pid.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600
  1. /*
  2. * Generic pidhash and scalable, time-bounded PID allocator
  3. *
  4. * (C) 2002-2003 Nadia Yvette Chambers, IBM
  5. * (C) 2004 Nadia Yvette Chambers, Oracle
  6. * (C) 2002-2004 Ingo Molnar, Red Hat
  7. *
  8. * pid-structures are backing objects for tasks sharing a given ID to chain
  9. * against. There is very little to them aside from hashing them and
  10. * parking tasks using given ID's on a list.
  11. *
  12. * The hash is always changed with the tasklist_lock write-acquired,
  13. * and the hash is only accessed with the tasklist_lock at least
  14. * read-acquired, so there's no additional SMP locking needed here.
  15. *
  16. * We have a list of bitmap pages, which bitmaps represent the PID space.
  17. * Allocating and freeing PIDs is completely lockless. The worst-case
  18. * allocation scenario when all but one out of 1 million PIDs possible are
  19. * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
  20. * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
  21. *
  22. * Pid namespaces:
  23. * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
  24. * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
  25. * Many thanks to Oleg Nesterov for comments and help
  26. *
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/export.h>
  30. #include <linux/slab.h>
  31. #include <linux/init.h>
  32. #include <linux/rculist.h>
  33. #include <linux/bootmem.h>
  34. #include <linux/hash.h>
  35. #include <linux/pid_namespace.h>
  36. #include <linux/init_task.h>
  37. #include <linux/syscalls.h>
  38. #include <linux/proc_ns.h>
  39. #include <linux/proc_fs.h>
  40. #include <linux/sched/task.h>
  41. #define pid_hashfn(nr, ns) \
  42. hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift)
  43. static struct hlist_head *pid_hash;
  44. static unsigned int pidhash_shift = 4;
  45. struct pid init_struct_pid = INIT_STRUCT_PID;
  46. int pid_max = PID_MAX_DEFAULT;
  47. #define RESERVED_PIDS 300
  48. int pid_max_min = RESERVED_PIDS + 1;
  49. int pid_max_max = PID_MAX_LIMIT;
  50. static inline int mk_pid(struct pid_namespace *pid_ns,
  51. struct pidmap *map, int off)
  52. {
  53. return (map - pid_ns->pidmap)*BITS_PER_PAGE + off;
  54. }
  55. #define find_next_offset(map, off) \
  56. find_next_zero_bit((map)->page, BITS_PER_PAGE, off)
  57. /*
  58. * PID-map pages start out as NULL, they get allocated upon
  59. * first use and are never deallocated. This way a low pid_max
  60. * value does not cause lots of bitmaps to be allocated, but
  61. * the scheme scales to up to 4 million PIDs, runtime.
  62. */
  63. struct pid_namespace init_pid_ns = {
  64. .kref = KREF_INIT(2),
  65. .pidmap = {
  66. [ 0 ... PIDMAP_ENTRIES-1] = { ATOMIC_INIT(BITS_PER_PAGE), NULL }
  67. },
  68. .last_pid = 0,
  69. .nr_hashed = PIDNS_HASH_ADDING,
  70. .level = 0,
  71. .child_reaper = &init_task,
  72. .user_ns = &init_user_ns,
  73. .ns.inum = PROC_PID_INIT_INO,
  74. #ifdef CONFIG_PID_NS
  75. .ns.ops = &pidns_operations,
  76. #endif
  77. };
  78. EXPORT_SYMBOL_GPL(init_pid_ns);
  79. /*
  80. * Note: disable interrupts while the pidmap_lock is held as an
  81. * interrupt might come in and do read_lock(&tasklist_lock).
  82. *
  83. * If we don't disable interrupts there is a nasty deadlock between
  84. * detach_pid()->free_pid() and another cpu that does
  85. * spin_lock(&pidmap_lock) followed by an interrupt routine that does
  86. * read_lock(&tasklist_lock);
  87. *
  88. * After we clean up the tasklist_lock and know there are no
  89. * irq handlers that take it we can leave the interrupts enabled.
  90. * For now it is easier to be safe than to prove it can't happen.
