sdma_v4_0.c 52 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728
  1. /*
  2. * Copyright 2016 Advanced Micro Devices, Inc.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice shall be included in
  12. * all copies or substantial portions of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  17. * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20. * OTHER DEALINGS IN THE SOFTWARE.
  21. *
  22. */
  23. #include <linux/firmware.h>
  24. #include <drm/drmP.h>
  25. #include "amdgpu.h"
  26. #include "amdgpu_ucode.h"
  27. #include "amdgpu_trace.h"
  28. #include "vega10/soc15ip.h"
  29. #include "vega10/SDMA0/sdma0_4_0_offset.h"
  30. #include "vega10/SDMA0/sdma0_4_0_sh_mask.h"
  31. #include "vega10/SDMA1/sdma1_4_0_offset.h"
  32. #include "vega10/SDMA1/sdma1_4_0_sh_mask.h"
  33. #include "vega10/MMHUB/mmhub_1_0_offset.h"
  34. #include "vega10/MMHUB/mmhub_1_0_sh_mask.h"
  35. #include "vega10/HDP/hdp_4_0_offset.h"
  36. #include "raven1/SDMA0/sdma0_4_1_default.h"
  37. #include "soc15_common.h"
  38. #include "soc15.h"
  39. #include "vega10_sdma_pkt_open.h"
  40. MODULE_FIRMWARE("amdgpu/vega10_sdma.bin");
  41. MODULE_FIRMWARE("amdgpu/vega10_sdma1.bin");
  42. MODULE_FIRMWARE("amdgpu/raven_sdma.bin");
  43. #define SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK 0x000000F8L
  44. #define SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK 0xFC000000L
  45. static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev);
  46. static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev);
  47. static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev);
  48. static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev);
  49. static const u32 golden_settings_sdma_4[] = {
  50. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CHICKEN_BITS), 0xfe931f07, 0x02831f07,
  51. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL), 0xff000ff0, 0x3f000100,
  52. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_GFX_IB_CNTL), 0x800f0100, 0x00000100,
  53. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL), 0xfffffff7, 0x00403000,
  54. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_PAGE_IB_CNTL), 0x800f0100, 0x00000100,
  55. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL), 0x0000fff0, 0x00403000,
  56. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), 0x003ff006, 0x0003c000,
  57. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL), 0x800f0100, 0x00000100,
  58. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL), 0x0000fff0, 0x00403000,
  59. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL), 0x800f0100, 0x00000100,
  60. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL), 0x0000fff0, 0x00403000,
  61. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_UTCL1_PAGE), 0x000003ff, 0x000003c0,
  62. SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CHICKEN_BITS), 0xfe931f07, 0x02831f07,
  63. SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL), 0xffffffff, 0x3f000100,
  64. SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_GFX_IB_CNTL), 0x800f0100, 0x00000100,
  65. SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL), 0x0000fff0, 0x00403000,
  66. SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_PAGE_IB_CNTL), 0x800f0100, 0x00000100,
  67. SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL), 0x0000fff0, 0x00403000,
  68. SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL), 0x003ff000, 0x0003c000,
  69. SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_RLC0_IB_CNTL), 0x800f0100, 0x00000100,
  70. SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL), 0x0000fff0, 0x00403000,
  71. SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_RLC1_IB_CNTL), 0x800f0100, 0x00000100,
  72. SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL), 0x0000fff0, 0x00403000,
  73. SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_UTCL1_PAGE), 0x000003ff, 0x000003c0
  74. };
  75. static const u32 golden_settings_sdma_vg10[] = {
  76. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG), 0x0018773f, 0x00104002,
  77. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ), 0x0018773f, 0x00104002,
  78. SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG), 0x0018773f, 0x00104002,
  79. SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ), 0x0018773f, 0x00104002
  80. };
  81. static const u32 golden_settings_sdma_4_1[] =
  82. {
  83. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CHICKEN_BITS), 0xfe931f07, 0x02831f07,
  84. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL), 0xffffffff, 0x3f000100,
  85. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_GFX_IB_CNTL), 0x800f0111, 0x00000100,
  86. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL), 0xfffffff7, 0x00403000,
  87. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), 0xfc3fffff, 0x40000051,
  88. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL), 0x800f0111, 0x00000100,
  89. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL), 0xfffffff7, 0x00403000,
  90. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL), 0x800f0111, 0x00000100,
  91. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL), 0xfffffff7, 0x00403000,
  92. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_UTCL1_PAGE), 0x000003ff, 0x000003c0
  93. };
  94. static const u32 golden_settings_sdma_rv1[] =
  95. {
  96. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG), 0x0018773f, 0x00003002,
  97. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ), 0x0018773f, 0x00003002
  98. };
  99. static u32 sdma_v4_0_get_reg_offset(u32 instance, u32 internal_offset)
  100. {
  101. u32 base = 0;
  102. switch (instance) {
  103. case 0:
  104. base = SDMA0_BASE.instance[0].segment[0];
  105. break;
  106. case 1:
  107. base = SDMA1_BASE.instance[0].segment[0];
  108. break;
  109. default:
  110. BUG();
  111. break;
  112. }
  113. return base + internal_offset;
  114. }
  115. static void sdma_v4_0_init_golden_registers(struct amdgpu_device *adev)
  116. {
  117. switch (adev->asic_type) {
  118. case CHIP_VEGA10:
  119. amdgpu_program_register_sequence(adev,
  120. golden_settings_sdma_4,
  121. (const u32)ARRAY_SIZE(golden_settings_sdma_4));
  122. amdgpu_program_register_sequence(adev,
  123. golden_settings_sdma_vg10,
  124. (const u32)ARRAY_SIZE(golden_settings_sdma_vg10));
  125. break;
  126. case CHIP_RAVEN:
  127. amdgpu_program_register_sequence(adev,
  128. golden_settings_sdma_4_1,
  129. (const u32)ARRAY_SIZE(golden_settings_sdma_4_1));
  130. amdgpu_program_register_sequence(adev,
  131. golden_settings_sdma_rv1,
  132. (const u32)ARRAY_SIZE(golden_settings_sdma_rv1));
  133. break;
  134. default:
  135. break;
  136. }
  137. }
  138. static void sdma_v4_0_print_ucode_regs(void *handle)
  139. {
  140. int i;
  141. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  142. dev_info(adev->dev, "VEGA10 SDMA ucode registers\n");
  143. for (i = 0; i < adev->sdma.num_instances; i++) {
  144. dev_info(adev->dev, " SDMA%d_UCODE_ADDR=0x%08X\n",
  145. i, RREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_UCODE_ADDR)));
  146. dev_info(adev->dev, " SDMA%d_UCODE_CHECKSUM=0x%08X\n",
  147. i, RREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_UCODE_CHECKSUM)));
  148. }
  149. }
  150. /**
  151. * sdma_v4_0_init_microcode - load ucode images from disk
  152. *
  153. * @adev: amdgpu_device pointer
  154. *
  155. * Use the firmware interface to load the ucode images into
  156. * the driver (not loaded into hw).
  157. * Returns 0 on success, error on failure.
