sdma_v3_0.c 47 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690
  1. /*
  2. * Copyright 2014 Advanced Micro Devices, Inc.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice shall be included in
  12. * all copies or substantial portions of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  17. * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20. * OTHER DEALINGS IN THE SOFTWARE.
  21. *
  22. * Authors: Alex Deucher
  23. */
  24. #include <linux/firmware.h>
  25. #include <drm/drmP.h>
  26. #include "amdgpu.h"
  27. #include "amdgpu_ucode.h"
  28. #include "amdgpu_trace.h"
  29. #include "vi.h"
  30. #include "vid.h"
  31. #include "oss/oss_3_0_d.h"
  32. #include "oss/oss_3_0_sh_mask.h"
  33. #include "gmc/gmc_8_1_d.h"
  34. #include "gmc/gmc_8_1_sh_mask.h"
  35. #include "gca/gfx_8_0_d.h"
  36. #include "gca/gfx_8_0_enum.h"
  37. #include "gca/gfx_8_0_sh_mask.h"
  38. #include "bif/bif_5_0_d.h"
  39. #include "bif/bif_5_0_sh_mask.h"
  40. #include "tonga_sdma_pkt_open.h"
  41. static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev);
  42. static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev);
  43. static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev);
  44. static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev);
  45. MODULE_FIRMWARE("amdgpu/tonga_sdma.bin");
  46. MODULE_FIRMWARE("amdgpu/tonga_sdma1.bin");
  47. MODULE_FIRMWARE("amdgpu/carrizo_sdma.bin");
  48. MODULE_FIRMWARE("amdgpu/carrizo_sdma1.bin");
  49. MODULE_FIRMWARE("amdgpu/fiji_sdma.bin");
  50. MODULE_FIRMWARE("amdgpu/fiji_sdma1.bin");
  51. MODULE_FIRMWARE("amdgpu/stoney_sdma.bin");
  52. MODULE_FIRMWARE("amdgpu/polaris10_sdma.bin");
  53. MODULE_FIRMWARE("amdgpu/polaris10_sdma1.bin");
  54. MODULE_FIRMWARE("amdgpu/polaris11_sdma.bin");
  55. MODULE_FIRMWARE("amdgpu/polaris11_sdma1.bin");
  56. static const u32 sdma_offsets[SDMA_MAX_INSTANCE] =
  57. {
  58. SDMA0_REGISTER_OFFSET,
  59. SDMA1_REGISTER_OFFSET
  60. };
  61. static const u32 golden_settings_tonga_a11[] =
  62. {
  63. mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  64. mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
  65. mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  66. mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  67. mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  68. mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
  69. mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
  70. mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  71. mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  72. mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  73. };
  74. static const u32 tonga_mgcg_cgcg_init[] =
  75. {
  76. mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
  77. mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
  78. };
  79. static const u32 golden_settings_fiji_a10[] =
  80. {
  81. mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  82. mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  83. mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  84. mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  85. mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
  86. mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  87. mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  88. mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  89. };
  90. static const u32 fiji_mgcg_cgcg_init[] =
  91. {
  92. mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
  93. mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
  94. };
  95. static const u32 golden_settings_polaris11_a11[] =
  96. {
  97. mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  98. mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
  99. mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  100. mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  101. mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  102. mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
  103. mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
  104. mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  105. mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  106. mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  107. };
  108. static const u32 golden_settings_polaris10_a11[] =
  109. {
  110. mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  111. mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
  112. mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  113. mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  114. mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  115. mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
  116. mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
  117. mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  118. mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  119. mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  120. };
  121. static const u32 cz_golden_settings_a11[] =
  122. {
  123. mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  124. mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
  125. mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
  126. mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
  127. mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
  128. mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
  129. mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
  130. mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
  131. mmSDMA1_GFX_IB_CNTL, 0x00000100, 0x00000100,
  132. mmSDMA1_POWER_CNTL, 0x00000800, 0x0003c800,
  133. mmSDMA1_RLC0_IB_CNTL, 0x00000100, 0x00000100,
  134. mmSDMA1_RLC1_IB_CNTL, 0x00000100, 0x00000100,
  135. };
  136. static const u32 cz_mgcg_cgcg_init[] =
  137. {
  138. mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
  139. mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
  140. };
  141. static const u32 stoney_golden_settings_a11[] =
  142. {
  143. mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
  144. mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
  145. mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
  146. mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
  147. };
  148. static const u32 stoney_mgcg_cgcg_init[] =
  149. {
  150. mmSDMA0_CLK_CTRL, 0xffffffff, 0x00000100,
  151. };
  152. /*
  153. * sDMA - System DMA
  154. * Starting with CIK, the GPU has new asynchronous
  155. * DMA engines. These engines are used for compute
  156. * and gfx. There are two DMA engines (SDMA0, SDMA1)
  157. * and each one supports 1 ring buffer used for gfx
  158. * and 2 queues used for compute.
  159. *
  160. * The programming model is very similar to the CP
  161. * (ring buffer, IBs, etc.), but sDMA has it's own
  162. * packet format that is different from the PM4 format
  163. * used by the CP. sDMA supports copying data, writing
  164. * embedded data, solid fills, and a number of other
  165. * things. It also has support for tiling/detiling of
  166. * buffers.
  167. */
  168. static void sdma_v3_0_init_golden_registers(struct amdgpu_device *adev)
  169. {
  170. switch (adev->asic_type) {
  171. case CHIP_FIJI:
  172. amdgpu_program_register_sequence(adev,
  173. fiji_mgcg_cgcg_init,
  174. (const u32)ARRAY_SIZE(fiji_mgcg_cgcg_init));
  175. amdgpu_program_register_sequence(adev,
  176. golden_settings_fiji_a10,
  177. (const u32)ARRAY_SIZE(golden_settings_fiji_a10));
  178. break;
  179. case CHIP_TONGA:
  180. amdgpu_program_register_sequence(adev,
  181. tonga_mgcg_cgcg_init,
  182. (const u32)ARRAY_SIZE(tonga_mgcg_cgcg_init));
  183. amdgpu_program_register_sequence(adev,
  184. golden_settings_tonga_a11,
  185. (const u32)ARRAY_SIZE(golden_settings_tonga_a11));
  186. break;
  187. case CHIP_POLARIS11:
  188. amdgpu_program_register_sequence(adev,
  189. golden_settings_polaris11_a11,
  190. (const u32)ARRAY_SIZE(golden_settings_polaris11_a11));
  191. break;
  192. case CHIP_POLARIS10:
  193. amdgpu_program_register_sequence(adev,
  194. golden_settings_polaris10_a11,
  195. (const u32)ARRAY_SIZE(golden_settings_polaris10_a11));
  196. break;
  197. case CHIP_CARRIZO:
  198. amdgpu_program_register_sequence(adev,
  199. cz_mgcg_cgcg_init,
  200. (const u32)ARRAY_SIZE(cz_mgcg_cgcg_init));
  201. amdgpu_program_register_sequence(adev,
  202. cz_golden_settings_a11,
  203. (const u32)ARRAY_SIZE(cz_golden_settings_a11));
  204. break;
  205. case CHIP_STONEY:
  206. amdgpu_program_register_sequence(adev,
  207. stoney_mgcg_cgcg_init,
  208. (const u32)ARRAY_SIZE(stoney_mgcg_cgcg_init));
  209. amdgpu_program_register_sequence(adev,
  210. stoney_golden_settings_a11,
  211. (const u32)ARRAY_SIZE(stoney_golden_settings_a11));
  212. break;
  213. default:
  214. break;
  215. }
  216. }
  217. /**
  218. * sdma_v3_0_init_microcode - load ucode images from disk
  219. *
  220. * @adev: amdgpu_device pointer
  221. *
  222. * Use the firmware interface to load the ucode images into
  223. * the driver (not loaded into hw).
