iw_rdma.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839
  1. /*
  2. * Copyright (c) 2006 Oracle. All rights reserved.
  3. *
  4. * This software is available to you under a choice of one of two
  5. * licenses. You may choose to be licensed under the terms of the GNU
  6. * General Public License (GPL) Version 2, available from the file
  7. * COPYING in the main directory of this source tree, or the
  8. * OpenIB.org BSD license below:
  9. *
  10. * Redistribution and use in source and binary forms, with or
  11. * without modification, are permitted provided that the following
  12. * conditions are met:
  13. *
  14. * - Redistributions of source code must retain the above
  15. * copyright notice, this list of conditions and the following
  16. * disclaimer.
  17. *
  18. * - Redistributions in binary form must reproduce the above
  19. * copyright notice, this list of conditions and the following
  20. * disclaimer in the documentation and/or other materials
  21. * provided with the distribution.
  22. *
  23. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  24. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  25. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  26. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  27. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  28. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  29. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  30. * SOFTWARE.
  31. *
  32. */
  33. #include <linux/kernel.h>
  34. #include <linux/slab.h>
  35. #include <linux/ratelimit.h>
  36. #include "rds.h"
  37. #include "iw.h"
  38. /*
  39. * This is stored as mr->r_trans_private.
  40. */
  41. struct rds_iw_mr {
  42. struct rds_iw_device *device;
  43. struct rds_iw_mr_pool *pool;
  44. struct rdma_cm_id *cm_id;
  45. struct ib_mr *mr;
  46. struct rds_iw_mapping mapping;
  47. unsigned char remap_count;
  48. };
  49. /*
  50. * Our own little MR pool
  51. */
  52. struct rds_iw_mr_pool {
  53. struct rds_iw_device *device; /* back ptr to the device that owns us */
  54. struct mutex flush_lock; /* serialize fmr invalidate */
  55. struct work_struct flush_worker; /* flush worker */
  56. spinlock_t list_lock; /* protect variables below */
  57. atomic_t item_count; /* total # of MRs */
  58. atomic_t dirty_count; /* # dirty of MRs */
  59. struct list_head dirty_list; /* dirty mappings */
  60. struct list_head clean_list; /* unused & unamapped MRs */
  61. atomic_t free_pinned; /* memory pinned by free MRs */
  62. unsigned long max_message_size; /* in pages */
  63. unsigned long max_items;
  64. unsigned long max_items_soft;
  65. unsigned long max_free_pinned;
  66. int max_pages;
  67. };
  68. static int rds_iw_flush_mr_pool(struct rds_iw_mr_pool *pool, int free_all);
  69. static void rds_iw_mr_pool_flush_worker(struct work_struct *work);
  70. static int rds_iw_init_reg(struct rds_iw_mr_pool *pool, struct rds_iw_mr *ibmr);
  71. static int rds_iw_map_reg(struct rds_iw_mr_pool *pool,
  72. struct rds_iw_mr *ibmr,
  73. struct scatterlist *sg, unsigned int nents);
  74. static void rds_iw_free_fastreg(struct rds_iw_mr_pool *pool, struct rds_iw_mr *ibmr);
  75. static unsigned int rds_iw_unmap_fastreg_list(struct rds_iw_mr_pool *pool,
  76. struct list_head *unmap_list,
  77. struct list_head *kill_list,
  78. int *unpinned);
  79. static void rds_iw_destroy_fastreg(struct rds_iw_mr_pool *pool, struct rds_iw_mr *ibmr);
  80. static int rds_iw_get_device(struct sockaddr_in *src, struct sockaddr_in *dst,
  81. struct rds_iw_device **rds_iwdev,
  82. struct rdma_cm_id **cm_id)
  83. {
  84. struct rds_iw_device *iwdev;
  85. struct rds_iw_cm_id *i_cm_id;
  86. *rds_iwdev = NULL;
  87. *cm_id = NULL;
  88. list_for_each_entry(iwdev, &rds_iw_devices, list) {
  89. spin_lock_irq(&iwdev->spinlock);
  90. list_for_each_entry(i_cm_id, &iwdev->cm_id_list, list) {
  91. struct sockaddr_in *src_addr, *dst_addr;
  92. src_addr = (struct sockaddr_in *)&i_cm_id->cm_id->route.addr.src_addr;
  93. dst_addr = (struct sockaddr_in *)&i_cm_id->cm_id->route.addr.dst_addr;
  94. rdsdebug("local ipaddr = %x port %d, "
  95. "remote ipaddr = %x port %d"
  96. "..looking for %x port %d, "
  97. "remote ipaddr = %x port %d\n",
  98. src_addr->sin_addr.s_addr,
  99. src_addr->sin_port,
  100. dst_addr->sin_addr.s_addr,
  101. dst_addr->sin_port,
  102. src->sin_addr.s_addr,
  103. src->sin_port,
  104. dst->sin_addr.s_addr,
  105. dst->sin_port);
  106. #ifdef WORKING_TUPLE_DETECTION
  107. if (src_addr->sin_addr.s_addr == src->sin_addr.s_addr &&
  108. src_addr->sin_port == src->sin_port &&
  109. dst_addr->sin_addr.s_addr == dst->sin_addr.s_addr &&
  110. dst_addr->sin_port == dst->sin_port) {
  111. #else
  112. /* FIXME - needs to compare the local and remote
  113. * ipaddr/port tuple, but the ipaddr is the only
  114. * available information in the rds_sock (as the rest are
  115. * zero'ed. It doesn't appear to be properly populated
  116. * during connection setup...
