  576. DRM_ERROR("CMD: table not sorted ring=%d table=%d entry=%d cmd=0x%08X prev=0x%08X\n",
  577. engine->id, i, j, curr, previous);
  578. ret = false;
  579. }
  580. previous = curr;
  581. }
  582. }
  583. return ret;
  584. }
  585. static bool check_sorted(int ring_id,
  586. const struct drm_i915_reg_descriptor *reg_table,
  587. int reg_count)
  588. {
  589. int i;
  590. u32 previous = 0;
  591. bool ret = true;
  592. for (i = 0; i < reg_count; i++) {
  593. u32 curr = i915_mmio_reg_offset(reg_table[i].addr);
  594. if (curr < previous) {
  595. DRM_ERROR("CMD: table not sorted ring=%d entry=%d reg=0x%08X prev=0x%08X\n",
  596. ring_id, i, curr, previous);
  597. ret = false;
  598. }
  599. previous = curr;
  600. }
  601. return ret;
  602. }
  603. static bool validate_regs_sorted(struct intel_engine_cs *engine)
  604. {
  605. int i;
  606. const struct drm_i915_reg_table *table;
  607. for (i = 0; i < engine->reg_table_count; i++) {
  608. table = &engine->reg_tables[i];
  609. if (!check_sorted(engine->id, table->regs, table->num_regs))
  610. return false;
  611. }
  612. return true;
  613. }
  614. struct cmd_node {
  615. const struct drm_i915_cmd_descriptor *desc;
  616. struct hlist_node node;
  617. };
  618. /*
  619. * Different command ranges have different numbers of bits for the opcode. For
  620. * example, MI commands use bits 31:23 while 3D commands use bits 31:16. The
  621. * problem is that, for example, MI commands use bits 22:16 for other fields
  622. * such as GGTT vs PPGTT bits. If we include those bits in the mask then when
  623. * we mask a command from a batch it could hash to the wrong bucket due to
  624. * non-opcode bits being set. But if we don't include those bits, some 3D
  625. * commands may hash to the same bucket due to not including opcode bits that
  626. * make the command unique. For now, we will risk hashing to the same bucket.
  627. *
  628. * If we attempt to generate a perfect hash, we should be able to look at bits
  629. * 31:29 of a command from a batch buffer and use the full mask for that
  630. * client. The existing INSTR_CLIENT_MASK/SHIFT defines can be used for this.
  631. */
  632. #define CMD_HASH_MASK STD_MI_OPCODE_MASK
  633. static int init_hash_table(struct intel_engine_cs *engine,
  634. const struct drm_i915_cmd_table *cmd_tables,
  635. int cmd_table_count)
  636. {
  637. int i, j;
  638. hash_init(engine->cmd_hash);
  639. for (i = 0; i < cmd_table_count; i++) {
  640. const struct drm_i915_cmd_table *table = &cmd_tables[i];
  641. for (j = 0; j < table->count; j++) {
  642. const struct drm_i915_cmd_descriptor *desc =
  643. &table->table[j];
  644. struct cmd_node *desc_node =
  645. kmalloc(sizeof(*desc_node), GFP_KERNEL);
  646. if (!desc_node)
  647. return -ENOMEM;
  648. desc_node->desc = desc;
  649. hash_add(engine->cmd_hash, &desc_node->node,
  650. desc->cmd.value & CMD_HASH_MASK);
  651. }
  652. }
  653. return 0;
  654. }
  655. static void fini_hash_table(struct intel_engine_cs *engine)
  656. {
  657. struct hlist_node *tmp;
  658. struct cmd_node *desc_node;
  659. int i;
  660. hash_for_each_safe(engine->cmd_hash, i, tmp, desc_node, node) {
  661. hash_del(&desc_node->node);
  662. kfree(desc_node);
  663. }
  664. }
  665. /**
  666. * i915_cmd_parser_init_ring() - set cmd parser related fields for a ringbuffer
  667. * @ring: the ringbuffer to initialize
  668. *
  669. * Optionally initializes fields related to batch buffer command parsing in the
  670. * struct intel_engine_cs based on whether the platform requires software
  671. * command parsing.
