sdma_v2_4.c 38 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376
  1. /*
  2. * Copyright 2014 Advanced Micro Devices, Inc.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice shall be included in
  12. * all copies or substantial portions of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  17. * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20. * OTHER DEALINGS IN THE SOFTWARE.
  21. *
  22. * Authors: Alex Deucher
  23. */
  24. #include <linux/firmware.h>
  25. #include <drm/drmP.h>
  26. #include "amdgpu.h"
  27. #include "amdgpu_ucode.h"
  28. #include "amdgpu_trace.h"
  29. #include "vi.h"
  30. #include "vid.h"
  31. #include "oss/oss_2_4_d.h"
  32. #include "oss/oss_2_4_sh_mask.h"
  33. #include "gmc/gmc_7_1_d.h"
  34. #include "gmc/gmc_7_1_sh_mask.h"
  35. #include "gca/gfx_8_0_d.h"
  36. #include "gca/gfx_8_0_enum.h"
  37. #include "gca/gfx_8_0_sh_mask.h"
  38. #include "bif/bif_5_0_d.h"
  39. #include "bif/bif_5_0_sh_mask.h"
  40. #include "iceland_sdma_pkt_open.h"
  41. static void sdma_v2_4_set_ring_funcs(struct amdgpu_device *adev);
  42. static void sdma_v2_4_set_buffer_funcs(struct amdgpu_device *adev);
  43. static void sdma_v2_4_set_vm_pte_funcs(struct amdgpu_device *adev);
  44. static void sdma_v2_4_set_irq_funcs(struct amdgpu_device *adev);
  45. MODULE_FIRMWARE("amdgpu/topaz_sdma.bin");
  46. MODULE_FIRMWARE("amdgpu/topaz_sdma1.bin");
  47. static const u32 sdma_offsets[SDMA_MAX_INSTANCE] =
  48. {
  49. SDMA0_REGISTER_OFFSET,
  50. SDMA1_REGISTER_OFFSET
  51. };
  52. static const u32 golden_settings_iceland_a11[] =
  53. {
  54. mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  55. mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
  56. mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
  57. mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
  58. };
  59. static const u32 iceland_mgcg_cgcg_init[] =
  60. {
  61. mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
  62. mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
  63. };
  64. /*
  65. * sDMA - System DMA
  66. * Starting with CIK, the GPU has new asynchronous
  67. * DMA engines. These engines are used for compute
  68. * and gfx. There are two DMA engines (SDMA0, SDMA1)
  69. * and each one supports 1 ring buffer used for gfx
  70. * and 2 queues used for compute.
  71. *
  72. * The programming model is very similar to the CP
  73. * (ring buffer, IBs, etc.), but sDMA has it's own
  74. * packet format that is different from the PM4 format
  75. * used by the CP. sDMA supports copying data, writing
  76. * embedded data, solid fills, and a number of other
  77. * things. It also has support for tiling/detiling of
  78. * buffers.
  79. */
  80. static void sdma_v2_4_init_golden_registers(struct amdgpu_device *adev)
  81. {
  82. switch (adev->asic_type) {
  83. case CHIP_TOPAZ:
  84. amdgpu_program_register_sequence(adev,
  85. iceland_mgcg_cgcg_init,
  86. (const u32)ARRAY_SIZE(iceland_mgcg_cgcg_init));
  87. amdgpu_program_register_sequence(adev,
  88. golden_settings_iceland_a11,
  89. (const u32)ARRAY_SIZE(golden_settings_iceland_a11));
  90. break;
  91. default:
  92. break;
  93. }
  94. }
  95. /**
  96. * sdma_v2_4_init_microcode - load ucode images from disk
  97. *
  98. * @adev: amdgpu_device pointer
  99. *
  100. * Use the firmware interface to load the ucode images into
  101. * the driver (not loaded into hw).
  102. * Returns 0 on success, error on failure.
  103. */
  104. static int sdma_v2_4_init_microcode(struct amdgpu_device *adev)
  105. {
  106. const char *chip_name;
  107. char fw_name[30];
  108. int err = 0, i;
  109. struct amdgpu_firmware_info *info = NULL;
  110. const struct common_firmware_header *header = NULL;
  111. const struct sdma_firmware_header_v1_0 *hdr;
  112. DRM_DEBUG("\n");
  113. switch (adev->asic_type) {
  114. case CHIP_TOPAZ:
  115. chip_name = "topaz";
  116. break;
  117. default: BUG();
  118. }
  119. for (i = 0; i < adev->sdma.num_instances; i++) {
  120. if (i == 0)
  121. snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
  122. else
  123. snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name);
  124. err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
  125. if (err)
  126. goto out;
  127. err = amdgpu_ucode_validate(adev->sdma.instance[i].fw);
  128. if (err)
  129. goto out;
  130. hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
  131. adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
  132. adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version);
  133. if (adev->sdma.instance[i].feature_version >= 20)
  134. adev->sdma.instance[i].burst_nop = true;
  135. if (adev->firmware.smu_load) {
  136. info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
  137. info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
  138. info->fw = adev->sdma.instance[i].fw;
  139. header = (const struct common_firmware_header *)info->fw->data;
  140. adev->firmware.fw_size +=
  141. ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
  142. }
  143. }
  144. out:
  145. if (err) {
  146. printk(KERN_ERR
  147. "sdma_v2_4: Failed to load firmware \"%s\"\n",
  148. fw_name);
  149. for (i = 0; i < adev->sdma.num_instances; i++) {
  150. release_firmware(adev->sdma.instance[i].fw);
  151. adev->sdma.instance[i].fw = NULL;
  152. }
  153. }
  154. return err;
  155. }
  156. /**
  157. * sdma_v2_4_ring_get_rptr - get the current read pointer
  158. *
  159. * @ring: amdgpu ring pointer
  160. *
  161. * Get the current rptr from the hardware (VI+).