  117. */
  118. if (src_addr->sin_addr.s_addr == src->sin_addr.s_addr) {
  119. #endif
  120. spin_unlock_irq(&iwdev->spinlock);
  121. *rds_iwdev = iwdev;
  122. *cm_id = i_cm_id->cm_id;
  123. return 0;
  124. }
  125. }
  126. spin_unlock_irq(&iwdev->spinlock);
  127. }
  128. return 1;
  129. }
  130. static int rds_iw_add_cm_id(struct rds_iw_device *rds_iwdev, struct rdma_cm_id *cm_id)
  131. {
  132. struct rds_iw_cm_id *i_cm_id;
  133. i_cm_id = kmalloc(sizeof *i_cm_id, GFP_KERNEL);
  134. if (!i_cm_id)
  135. return -ENOMEM;
  136. i_cm_id->cm_id = cm_id;
  137. spin_lock_irq(&rds_iwdev->spinlock);
  138. list_add_tail(&i_cm_id->list, &rds_iwdev->cm_id_list);
  139. spin_unlock_irq(&rds_iwdev->spinlock);
  140. return 0;
  141. }
  142. static void rds_iw_remove_cm_id(struct rds_iw_device *rds_iwdev,
  143. struct rdma_cm_id *cm_id)
  144. {
  145. struct rds_iw_cm_id *i_cm_id;
  146. spin_lock_irq(&rds_iwdev->spinlock);
  147. list_for_each_entry(i_cm_id, &rds_iwdev->cm_id_list, list) {
  148. if (i_cm_id->cm_id == cm_id) {
  149. list_del(&i_cm_id->list);
  150. kfree(i_cm_id);
  151. break;
  152. }
  153. }
  154. spin_unlock_irq(&rds_iwdev->spinlock);
  155. }
  156. int rds_iw_update_cm_id(struct rds_iw_device *rds_iwdev, struct rdma_cm_id *cm_id)
  157. {
  158. struct sockaddr_in *src_addr, *dst_addr;
  159. struct rds_iw_device *rds_iwdev_old;
  160. struct rdma_cm_id *pcm_id;
  161. int rc;
  162. src_addr = (struct sockaddr_in *)&cm_id->route.addr.src_addr;
  163. dst_addr = (struct sockaddr_in *)&cm_id->route.addr.dst_addr;
  164. rc = rds_iw_get_device(src_addr, dst_addr, &rds_iwdev_old, &pcm_id);
  165. if (rc)
  166. rds_iw_remove_cm_id(rds_iwdev, cm_id);
  167. return rds_iw_add_cm_id(rds_iwdev, cm_id);
  168. }
  169. void rds_iw_add_conn(struct rds_iw_device *rds_iwdev, struct rds_connection *conn)
  170. {
  171. struct rds_iw_connection *ic = conn->c_transport_data;
  172. /* conn was previously on the nodev_conns_list */
  173. spin_lock_irq(&iw_nodev_conns_lock);
  174. BUG_ON(list_empty(&iw_nodev_conns));
  175. BUG_ON(list_empty(&ic->iw_node));
  176. list_del(&ic->iw_node);
  177. spin_lock(&rds_iwdev->spinlock);
  178. list_add_tail(&ic->iw_node, &rds_iwdev->conn_list);
  179. spin_unlock(&rds_iwdev->spinlock);
  180. spin_unlock_irq(&iw_nodev_conns_lock);
  181. ic->rds_iwdev = rds_iwdev;
  182. }
  183. void rds_iw_remove_conn(struct rds_iw_device *rds_iwdev, struct rds_connection *conn)
  184. {
  185. struct rds_iw_connection *ic = conn->c_transport_data;
  186. /* place conn on nodev_conns_list */
  187. spin_lock(&iw_nodev_conns_lock);
  188. spin_lock_irq(&rds_iwdev->spinlock);
  189. BUG_ON(list_empty(&ic->iw_node));
  190. list_del(&ic->iw_node);
  191. spin_unlock_irq(&rds_iwdev->spinlock);
  192. list_add_tail(&ic->iw_node, &iw_nodev_conns);
  193. spin_unlock(&iw_nodev_conns_lock);
  194. rds_iw_remove_cm_id(ic->rds_iwdev, ic->i_cm_id);
  195. ic->rds_iwdev = NULL;
  196. }