  672. *
  673. * Return: non-zero if initialization fails
  674. */
  675. int i915_cmd_parser_init_ring(struct intel_engine_cs *engine)
  676. {
  677. const struct drm_i915_cmd_table *cmd_tables;
  678. int cmd_table_count;
  679. int ret;
  680. if (!IS_GEN7(engine->dev))
  681. return 0;
  682. switch (engine->id) {
  683. case RCS:
  684. if (IS_HASWELL(engine->dev)) {
  685. cmd_tables = hsw_render_ring_cmds;
  686. cmd_table_count =
  687. ARRAY_SIZE(hsw_render_ring_cmds);
  688. } else {
  689. cmd_tables = gen7_render_cmds;
  690. cmd_table_count = ARRAY_SIZE(gen7_render_cmds);
  691. }
  692. if (IS_HASWELL(engine->dev)) {
  693. engine->reg_tables = hsw_render_reg_tables;
  694. engine->reg_table_count = ARRAY_SIZE(hsw_render_reg_tables);
  695. } else {
  696. engine->reg_tables = ivb_render_reg_tables;
  697. engine->reg_table_count = ARRAY_SIZE(ivb_render_reg_tables);
  698. }
  699. engine->get_cmd_length_mask = gen7_render_get_cmd_length_mask;
  700. break;
  701. case VCS:
  702. cmd_tables = gen7_video_cmds;
  703. cmd_table_count = ARRAY_SIZE(gen7_video_cmds);
  704. engine->get_cmd_length_mask = gen7_bsd_get_cmd_length_mask;
  705. break;
  706. case BCS:
  707. if (IS_HASWELL(engine->dev)) {
  708. cmd_tables = hsw_blt_ring_cmds;
  709. cmd_table_count = ARRAY_SIZE(hsw_blt_ring_cmds);
  710. } else {
  711. cmd_tables = gen7_blt_cmds;
  712. cmd_table_count = ARRAY_SIZE(gen7_blt_cmds);
  713. }
  714. if (IS_HASWELL(engine->dev)) {
  715. engine->reg_tables = hsw_blt_reg_tables;
  716. engine->reg_table_count = ARRAY_SIZE(hsw_blt_reg_tables);
  717. } else {
  718. engine->reg_tables = ivb_blt_reg_tables;
  719. engine->reg_table_count = ARRAY_SIZE(ivb_blt_reg_tables);
  720. }
  721. engine->get_cmd_length_mask = gen7_blt_get_cmd_length_mask;
  722. break;
  723. case VECS:
  724. cmd_tables = hsw_vebox_cmds;
  725. cmd_table_count = ARRAY_SIZE(hsw_vebox_cmds);
  726. /* VECS can use the same length_mask function as VCS */
  727. engine->get_cmd_length_mask = gen7_bsd_get_cmd_length_mask;
  728. break;
  729. default:
  730. DRM_ERROR("CMD: cmd_parser_init with unknown ring: %d\n",
  731. engine->id);
  732. BUG();
  733. }
  734. BUG_ON(!validate_cmds_sorted(engine, cmd_tables, cmd_table_count));
  735. BUG_ON(!validate_regs_sorted(engine));
  736. WARN_ON(!hash_empty(engine->cmd_hash));
  737. ret = init_hash_table(engine, cmd_tables, cmd_table_count);
  738. if (ret) {
  739. DRM_ERROR("CMD: cmd_parser_init failed!\n");
  740. fini_hash_table(engine);
  741. return ret;
  742. }
  743. engine->needs_cmd_parser = true;
  744. return 0;
  745. }
  746. /**
  747. * i915_cmd_parser_fini_ring() - clean up cmd parser related fields
  748. * @ring: the ringbuffer to clean up
  749. *
  750. * Releases any resources related to command parsing that may have been
  751. * initialized for the specified ring.