  162. */
  163. static uint32_t sdma_v2_4_ring_get_rptr(struct amdgpu_ring *ring)
  164. {
  165. u32 rptr;
  166. /* XXX check if swapping is necessary on BE */
  167. rptr = ring->adev->wb.wb[ring->rptr_offs] >> 2;
  168. return rptr;
  169. }
  170. /**
  171. * sdma_v2_4_ring_get_wptr - get the current write pointer
  172. *
  173. * @ring: amdgpu ring pointer
  174. *
  175. * Get the current wptr from the hardware (VI+).
  176. */
  177. static uint32_t sdma_v2_4_ring_get_wptr(struct amdgpu_ring *ring)
  178. {
  179. struct amdgpu_device *adev = ring->adev;
  180. int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
  181. u32 wptr = RREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me]) >> 2;
  182. return wptr;
  183. }
  184. /**
  185. * sdma_v2_4_ring_set_wptr - commit the write pointer
  186. *
  187. * @ring: amdgpu ring pointer
  188. *
  189. * Write the wptr back to the hardware (VI+).
  190. */
  191. static void sdma_v2_4_ring_set_wptr(struct amdgpu_ring *ring)
  192. {
  193. struct amdgpu_device *adev = ring->adev;
  194. int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
  195. WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me], ring->wptr << 2);
  196. }
  197. static void sdma_v2_4_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
  198. {
  199. struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
  200. int i;
  201. for (i = 0; i < count; i++)
  202. if (sdma && sdma->burst_nop && (i == 0))
  203. amdgpu_ring_write(ring, ring->nop |
  204. SDMA_PKT_NOP_HEADER_COUNT(count - 1));
  205. else
  206. amdgpu_ring_write(ring, ring->nop);
  207. }
  208. /**
  209. * sdma_v2_4_ring_emit_ib - Schedule an IB on the DMA engine
  210. *
  211. * @ring: amdgpu ring pointer
  212. * @ib: IB object to schedule
  213. *
  214. * Schedule an IB in the DMA ring (VI).
  215. */
  216. static void sdma_v2_4_ring_emit_ib(struct amdgpu_ring *ring,
  217. struct amdgpu_ib *ib,
  218. unsigned vm_id, bool ctx_switch)
  219. {
  220. u32 vmid = vm_id & 0xf;
  221. u32 next_rptr = ring->wptr + 5;
  222. while ((next_rptr & 7) != 2)
  223. next_rptr++;
  224. next_rptr += 6;
  225. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  226. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
  227. amdgpu_ring_write(ring, lower_32_bits(ring->next_rptr_gpu_addr) & 0xfffffffc);
  228. amdgpu_ring_write(ring, upper_32_bits(ring->next_rptr_gpu_addr));
  229. amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1));
  230. amdgpu_ring_write(ring, next_rptr);
  231. /* IB packet must end on a 8 DW boundary */
  232. sdma_v2_4_ring_insert_nop(ring, (10 - (ring->wptr & 7)) % 8);
  233. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
  234. SDMA_PKT_INDIRECT_HEADER_VMID(vmid));
  235. /* base must be 32 byte aligned */
  236. amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
  237. amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
  238. amdgpu_ring_write(ring, ib->length_dw);
  239. amdgpu_ring_write(ring, 0);
  240. amdgpu_ring_write(ring, 0);
  241. }
  242. /**
  243. * sdma_v2_4_hdp_flush_ring_emit - emit an hdp flush on the DMA ring
  244. *
  245. * @ring: amdgpu ring pointer
  246. *
  247. * Emit an hdp flush packet on the requested DMA ring.
  248. */
  249. static void sdma_v2_4_ring_emit_hdp_flush(struct amdgpu_ring *ring)
  250. {
  251. u32 ref_and_mask = 0;
  252. if (ring == &ring->adev->sdma.instance[0].ring)
  253. ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA0, 1);
  254. else
  255. ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA1, 1);
  256. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  257. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) |
  258. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
  259. amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_DONE << 2);
  260. amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_REQ << 2);
  261. amdgpu_ring_write(ring, ref_and_mask); /* reference */
  262. amdgpu_ring_write(ring, ref_and_mask); /* mask */
  263. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  264. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
  265. }
  266. static void sdma_v2_4_ring_emit_hdp_invalidate(struct amdgpu_ring *ring)
  267. {
  268. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  269. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  270. amdgpu_ring_write(ring, mmHDP_DEBUG0);
  271. amdgpu_ring_write(ring, 1);
  272. }
  273. /**
  274. * sdma_v2_4_ring_emit_fence - emit a fence on the DMA ring
  275. *
  276. * @ring: amdgpu ring pointer
  277. * @fence: amdgpu fence object
  278. *
  279. * Add a DMA fence packet to the ring to write
  280. * the fence seq number and DMA trap packet to generate
  281. * an interrupt if needed (VI).
  282. */
  283. static void sdma_v2_4_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
  284. unsigned flags)
  285. {
  286. bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
  287. /* write the fence */
  288. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
  289. amdgpu_ring_write(ring, lower_32_bits(addr));
  290. amdgpu_ring_write(ring, upper_32_bits(addr));
  291. amdgpu_ring_write(ring, lower_32_bits(seq));
  292. /* optionally write high bits as well */
  293. if (write64bit) {
  294. addr += 4;
  295. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
  296. amdgpu_ring_write(ring, lower_32_bits(addr));
  297. amdgpu_ring_write(ring, upper_32_bits(addr));
  298. amdgpu_ring_write(ring, upper_32_bits(seq));
  299. }
  300. /* generate an interrupt */
  301. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
  302. amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
  303. }
  304. /**
  305. * sdma_v2_4_gfx_stop - stop the gfx async dma engines
  306. *
  307. * @adev: amdgpu_device pointer
  308. *
  309. * Stop the gfx async dma ring buffers (VI).