  158. */
  159. // emulation only, won't work on real chip
  160. // vega10 real chip need to use PSP to load firmware
  161. static int sdma_v4_0_init_microcode(struct amdgpu_device *adev)
  162. {
  163. const char *chip_name;
  164. char fw_name[30];
  165. int err = 0, i;
  166. struct amdgpu_firmware_info *info = NULL;
  167. const struct common_firmware_header *header = NULL;
  168. const struct sdma_firmware_header_v1_0 *hdr;
  169. DRM_DEBUG("\n");
  170. switch (adev->asic_type) {
  171. case CHIP_VEGA10:
  172. chip_name = "vega10";
  173. break;
  174. case CHIP_RAVEN:
  175. chip_name = "raven";
  176. break;
  177. default:
  178. BUG();
  179. }
  180. for (i = 0; i < adev->sdma.num_instances; i++) {
  181. if (i == 0)
  182. snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
  183. else
  184. snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name);
  185. err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
  186. if (err)
  187. goto out;
  188. err = amdgpu_ucode_validate(adev->sdma.instance[i].fw);
  189. if (err)
  190. goto out;
  191. hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
  192. adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
  193. adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version);
  194. if (adev->sdma.instance[i].feature_version >= 20)
  195. adev->sdma.instance[i].burst_nop = true;
  196. DRM_DEBUG("psp_load == '%s'\n",
  197. adev->firmware.load_type == AMDGPU_FW_LOAD_PSP ? "true" : "false");
  198. if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
  199. info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
  200. info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
  201. info->fw = adev->sdma.instance[i].fw;
  202. header = (const struct common_firmware_header *)info->fw->data;
  203. adev->firmware.fw_size +=
  204. ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
  205. }
  206. }
  207. out:
  208. if (err) {
  209. DRM_ERROR("sdma_v4_0: Failed to load firmware \"%s\"\n", fw_name);
  210. for (i = 0; i < adev->sdma.num_instances; i++) {
  211. release_firmware(adev->sdma.instance[i].fw);
  212. adev->sdma.instance[i].fw = NULL;
  213. }
  214. }
  215. return err;
  216. }
  217. /**
  218. * sdma_v4_0_ring_get_rptr - get the current read pointer
  219. *
  220. * @ring: amdgpu ring pointer
  221. *
  222. * Get the current rptr from the hardware (VEGA10+).
  223. */
  224. static uint64_t sdma_v4_0_ring_get_rptr(struct amdgpu_ring *ring)
  225. {
  226. u64 *rptr;
  227. /* XXX check if swapping is necessary on BE */
  228. rptr = ((u64 *)&ring->adev->wb.wb[ring->rptr_offs]);
  229. DRM_DEBUG("rptr before shift == 0x%016llx\n", *rptr);
  230. return ((*rptr) >> 2);
  231. }
  232. /**
  233. * sdma_v4_0_ring_get_wptr - get the current write pointer
  234. *
  235. * @ring: amdgpu ring pointer
  236. *
  237. * Get the current wptr from the hardware (VEGA10+).
  238. */
  239. static uint64_t sdma_v4_0_ring_get_wptr(struct amdgpu_ring *ring)
  240. {
  241. struct amdgpu_device *adev = ring->adev;
  242. u64 *wptr = NULL;
  243. uint64_t local_wptr = 0;
  244. if (ring->use_doorbell) {
  245. /* XXX check if swapping is necessary on BE */
  246. wptr = ((u64 *)&adev->wb.wb[ring->wptr_offs]);
  247. DRM_DEBUG("wptr/doorbell before shift == 0x%016llx\n", *wptr);
  248. *wptr = (*wptr) >> 2;
  249. DRM_DEBUG("wptr/doorbell after shift == 0x%016llx\n", *wptr);
  250. } else {
  251. u32 lowbit, highbit;
  252. int me = (ring == &adev->sdma.instance[0].ring) ? 0 : 1;
  253. wptr = &local_wptr;
  254. lowbit = RREG32(sdma_v4_0_get_reg_offset(me, mmSDMA0_GFX_RB_WPTR)) >> 2;
  255. highbit = RREG32(sdma_v4_0_get_reg_offset(me, mmSDMA0_GFX_RB_WPTR_HI)) >> 2;
  256. DRM_DEBUG("wptr [%i]high== 0x%08x low==0x%08x\n",
  257. me, highbit, lowbit);
  258. *wptr = highbit;
  259. *wptr = (*wptr) << 32;
  260. *wptr |= lowbit;
  261. }
  262. return *wptr;
  263. }
  264. /**
  265. * sdma_v4_0_ring_set_wptr - commit the write pointer
  266. *
  267. * @ring: amdgpu ring pointer
  268. *
  269. * Write the wptr back to the hardware (VEGA10+).
  270. */
  271. static void sdma_v4_0_ring_set_wptr(struct amdgpu_ring *ring)
  272. {
  273. struct amdgpu_device *adev = ring->adev;
  274. DRM_DEBUG("Setting write pointer\n");
  275. if (ring->use_doorbell) {
  276. DRM_DEBUG("Using doorbell -- "
  277. "wptr_offs == 0x%08x "
  278. "lower_32_bits(ring->wptr) << 2 == 0x%08x "
  279. "upper_32_bits(ring->wptr) << 2 == 0x%08x\n",
  280. ring->wptr_offs,
  281. lower_32_bits(ring->wptr << 2),
  282. upper_32_bits(ring->wptr << 2));
  283. /* XXX check if swapping is necessary on BE */
  284. adev->wb.wb[ring->wptr_offs] = lower_32_bits(ring->wptr << 2);
  285. adev->wb.wb[ring->wptr_offs + 1] = upper_32_bits(ring->wptr << 2);
  286. DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n",
  287. ring->doorbell_index, ring->wptr << 2);
  288. WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
  289. } else {
  290. int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
  291. DRM_DEBUG("Not using doorbell -- "
  292. "mmSDMA%i_GFX_RB_WPTR == 0x%08x "
  293. "mmSDMA%i_GFX_RB_WPTR_HI == 0x%08x\n",
  294. me,
  295. lower_32_bits(ring->wptr << 2),
  296. me,
  297. upper_32_bits(ring->wptr << 2));
  298. WREG32(sdma_v4_0_get_reg_offset(me, mmSDMA0_GFX_RB_WPTR), lower_32_bits(ring->wptr << 2));
  299. WREG32(sdma_v4_0_get_reg_offset(me, mmSDMA0_GFX_RB_WPTR_HI), upper_32_bits(ring->wptr << 2));
  300. }
  301. }
  302. static void sdma_v4_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
  303. {
  304. struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
  305. int i;
  306. for (i = 0; i < count; i++)
  307. if (sdma && sdma->burst_nop && (i == 0))
  308. amdgpu_ring_write(ring, ring->funcs->nop |
  309. SDMA_PKT_NOP_HEADER_COUNT(count - 1));
  310. else
  311. amdgpu_ring_write(ring, ring->funcs->nop);
  312. }
  313. /**
  314. * sdma_v4_0_ring_emit_ib - Schedule an IB on the DMA engine
  315. *
  316. * @ring: amdgpu ring pointer
  317. * @ib: IB object to schedule
  318. *
  319. * Schedule an IB in the DMA ring (VEGA10).
  320. */
  321. static void sdma_v4_0_ring_emit_ib(struct amdgpu_ring *ring,
  322. struct amdgpu_ib *ib,
  323. unsigned vm_id, bool ctx_switch)
  324. {
  325. u32 vmid = vm_id & 0xf;
  326. /* IB packet must end on a 8 DW boundary */
  327. sdma_v4_0_ring_insert_nop(ring, (10 - (lower_32_bits(ring->wptr) & 7)) % 8);
  328. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
  329. SDMA_PKT_INDIRECT_HEADER_VMID(vmid));
  330. /* base must be 32 byte aligned */
  331. amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
  332. amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
  333. amdgpu_ring_write(ring, ib->length_dw);
  334. amdgpu_ring_write(ring, 0);
  335. amdgpu_ring_write(ring, 0);
  336. }
  337. /**
  338. * sdma_v4_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
  339. *
  340. * @ring: amdgpu ring pointer
  341. *
  342. * Emit an hdp flush packet on the requested DMA ring.
