dmaengine.c 31 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204
  1. /*
  2. * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or modify it
  5. * under the terms of the GNU General Public License as published by the Free
  6. * Software Foundation; either version 2 of the License, or (at your option)
  7. * any later version.
  8. *
  9. * This program is distributed in the hope that it will be useful, but WITHOUT
  10. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  12. * more details.
  13. *
  14. * The full GNU General Public License is included in this distribution in the
  15. * file called COPYING.
  16. */
  17. /*
  18. * This code implements the DMA subsystem. It provides a HW-neutral interface
  19. * for other kernel code to use asynchronous memory copy capabilities,
  20. * if present, and allows different HW DMA drivers to register as providing
  21. * this capability.
  22. *
  23. * Due to the fact we are accelerating what is already a relatively fast
  24. * operation, the code goes to great lengths to avoid additional overhead,
  25. * such as locking.
  26. *
  27. * LOCKING:
  28. *
  29. * The subsystem keeps a global list of dma_device structs it is protected by a
  30. * mutex, dma_list_mutex.
  31. *
  32. * A subsystem can get access to a channel by calling dmaengine_get() followed
  33. * by dma_find_channel(), or if it has need for an exclusive channel it can call
  34. * dma_request_channel(). Once a channel is allocated a reference is taken
  35. * against its corresponding driver to disable removal.
  36. *
  37. * Each device has a channels list, which runs unlocked but is never modified
  38. * once the device is registered, it's just setup by the driver.
  39. *
  40. * See Documentation/dmaengine.txt for more details
  41. */
  42. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  43. #include <linux/dma-mapping.h>
  44. #include <linux/init.h>
  45. #include <linux/module.h>
  46. #include <linux/mm.h>
  47. #include <linux/device.h>
  48. #include <linux/dmaengine.h>
  49. #include <linux/hardirq.h>
  50. #include <linux/spinlock.h>
  51. #include <linux/percpu.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/mutex.h>
  54. #include <linux/jiffies.h>
  55. #include <linux/rculist.h>
  56. #include <linux/idr.h>
  57. #include <linux/slab.h>
  58. #include <linux/acpi.h>
  59. #include <linux/acpi_dma.h>
  60. #include <linux/of_dma.h>
  61. #include <linux/mempool.h>
  62. static DEFINE_MUTEX(dma_list_mutex);
  63. static DEFINE_IDR(dma_idr);
  64. static LIST_HEAD(dma_device_list);
  65. static long dmaengine_ref_count;
  66. /* --- sysfs implementation --- */
  67. /**
  68. * dev_to_dma_chan - convert a device pointer to the its sysfs container object
  69. * @dev - device node
  70. *
  71. * Must be called under dma_list_mutex
  72. */
  73. static struct dma_chan *dev_to_dma_chan(struct device *dev)
  74. {
  75. struct dma_chan_dev *chan_dev;
  76. chan_dev = container_of(dev, typeof(*chan_dev), device);
  77. return chan_dev->chan;
  78. }
  79. static ssize_t memcpy_count_show(struct device *dev,
  80. struct device_attribute *attr, char *buf)
  81. {
  82. struct dma_chan *chan;
  83. unsigned long count = 0;
  84. int i;
  85. int err;
  86. mutex_lock(&dma_list_mutex);
  87. chan = dev_to_dma_chan(dev);
  88. if (chan) {
  89. for_each_possible_cpu(i)
  90. count += per_cpu_ptr(chan->local, i)->memcpy_count;
  91. err = sprintf(buf, "%lu\n", count);
  92. } else
  93. err = -ENODEV;
  94. mutex_unlock(&dma_list_mutex);
  95. return err;
  96. }
  97. static DEVICE_ATTR_RO(memcpy_count);
  98. static ssize_t bytes_transferred_show(struct device *dev,
  99. struct device_attribute *attr, char *buf)
  100. {
  101. struct dma_chan *chan;
  102. unsigned long count = 0;
  103. int i;
  104. int err;
  105. mutex_lock(&dma_list_mutex);
  106. chan = dev_to_dma_chan(dev);
  107. if (chan) {
  108. for_each_possible_cpu(i)
  109. count += per_cpu_ptr(chan->local, i)->bytes_transferred;
  110. err = sprintf(buf, "%lu\n", count);
  111. } else
  112. err = -ENODEV;
  113. mutex_unlock(&dma_list_mutex);
  114. return err;
  115. }
  116. static DEVICE_ATTR_RO(bytes_transferred);
  117. static ssize_t in_use_show(struct device *dev, struct device_attribute *attr,
  118. char *buf)
  119. {
  120. struct dma_chan *chan;
  121. int err;
  122. mutex_lock(&dma_list_mutex);
  123. chan = dev_to_dma_chan(dev);
  124. if (chan)
  125. err = sprintf(buf, "%d\n", chan->client_count);
  126. else
  127. err = -ENODEV;
  128. mutex_unlock(&dma_list_mutex);
  129. return err;
  130. }
  131. static DEVICE_ATTR_RO(in_use);
  132. static struct attribute *dma_dev_attrs[] = {
  133. &dev_attr_memcpy_count.attr,
  134. &dev_attr_bytes_transferred.attr,
  135. &dev_attr_in_use.attr,
  136. NULL,
  137. };
  138. ATTRIBUTE_GROUPS(dma_dev);
  139. static void chan_dev_release(struct device *dev)
  140. {
  141. struct dma_chan_dev *chan_dev;