  224. * Returns 0 on success, error on failure.
  225. */
  226. static int sdma_v3_0_init_microcode(struct amdgpu_device *adev)
  227. {
  228. const char *chip_name;
  229. char fw_name[30];
  230. int err = 0, i;
  231. struct amdgpu_firmware_info *info = NULL;
  232. const struct common_firmware_header *header = NULL;
  233. const struct sdma_firmware_header_v1_0 *hdr;
  234. DRM_DEBUG("\n");
  235. switch (adev->asic_type) {
  236. case CHIP_TONGA:
  237. chip_name = "tonga";
  238. break;
  239. case CHIP_FIJI:
  240. chip_name = "fiji";
  241. break;
  242. case CHIP_POLARIS11:
  243. chip_name = "polaris11";
  244. break;
  245. case CHIP_POLARIS10:
  246. chip_name = "polaris10";
  247. break;
  248. case CHIP_CARRIZO:
  249. chip_name = "carrizo";
  250. break;
  251. case CHIP_STONEY:
  252. chip_name = "stoney";
  253. break;
  254. default: BUG();
  255. }
  256. for (i = 0; i < adev->sdma.num_instances; i++) {
  257. if (i == 0)
  258. snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
  259. else
  260. snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name);
  261. err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
  262. if (err)
  263. goto out;
  264. err = amdgpu_ucode_validate(adev->sdma.instance[i].fw);
  265. if (err)
  266. goto out;
  267. hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
  268. adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
  269. adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version);
  270. if (adev->sdma.instance[i].feature_version >= 20)
  271. adev->sdma.instance[i].burst_nop = true;
  272. if (adev->firmware.smu_load) {
  273. info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
  274. info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
  275. info->fw = adev->sdma.instance[i].fw;
  276. header = (const struct common_firmware_header *)info->fw->data;
  277. adev->firmware.fw_size +=
  278. ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
  279. }
  280. }
  281. out:
  282. if (err) {
  283. printk(KERN_ERR
  284. "sdma_v3_0: Failed to load firmware \"%s\"\n",
  285. fw_name);
  286. for (i = 0; i < adev->sdma.num_instances; i++) {
  287. release_firmware(adev->sdma.instance[i].fw);
  288. adev->sdma.instance[i].fw = NULL;
  289. }
  290. }
  291. return err;
  292. }
  293. /**
  294. * sdma_v3_0_ring_get_rptr - get the current read pointer
  295. *
  296. * @ring: amdgpu ring pointer
  297. *
  298. * Get the current rptr from the hardware (VI+).
  299. */
  300. static uint32_t sdma_v3_0_ring_get_rptr(struct amdgpu_ring *ring)
  301. {
  302. u32 rptr;
  303. /* XXX check if swapping is necessary on BE */
  304. rptr = ring->adev->wb.wb[ring->rptr_offs] >> 2;
  305. return rptr;
  306. }
  307. /**
  308. * sdma_v3_0_ring_get_wptr - get the current write pointer
  309. *
  310. * @ring: amdgpu ring pointer
  311. *
  312. * Get the current wptr from the hardware (VI+).
  313. */
  314. static uint32_t sdma_v3_0_ring_get_wptr(struct amdgpu_ring *ring)
  315. {
  316. struct amdgpu_device *adev = ring->adev;
  317. u32 wptr;
  318. if (ring->use_doorbell) {
  319. /* XXX check if swapping is necessary on BE */
  320. wptr = ring->adev->wb.wb[ring->wptr_offs] >> 2;
  321. } else {
  322. int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
  323. wptr = RREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me]) >> 2;
  324. }
  325. return wptr;
  326. }
  327. /**
  328. * sdma_v3_0_ring_set_wptr - commit the write pointer
  329. *
  330. * @ring: amdgpu ring pointer
  331. *
  332. * Write the wptr back to the hardware (VI+).
  333. */
  334. static void sdma_v3_0_ring_set_wptr(struct amdgpu_ring *ring)
  335. {
  336. struct amdgpu_device *adev = ring->adev;
  337. if (ring->use_doorbell) {
  338. /* XXX check if swapping is necessary on BE */
  339. adev->wb.wb[ring->wptr_offs] = ring->wptr << 2;
  340. WDOORBELL32(ring->doorbell_index, ring->wptr << 2);
  341. } else {
  342. int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
  343. WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me], ring->wptr << 2);
  344. }
  345. }
  346. static void sdma_v3_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
  347. {
  348. struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
  349. int i;
  350. for (i = 0; i < count; i++)
  351. if (sdma && sdma->burst_nop && (i == 0))
  352. amdgpu_ring_write(ring, ring->nop |
  353. SDMA_PKT_NOP_HEADER_COUNT(count - 1));
  354. else
  355. amdgpu_ring_write(ring, ring->nop);
  356. }
  357. /**
  358. * sdma_v3_0_ring_emit_ib - Schedule an IB on the DMA engine
  359. *
  360. * @ring: amdgpu ring pointer
  361. * @ib: IB object to schedule
  362. *
  363. * Schedule an IB in the DMA ring (VI).
  364. */
  365. static void sdma_v3_0_ring_emit_ib(struct amdgpu_ring *ring,
  366. struct amdgpu_ib *ib,
  367. unsigned vm_id, bool ctx_switch)
  368. {
  369. u32 vmid = vm_id & 0xf;
  370. u32 next_rptr = ring->wptr + 5;
  371. while ((next_rptr & 7) != 2)
  372. next_rptr++;
  373. next_rptr += 6;
  374. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  375. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
  376. amdgpu_ring_write(ring, lower_32_bits(ring->next_rptr_gpu_addr) & 0xfffffffc);
  377. amdgpu_ring_write(ring, upper_32_bits(ring->next_rptr_gpu_addr));
  378. amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1));
  379. amdgpu_ring_write(ring, next_rptr);
  380. /* IB packet must end on a 8 DW boundary */
  381. sdma_v3_0_ring_insert_nop(ring, (10 - (ring->wptr & 7)) % 8);
  382. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
  383. SDMA_PKT_INDIRECT_HEADER_VMID(vmid));
  384. /* base must be 32 byte aligned */
  385. amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
  386. amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
  387. amdgpu_ring_write(ring, ib->length_dw);
  388. amdgpu_ring_write(ring, 0);
  389. amdgpu_ring_write(ring, 0);
  390. }
  391. /**
  392. * sdma_v3_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
  393. *
  394. * @ring: amdgpu ring pointer
  395. *
  396. * Emit an hdp flush packet on the requested DMA ring.