  197. void __rds_iw_destroy_conns(struct list_head *list, spinlock_t *list_lock)
  198. {
  199. struct rds_iw_connection *ic, *_ic;
  200. LIST_HEAD(tmp_list);
  201. /* avoid calling conn_destroy with irqs off */
  202. spin_lock_irq(list_lock);
  203. list_splice(list, &tmp_list);
  204. INIT_LIST_HEAD(list);
  205. spin_unlock_irq(list_lock);
  206. list_for_each_entry_safe(ic, _ic, &tmp_list, iw_node)
  207. rds_conn_destroy(ic->conn);
  208. }
  209. static void rds_iw_set_scatterlist(struct rds_iw_scatterlist *sg,
  210. struct scatterlist *list, unsigned int sg_len)
  211. {
  212. sg->list = list;
  213. sg->len = sg_len;
  214. sg->dma_len = 0;
  215. sg->dma_npages = 0;
  216. sg->bytes = 0;
  217. }
  218. static int rds_iw_map_scatterlist(struct rds_iw_device *rds_iwdev,
  219. struct rds_iw_scatterlist *sg)
  220. {
  221. struct ib_device *dev = rds_iwdev->dev;
  222. int i, ret;
  223. WARN_ON(sg->dma_len);
  224. sg->dma_len = ib_dma_map_sg(dev, sg->list, sg->len, DMA_BIDIRECTIONAL);
  225. if (unlikely(!sg->dma_len)) {
  226. printk(KERN_WARNING "RDS/IW: dma_map_sg failed!\n");
  227. return -EBUSY;
  228. }
  229. sg->bytes = 0;
  230. sg->dma_npages = 0;
  231. ret = -EINVAL;
  232. for (i = 0; i < sg->dma_len; ++i) {
  233. unsigned int dma_len = ib_sg_dma_len(dev, &sg->list[i]);
  234. u64 dma_addr = ib_sg_dma_address(dev, &sg->list[i]);
  235. u64 end_addr;
  236. sg->bytes += dma_len;
  237. end_addr = dma_addr + dma_len;
  238. if (dma_addr & PAGE_MASK) {
  239. if (i > 0)
  240. goto out_unmap;
  241. dma_addr &= ~PAGE_MASK;
  242. }
  243. if (end_addr & PAGE_MASK) {
  244. if (i < sg->dma_len - 1)
  245. goto out_unmap;
  246. end_addr = (end_addr + PAGE_MASK) & ~PAGE_MASK;
  247. }
  248. sg->dma_npages += (end_addr - dma_addr) >> PAGE_SHIFT;
  249. }
  250. /* Now gather the dma addrs into one list */
  251. if (sg->dma_npages > fastreg_message_size)
  252. goto out_unmap;
  253. return 0;
  254. out_unmap:
  255. ib_dma_unmap_sg(rds_iwdev->dev, sg->list, sg->len, DMA_BIDIRECTIONAL);
  256. sg->dma_len = 0;
  257. return ret;
  258. }
  259. struct rds_iw_mr_pool *rds_iw_create_mr_pool(struct rds_iw_device *rds_iwdev)
  260. {
  261. struct rds_iw_mr_pool *pool;
  262. pool = kzalloc(sizeof(*pool), GFP_KERNEL);
  263. if (!pool) {
  264. printk(KERN_WARNING "RDS/IW: rds_iw_create_mr_pool alloc error\n");
  265. return ERR_PTR(-ENOMEM);
  266. }
  267. pool->device = rds_iwdev;
  268. INIT_LIST_HEAD(&pool->dirty_list);
  269. INIT_LIST_HEAD(&pool->clean_list);
  270. mutex_init(&pool->flush_lock);
  271. spin_lock_init(&pool->list_lock);
  272. INIT_WORK(&pool->flush_worker, rds_iw_mr_pool_flush_worker);
  273. pool->max_message_size = fastreg_message_size;
  274. pool->max_items = fastreg_pool_size;
  275. pool->max_free_pinned = pool->max_items * pool->max_message_size / 4;
  276. pool->max_pages = fastreg_message_size;
  277. /* We never allow more than max_items MRs to be allocated.