  142. chan_dev = container_of(dev, typeof(*chan_dev), device);
  143. if (atomic_dec_and_test(chan_dev->idr_ref)) {
  144. mutex_lock(&dma_list_mutex);
  145. idr_remove(&dma_idr, chan_dev->dev_id);
  146. mutex_unlock(&dma_list_mutex);
  147. kfree(chan_dev->idr_ref);
  148. }
  149. kfree(chan_dev);
  150. }
  151. static struct class dma_devclass = {
  152. .name = "dma",
  153. .dev_groups = dma_dev_groups,
  154. .dev_release = chan_dev_release,
  155. };
  156. /* --- client and device registration --- */
  157. #define dma_device_satisfies_mask(device, mask) \
  158. __dma_device_satisfies_mask((device), &(mask))
  159. static int
  160. __dma_device_satisfies_mask(struct dma_device *device,
  161. const dma_cap_mask_t *want)
  162. {
  163. dma_cap_mask_t has;
  164. bitmap_and(has.bits, want->bits, device->cap_mask.bits,
  165. DMA_TX_TYPE_END);
  166. return bitmap_equal(want->bits, has.bits, DMA_TX_TYPE_END);
  167. }
  168. static struct module *dma_chan_to_owner(struct dma_chan *chan)
  169. {
  170. return chan->device->dev->driver->owner;
  171. }
  172. /**
  173. * balance_ref_count - catch up the channel reference count
  174. * @chan - channel to balance ->client_count versus dmaengine_ref_count
  175. *
  176. * balance_ref_count must be called under dma_list_mutex
  177. */
  178. static void balance_ref_count(struct dma_chan *chan)
  179. {
  180. struct module *owner = dma_chan_to_owner(chan);
  181. while (chan->client_count < dmaengine_ref_count) {
  182. __module_get(owner);
  183. chan->client_count++;
  184. }
  185. }
  186. /**
  187. * dma_chan_get - try to grab a dma channel's parent driver module
  188. * @chan - channel to grab
  189. *
  190. * Must be called under dma_list_mutex
  191. */
  192. static int dma_chan_get(struct dma_chan *chan)
  193. {
  194. struct module *owner = dma_chan_to_owner(chan);
  195. int ret;
  196. /* The channel is already in use, update client count */
  197. if (chan->client_count) {
  198. __module_get(owner);
  199. goto out;
  200. }
  201. if (!try_module_get(owner))
  202. return -ENODEV;
  203. /* allocate upon first client reference */
  204. if (chan->device->device_alloc_chan_resources) {
  205. ret = chan->device->device_alloc_chan_resources(chan);
  206. if (ret < 0)
  207. goto err_out;
  208. }
  209. if (!dma_has_cap(DMA_PRIVATE, chan->device->cap_mask))
  210. balance_ref_count(chan);
  211. out:
  212. chan->client_count++;
  213. return 0;
  214. err_out:
  215. module_put(owner);
  216. return ret;
  217. }
  218. /**
  219. * dma_chan_put - drop a reference to a dma channel's parent driver module
  220. * @chan - channel to release
  221. *
  222. * Must be called under dma_list_mutex
  223. */
  224. static void dma_chan_put(struct dma_chan *chan)
  225. {
  226. /* This channel is not in use, bail out */
  227. if (!chan->client_count)
  228. return;
  229. chan->client_count--;
  230. module_put(dma_chan_to_owner(chan));
  231. /* This channel is not in use anymore, free it */
  232. if (!chan->client_count && chan->device->device_free_chan_resources)
  233. chan->device->device_free_chan_resources(chan);
  234. /* If the channel is used via a DMA request router, free the mapping */
  235. if (chan->router && chan->router->route_free) {
  236. chan->router->route_free(chan->router->dev, chan->route_data);
  237. chan->router = NULL;
  238. chan->route_data = NULL;
  239. }
  240. }
  241. enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
  242. {
  243. enum dma_status status;
  244. unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
  245. dma_async_issue_pending(chan);
  246. do {
  247. status = dma_async_is_tx_complete(chan, cookie, NULL, NULL);
  248. if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
  249. pr_err("%s: timeout!\n", __func__);
  250. return DMA_ERROR;
  251. }
  252. if (status != DMA_IN_PROGRESS)
  253. break;
  254. cpu_relax();
  255. } while (1);
  256. return status;
  257. }
  258. EXPORT_SYMBOL(dma_sync_wait);
  259. /**
  260. * dma_cap_mask_all - enable iteration over all operation types
  261. */
  262. static dma_cap_mask_t dma_cap_mask_all;
  263. /**
  264. * dma_chan_tbl_ent - tracks channel allocations per core/operation
  265. * @chan - associated channel for this entry
  266. */
  267. struct dma_chan_tbl_ent {
  268. struct dma_chan *chan;
  269. };
  270. /**
  271. * channel_table - percpu lookup table for memory-to-memory offload providers
  272. */
  273. static struct dma_chan_tbl_ent __percpu *channel_table[DMA_TX_TYPE_END];
  274. static int __init dma_channel_table_init(void)
  275. {
  276. enum dma_transaction_type cap;
  277. int err = 0;
  278. bitmap_fill(dma_cap_mask_all.bits, DMA_TX_TYPE_END);
  279. /* 'interrupt', 'private', and 'slave' are channel capabilities,
  280. * but are not associated with an operation so they do not need
  281. * an entry in the channel_table
  282. */
  283. clear_bit(DMA_INTERRUPT, dma_cap_mask_all.bits);