  310. */
  311. static void sdma_v2_4_gfx_stop(struct amdgpu_device *adev)
  312. {
  313. struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring;
  314. struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring;
  315. u32 rb_cntl, ib_cntl;
  316. int i;
  317. if ((adev->mman.buffer_funcs_ring == sdma0) ||
  318. (adev->mman.buffer_funcs_ring == sdma1))
  319. amdgpu_ttm_set_active_vram_size(adev, adev->mc.visible_vram_size);
  320. for (i = 0; i < adev->sdma.num_instances; i++) {
  321. rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
  322. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
  323. WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
  324. ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
  325. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
  326. WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
  327. }
  328. sdma0->ready = false;
  329. sdma1->ready = false;
  330. }
  331. /**
  332. * sdma_v2_4_rlc_stop - stop the compute async dma engines
  333. *
  334. * @adev: amdgpu_device pointer
  335. *
  336. * Stop the compute async dma queues (VI).
  337. */
  338. static void sdma_v2_4_rlc_stop(struct amdgpu_device *adev)
  339. {
  340. /* XXX todo */
  341. }
  342. /**
  343. * sdma_v2_4_enable - stop the async dma engines
  344. *
  345. * @adev: amdgpu_device pointer
  346. * @enable: enable/disable the DMA MEs.
  347. *
  348. * Halt or unhalt the async dma engines (VI).
  349. */
  350. static void sdma_v2_4_enable(struct amdgpu_device *adev, bool enable)
  351. {
  352. u32 f32_cntl;
  353. int i;
  354. if (enable == false) {
  355. sdma_v2_4_gfx_stop(adev);
  356. sdma_v2_4_rlc_stop(adev);
  357. }
  358. for (i = 0; i < adev->sdma.num_instances; i++) {
  359. f32_cntl = RREG32(mmSDMA0_F32_CNTL + sdma_offsets[i]);
  360. if (enable)
  361. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 0);
  362. else
  363. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 1);
  364. WREG32(mmSDMA0_F32_CNTL + sdma_offsets[i], f32_cntl);
  365. }
  366. }
  367. /**
  368. * sdma_v2_4_gfx_resume - setup and start the async dma engines
  369. *
  370. * @adev: amdgpu_device pointer
  371. *
  372. * Set up the gfx DMA ring buffers and enable them (VI).
  373. * Returns 0 for success, error for failure.
  374. */
  375. static int sdma_v2_4_gfx_resume(struct amdgpu_device *adev)
  376. {
  377. struct amdgpu_ring *ring;
  378. u32 rb_cntl, ib_cntl;
  379. u32 rb_bufsz;
  380. u32 wb_offset;
  381. int i, j, r;
  382. for (i = 0; i < adev->sdma.num_instances; i++) {
  383. ring = &adev->sdma.instance[i].ring;
  384. wb_offset = (ring->rptr_offs * 4);
  385. mutex_lock(&adev->srbm_mutex);
  386. for (j = 0; j < 16; j++) {
  387. vi_srbm_select(adev, 0, 0, 0, j);
  388. /* SDMA GFX */
  389. WREG32(mmSDMA0_GFX_VIRTUAL_ADDR + sdma_offsets[i], 0);
  390. WREG32(mmSDMA0_GFX_APE1_CNTL + sdma_offsets[i], 0);
  391. }
  392. vi_srbm_select(adev, 0, 0, 0, 0);
  393. mutex_unlock(&adev->srbm_mutex);
  394. WREG32(mmSDMA0_TILING_CONFIG + sdma_offsets[i],
  395. adev->gfx.config.gb_addr_config & 0x70);
  396. WREG32(mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i], 0);
  397. /* Set ring buffer size in dwords */
  398. rb_bufsz = order_base_2(ring->ring_size / 4);
  399. rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
  400. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
  401. #ifdef __BIG_ENDIAN
  402. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
  403. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
  404. RPTR_WRITEBACK_SWAP_ENABLE, 1);
  405. #endif
  406. WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
  407. /* Initialize the ring buffer's read and write pointers */
  408. WREG32(mmSDMA0_GFX_RB_RPTR + sdma_offsets[i], 0);
  409. WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], 0);
  410. /* set the wb address whether it's enabled or not */
  411. WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_HI + sdma_offsets[i],
  412. upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
  413. WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_LO + sdma_offsets[i],
  414. lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
  415. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1);
  416. WREG32(mmSDMA0_GFX_RB_BASE + sdma_offsets[i], ring->gpu_addr >> 8);
  417. WREG32(mmSDMA0_GFX_RB_BASE_HI + sdma_offsets[i], ring->gpu_addr >> 40);
  418. ring->wptr = 0;
  419. WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], ring->wptr << 2);
  420. /* enable DMA RB */
  421. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
  422. WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
  423. ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
  424. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
  425. #ifdef __BIG_ENDIAN
  426. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
  427. #endif
  428. /* enable DMA IBs */
  429. WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
  430. ring->ready = true;
  431. r = amdgpu_ring_test_ring(ring);
  432. if (r) {
  433. ring->ready = false;
  434. return r;
  435. }
  436. if (adev->mman.buffer_funcs_ring == ring)
  437. amdgpu_ttm_set_active_vram_size(adev, adev->mc.real_vram_size);
  438. }
  439. return 0;
  440. }
  441. /**
  442. * sdma_v2_4_rlc_resume - setup and start the async dma engines
  443. *
  444. * @adev: amdgpu_device pointer
  445. *
  446. * Set up the compute DMA queues and enable them (VI).
  447. * Returns 0 for success, error for failure.
  448. */
  449. static int sdma_v2_4_rlc_resume(struct amdgpu_device *adev)
  450. {
  451. /* XXX todo */
  452. return 0;
  453. }
  454. /**
  455. * sdma_v2_4_load_microcode - load the sDMA ME ucode
  456. *
  457. * @adev: amdgpu_device pointer
  458. *
  459. * Loads the sDMA0/1 ucode.
  460. * Returns 0 for success, -EINVAL if the ucode is not available.