  397. */
  398. static void sdma_v3_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
  399. {
  400. u32 ref_and_mask = 0;
  401. if (ring == &ring->adev->sdma.instance[0].ring)
  402. ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA0, 1);
  403. else
  404. ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA1, 1);
  405. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  406. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) |
  407. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
  408. amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_DONE << 2);
  409. amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_REQ << 2);
  410. amdgpu_ring_write(ring, ref_and_mask); /* reference */
  411. amdgpu_ring_write(ring, ref_and_mask); /* mask */
  412. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  413. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
  414. }
  415. static void sdma_v3_0_ring_emit_hdp_invalidate(struct amdgpu_ring *ring)
  416. {
  417. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  418. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  419. amdgpu_ring_write(ring, mmHDP_DEBUG0);
  420. amdgpu_ring_write(ring, 1);
  421. }
  422. /**
  423. * sdma_v3_0_ring_emit_fence - emit a fence on the DMA ring
  424. *
  425. * @ring: amdgpu ring pointer
  426. * @fence: amdgpu fence object
  427. *
  428. * Add a DMA fence packet to the ring to write
  429. * the fence seq number and DMA trap packet to generate
  430. * an interrupt if needed (VI).
  431. */
  432. static void sdma_v3_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
  433. unsigned flags)
  434. {
  435. bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
  436. /* write the fence */
  437. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
  438. amdgpu_ring_write(ring, lower_32_bits(addr));
  439. amdgpu_ring_write(ring, upper_32_bits(addr));
  440. amdgpu_ring_write(ring, lower_32_bits(seq));
  441. /* optionally write high bits as well */
  442. if (write64bit) {
  443. addr += 4;
  444. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
  445. amdgpu_ring_write(ring, lower_32_bits(addr));
  446. amdgpu_ring_write(ring, upper_32_bits(addr));
  447. amdgpu_ring_write(ring, upper_32_bits(seq));
  448. }
  449. /* generate an interrupt */
  450. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
  451. amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
  452. }
  453. unsigned init_cond_exec(struct amdgpu_ring *ring)
  454. {
  455. unsigned ret;
  456. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_COND_EXE));
  457. amdgpu_ring_write(ring, lower_32_bits(ring->cond_exe_gpu_addr));
  458. amdgpu_ring_write(ring, upper_32_bits(ring->cond_exe_gpu_addr));
  459. amdgpu_ring_write(ring, 1);
  460. ret = ring->wptr;/* this is the offset we need patch later */
  461. amdgpu_ring_write(ring, 0x55aa55aa);/* insert dummy here and patch it later */
  462. return ret;
  463. }
  464. void patch_cond_exec(struct amdgpu_ring *ring, unsigned offset)
  465. {
  466. unsigned cur;
  467. BUG_ON(ring->ring[offset] != 0x55aa55aa);
  468. cur = ring->wptr - 1;
  469. if (likely(cur > offset))
  470. ring->ring[offset] = cur - offset;
  471. else
  472. ring->ring[offset] = (ring->ring_size>>2) - offset + cur;
  473. }
  474. /**
  475. * sdma_v3_0_gfx_stop - stop the gfx async dma engines
  476. *
  477. * @adev: amdgpu_device pointer
  478. *
  479. * Stop the gfx async dma ring buffers (VI).
  480. */
  481. static void sdma_v3_0_gfx_stop(struct amdgpu_device *adev)
  482. {
  483. struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring;
  484. struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring;
  485. u32 rb_cntl, ib_cntl;
  486. int i;
  487. if ((adev->mman.buffer_funcs_ring == sdma0) ||
  488. (adev->mman.buffer_funcs_ring == sdma1))
  489. amdgpu_ttm_set_active_vram_size(adev, adev->mc.visible_vram_size);
  490. for (i = 0; i < adev->sdma.num_instances; i++) {
  491. rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
  492. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
  493. WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
  494. ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
  495. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
  496. WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
  497. }
  498. sdma0->ready = false;
  499. sdma1->ready = false;
  500. }
  501. /**
  502. * sdma_v3_0_rlc_stop - stop the compute async dma engines
  503. *
  504. * @adev: amdgpu_device pointer
  505. *
  506. * Stop the compute async dma queues (VI).
  507. */
  508. static void sdma_v3_0_rlc_stop(struct amdgpu_device *adev)
  509. {
  510. /* XXX todo */
  511. }
  512. /**
  513. * sdma_v3_0_ctx_switch_enable - stop the async dma engines context switch
  514. *
  515. * @adev: amdgpu_device pointer
  516. * @enable: enable/disable the DMA MEs context switch.
  517. *
  518. * Halt or unhalt the async dma engines context switch (VI).
  519. */
  520. static void sdma_v3_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
  521. {
  522. u32 f32_cntl;
  523. int i;
  524. for (i = 0; i < adev->sdma.num_instances; i++) {
  525. f32_cntl = RREG32(mmSDMA0_CNTL + sdma_offsets[i]);
  526. if (enable)
  527. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
  528. AUTO_CTXSW_ENABLE, 1);
  529. else
  530. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
  531. AUTO_CTXSW_ENABLE, 0);
  532. WREG32(mmSDMA0_CNTL + sdma_offsets[i], f32_cntl);
  533. }
  534. }
  535. /**
  536. * sdma_v3_0_enable - stop the async dma engines
  537. *
  538. * @adev: amdgpu_device pointer
  539. * @enable: enable/disable the DMA MEs.
  540. *
  541. * Halt or unhalt the async dma engines (VI).
  542. */
  543. static void sdma_v3_0_enable(struct amdgpu_device *adev, bool enable)
  544. {
  545. u32 f32_cntl;
  546. int i;
  547. if (enable == false) {
  548. sdma_v3_0_gfx_stop(adev);
  549. sdma_v3_0_rlc_stop(adev);
  550. }
  551. for (i = 0; i < adev->sdma.num_instances; i++) {
  552. f32_cntl = RREG32(mmSDMA0_F32_CNTL + sdma_offsets[i]);
  553. if (enable)
  554. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 0);
  555. else
  556. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 1);
  557. WREG32(mmSDMA0_F32_CNTL + sdma_offsets[i], f32_cntl);
  558. }
  559. }
  560. /**
  561. * sdma_v3_0_gfx_resume - setup and start the async dma engines
  562. *
  563. * @adev: amdgpu_device pointer
  564. *
  565. * Set up the gfx DMA ring buffers and enable them (VI).
  566. * Returns 0 for success, error for failure.