  284. clear_bit(DMA_PRIVATE, dma_cap_mask_all.bits);
  285. clear_bit(DMA_SLAVE, dma_cap_mask_all.bits);
  286. for_each_dma_cap_mask(cap, dma_cap_mask_all) {
  287. channel_table[cap] = alloc_percpu(struct dma_chan_tbl_ent);
  288. if (!channel_table[cap]) {
  289. err = -ENOMEM;
  290. break;
  291. }
  292. }
  293. if (err) {
  294. pr_err("initialization failure\n");
  295. for_each_dma_cap_mask(cap, dma_cap_mask_all)
  296. free_percpu(channel_table[cap]);
  297. }
  298. return err;
  299. }
  300. arch_initcall(dma_channel_table_init);
  301. /**
  302. * dma_find_channel - find a channel to carry out the operation
  303. * @tx_type: transaction type
  304. */
  305. struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
  306. {
  307. return this_cpu_read(channel_table[tx_type]->chan);
  308. }
  309. EXPORT_SYMBOL(dma_find_channel);
  310. /**
  311. * dma_issue_pending_all - flush all pending operations across all channels
  312. */
  313. void dma_issue_pending_all(void)
  314. {
  315. struct dma_device *device;
  316. struct dma_chan *chan;
  317. rcu_read_lock();
  318. list_for_each_entry_rcu(device, &dma_device_list, global_node) {
  319. if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
  320. continue;
  321. list_for_each_entry(chan, &device->channels, device_node)
  322. if (chan->client_count)
  323. device->device_issue_pending(chan);
  324. }
  325. rcu_read_unlock();
  326. }
  327. EXPORT_SYMBOL(dma_issue_pending_all);
  328. /**
  329. * dma_chan_is_local - returns true if the channel is in the same numa-node as the cpu
  330. */
  331. static bool dma_chan_is_local(struct dma_chan *chan, int cpu)
  332. {
  333. int node = dev_to_node(chan->device->dev);
  334. return node == -1 || cpumask_test_cpu(cpu, cpumask_of_node(node));
  335. }
  336. /**
  337. * min_chan - returns the channel with min count and in the same numa-node as the cpu
  338. * @cap: capability to match
  339. * @cpu: cpu index which the channel should be close to
  340. *
  341. * If some channels are close to the given cpu, the one with the lowest
  342. * reference count is returned. Otherwise, cpu is ignored and only the
  343. * reference count is taken into account.
  344. * Must be called under dma_list_mutex.
  345. */
  346. static struct dma_chan *min_chan(enum dma_transaction_type cap, int cpu)
  347. {
  348. struct dma_device *device;
  349. struct dma_chan *chan;
  350. struct dma_chan *min = NULL;
  351. struct dma_chan *localmin = NULL;
  352. list_for_each_entry(device, &dma_device_list, global_node) {
  353. if (!dma_has_cap(cap, device->cap_mask) ||
  354. dma_has_cap(DMA_PRIVATE, device->cap_mask))
  355. continue;
  356. list_for_each_entry(chan, &device->channels, device_node) {
  357. if (!chan->client_count)
  358. continue;
  359. if (!min || chan->table_count < min->table_count)
  360. min = chan;
  361. if (dma_chan_is_local(chan, cpu))
  362. if (!localmin ||
  363. chan->table_count < localmin->table_count)
  364. localmin = chan;
  365. }
  366. }
  367. chan = localmin ? localmin : min;
  368. if (chan)
  369. chan->table_count++;
  370. return chan;
  371. }
  372. /**
  373. * dma_channel_rebalance - redistribute the available channels
  374. *
  375. * Optimize for cpu isolation (each cpu gets a dedicated channel for an
  376. * operation type) in the SMP case, and operation isolation (avoid
  377. * multi-tasking channels) in the non-SMP case. Must be called under
  378. * dma_list_mutex.
  379. */
  380. static void dma_channel_rebalance(void)
  381. {
  382. struct dma_chan *chan;
  383. struct dma_device *device;
  384. int cpu;
  385. int cap;
  386. /* undo the last distribution */
  387. for_each_dma_cap_mask(cap, dma_cap_mask_all)
  388. for_each_possible_cpu(cpu)
  389. per_cpu_ptr(channel_table[cap], cpu)->chan = NULL;
  390. list_for_each_entry(device, &dma_device_list, global_node) {
  391. if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
  392. continue;
  393. list_for_each_entry(chan, &device->channels, device_node)
  394. chan->table_count = 0;
  395. }
  396. /* don't populate the channel_table if no clients are available */
  397. if (!dmaengine_ref_count)
  398. return;
  399. /* redistribute available channels */
  400. for_each_dma_cap_mask(cap, dma_cap_mask_all)
  401. for_each_online_cpu(cpu) {
  402. chan = min_chan(cap, cpu);
  403. per_cpu_ptr(channel_table[cap], cpu)->chan = chan;
  404. }
  405. }
  406. int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps)
  407. {
  408. struct dma_device *device;
  409. if (!chan || !caps)
  410. return -EINVAL;
  411. device = chan->device;
  412. /* check if the channel supports slave transactions */
  413. if (!test_bit(DMA_SLAVE, device->cap_mask.bits))
  414. return -ENXIO;
  415. /*
  416. * Check whether it reports it uses the generic slave
  417. * capabilities, if not, that means it doesn't support any
  418. * kind of slave capabilities reporting.
