sparse.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879
  1. /*
  2. * sparse memory mappings.
  3. */
  4. #include <linux/mm.h>
  5. #include <linux/slab.h>
  6. #include <linux/mmzone.h>
  7. #include <linux/bootmem.h>
  8. #include <linux/compiler.h>
  9. #include <linux/highmem.h>
  10. #include <linux/export.h>
  11. #include <linux/spinlock.h>
  12. #include <linux/vmalloc.h>
  13. #include "internal.h"
  14. #include <asm/dma.h>
  15. #include <asm/pgalloc.h>
  16. #include <asm/pgtable.h>
  17. /*
  18. * Permanent SPARSEMEM data:
  19. *
  20. * 1) mem_section - memory sections, mem_map's for valid memory
  21. */
  22. #ifdef CONFIG_SPARSEMEM_EXTREME
  23. struct mem_section *mem_section[NR_SECTION_ROOTS]
  24. ____cacheline_internodealigned_in_smp;
  25. #else
  26. struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
  27. ____cacheline_internodealigned_in_smp;
  28. #endif
  29. EXPORT_SYMBOL(mem_section);
  30. #ifdef NODE_NOT_IN_PAGE_FLAGS
  31. /*
  32. * If we did not store the node number in the page then we have to
  33. * do a lookup in the section_to_node_table in order to find which
  34. * node the page belongs to.
  35. */
  36. #if MAX_NUMNODES <= 256
  37. static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
  38. #else
  39. static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
  40. #endif
  41. int page_to_nid(const struct page *page)
  42. {
  43. return section_to_node_table[page_to_section(page)];
  44. }
  45. EXPORT_SYMBOL(page_to_nid);
  46. static void set_section_nid(unsigned long section_nr, int nid)
  47. {
  48. section_to_node_table[section_nr] = nid;
  49. }
  50. #else /* !NODE_NOT_IN_PAGE_FLAGS */
  51. static inline void set_section_nid(unsigned long section_nr, int nid)
  52. {
  53. }
  54. #endif
  55. #ifdef CONFIG_SPARSEMEM_EXTREME
  56. static noinline struct mem_section __ref *sparse_index_alloc(int nid)
  57. {
  58. struct mem_section *section = NULL;
  59. unsigned long array_size = SECTIONS_PER_ROOT *
  60. sizeof(struct mem_section);
  61. if (slab_is_available())
  62. section = kzalloc_node(array_size, GFP_KERNEL, nid);
  63. else
  64. section = memblock_virt_alloc_node(array_size, nid);
  65. return section;
  66. }
  67. static int __meminit sparse_index_init(unsigned long section_nr, int nid)
  68. {
  69. unsigned long root = SECTION_NR_TO_ROOT(section_nr);
  70. struct mem_section *section;
  71. if (mem_section[root])
  72. return -EEXIST;
  73. section = sparse_index_alloc(nid);
  74. if (!section)
  75. return -ENOMEM;
  76. mem_section[root] = section;
  77. return 0;
  78. }
  79. #else /* !SPARSEMEM_EXTREME */
  80. static inline int sparse_index_init(unsigned long section_nr, int nid)
  81. {
  82. return 0;
  83. }
  84. #endif
  85. #ifdef CONFIG_SPARSEMEM_EXTREME
  86. int __section_nr(struct mem_section* ms)
  87. {
  88. unsigned long root_nr;
  89. struct mem_section* root;
  90. for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
  91. root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
  92. if (!root)
  93. continue;
  94. if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
  95. break;
  96. }
  97. VM_BUG_ON(root_nr == NR_SECTION_ROOTS);
  98. return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
  99. }
  100. #else
  101. int __section_nr(struct mem_section* ms)
  102. {
  103. return (int)(ms - mem_section[0]);
  104. }
  105. #endif
  106. /*
  107. * During early boot, before section_mem_map is used for an actual
  108. * mem_map, we use section_mem_map to store the section's NUMA
  109. * node. This keeps us from having to use another data structure. The
  110. * node information is cleared just before we store the real mem_map.