  567. */
  568. static int sdma_v3_0_gfx_resume(struct amdgpu_device *adev)
  569. {
  570. struct amdgpu_ring *ring;
  571. u32 rb_cntl, ib_cntl;
  572. u32 rb_bufsz;
  573. u32 wb_offset;
  574. u32 doorbell;
  575. int i, j, r;
  576. for (i = 0; i < adev->sdma.num_instances; i++) {
  577. ring = &adev->sdma.instance[i].ring;
  578. wb_offset = (ring->rptr_offs * 4);
  579. mutex_lock(&adev->srbm_mutex);
  580. for (j = 0; j < 16; j++) {
  581. vi_srbm_select(adev, 0, 0, 0, j);
  582. /* SDMA GFX */
  583. WREG32(mmSDMA0_GFX_VIRTUAL_ADDR + sdma_offsets[i], 0);
  584. WREG32(mmSDMA0_GFX_APE1_CNTL + sdma_offsets[i], 0);
  585. }
  586. vi_srbm_select(adev, 0, 0, 0, 0);
  587. mutex_unlock(&adev->srbm_mutex);
  588. WREG32(mmSDMA0_TILING_CONFIG + sdma_offsets[i],
  589. adev->gfx.config.gb_addr_config & 0x70);
  590. WREG32(mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i], 0);
  591. /* Set ring buffer size in dwords */
  592. rb_bufsz = order_base_2(ring->ring_size / 4);
  593. rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
  594. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
  595. #ifdef __BIG_ENDIAN
  596. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
  597. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
  598. RPTR_WRITEBACK_SWAP_ENABLE, 1);
  599. #endif
  600. WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
  601. /* Initialize the ring buffer's read and write pointers */
  602. WREG32(mmSDMA0_GFX_RB_RPTR + sdma_offsets[i], 0);
  603. WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], 0);
  604. /* set the wb address whether it's enabled or not */
  605. WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_HI + sdma_offsets[i],
  606. upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
  607. WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_LO + sdma_offsets[i],
  608. lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
  609. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1);
  610. WREG32(mmSDMA0_GFX_RB_BASE + sdma_offsets[i], ring->gpu_addr >> 8);
  611. WREG32(mmSDMA0_GFX_RB_BASE_HI + sdma_offsets[i], ring->gpu_addr >> 40);
  612. ring->wptr = 0;
  613. WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], ring->wptr << 2);
  614. doorbell = RREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i]);
  615. if (ring->use_doorbell) {
  616. doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL,
  617. OFFSET, ring->doorbell_index);
  618. doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1);
  619. } else {
  620. doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 0);
  621. }
  622. WREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i], doorbell);
  623. /* enable DMA RB */
  624. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
  625. WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
  626. ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
  627. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
  628. #ifdef __BIG_ENDIAN
  629. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
  630. #endif
  631. /* enable DMA IBs */
  632. WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
  633. ring->ready = true;
  634. r = amdgpu_ring_test_ring(ring);
  635. if (r) {
  636. ring->ready = false;
  637. return r;
  638. }
  639. if (adev->mman.buffer_funcs_ring == ring)
  640. amdgpu_ttm_set_active_vram_size(adev, adev->mc.real_vram_size);
  641. }
  642. return 0;
  643. }
  644. /**
  645. * sdma_v3_0_rlc_resume - setup and start the async dma engines
  646. *
  647. * @adev: amdgpu_device pointer
  648. *
  649. * Set up the compute DMA queues and enable them (VI).
  650. * Returns 0 for success, error for failure.
  651. */
  652. static int sdma_v3_0_rlc_resume(struct amdgpu_device *adev)
  653. {
  654. /* XXX todo */
  655. return 0;
  656. }
  657. /**
  658. * sdma_v3_0_load_microcode - load the sDMA ME ucode
  659. *
  660. * @adev: amdgpu_device pointer
  661. *
  662. * Loads the sDMA0/1 ucode.
  663. * Returns 0 for success, -EINVAL if the ucode is not available.
  664. */
  665. static int sdma_v3_0_load_microcode(struct amdgpu_device *adev)
  666. {
  667. const struct sdma_firmware_header_v1_0 *hdr;
  668. const __le32 *fw_data;
  669. u32 fw_size;
  670. int i, j;
  671. /* halt the MEs */
  672. sdma_v3_0_enable(adev, false);
  673. for (i = 0; i < adev->sdma.num_instances; i++) {
  674. if (!adev->sdma.instance[i].fw)
  675. return -EINVAL;
  676. hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
  677. amdgpu_ucode_print_sdma_hdr(&hdr->header);
  678. fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
  679. fw_data = (const __le32 *)
  680. (adev->sdma.instance[i].fw->data +
  681. le32_to_cpu(hdr->header.ucode_array_offset_bytes));
  682. WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], 0);
  683. for (j = 0; j < fw_size; j++)
  684. WREG32(mmSDMA0_UCODE_DATA + sdma_offsets[i], le32_to_cpup(fw_data++));
  685. WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], adev->sdma.instance[i].fw_version);
  686. }
  687. return 0;
  688. }
  689. /**
  690. * sdma_v3_0_start - setup and start the async dma engines
  691. *
  692. * @adev: amdgpu_device pointer
  693. *
  694. * Set up the DMA engines and enable them (VI).
  695. * Returns 0 for success, error for failure.
  696. */
  697. static int sdma_v3_0_start(struct amdgpu_device *adev)
  698. {
  699. int r, i;
  700. if (!adev->pp_enabled) {
  701. if (!adev->firmware.smu_load) {
  702. r = sdma_v3_0_load_microcode(adev);
  703. if (r)
  704. return r;
  705. } else {
  706. for (i = 0; i < adev->sdma.num_instances; i++) {
  707. r = adev->smu.smumgr_funcs->check_fw_load_finish(adev,
  708. (i == 0) ?
  709. AMDGPU_UCODE_ID_SDMA0 :
  710. AMDGPU_UCODE_ID_SDMA1);
  711. if (r)
  712. return -EINVAL;
  713. }
  714. }
  715. }
  716. /* unhalt the MEs */
  717. sdma_v3_0_enable(adev, true);
  718. /* enable sdma ring preemption */
  719. sdma_v3_0_ctx_switch_enable(adev, true);
  720. /* start the gfx rings and rlc compute queues */
  721. r = sdma_v3_0_gfx_resume(adev);
  722. if (r)
  723. return r;
  724. r = sdma_v3_0_rlc_resume(adev);
  725. if (r)
  726. return r;
  727. return 0;
  728. }
  729. /**
  730. * sdma_v3_0_ring_test_ring - simple async dma engine test
  731. *
  732. * @ring: amdgpu_ring structure holding ring information
  733. *
  734. * Test the DMA engine by writing using it to write an
  735. * value to memory. (VI).
  736. * Returns 0 for success, error for failure.
  737. */
  738. static int sdma_v3_0_ring_test_ring(struct amdgpu_ring *ring)
  739. {
  740. struct amdgpu_device *adev = ring->adev;
  741. unsigned i;
  742. unsigned index;
  743. int r;
  744. u32 tmp;
  745. u64 gpu_addr;
  746. r = amdgpu_wb_get(adev, &index);
  747. if (r) {
  748. dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
  749. return r;
  750. }
  751. gpu_addr = adev->wb.gpu_addr + (index * 4);
  752. tmp = 0xCAFEDEAD;
  753. adev->wb.wb[index] = cpu_to_le32(tmp);
  754. r = amdgpu_ring_alloc(ring, 5);
  755. if (r) {
  756. DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r);
  757. amdgpu_wb_free(adev, index);
  758. return r;
  759. }
  760. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  761. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
  762. amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
  763. amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
  764. amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1));
  765. amdgpu_ring_write(ring, 0xDEADBEEF);
  766. amdgpu_ring_commit(ring);
  767. for (i = 0; i < adev->usec_timeout; i++) {
  768. tmp = le32_to_cpu(adev->wb.wb[index]);
  769. if (tmp == 0xDEADBEEF)
  770. break;
  771. DRM_UDELAY(1);
  772. }
  773. if (i < adev->usec_timeout) {
  774. DRM_INFO("ring test on %d succeeded in %d usecs\n", ring->idx, i);
  775. } else {
  776. DRM_ERROR("amdgpu: ring %d test failed (0x%08X)\n",
  777. ring->idx, tmp);
  778. r = -EINVAL;
  779. }
  780. amdgpu_wb_free(adev, index);
  781. return r;
  782. }
  783. /**
  784. * sdma_v3_0_ring_test_ib - test an IB on the DMA engine
  785. *
  786. * @ring: amdgpu_ring structure holding ring information
  787. *
  788. * Test a simple IB in the DMA ring (VI).
