page_io.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432
  1. /*
  2. * linux/mm/page_io.c
  3. *
  4. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  5. *
  6. * Swap reorganised 29.12.95,
  7. * Asynchronous swapping added 30.12.95. Stephen Tweedie
  8. * Removed race in async swapping. 14.4.1996. Bruno Haible
  9. * Add swap of shared pages through the page cache. 20.2.1998. Stephen Tweedie
  10. * Always use brw_page, life becomes simpler. 12 May 1998 Eric Biederman
  11. */
  12. #include <linux/mm.h>
  13. #include <linux/kernel_stat.h>
  14. #include <linux/gfp.h>
  15. #include <linux/pagemap.h>
  16. #include <linux/swap.h>
  17. #include <linux/bio.h>
  18. #include <linux/swapops.h>
  19. #include <linux/buffer_head.h>
  20. #include <linux/writeback.h>
  21. #include <linux/frontswap.h>
  22. #include <linux/blkdev.h>
  23. #include <linux/uio.h>
  24. #include <linux/sched/task.h>
  25. #include <asm/pgtable.h>
  26. static struct bio *get_swap_bio(gfp_t gfp_flags,
  27. struct page *page, bio_end_io_t end_io)
  28. {
  29. int i, nr = hpage_nr_pages(page);
  30. struct bio *bio;
  31. bio = bio_alloc(gfp_flags, nr);
  32. if (bio) {
  33. struct block_device *bdev;
  34. bio->bi_iter.bi_sector = map_swap_page(page, &bdev);
  35. bio_set_dev(bio, bdev);
  36. bio->bi_iter.bi_sector <<= PAGE_SHIFT - 9;
  37. bio->bi_end_io = end_io;
  38. for (i = 0; i < nr; i++)
  39. bio_add_page(bio, page + i, PAGE_SIZE, 0);
  40. VM_BUG_ON(bio->bi_iter.bi_size != PAGE_SIZE * nr);
  41. }
  42. return bio;
  43. }
  44. void end_swap_bio_write(struct bio *bio)
  45. {
  46. struct page *page = bio->bi_io_vec[0].bv_page;
  47. if (bio->bi_status) {
  48. SetPageError(page);
  49. /*
  50. * We failed to write the page out to swap-space.
  51. * Re-dirty the page in order to avoid it being reclaimed.
  52. * Also print a dire warning that things will go BAD (tm)
  53. * very quickly.
  54. *
  55. * Also clear PG_reclaim to avoid rotate_reclaimable_page()
  56. */
  57. set_page_dirty(page);
  58. pr_alert("Write-error on swap-device (%u:%u:%llu)\n",
  59. MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
  60. (unsigned long long)bio->bi_iter.bi_sector);
  61. ClearPageReclaim(page);
  62. }
  63. end_page_writeback(page);
  64. bio_put(bio);
  65. }
  66. static void swap_slot_free_notify(struct page *page)
  67. {
  68. struct swap_info_struct *sis;
  69. struct gendisk *disk;
  70. /*
  71. * There is no guarantee that the page is in swap cache - the software
  72. * suspend code (at least) uses end_swap_bio_read() against a non-
  73. * swapcache page. So we must check PG_swapcache before proceeding with
  74. * this optimization.
  75. */
  76. if (unlikely(!PageSwapCache(page)))
  77. return;
  78. sis = page_swap_info(page);
  79. if (!(sis->flags & SWP_BLKDEV))
  80. return;
  81. /*
  82. * The swap subsystem performs lazy swap slot freeing,
  83. * expecting that the page will be swapped out again.
  84. * So we can avoid an unnecessary write if the page
  85. * isn't redirtied.
  86. * This is good for real swap storage because we can
  87. * reduce unnecessary I/O and enhance wear-leveling
  88. * if an SSD is used as the as swap device.
  89. * But if in-memory swap device (eg zram) is used,
  90. * this causes a duplicated copy between uncompressed
  91. * data in VM-owned memory and compressed data in
  92. * zram-owned memory. So let's free zram-owned memory
  93. * and make the VM-owned decompressed page *dirty*,
  94. * so the page should be swapped out somewhere again if
  95. * we again wish to reclaim it.