  752. */
  753. void i915_cmd_parser_fini_ring(struct intel_engine_cs *engine)
  754. {
  755. if (!engine->needs_cmd_parser)
  756. return;
  757. fini_hash_table(engine);
  758. }
  759. static const struct drm_i915_cmd_descriptor*
  760. find_cmd_in_table(struct intel_engine_cs *engine,
  761. u32 cmd_header)
  762. {
  763. struct cmd_node *desc_node;
  764. hash_for_each_possible(engine->cmd_hash, desc_node, node,
  765. cmd_header & CMD_HASH_MASK) {
  766. const struct drm_i915_cmd_descriptor *desc = desc_node->desc;
  767. u32 masked_cmd = desc->cmd.mask & cmd_header;
  768. u32 masked_value = desc->cmd.value & desc->cmd.mask;
  769. if (masked_cmd == masked_value)
  770. return desc;
  771. }
  772. return NULL;
  773. }
  774. /*
  775. * Returns a pointer to a descriptor for the command specified by cmd_header.
  776. *
  777. * The caller must supply space for a default descriptor via the default_desc
  778. * parameter. If no descriptor for the specified command exists in the ring's
  779. * command parser tables, this function fills in default_desc based on the
  780. * ring's default length encoding and returns default_desc.
  781. */
  782. static const struct drm_i915_cmd_descriptor*
  783. find_cmd(struct intel_engine_cs *engine,
  784. u32 cmd_header,
  785. struct drm_i915_cmd_descriptor *default_desc)
  786. {
  787. const struct drm_i915_cmd_descriptor *desc;
  788. u32 mask;
  789. desc = find_cmd_in_table(engine, cmd_header);
  790. if (desc)
  791. return desc;
  792. mask = engine->get_cmd_length_mask(cmd_header);
  793. if (!mask)
  794. return NULL;
  795. BUG_ON(!default_desc);
  796. default_desc->flags = CMD_DESC_SKIP;
  797. default_desc->length.mask = mask;
  798. return default_desc;
  799. }
  800. static const struct drm_i915_reg_descriptor *
  801. find_reg(const struct drm_i915_reg_descriptor *table,
  802. int count, u32 addr)
  803. {
  804. int i;
  805. for (i = 0; i < count; i++) {
  806. if (i915_mmio_reg_offset(table[i].addr) == addr)
  807. return &table[i];
  808. }
  809. return NULL;
  810. }
  811. static const struct drm_i915_reg_descriptor *
  812. find_reg_in_tables(const struct drm_i915_reg_table *tables,
  813. int count, bool is_master, u32 addr)
  814. {
  815. int i;
  816. const struct drm_i915_reg_table *table;
  817. const struct drm_i915_reg_descriptor *reg;
  818. for (i = 0; i < count; i++) {
  819. table = &tables[i];
  820. if (!table->master || is_master) {
  821. reg = find_reg(table->regs, table->num_regs,
  822. addr);
  823. if (reg != NULL)
  824. return reg;
  825. }
  826. }
  827. return NULL;
  828. }
  829. static u32 *vmap_batch(struct drm_i915_gem_object *obj,
  830. unsigned start, unsigned len)
  831. {
  832. int i;
  833. void *addr = NULL;
  834. struct sg_page_iter sg_iter;
  835. int first_page = start >> PAGE_SHIFT;
  836. int last_page = (len + start + 4095) >> PAGE_SHIFT;
  837. int npages = last_page - first_page;
  838. struct page **pages;
  839. pages = drm_malloc_ab(npages, sizeof(*pages));
  840. if (pages == NULL) {
  841. DRM_DEBUG_DRIVER("Failed to get space for pages\n");
  842. goto finish;
  843. }
  844. i = 0;
  845. for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, first_page) {
  846. pages[i++] = sg_page_iter_page(&sg_iter);
  847. if (i == npages)
  848. break;
  849. }
  850. addr = vmap(pages, i, 0, PAGE_KERNEL);
  851. if (addr == NULL) {
  852. DRM_DEBUG_DRIVER("Failed to vmap pages\n");
  853. goto finish;
  854. }
  855. finish:
  856. if (pages)
  857. drm_free_large(pages);
  858. return (u32*)addr;
  859. }
  860. /* Returns a vmap'd pointer to dest_obj, which the caller must unmap */
  861. static u32 *copy_batch(struct drm_i915_gem_object *dest_obj,
  862. struct drm_i915_gem_object *src_obj,
  863. u32 batch_start_offset,