  461. */
  462. static int sdma_v2_4_load_microcode(struct amdgpu_device *adev)
  463. {
  464. const struct sdma_firmware_header_v1_0 *hdr;
  465. const __le32 *fw_data;
  466. u32 fw_size;
  467. int i, j;
  468. /* halt the MEs */
  469. sdma_v2_4_enable(adev, false);
  470. for (i = 0; i < adev->sdma.num_instances; i++) {
  471. if (!adev->sdma.instance[i].fw)
  472. return -EINVAL;
  473. hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
  474. amdgpu_ucode_print_sdma_hdr(&hdr->header);
  475. fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
  476. fw_data = (const __le32 *)
  477. (adev->sdma.instance[i].fw->data +
  478. le32_to_cpu(hdr->header.ucode_array_offset_bytes));
  479. WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], 0);
  480. for (j = 0; j < fw_size; j++)
  481. WREG32(mmSDMA0_UCODE_DATA + sdma_offsets[i], le32_to_cpup(fw_data++));
  482. WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], adev->sdma.instance[i].fw_version);
  483. }
  484. return 0;
  485. }
  486. /**
  487. * sdma_v2_4_start - setup and start the async dma engines
  488. *
  489. * @adev: amdgpu_device pointer
  490. *
  491. * Set up the DMA engines and enable them (VI).
  492. * Returns 0 for success, error for failure.
  493. */
  494. static int sdma_v2_4_start(struct amdgpu_device *adev)
  495. {
  496. int r;
  497. if (!adev->firmware.smu_load) {
  498. r = sdma_v2_4_load_microcode(adev);
  499. if (r)
  500. return r;
  501. } else {
  502. r = adev->smu.smumgr_funcs->check_fw_load_finish(adev,
  503. AMDGPU_UCODE_ID_SDMA0);
  504. if (r)
  505. return -EINVAL;
  506. r = adev->smu.smumgr_funcs->check_fw_load_finish(adev,
  507. AMDGPU_UCODE_ID_SDMA1);
  508. if (r)
  509. return -EINVAL;
  510. }
  511. /* unhalt the MEs */
  512. sdma_v2_4_enable(adev, true);
  513. /* start the gfx rings and rlc compute queues */
  514. r = sdma_v2_4_gfx_resume(adev);
  515. if (r)
  516. return r;
  517. r = sdma_v2_4_rlc_resume(adev);
  518. if (r)
  519. return r;
  520. return 0;
  521. }
  522. /**
  523. * sdma_v2_4_ring_test_ring - simple async dma engine test
  524. *
  525. * @ring: amdgpu_ring structure holding ring information
  526. *
  527. * Test the DMA engine by writing using it to write an
  528. * value to memory. (VI).
  529. * Returns 0 for success, error for failure.
  530. */
  531. static int sdma_v2_4_ring_test_ring(struct amdgpu_ring *ring)
  532. {
  533. struct amdgpu_device *adev = ring->adev;
  534. unsigned i;
  535. unsigned index;
  536. int r;
  537. u32 tmp;
  538. u64 gpu_addr;
  539. r = amdgpu_wb_get(adev, &index);
  540. if (r) {
  541. dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
  542. return r;
  543. }
  544. gpu_addr = adev->wb.gpu_addr + (index * 4);
  545. tmp = 0xCAFEDEAD;
  546. adev->wb.wb[index] = cpu_to_le32(tmp);
  547. r = amdgpu_ring_alloc(ring, 5);
  548. if (r) {
  549. DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r);
  550. amdgpu_wb_free(adev, index);
  551. return r;
  552. }
  553. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  554. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
  555. amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
  556. amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
  557. amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1));
  558. amdgpu_ring_write(ring, 0xDEADBEEF);
  559. amdgpu_ring_commit(ring);
  560. for (i = 0; i < adev->usec_timeout; i++) {
  561. tmp = le32_to_cpu(adev->wb.wb[index]);
  562. if (tmp == 0xDEADBEEF)
  563. break;
  564. DRM_UDELAY(1);
  565. }
  566. if (i < adev->usec_timeout) {
  567. DRM_INFO("ring test on %d succeeded in %d usecs\n", ring->idx, i);
  568. } else {
  569. DRM_ERROR("amdgpu: ring %d test failed (0x%08X)\n",
  570. ring->idx, tmp);
  571. r = -EINVAL;
  572. }
  573. amdgpu_wb_free(adev, index);
  574. return r;
  575. }
  576. /**
  577. * sdma_v2_4_ring_test_ib - test an IB on the DMA engine
  578. *
  579. * @ring: amdgpu_ring structure holding ring information
  580. *
  581. * Test a simple IB in the DMA ring (VI).
  582. * Returns 0 on success, error on failure.
  583. */
  584. static int sdma_v2_4_ring_test_ib(struct amdgpu_ring *ring)
  585. {
  586. struct amdgpu_device *adev = ring->adev;
  587. struct amdgpu_ib ib;
  588. struct fence *f = NULL;
  589. unsigned i;
  590. unsigned index;
  591. int r;
  592. u32 tmp = 0;
  593. u64 gpu_addr;
  594. r = amdgpu_wb_get(adev, &index);
  595. if (r) {
  596. dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
  597. return r;
  598. }
  599. gpu_addr = adev->wb.gpu_addr + (index * 4);
  600. tmp = 0xCAFEDEAD;
  601. adev->wb.wb[index] = cpu_to_le32(tmp);
  602. memset(&ib, 0, sizeof(ib));
  603. r = amdgpu_ib_get(adev, NULL, 256, &ib);
  604. if (r) {
  605. DRM_ERROR("amdgpu: failed to get ib (%d).\n", r);
  606. goto err0;
  607. }
  608. ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  609. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
  610. ib.ptr[1] = lower_32_bits(gpu_addr);
  611. ib.ptr[2] = upper_32_bits(gpu_addr);
  612. ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1);
  613. ib.ptr[4] = 0xDEADBEEF;
  614. ib.ptr[5] = SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
  615. ib.ptr[6] = SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
  616. ib.ptr[7] = SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
  617. ib.length_dw = 8;
  618. r = amdgpu_ib_schedule(ring, 1, &ib, NULL, NULL, &f);
  619. if (r)
  620. goto err1;
  621. r = fence_wait(f, false);
  622. if (r) {
  623. DRM_ERROR("amdgpu: fence wait failed (%d).\n", r);
  624. goto err1;
  625. }
  626. for (i = 0; i < adev->usec_timeout; i++) {
  627. tmp = le32_to_cpu(adev->wb.wb[index]);
  628. if (tmp == 0xDEADBEEF)
  629. break;
  630. DRM_UDELAY(1);
  631. }
  632. if (i < adev->usec_timeout) {
  633. DRM_INFO("ib test on ring %d succeeded in %u usecs\n",
  634. ring->idx, i);
  635. goto err1;
  636. } else {
  637. DRM_ERROR("amdgpu: ib test failed (0x%08X)\n", tmp);
  638. r = -EINVAL;
  639. }
  640. err1:
  641. fence_put(f);
  642. amdgpu_ib_free(adev, &ib, NULL);
  643. fence_put(f);
  644. err0:
  645. amdgpu_wb_free(adev, index);
  646. return r;
  647. }
  648. /**
  649. * sdma_v2_4_vm_copy_pte - update PTEs by copying them from the GART
  650. *
  651. * @ib: indirect buffer to fill with commands
  652. * @pe: addr of the page entry
  653. * @src: src addr to copy from
  654. * @count: number of page entries to update
  655. *
  656. * Update PTEs by copying them from the GART using sDMA (CIK).
