compiler.h 4.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155
  1. #ifndef _TOOLS_LINUX_COMPILER_H_
  2. #define _TOOLS_LINUX_COMPILER_H_
  3. #ifdef __GNUC__
  4. #include <linux/compiler-gcc.h>
  5. #endif
  6. #ifndef __compiletime_error
  7. # define __compiletime_error(message)
  8. #endif
  9. /* Optimization barrier */
  10. /* The "volatile" is due to gcc bugs */
  11. #define barrier() __asm__ __volatile__("": : :"memory")
  12. #ifndef __always_inline
  13. # define __always_inline inline __attribute__((always_inline))
  14. #endif
  15. #ifndef noinline
  16. #define noinline
  17. #endif
  18. /* Are two types/vars the same type (ignoring qualifiers)? */
  19. #ifndef __same_type
  20. # define __same_type(a, b) __builtin_types_compatible_p(typeof(a), typeof(b))
  21. #endif
  22. #ifdef __ANDROID__
  23. /*
  24. * FIXME: Big hammer to get rid of tons of:
  25. * "warning: always_inline function might not be inlinable"
  26. *
  27. * At least on android-ndk-r12/platforms/android-24/arch-arm
  28. */
  29. #undef __always_inline
  30. #define __always_inline inline
  31. #endif
  32. #define __user
  33. #define __rcu
  34. #define __read_mostly
  35. #ifndef __attribute_const__
  36. # define __attribute_const__
  37. #endif
  38. #ifndef __maybe_unused
  39. # define __maybe_unused __attribute__((unused))
  40. #endif
  41. #ifndef __packed
  42. # define __packed __attribute__((__packed__))
  43. #endif
  44. #ifndef __force
  45. # define __force
  46. #endif
  47. #ifndef __weak
  48. # define __weak __attribute__((weak))
  49. #endif
  50. #ifndef likely
  51. # define likely(x) __builtin_expect(!!(x), 1)
  52. #endif
  53. #ifndef unlikely
  54. # define unlikely(x) __builtin_expect(!!(x), 0)
  55. #endif
  56. #define uninitialized_var(x) x = *(&(x))
  57. #define ACCESS_ONCE(x) (*(volatile typeof(x) *)&(x))
  58. #include <linux/types.h>
  59. /*
  60. * Following functions are taken from kernel sources and
  61. * break aliasing rules in their original form.
  62. *
  63. * While kernel is compiled with -fno-strict-aliasing,
  64. * perf uses -Wstrict-aliasing=3 which makes build fail
  65. * under gcc 4.4.
  66. *
  67. * Using extra __may_alias__ type to allow aliasing
  68. * in this case.
  69. */
  70. typedef __u8 __attribute__((__may_alias__)) __u8_alias_t;
  71. typedef __u16 __attribute__((__may_alias__)) __u16_alias_t;
  72. typedef __u32 __attribute__((__may_alias__)) __u32_alias_t;
  73. typedef __u64 __attribute__((__may_alias__)) __u64_alias_t;
  74. static __always_inline void __read_once_size(const volatile void *p, void *res, int size)
  75. {
  76. switch (size) {
  77. case 1: *(__u8_alias_t *) res = *(volatile __u8_alias_t *) p; break;
  78. case 2: *(__u16_alias_t *) res = *(volatile __u16_alias_t *) p; break;
  79. case 4: *(__u32_alias_t *) res = *(volatile __u32_alias_t *) p; break;
  80. case 8: *(__u64_alias_t *) res = *(volatile __u64_alias_t *) p; break;
  81. default:
  82. barrier();
  83. __builtin_memcpy((void *)res, (const void *)p, size);
  84. barrier();
  85. }
  86. }
  87. static __always_inline void __write_once_size(volatile void *p, void *res, int size)
  88. {
  89. switch (size) {
  90. case 1: *(volatile __u8_alias_t *) p = *(__u8_alias_t *) res; break;
  91. case 2: *(volatile __u16_alias_t *) p = *(__u16_alias_t *) res; break;
  92. case 4: *(volatile __u32_alias_t *) p = *(__u32_alias_t *) res; break;
  93. case 8: *(volatile __u64_alias_t *) p = *(__u64_alias_t *) res; break;
  94. default:
  95. barrier();
  96. __builtin_memcpy((void *)p, (const void *)res, size);
  97. barrier();
  98. }
  99. }
  100. /*
  101. * Prevent the compiler from merging or refetching reads or writes. The
  102. * compiler is also forbidden from reordering successive instances of
  103. * READ_ONCE, WRITE_ONCE and ACCESS_ONCE (see below), but only when the
  104. * compiler is aware of some particular ordering. One way to make the
  105. * compiler aware of ordering is to put the two invocations of READ_ONCE,
  106. * WRITE_ONCE or ACCESS_ONCE() in different C statements.
  107. *
  108. * In contrast to ACCESS_ONCE these two macros will also work on aggregate
  109. * data types like structs or unions. If the size of the accessed data
  110. * type exceeds the word size of the machine (e.g., 32 bits or 64 bits)
  111. * READ_ONCE() and WRITE_ONCE() will fall back to memcpy and print a
  112. * compile-time warning.
  113. *
  114. * Their two major use cases are: (1) Mediating communication between
  115. * process-level code and irq/NMI handlers, all running on the same CPU,
  116. * and (2) Ensuring that the compiler does not fold, spindle, or otherwise
  117. * mutilate accesses that either do not require ordering or that interact
  118. * with an explicit memory barrier or atomic instruction that provides the
  119. * required ordering.
  120. */
  121. #define READ_ONCE(x) \
  122. ({ union { typeof(x) __val; char __c[1]; } __u; __read_once_size(&(x), __u.__c, sizeof(x)); __u.__val; })
  123. #define WRITE_ONCE(x, val) \
  124. ({ union { typeof(x) __val; char __c[1]; } __u = { .__val = (val) }; __write_once_size(&(x), __u.__c, sizeof(x)); __u.__val; })
  125. #ifndef __fallthrough
  126. # define __fallthrough
  127. #endif
  128. #endif /* _TOOLS_LINUX_COMPILER_H */