  419. */
  420. if (!device->directions)
  421. return -ENXIO;
  422. caps->src_addr_widths = device->src_addr_widths;
  423. caps->dst_addr_widths = device->dst_addr_widths;
  424. caps->directions = device->directions;
  425. caps->residue_granularity = device->residue_granularity;
  426. /*
  427. * Some devices implement only pause (e.g. to get residuum) but no
  428. * resume. However cmd_pause is advertised as pause AND resume.
  429. */
  430. caps->cmd_pause = !!(device->device_pause && device->device_resume);
  431. caps->cmd_terminate = !!device->device_terminate_all;
  432. return 0;
  433. }
  434. EXPORT_SYMBOL_GPL(dma_get_slave_caps);
  435. static struct dma_chan *private_candidate(const dma_cap_mask_t *mask,
  436. struct dma_device *dev,
  437. dma_filter_fn fn, void *fn_param)
  438. {
  439. struct dma_chan *chan;
  440. if (!__dma_device_satisfies_mask(dev, mask)) {
  441. pr_debug("%s: wrong capabilities\n", __func__);
  442. return NULL;
  443. }
  444. /* devices with multiple channels need special handling as we need to
  445. * ensure that all channels are either private or public.
  446. */
  447. if (dev->chancnt > 1 && !dma_has_cap(DMA_PRIVATE, dev->cap_mask))
  448. list_for_each_entry(chan, &dev->channels, device_node) {
  449. /* some channels are already publicly allocated */
  450. if (chan->client_count)
  451. return NULL;
  452. }
  453. list_for_each_entry(chan, &dev->channels, device_node) {
  454. if (chan->client_count) {
  455. pr_debug("%s: %s busy\n",
  456. __func__, dma_chan_name(chan));
  457. continue;
  458. }
  459. if (fn && !fn(chan, fn_param)) {
  460. pr_debug("%s: %s filter said false\n",
  461. __func__, dma_chan_name(chan));
  462. continue;
  463. }
  464. return chan;
  465. }
  466. return NULL;
  467. }
  468. /**
  469. * dma_get_slave_channel - try to get specific channel exclusively
  470. * @chan: target channel
  471. */
  472. struct dma_chan *dma_get_slave_channel(struct dma_chan *chan)
  473. {
  474. int err = -EBUSY;
  475. /* lock against __dma_request_channel */
  476. mutex_lock(&dma_list_mutex);
  477. if (chan->client_count == 0) {
  478. err = dma_chan_get(chan);
  479. if (err)
  480. pr_debug("%s: failed to get %s: (%d)\n",
  481. __func__, dma_chan_name(chan), err);
  482. } else
  483. chan = NULL;
  484. mutex_unlock(&dma_list_mutex);
  485. return chan;
  486. }
  487. EXPORT_SYMBOL_GPL(dma_get_slave_channel);
  488. struct dma_chan *dma_get_any_slave_channel(struct dma_device *device)
  489. {
  490. dma_cap_mask_t mask;
  491. struct dma_chan *chan;
  492. int err;
  493. dma_cap_zero(mask);
  494. dma_cap_set(DMA_SLAVE, mask);
  495. /* lock against __dma_request_channel */
  496. mutex_lock(&dma_list_mutex);
  497. chan = private_candidate(&mask, device, NULL, NULL);
  498. if (chan) {
  499. dma_cap_set(DMA_PRIVATE, device->cap_mask);
  500. device->privatecnt++;
  501. err = dma_chan_get(chan);
  502. if (err) {
  503. pr_debug("%s: failed to get %s: (%d)\n",
  504. __func__, dma_chan_name(chan), err);
  505. chan = NULL;
  506. if (--device->privatecnt == 0)
  507. dma_cap_clear(DMA_PRIVATE, device->cap_mask);
  508. }
  509. }
  510. mutex_unlock(&dma_list_mutex);
  511. return chan;
  512. }
  513. EXPORT_SYMBOL_GPL(dma_get_any_slave_channel);
  514. /**
  515. * __dma_request_channel - try to allocate an exclusive channel
  516. * @mask: capabilities that the channel must satisfy
  517. * @fn: optional callback to disposition available channels
  518. * @fn_param: opaque parameter to pass to dma_filter_fn
  519. *
  520. * Returns pointer to appropriate DMA channel on success or NULL.