  343. */
  344. static void sdma_v4_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
  345. {
  346. u32 ref_and_mask = 0;
  347. struct nbio_hdp_flush_reg *nbio_hf_reg;
  348. if (ring->adev->flags & AMD_IS_APU)
  349. nbio_hf_reg = &nbio_v7_0_hdp_flush_reg;
  350. else
  351. nbio_hf_reg = &nbio_v6_1_hdp_flush_reg;
  352. if (ring == &ring->adev->sdma.instance[0].ring)
  353. ref_and_mask = nbio_hf_reg->ref_and_mask_sdma0;
  354. else
  355. ref_and_mask = nbio_hf_reg->ref_and_mask_sdma1;
  356. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  357. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) |
  358. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
  359. amdgpu_ring_write(ring, nbio_hf_reg->hdp_flush_done_offset << 2);
  360. amdgpu_ring_write(ring, nbio_hf_reg->hdp_flush_req_offset << 2);
  361. amdgpu_ring_write(ring, ref_and_mask); /* reference */
  362. amdgpu_ring_write(ring, ref_and_mask); /* mask */
  363. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  364. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
  365. }
  366. static void sdma_v4_0_ring_emit_hdp_invalidate(struct amdgpu_ring *ring)
  367. {
  368. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  369. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  370. amdgpu_ring_write(ring, SOC15_REG_OFFSET(HDP, 0, mmHDP_DEBUG0));
  371. amdgpu_ring_write(ring, 1);
  372. }
  373. /**
  374. * sdma_v4_0_ring_emit_fence - emit a fence on the DMA ring
  375. *
  376. * @ring: amdgpu ring pointer
  377. * @fence: amdgpu fence object
  378. *
  379. * Add a DMA fence packet to the ring to write
  380. * the fence seq number and DMA trap packet to generate
  381. * an interrupt if needed (VEGA10).
  382. */
  383. static void sdma_v4_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
  384. unsigned flags)
  385. {
  386. bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
  387. /* write the fence */
  388. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
  389. /* zero in first two bits */
  390. BUG_ON(addr & 0x3);
  391. amdgpu_ring_write(ring, lower_32_bits(addr));
  392. amdgpu_ring_write(ring, upper_32_bits(addr));
  393. amdgpu_ring_write(ring, lower_32_bits(seq));
  394. /* optionally write high bits as well */
  395. if (write64bit) {
  396. addr += 4;
  397. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
  398. /* zero in first two bits */
  399. BUG_ON(addr & 0x3);
  400. amdgpu_ring_write(ring, lower_32_bits(addr));
  401. amdgpu_ring_write(ring, upper_32_bits(addr));
  402. amdgpu_ring_write(ring, upper_32_bits(seq));
  403. }
  404. /* generate an interrupt */
  405. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
  406. amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
  407. }
  408. /**
  409. * sdma_v4_0_gfx_stop - stop the gfx async dma engines
  410. *
  411. * @adev: amdgpu_device pointer
  412. *
  413. * Stop the gfx async dma ring buffers (VEGA10).
  414. */
  415. static void sdma_v4_0_gfx_stop(struct amdgpu_device *adev)
  416. {
  417. struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring;
  418. struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring;
  419. u32 rb_cntl, ib_cntl;
  420. int i;
  421. if ((adev->mman.buffer_funcs_ring == sdma0) ||
  422. (adev->mman.buffer_funcs_ring == sdma1))
  423. amdgpu_ttm_set_active_vram_size(adev, adev->mc.visible_vram_size);
  424. for (i = 0; i < adev->sdma.num_instances; i++) {
  425. rb_cntl = RREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_CNTL));
  426. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
  427. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_CNTL), rb_cntl);
  428. ib_cntl = RREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_IB_CNTL));
  429. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
  430. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_IB_CNTL), ib_cntl);
  431. }
  432. sdma0->ready = false;
  433. sdma1->ready = false;
  434. }
  435. /**
  436. * sdma_v4_0_rlc_stop - stop the compute async dma engines
  437. *
  438. * @adev: amdgpu_device pointer
  439. *
  440. * Stop the compute async dma queues (VEGA10).
  441. */
  442. static void sdma_v4_0_rlc_stop(struct amdgpu_device *adev)
  443. {
  444. /* XXX todo */
  445. }
  446. /**
  447. * sdma_v_0_ctx_switch_enable - stop the async dma engines context switch
  448. *
  449. * @adev: amdgpu_device pointer
  450. * @enable: enable/disable the DMA MEs context switch.
  451. *
  452. * Halt or unhalt the async dma engines context switch (VEGA10).
  453. */
  454. static void sdma_v4_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
  455. {
  456. u32 f32_cntl;
  457. int i;
  458. for (i = 0; i < adev->sdma.num_instances; i++) {
  459. f32_cntl = RREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_CNTL));
  460. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
  461. AUTO_CTXSW_ENABLE, enable ? 1 : 0);
  462. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_CNTL), f32_cntl);
  463. }
  464. }
  465. /**
  466. * sdma_v4_0_enable - stop the async dma engines
  467. *
  468. * @adev: amdgpu_device pointer
  469. * @enable: enable/disable the DMA MEs.
  470. *
  471. * Halt or unhalt the async dma engines (VEGA10).
  472. */
  473. static void sdma_v4_0_enable(struct amdgpu_device *adev, bool enable)
  474. {
  475. u32 f32_cntl;
  476. int i;
  477. if (enable == false) {
  478. sdma_v4_0_gfx_stop(adev);
  479. sdma_v4_0_rlc_stop(adev);
  480. }
  481. for (i = 0; i < adev->sdma.num_instances; i++) {
  482. f32_cntl = RREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_F32_CNTL));
  483. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, enable ? 0 : 1);
  484. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_F32_CNTL), f32_cntl);
  485. }
  486. }
  487. /**
  488. * sdma_v4_0_gfx_resume - setup and start the async dma engines
  489. *
  490. * @adev: amdgpu_device pointer
  491. *
  492. * Set up the gfx DMA ring buffers and enable them (VEGA10).
  493. * Returns 0 for success, error for failure.