  91. */
  92. static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
  93. static void free_pidmap(struct upid *upid)
  94. {
  95. int nr = upid->nr;
  96. struct pidmap *map = upid->ns->pidmap + nr / BITS_PER_PAGE;
  97. int offset = nr & BITS_PER_PAGE_MASK;
  98. clear_bit(offset, map->page);
  99. atomic_inc(&map->nr_free);
  100. }
  101. /*
  102. * If we started walking pids at 'base', is 'a' seen before 'b'?
  103. */
  104. static int pid_before(int base, int a, int b)
  105. {
  106. /*
  107. * This is the same as saying
  108. *
  109. * (a - base + MAXUINT) % MAXUINT < (b - base + MAXUINT) % MAXUINT
  110. * and that mapping orders 'a' and 'b' with respect to 'base'.
  111. */
  112. return (unsigned)(a - base) < (unsigned)(b - base);
  113. }
  114. /*
  115. * We might be racing with someone else trying to set pid_ns->last_pid
  116. * at the pid allocation time (there's also a sysctl for this, but racing
  117. * with this one is OK, see comment in kernel/pid_namespace.c about it).
  118. * We want the winner to have the "later" value, because if the
  119. * "earlier" value prevails, then a pid may get reused immediately.
  120. *
  121. * Since pids rollover, it is not sufficient to just pick the bigger
  122. * value. We have to consider where we started counting from.
  123. *
  124. * 'base' is the value of pid_ns->last_pid that we observed when
  125. * we started looking for a pid.
  126. *
  127. * 'pid' is the pid that we eventually found.
  128. */
  129. static void set_last_pid(struct pid_namespace *pid_ns, int base, int pid)
  130. {
  131. int prev;
  132. int last_write = base;
  133. do {
  134. prev = last_write;
  135. last_write = cmpxchg(&pid_ns->last_pid, prev, pid);
  136. } while ((prev != last_write) && (pid_before(base, last_write, pid)));
  137. }
  138. static int alloc_pidmap(struct pid_namespace *pid_ns)
  139. {
  140. int i, offset, max_scan, pid, last = pid_ns->last_pid;
  141. struct pidmap *map;
  142. pid = last + 1;
  143. if (pid >= pid_max)
  144. pid = RESERVED_PIDS;
  145. offset = pid & BITS_PER_PAGE_MASK;
  146. map = &pid_ns->pidmap[pid/BITS_PER_PAGE];
  147. /*
  148. * If last_pid points into the middle of the map->page we
  149. * want to scan this bitmap block twice, the second time
  150. * we start with offset == 0 (or RESERVED_PIDS).
  151. */
  152. max_scan = DIV_ROUND_UP(pid_max, BITS_PER_PAGE) - !offset;
  153. for (i = 0; i <= max_scan; ++i) {
  154. if (unlikely(!map->page)) {
  155. void *page = kzalloc(PAGE_SIZE, GFP_KERNEL);
  156. /*
  157. * Free the page if someone raced with us
  158. * installing it:
  159. */
  160. spin_lock_irq(&pidmap_lock);
  161. if (!map->page) {
  162. map->page = page;
  163. page = NULL;
  164. }
  165. spin_unlock_irq(&pidmap_lock);
  166. kfree(page);
  167. if (unlikely(!map->page))
  168. return -ENOMEM;
  169. }
  170. if (likely(atomic_read(&map->nr_free))) {
  171. for ( ; ; ) {
  172. if (!test_and_set_bit(offset, map->page)) {
  173. atomic_dec(&map->nr_free);
  174. set_last_pid(pid_ns, last, pid);
  175. return pid;
  176. }
  177. offset = find_next_offset(map, offset);
  178. if (offset >= BITS_PER_PAGE)
  179. break;
  180. pid = mk_pid(pid_ns, map, offset);
  181. if (pid >= pid_max)
  182. break;
  183. }
  184. }