  521. */
  522. struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
  523. dma_filter_fn fn, void *fn_param)
  524. {
  525. struct dma_device *device, *_d;
  526. struct dma_chan *chan = NULL;
  527. int err;
  528. /* Find a channel */
  529. mutex_lock(&dma_list_mutex);
  530. list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
  531. chan = private_candidate(mask, device, fn, fn_param);
  532. if (chan) {
  533. /* Found a suitable channel, try to grab, prep, and
  534. * return it. We first set DMA_PRIVATE to disable
  535. * balance_ref_count as this channel will not be
  536. * published in the general-purpose allocator
  537. */
  538. dma_cap_set(DMA_PRIVATE, device->cap_mask);
  539. device->privatecnt++;
  540. err = dma_chan_get(chan);
  541. if (err == -ENODEV) {
  542. pr_debug("%s: %s module removed\n",
  543. __func__, dma_chan_name(chan));
  544. list_del_rcu(&device->global_node);
  545. } else if (err)
  546. pr_debug("%s: failed to get %s: (%d)\n",
  547. __func__, dma_chan_name(chan), err);
  548. else
  549. break;
  550. if (--device->privatecnt == 0)
  551. dma_cap_clear(DMA_PRIVATE, device->cap_mask);
  552. chan = NULL;
  553. }
  554. }
  555. mutex_unlock(&dma_list_mutex);
  556. pr_debug("%s: %s (%s)\n",
  557. __func__,
  558. chan ? "success" : "fail",
  559. chan ? dma_chan_name(chan) : NULL);
  560. return chan;
  561. }
  562. EXPORT_SYMBOL_GPL(__dma_request_channel);
  563. /**
  564. * dma_request_slave_channel_reason - try to allocate an exclusive slave channel
  565. * @dev: pointer to client device structure
  566. * @name: slave channel name
  567. *
  568. * Returns pointer to appropriate DMA channel on success or an error pointer.
  569. */
  570. struct dma_chan *dma_request_slave_channel_reason(struct device *dev,
  571. const char *name)
  572. {
  573. /* If device-tree is present get slave info from here */
  574. if (dev->of_node)
  575. return of_dma_request_slave_channel(dev->of_node, name);
  576. /* If device was enumerated by ACPI get slave info from here */
  577. if (ACPI_HANDLE(dev))
  578. return acpi_dma_request_slave_chan_by_name(dev, name);
  579. return ERR_PTR(-ENODEV);
  580. }
  581. EXPORT_SYMBOL_GPL(dma_request_slave_channel_reason);
  582. /**
  583. * dma_request_slave_channel - try to allocate an exclusive slave channel
  584. * @dev: pointer to client device structure
  585. * @name: slave channel name
  586. *
  587. * Returns pointer to appropriate DMA channel on success or NULL.
  588. */
  589. struct dma_chan *dma_request_slave_channel(struct device *dev,
  590. const char *name)
  591. {
  592. struct dma_chan *ch = dma_request_slave_channel_reason(dev, name);
  593. if (IS_ERR(ch))
  594. return NULL;
  595. dma_cap_set(DMA_PRIVATE, ch->device->cap_mask);
  596. ch->device->privatecnt++;
  597. return ch;
  598. }
  599. EXPORT_SYMBOL_GPL(dma_request_slave_channel);
  600. void dma_release_channel(struct dma_chan *chan)
  601. {
  602. mutex_lock(&dma_list_mutex);
  603. WARN_ONCE(chan->client_count != 1,
  604. "chan reference count %d != 1\n", chan->client_count);
  605. dma_chan_put(chan);
  606. /* drop PRIVATE cap enabled by __dma_request_channel() */
  607. if (--chan->device->privatecnt == 0)
  608. dma_cap_clear(DMA_PRIVATE, chan->device->cap_mask);
  609. mutex_unlock(&dma_list_mutex);
  610. }
  611. EXPORT_SYMBOL_GPL(dma_release_channel);
  612. /**
  613. * dmaengine_get - register interest in dma_channels
  614. */
  615. void dmaengine_get(void)
  616. {
  617. struct dma_device *device, *_d;
  618. struct dma_chan *chan;
  619. int err;
  620. mutex_lock(&dma_list_mutex);
  621. dmaengine_ref_count++;
  622. /* try to grab channels */
  623. list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
  624. if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
  625. continue;
  626. list_for_each_entry(chan, &device->channels, device_node) {
  627. err = dma_chan_get(chan);
  628. if (err == -ENODEV) {
  629. /* module removed before we could use it */
  630. list_del_rcu(&device->global_node);
  631. break;
  632. } else if (err)
  633. pr_debug("%s: failed to get %s: (%d)\n",
  634. __func__, dma_chan_name(chan), err);
  635. }
  636. }
  637. /* if this is the first reference and there were channels
  638. * waiting we need to rebalance to get those channels
  639. * incorporated into the channel table
  640. */
  641. if (dmaengine_ref_count == 1)
  642. dma_channel_rebalance();
  643. mutex_unlock(&dma_list_mutex);
  644. }
  645. EXPORT_SYMBOL(dmaengine_get);
  646. /**
  647. * dmaengine_put - let dma drivers be removed when ref_count == 0
  648. */
  649. void dmaengine_put(void)
  650. {
  651. struct dma_device *device;
  652. struct dma_chan *chan;
  653. mutex_lock(&dma_list_mutex);
  654. dmaengine_ref_count--;
  655. BUG_ON(dmaengine_ref_count < 0);
  656. /* drop channel references */
  657. list_for_each_entry(device, &dma_device_list, global_node) {
  658. if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
  659. continue;
  660. list_for_each_entry(chan, &device->channels, device_node)
  661. dma_chan_put(chan);
  662. }
  663. mutex_unlock(&dma_list_mutex);
  664. }
  665. EXPORT_SYMBOL(dmaengine_put);
  666. static bool device_has_all_tx_types(struct dma_device *device)
  667. {
  668. /* A device that satisfies this test has channels that will never cause
  669. * an async_tx channel switch event as all possible operation types can
  670. * be handled.