  111. */
  112. static inline unsigned long sparse_encode_early_nid(int nid)
  113. {
  114. return (nid << SECTION_NID_SHIFT);
  115. }
  116. static inline int sparse_early_nid(struct mem_section *section)
  117. {
  118. return (section->section_mem_map >> SECTION_NID_SHIFT);
  119. }
  120. /* Validate the physical addressing limitations of the model */
  121. void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
  122. unsigned long *end_pfn)
  123. {
  124. unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
  125. /*
  126. * Sanity checks - do not allow an architecture to pass
  127. * in larger pfns than the maximum scope of sparsemem:
  128. */
  129. if (*start_pfn > max_sparsemem_pfn) {
  130. mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
  131. "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
  132. *start_pfn, *end_pfn, max_sparsemem_pfn);
  133. WARN_ON_ONCE(1);
  134. *start_pfn = max_sparsemem_pfn;
  135. *end_pfn = max_sparsemem_pfn;
  136. } else if (*end_pfn > max_sparsemem_pfn) {
  137. mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
  138. "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
  139. *start_pfn, *end_pfn, max_sparsemem_pfn);
  140. WARN_ON_ONCE(1);
  141. *end_pfn = max_sparsemem_pfn;
  142. }
  143. }
  144. /*
  145. * There are a number of times that we loop over NR_MEM_SECTIONS,
  146. * looking for section_present() on each. But, when we have very
  147. * large physical address spaces, NR_MEM_SECTIONS can also be
  148. * very large which makes the loops quite long.
  149. *
  150. * Keeping track of this gives us an easy way to break out of
  151. * those loops early.
  152. */
  153. int __highest_present_section_nr;
  154. static void section_mark_present(struct mem_section *ms)
  155. {
  156. int section_nr = __section_nr(ms);
  157. if (section_nr > __highest_present_section_nr)
  158. __highest_present_section_nr = section_nr;
  159. ms->section_mem_map |= SECTION_MARKED_PRESENT;
  160. }
  161. static inline int next_present_section_nr(int section_nr)
  162. {
  163. do {
  164. section_nr++;
  165. if (present_section_nr(section_nr))
  166. return section_nr;
  167. } while ((section_nr < NR_MEM_SECTIONS) &&
  168. (section_nr <= __highest_present_section_nr));
  169. return -1;
  170. }
  171. #define for_each_present_section_nr(start, section_nr) \
  172. for (section_nr = next_present_section_nr(start-1); \
  173. ((section_nr >= 0) && \
  174. (section_nr < NR_MEM_SECTIONS) && \
  175. (section_nr <= __highest_present_section_nr)); \
  176. section_nr = next_present_section_nr(section_nr))
  177. /* Record a memory area against a node. */
  178. void __init memory_present(int nid, unsigned long start, unsigned long end)
  179. {
  180. unsigned long pfn;
  181. start &= PAGE_SECTION_MASK;
  182. mminit_validate_memmodel_limits(&start, &end);
  183. for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
  184. unsigned long section = pfn_to_section_nr(pfn);
  185. struct mem_section *ms;
  186. sparse_index_init(section, nid);
  187. set_section_nid(section, nid);
  188. ms = __nr_to_section(section);
  189. if (!ms->section_mem_map) {
  190. ms->section_mem_map = sparse_encode_early_nid(nid) |
  191. SECTION_IS_ONLINE;
  192. section_mark_present(ms);
  193. }
  194. }
  195. }
  196. /*
  197. * Only used by the i386 NUMA architecures, but relatively
  198. * generic code.
  199. */
  200. unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn,
  201. unsigned long end_pfn)
  202. {
  203. unsigned long pfn;
  204. unsigned long nr_pages = 0;
  205. mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
  206. for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
  207. if (nid != early_pfn_to_nid(pfn))
  208. continue;
  209. if (pfn_present(pfn))
  210. nr_pages += PAGES_PER_SECTION;
  211. }
  212. return nr_pages * sizeof(struct page);
  213. }
  214. /*
  215. * Subtle, we encode the real pfn into the mem_map such that
  216. * the identity pfn - section_mem_map will return the actual
  217. * physical page frame number.