  185. if (map < &pid_ns->pidmap[(pid_max-1)/BITS_PER_PAGE]) {
  186. ++map;
  187. offset = 0;
  188. } else {
  189. map = &pid_ns->pidmap[0];
  190. offset = RESERVED_PIDS;
  191. if (unlikely(last == offset))
  192. break;
  193. }
  194. pid = mk_pid(pid_ns, map, offset);
  195. }
  196. return -EAGAIN;
  197. }
  198. int next_pidmap(struct pid_namespace *pid_ns, unsigned int last)
  199. {
  200. int offset;
  201. struct pidmap *map, *end;
  202. if (last >= PID_MAX_LIMIT)
  203. return -1;
  204. offset = (last + 1) & BITS_PER_PAGE_MASK;
  205. map = &pid_ns->pidmap[(last + 1)/BITS_PER_PAGE];
  206. end = &pid_ns->pidmap[PIDMAP_ENTRIES];
  207. for (; map < end; map++, offset = 0) {
  208. if (unlikely(!map->page))
  209. continue;
  210. offset = find_next_bit((map)->page, BITS_PER_PAGE, offset);
  211. if (offset < BITS_PER_PAGE)
  212. return mk_pid(pid_ns, map, offset);
  213. }
  214. return -1;
  215. }
  216. void put_pid(struct pid *pid)
  217. {
  218. struct pid_namespace *ns;
  219. if (!pid)
  220. return;
  221. ns = pid->numbers[pid->level].ns;
  222. if ((atomic_read(&pid->count) == 1) ||
  223. atomic_dec_and_test(&pid->count)) {
  224. kmem_cache_free(ns->pid_cachep, pid);
  225. put_pid_ns(ns);
  226. }
  227. }
  228. EXPORT_SYMBOL_GPL(put_pid);
  229. static void delayed_put_pid(struct rcu_head *rhp)
  230. {
  231. struct pid *pid = container_of(rhp, struct pid, rcu);
  232. put_pid(pid);
  233. }
  234. void free_pid(struct pid *pid)
  235. {
  236. /* We can be called with write_lock_irq(&tasklist_lock) held */
  237. int i;
  238. unsigned long flags;
  239. spin_lock_irqsave(&pidmap_lock, flags);
  240. for (i = 0; i <= pid->level; i++) {
  241. struct upid *upid = pid->numbers + i;
  242. struct pid_namespace *ns = upid->ns;
  243. hlist_del_rcu(&upid->pid_chain);
  244. switch(--ns->nr_hashed) {
  245. case 2:
  246. case 1:
  247. /* When all that is left in the pid namespace
  248. * is the reaper wake up the reaper. The reaper
  249. * may be sleeping in zap_pid_ns_processes().
  250. */
  251. wake_up_process(ns->child_reaper);
  252. break;
  253. case PIDNS_HASH_ADDING:
  254. /* Handle a fork failure of the first process */
  255. WARN_ON(ns->child_reaper);
  256. ns->nr_hashed = 0;
  257. /* fall through */
  258. case 0:
  259. schedule_work(&ns->proc_work);
  260. break;
  261. }
  262. }
  263. spin_unlock_irqrestore(&pidmap_lock, flags);
  264. for (i = 0; i <= pid->level; i++)
  265. free_pidmap(pid->numbers + i);
  266. call_rcu(&pid->rcu, delayed_put_pid);
  267. }
  268. struct pid *alloc_pid(struct pid_namespace *ns)
  269. {
  270. struct pid *pid;
  271. enum pid_type type;
  272. int i, nr;
  273. struct pid_namespace *tmp;
  274. struct upid *upid;
  275. int retval = -ENOMEM;
  276. pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
  277. if (!pid)
  278. return ERR_PTR(retval);
  279. tmp = ns;
  280. pid->level = ns->level;
  281. for (i = ns->level; i >= 0; i--) {
  282. nr = alloc_pidmap(tmp);
  283. if (nr < 0) {
  284. retval = nr;
  285. goto out_free;
  286. }
  287. pid->numbers[i].nr = nr;
  288. pid->numbers[i].ns = tmp;
  289. tmp = tmp->parent;
  290. }
  291. if (unlikely(is_child_reaper(pid))) {
  292. if (pid_ns_prepare_proc(ns)) {
  293. disable_pid_allocation(ns);
  294. goto out_free;
  295. }
  296. }
  297. get_pid_ns(ns);
