ravb_main.c 49 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967
  1. /* Renesas Ethernet AVB device driver
  2. *
  3. * Copyright (C) 2014-2015 Renesas Electronics Corporation
  4. * Copyright (C) 2015 Renesas Solutions Corp.
  5. * Copyright (C) 2015 Cogent Embedded, Inc. <source@cogentembedded.com>
  6. *
  7. * Based on the SuperH Ethernet driver
  8. *
  9. * This program is free software; you can redistribute it and/or modify it
  10. * under the terms and conditions of the GNU General Public License version 2,
  11. * as published by the Free Software Foundation.
  12. */
  13. #include <linux/cache.h>
  14. #include <linux/clk.h>
  15. #include <linux/delay.h>
  16. #include <linux/dma-mapping.h>
  17. #include <linux/err.h>
  18. #include <linux/etherdevice.h>
  19. #include <linux/ethtool.h>
  20. #include <linux/if_vlan.h>
  21. #include <linux/kernel.h>
  22. #include <linux/list.h>
  23. #include <linux/module.h>
  24. #include <linux/net_tstamp.h>
  25. #include <linux/of.h>
  26. #include <linux/of_device.h>
  27. #include <linux/of_irq.h>
  28. #include <linux/of_mdio.h>
  29. #include <linux/of_net.h>
  30. #include <linux/pm_runtime.h>
  31. #include <linux/slab.h>
  32. #include <linux/spinlock.h>
  33. #include <asm/div64.h>
  34. #include "ravb.h"
  35. #define RAVB_DEF_MSG_ENABLE \
  36. (NETIF_MSG_LINK | \
  37. NETIF_MSG_TIMER | \
  38. NETIF_MSG_RX_ERR | \
  39. NETIF_MSG_TX_ERR)
  40. int ravb_wait(struct net_device *ndev, enum ravb_reg reg, u32 mask, u32 value)
  41. {
  42. int i;
  43. for (i = 0; i < 10000; i++) {
  44. if ((ravb_read(ndev, reg) & mask) == value)
  45. return 0;
  46. udelay(10);
  47. }
  48. return -ETIMEDOUT;
  49. }
  50. static int ravb_config(struct net_device *ndev)
  51. {
  52. int error;
  53. /* Set config mode */
  54. ravb_write(ndev, (ravb_read(ndev, CCC) & ~CCC_OPC) | CCC_OPC_CONFIG,
  55. CCC);
  56. /* Check if the operating mode is changed to the config mode */
  57. error = ravb_wait(ndev, CSR, CSR_OPS, CSR_OPS_CONFIG);
  58. if (error)
  59. netdev_err(ndev, "failed to switch device to config mode\n");
  60. return error;
  61. }
  62. static void ravb_set_duplex(struct net_device *ndev)
  63. {
  64. struct ravb_private *priv = netdev_priv(ndev);
  65. u32 ecmr = ravb_read(ndev, ECMR);
  66. if (priv->duplex) /* Full */
  67. ecmr |= ECMR_DM;
  68. else /* Half */
  69. ecmr &= ~ECMR_DM;
  70. ravb_write(ndev, ecmr, ECMR);
  71. }
  72. static void ravb_set_rate(struct net_device *ndev)
  73. {
  74. struct ravb_private *priv = netdev_priv(ndev);
  75. switch (priv->speed) {
  76. case 100: /* 100BASE */
  77. ravb_write(ndev, GECMR_SPEED_100, GECMR);
  78. break;
  79. case 1000: /* 1000BASE */
  80. ravb_write(ndev, GECMR_SPEED_1000, GECMR);
  81. break;
  82. default:
  83. break;
  84. }
  85. }
  86. static void ravb_set_buffer_align(struct sk_buff *skb)
  87. {
  88. u32 reserve = (unsigned long)skb->data & (RAVB_ALIGN - 1);
  89. if (reserve)
  90. skb_reserve(skb, RAVB_ALIGN - reserve);
  91. }
  92. /* Get MAC address from the MAC address registers
  93. *
  94. * Ethernet AVB device doesn't have ROM for MAC address.