  789. * Returns 0 on success, error on failure.
  790. */
  791. static int sdma_v3_0_ring_test_ib(struct amdgpu_ring *ring)
  792. {
  793. struct amdgpu_device *adev = ring->adev;
  794. struct amdgpu_ib ib;
  795. struct fence *f = NULL;
  796. unsigned i;
  797. unsigned index;
  798. int r;
  799. u32 tmp = 0;
  800. u64 gpu_addr;
  801. r = amdgpu_wb_get(adev, &index);
  802. if (r) {
  803. dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
  804. return r;
  805. }
  806. gpu_addr = adev->wb.gpu_addr + (index * 4);
  807. tmp = 0xCAFEDEAD;
  808. adev->wb.wb[index] = cpu_to_le32(tmp);
  809. memset(&ib, 0, sizeof(ib));
  810. r = amdgpu_ib_get(adev, NULL, 256, &ib);
  811. if (r) {
  812. DRM_ERROR("amdgpu: failed to get ib (%d).\n", r);
  813. goto err0;
  814. }
  815. ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  816. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
  817. ib.ptr[1] = lower_32_bits(gpu_addr);
  818. ib.ptr[2] = upper_32_bits(gpu_addr);
  819. ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1);
  820. ib.ptr[4] = 0xDEADBEEF;
  821. ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  822. ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  823. ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  824. ib.length_dw = 8;
  825. r = amdgpu_ib_schedule(ring, 1, &ib, NULL, NULL, &f);
  826. if (r)
  827. goto err1;
  828. r = fence_wait(f, false);
  829. if (r) {
  830. DRM_ERROR("amdgpu: fence wait failed (%d).\n", r);
  831. goto err1;
  832. }
  833. for (i = 0; i < adev->usec_timeout; i++) {
  834. tmp = le32_to_cpu(adev->wb.wb[index]);
  835. if (tmp == 0xDEADBEEF)
  836. break;
  837. DRM_UDELAY(1);
  838. }
  839. if (i < adev->usec_timeout) {
  840. DRM_INFO("ib test on ring %d succeeded in %u usecs\n",
  841. ring->idx, i);
  842. goto err1;
  843. } else {
  844. DRM_ERROR("amdgpu: ib test failed (0x%08X)\n", tmp);
  845. r = -EINVAL;
  846. }
  847. err1:
  848. fence_put(f);
  849. amdgpu_ib_free(adev, &ib, NULL);
  850. fence_put(f);
  851. err0:
  852. amdgpu_wb_free(adev, index);
  853. return r;
  854. }
  855. /**
  856. * sdma_v3_0_vm_copy_pte - update PTEs by copying them from the GART
  857. *
  858. * @ib: indirect buffer to fill with commands
  859. * @pe: addr of the page entry
  860. * @src: src addr to copy from
  861. * @count: number of page entries to update
  862. *
  863. * Update PTEs by copying them from the GART using sDMA (CIK).
  864. */
  865. static void sdma_v3_0_vm_copy_pte(struct amdgpu_ib *ib,
  866. uint64_t pe, uint64_t src,
  867. unsigned count)
  868. {
  869. while (count) {
  870. unsigned bytes = count * 8;
  871. if (bytes > 0x1FFFF8)
  872. bytes = 0x1FFFF8;
  873. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
  874. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
  875. ib->ptr[ib->length_dw++] = bytes;
  876. ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
  877. ib->ptr[ib->length_dw++] = lower_32_bits(src);
  878. ib->ptr[ib->length_dw++] = upper_32_bits(src);
  879. ib->ptr[ib->length_dw++] = lower_32_bits(pe);
  880. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  881. pe += bytes;
  882. src += bytes;
  883. count -= bytes / 8;
  884. }
  885. }
  886. /**
  887. * sdma_v3_0_vm_write_pte - update PTEs by writing them manually
  888. *
  889. * @ib: indirect buffer to fill with commands
  890. * @pe: addr of the page entry
  891. * @addr: dst addr to write into pe
  892. * @count: number of page entries to update
  893. * @incr: increase next addr by incr bytes
  894. * @flags: access flags
  895. *
  896. * Update PTEs by writing them manually using sDMA (CIK).
  897. */
  898. static void sdma_v3_0_vm_write_pte(struct amdgpu_ib *ib,
  899. const dma_addr_t *pages_addr, uint64_t pe,
  900. uint64_t addr, unsigned count,
  901. uint32_t incr, uint32_t flags)
  902. {
  903. uint64_t value;
  904. unsigned ndw;
  905. while (count) {
  906. ndw = count * 2;
  907. if (ndw > 0xFFFFE)
  908. ndw = 0xFFFFE;
  909. /* for non-physically contiguous pages (system) */
  910. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  911. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
  912. ib->ptr[ib->length_dw++] = pe;
  913. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  914. ib->ptr[ib->length_dw++] = ndw;
  915. for (; ndw > 0; ndw -= 2, --count, pe += 8) {
  916. value = amdgpu_vm_map_gart(pages_addr, addr);
  917. addr += incr;
  918. value |= flags;
  919. ib->ptr[ib->length_dw++] = value;
  920. ib->ptr[ib->length_dw++] = upper_32_bits(value);
  921. }
  922. }
  923. }
  924. /**
  925. * sdma_v3_0_vm_set_pte_pde - update the page tables using sDMA
  926. *
  927. * @ib: indirect buffer to fill with commands
  928. * @pe: addr of the page entry
  929. * @addr: dst addr to write into pe
  930. * @count: number of page entries to update
  931. * @incr: increase next addr by incr bytes
  932. * @flags: access flags
  933. *
  934. * Update the page tables using sDMA (CIK).
  935. */
  936. static void sdma_v3_0_vm_set_pte_pde(struct amdgpu_ib *ib,
  937. uint64_t pe,
  938. uint64_t addr, unsigned count,
  939. uint32_t incr, uint32_t flags)
  940. {
  941. uint64_t value;
  942. unsigned ndw;
  943. while (count) {
  944. ndw = count;
  945. if (ndw > 0x7FFFF)
  946. ndw = 0x7FFFF;
  947. if (flags & AMDGPU_PTE_VALID)
  948. value = addr;
  949. else
  950. value = 0;
  951. /* for physically contiguous pages (vram) */
  952. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_GEN_PTEPDE);
  953. ib->ptr[ib->length_dw++] = pe; /* dst addr */
  954. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  955. ib->ptr[ib->length_dw++] = flags; /* mask */
  956. ib->ptr[ib->length_dw++] = 0;
  957. ib->ptr[ib->length_dw++] = value; /* value */
  958. ib->ptr[ib->length_dw++] = upper_32_bits(value);
  959. ib->ptr[ib->length_dw++] = incr; /* increment size */
  960. ib->ptr[ib->length_dw++] = 0;
  961. ib->ptr[ib->length_dw++] = ndw; /* number of entries */
  962. pe += ndw * 8;
  963. addr += ndw * incr;
  964. count -= ndw;
  965. }
  966. }
  967. /**
  968. * sdma_v3_0_ring_pad_ib - pad the IB to the required number of dw
  969. *
  970. * @ib: indirect buffer to fill with padding
  971. *
  972. */
  973. static void sdma_v3_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
  974. {
  975. struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
  976. u32 pad_count;
  977. int i;
  978. pad_count = (8 - (ib->length_dw & 0x7)) % 8;
  979. for (i = 0; i < pad_count; i++)
  980. if (sdma && sdma->burst_nop && (i == 0))
  981. ib->ptr[ib->length_dw++] =
  982. SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
  983. SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
  984. else
  985. ib->ptr[ib->length_dw++] =
  986. SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
  987. }
  988. /**
  989. * sdma_v3_0_ring_emit_pipeline_sync - sync the pipeline
  990. *
  991. * @ring: amdgpu_ring pointer
  992. *
  993. * Make sure all previous operations are completed (CIK).