  494. */
  495. static int sdma_v4_0_gfx_resume(struct amdgpu_device *adev)
  496. {
  497. struct amdgpu_ring *ring;
  498. u32 rb_cntl, ib_cntl;
  499. u32 rb_bufsz;
  500. u32 wb_offset;
  501. u32 doorbell;
  502. u32 doorbell_offset;
  503. u32 temp;
  504. int i, r;
  505. for (i = 0; i < adev->sdma.num_instances; i++) {
  506. ring = &adev->sdma.instance[i].ring;
  507. wb_offset = (ring->rptr_offs * 4);
  508. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL), 0);
  509. /* Set ring buffer size in dwords */
  510. rb_bufsz = order_base_2(ring->ring_size / 4);
  511. rb_cntl = RREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_CNTL));
  512. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
  513. #ifdef __BIG_ENDIAN
  514. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
  515. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
  516. RPTR_WRITEBACK_SWAP_ENABLE, 1);
  517. #endif
  518. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_CNTL), rb_cntl);
  519. /* Initialize the ring buffer's read and write pointers */
  520. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_RPTR), 0);
  521. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_RPTR_HI), 0);
  522. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_WPTR), 0);
  523. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_WPTR_HI), 0);
  524. /* set the wb address whether it's enabled or not */
  525. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_RPTR_ADDR_HI),
  526. upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
  527. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_RPTR_ADDR_LO),
  528. lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
  529. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1);
  530. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_BASE), ring->gpu_addr >> 8);
  531. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_BASE_HI), ring->gpu_addr >> 40);
  532. ring->wptr = 0;
  533. /* before programing wptr to a less value, need set minor_ptr_update first */
  534. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_MINOR_PTR_UPDATE), 1);
  535. if (!amdgpu_sriov_vf(adev)) { /* only bare-metal use register write for wptr */
  536. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_WPTR), lower_32_bits(ring->wptr) << 2);
  537. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_WPTR_HI), upper_32_bits(ring->wptr) << 2);
  538. }
  539. doorbell = RREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_DOORBELL));
  540. doorbell_offset = RREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_DOORBELL_OFFSET));
  541. if (ring->use_doorbell) {
  542. doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1);
  543. doorbell_offset = REG_SET_FIELD(doorbell_offset, SDMA0_GFX_DOORBELL_OFFSET,
  544. OFFSET, ring->doorbell_index);
  545. } else {
  546. doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 0);
  547. }
  548. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_DOORBELL), doorbell);
  549. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_DOORBELL_OFFSET), doorbell_offset);
  550. if (adev->flags & AMD_IS_APU)
  551. nbio_v7_0_sdma_doorbell_range(adev, i, ring->use_doorbell, ring->doorbell_index);
  552. else
  553. nbio_v6_1_sdma_doorbell_range(adev, i, ring->use_doorbell, ring->doorbell_index);
  554. if (amdgpu_sriov_vf(adev))
  555. sdma_v4_0_ring_set_wptr(ring);
  556. /* set minor_ptr_update to 0 after wptr programed */
  557. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_MINOR_PTR_UPDATE), 0);
  558. /* set utc l1 enable flag always to 1 */
  559. temp = RREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_CNTL));
  560. temp = REG_SET_FIELD(temp, SDMA0_CNTL, UTC_L1_ENABLE, 1);
  561. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_CNTL), temp);
  562. if (!amdgpu_sriov_vf(adev)) {
  563. /* unhalt engine */
  564. temp = RREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_F32_CNTL));
  565. temp = REG_SET_FIELD(temp, SDMA0_F32_CNTL, HALT, 0);
  566. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_F32_CNTL), temp);
  567. }
  568. /* enable DMA RB */
  569. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
  570. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_CNTL), rb_cntl);
  571. ib_cntl = RREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_IB_CNTL));
  572. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
  573. #ifdef __BIG_ENDIAN
  574. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
  575. #endif
  576. /* enable DMA IBs */
  577. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_IB_CNTL), ib_cntl);
  578. ring->ready = true;
  579. if (amdgpu_sriov_vf(adev)) { /* bare-metal sequence doesn't need below to lines */
  580. sdma_v4_0_ctx_switch_enable(adev, true);
  581. sdma_v4_0_enable(adev, true);
  582. }
  583. r = amdgpu_ring_test_ring(ring);
  584. if (r) {
  585. ring->ready = false;
  586. return r;
  587. }
  588. if (adev->mman.buffer_funcs_ring == ring)
  589. amdgpu_ttm_set_active_vram_size(adev, adev->mc.real_vram_size);
  590. }
  591. return 0;
  592. }
  593. static void
  594. sdma_v4_1_update_power_gating(struct amdgpu_device *adev, bool enable)
  595. {
  596. uint32_t def, data;
  597. if (enable && (adev->pg_flags & AMD_PG_SUPPORT_SDMA)) {
  598. /* disable idle interrupt */
  599. def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
  600. data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
  601. if (data != def)
  602. WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
  603. } else {
  604. /* disable idle interrupt */
  605. def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
  606. data &= ~SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
  607. if (data != def)
  608. WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
  609. }
  610. }
  611. static void sdma_v4_1_init_power_gating(struct amdgpu_device *adev)
  612. {
  613. uint32_t def, data;
  614. /* Enable HW based PG. */
  615. def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
  616. data |= SDMA0_POWER_CNTL__PG_CNTL_ENABLE_MASK;
  617. if (data != def)
  618. WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
  619. /* enable interrupt */
  620. def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
  621. data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
  622. if (data != def)
  623. WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
  624. /* Configure hold time to filter in-valid power on/off request. Use default right now */
  625. def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
  626. data &= ~SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK;
  627. data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK);
  628. /* Configure switch time for hysteresis purpose. Use default right now */
  629. data &= ~SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK;
  630. data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK);
  631. if(data != def)
  632. WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
  633. }
  634. static void sdma_v4_0_init_pg(struct amdgpu_device *adev)
  635. {
  636. if (!(adev->pg_flags & AMD_PG_SUPPORT_SDMA))
  637. return;
  638. switch (adev->asic_type) {
  639. case CHIP_RAVEN:
  640. sdma_v4_1_init_power_gating(adev);
  641. sdma_v4_1_update_power_gating(adev, true);
  642. break;
  643. default:
  644. break;
  645. }
  646. }
  647. /**
  648. * sdma_v4_0_rlc_resume - setup and start the async dma engines
  649. *
  650. * @adev: amdgpu_device pointer
  651. *
  652. * Set up the compute DMA queues and enable them (VEGA10).
  653. * Returns 0 for success, error for failure.
  654. */
  655. static int sdma_v4_0_rlc_resume(struct amdgpu_device *adev)
  656. {
  657. sdma_v4_0_init_pg(adev);
  658. return 0;
  659. }
  660. /**
  661. * sdma_v4_0_load_microcode - load the sDMA ME ucode
  662. *
  663. * @adev: amdgpu_device pointer
  664. *
  665. * Loads the sDMA0/1 ucode.
  666. * Returns 0 for success, -EINVAL if the ucode is not available.
  667. */
  668. static int sdma_v4_0_load_microcode(struct amdgpu_device *adev)
  669. {
  670. const struct sdma_firmware_header_v1_0 *hdr;
  671. const __le32 *fw_data;
  672. u32 fw_size;
  673. u32 digest_size = 0;
  674. int i, j;
  675. /* halt the MEs */
  676. sdma_v4_0_enable(adev, false);
  677. for (i = 0; i < adev->sdma.num_instances; i++) {
  678. uint16_t version_major;
  679. uint16_t version_minor;
  680. if (!adev->sdma.instance[i].fw)
  681. return -EINVAL;
  682. hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
  683. amdgpu_ucode_print_sdma_hdr(&hdr->header);
  684. fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
  685. version_major = le16_to_cpu(hdr->header.header_version_major);
  686. version_minor = le16_to_cpu(hdr->header.header_version_minor);
  687. if (version_major == 1 && version_minor >= 1) {
  688. const struct sdma_firmware_header_v1_1 *sdma_v1_1_hdr = (const struct sdma_firmware_header_v1_1 *) hdr;
  689. digest_size = le32_to_cpu(sdma_v1_1_hdr->digest_size);
  690. }
  691. fw_size -= digest_size;
  692. fw_data = (const __le32 *)
  693. (adev->sdma.instance[i].fw->data +
  694. le32_to_cpu(hdr->header.ucode_array_offset_bytes));
  695. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_UCODE_ADDR), 0);
  696. for (j = 0; j < fw_size; j++)
  697. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_UCODE_DATA), le32_to_cpup(fw_data++));
  698. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_UCODE_ADDR), adev->sdma.instance[i].fw_version);
  699. }
  700. sdma_v4_0_print_ucode_regs(adev);
  701. return 0;
  702. }
  703. /**
  704. * sdma_v4_0_start - setup and start the async dma engines
  705. *
  706. * @adev: amdgpu_device pointer
  707. *
  708. * Set up the DMA engines and enable them (VEGA10).
  709. * Returns 0 for success, error for failure.
  710. */
  711. static int sdma_v4_0_start(struct amdgpu_device *adev)
  712. {
  713. int r = 0;
  714. if (amdgpu_sriov_vf(adev)) {
  715. sdma_v4_0_ctx_switch_enable(adev, false);
  716. sdma_v4_0_enable(adev, false);
  717. /* set RB registers */
  718. r = sdma_v4_0_gfx_resume(adev);
  719. return r;
  720. }
  721. if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) {
  722. DRM_INFO("Loading via direct write\n");
  723. r = sdma_v4_0_load_microcode(adev);
  724. if (r)
  725. return r;
  726. }
  727. /* unhalt the MEs */
  728. sdma_v4_0_enable(adev, true);
  729. /* enable sdma ring preemption */
  730. sdma_v4_0_ctx_switch_enable(adev, true);
  731. /* start the gfx rings and rlc compute queues */
  732. r = sdma_v4_0_gfx_resume(adev);
  733. if (r)
  734. return r;
  735. r = sdma_v4_0_rlc_resume(adev);
  736. return r;
  737. }
  738. /**
  739. * sdma_v4_0_ring_test_ring - simple async dma engine test
  740. *
  741. * @ring: amdgpu_ring structure holding ring information
  742. *
  743. * Test the DMA engine by writing using it to write an
  744. * value to memory. (VEGA10).