  657. */
  658. static void sdma_v2_4_vm_copy_pte(struct amdgpu_ib *ib,
  659. uint64_t pe, uint64_t src,
  660. unsigned count)
  661. {
  662. while (count) {
  663. unsigned bytes = count * 8;
  664. if (bytes > 0x1FFFF8)
  665. bytes = 0x1FFFF8;
  666. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
  667. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
  668. ib->ptr[ib->length_dw++] = bytes;
  669. ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
  670. ib->ptr[ib->length_dw++] = lower_32_bits(src);
  671. ib->ptr[ib->length_dw++] = upper_32_bits(src);
  672. ib->ptr[ib->length_dw++] = lower_32_bits(pe);
  673. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  674. pe += bytes;
  675. src += bytes;
  676. count -= bytes / 8;
  677. }
  678. }
  679. /**
  680. * sdma_v2_4_vm_write_pte - update PTEs by writing them manually
  681. *
  682. * @ib: indirect buffer to fill with commands
  683. * @pe: addr of the page entry
  684. * @addr: dst addr to write into pe
  685. * @count: number of page entries to update
  686. * @incr: increase next addr by incr bytes
  687. * @flags: access flags
  688. *
  689. * Update PTEs by writing them manually using sDMA (CIK).
  690. */
  691. static void sdma_v2_4_vm_write_pte(struct amdgpu_ib *ib,
  692. const dma_addr_t *pages_addr, uint64_t pe,
  693. uint64_t addr, unsigned count,
  694. uint32_t incr, uint32_t flags)
  695. {
  696. uint64_t value;
  697. unsigned ndw;
  698. while (count) {
  699. ndw = count * 2;
  700. if (ndw > 0xFFFFE)
  701. ndw = 0xFFFFE;
  702. /* for non-physically contiguous pages (system) */
  703. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  704. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
  705. ib->ptr[ib->length_dw++] = pe;
  706. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  707. ib->ptr[ib->length_dw++] = ndw;
  708. for (; ndw > 0; ndw -= 2, --count, pe += 8) {
  709. value = amdgpu_vm_map_gart(pages_addr, addr);
  710. addr += incr;
  711. value |= flags;
  712. ib->ptr[ib->length_dw++] = value;
  713. ib->ptr[ib->length_dw++] = upper_32_bits(value);
  714. }
  715. }
  716. }
  717. /**
  718. * sdma_v2_4_vm_set_pte_pde - update the page tables using sDMA
  719. *
  720. * @ib: indirect buffer to fill with commands
  721. * @pe: addr of the page entry
  722. * @addr: dst addr to write into pe
  723. * @count: number of page entries to update
  724. * @incr: increase next addr by incr bytes
  725. * @flags: access flags
  726. *
  727. * Update the page tables using sDMA (CIK).
  728. */
  729. static void sdma_v2_4_vm_set_pte_pde(struct amdgpu_ib *ib,
  730. uint64_t pe,
  731. uint64_t addr, unsigned count,
  732. uint32_t incr, uint32_t flags)
  733. {
  734. uint64_t value;
  735. unsigned ndw;
  736. while (count) {
  737. ndw = count;
  738. if (ndw > 0x7FFFF)
  739. ndw = 0x7FFFF;
  740. if (flags & AMDGPU_PTE_VALID)
  741. value = addr;
  742. else
  743. value = 0;
  744. /* for physically contiguous pages (vram) */
  745. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_GEN_PTEPDE);
  746. ib->ptr[ib->length_dw++] = pe; /* dst addr */
  747. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  748. ib->ptr[ib->length_dw++] = flags; /* mask */
  749. ib->ptr[ib->length_dw++] = 0;
  750. ib->ptr[ib->length_dw++] = value; /* value */
  751. ib->ptr[ib->length_dw++] = upper_32_bits(value);
  752. ib->ptr[ib->length_dw++] = incr; /* increment size */
  753. ib->ptr[ib->length_dw++] = 0;
  754. ib->ptr[ib->length_dw++] = ndw; /* number of entries */
  755. pe += ndw * 8;
  756. addr += ndw * incr;
  757. count -= ndw;
  758. }
  759. }
  760. /**
  761. * sdma_v2_4_ring_pad_ib - pad the IB to the required number of dw
  762. *
  763. * @ib: indirect buffer to fill with padding
  764. *
  765. */
  766. static void sdma_v2_4_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
  767. {
  768. struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
  769. u32 pad_count;
  770. int i;
  771. pad_count = (8 - (ib->length_dw & 0x7)) % 8;
  772. for (i = 0; i < pad_count; i++)
  773. if (sdma && sdma->burst_nop && (i == 0))
  774. ib->ptr[ib->length_dw++] =
  775. SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
  776. SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
  777. else
  778. ib->ptr[ib->length_dw++] =
  779. SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
  780. }
  781. /**
  782. * sdma_v2_4_ring_emit_pipeline_sync - sync the pipeline
  783. *
  784. * @ring: amdgpu_ring pointer
  785. *
  786. * Make sure all previous operations are completed (CIK).