  298. atomic_set(&pid->count, 1);
  299. for (type = 0; type < PIDTYPE_MAX; ++type)
  300. INIT_HLIST_HEAD(&pid->tasks[type]);
  301. upid = pid->numbers + ns->level;
  302. spin_lock_irq(&pidmap_lock);
  303. if (!(ns->nr_hashed & PIDNS_HASH_ADDING))
  304. goto out_unlock;
  305. for ( ; upid >= pid->numbers; --upid) {
  306. hlist_add_head_rcu(&upid->pid_chain,
  307. &pid_hash[pid_hashfn(upid->nr, upid->ns)]);
  308. upid->ns->nr_hashed++;
  309. }
  310. spin_unlock_irq(&pidmap_lock);
  311. return pid;
  312. out_unlock:
  313. spin_unlock_irq(&pidmap_lock);
  314. put_pid_ns(ns);
  315. out_free:
  316. while (++i <= ns->level)
  317. free_pidmap(pid->numbers + i);
  318. kmem_cache_free(ns->pid_cachep, pid);
  319. return ERR_PTR(retval);
  320. }
  321. void disable_pid_allocation(struct pid_namespace *ns)
  322. {
  323. spin_lock_irq(&pidmap_lock);
  324. ns->nr_hashed &= ~PIDNS_HASH_ADDING;
  325. spin_unlock_irq(&pidmap_lock);
  326. }
  327. struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
  328. {
  329. struct upid *pnr;
  330. hlist_for_each_entry_rcu(pnr,
  331. &pid_hash[pid_hashfn(nr, ns)], pid_chain)
  332. if (pnr->nr == nr && pnr->ns == ns)
  333. return container_of(pnr, struct pid,
  334. numbers[ns->level]);
  335. return NULL;
  336. }
  337. EXPORT_SYMBOL_GPL(find_pid_ns);
  338. struct pid *find_vpid(int nr)
  339. {
  340. return find_pid_ns(nr, task_active_pid_ns(current));
  341. }
  342. EXPORT_SYMBOL_GPL(find_vpid);
  343. /*
  344. * attach_pid() must be called with the tasklist_lock write-held.
  345. */
  346. void attach_pid(struct task_struct *task, enum pid_type type)
  347. {
  348. struct pid_link *link = &task->pids[type];
  349. hlist_add_head_rcu(&link->node, &link->pid->tasks[type]);
  350. }
  351. static void __change_pid(struct task_struct *task, enum pid_type type,
  352. struct pid *new)
  353. {
  354. struct pid_link *link;
  355. struct pid *pid;
  356. int tmp;
  357. link = &task->pids[type];
  358. pid = link->pid;
  359. hlist_del_rcu(&link->node);
  360. link->pid = new;
  361. for (tmp = PIDTYPE_MAX; --tmp >= 0; )
  362. if (!hlist_empty(&pid->tasks[tmp]))
  363. return;
  364. free_pid(pid);
  365. }
  366. void detach_pid(struct task_struct *task, enum pid_type type)
  367. {
  368. __change_pid(task, type, NULL);
  369. }
  370. void change_pid(struct task_struct *task, enum pid_type type,
  371. struct pid *pid)
  372. {
  373. __change_pid(task, type, pid);
  374. attach_pid(task, type);
  375. }
  376. /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
  377. void transfer_pid(struct task_struct *old, struct task_struct *new,
  378. enum pid_type type)
  379. {
  380. new->pids[type].pid = old->pids[type].pid;
  381. hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node);
  382. }
  383. struct task_struct *pid_task(struct pid *pid, enum pid_type type)
  384. {
  385. struct task_struct *result = NULL;
  386. if (pid) {
  387. struct hlist_node *first;
  388. first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]),
  389. lockdep_tasklist_lock_is_held());
  390. if (first)
  391. result = hlist_entry(first, struct task_struct, pids[(type)].node);
  392. }
  393. return result;
  394. }
  395. EXPORT_SYMBOL(pid_task);
  396. /*
  397. * Must be called under rcu_read_lock().