  745. * Returns 0 for success, error for failure.
  746. */
  747. static int sdma_v4_0_ring_test_ring(struct amdgpu_ring *ring)
  748. {
  749. struct amdgpu_device *adev = ring->adev;
  750. unsigned i;
  751. unsigned index;
  752. int r;
  753. u32 tmp;
  754. u64 gpu_addr;
  755. DRM_INFO("In Ring test func\n");
  756. r = amdgpu_wb_get(adev, &index);
  757. if (r) {
  758. dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
  759. return r;
  760. }
  761. gpu_addr = adev->wb.gpu_addr + (index * 4);
  762. tmp = 0xCAFEDEAD;
  763. adev->wb.wb[index] = cpu_to_le32(tmp);
  764. r = amdgpu_ring_alloc(ring, 5);
  765. if (r) {
  766. DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r);
  767. amdgpu_wb_free(adev, index);
  768. return r;
  769. }
  770. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  771. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
  772. amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
  773. amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
  774. amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0));
  775. amdgpu_ring_write(ring, 0xDEADBEEF);
  776. amdgpu_ring_commit(ring);
  777. for (i = 0; i < adev->usec_timeout; i++) {
  778. tmp = le32_to_cpu(adev->wb.wb[index]);
  779. if (tmp == 0xDEADBEEF)
  780. break;
  781. DRM_UDELAY(1);
  782. }
  783. if (i < adev->usec_timeout) {
  784. DRM_INFO("ring test on %d succeeded in %d usecs\n", ring->idx, i);
  785. } else {
  786. DRM_ERROR("amdgpu: ring %d test failed (0x%08X)\n",
  787. ring->idx, tmp);
  788. r = -EINVAL;
  789. }
  790. amdgpu_wb_free(adev, index);
  791. return r;
  792. }
  793. /**
  794. * sdma_v4_0_ring_test_ib - test an IB on the DMA engine
  795. *
  796. * @ring: amdgpu_ring structure holding ring information
  797. *
  798. * Test a simple IB in the DMA ring (VEGA10).
  799. * Returns 0 on success, error on failure.
  800. */
  801. static int sdma_v4_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
  802. {
  803. struct amdgpu_device *adev = ring->adev;
  804. struct amdgpu_ib ib;
  805. struct dma_fence *f = NULL;
  806. unsigned index;
  807. long r;
  808. u32 tmp = 0;
  809. u64 gpu_addr;
  810. r = amdgpu_wb_get(adev, &index);
  811. if (r) {
  812. dev_err(adev->dev, "(%ld) failed to allocate wb slot\n", r);
  813. return r;
  814. }
  815. gpu_addr = adev->wb.gpu_addr + (index * 4);
  816. tmp = 0xCAFEDEAD;
  817. adev->wb.wb[index] = cpu_to_le32(tmp);
  818. memset(&ib, 0, sizeof(ib));
  819. r = amdgpu_ib_get(adev, NULL, 256, &ib);
  820. if (r) {
  821. DRM_ERROR("amdgpu: failed to get ib (%ld).\n", r);
  822. goto err0;
  823. }
  824. ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  825. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
  826. ib.ptr[1] = lower_32_bits(gpu_addr);
  827. ib.ptr[2] = upper_32_bits(gpu_addr);
  828. ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0);
  829. ib.ptr[4] = 0xDEADBEEF;
  830. ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  831. ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  832. ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  833. ib.length_dw = 8;
  834. r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
  835. if (r)
  836. goto err1;
  837. r = dma_fence_wait_timeout(f, false, timeout);
  838. if (r == 0) {
  839. DRM_ERROR("amdgpu: IB test timed out\n");
  840. r = -ETIMEDOUT;
  841. goto err1;
  842. } else if (r < 0) {
  843. DRM_ERROR("amdgpu: fence wait failed (%ld).\n", r);
  844. goto err1;
  845. }
  846. tmp = le32_to_cpu(adev->wb.wb[index]);
  847. if (tmp == 0xDEADBEEF) {
  848. DRM_INFO("ib test on ring %d succeeded\n", ring->idx);
  849. r = 0;
  850. } else {
  851. DRM_ERROR("amdgpu: ib test failed (0x%08X)\n", tmp);
  852. r = -EINVAL;
  853. }
  854. err1:
  855. amdgpu_ib_free(adev, &ib, NULL);
  856. dma_fence_put(f);
  857. err0:
  858. amdgpu_wb_free(adev, index);
  859. return r;
  860. }
  861. /**
  862. * sdma_v4_0_vm_copy_pte - update PTEs by copying them from the GART
  863. *
  864. * @ib: indirect buffer to fill with commands
  865. * @pe: addr of the page entry
  866. * @src: src addr to copy from
  867. * @count: number of page entries to update
  868. *
  869. * Update PTEs by copying them from the GART using sDMA (VEGA10).
  870. */
  871. static void sdma_v4_0_vm_copy_pte(struct amdgpu_ib *ib,
  872. uint64_t pe, uint64_t src,
  873. unsigned count)
  874. {
  875. unsigned bytes = count * 8;
  876. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
  877. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
  878. ib->ptr[ib->length_dw++] = bytes - 1;
  879. ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
  880. ib->ptr[ib->length_dw++] = lower_32_bits(src);
  881. ib->ptr[ib->length_dw++] = upper_32_bits(src);
  882. ib->ptr[ib->length_dw++] = lower_32_bits(pe);
  883. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  884. }
  885. /**
  886. * sdma_v4_0_vm_write_pte - update PTEs by writing them manually
  887. *
  888. * @ib: indirect buffer to fill with commands
  889. * @pe: addr of the page entry
  890. * @addr: dst addr to write into pe
  891. * @count: number of page entries to update
  892. * @incr: increase next addr by incr bytes
  893. * @flags: access flags
  894. *
  895. * Update PTEs by writing them manually using sDMA (VEGA10).
  896. */
  897. static void sdma_v4_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
  898. uint64_t value, unsigned count,
  899. uint32_t incr)
  900. {
  901. unsigned ndw = count * 2;
  902. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  903. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
  904. ib->ptr[ib->length_dw++] = lower_32_bits(pe);
  905. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  906. ib->ptr[ib->length_dw++] = ndw - 1;
  907. for (; ndw > 0; ndw -= 2) {
  908. ib->ptr[ib->length_dw++] = lower_32_bits(value);
  909. ib->ptr[ib->length_dw++] = upper_32_bits(value);
  910. value += incr;
  911. }
  912. }
  913. /**
  914. * sdma_v4_0_vm_set_pte_pde - update the page tables using sDMA
  915. *
  916. * @ib: indirect buffer to fill with commands
  917. * @pe: addr of the page entry
  918. * @addr: dst addr to write into pe
  919. * @count: number of page entries to update
  920. * @incr: increase next addr by incr bytes
  921. * @flags: access flags
  922. *
  923. * Update the page tables using sDMA (VEGA10).
  924. */
  925. static void sdma_v4_0_vm_set_pte_pde(struct amdgpu_ib *ib,
  926. uint64_t pe,
  927. uint64_t addr, unsigned count,
  928. uint32_t incr, uint64_t flags)
  929. {
  930. /* for physically contiguous pages (vram) */
  931. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_PTEPDE);
  932. ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
  933. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  934. ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
  935. ib->ptr[ib->length_dw++] = upper_32_bits(flags);
  936. ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
  937. ib->ptr[ib->length_dw++] = upper_32_bits(addr);
  938. ib->ptr[ib->length_dw++] = incr; /* increment size */
  939. ib->ptr[ib->length_dw++] = 0;
  940. ib->ptr[ib->length_dw++] = count - 1; /* number of entries */
  941. }
  942. /**
  943. * sdma_v4_0_ring_pad_ib - pad the IB to the required number of dw
  944. *
  945. * @ib: indirect buffer to fill with padding
  946. *
  947. */
  948. static void sdma_v4_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
  949. {
  950. struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
  951. u32 pad_count;
  952. int i;
  953. pad_count = (8 - (ib->length_dw & 0x7)) % 8;
  954. for (i = 0; i < pad_count; i++)
  955. if (sdma && sdma->burst_nop && (i == 0))
  956. ib->ptr[ib->length_dw++] =
  957. SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
  958. SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
  959. else
  960. ib->ptr[ib->length_dw++] =
  961. SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
  962. }
  963. /**
  964. * sdma_v4_0_ring_emit_pipeline_sync - sync the pipeline
  965. *
  966. * @ring: amdgpu_ring pointer
  967. *
  968. * Make sure all previous operations are completed (CIK).