  218. */
  219. static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
  220. {
  221. return (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
  222. }
  223. /*
  224. * Decode mem_map from the coded memmap
  225. */
  226. struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
  227. {
  228. /* mask off the extra low bits of information */
  229. coded_mem_map &= SECTION_MAP_MASK;
  230. return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
  231. }
  232. static int __meminit sparse_init_one_section(struct mem_section *ms,
  233. unsigned long pnum, struct page *mem_map,
  234. unsigned long *pageblock_bitmap)
  235. {
  236. if (!present_section(ms))
  237. return -EINVAL;
  238. ms->section_mem_map &= ~SECTION_MAP_MASK;
  239. ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
  240. SECTION_HAS_MEM_MAP;
  241. ms->pageblock_flags = pageblock_bitmap;
  242. return 1;
  243. }
  244. unsigned long usemap_size(void)
  245. {
  246. return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long);
  247. }
  248. #ifdef CONFIG_MEMORY_HOTPLUG
  249. static unsigned long *__kmalloc_section_usemap(void)
  250. {
  251. return kmalloc(usemap_size(), GFP_KERNEL);
  252. }
  253. #endif /* CONFIG_MEMORY_HOTPLUG */
  254. #ifdef CONFIG_MEMORY_HOTREMOVE
  255. static unsigned long * __init
  256. sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
  257. unsigned long size)
  258. {
  259. unsigned long goal, limit;
  260. unsigned long *p;
  261. int nid;
  262. /*
  263. * A page may contain usemaps for other sections preventing the
  264. * page being freed and making a section unremovable while
  265. * other sections referencing the usemap remain active. Similarly,
  266. * a pgdat can prevent a section being removed. If section A
  267. * contains a pgdat and section B contains the usemap, both
  268. * sections become inter-dependent. This allocates usemaps
  269. * from the same section as the pgdat where possible to avoid
  270. * this problem.
  271. */
  272. goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
  273. limit = goal + (1UL << PA_SECTION_SHIFT);
  274. nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
  275. again:
  276. p = memblock_virt_alloc_try_nid_nopanic(size,
  277. SMP_CACHE_BYTES, goal, limit,
  278. nid);
  279. if (!p && limit) {
  280. limit = 0;
  281. goto again;
  282. }
  283. return p;
  284. }
  285. static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
  286. {
  287. unsigned long usemap_snr, pgdat_snr;
  288. static unsigned long old_usemap_snr = NR_MEM_SECTIONS;
  289. static unsigned long old_pgdat_snr = NR_MEM_SECTIONS;
  290. struct pglist_data *pgdat = NODE_DATA(nid);
  291. int usemap_nid;
  292. usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT);
  293. pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
  294. if (usemap_snr == pgdat_snr)
  295. return;
  296. if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
  297. /* skip redundant message */
  298. return;
  299. old_usemap_snr = usemap_snr;
  300. old_pgdat_snr = pgdat_snr;
  301. usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
  302. if (usemap_nid != nid) {
  303. pr_info("node %d must be removed before remove section %ld\n",
  304. nid, usemap_snr);
  305. return;
  306. }
  307. /*
  308. * There is a circular dependency.
  309. * Some platforms allow un-removable section because they will just
  310. * gather other removable sections for dynamic partitioning.
  311. * Just notify un-removable section's number here.