  864. u32 batch_len)
  865. {
  866. int needs_clflush = 0;
  867. void *src_base, *src;
  868. void *dst = NULL;
  869. int ret;
  870. if (batch_len > dest_obj->base.size ||
  871. batch_len + batch_start_offset > src_obj->base.size)
  872. return ERR_PTR(-E2BIG);
  873. if (WARN_ON(dest_obj->pages_pin_count == 0))
  874. return ERR_PTR(-ENODEV);
  875. ret = i915_gem_obj_prepare_shmem_read(src_obj, &needs_clflush);
  876. if (ret) {
  877. DRM_DEBUG_DRIVER("CMD: failed to prepare shadow batch\n");
  878. return ERR_PTR(ret);
  879. }
  880. src_base = vmap_batch(src_obj, batch_start_offset, batch_len);
  881. if (!src_base) {
  882. DRM_DEBUG_DRIVER("CMD: Failed to vmap batch\n");
  883. ret = -ENOMEM;
  884. goto unpin_src;
  885. }
  886. ret = i915_gem_object_set_to_cpu_domain(dest_obj, true);
  887. if (ret) {
  888. DRM_DEBUG_DRIVER("CMD: Failed to set shadow batch to CPU\n");
  889. goto unmap_src;
  890. }
  891. dst = vmap_batch(dest_obj, 0, batch_len);
  892. if (!dst) {
  893. DRM_DEBUG_DRIVER("CMD: Failed to vmap shadow batch\n");
  894. ret = -ENOMEM;
  895. goto unmap_src;
  896. }
  897. src = src_base + offset_in_page(batch_start_offset);
  898. if (needs_clflush)
  899. drm_clflush_virt_range(src, batch_len);
  900. memcpy(dst, src, batch_len);
  901. unmap_src:
  902. vunmap(src_base);
  903. unpin_src:
  904. i915_gem_object_unpin_pages(src_obj);
  905. return ret ? ERR_PTR(ret) : dst;
  906. }
  907. /**
  908. * i915_needs_cmd_parser() - should a given ring use software command parsing?
  909. * @ring: the ring in question
  910. *
  911. * Only certain platforms require software batch buffer command parsing, and
  912. * only when enabled via module parameter.
  913. *
  914. * Return: true if the ring requires software command parsing
  915. */
  916. bool i915_needs_cmd_parser(struct intel_engine_cs *engine)
  917. {
  918. if (!engine->needs_cmd_parser)
  919. return false;
  920. if (!USES_PPGTT(engine->dev))
  921. return false;
  922. return (i915.enable_cmd_parser == 1);
  923. }
  924. static bool check_cmd(const struct intel_engine_cs *engine,
  925. const struct drm_i915_cmd_descriptor *desc,
  926. const u32 *cmd, u32 length,
  927. const bool is_master,
  928. bool *oacontrol_set)
  929. {
  930. if (desc->flags & CMD_DESC_REJECT) {
  931. DRM_DEBUG_DRIVER("CMD: Rejected command: 0x%08X\n", *cmd);
  932. return false;
  933. }
  934. if ((desc->flags & CMD_DESC_MASTER) && !is_master) {
  935. DRM_DEBUG_DRIVER("CMD: Rejected master-only command: 0x%08X\n",
  936. *cmd);
  937. return false;
  938. }
  939. if (desc->flags & CMD_DESC_REGISTER) {
  940. /*
  941. * Get the distance between individual register offset
  942. * fields if the command can perform more than one
  943. * access at a time.
  944. */
  945. const u32 step = desc->reg.step ? desc->reg.step : length;
  946. u32 offset;
  947. for (offset = desc->reg.offset; offset < length;
  948. offset += step) {
  949. const u32 reg_addr = cmd[offset] & desc->reg.mask;
  950. const struct drm_i915_reg_descriptor *reg =
  951. find_reg_in_tables(engine->reg_tables,
  952. engine->reg_table_count,
  953. is_master,
  954. reg_addr);
  955. if (!reg) {
  956. DRM_DEBUG_DRIVER("CMD: Rejected register 0x%08X in command: 0x%08X (ring=%d)\n",
  957. reg_addr, *cmd, engine->id);
  958. return false;
  959. }
  960. /*
  961. * OACONTROL requires some special handling for
  962. * writes. We want to make sure that any batch which
  963. * enables OA also disables it before the end of the
  964. * batch. The goal is to prevent one process from
  965. * snooping on the perf data from another process. To do
  966. * that, we need to check the value that will be written
  967. * to the register. Hence, limit OACONTROL writes to
  968. * only MI_LOAD_REGISTER_IMM commands.