  278. * When we exceed more than max_items_soft, we start freeing
  279. * items more aggressively.
  280. * Make sure that max_items > max_items_soft > max_items / 2
  281. */
  282. pool->max_items_soft = pool->max_items * 3 / 4;
  283. return pool;
  284. }
  285. void rds_iw_get_mr_info(struct rds_iw_device *rds_iwdev, struct rds_info_rdma_connection *iinfo)
  286. {
  287. struct rds_iw_mr_pool *pool = rds_iwdev->mr_pool;
  288. iinfo->rdma_mr_max = pool->max_items;
  289. iinfo->rdma_mr_size = pool->max_pages;
  290. }
  291. void rds_iw_destroy_mr_pool(struct rds_iw_mr_pool *pool)
  292. {
  293. flush_workqueue(rds_wq);
  294. rds_iw_flush_mr_pool(pool, 1);
  295. BUG_ON(atomic_read(&pool->item_count));
  296. BUG_ON(atomic_read(&pool->free_pinned));
  297. kfree(pool);
  298. }
  299. static inline struct rds_iw_mr *rds_iw_reuse_fmr(struct rds_iw_mr_pool *pool)
  300. {
  301. struct rds_iw_mr *ibmr = NULL;
  302. unsigned long flags;
  303. spin_lock_irqsave(&pool->list_lock, flags);
  304. if (!list_empty(&pool->clean_list)) {
  305. ibmr = list_entry(pool->clean_list.next, struct rds_iw_mr, mapping.m_list);
  306. list_del_init(&ibmr->mapping.m_list);
  307. }
  308. spin_unlock_irqrestore(&pool->list_lock, flags);
  309. return ibmr;
  310. }
  311. static struct rds_iw_mr *rds_iw_alloc_mr(struct rds_iw_device *rds_iwdev)
  312. {
  313. struct rds_iw_mr_pool *pool = rds_iwdev->mr_pool;
  314. struct rds_iw_mr *ibmr = NULL;
  315. int err = 0, iter = 0;
  316. while (1) {
  317. ibmr = rds_iw_reuse_fmr(pool);
  318. if (ibmr)
  319. return ibmr;
  320. /* No clean MRs - now we have the choice of either
  321. * allocating a fresh MR up to the limit imposed by the
  322. * driver, or flush any dirty unused MRs.
  323. * We try to avoid stalling in the send path if possible,
  324. * so we allocate as long as we're allowed to.