  671. */
  672. #ifdef CONFIG_ASYNC_TX_DMA
  673. if (!dma_has_cap(DMA_INTERRUPT, device->cap_mask))
  674. return false;
  675. #endif
  676. #if defined(CONFIG_ASYNC_MEMCPY) || defined(CONFIG_ASYNC_MEMCPY_MODULE)
  677. if (!dma_has_cap(DMA_MEMCPY, device->cap_mask))
  678. return false;
  679. #endif
  680. #if defined(CONFIG_ASYNC_XOR) || defined(CONFIG_ASYNC_XOR_MODULE)
  681. if (!dma_has_cap(DMA_XOR, device->cap_mask))
  682. return false;
  683. #ifndef CONFIG_ASYNC_TX_DISABLE_XOR_VAL_DMA
  684. if (!dma_has_cap(DMA_XOR_VAL, device->cap_mask))
  685. return false;
  686. #endif
  687. #endif
  688. #if defined(CONFIG_ASYNC_PQ) || defined(CONFIG_ASYNC_PQ_MODULE)
  689. if (!dma_has_cap(DMA_PQ, device->cap_mask))
  690. return false;
  691. #ifndef CONFIG_ASYNC_TX_DISABLE_PQ_VAL_DMA
  692. if (!dma_has_cap(DMA_PQ_VAL, device->cap_mask))
  693. return false;
  694. #endif
  695. #endif
  696. return true;
  697. }
  698. static int get_dma_id(struct dma_device *device)
  699. {
  700. int rc;
  701. mutex_lock(&dma_list_mutex);
  702. rc = idr_alloc(&dma_idr, NULL, 0, 0, GFP_KERNEL);
  703. if (rc >= 0)
  704. device->dev_id = rc;
  705. mutex_unlock(&dma_list_mutex);
  706. return rc < 0 ? rc : 0;
  707. }
  708. /**
  709. * dma_async_device_register - registers DMA devices found
  710. * @device: &dma_device
  711. */
  712. int dma_async_device_register(struct dma_device *device)
  713. {
  714. int chancnt = 0, rc;
  715. struct dma_chan* chan;
  716. atomic_t *idr_ref;
  717. if (!device)
  718. return -ENODEV;
  719. /* validate device routines */
  720. BUG_ON(dma_has_cap(DMA_MEMCPY, device->cap_mask) &&
  721. !device->device_prep_dma_memcpy);
  722. BUG_ON(dma_has_cap(DMA_XOR, device->cap_mask) &&
  723. !device->device_prep_dma_xor);
  724. BUG_ON(dma_has_cap(DMA_XOR_VAL, device->cap_mask) &&
  725. !device->device_prep_dma_xor_val);
  726. BUG_ON(dma_has_cap(DMA_PQ, device->cap_mask) &&
  727. !device->device_prep_dma_pq);
  728. BUG_ON(dma_has_cap(DMA_PQ_VAL, device->cap_mask) &&
  729. !device->device_prep_dma_pq_val);
  730. BUG_ON(dma_has_cap(DMA_MEMSET, device->cap_mask) &&
  731. !device->device_prep_dma_memset);
  732. BUG_ON(dma_has_cap(DMA_INTERRUPT, device->cap_mask) &&
  733. !device->device_prep_dma_interrupt);
  734. BUG_ON(dma_has_cap(DMA_SG, device->cap_mask) &&
  735. !device->device_prep_dma_sg);
  736. BUG_ON(dma_has_cap(DMA_CYCLIC, device->cap_mask) &&
  737. !device->device_prep_dma_cyclic);
  738. BUG_ON(dma_has_cap(DMA_INTERLEAVE, device->cap_mask) &&
  739. !device->device_prep_interleaved_dma);
  740. BUG_ON(!device->device_tx_status);
  741. BUG_ON(!device->device_issue_pending);
  742. BUG_ON(!device->dev);
  743. /* note: this only matters in the
  744. * CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH=n case
  745. */
  746. if (device_has_all_tx_types(device))
  747. dma_cap_set(DMA_ASYNC_TX, device->cap_mask);
  748. idr_ref = kmalloc(sizeof(*idr_ref), GFP_KERNEL);
  749. if (!idr_ref)
  750. return -ENOMEM;
  751. rc = get_dma_id(device);
  752. if (rc != 0) {
  753. kfree(idr_ref);
  754. return rc;
  755. }
  756. atomic_set(idr_ref, 0);
  757. /* represent channels in sysfs. Probably want devs too */
  758. list_for_each_entry(chan, &device->channels, device_node) {
  759. rc = -ENOMEM;
  760. chan->local = alloc_percpu(typeof(*chan->local));
  761. if (chan->local == NULL)
  762. goto err_out;
  763. chan->dev = kzalloc(sizeof(*chan->dev), GFP_KERNEL);
  764. if (chan->dev == NULL) {
  765. free_percpu(chan->local);
  766. chan->local = NULL;
  767. goto err_out;
  768. }
  769. chan->chan_id = chancnt++;
  770. chan->dev->device.class = &dma_devclass;
  771. chan->dev->device.parent = device->dev;
  772. chan->dev->chan = chan;
  773. chan->dev->idr_ref = idr_ref;
  774. chan->dev->dev_id = device->dev_id;
  775. atomic_inc(idr_ref);
  776. dev_set_name(&chan->dev->device, "dma%dchan%d",
  777. device->dev_id, chan->chan_id);
  778. rc = device_register(&chan->dev->device);
  779. if (rc) {
  780. free_percpu(chan->local);
  781. chan->local = NULL;
  782. kfree(chan->dev);
  783. atomic_dec(idr_ref);
  784. goto err_out;
  785. }
  786. chan->client_count = 0;