  312. */
  313. pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
  314. usemap_snr, pgdat_snr, nid);
  315. }
  316. #else
  317. static unsigned long * __init
  318. sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
  319. unsigned long size)
  320. {
  321. return memblock_virt_alloc_node_nopanic(size, pgdat->node_id);
  322. }
  323. static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
  324. {
  325. }
  326. #endif /* CONFIG_MEMORY_HOTREMOVE */
  327. static void __init sparse_early_usemaps_alloc_node(void *data,
  328. unsigned long pnum_begin,
  329. unsigned long pnum_end,
  330. unsigned long usemap_count, int nodeid)
  331. {
  332. void *usemap;
  333. unsigned long pnum;
  334. unsigned long **usemap_map = (unsigned long **)data;
  335. int size = usemap_size();
  336. usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid),
  337. size * usemap_count);
  338. if (!usemap) {
  339. pr_warn("%s: allocation failed\n", __func__);
  340. return;
  341. }
  342. for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
  343. if (!present_section_nr(pnum))
  344. continue;
  345. usemap_map[pnum] = usemap;
  346. usemap += size;
  347. check_usemap_section_nr(nodeid, usemap_map[pnum]);
  348. }
  349. }
  350. #ifndef CONFIG_SPARSEMEM_VMEMMAP
  351. struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid)
  352. {
  353. struct page *map;
  354. unsigned long size;
  355. map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION);
  356. if (map)
  357. return map;
  358. size = PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
  359. map = memblock_virt_alloc_try_nid(size,
  360. PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
  361. BOOTMEM_ALLOC_ACCESSIBLE, nid);
  362. return map;
  363. }
  364. void __init sparse_mem_maps_populate_node(struct page **map_map,
  365. unsigned long pnum_begin,
  366. unsigned long pnum_end,
  367. unsigned long map_count, int nodeid)
  368. {
  369. void *map;
  370. unsigned long pnum;
  371. unsigned long size = sizeof(struct page) * PAGES_PER_SECTION;
  372. map = alloc_remap(nodeid, size * map_count);
  373. if (map) {
  374. for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
  375. if (!present_section_nr(pnum))
  376. continue;
  377. map_map[pnum] = map;
  378. map += size;
  379. }
  380. return;
  381. }
  382. size = PAGE_ALIGN(size);
  383. map = memblock_virt_alloc_try_nid(size * map_count,
  384. PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
  385. BOOTMEM_ALLOC_ACCESSIBLE, nodeid);
  386. if (map) {
  387. for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
  388. if (!present_section_nr(pnum))
  389. continue;
  390. map_map[pnum] = map;
  391. map += size;
  392. }
  393. return;
  394. }
  395. /* fallback */
  396. for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
  397. struct mem_section *ms;
  398. if (!present_section_nr(pnum))
  399. continue;
  400. map_map[pnum] = sparse_mem_map_populate(pnum, nodeid);
  401. if (map_map[pnum])
  402. continue;
  403. ms = __nr_to_section(pnum);
  404. pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
  405. __func__);
  406. ms->section_mem_map = 0;
  407. }
  408. }
  409. #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
  410. #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
  411. static void __init sparse_early_mem_maps_alloc_node(void *data,
  412. unsigned long pnum_begin,
  413. unsigned long pnum_end,
  414. unsigned long map_count, int nodeid)
  415. {
  416. struct page **map_map = (struct page **)data;
  417. sparse_mem_maps_populate_node(map_map, pnum_begin, pnum_end,
  418. map_count, nodeid);
  419. }
  420. #else
  421. static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
  422. {
  423. struct page *map;
  424. struct mem_section *ms = __nr_to_section(pnum);
  425. int nid = sparse_early_nid(ms);
  426. map = sparse_mem_map_populate(pnum, nid);
  427. if (map)
  428. return map;
  429. pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
  430. __func__);
  431. ms->section_mem_map = 0;
  432. return NULL;
  433. }