  787. */
  788. static void sdma_v2_4_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
  789. {
  790. uint32_t seq = ring->fence_drv.sync_seq;
  791. uint64_t addr = ring->fence_drv.gpu_addr;
  792. /* wait for idle */
  793. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  794. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
  795. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3) | /* equal */
  796. SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(1));
  797. amdgpu_ring_write(ring, addr & 0xfffffffc);
  798. amdgpu_ring_write(ring, upper_32_bits(addr) & 0xffffffff);
  799. amdgpu_ring_write(ring, seq); /* reference */
  800. amdgpu_ring_write(ring, 0xfffffff); /* mask */
  801. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  802. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(4)); /* retry count, poll interval */
  803. }
  804. /**
  805. * sdma_v2_4_ring_emit_vm_flush - cik vm flush using sDMA
  806. *
  807. * @ring: amdgpu_ring pointer
  808. * @vm: amdgpu_vm pointer
  809. *
  810. * Update the page table base and flush the VM TLB
  811. * using sDMA (VI).
  812. */
  813. static void sdma_v2_4_ring_emit_vm_flush(struct amdgpu_ring *ring,
  814. unsigned vm_id, uint64_t pd_addr)
  815. {
  816. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  817. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  818. if (vm_id < 8) {
  819. amdgpu_ring_write(ring, (mmVM_CONTEXT0_PAGE_TABLE_BASE_ADDR + vm_id));
  820. } else {
  821. amdgpu_ring_write(ring, (mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vm_id - 8));
  822. }
  823. amdgpu_ring_write(ring, pd_addr >> 12);
  824. /* flush TLB */
  825. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  826. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  827. amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST);
  828. amdgpu_ring_write(ring, 1 << vm_id);
  829. /* wait for flush */
  830. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  831. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
  832. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(0)); /* always */
  833. amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST << 2);
  834. amdgpu_ring_write(ring, 0);
  835. amdgpu_ring_write(ring, 0); /* reference */
  836. amdgpu_ring_write(ring, 0); /* mask */
  837. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  838. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
  839. }
  840. static int sdma_v2_4_early_init(void *handle)
  841. {
  842. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  843. adev->sdma.num_instances = SDMA_MAX_INSTANCE;
  844. sdma_v2_4_set_ring_funcs(adev);
  845. sdma_v2_4_set_buffer_funcs(adev);
  846. sdma_v2_4_set_vm_pte_funcs(adev);
  847. sdma_v2_4_set_irq_funcs(adev);
  848. return 0;
  849. }
  850. static int sdma_v2_4_sw_init(void *handle)
  851. {
  852. struct amdgpu_ring *ring;
  853. int r, i;
  854. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  855. /* SDMA trap event */
  856. r = amdgpu_irq_add_id(adev, 224, &adev->sdma.trap_irq);
  857. if (r)
  858. return r;
  859. /* SDMA Privileged inst */
  860. r = amdgpu_irq_add_id(adev, 241, &adev->sdma.illegal_inst_irq);
  861. if (r)
  862. return r;
  863. /* SDMA Privileged inst */
  864. r = amdgpu_irq_add_id(adev, 247, &adev->sdma.illegal_inst_irq);
  865. if (r)
  866. return r;
  867. r = sdma_v2_4_init_microcode(adev);
  868. if (r) {
  869. DRM_ERROR("Failed to load sdma firmware!\n");
  870. return r;
  871. }
  872. for (i = 0; i < adev->sdma.num_instances; i++) {
  873. ring = &adev->sdma.instance[i].ring;
  874. ring->ring_obj = NULL;
  875. ring->use_doorbell = false;
  876. sprintf(ring->name, "sdma%d", i);
  877. r = amdgpu_ring_init(adev, ring, 1024,
  878. SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP), 0xf,
  879. &adev->sdma.trap_irq,
  880. (i == 0) ?
  881. AMDGPU_SDMA_IRQ_TRAP0 : AMDGPU_SDMA_IRQ_TRAP1,
  882. AMDGPU_RING_TYPE_SDMA);
  883. if (r)
  884. return r;
  885. }
  886. return r;
  887. }
  888. static int sdma_v2_4_sw_fini(void *handle)
  889. {
  890. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  891. int i;
  892. for (i = 0; i < adev->sdma.num_instances; i++)
  893. amdgpu_ring_fini(&adev->sdma.instance[i].ring);
  894. return 0;
  895. }
  896. static int sdma_v2_4_hw_init(void *handle)
  897. {
  898. int r;
  899. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  900. sdma_v2_4_init_golden_registers(adev);
  901. r = sdma_v2_4_start(adev);
  902. if (r)
  903. return r;
  904. return r;
  905. }
  906. static int sdma_v2_4_hw_fini(void *handle)
  907. {
  908. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  909. sdma_v2_4_enable(adev, false);
  910. return 0;
  911. }
  912. static int sdma_v2_4_suspend(void *handle)
  913. {
  914. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  915. return sdma_v2_4_hw_fini(adev);
  916. }
  917. static int sdma_v2_4_resume(void *handle)
  918. {
  919. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  920. return sdma_v2_4_hw_init(adev);
  921. }
  922. static bool sdma_v2_4_is_idle(void *handle)
  923. {
  924. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  925. u32 tmp = RREG32(mmSRBM_STATUS2);