  969. */
  970. static void sdma_v4_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
  971. {
  972. uint32_t seq = ring->fence_drv.sync_seq;
  973. uint64_t addr = ring->fence_drv.gpu_addr;
  974. /* wait for idle */
  975. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  976. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
  977. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3) | /* equal */
  978. SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(1));
  979. amdgpu_ring_write(ring, addr & 0xfffffffc);
  980. amdgpu_ring_write(ring, upper_32_bits(addr) & 0xffffffff);
  981. amdgpu_ring_write(ring, seq); /* reference */
  982. amdgpu_ring_write(ring, 0xfffffff); /* mask */
  983. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  984. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(4)); /* retry count, poll interval */
  985. }
  986. /**
  987. * sdma_v4_0_ring_emit_vm_flush - vm flush using sDMA
  988. *
  989. * @ring: amdgpu_ring pointer
  990. * @vm: amdgpu_vm pointer
  991. *
  992. * Update the page table base and flush the VM TLB
  993. * using sDMA (VEGA10).
  994. */
  995. static void sdma_v4_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
  996. unsigned vm_id, uint64_t pd_addr)
  997. {
  998. struct amdgpu_vmhub *hub = &ring->adev->vmhub[ring->funcs->vmhub];
  999. uint32_t req = ring->adev->gart.gart_funcs->get_invalidate_req(vm_id);
  1000. unsigned eng = ring->vm_inv_eng;
  1001. pd_addr = pd_addr | 0x1; /* valid bit */
  1002. /* now only use physical base address of PDE and valid */
  1003. BUG_ON(pd_addr & 0xFFFF00000000003EULL);
  1004. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  1005. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  1006. amdgpu_ring_write(ring, hub->ctx0_ptb_addr_lo32 + vm_id * 2);
  1007. amdgpu_ring_write(ring, lower_32_bits(pd_addr));
  1008. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  1009. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  1010. amdgpu_ring_write(ring, hub->ctx0_ptb_addr_hi32 + vm_id * 2);
  1011. amdgpu_ring_write(ring, upper_32_bits(pd_addr));
  1012. /* flush TLB */
  1013. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  1014. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  1015. amdgpu_ring_write(ring, hub->vm_inv_eng0_req + eng);
  1016. amdgpu_ring_write(ring, req);
  1017. /* wait for flush */
  1018. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  1019. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
  1020. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* equal */
  1021. amdgpu_ring_write(ring, (hub->vm_inv_eng0_ack + eng) << 2);
  1022. amdgpu_ring_write(ring, 0);
  1023. amdgpu_ring_write(ring, 1 << vm_id); /* reference */
  1024. amdgpu_ring_write(ring, 1 << vm_id); /* mask */
  1025. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  1026. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10));
  1027. }
  1028. static int sdma_v4_0_early_init(void *handle)
  1029. {
  1030. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1031. if (adev->asic_type == CHIP_RAVEN)
  1032. adev->sdma.num_instances = 1;
  1033. else
  1034. adev->sdma.num_instances = 2;
  1035. sdma_v4_0_set_ring_funcs(adev);
  1036. sdma_v4_0_set_buffer_funcs(adev);
  1037. sdma_v4_0_set_vm_pte_funcs(adev);
  1038. sdma_v4_0_set_irq_funcs(adev);
  1039. return 0;
  1040. }
  1041. static int sdma_v4_0_sw_init(void *handle)
  1042. {
  1043. struct amdgpu_ring *ring;
  1044. int r, i;
  1045. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1046. /* SDMA trap event */
  1047. r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_SDMA0, 224,
  1048. &adev->sdma.trap_irq);
  1049. if (r)
  1050. return r;
  1051. /* SDMA trap event */
  1052. r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_SDMA1, 224,
  1053. &adev->sdma.trap_irq);
  1054. if (r)
  1055. return r;
  1056. r = sdma_v4_0_init_microcode(adev);
  1057. if (r) {
  1058. DRM_ERROR("Failed to load sdma firmware!\n");
  1059. return r;
  1060. }
  1061. for (i = 0; i < adev->sdma.num_instances; i++) {
  1062. ring = &adev->sdma.instance[i].ring;
  1063. ring->ring_obj = NULL;
  1064. ring->use_doorbell = true;
  1065. DRM_INFO("use_doorbell being set to: [%s]\n",
  1066. ring->use_doorbell?"true":"false");
  1067. ring->doorbell_index = (i == 0) ?
  1068. (AMDGPU_DOORBELL64_sDMA_ENGINE0 << 1) //get DWORD offset
  1069. : (AMDGPU_DOORBELL64_sDMA_ENGINE1 << 1); // get DWORD offset
  1070. sprintf(ring->name, "sdma%d", i);
  1071. r = amdgpu_ring_init(adev, ring, 1024,
  1072. &adev->sdma.trap_irq,
  1073. (i == 0) ?
  1074. AMDGPU_SDMA_IRQ_TRAP0 :
  1075. AMDGPU_SDMA_IRQ_TRAP1);
  1076. if (r)
  1077. return r;
  1078. }
  1079. return r;
  1080. }
  1081. static int sdma_v4_0_sw_fini(void *handle)
  1082. {
  1083. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1084. int i;
  1085. for (i = 0; i < adev->sdma.num_instances; i++)
  1086. amdgpu_ring_fini(&adev->sdma.instance[i].ring);
  1087. return 0;
  1088. }
  1089. static int sdma_v4_0_hw_init(void *handle)
  1090. {
  1091. int r;
  1092. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1093. sdma_v4_0_init_golden_registers(adev);
  1094. r = sdma_v4_0_start(adev);
  1095. return r;
  1096. }
  1097. static int sdma_v4_0_hw_fini(void *handle)
  1098. {
  1099. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1100. if (amdgpu_sriov_vf(adev))
  1101. return 0;
  1102. sdma_v4_0_ctx_switch_enable(adev, false);
  1103. sdma_v4_0_enable(adev, false);
  1104. return 0;
  1105. }
  1106. static int sdma_v4_0_suspend(void *handle)
  1107. {
  1108. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1109. return sdma_v4_0_hw_fini(adev);
  1110. }
  1111. static int sdma_v4_0_resume(void *handle)
  1112. {
  1113. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1114. return sdma_v4_0_hw_init(adev);
  1115. }
  1116. static bool sdma_v4_0_is_idle(void *handle)
  1117. {
  1118. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1119. u32 i;
  1120. for (i = 0; i < adev->sdma.num_instances; i++) {
  1121. u32 tmp = RREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_STATUS_REG));
  1122. if (!(tmp & SDMA0_STATUS_REG__IDLE_MASK))
  1123. return false;
  1124. }
  1125. return true;
  1126. }
  1127. static int sdma_v4_0_wait_for_idle(void *handle)
  1128. {
  1129. unsigned i;
  1130. u32 sdma0, sdma1;
  1131. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1132. for (i = 0; i < adev->usec_timeout; i++) {
  1133. sdma0 = RREG32(sdma_v4_0_get_reg_offset(0, mmSDMA0_STATUS_REG));
  1134. sdma1 = RREG32(sdma_v4_0_get_reg_offset(1, mmSDMA0_STATUS_REG));
  1135. if (sdma0 & sdma1 & SDMA0_STATUS_REG__IDLE_MASK)
  1136. return 0;
  1137. udelay(1);
  1138. }
  1139. return -ETIMEDOUT;
  1140. }
  1141. static int sdma_v4_0_soft_reset(void *handle)
  1142. {
  1143. /* todo */
  1144. return 0;
  1145. }
  1146. static int sdma_v4_0_set_trap_irq_state(struct amdgpu_device *adev,
  1147. struct amdgpu_irq_src *source,
  1148. unsigned type,
  1149. enum amdgpu_interrupt_state state)
  1150. {
  1151. u32 sdma_cntl;
  1152. u32 reg_offset = (type == AMDGPU_SDMA_IRQ_TRAP0) ?