  434. #endif
  435. void __weak __meminit vmemmap_populate_print_last(void)
  436. {
  437. }
  438. /**
  439. * alloc_usemap_and_memmap - memory alloction for pageblock flags and vmemmap
  440. * @map: usemap_map for pageblock flags or mmap_map for vmemmap
  441. */
  442. static void __init alloc_usemap_and_memmap(void (*alloc_func)
  443. (void *, unsigned long, unsigned long,
  444. unsigned long, int), void *data)
  445. {
  446. unsigned long pnum;
  447. unsigned long map_count;
  448. int nodeid_begin = 0;
  449. unsigned long pnum_begin = 0;
  450. for_each_present_section_nr(0, pnum) {
  451. struct mem_section *ms;
  452. ms = __nr_to_section(pnum);
  453. nodeid_begin = sparse_early_nid(ms);
  454. pnum_begin = pnum;
  455. break;
  456. }
  457. map_count = 1;
  458. for_each_present_section_nr(pnum_begin + 1, pnum) {
  459. struct mem_section *ms;
  460. int nodeid;
  461. ms = __nr_to_section(pnum);
  462. nodeid = sparse_early_nid(ms);
  463. if (nodeid == nodeid_begin) {
  464. map_count++;
  465. continue;
  466. }
  467. /* ok, we need to take cake of from pnum_begin to pnum - 1*/
  468. alloc_func(data, pnum_begin, pnum,
  469. map_count, nodeid_begin);
  470. /* new start, update count etc*/
  471. nodeid_begin = nodeid;
  472. pnum_begin = pnum;
  473. map_count = 1;
  474. }
  475. /* ok, last chunk */
  476. alloc_func(data, pnum_begin, NR_MEM_SECTIONS,
  477. map_count, nodeid_begin);
  478. }
  479. /*
  480. * Allocate the accumulated non-linear sections, allocate a mem_map
  481. * for each and record the physical to section mapping.
  482. */
  483. void __init sparse_init(void)
  484. {
  485. unsigned long pnum;
  486. struct page *map;
  487. unsigned long *usemap;
  488. unsigned long **usemap_map;
  489. int size;
  490. #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
  491. int size2;
  492. struct page **map_map;
  493. #endif
  494. /* see include/linux/mmzone.h 'struct mem_section' definition */
  495. BUILD_BUG_ON(!is_power_of_2(sizeof(struct mem_section)));
  496. /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
  497. set_pageblock_order();
  498. /*
  499. * map is using big page (aka 2M in x86 64 bit)
  500. * usemap is less one page (aka 24 bytes)
  501. * so alloc 2M (with 2M align) and 24 bytes in turn will
  502. * make next 2M slip to one more 2M later.
  503. * then in big system, the memory will have a lot of holes...
  504. * here try to allocate 2M pages continuously.
  505. *
  506. * powerpc need to call sparse_init_one_section right after each
  507. * sparse_early_mem_map_alloc, so allocate usemap_map at first.
  508. */
  509. size = sizeof(unsigned long *) * NR_MEM_SECTIONS;
  510. usemap_map = memblock_virt_alloc(size, 0);
  511. if (!usemap_map)
  512. panic("can not allocate usemap_map\n");
  513. alloc_usemap_and_memmap(sparse_early_usemaps_alloc_node,
  514. (void *)usemap_map);
  515. #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
  516. size2 = sizeof(struct page *) * NR_MEM_SECTIONS;
  517. map_map = memblock_virt_alloc(size2, 0);
  518. if (!map_map)
  519. panic("can not allocate map_map\n");
  520. alloc_usemap_and_memmap(sparse_early_mem_maps_alloc_node,
  521. (void *)map_map);
  522. #endif
  523. for_each_present_section_nr(0, pnum) {
  524. usemap = usemap_map[pnum];
  525. if (!usemap)
  526. continue;
  527. #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
  528. map = map_map[pnum];
  529. #else
  530. map = sparse_early_mem_map_alloc(pnum);
  531. #endif
  532. if (!map)
  533. continue;
  534. sparse_init_one_section(__nr_to_section(pnum), pnum, map,
  535. usemap);
  536. }
  537. vmemmap_populate_print_last();
  538. #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
  539. memblock_free_early(__pa(map_map), size2);
  540. #endif
  541. memblock_free_early(__pa(usemap_map), size);
  542. }
  543. #ifdef CONFIG_MEMORY_HOTPLUG
  544. /* Mark all memory sections within the pfn range as online */
  545. void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
  546. {
  547. unsigned long pfn;