  325. *
  326. * We're fussy with enforcing the FMR limit, though. If the driver
  327. * tells us we can't use more than N fmrs, we shouldn't start
  328. * arguing with it */
  329. if (atomic_inc_return(&pool->item_count) <= pool->max_items)
  330. break;
  331. atomic_dec(&pool->item_count);
  332. if (++iter > 2) {
  333. rds_iw_stats_inc(s_iw_rdma_mr_pool_depleted);
  334. return ERR_PTR(-EAGAIN);
  335. }
  336. /* We do have some empty MRs. Flush them out. */
  337. rds_iw_stats_inc(s_iw_rdma_mr_pool_wait);
  338. rds_iw_flush_mr_pool(pool, 0);
  339. }
  340. ibmr = kzalloc(sizeof(*ibmr), GFP_KERNEL);
  341. if (!ibmr) {
  342. err = -ENOMEM;
  343. goto out_no_cigar;
  344. }
  345. spin_lock_init(&ibmr->mapping.m_lock);
  346. INIT_LIST_HEAD(&ibmr->mapping.m_list);
  347. ibmr->mapping.m_mr = ibmr;
  348. err = rds_iw_init_reg(pool, ibmr);
  349. if (err)
  350. goto out_no_cigar;
  351. rds_iw_stats_inc(s_iw_rdma_mr_alloc);
  352. return ibmr;
  353. out_no_cigar:
  354. if (ibmr) {
  355. rds_iw_destroy_fastreg(pool, ibmr);
  356. kfree(ibmr);
  357. }
  358. atomic_dec(&pool->item_count);
  359. return ERR_PTR(err);
  360. }
  361. void rds_iw_sync_mr(void *trans_private, int direction)
  362. {
  363. struct rds_iw_mr *ibmr = trans_private;
  364. struct rds_iw_device *rds_iwdev = ibmr->device;
  365. switch (direction) {
  366. case DMA_FROM_DEVICE:
  367. ib_dma_sync_sg_for_cpu(rds_iwdev->dev, ibmr->mapping.m_sg.list,
  368. ibmr->mapping.m_sg.dma_len, DMA_BIDIRECTIONAL);
  369. break;
  370. case DMA_TO_DEVICE:
  371. ib_dma_sync_sg_for_device(rds_iwdev->dev, ibmr->mapping.m_sg.list,
  372. ibmr->mapping.m_sg.dma_len, DMA_BIDIRECTIONAL);
  373. break;
  374. }
  375. }
  376. /*
  377. * Flush our pool of MRs.
  378. * At a minimum, all currently unused MRs are unmapped.
  379. * If the number of MRs allocated exceeds the limit, we also try
  380. * to free as many MRs as needed to get back to this limit.
  381. */
  382. static int rds_iw_flush_mr_pool(struct rds_iw_mr_pool *pool, int free_all)
  383. {
  384. struct rds_iw_mr *ibmr, *next;
  385. LIST_HEAD(unmap_list);
  386. LIST_HEAD(kill_list);
  387. unsigned long flags;
  388. unsigned int nfreed = 0, ncleaned = 0, unpinned = 0;
  389. int ret = 0;
  390. rds_iw_stats_inc(s_iw_rdma_mr_pool_flush);
  391. mutex_lock(&pool->flush_lock);
  392. spin_lock_irqsave(&pool->list_lock, flags);
  393. /* Get the list of all mappings to be destroyed */
  394. list_splice_init(&pool->dirty_list, &unmap_list);
  395. if (free_all)
  396. list_splice_init(&pool->clean_list, &kill_list);
  397. spin_unlock_irqrestore(&pool->list_lock, flags);
  398. /* Batched invalidate of dirty MRs.
  399. * For FMR based MRs, the mappings on the unmap list are
  400. * actually members of an ibmr (ibmr->mapping). They either
  401. * migrate to the kill_list, or have been cleaned and should be
  402. * moved to the clean_list.
  403. * For fastregs, they will be dynamically allocated, and
  404. * will be destroyed by the unmap function.