  926. if (tmp & (SRBM_STATUS2__SDMA_BUSY_MASK |
  927. SRBM_STATUS2__SDMA1_BUSY_MASK))
  928. return false;
  929. return true;
  930. }
  931. static int sdma_v2_4_wait_for_idle(void *handle)
  932. {
  933. unsigned i;
  934. u32 tmp;
  935. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  936. for (i = 0; i < adev->usec_timeout; i++) {
  937. tmp = RREG32(mmSRBM_STATUS2) & (SRBM_STATUS2__SDMA_BUSY_MASK |
  938. SRBM_STATUS2__SDMA1_BUSY_MASK);
  939. if (!tmp)
  940. return 0;
  941. udelay(1);
  942. }
  943. return -ETIMEDOUT;
  944. }
  945. static int sdma_v2_4_soft_reset(void *handle)
  946. {
  947. u32 srbm_soft_reset = 0;
  948. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  949. u32 tmp = RREG32(mmSRBM_STATUS2);
  950. if (tmp & SRBM_STATUS2__SDMA_BUSY_MASK) {
  951. /* sdma0 */
  952. tmp = RREG32(mmSDMA0_F32_CNTL + SDMA0_REGISTER_OFFSET);
  953. tmp = REG_SET_FIELD(tmp, SDMA0_F32_CNTL, HALT, 0);
  954. WREG32(mmSDMA0_F32_CNTL + SDMA0_REGISTER_OFFSET, tmp);
  955. srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA_MASK;
  956. }
  957. if (tmp & SRBM_STATUS2__SDMA1_BUSY_MASK) {
  958. /* sdma1 */
  959. tmp = RREG32(mmSDMA0_F32_CNTL + SDMA1_REGISTER_OFFSET);
  960. tmp = REG_SET_FIELD(tmp, SDMA0_F32_CNTL, HALT, 0);
  961. WREG32(mmSDMA0_F32_CNTL + SDMA1_REGISTER_OFFSET, tmp);
  962. srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA1_MASK;
  963. }
  964. if (srbm_soft_reset) {
  965. tmp = RREG32(mmSRBM_SOFT_RESET);
  966. tmp |= srbm_soft_reset;
  967. dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
  968. WREG32(mmSRBM_SOFT_RESET, tmp);
  969. tmp = RREG32(mmSRBM_SOFT_RESET);
  970. udelay(50);
  971. tmp &= ~srbm_soft_reset;
  972. WREG32(mmSRBM_SOFT_RESET, tmp);
  973. tmp = RREG32(mmSRBM_SOFT_RESET);
  974. /* Wait a little for things to settle down */
  975. udelay(50);
  976. }
  977. return 0;
  978. }
  979. static int sdma_v2_4_set_trap_irq_state(struct amdgpu_device *adev,
  980. struct amdgpu_irq_src *src,
  981. unsigned type,
  982. enum amdgpu_interrupt_state state)
  983. {
  984. u32 sdma_cntl;
  985. switch (type) {
  986. case AMDGPU_SDMA_IRQ_TRAP0:
  987. switch (state) {
  988. case AMDGPU_IRQ_STATE_DISABLE:
  989. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
  990. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
  991. WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
  992. break;
  993. case AMDGPU_IRQ_STATE_ENABLE:
  994. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
  995. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
  996. WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
  997. break;
  998. default:
  999. break;
  1000. }
  1001. break;
  1002. case AMDGPU_SDMA_IRQ_TRAP1:
  1003. switch (state) {
  1004. case AMDGPU_IRQ_STATE_DISABLE:
  1005. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
  1006. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
  1007. WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
  1008. break;
  1009. case AMDGPU_IRQ_STATE_ENABLE:
  1010. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
  1011. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
  1012. WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
  1013. break;
  1014. default:
  1015. break;
  1016. }
  1017. break;
  1018. default:
  1019. break;
  1020. }
  1021. return 0;
  1022. }
  1023. static int sdma_v2_4_process_trap_irq(struct amdgpu_device *adev,
  1024. struct amdgpu_irq_src *source,
  1025. struct amdgpu_iv_entry *entry)
  1026. {
  1027. u8 instance_id, queue_id;
  1028. instance_id = (entry->ring_id & 0x3) >> 0;
  1029. queue_id = (entry->ring_id & 0xc) >> 2;
  1030. DRM_DEBUG("IH: SDMA trap\n");
  1031. switch (instance_id) {
  1032. case 0:
  1033. switch (queue_id) {
  1034. case 0:
  1035. amdgpu_fence_process(&adev->sdma.instance[0].ring);
  1036. break;
  1037. case 1:
  1038. /* XXX compute */
  1039. break;
  1040. case 2:
  1041. /* XXX compute */
  1042. break;
  1043. }
  1044. break;
  1045. case 1:
  1046. switch (queue_id) {
  1047. case 0:
  1048. amdgpu_fence_process(&adev->sdma.instance[1].ring);
  1049. break;
  1050. case 1:
  1051. /* XXX compute */
  1052. break;
  1053. case 2:
  1054. /* XXX compute */
  1055. break;
  1056. }
  1057. break;
  1058. }
  1059. return 0;
  1060. }
  1061. static int sdma_v2_4_process_illegal_inst_irq(struct amdgpu_device *adev,
  1062. struct amdgpu_irq_src *source,
  1063. struct amdgpu_iv_entry *entry)
  1064. {
  1065. DRM_ERROR("Illegal instruction in SDMA command stream\n");
  1066. schedule_work(&adev->reset_work);
  1067. return 0;
  1068. }
  1069. static int sdma_v2_4_set_clockgating_state(void *handle,
  1070. enum amd_clockgating_state state)
  1071. {
  1072. /* XXX handled via the smc on VI */
  1073. return 0;
  1074. }
  1075. static int sdma_v2_4_set_powergating_state(void *handle,
  1076. enum amd_powergating_state state)
  1077. {
  1078. return 0;
  1079. }
  1080. const struct amd_ip_funcs sdma_v2_4_ip_funcs = {
  1081. .name = "sdma_v2_4",
  1082. .early_init = sdma_v2_4_early_init,
  1083. .late_init = NULL,
  1084. .sw_init = sdma_v2_4_sw_init,
  1085. .sw_fini = sdma_v2_4_sw_fini,
  1086. .hw_init = sdma_v2_4_hw_init,