  969. */
  970. if (reg_addr == i915_mmio_reg_offset(OACONTROL)) {
  971. if (desc->cmd.value == MI_LOAD_REGISTER_MEM) {
  972. DRM_DEBUG_DRIVER("CMD: Rejected LRM to OACONTROL\n");
  973. return false;
  974. }
  975. if (desc->cmd.value == MI_LOAD_REGISTER_IMM(1))
  976. *oacontrol_set = (cmd[offset + 1] != 0);
  977. }
  978. /*
  979. * Check the value written to the register against the
  980. * allowed mask/value pair given in the whitelist entry.
  981. */
  982. if (reg->mask) {
  983. if (desc->cmd.value == MI_LOAD_REGISTER_MEM) {
  984. DRM_DEBUG_DRIVER("CMD: Rejected LRM to masked register 0x%08X\n",
  985. reg_addr);
  986. return false;
  987. }
  988. if (desc->cmd.value == MI_LOAD_REGISTER_IMM(1) &&
  989. (offset + 2 > length ||
  990. (cmd[offset + 1] & reg->mask) != reg->value)) {
  991. DRM_DEBUG_DRIVER("CMD: Rejected LRI to masked register 0x%08X\n",
  992. reg_addr);
  993. return false;
  994. }
  995. }
  996. }
  997. }
  998. if (desc->flags & CMD_DESC_BITMASK) {
  999. int i;
  1000. for (i = 0; i < MAX_CMD_DESC_BITMASKS; i++) {
  1001. u32 dword;
  1002. if (desc->bits[i].mask == 0)
  1003. break;
  1004. if (desc->bits[i].condition_mask != 0) {
  1005. u32 offset =
  1006. desc->bits[i].condition_offset;
  1007. u32 condition = cmd[offset] &
  1008. desc->bits[i].condition_mask;
  1009. if (condition == 0)
  1010. continue;
  1011. }
  1012. dword = cmd[desc->bits[i].offset] &
  1013. desc->bits[i].mask;
  1014. if (dword != desc->bits[i].expected) {
  1015. DRM_DEBUG_DRIVER("CMD: Rejected command 0x%08X for bitmask 0x%08X (exp=0x%08X act=0x%08X) (ring=%d)\n",
  1016. *cmd,
  1017. desc->bits[i].mask,
  1018. desc->bits[i].expected,
  1019. dword, engine->id);
  1020. return false;
  1021. }
  1022. }
  1023. }
  1024. return true;
  1025. }
  1026. #define LENGTH_BIAS 2
  1027. /**
  1028. * i915_parse_cmds() - parse a submitted batch buffer for privilege violations
  1029. * @ring: the ring on which the batch is to execute
  1030. * @batch_obj: the batch buffer in question
  1031. * @shadow_batch_obj: copy of the batch buffer in question
  1032. * @batch_start_offset: byte offset in the batch at which execution starts
  1033. * @batch_len: length of the commands in batch_obj
  1034. * @is_master: is the submitting process the drm master?
  1035. *
  1036. * Parses the specified batch buffer looking for privilege violations as
  1037. * described in the overview.