  95. * This function gets the MAC address that was used by a bootloader.
  96. */
  97. static void ravb_read_mac_address(struct net_device *ndev, const u8 *mac)
  98. {
  99. if (mac) {
  100. ether_addr_copy(ndev->dev_addr, mac);
  101. } else {
  102. u32 mahr = ravb_read(ndev, MAHR);
  103. u32 malr = ravb_read(ndev, MALR);
  104. ndev->dev_addr[0] = (mahr >> 24) & 0xFF;
  105. ndev->dev_addr[1] = (mahr >> 16) & 0xFF;
  106. ndev->dev_addr[2] = (mahr >> 8) & 0xFF;
  107. ndev->dev_addr[3] = (mahr >> 0) & 0xFF;
  108. ndev->dev_addr[4] = (malr >> 8) & 0xFF;
  109. ndev->dev_addr[5] = (malr >> 0) & 0xFF;
  110. }
  111. }
  112. static void ravb_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set)
  113. {
  114. struct ravb_private *priv = container_of(ctrl, struct ravb_private,
  115. mdiobb);
  116. u32 pir = ravb_read(priv->ndev, PIR);
  117. if (set)
  118. pir |= mask;
  119. else
  120. pir &= ~mask;
  121. ravb_write(priv->ndev, pir, PIR);
  122. }
  123. /* MDC pin control */
  124. static void ravb_set_mdc(struct mdiobb_ctrl *ctrl, int level)
  125. {
  126. ravb_mdio_ctrl(ctrl, PIR_MDC, level);
  127. }
  128. /* Data I/O pin control */
  129. static void ravb_set_mdio_dir(struct mdiobb_ctrl *ctrl, int output)
  130. {
  131. ravb_mdio_ctrl(ctrl, PIR_MMD, output);
  132. }
  133. /* Set data bit */
  134. static void ravb_set_mdio_data(struct mdiobb_ctrl *ctrl, int value)
  135. {
  136. ravb_mdio_ctrl(ctrl, PIR_MDO, value);
  137. }
  138. /* Get data bit */
  139. static int ravb_get_mdio_data(struct mdiobb_ctrl *ctrl)
  140. {
  141. struct ravb_private *priv = container_of(ctrl, struct ravb_private,
  142. mdiobb);
  143. return (ravb_read(priv->ndev, PIR) & PIR_MDI) != 0;
  144. }
  145. /* MDIO bus control struct */
  146. static struct mdiobb_ops bb_ops = {
  147. .owner = THIS_MODULE,
  148. .set_mdc = ravb_set_mdc,
  149. .set_mdio_dir = ravb_set_mdio_dir,
  150. .set_mdio_data = ravb_set_mdio_data,
  151. .get_mdio_data = ravb_get_mdio_data,
  152. };
  153. /* Free skb's and DMA buffers for Ethernet AVB */
  154. static void ravb_ring_free(struct net_device *ndev, int q)
  155. {
  156. struct ravb_private *priv = netdev_priv(ndev);
  157. int ring_size;
  158. int i;
  159. /* Free RX skb ringbuffer */
  160. if (priv->rx_skb[q]) {
  161. for (i = 0; i < priv->num_rx_ring[q]; i++)
  162. dev_kfree_skb(priv->rx_skb[q][i]);
  163. }
  164. kfree(priv->rx_skb[q]);
  165. priv->rx_skb[q] = NULL;
  166. /* Free TX skb ringbuffer */
  167. if (priv->tx_skb[q]) {
  168. for (i = 0; i < priv->num_tx_ring[q]; i++)
  169. dev_kfree_skb(priv->tx_skb[q][i]);
  170. }
  171. kfree(priv->tx_skb[q]);
  172. priv->tx_skb[q] = NULL;
  173. /* Free aligned TX buffers */
  174. kfree(priv->tx_align[q]);
  175. priv->tx_align[q] = NULL;
  176. if (priv->rx_ring[q]) {
  177. ring_size = sizeof(struct ravb_ex_rx_desc) *