  1087. .hw_fini = sdma_v2_4_hw_fini,
  1088. .suspend = sdma_v2_4_suspend,
  1089. .resume = sdma_v2_4_resume,
  1090. .is_idle = sdma_v2_4_is_idle,
  1091. .wait_for_idle = sdma_v2_4_wait_for_idle,
  1092. .soft_reset = sdma_v2_4_soft_reset,
  1093. .set_clockgating_state = sdma_v2_4_set_clockgating_state,
  1094. .set_powergating_state = sdma_v2_4_set_powergating_state,
  1095. };
  1096. static const struct amdgpu_ring_funcs sdma_v2_4_ring_funcs = {
  1097. .get_rptr = sdma_v2_4_ring_get_rptr,
  1098. .get_wptr = sdma_v2_4_ring_get_wptr,
  1099. .set_wptr = sdma_v2_4_ring_set_wptr,
  1100. .parse_cs = NULL,
  1101. .emit_ib = sdma_v2_4_ring_emit_ib,
  1102. .emit_fence = sdma_v2_4_ring_emit_fence,
  1103. .emit_pipeline_sync = sdma_v2_4_ring_emit_pipeline_sync,
  1104. .emit_vm_flush = sdma_v2_4_ring_emit_vm_flush,
  1105. .emit_hdp_flush = sdma_v2_4_ring_emit_hdp_flush,
  1106. .emit_hdp_invalidate = sdma_v2_4_ring_emit_hdp_invalidate,
  1107. .test_ring = sdma_v2_4_ring_test_ring,
  1108. .test_ib = sdma_v2_4_ring_test_ib,
  1109. .insert_nop = sdma_v2_4_ring_insert_nop,
  1110. .pad_ib = sdma_v2_4_ring_pad_ib,
  1111. };
  1112. static void sdma_v2_4_set_ring_funcs(struct amdgpu_device *adev)
  1113. {
  1114. int i;
  1115. for (i = 0; i < adev->sdma.num_instances; i++)
  1116. adev->sdma.instance[i].ring.funcs = &sdma_v2_4_ring_funcs;
  1117. }
  1118. static const struct amdgpu_irq_src_funcs sdma_v2_4_trap_irq_funcs = {
  1119. .set = sdma_v2_4_set_trap_irq_state,
  1120. .process = sdma_v2_4_process_trap_irq,
  1121. };
  1122. static const struct amdgpu_irq_src_funcs sdma_v2_4_illegal_inst_irq_funcs = {
  1123. .process = sdma_v2_4_process_illegal_inst_irq,
  1124. };
  1125. static void sdma_v2_4_set_irq_funcs(struct amdgpu_device *adev)
  1126. {
  1127. adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
  1128. adev->sdma.trap_irq.funcs = &sdma_v2_4_trap_irq_funcs;
  1129. adev->sdma.illegal_inst_irq.funcs = &sdma_v2_4_illegal_inst_irq_funcs;
  1130. }
  1131. /**
  1132. * sdma_v2_4_emit_copy_buffer - copy buffer using the sDMA engine
  1133. *
  1134. * @ring: amdgpu_ring structure holding ring information
  1135. * @src_offset: src GPU address
  1136. * @dst_offset: dst GPU address
  1137. * @byte_count: number of bytes to xfer
  1138. *
  1139. * Copy GPU buffers using the DMA engine (VI).
  1140. * Used by the amdgpu ttm implementation to move pages if
  1141. * registered as the asic copy callback.
  1142. */
  1143. static void sdma_v2_4_emit_copy_buffer(struct amdgpu_ib *ib,
  1144. uint64_t src_offset,
  1145. uint64_t dst_offset,
  1146. uint32_t byte_count)
  1147. {
  1148. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
  1149. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
  1150. ib->ptr[ib->length_dw++] = byte_count;
  1151. ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
  1152. ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
  1153. ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
  1154. ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
  1155. ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
  1156. }
  1157. /**
  1158. * sdma_v2_4_emit_fill_buffer - fill buffer using the sDMA engine
  1159. *
  1160. * @ring: amdgpu_ring structure holding ring information
  1161. * @src_data: value to write to buffer
  1162. * @dst_offset: dst GPU address
  1163. * @byte_count: number of bytes to xfer
  1164. *
  1165. * Fill GPU buffers using the DMA engine (VI).
  1166. */
  1167. static void sdma_v2_4_emit_fill_buffer(struct amdgpu_ib *ib,
  1168. uint32_t src_data,
  1169. uint64_t dst_offset,
  1170. uint32_t byte_count)
  1171. {
  1172. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
  1173. ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
  1174. ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
  1175. ib->ptr[ib->length_dw++] = src_data;
  1176. ib->ptr[ib->length_dw++] = byte_count;
  1177. }
  1178. static const struct amdgpu_buffer_funcs sdma_v2_4_buffer_funcs = {
  1179. .copy_max_bytes = 0x1fffff,
  1180. .copy_num_dw = 7,
  1181. .emit_copy_buffer = sdma_v2_4_emit_copy_buffer,
  1182. .fill_max_bytes = 0x1fffff,
  1183. .fill_num_dw = 7,
  1184. .emit_fill_buffer = sdma_v2_4_emit_fill_buffer,
  1185. };
  1186. static void sdma_v2_4_set_buffer_funcs(struct amdgpu_device *adev)
  1187. {
  1188. if (adev->mman.buffer_funcs == NULL) {
  1189. adev->mman.buffer_funcs = &sdma_v2_4_buffer_funcs;
  1190. adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
  1191. }
  1192. }
  1193. static const struct amdgpu_vm_pte_funcs sdma_v2_4_vm_pte_funcs = {
  1194. .copy_pte = sdma_v2_4_vm_copy_pte,
  1195. .write_pte = sdma_v2_4_vm_write_pte,
  1196. .set_pte_pde = sdma_v2_4_vm_set_pte_pde,
  1197. };
  1198. static void sdma_v2_4_set_vm_pte_funcs(struct amdgpu_device *adev)
  1199. {
  1200. unsigned i;
  1201. if (adev->vm_manager.vm_pte_funcs == NULL) {
  1202. adev->vm_manager.vm_pte_funcs = &sdma_v2_4_vm_pte_funcs;
  1203. for (i = 0; i < adev->sdma.num_instances; i++)
  1204. adev->vm_manager.vm_pte_rings[i] =
  1205. &adev->sdma.instance[i].ring;
  1206. adev->vm_manager.vm_pte_num_rings = adev->sdma.num_instances;
  1207. }
  1208. }