  1038. *
  1039. * Return: non-zero if the parser finds violations or otherwise fails; -EACCES
  1040. * if the batch appears legal but should use hardware parsing
  1041. */
  1042. int i915_parse_cmds(struct intel_engine_cs *engine,
  1043. struct drm_i915_gem_object *batch_obj,
  1044. struct drm_i915_gem_object *shadow_batch_obj,
  1045. u32 batch_start_offset,
  1046. u32 batch_len,
  1047. bool is_master)
  1048. {
  1049. u32 *cmd, *batch_base, *batch_end;
  1050. struct drm_i915_cmd_descriptor default_desc = { 0 };
  1051. bool oacontrol_set = false; /* OACONTROL tracking. See check_cmd() */
  1052. int ret = 0;
  1053. batch_base = copy_batch(shadow_batch_obj, batch_obj,
  1054. batch_start_offset, batch_len);
  1055. if (IS_ERR(batch_base)) {
  1056. DRM_DEBUG_DRIVER("CMD: Failed to copy batch\n");
  1057. return PTR_ERR(batch_base);
  1058. }
  1059. /*
  1060. * We use the batch length as size because the shadow object is as
  1061. * large or larger and copy_batch() will write MI_NOPs to the extra
  1062. * space. Parsing should be faster in some cases this way.
  1063. */
  1064. batch_end = batch_base + (batch_len / sizeof(*batch_end));
  1065. cmd = batch_base;
  1066. while (cmd < batch_end) {
  1067. const struct drm_i915_cmd_descriptor *desc;
  1068. u32 length;
  1069. if (*cmd == MI_BATCH_BUFFER_END)
  1070. break;
  1071. desc = find_cmd(engine, *cmd, &default_desc);
  1072. if (!desc) {
  1073. DRM_DEBUG_DRIVER("CMD: Unrecognized command: 0x%08X\n",
  1074. *cmd);
  1075. ret = -EINVAL;
  1076. break;
  1077. }
  1078. /*
  1079. * If the batch buffer contains a chained batch, return an
  1080. * error that tells the caller to abort and dispatch the
  1081. * workload as a non-secure batch.
  1082. */
  1083. if (desc->cmd.value == MI_BATCH_BUFFER_START) {
  1084. ret = -EACCES;
  1085. break;
  1086. }
  1087. if (desc->flags & CMD_DESC_FIXED)
  1088. length = desc->length.fixed;
  1089. else
  1090. length = ((*cmd & desc->length.mask) + LENGTH_BIAS);
  1091. if ((batch_end - cmd) < length) {
  1092. DRM_DEBUG_DRIVER("CMD: Command length exceeds batch length: 0x%08X length=%u batchlen=%td\n",
  1093. *cmd,
  1094. length,
  1095. batch_end - cmd);
  1096. ret = -EINVAL;
  1097. break;
  1098. }
  1099. if (!check_cmd(engine, desc, cmd, length, is_master,
  1100. &oacontrol_set)) {
  1101. ret = -EINVAL;
  1102. break;
  1103. }
  1104. cmd += length;
  1105. }
  1106. if (oacontrol_set) {
  1107. DRM_DEBUG_DRIVER("CMD: batch set OACONTROL but did not clear it\n");
  1108. ret = -EINVAL;
  1109. }
  1110. if (cmd >= batch_end) {
  1111. DRM_DEBUG_DRIVER("CMD: Got to the end of the buffer w/o a BBE cmd!\n");
  1112. ret = -EINVAL;
  1113. }
  1114. vunmap(batch_base);
  1115. return ret;
  1116. }
  1117. /**
  1118. * i915_cmd_parser_get_version() - get the cmd parser version number
  1119. *
  1120. * The cmd parser maintains a simple increasing integer version number suitable
  1121. * for passing to userspace clients to determine what operations are permitted.
  1122. *
  1123. * Return: the current version number of the cmd parser
  1124. */
  1125. int i915_cmd_parser_get_version(void)
  1126. {
  1127. /*
  1128. * Command parser version history
  1129. *
  1130. * 1. Initial version. Checks batches and reports violations, but leaves
  1131. * hardware parsing enabled (so does not allow new use cases).
  1132. * 2. Allow access to the MI_PREDICATE_SRC0 and
  1133. * MI_PREDICATE_SRC1 registers.
  1134. * 3. Allow access to the GPGPU_THREADS_DISPATCHED register.
  1135. * 4. L3 atomic chicken bits of HSW_SCRATCH1 and HSW_ROW_CHICKEN3.
  1136. * 5. GPGPU dispatch compute indirect registers.
  1137. * 6. TIMESTAMP register and Haswell CS GPR registers
  1138. */
  1139. return 6;
  1140. }