  96. */
  97. disk = sis->bdev->bd_disk;
  98. if (disk->fops->swap_slot_free_notify) {
  99. swp_entry_t entry;
  100. unsigned long offset;
  101. entry.val = page_private(page);
  102. offset = swp_offset(entry);
  103. SetPageDirty(page);
  104. disk->fops->swap_slot_free_notify(sis->bdev,
  105. offset);
  106. }
  107. }
  108. static void end_swap_bio_read(struct bio *bio)
  109. {
  110. struct page *page = bio->bi_io_vec[0].bv_page;
  111. struct task_struct *waiter = bio->bi_private;
  112. if (bio->bi_status) {
  113. SetPageError(page);
  114. ClearPageUptodate(page);
  115. pr_alert("Read-error on swap-device (%u:%u:%llu)\n",
  116. MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
  117. (unsigned long long)bio->bi_iter.bi_sector);
  118. goto out;
  119. }
  120. SetPageUptodate(page);
  121. swap_slot_free_notify(page);
  122. out:
  123. unlock_page(page);
  124. WRITE_ONCE(bio->bi_private, NULL);
  125. bio_put(bio);
  126. wake_up_process(waiter);
  127. put_task_struct(waiter);
  128. }
  129. int generic_swapfile_activate(struct swap_info_struct *sis,
  130. struct file *swap_file,
  131. sector_t *span)
  132. {
  133. struct address_space *mapping = swap_file->f_mapping;
  134. struct inode *inode = mapping->host;
  135. unsigned blocks_per_page;
  136. unsigned long page_no;
  137. unsigned blkbits;
  138. sector_t probe_block;
  139. sector_t last_block;
  140. sector_t lowest_block = -1;
  141. sector_t highest_block = 0;
  142. int nr_extents = 0;
  143. int ret;
  144. blkbits = inode->i_blkbits;
  145. blocks_per_page = PAGE_SIZE >> blkbits;
  146. /*
  147. * Map all the blocks into the extent list. This code doesn't try
  148. * to be very smart.
  149. */
  150. probe_block = 0;
  151. page_no = 0;
  152. last_block = i_size_read(inode) >> blkbits;
  153. while ((probe_block + blocks_per_page) <= last_block &&
  154. page_no < sis->max) {
  155. unsigned block_in_page;
  156. sector_t first_block;
  157. cond_resched();
  158. first_block = bmap(inode, probe_block);
  159. if (first_block == 0)
  160. goto bad_bmap;
  161. /*
  162. * It must be PAGE_SIZE aligned on-disk
  163. */
  164. if (first_block & (blocks_per_page - 1)) {
  165. probe_block++;
  166. goto reprobe;
  167. }
  168. for (block_in_page = 1; block_in_page < blocks_per_page;
  169. block_in_page++) {
  170. sector_t block;
  171. block = bmap(inode, probe_block + block_in_page);
  172. if (block == 0)
  173. goto bad_bmap;
  174. if (block != first_block + block_in_page) {
  175. /* Discontiguity */
  176. probe_block++;
  177. goto reprobe;
  178. }
  179. }
  180. first_block >>= (PAGE_SHIFT - blkbits);
  181. if (page_no) { /* exclude the header page */
  182. if (first_block < lowest_block)
  183. lowest_block = first_block;
  184. if (first_block > highest_block)
  185. highest_block = first_block;
  186. }
  187. /*
  188. * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
  189. */
  190. ret = add_swap_extent(sis, page_no, 1, first_block);
  191. if (ret < 0)
  192. goto out;
  193. nr_extents += ret;
  194. page_no++;
  195. probe_block += blocks_per_page;
  196. reprobe:
  197. continue;
  198. }
  199. ret = nr_extents;
  200. *span = 1 + highest_block - lowest_block;
  201. if (page_no == 0)
  202. page_no = 1; /* force Empty message */
  203. sis->max = page_no;
  204. sis->pages = page_no - 1;
  205. sis->highest_bit = page_no - 1;
  206. out:
  207. return ret;
  208. bad_bmap:
  209. pr_err("swapon: swapfile has holes\n");
  210. ret = -EINVAL;
  211. goto out;
  212. }
  213. /*
  214. * We may have stale swap cache pages in memory: notice
  215. * them here and get rid of the unnecessary final write.
  216. */
  217. int swap_writepage(struct page *page, struct writeback_control *wbc)
  218. {
  219. int ret = 0;
  220. if (try_to_free_swap(page)) {
  221. unlock_page(page);
  222. goto out;
  223. }
  224. if (frontswap_store(page) == 0) {
  225. set_page_writeback(page);
  226. unlock_page(page);
  227. end_page_writeback(page);
  228. goto out;
  229. }
  230. ret = __swap_writepage(page, wbc, end_swap_bio_write);
  231. out:
  232. return ret;
  233. }
  234. static sector_t swap_page_sector(struct page *page)
  235. {
  236. return (sector_t)__page_file_index(page) << (PAGE_SHIFT - 9);
  237. }
  238. static inline void count_swpout_vm_event(struct page *page)
  239. {
  240. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  241. if (unlikely(PageTransHuge(page)))
  242. count_vm_event(THP_SWPOUT);
  243. #endif
  244. count_vm_events(PSWPOUT, hpage_nr_pages(page));
  245. }
  246. int __swap_writepage(struct page *page, struct writeback_control *wbc,
  247. bio_end_io_t end_write_func)
  248. {
  249. struct bio *bio;
  250. int ret;
  251. struct swap_info_struct *sis = page_swap_info(page);
  252. VM_BUG_ON_PAGE(!PageSwapCache(page), page);
  253. if (sis->flags & SWP_FILE) {
  254. struct kiocb kiocb;
  255. struct file *swap_file = sis->swap_file;
  256. struct address_space *mapping = swap_file->f_mapping;
  257. struct bio_vec bv = {
  258. .bv_page = page,
  259. .bv_len = PAGE_SIZE,
  260. .bv_offset = 0
  261. };
  262. struct iov_iter from;
  263. iov_iter_bvec(&from, ITER_BVEC | WRITE, &bv, 1, PAGE_SIZE);
  264. init_sync_kiocb(&kiocb, swap_file);
  265. kiocb.ki_pos = page_file_offset(page);
  266. set_page_writeback(page);
  267. unlock_page(page);
  268. ret = mapping->a_ops->direct_IO(&kiocb, &from);
  269. if (ret == PAGE_SIZE) {
  270. count_vm_event(PSWPOUT);
  271. ret = 0;
  272. } else {
  273. /*
  274. * In the case of swap-over-nfs, this can be a
  275. * temporary failure if the system has limited
  276. * memory for allocating transmit buffers.