  994. */
  995. static void sdma_v3_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
  996. {
  997. uint32_t seq = ring->fence_drv.sync_seq;
  998. uint64_t addr = ring->fence_drv.gpu_addr;
  999. /* wait for idle */
  1000. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  1001. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
  1002. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3) | /* equal */
  1003. SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(1));
  1004. amdgpu_ring_write(ring, addr & 0xfffffffc);
  1005. amdgpu_ring_write(ring, upper_32_bits(addr) & 0xffffffff);
  1006. amdgpu_ring_write(ring, seq); /* reference */
  1007. amdgpu_ring_write(ring, 0xfffffff); /* mask */
  1008. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  1009. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(4)); /* retry count, poll interval */
  1010. }
  1011. /**
  1012. * sdma_v3_0_ring_emit_vm_flush - cik vm flush using sDMA
  1013. *
  1014. * @ring: amdgpu_ring pointer
  1015. * @vm: amdgpu_vm pointer
  1016. *
  1017. * Update the page table base and flush the VM TLB
  1018. * using sDMA (VI).
  1019. */
  1020. static void sdma_v3_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
  1021. unsigned vm_id, uint64_t pd_addr)
  1022. {
  1023. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  1024. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  1025. if (vm_id < 8) {
  1026. amdgpu_ring_write(ring, (mmVM_CONTEXT0_PAGE_TABLE_BASE_ADDR + vm_id));
  1027. } else {
  1028. amdgpu_ring_write(ring, (mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vm_id - 8));
  1029. }
  1030. amdgpu_ring_write(ring, pd_addr >> 12);
  1031. /* flush TLB */
  1032. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  1033. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  1034. amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST);
  1035. amdgpu_ring_write(ring, 1 << vm_id);
  1036. /* wait for flush */
  1037. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  1038. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
  1039. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(0)); /* always */
  1040. amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST << 2);
  1041. amdgpu_ring_write(ring, 0);
  1042. amdgpu_ring_write(ring, 0); /* reference */
  1043. amdgpu_ring_write(ring, 0); /* mask */
  1044. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  1045. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
  1046. }
  1047. static int sdma_v3_0_early_init(void *handle)
  1048. {
  1049. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1050. switch (adev->asic_type) {
  1051. case CHIP_STONEY:
  1052. adev->sdma.num_instances = 1;
  1053. break;
  1054. default:
  1055. adev->sdma.num_instances = SDMA_MAX_INSTANCE;
  1056. break;
  1057. }
  1058. sdma_v3_0_set_ring_funcs(adev);
  1059. sdma_v3_0_set_buffer_funcs(adev);
  1060. sdma_v3_0_set_vm_pte_funcs(adev);
  1061. sdma_v3_0_set_irq_funcs(adev);
  1062. return 0;
  1063. }
  1064. static int sdma_v3_0_sw_init(void *handle)
  1065. {
  1066. struct amdgpu_ring *ring;
  1067. int r, i;
  1068. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1069. /* SDMA trap event */
  1070. r = amdgpu_irq_add_id(adev, 224, &adev->sdma.trap_irq);
  1071. if (r)
  1072. return r;
  1073. /* SDMA Privileged inst */
  1074. r = amdgpu_irq_add_id(adev, 241, &adev->sdma.illegal_inst_irq);
  1075. if (r)
  1076. return r;
  1077. /* SDMA Privileged inst */
  1078. r = amdgpu_irq_add_id(adev, 247, &adev->sdma.illegal_inst_irq);
  1079. if (r)
  1080. return r;
  1081. r = sdma_v3_0_init_microcode(adev);
  1082. if (r) {
  1083. DRM_ERROR("Failed to load sdma firmware!\n");
  1084. return r;
  1085. }
  1086. for (i = 0; i < adev->sdma.num_instances; i++) {
  1087. ring = &adev->sdma.instance[i].ring;
  1088. ring->ring_obj = NULL;
  1089. ring->use_doorbell = true;
  1090. ring->doorbell_index = (i == 0) ?
  1091. AMDGPU_DOORBELL_sDMA_ENGINE0 : AMDGPU_DOORBELL_sDMA_ENGINE1;
  1092. sprintf(ring->name, "sdma%d", i);
  1093. r = amdgpu_ring_init(adev, ring, 1024,
  1094. SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP), 0xf,
  1095. &adev->sdma.trap_irq,
  1096. (i == 0) ?