  405. */
  406. if (!list_empty(&unmap_list)) {
  407. ncleaned = rds_iw_unmap_fastreg_list(pool, &unmap_list,
  408. &kill_list, &unpinned);
  409. /* If we've been asked to destroy all MRs, move those
  410. * that were simply cleaned to the kill list */
  411. if (free_all)
  412. list_splice_init(&unmap_list, &kill_list);
  413. }
  414. /* Destroy any MRs that are past their best before date */
  415. list_for_each_entry_safe(ibmr, next, &kill_list, mapping.m_list) {
  416. rds_iw_stats_inc(s_iw_rdma_mr_free);
  417. list_del(&ibmr->mapping.m_list);
  418. rds_iw_destroy_fastreg(pool, ibmr);
  419. kfree(ibmr);
  420. nfreed++;
  421. }
  422. /* Anything that remains are laundered ibmrs, which we can add
  423. * back to the clean list. */
  424. if (!list_empty(&unmap_list)) {
  425. spin_lock_irqsave(&pool->list_lock, flags);
  426. list_splice(&unmap_list, &pool->clean_list);
  427. spin_unlock_irqrestore(&pool->list_lock, flags);
  428. }
  429. atomic_sub(unpinned, &pool->free_pinned);
  430. atomic_sub(ncleaned, &pool->dirty_count);
  431. atomic_sub(nfreed, &pool->item_count);
  432. mutex_unlock(&pool->flush_lock);
  433. return ret;
  434. }
  435. static void rds_iw_mr_pool_flush_worker(struct work_struct *work)
  436. {
  437. struct rds_iw_mr_pool *pool = container_of(work, struct rds_iw_mr_pool, flush_worker);
  438. rds_iw_flush_mr_pool(pool, 0);
  439. }
  440. void rds_iw_free_mr(void *trans_private, int invalidate)
  441. {
  442. struct rds_iw_mr *ibmr = trans_private;
  443. struct rds_iw_mr_pool *pool = ibmr->device->mr_pool;
  444. rdsdebug("RDS/IW: free_mr nents %u\n", ibmr->mapping.m_sg.len);
  445. if (!pool)
  446. return;
  447. /* Return it to the pool's free list */
  448. rds_iw_free_fastreg(pool, ibmr);
  449. /* If we've pinned too many pages, request a flush */
  450. if (atomic_read(&pool->free_pinned) >= pool->max_free_pinned ||
  451. atomic_read(&pool->dirty_count) >= pool->max_items / 10)
  452. queue_work(rds_wq, &pool->flush_worker);
  453. if (invalidate) {
  454. if (likely(!in_interrupt())) {
  455. rds_iw_flush_mr_pool(pool, 0);
  456. } else {
  457. /* We get here if the user created a MR marked
  458. * as use_once and invalidate at the same time. */
  459. queue_work(rds_wq, &pool->flush_worker);
  460. }
  461. }
  462. }
  463. void rds_iw_flush_mrs(void)
  464. {
  465. struct rds_iw_device *rds_iwdev;
  466. list_for_each_entry(rds_iwdev, &rds_iw_devices, list) {
  467. struct rds_iw_mr_pool *pool = rds_iwdev->mr_pool;
  468. if (pool)
  469. rds_iw_flush_mr_pool(pool, 0);
  470. }
  471. }
  472. void *rds_iw_get_mr(struct scatterlist *sg, unsigned long nents,
  473. struct rds_sock *rs, u32 *key_ret)
  474. {
  475. struct rds_iw_device *rds_iwdev;
  476. struct rds_iw_mr *ibmr = NULL;
  477. struct rdma_cm_id *cm_id;
  478. struct sockaddr_in src = {
  479. .sin_addr.s_addr = rs->rs_bound_addr,
  480. .sin_port = rs->rs_bound_port,
  481. };
  482. struct sockaddr_in dst = {
  483. .sin_addr.s_addr = rs->rs_conn_addr,
  484. .sin_port = rs->rs_conn_port,
  485. };
  486. int ret;
  487. ret = rds_iw_get_device(&src, &dst, &rds_iwdev, &cm_id);
  488. if (ret || !cm_id) {
  489. ret = -ENODEV;
  490. goto out;
  491. }
  492. if (!rds_iwdev->mr_pool) {
  493. ret = -ENODEV;
  494. goto out;
  495. }
  496. ibmr = rds_iw_alloc_mr(rds_iwdev);
  497. if (IS_ERR(ibmr))
  498. return ibmr;
  499. ibmr->cm_id = cm_id;
  500. ibmr->device = rds_iwdev;
  501. ret = rds_iw_map_reg(rds_iwdev->mr_pool, ibmr, sg, nents);
  502. if (ret == 0)
  503. *key_ret = ibmr->mr->rkey;
  504. else
  505. printk(KERN_WARNING "RDS/IW: failed to map mr (errno=%d)\n", ret);
  506. out:
  507. if (ret) {
  508. if (ibmr)
  509. rds_iw_free_mr(ibmr, 0);
  510. ibmr = ERR_PTR(ret);
  511. }
  512. return ibmr;
  513. }
  514. /*
  515. * iWARP reg handling
  516. *
  517. * The life cycle of a fastreg registration is a bit different from
  518. * FMRs.
  519. * The idea behind fastreg is to have one MR, to which we bind different
  520. * mappings over time. To avoid stalling on the expensive map and invalidate
  521. * operations, these operations are pipelined on the same send queue on
  522. * which we want to send the message containing the r_key.