  787. }
  788. device->chancnt = chancnt;
  789. mutex_lock(&dma_list_mutex);
  790. /* take references on public channels */
  791. if (dmaengine_ref_count && !dma_has_cap(DMA_PRIVATE, device->cap_mask))
  792. list_for_each_entry(chan, &device->channels, device_node) {
  793. /* if clients are already waiting for channels we need
  794. * to take references on their behalf
  795. */
  796. if (dma_chan_get(chan) == -ENODEV) {
  797. /* note we can only get here for the first
  798. * channel as the remaining channels are
  799. * guaranteed to get a reference
  800. */
  801. rc = -ENODEV;
  802. mutex_unlock(&dma_list_mutex);
  803. goto err_out;
  804. }
  805. }
  806. list_add_tail_rcu(&device->global_node, &dma_device_list);
  807. if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
  808. device->privatecnt++; /* Always private */
  809. dma_channel_rebalance();
  810. mutex_unlock(&dma_list_mutex);
  811. return 0;
  812. err_out:
  813. /* if we never registered a channel just release the idr */
  814. if (atomic_read(idr_ref) == 0) {
  815. mutex_lock(&dma_list_mutex);
  816. idr_remove(&dma_idr, device->dev_id);
  817. mutex_unlock(&dma_list_mutex);
  818. kfree(idr_ref);
  819. return rc;
  820. }
  821. list_for_each_entry(chan, &device->channels, device_node) {
  822. if (chan->local == NULL)
  823. continue;
  824. mutex_lock(&dma_list_mutex);
  825. chan->dev->chan = NULL;
  826. mutex_unlock(&dma_list_mutex);
  827. device_unregister(&chan->dev->device);
  828. free_percpu(chan->local);
  829. }
  830. return rc;
  831. }
  832. EXPORT_SYMBOL(dma_async_device_register);
  833. /**
  834. * dma_async_device_unregister - unregister a DMA device
  835. * @device: &dma_device
  836. *
  837. * This routine is called by dma driver exit routines, dmaengine holds module
  838. * references to prevent it being called while channels are in use.
  839. */
  840. void dma_async_device_unregister(struct dma_device *device)
  841. {
  842. struct dma_chan *chan;
  843. mutex_lock(&dma_list_mutex);
  844. list_del_rcu(&device->global_node);
  845. dma_channel_rebalance();
  846. mutex_unlock(&dma_list_mutex);
  847. list_for_each_entry(chan, &device->channels, device_node) {
  848. WARN_ONCE(chan->client_count,
  849. "%s called while %d clients hold a reference\n",
  850. __func__, chan->client_count);
  851. mutex_lock(&dma_list_mutex);
  852. chan->dev->chan = NULL;
  853. mutex_unlock(&dma_list_mutex);
  854. device_unregister(&chan->dev->device);
  855. free_percpu(chan->local);
  856. }
  857. }
  858. EXPORT_SYMBOL(dma_async_device_unregister);
  859. struct dmaengine_unmap_pool {
  860. struct kmem_cache *cache;
  861. const char *name;
  862. mempool_t *pool;
  863. size_t size;
  864. };
  865. #define __UNMAP_POOL(x) { .size = x, .name = "dmaengine-unmap-" __stringify(x) }
  866. static struct dmaengine_unmap_pool unmap_pool[] = {
  867. __UNMAP_POOL(2),
  868. #if IS_ENABLED(CONFIG_DMA_ENGINE_RAID)
  869. __UNMAP_POOL(16),
  870. __UNMAP_POOL(128),
  871. __UNMAP_POOL(256),
  872. #endif
  873. };
  874. static struct dmaengine_unmap_pool *__get_unmap_pool(int nr)
  875. {
  876. int order = get_count_order(nr);
  877. switch (order) {
  878. case 0 ... 1:
  879. return &unmap_pool[0];
  880. case 2 ... 4:
  881. return &unmap_pool[1];
  882. case 5 ... 7:
  883. return &unmap_pool[2];
  884. case 8:
  885. return &unmap_pool[3];
  886. default:
  887. BUG();
  888. return NULL;
  889. }
  890. }
  891. static void dmaengine_unmap(struct kref *kref)
  892. {
  893. struct dmaengine_unmap_data *unmap = container_of(kref, typeof(*unmap), kref);
  894. struct device *dev = unmap->dev;
  895. int cnt, i;
  896. cnt = unmap->to_cnt;
  897. for (i = 0; i < cnt; i++)
  898. dma_unmap_page(dev, unmap->addr[i], unmap->len,
  899. DMA_TO_DEVICE);
  900. cnt += unmap->from_cnt;
  901. for (; i < cnt; i++)
  902. dma_unmap_page(dev, unmap->addr[i], unmap->len,
  903. DMA_FROM_DEVICE);
  904. cnt += unmap->bidi_cnt;
  905. for (; i < cnt; i++) {
  906. if (unmap->addr[i] == 0)
  907. continue;
  908. dma_unmap_page(dev, unmap->addr[i], unmap->len,
  909. DMA_BIDIRECTIONAL);
  910. }
  911. cnt = unmap->map_cnt;