  1097. AMDGPU_SDMA_IRQ_TRAP0 : AMDGPU_SDMA_IRQ_TRAP1,
  1098. AMDGPU_RING_TYPE_SDMA);
  1099. if (r)
  1100. return r;
  1101. }
  1102. return r;
  1103. }
  1104. static int sdma_v3_0_sw_fini(void *handle)
  1105. {
  1106. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1107. int i;
  1108. for (i = 0; i < adev->sdma.num_instances; i++)
  1109. amdgpu_ring_fini(&adev->sdma.instance[i].ring);
  1110. return 0;
  1111. }
  1112. static int sdma_v3_0_hw_init(void *handle)
  1113. {
  1114. int r;
  1115. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1116. sdma_v3_0_init_golden_registers(adev);
  1117. r = sdma_v3_0_start(adev);
  1118. if (r)
  1119. return r;
  1120. return r;
  1121. }
  1122. static int sdma_v3_0_hw_fini(void *handle)
  1123. {
  1124. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1125. sdma_v3_0_ctx_switch_enable(adev, false);
  1126. sdma_v3_0_enable(adev, false);
  1127. return 0;
  1128. }
  1129. static int sdma_v3_0_suspend(void *handle)
  1130. {
  1131. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1132. return sdma_v3_0_hw_fini(adev);
  1133. }
  1134. static int sdma_v3_0_resume(void *handle)
  1135. {
  1136. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1137. return sdma_v3_0_hw_init(adev);
  1138. }
  1139. static bool sdma_v3_0_is_idle(void *handle)
  1140. {
  1141. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1142. u32 tmp = RREG32(mmSRBM_STATUS2);
  1143. if (tmp & (SRBM_STATUS2__SDMA_BUSY_MASK |
  1144. SRBM_STATUS2__SDMA1_BUSY_MASK))
  1145. return false;
  1146. return true;
  1147. }
  1148. static int sdma_v3_0_wait_for_idle(void *handle)
  1149. {
  1150. unsigned i;
  1151. u32 tmp;
  1152. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1153. for (i = 0; i < adev->usec_timeout; i++) {
  1154. tmp = RREG32(mmSRBM_STATUS2) & (SRBM_STATUS2__SDMA_BUSY_MASK |
  1155. SRBM_STATUS2__SDMA1_BUSY_MASK);
  1156. if (!tmp)
  1157. return 0;
  1158. udelay(1);
  1159. }
  1160. return -ETIMEDOUT;
  1161. }
  1162. static int sdma_v3_0_soft_reset(void *handle)
  1163. {
  1164. u32 srbm_soft_reset = 0;
  1165. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1166. u32 tmp = RREG32(mmSRBM_STATUS2);
  1167. if (tmp & SRBM_STATUS2__SDMA_BUSY_MASK) {
  1168. /* sdma0 */
  1169. tmp = RREG32(mmSDMA0_F32_CNTL + SDMA0_REGISTER_OFFSET);
  1170. tmp = REG_SET_FIELD(tmp, SDMA0_F32_CNTL, HALT, 0);
  1171. WREG32(mmSDMA0_F32_CNTL + SDMA0_REGISTER_OFFSET, tmp);
  1172. srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA_MASK;
  1173. }
  1174. if (tmp & SRBM_STATUS2__SDMA1_BUSY_MASK) {
  1175. /* sdma1 */
  1176. tmp = RREG32(mmSDMA0_F32_CNTL + SDMA1_REGISTER_OFFSET);
  1177. tmp = REG_SET_FIELD(tmp, SDMA0_F32_CNTL, HALT, 0);
  1178. WREG32(mmSDMA0_F32_CNTL + SDMA1_REGISTER_OFFSET, tmp);
  1179. srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA1_MASK;
  1180. }
  1181. if (srbm_soft_reset) {
  1182. tmp = RREG32(mmSRBM_SOFT_RESET);
  1183. tmp |= srbm_soft_reset;
  1184. dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
  1185. WREG32(mmSRBM_SOFT_RESET, tmp);
  1186. tmp = RREG32(mmSRBM_SOFT_RESET);
  1187. udelay(50);
  1188. tmp &= ~srbm_soft_reset;
  1189. WREG32(mmSRBM_SOFT_RESET, tmp);
  1190. tmp = RREG32(mmSRBM_SOFT_RESET);
  1191. /* Wait a little for things to settle down */
  1192. udelay(50);
  1193. }
  1194. return 0;
  1195. }
  1196. static int sdma_v3_0_set_trap_irq_state(struct amdgpu_device *adev,
  1197. struct amdgpu_irq_src *source,
  1198. unsigned type,
  1199. enum amdgpu_interrupt_state state)
  1200. {
  1201. u32 sdma_cntl;
  1202. switch (type) {
  1203. case AMDGPU_SDMA_IRQ_TRAP0:
  1204. switch (state) {
  1205. case AMDGPU_IRQ_STATE_DISABLE:
  1206. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
  1207. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
  1208. WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
  1209. break;
  1210. case AMDGPU_IRQ_STATE_ENABLE:
  1211. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
  1212. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
  1213. WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
  1214. break;
  1215. default:
  1216. break;
  1217. }
  1218. break;
  1219. case AMDGPU_SDMA_IRQ_TRAP1:
  1220. switch (state) {
  1221. case AMDGPU_IRQ_STATE_DISABLE:
  1222. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
  1223. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
  1224. WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
  1225. break;
  1226. case AMDGPU_IRQ_STATE_ENABLE:
  1227. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
  1228. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
  1229. WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
  1230. break;
  1231. default:
  1232. break;
  1233. }
  1234. break;
  1235. default:
  1236. break;
  1237. }
  1238. return 0;
  1239. }
  1240. static int sdma_v3_0_process_trap_irq(struct amdgpu_device *adev,
  1241. struct amdgpu_irq_src *source,
  1242. struct amdgpu_iv_entry *entry)
  1243. {
  1244. u8 instance_id, queue_id;
  1245. instance_id = (entry->ring_id & 0x3) >> 0;
  1246. queue_id = (entry->ring_id & 0xc) >> 2;
  1247. DRM_DEBUG("IH: SDMA trap\n");
  1248. switch (instance_id) {
  1249. case 0:
  1250. switch (queue_id) {
  1251. case 0:
  1252. amdgpu_fence_process(&adev->sdma.instance[0].ring);
  1253. break;
  1254. case 1:
  1255. /* XXX compute */
  1256. break;
  1257. case 2:
  1258. /* XXX compute */
  1259. break;
  1260. }
  1261. break;
  1262. case 1:
  1263. switch (queue_id) {
  1264. case 0:
  1265. amdgpu_fence_process(&adev->sdma.instance[1].ring);
  1266. break;
  1267. case 1:
  1268. /* XXX compute */
  1269. break;
  1270. case 2:
  1271. /* XXX compute */
  1272. break;
  1273. }
  1274. break;
  1275. }
  1276. return 0;
  1277. }
  1278. static int sdma_v3_0_process_illegal_inst_irq(struct amdgpu_device *adev,
  1279. struct amdgpu_irq_src *source,
  1280. struct amdgpu_iv_entry *entry)
  1281. {
  1282. DRM_ERROR("Illegal instruction in SDMA command stream\n");
  1283. schedule_work(&adev->reset_work);
  1284. return 0;
  1285. }
  1286. static void sdma_v3_0_update_sdma_medium_grain_clock_gating(
  1287. struct amdgpu_device *adev,
  1288. bool enable)
  1289. {
  1290. uint32_t temp, data;
  1291. int i;
  1292. if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
  1293. for (i = 0; i < adev->sdma.num_instances; i++) {
  1294. temp = data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i]);
  1295. data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
  1296. SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
  1297. SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
  1298. SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
  1299. SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
  1300. SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
  1301. SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
  1302. SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
  1303. if (data != temp)
  1304. WREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i], data);
  1305. }
  1306. } else {
  1307. for (i = 0; i < adev->sdma.num_instances; i++) {
  1308. temp = data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i]);
  1309. data |= SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
  1310. SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
  1311. SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
  1312. SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