  523. *
  524. * This creates a bit of a problem for us, as we do not have the destination
  525. * IP in GET_MR, so the connection must be setup prior to the GET_MR call for
  526. * RDMA to be correctly setup. If a fastreg request is present, rds_iw_xmit
  527. * will try to queue a LOCAL_INV (if needed) and a REG_MR work request
  528. * before queuing the SEND. When completions for these arrive, they are
  529. * dispatched to the MR has a bit set showing that RDMa can be performed.
  530. *
  531. * There is another interesting aspect that's related to invalidation.
  532. * The application can request that a mapping is invalidated in FREE_MR.
  533. * The expectation there is that this invalidation step includes ALL
  534. * PREVIOUSLY FREED MRs.
  535. */
  536. static int rds_iw_init_reg(struct rds_iw_mr_pool *pool,
  537. struct rds_iw_mr *ibmr)
  538. {
  539. struct rds_iw_device *rds_iwdev = pool->device;
  540. struct ib_mr *mr;
  541. int err;
  542. mr = ib_alloc_mr(rds_iwdev->pd, IB_MR_TYPE_MEM_REG,
  543. pool->max_message_size);
  544. if (IS_ERR(mr)) {
  545. err = PTR_ERR(mr);
  546. printk(KERN_WARNING "RDS/IW: ib_alloc_mr failed (err=%d)\n", err);
  547. return err;
  548. }
  549. ibmr->mr = mr;
  550. return 0;
  551. }
  552. static int rds_iw_rdma_reg_mr(struct rds_iw_mapping *mapping)
  553. {
  554. struct rds_iw_mr *ibmr = mapping->m_mr;
  555. struct rds_iw_scatterlist *m_sg = &mapping->m_sg;
  556. struct ib_reg_wr reg_wr;
  557. struct ib_send_wr *failed_wr;
  558. int ret, n;
  559. n = ib_map_mr_sg_zbva(ibmr->mr, m_sg->list, m_sg->len, PAGE_SIZE);
  560. if (unlikely(n != m_sg->len))
  561. return n < 0 ? n : -EINVAL;
  562. reg_wr.wr.next = NULL;
  563. reg_wr.wr.opcode = IB_WR_REG_MR;
  564. reg_wr.wr.wr_id = RDS_IW_REG_WR_ID;
  565. reg_wr.wr.num_sge = 0;
  566. reg_wr.mr = ibmr->mr;
  567. reg_wr.key = mapping->m_rkey;
  568. reg_wr.access = IB_ACCESS_LOCAL_WRITE |
  569. IB_ACCESS_REMOTE_READ |
  570. IB_ACCESS_REMOTE_WRITE;
  571. /*
  572. * Perform a WR for the reg_mr. Each individual page
  573. * in the sg list is added to the fast reg page list and placed
  574. * inside the reg_mr WR. The key used is a rolling 8bit
  575. * counter, which should guarantee uniqueness.
  576. */
  577. ib_update_fast_reg_key(ibmr->mr, ibmr->remap_count++);
  578. mapping->m_rkey = ibmr->mr->rkey;
  579. failed_wr = &reg_wr.wr;
  580. ret = ib_post_send(ibmr->cm_id->qp, &reg_wr.wr, &failed_wr);
  581. BUG_ON(failed_wr != &reg_wr.wr);
  582. if (ret)
  583. printk_ratelimited(KERN_WARNING "RDS/IW: %s:%d ib_post_send returned %d\n",
  584. __func__, __LINE__, ret);
  585. return ret;
  586. }
  587. static int rds_iw_rdma_fastreg_inv(struct rds_iw_mr *ibmr)
  588. {
  589. struct ib_send_wr s_wr, *failed_wr;
  590. int ret = 0;
  591. if (!ibmr->cm_id->qp || !ibmr->mr)
  592. goto out;
  593. memset(&s_wr, 0, sizeof(s_wr));
  594. s_wr.wr_id = RDS_IW_LOCAL_INV_WR_ID;
  595. s_wr.opcode = IB_WR_LOCAL_INV;
  596. s_wr.ex.invalidate_rkey = ibmr->mr->rkey;
  597. s_wr.send_flags = IB_SEND_SIGNALED;
  598. failed_wr = &s_wr;
  599. ret = ib_post_send(ibmr->cm_id->qp, &s_wr, &failed_wr);
  600. if (ret) {
  601. printk_ratelimited(KERN_WARNING "RDS/IW: %s:%d ib_post_send returned %d\n",
  602. __func__, __LINE__, ret);
  603. goto out;
  604. }
  605. out:
  606. return ret;
  607. }