  912. mempool_free(unmap, __get_unmap_pool(cnt)->pool);
  913. }
  914. void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
  915. {
  916. if (unmap)
  917. kref_put(&unmap->kref, dmaengine_unmap);
  918. }
  919. EXPORT_SYMBOL_GPL(dmaengine_unmap_put);
  920. static void dmaengine_destroy_unmap_pool(void)
  921. {
  922. int i;
  923. for (i = 0; i < ARRAY_SIZE(unmap_pool); i++) {
  924. struct dmaengine_unmap_pool *p = &unmap_pool[i];
  925. if (p->pool)
  926. mempool_destroy(p->pool);
  927. p->pool = NULL;
  928. if (p->cache)
  929. kmem_cache_destroy(p->cache);
  930. p->cache = NULL;
  931. }
  932. }
  933. static int __init dmaengine_init_unmap_pool(void)
  934. {
  935. int i;
  936. for (i = 0; i < ARRAY_SIZE(unmap_pool); i++) {
  937. struct dmaengine_unmap_pool *p = &unmap_pool[i];
  938. size_t size;
  939. size = sizeof(struct dmaengine_unmap_data) +
  940. sizeof(dma_addr_t) * p->size;
  941. p->cache = kmem_cache_create(p->name, size, 0,
  942. SLAB_HWCACHE_ALIGN, NULL);
  943. if (!p->cache)
  944. break;
  945. p->pool = mempool_create_slab_pool(1, p->cache);
  946. if (!p->pool)
  947. break;
  948. }
  949. if (i == ARRAY_SIZE(unmap_pool))
  950. return 0;
  951. dmaengine_destroy_unmap_pool();
  952. return -ENOMEM;
  953. }
  954. struct dmaengine_unmap_data *
  955. dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
  956. {
  957. struct dmaengine_unmap_data *unmap;
  958. unmap = mempool_alloc(__get_unmap_pool(nr)->pool, flags);
  959. if (!unmap)
  960. return NULL;
  961. memset(unmap, 0, sizeof(*unmap));
  962. kref_init(&unmap->kref);
  963. unmap->dev = dev;
  964. unmap->map_cnt = nr;
  965. return unmap;
  966. }
  967. EXPORT_SYMBOL(dmaengine_get_unmap_data);
  968. void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
  969. struct dma_chan *chan)
  970. {
  971. tx->chan = chan;
  972. #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
  973. spin_lock_init(&tx->lock);
  974. #endif
  975. }
  976. EXPORT_SYMBOL(dma_async_tx_descriptor_init);
  977. /* dma_wait_for_async_tx - spin wait for a transaction to complete
  978. * @tx: in-flight transaction to wait on
  979. */
  980. enum dma_status
  981. dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
  982. {
  983. unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
  984. if (!tx)
  985. return DMA_COMPLETE;
  986. while (tx->cookie == -EBUSY) {
  987. if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
  988. pr_err("%s timeout waiting for descriptor submission\n",
  989. __func__);
  990. return DMA_ERROR;
  991. }
  992. cpu_relax();
  993. }
  994. return dma_sync_wait(tx->chan, tx->cookie);
  995. }
  996. EXPORT_SYMBOL_GPL(dma_wait_for_async_tx);
  997. /* dma_run_dependencies - helper routine for dma drivers to process
  998. * (start) dependent operations on their target channel
  999. * @tx: transaction with dependencies
  1000. */
  1001. void dma_run_dependencies(struct dma_async_tx_descriptor *tx)
  1002. {
  1003. struct dma_async_tx_descriptor *dep = txd_next(tx);
  1004. struct dma_async_tx_descriptor *dep_next;
  1005. struct dma_chan *chan;
  1006. if (!dep)
  1007. return;
  1008. /* we'll submit tx->next now, so clear the link */
  1009. txd_clear_next(tx);
  1010. chan = dep->chan;
  1011. /* keep submitting up until a channel switch is detected
  1012. * in that case we will be called again as a result of
  1013. * processing the interrupt from async_tx_channel_switch
  1014. */
  1015. for (; dep; dep = dep_next) {
  1016. txd_lock(dep);
  1017. txd_clear_parent(dep);
  1018. dep_next = txd_next(dep);
  1019. if (dep_next && dep_next->chan == chan)
  1020. txd_clear_next(dep); /* ->next will be submitted */
  1021. else
  1022. dep_next = NULL; /* submit current dep and terminate */
  1023. txd_unlock(dep);
  1024. dep->tx_submit(dep);
  1025. }
  1026. chan->device->device_issue_pending(chan);
  1027. }
  1028. EXPORT_SYMBOL_GPL(dma_run_dependencies);
  1029. static int __init dma_bus_init(void)
  1030. {
  1031. int err = dmaengine_init_unmap_pool();
  1032. if (err)
  1033. return err;
  1034. return class_register(&dma_devclass);
  1035. }
  1036. arch_initcall(dma_bus_init);