  548. for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
  549. unsigned long section_nr = pfn_to_section_nr(pfn);
  550. struct mem_section *ms;
  551. /* onlining code should never touch invalid ranges */
  552. if (WARN_ON(!valid_section_nr(section_nr)))
  553. continue;
  554. ms = __nr_to_section(section_nr);
  555. ms->section_mem_map |= SECTION_IS_ONLINE;
  556. }
  557. }
  558. #ifdef CONFIG_MEMORY_HOTREMOVE
  559. /* Mark all memory sections within the pfn range as online */
  560. void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
  561. {
  562. unsigned long pfn;
  563. for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
  564. unsigned long section_nr = pfn_to_section_nr(start_pfn);
  565. struct mem_section *ms;
  566. /*
  567. * TODO this needs some double checking. Offlining code makes
  568. * sure to check pfn_valid but those checks might be just bogus
  569. */
  570. if (WARN_ON(!valid_section_nr(section_nr)))
  571. continue;
  572. ms = __nr_to_section(section_nr);
  573. ms->section_mem_map &= ~SECTION_IS_ONLINE;
  574. }
  575. }
  576. #endif
  577. #ifdef CONFIG_SPARSEMEM_VMEMMAP
  578. static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid)
  579. {
  580. /* This will make the necessary allocations eventually. */
  581. return sparse_mem_map_populate(pnum, nid);
  582. }
  583. static void __kfree_section_memmap(struct page *memmap)
  584. {
  585. unsigned long start = (unsigned long)memmap;
  586. unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
  587. vmemmap_free(start, end);
  588. }
  589. #ifdef CONFIG_MEMORY_HOTREMOVE
  590. static void free_map_bootmem(struct page *memmap)
  591. {
  592. unsigned long start = (unsigned long)memmap;
  593. unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
  594. vmemmap_free(start, end);
  595. }
  596. #endif /* CONFIG_MEMORY_HOTREMOVE */
  597. #else
  598. static struct page *__kmalloc_section_memmap(void)
  599. {
  600. struct page *page, *ret;
  601. unsigned long memmap_size = sizeof(struct page) * PAGES_PER_SECTION;
  602. page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
  603. if (page)
  604. goto got_map_page;
  605. ret = vmalloc(memmap_size);
  606. if (ret)
  607. goto got_map_ptr;
  608. return NULL;
  609. got_map_page:
  610. ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
  611. got_map_ptr:
  612. return ret;
  613. }
  614. static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid)
  615. {
  616. return __kmalloc_section_memmap();
  617. }
  618. static void __kfree_section_memmap(struct page *memmap)
  619. {
  620. if (is_vmalloc_addr(memmap))
  621. vfree(memmap);
  622. else
  623. free_pages((unsigned long)memmap,
  624. get_order(sizeof(struct page) * PAGES_PER_SECTION));
  625. }
  626. #ifdef CONFIG_MEMORY_HOTREMOVE
  627. static void free_map_bootmem(struct page *memmap)
  628. {
  629. unsigned long maps_section_nr, removing_section_nr, i;
  630. unsigned long magic, nr_pages;
  631. struct page *page = virt_to_page(memmap);
  632. nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
  633. >> PAGE_SHIFT;
  634. for (i = 0; i < nr_pages; i++, page++) {
  635. magic = (unsigned long) page->freelist;
  636. BUG_ON(magic == NODE_INFO);
  637. maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
  638. removing_section_nr = page_private(page);
  639. /*
  640. * When this function is called, the removing section is
  641. * logical offlined state. This means all pages are isolated
  642. * from page allocator. If removing section's memmap is placed
  643. * on the same section, it must not be freed.
  644. * If it is freed, page allocator may allocate it which will
  645. * be removed physically soon.
  646. */
  647. if (maps_section_nr != removing_section_nr)
  648. put_page_bootmem(page);
  649. }
  650. }
  651. #endif /* CONFIG_MEMORY_HOTREMOVE */
  652. #endif /* CONFIG_SPARSEMEM_VMEMMAP */
  653. /*
  654. * returns the number of sections whose mem_maps were properly
  655. * set. If this is <=0, then that means that the passed-in
  656. * map was not consumed and must be freed.