  398. */
  399. struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
  400. {
  401. RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
  402. "find_task_by_pid_ns() needs rcu_read_lock() protection");
  403. return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID);
  404. }
  405. struct task_struct *find_task_by_vpid(pid_t vnr)
  406. {
  407. return find_task_by_pid_ns(vnr, task_active_pid_ns(current));
  408. }
  409. struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
  410. {
  411. struct pid *pid;
  412. rcu_read_lock();
  413. if (type != PIDTYPE_PID)
  414. task = task->group_leader;
  415. pid = get_pid(rcu_dereference(task->pids[type].pid));
  416. rcu_read_unlock();
  417. return pid;
  418. }
  419. EXPORT_SYMBOL_GPL(get_task_pid);
  420. struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
  421. {
  422. struct task_struct *result;
  423. rcu_read_lock();
  424. result = pid_task(pid, type);
  425. if (result)
  426. get_task_struct(result);
  427. rcu_read_unlock();
  428. return result;
  429. }
  430. EXPORT_SYMBOL_GPL(get_pid_task);
  431. struct pid *find_get_pid(pid_t nr)
  432. {
  433. struct pid *pid;
  434. rcu_read_lock();
  435. pid = get_pid(find_vpid(nr));
  436. rcu_read_unlock();
  437. return pid;
  438. }
  439. EXPORT_SYMBOL_GPL(find_get_pid);
  440. pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
  441. {
  442. struct upid *upid;
  443. pid_t nr = 0;
  444. if (pid && ns->level <= pid->level) {
  445. upid = &pid->numbers[ns->level];
  446. if (upid->ns == ns)
  447. nr = upid->nr;
  448. }
  449. return nr;
  450. }
  451. EXPORT_SYMBOL_GPL(pid_nr_ns);
  452. pid_t pid_vnr(struct pid *pid)
  453. {
  454. return pid_nr_ns(pid, task_active_pid_ns(current));
  455. }
  456. EXPORT_SYMBOL_GPL(pid_vnr);
  457. pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
  458. struct pid_namespace *ns)
  459. {
  460. pid_t nr = 0;
  461. rcu_read_lock();
  462. if (!ns)
  463. ns = task_active_pid_ns(current);
  464. if (likely(pid_alive(task))) {
  465. if (type != PIDTYPE_PID) {
  466. if (type == __PIDTYPE_TGID)
  467. type = PIDTYPE_PID;
  468. task = task->group_leader;
  469. }
  470. nr = pid_nr_ns(rcu_dereference(task->pids[type].pid), ns);
  471. }
  472. rcu_read_unlock();
  473. return nr;
  474. }
  475. EXPORT_SYMBOL(__task_pid_nr_ns);
  476. struct pid_namespace *task_active_pid_ns(struct task_struct *tsk)
  477. {
  478. return ns_of_pid(task_pid(tsk));
  479. }
  480. EXPORT_SYMBOL_GPL(task_active_pid_ns);
  481. /*
  482. * Used by proc to find the first pid that is greater than or equal to nr.
  483. *
  484. * If there is a pid at nr this function is exactly the same as find_pid_ns.
  485. */
  486. struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
  487. {
  488. struct pid *pid;
  489. do {
  490. pid = find_pid_ns(nr, ns);
  491. if (pid)
  492. break;
  493. nr = next_pidmap(ns, nr);
  494. } while (nr > 0);
  495. return pid;
  496. }
  497. /*
  498. * The pid hash table is scaled according to the amount of memory in the
  499. * machine. From a minimum of 16 slots up to 4096 slots at one gigabyte or
  500. * more.
  501. */
  502. void __init pidhash_init(void)
  503. {
  504. pid_hash = alloc_large_system_hash("PID", sizeof(*pid_hash), 0, 18,
  505. HASH_EARLY | HASH_SMALL | HASH_ZERO,
  506. &pidhash_shift, NULL,
  507. 0, 4096);
  508. }
  509. void __init pidmap_init(void)
  510. {
  511. /* Verify no one has done anything silly: */
  512. BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_HASH_ADDING);
  513. /* bump default and minimum pid_max based on number of cpus */
  514. pid_max = min(pid_max_max, max_t(int, pid_max,
  515. PIDS_PER_CPU_DEFAULT * num_possible_cpus()));
  516. pid_max_min = max_t(int, pid_max_min,
  517. PIDS_PER_CPU_MIN * num_possible_cpus());
  518. pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min);
  519. init_pid_ns.pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
  520. /* Reserve PID 0. We never call free_pidmap(0) */
  521. set_bit(0, init_pid_ns.pidmap[0].page);
  522. atomic_dec(&init_pid_ns.pidmap[0].nr_free);
  523. init_pid_ns.pid_cachep = KMEM_CACHE(pid,
  524. SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT);
  525. }