  1153. sdma_v4_0_get_reg_offset(0, mmSDMA0_CNTL) :
  1154. sdma_v4_0_get_reg_offset(1, mmSDMA0_CNTL);
  1155. sdma_cntl = RREG32(reg_offset);
  1156. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE,
  1157. state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
  1158. WREG32(reg_offset, sdma_cntl);
  1159. return 0;
  1160. }
  1161. static int sdma_v4_0_process_trap_irq(struct amdgpu_device *adev,
  1162. struct amdgpu_irq_src *source,
  1163. struct amdgpu_iv_entry *entry)
  1164. {
  1165. DRM_DEBUG("IH: SDMA trap\n");
  1166. switch (entry->client_id) {
  1167. case AMDGPU_IH_CLIENTID_SDMA0:
  1168. switch (entry->ring_id) {
  1169. case 0:
  1170. amdgpu_fence_process(&adev->sdma.instance[0].ring);
  1171. break;
  1172. case 1:
  1173. /* XXX compute */
  1174. break;
  1175. case 2:
  1176. /* XXX compute */
  1177. break;
  1178. case 3:
  1179. /* XXX page queue*/
  1180. break;
  1181. }
  1182. break;
  1183. case AMDGPU_IH_CLIENTID_SDMA1:
  1184. switch (entry->ring_id) {
  1185. case 0:
  1186. amdgpu_fence_process(&adev->sdma.instance[1].ring);
  1187. break;
  1188. case 1:
  1189. /* XXX compute */
  1190. break;
  1191. case 2:
  1192. /* XXX compute */
  1193. break;
  1194. case 3:
  1195. /* XXX page queue*/
  1196. break;
  1197. }
  1198. break;
  1199. }
  1200. return 0;
  1201. }
  1202. static int sdma_v4_0_process_illegal_inst_irq(struct amdgpu_device *adev,
  1203. struct amdgpu_irq_src *source,
  1204. struct amdgpu_iv_entry *entry)
  1205. {
  1206. DRM_ERROR("Illegal instruction in SDMA command stream\n");
  1207. schedule_work(&adev->reset_work);
  1208. return 0;
  1209. }
  1210. static void sdma_v4_0_update_medium_grain_clock_gating(
  1211. struct amdgpu_device *adev,
  1212. bool enable)
  1213. {
  1214. uint32_t data, def;
  1215. if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
  1216. /* enable sdma0 clock gating */
  1217. def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
  1218. data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
  1219. SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
  1220. SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
  1221. SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
  1222. SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
  1223. SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
  1224. SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
  1225. SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
  1226. if (def != data)
  1227. WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL), data);
  1228. if (adev->asic_type == CHIP_VEGA10) {
  1229. def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL));
  1230. data &= ~(SDMA1_CLK_CTRL__SOFT_OVERRIDE7_MASK |
  1231. SDMA1_CLK_CTRL__SOFT_OVERRIDE6_MASK |
  1232. SDMA1_CLK_CTRL__SOFT_OVERRIDE5_MASK |
  1233. SDMA1_CLK_CTRL__SOFT_OVERRIDE4_MASK |
  1234. SDMA1_CLK_CTRL__SOFT_OVERRIDE3_MASK |
  1235. SDMA1_CLK_CTRL__SOFT_OVERRIDE2_MASK |
  1236. SDMA1_CLK_CTRL__SOFT_OVERRIDE1_MASK |
  1237. SDMA1_CLK_CTRL__SOFT_OVERRIDE0_MASK);
  1238. if (def != data)
  1239. WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL), data);
  1240. }
  1241. } else {
  1242. /* disable sdma0 clock gating */
  1243. def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
  1244. data |= (SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
  1245. SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
  1246. SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
  1247. SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
  1248. SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
  1249. SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
  1250. SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
  1251. SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
  1252. if (def != data)
  1253. WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL), data);
  1254. if (adev->asic_type == CHIP_VEGA10) {
  1255. def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL));
  1256. data |= (SDMA1_CLK_CTRL__SOFT_OVERRIDE7_MASK |
  1257. SDMA1_CLK_CTRL__SOFT_OVERRIDE6_MASK |
  1258. SDMA1_CLK_CTRL__SOFT_OVERRIDE5_MASK |
  1259. SDMA1_CLK_CTRL__SOFT_OVERRIDE4_MASK |
  1260. SDMA1_CLK_CTRL__SOFT_OVERRIDE3_MASK |
  1261. SDMA1_CLK_CTRL__SOFT_OVERRIDE2_MASK |
  1262. SDMA1_CLK_CTRL__SOFT_OVERRIDE1_MASK |
  1263. SDMA1_CLK_CTRL__SOFT_OVERRIDE0_MASK);
  1264. if (def != data)
  1265. WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL), data);
  1266. }
  1267. }
  1268. }
  1269. static void sdma_v4_0_update_medium_grain_light_sleep(
  1270. struct amdgpu_device *adev,
  1271. bool enable)
  1272. {
  1273. uint32_t data, def;
  1274. if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
  1275. /* 1-not override: enable sdma0 mem light sleep */
  1276. def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
  1277. data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
  1278. if (def != data)
  1279. WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
  1280. /* 1-not override: enable sdma1 mem light sleep */
  1281. if (adev->asic_type == CHIP_VEGA10) {
  1282. def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL));
  1283. data |= SDMA1_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
  1284. if (def != data)
  1285. WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL), data);
  1286. }
  1287. } else {
  1288. /* 0-override:disable sdma0 mem light sleep */
  1289. def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
  1290. data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
  1291. if (def != data)
  1292. WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
  1293. /* 0-override:disable sdma1 mem light sleep */
  1294. if (adev->asic_type == CHIP_VEGA10) {
  1295. def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL));
  1296. data &= ~SDMA1_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
  1297. if (def != data)
  1298. WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL), data);
  1299. }
  1300. }
  1301. }
  1302. static int sdma_v4_0_set_clockgating_state(void *handle,
  1303. enum amd_clockgating_state state)
  1304. {
  1305. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1306. if (amdgpu_sriov_vf(adev))
  1307. return 0;
  1308. switch (adev->asic_type) {
  1309. case CHIP_VEGA10:
  1310. case CHIP_RAVEN:
  1311. sdma_v4_0_update_medium_grain_clock_gating(adev,
  1312. state == AMD_CG_STATE_GATE ? true : false);
  1313. sdma_v4_0_update_medium_grain_light_sleep(adev,
  1314. state == AMD_CG_STATE_GATE ? true : false);
  1315. break;
  1316. default:
  1317. break;
  1318. }
  1319. return 0;
  1320. }
  1321. static int sdma_v4_0_set_powergating_state(void *handle,
  1322. enum amd_powergating_state state)
  1323. {
  1324. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1325. switch (adev->asic_type) {
  1326. case CHIP_RAVEN:
  1327. sdma_v4_1_update_power_gating(adev,
  1328. state == AMD_PG_STATE_GATE ? true : false);
  1329. break;
  1330. default:
  1331. break;
  1332. }
  1333. return 0;
  1334. }
  1335. static void sdma_v4_0_get_clockgating_state(void *handle, u32 *flags)
  1336. {
  1337. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1338. int data;
  1339. if (amdgpu_sriov_vf(adev))
  1340. *flags = 0;
  1341. /* AMD_CG_SUPPORT_SDMA_MGCG */
  1342. data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
  1343. if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK))
  1344. *flags |= AMD_CG_SUPPORT_SDMA_MGCG;
  1345. /* AMD_CG_SUPPORT_SDMA_LS */
  1346. data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
  1347. if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
  1348. *flags |= AMD_CG_SUPPORT_SDMA_LS;
  1349. }
  1350. const struct amd_ip_funcs sdma_v4_0_ip_funcs = {
  1351. .name = "sdma_v4_0",
  1352. .early_init = sdma_v4_0_early_init,
  1353. .late_init = NULL,
  1354. .sw_init = sdma_v4_0_sw_init,
  1355. .sw_fini = sdma_v4_0_sw_fini,
  1356. .hw_init = sdma_v4_0_hw_init,
  1357. .hw_fini = sdma_v4_0_hw_fini,
  1358. .suspend = sdma_v4_0_suspend,
  1359. .resume = sdma_v4_0_resume,
  1360. .is_idle = sdma_v4_0_is_idle,
  1361. .wait_for_idle = sdma_v4_0_wait_for_idle,
  1362. .soft_reset = sdma_v4_0_soft_reset,
  1363. .set_clockgating_state = sdma_v4_0_set_clockgating_state,
  1364. .set_powergating_state = sdma_v4_0_set_powergating_state,
  1365. .get_clockgating_state = sdma_v4_0_get_clockgating_state,
  1366. };
  1367. static const struct amdgpu_ring_funcs sdma_v4_0_ring_funcs = {
  1368. .type = AMDGPU_RING_TYPE_SDMA,
  1369. .align_mask = 0xf,
  1370. .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
  1371. .support_64bit_ptrs = true,
  1372. .vmhub = AMDGPU_MMHUB,
  1373. .get_rptr = sdma_v4_0_ring_get_rptr,
  1374. .get_wptr = sdma_v4_0_ring_get_wptr,
  1375. .set_wptr = sdma_v4_0_ring_set_wptr,
  1376. .emit_frame_size =
  1377. 6 + /* sdma_v4_0_ring_emit_hdp_flush */
  1378. 3 + /* sdma_v4_0_ring_emit_hdp_invalidate */
  1379. 6 + /* sdma_v4_0_ring_emit_pipeline_sync */
  1380. 18 + /* sdma_v4_0_ring_emit_vm_flush */
  1381. 10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
  1382. .emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
  1383. .emit_ib = sdma_v4_0_ring_emit_ib,
  1384. .emit_fence = sdma_v4_0_ring_emit_fence,
  1385. .emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
  1386. .emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
  1387. .emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
  1388. .emit_hdp_invalidate = sdma_v4_0_ring_emit_hdp_invalidate,
  1389. .test_ring = sdma_v4_0_ring_test_ring,
  1390. .test_ib = sdma_v4_0_ring_test_ib,
  1391. .insert_nop = sdma_v4_0_ring_insert_nop,
  1392. .pad_ib = sdma_v4_0_ring_pad_ib,
  1393. };
  1394. static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev)
  1395. {
  1396. int i;
  1397. for (i = 0; i < adev->sdma.num_instances; i++)
  1398. adev->sdma.instance[i].ring.funcs = &sdma_v4_0_ring_funcs;
  1399. }
  1400. static const struct amdgpu_irq_src_funcs sdma_v4_0_trap_irq_funcs = {
  1401. .set = sdma_v4_0_set_trap_irq_state,
  1402. .process = sdma_v4_0_process_trap_irq,
  1403. };
  1404. static const struct amdgpu_irq_src_funcs sdma_v4_0_illegal_inst_irq_funcs = {
  1405. .process = sdma_v4_0_process_illegal_inst_irq,
  1406. };
  1407. static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev)
  1408. {
  1409. adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
  1410. adev->sdma.trap_irq.funcs = &sdma_v4_0_trap_irq_funcs;
  1411. adev->sdma.illegal_inst_irq.funcs = &sdma_v4_0_illegal_inst_irq_funcs;
  1412. }
  1413. /**
  1414. * sdma_v4_0_emit_copy_buffer - copy buffer using the sDMA engine
  1415. *
  1416. * @ring: amdgpu_ring structure holding ring information
  1417. * @src_offset: src GPU address
  1418. * @dst_offset: dst GPU address
  1419. * @byte_count: number of bytes to xfer
  1420. *
  1421. * Copy GPU buffers using the DMA engine (VEGA10).
  1422. * Used by the amdgpu ttm implementation to move pages if
  1423. * registered as the asic copy callback.
  1424. */
  1425. static void sdma_v4_0_emit_copy_buffer(struct amdgpu_ib *ib,
  1426. uint64_t src_offset,
  1427. uint64_t dst_offset,
  1428. uint32_t byte_count)
  1429. {
  1430. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
  1431. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
  1432. ib->ptr[ib->length_dw++] = byte_count - 1;
  1433. ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
  1434. ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
  1435. ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
  1436. ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
  1437. ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
  1438. }
  1439. /**
  1440. * sdma_v4_0_emit_fill_buffer - fill buffer using the sDMA engine
  1441. *
  1442. * @ring: amdgpu_ring structure holding ring information
  1443. * @src_data: value to write to buffer
  1444. * @dst_offset: dst GPU address
  1445. * @byte_count: number of bytes to xfer
  1446. *
  1447. * Fill GPU buffers using the DMA engine (VEGA10).
  1448. */
  1449. static void sdma_v4_0_emit_fill_buffer(struct amdgpu_ib *ib,
  1450. uint32_t src_data,
  1451. uint64_t dst_offset,
  1452. uint32_t byte_count)
  1453. {
  1454. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
  1455. ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
  1456. ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
  1457. ib->ptr[ib->length_dw++] = src_data;
  1458. ib->ptr[ib->length_dw++] = byte_count - 1;
  1459. }
  1460. static const struct amdgpu_buffer_funcs sdma_v4_0_buffer_funcs = {
  1461. .copy_max_bytes = 0x400000,
  1462. .copy_num_dw = 7,
  1463. .emit_copy_buffer = sdma_v4_0_emit_copy_buffer,
  1464. .fill_max_bytes = 0x400000,
  1465. .fill_num_dw = 5,
  1466. .emit_fill_buffer = sdma_v4_0_emit_fill_buffer,
  1467. };
  1468. static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev)
  1469. {
  1470. if (adev->mman.buffer_funcs == NULL) {
  1471. adev->mman.buffer_funcs = &sdma_v4_0_buffer_funcs;
  1472. adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
  1473. }
  1474. }
  1475. static const struct amdgpu_vm_pte_funcs sdma_v4_0_vm_pte_funcs = {
  1476. .copy_pte = sdma_v4_0_vm_copy_pte,
  1477. .write_pte = sdma_v4_0_vm_write_pte,
  1478. .set_pte_pde = sdma_v4_0_vm_set_pte_pde,
  1479. };
  1480. static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev)
  1481. {
  1482. unsigned i;
  1483. if (adev->vm_manager.vm_pte_funcs == NULL) {
  1484. adev->vm_manager.vm_pte_funcs = &sdma_v4_0_vm_pte_funcs;
  1485. for (i = 0; i < adev->sdma.num_instances; i++)
  1486. adev->vm_manager.vm_pte_rings[i] =
  1487. &adev->sdma.instance[i].ring;
  1488. adev->vm_manager.vm_pte_num_rings = adev->sdma.num_instances;
  1489. }
  1490. }
  1491. const struct amdgpu_ip_block_version sdma_v4_0_ip_block = {
  1492. .type = AMD_IP_BLOCK_TYPE_SDMA,
  1493. .major = 4,
  1494. .minor = 0,
  1495. .rev = 0,
  1496. .funcs = &sdma_v4_0_ip_funcs,
  1497. };