  1313. SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
  1314. SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
  1315. SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
  1316. SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK;
  1317. if (data != temp)
  1318. WREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i], data);
  1319. }
  1320. }
  1321. }
  1322. static void sdma_v3_0_update_sdma_medium_grain_light_sleep(
  1323. struct amdgpu_device *adev,
  1324. bool enable)
  1325. {
  1326. uint32_t temp, data;
  1327. int i;
  1328. if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
  1329. for (i = 0; i < adev->sdma.num_instances; i++) {
  1330. temp = data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i]);
  1331. data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
  1332. if (temp != data)
  1333. WREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i], data);
  1334. }
  1335. } else {
  1336. for (i = 0; i < adev->sdma.num_instances; i++) {
  1337. temp = data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i]);
  1338. data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
  1339. if (temp != data)
  1340. WREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i], data);
  1341. }
  1342. }
  1343. }
  1344. static int sdma_v3_0_set_clockgating_state(void *handle,
  1345. enum amd_clockgating_state state)
  1346. {
  1347. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1348. switch (adev->asic_type) {
  1349. case CHIP_FIJI:
  1350. case CHIP_CARRIZO:
  1351. case CHIP_STONEY:
  1352. sdma_v3_0_update_sdma_medium_grain_clock_gating(adev,
  1353. state == AMD_CG_STATE_GATE ? true : false);
  1354. sdma_v3_0_update_sdma_medium_grain_light_sleep(adev,
  1355. state == AMD_CG_STATE_GATE ? true : false);
  1356. break;
  1357. default:
  1358. break;
  1359. }
  1360. return 0;
  1361. }
  1362. static int sdma_v3_0_set_powergating_state(void *handle,
  1363. enum amd_powergating_state state)
  1364. {
  1365. return 0;
  1366. }
  1367. const struct amd_ip_funcs sdma_v3_0_ip_funcs = {
  1368. .name = "sdma_v3_0",
  1369. .early_init = sdma_v3_0_early_init,
  1370. .late_init = NULL,
  1371. .sw_init = sdma_v3_0_sw_init,
  1372. .sw_fini = sdma_v3_0_sw_fini,
  1373. .hw_init = sdma_v3_0_hw_init,
  1374. .hw_fini = sdma_v3_0_hw_fini,
  1375. .suspend = sdma_v3_0_suspend,
  1376. .resume = sdma_v3_0_resume,
  1377. .is_idle = sdma_v3_0_is_idle,
  1378. .wait_for_idle = sdma_v3_0_wait_for_idle,
  1379. .soft_reset = sdma_v3_0_soft_reset,
  1380. .set_clockgating_state = sdma_v3_0_set_clockgating_state,
  1381. .set_powergating_state = sdma_v3_0_set_powergating_state,
  1382. };
  1383. static const struct amdgpu_ring_funcs sdma_v3_0_ring_funcs = {
  1384. .get_rptr = sdma_v3_0_ring_get_rptr,
  1385. .get_wptr = sdma_v3_0_ring_get_wptr,
  1386. .set_wptr = sdma_v3_0_ring_set_wptr,
  1387. .parse_cs = NULL,
  1388. .emit_ib = sdma_v3_0_ring_emit_ib,
  1389. .emit_fence = sdma_v3_0_ring_emit_fence,
  1390. .emit_pipeline_sync = sdma_v3_0_ring_emit_pipeline_sync,
  1391. .emit_vm_flush = sdma_v3_0_ring_emit_vm_flush,
  1392. .emit_hdp_flush = sdma_v3_0_ring_emit_hdp_flush,
  1393. .emit_hdp_invalidate = sdma_v3_0_ring_emit_hdp_invalidate,
  1394. .test_ring = sdma_v3_0_ring_test_ring,
  1395. .test_ib = sdma_v3_0_ring_test_ib,
  1396. .insert_nop = sdma_v3_0_ring_insert_nop,
  1397. .pad_ib = sdma_v3_0_ring_pad_ib,
  1398. };
  1399. static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev)
  1400. {
  1401. int i;
  1402. for (i = 0; i < adev->sdma.num_instances; i++)
  1403. adev->sdma.instance[i].ring.funcs = &sdma_v3_0_ring_funcs;
  1404. }
  1405. static const struct amdgpu_irq_src_funcs sdma_v3_0_trap_irq_funcs = {
  1406. .set = sdma_v3_0_set_trap_irq_state,
  1407. .process = sdma_v3_0_process_trap_irq,
  1408. };
  1409. static const struct amdgpu_irq_src_funcs sdma_v3_0_illegal_inst_irq_funcs = {
  1410. .process = sdma_v3_0_process_illegal_inst_irq,
  1411. };
  1412. static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev)
  1413. {
  1414. adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
  1415. adev->sdma.trap_irq.funcs = &sdma_v3_0_trap_irq_funcs;
  1416. adev->sdma.illegal_inst_irq.funcs = &sdma_v3_0_illegal_inst_irq_funcs;
  1417. }
  1418. /**
  1419. * sdma_v3_0_emit_copy_buffer - copy buffer using the sDMA engine
  1420. *
  1421. * @ring: amdgpu_ring structure holding ring information
  1422. * @src_offset: src GPU address
  1423. * @dst_offset: dst GPU address
  1424. * @byte_count: number of bytes to xfer
  1425. *
  1426. * Copy GPU buffers using the DMA engine (VI).
  1427. * Used by the amdgpu ttm implementation to move pages if
  1428. * registered as the asic copy callback.
  1429. */
  1430. static void sdma_v3_0_emit_copy_buffer(struct amdgpu_ib *ib,
  1431. uint64_t src_offset,
  1432. uint64_t dst_offset,
  1433. uint32_t byte_count)
  1434. {
  1435. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
  1436. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
  1437. ib->ptr[ib->length_dw++] = byte_count;
  1438. ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
  1439. ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
  1440. ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
  1441. ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
  1442. ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
  1443. }
  1444. /**
  1445. * sdma_v3_0_emit_fill_buffer - fill buffer using the sDMA engine
  1446. *
  1447. * @ring: amdgpu_ring structure holding ring information
  1448. * @src_data: value to write to buffer
  1449. * @dst_offset: dst GPU address
  1450. * @byte_count: number of bytes to xfer
  1451. *
  1452. * Fill GPU buffers using the DMA engine (VI).
  1453. */
  1454. static void sdma_v3_0_emit_fill_buffer(struct amdgpu_ib *ib,
  1455. uint32_t src_data,
  1456. uint64_t dst_offset,
  1457. uint32_t byte_count)
  1458. {
  1459. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
  1460. ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
  1461. ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
  1462. ib->ptr[ib->length_dw++] = src_data;
  1463. ib->ptr[ib->length_dw++] = byte_count;
  1464. }
  1465. static const struct amdgpu_buffer_funcs sdma_v3_0_buffer_funcs = {
  1466. .copy_max_bytes = 0x1fffff,
  1467. .copy_num_dw = 7,
  1468. .emit_copy_buffer = sdma_v3_0_emit_copy_buffer,
  1469. .fill_max_bytes = 0x1fffff,
  1470. .fill_num_dw = 5,
  1471. .emit_fill_buffer = sdma_v3_0_emit_fill_buffer,
  1472. };
  1473. static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev)
  1474. {
  1475. if (adev->mman.buffer_funcs == NULL) {
  1476. adev->mman.buffer_funcs = &sdma_v3_0_buffer_funcs;
  1477. adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
  1478. }
  1479. }
  1480. static const struct amdgpu_vm_pte_funcs sdma_v3_0_vm_pte_funcs = {
  1481. .copy_pte = sdma_v3_0_vm_copy_pte,
  1482. .write_pte = sdma_v3_0_vm_write_pte,
  1483. .set_pte_pde = sdma_v3_0_vm_set_pte_pde,
  1484. };
  1485. static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev)
  1486. {
  1487. unsigned i;
  1488. if (adev->vm_manager.vm_pte_funcs == NULL) {
  1489. adev->vm_manager.vm_pte_funcs = &sdma_v3_0_vm_pte_funcs;
  1490. for (i = 0; i < adev->sdma.num_instances; i++)
  1491. adev->vm_manager.vm_pte_rings[i] =
  1492. &adev->sdma.instance[i].ring;
  1493. adev->vm_manager.vm_pte_num_rings = adev->sdma.num_instances;
  1494. }
  1495. }