  657. */
  658. int __meminit sparse_add_one_section(struct pglist_data *pgdat, unsigned long start_pfn)
  659. {
  660. unsigned long section_nr = pfn_to_section_nr(start_pfn);
  661. struct mem_section *ms;
  662. struct page *memmap;
  663. unsigned long *usemap;
  664. unsigned long flags;
  665. int ret;
  666. /*
  667. * no locking for this, because it does its own
  668. * plus, it does a kmalloc
  669. */
  670. ret = sparse_index_init(section_nr, pgdat->node_id);
  671. if (ret < 0 && ret != -EEXIST)
  672. return ret;
  673. memmap = kmalloc_section_memmap(section_nr, pgdat->node_id);
  674. if (!memmap)
  675. return -ENOMEM;
  676. usemap = __kmalloc_section_usemap();
  677. if (!usemap) {
  678. __kfree_section_memmap(memmap);
  679. return -ENOMEM;
  680. }
  681. pgdat_resize_lock(pgdat, &flags);
  682. ms = __pfn_to_section(start_pfn);
  683. if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
  684. ret = -EEXIST;
  685. goto out;
  686. }
  687. memset(memmap, 0, sizeof(struct page) * PAGES_PER_SECTION);
  688. section_mark_present(ms);
  689. ret = sparse_init_one_section(ms, section_nr, memmap, usemap);
  690. out:
  691. pgdat_resize_unlock(pgdat, &flags);
  692. if (ret <= 0) {
  693. kfree(usemap);
  694. __kfree_section_memmap(memmap);
  695. }
  696. return ret;
  697. }
  698. #ifdef CONFIG_MEMORY_HOTREMOVE
  699. #ifdef CONFIG_MEMORY_FAILURE
  700. static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
  701. {
  702. int i;
  703. if (!memmap)
  704. return;
  705. for (i = 0; i < nr_pages; i++) {
  706. if (PageHWPoison(&memmap[i])) {
  707. atomic_long_sub(1, &num_poisoned_pages);
  708. ClearPageHWPoison(&memmap[i]);
  709. }
  710. }
  711. }
  712. #else
  713. static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
  714. {
  715. }
  716. #endif
  717. static void free_section_usemap(struct page *memmap, unsigned long *usemap)
  718. {
  719. struct page *usemap_page;
  720. if (!usemap)
  721. return;
  722. usemap_page = virt_to_page(usemap);
  723. /*
  724. * Check to see if allocation came from hot-plug-add
  725. */
  726. if (PageSlab(usemap_page) || PageCompound(usemap_page)) {
  727. kfree(usemap);
  728. if (memmap)
  729. __kfree_section_memmap(memmap);
  730. return;
  731. }
  732. /*
  733. * The usemap came from bootmem. This is packed with other usemaps
  734. * on the section which has pgdat at boot time. Just keep it as is now.
  735. */
  736. if (memmap)
  737. free_map_bootmem(memmap);
  738. }
  739. void sparse_remove_one_section(struct zone *zone, struct mem_section *ms,
  740. unsigned long map_offset)
  741. {
  742. struct page *memmap = NULL;
  743. unsigned long *usemap = NULL, flags;
  744. struct pglist_data *pgdat = zone->zone_pgdat;
  745. pgdat_resize_lock(pgdat, &flags);
  746. if (ms->section_mem_map) {
  747. usemap = ms->pageblock_flags;
  748. memmap = sparse_decode_mem_map(ms->section_mem_map,
  749. __section_nr(ms));
  750. ms->section_mem_map = 0;
  751. ms->pageblock_flags = NULL;
  752. }
  753. pgdat_resize_unlock(pgdat, &flags);
  754. clear_hwpoisoned_pages(memmap + map_offset,
  755. PAGES_PER_SECTION - map_offset);
  756. free_section_usemap(memmap, usemap);
  757. }
  758. #endif /* CONFIG_MEMORY_HOTREMOVE */
  759. #endif /* CONFIG_MEMORY_HOTPLUG */