  277. * Mark the page dirty and avoid
  278. * rotate_reclaimable_page but rate-limit the
  279. * messages but do not flag PageError like
  280. * the normal direct-to-bio case as it could
  281. * be temporary.
  282. */
  283. set_page_dirty(page);
  284. ClearPageReclaim(page);
  285. pr_err_ratelimited("Write error on dio swapfile (%llu)\n",
  286. page_file_offset(page));
  287. }
  288. end_page_writeback(page);
  289. return ret;
  290. }
  291. ret = bdev_write_page(sis->bdev, swap_page_sector(page), page, wbc);
  292. if (!ret) {
  293. count_swpout_vm_event(page);
  294. return 0;
  295. }
  296. ret = 0;
  297. bio = get_swap_bio(GFP_NOIO, page, end_write_func);
  298. if (bio == NULL) {
  299. set_page_dirty(page);
  300. unlock_page(page);
  301. ret = -ENOMEM;
  302. goto out;
  303. }
  304. bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
  305. count_swpout_vm_event(page);
  306. set_page_writeback(page);
  307. unlock_page(page);
  308. submit_bio(bio);
  309. out:
  310. return ret;
  311. }
  312. int swap_readpage(struct page *page, bool do_poll)
  313. {
  314. struct bio *bio;
  315. int ret = 0;
  316. struct swap_info_struct *sis = page_swap_info(page);
  317. blk_qc_t qc;
  318. struct gendisk *disk;
  319. VM_BUG_ON_PAGE(!PageSwapCache(page), page);
  320. VM_BUG_ON_PAGE(!PageLocked(page), page);
  321. VM_BUG_ON_PAGE(PageUptodate(page), page);
  322. if (frontswap_load(page) == 0) {
  323. SetPageUptodate(page);
  324. unlock_page(page);
  325. goto out;
  326. }
  327. if (sis->flags & SWP_FILE) {
  328. struct file *swap_file = sis->swap_file;
  329. struct address_space *mapping = swap_file->f_mapping;
  330. ret = mapping->a_ops->readpage(swap_file, page);
  331. if (!ret)
  332. count_vm_event(PSWPIN);
  333. return ret;
  334. }
  335. ret = bdev_read_page(sis->bdev, swap_page_sector(page), page);
  336. if (!ret) {
  337. if (trylock_page(page)) {
  338. swap_slot_free_notify(page);
  339. unlock_page(page);
  340. }
  341. count_vm_event(PSWPIN);
  342. return 0;
  343. }
  344. ret = 0;
  345. bio = get_swap_bio(GFP_KERNEL, page, end_swap_bio_read);
  346. if (bio == NULL) {
  347. unlock_page(page);
  348. ret = -ENOMEM;
  349. goto out;
  350. }
  351. disk = bio->bi_disk;
  352. /*
  353. * Keep this task valid during swap readpage because the oom killer may
  354. * attempt to access it in the page fault retry time check.
  355. */
  356. get_task_struct(current);
  357. bio->bi_private = current;
  358. bio_set_op_attrs(bio, REQ_OP_READ, 0);
  359. count_vm_event(PSWPIN);
  360. bio_get(bio);
  361. qc = submit_bio(bio);
  362. while (do_poll) {
  363. set_current_state(TASK_UNINTERRUPTIBLE);
  364. if (!READ_ONCE(bio->bi_private))
  365. break;
  366. if (!blk_mq_poll(disk->queue, qc))
  367. break;
  368. }
  369. __set_current_state(TASK_RUNNING);
  370. bio_put(bio);
  371. out:
  372. return ret;
  373. }
  374. int swap_set_page_dirty(struct page *page)
  375. {
  376. struct swap_info_struct *sis = page_swap_info(page);
  377. if (sis->flags & SWP_FILE) {
  378. struct address_space *mapping = sis->swap_file->f_mapping;
  379. VM_BUG_ON_PAGE(!PageSwapCache(page), page);
  380. return mapping->a_ops->set_page_dirty(page);
  381. } else {
  382. return __set_page_dirty_no_writeback(page);
  383. }
  384. }