  608. static int rds_iw_map_reg(struct rds_iw_mr_pool *pool,
  609. struct rds_iw_mr *ibmr,
  610. struct scatterlist *sg,
  611. unsigned int sg_len)
  612. {
  613. struct rds_iw_device *rds_iwdev = pool->device;
  614. struct rds_iw_mapping *mapping = &ibmr->mapping;
  615. u64 *dma_pages;
  616. int ret = 0;
  617. rds_iw_set_scatterlist(&mapping->m_sg, sg, sg_len);
  618. ret = rds_iw_map_scatterlist(rds_iwdev, &mapping->m_sg);
  619. if (ret) {
  620. dma_pages = NULL;
  621. goto out;
  622. }
  623. if (mapping->m_sg.dma_len > pool->max_message_size) {
  624. ret = -EMSGSIZE;
  625. goto out;
  626. }
  627. ret = rds_iw_rdma_reg_mr(mapping);
  628. if (ret)
  629. goto out;
  630. rds_iw_stats_inc(s_iw_rdma_mr_used);
  631. out:
  632. kfree(dma_pages);
  633. return ret;
  634. }
  635. /*
  636. * "Free" a fastreg MR.
  637. */
  638. static void rds_iw_free_fastreg(struct rds_iw_mr_pool *pool,
  639. struct rds_iw_mr *ibmr)
  640. {
  641. unsigned long flags;
  642. int ret;
  643. if (!ibmr->mapping.m_sg.dma_len)
  644. return;
  645. ret = rds_iw_rdma_fastreg_inv(ibmr);
  646. if (ret)
  647. return;
  648. /* Try to post the LOCAL_INV WR to the queue. */
  649. spin_lock_irqsave(&pool->list_lock, flags);
  650. list_add_tail(&ibmr->mapping.m_list, &pool->dirty_list);
  651. atomic_add(ibmr->mapping.m_sg.len, &pool->free_pinned);
  652. atomic_inc(&pool->dirty_count);
  653. spin_unlock_irqrestore(&pool->list_lock, flags);
  654. }
  655. static unsigned int rds_iw_unmap_fastreg_list(struct rds_iw_mr_pool *pool,
  656. struct list_head *unmap_list,
  657. struct list_head *kill_list,
  658. int *unpinned)
  659. {
  660. struct rds_iw_mapping *mapping, *next;
  661. unsigned int ncleaned = 0;
  662. LIST_HEAD(laundered);
  663. /* Batched invalidation of fastreg MRs.
  664. * Why do we do it this way, even though we could pipeline unmap
  665. * and remap? The reason is the application semantics - when the
  666. * application requests an invalidation of MRs, it expects all
  667. * previously released R_Keys to become invalid.
  668. *
  669. * If we implement MR reuse naively, we risk memory corruption
  670. * (this has actually been observed). So the default behavior
  671. * requires that a MR goes through an explicit unmap operation before
  672. * we can reuse it again.
  673. *
  674. * We could probably improve on this a little, by allowing immediate
  675. * reuse of a MR on the same socket (eg you could add small
  676. * cache of unused MRs to strct rds_socket - GET_MR could grab one
  677. * of these without requiring an explicit invalidate).
  678. */
  679. while (!list_empty(unmap_list)) {
  680. unsigned long flags;
  681. spin_lock_irqsave(&pool->list_lock, flags);
  682. list_for_each_entry_safe(mapping, next, unmap_list, m_list) {
  683. *unpinned += mapping->m_sg.len;
  684. list_move(&mapping->m_list, &laundered);
  685. ncleaned++;
  686. }
  687. spin_unlock_irqrestore(&pool->list_lock, flags);
  688. }
  689. /* Move all laundered mappings back to the unmap list.
  690. * We do not kill any WRs right now - it doesn't seem the
  691. * fastreg API has a max_remap limit. */
  692. list_splice_init(&laundered, unmap_list);
  693. return ncleaned;
  694. }
  695. static void rds_iw_destroy_fastreg(struct rds_iw_mr_pool *pool,
  696. struct rds_iw_mr *ibmr)
  697. {
  698. if (ibmr->mr)
  699. ib_dereg_mr(ibmr->mr);
  700. }