  178. (priv->num_rx_ring[q] + 1);
  179. dma_free_coherent(ndev->dev.parent, ring_size, priv->rx_ring[q],
  180. priv->rx_desc_dma[q]);
  181. priv->rx_ring[q] = NULL;
  182. }
  183. if (priv->tx_ring[q]) {
  184. ring_size = sizeof(struct ravb_tx_desc) *
  185. (priv->num_tx_ring[q] * NUM_TX_DESC + 1);
  186. dma_free_coherent(ndev->dev.parent, ring_size, priv->tx_ring[q],
  187. priv->tx_desc_dma[q]);
  188. priv->tx_ring[q] = NULL;
  189. }
  190. }
  191. /* Format skb and descriptor buffer for Ethernet AVB */
  192. static void ravb_ring_format(struct net_device *ndev, int q)
  193. {
  194. struct ravb_private *priv = netdev_priv(ndev);
  195. struct ravb_ex_rx_desc *rx_desc;
  196. struct ravb_tx_desc *tx_desc;
  197. struct ravb_desc *desc;
  198. int rx_ring_size = sizeof(*rx_desc) * priv->num_rx_ring[q];
  199. int tx_ring_size = sizeof(*tx_desc) * priv->num_tx_ring[q] *
  200. NUM_TX_DESC;
  201. dma_addr_t dma_addr;
  202. int i;
  203. priv->cur_rx[q] = 0;
  204. priv->cur_tx[q] = 0;
  205. priv->dirty_rx[q] = 0;
  206. priv->dirty_tx[q] = 0;
  207. memset(priv->rx_ring[q], 0, rx_ring_size);
  208. /* Build RX ring buffer */
  209. for (i = 0; i < priv->num_rx_ring[q]; i++) {
  210. /* RX descriptor */
  211. rx_desc = &priv->rx_ring[q][i];
  212. /* The size of the buffer should be on 16-byte boundary. */
  213. rx_desc->ds_cc = cpu_to_le16(ALIGN(PKT_BUF_SZ, 16));
  214. dma_addr = dma_map_single(ndev->dev.parent, priv->rx_skb[q][i]->data,
  215. ALIGN(PKT_BUF_SZ, 16),
  216. DMA_FROM_DEVICE);
  217. /* We just set the data size to 0 for a failed mapping which
  218. * should prevent DMA from happening...
  219. */
  220. if (dma_mapping_error(ndev->dev.parent, dma_addr))
  221. rx_desc->ds_cc = cpu_to_le16(0);
  222. rx_desc->dptr = cpu_to_le32(dma_addr);
  223. rx_desc->die_dt = DT_FEMPTY;
  224. }
  225. rx_desc = &priv->rx_ring[q][i];
  226. rx_desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
  227. rx_desc->die_dt = DT_LINKFIX; /* type */
  228. memset(priv->tx_ring[q], 0, tx_ring_size);
  229. /* Build TX ring buffer */
  230. for (i = 0, tx_desc = priv->tx_ring[q]; i < priv->num_tx_ring[q];
  231. i++, tx_desc++) {
  232. tx_desc->die_dt = DT_EEMPTY;
  233. tx_desc++;
  234. tx_desc->die_dt = DT_EEMPTY;
  235. }
  236. tx_desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
  237. tx_desc->die_dt = DT_LINKFIX; /* type */
  238. /* RX descriptor base address for best effort */
  239. desc = &priv->desc_bat[RX_QUEUE_OFFSET + q];
  240. desc->die_dt = DT_LINKFIX; /* type */
  241. desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
  242. /* TX descriptor base address for best effort */
  243. desc = &priv->desc_bat[q];
  244. desc->die_dt = DT_LINKFIX; /* type */
  245. desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
  246. }
  247. /* Init skb and descriptor buffer for Ethernet AVB */
  248. static int ravb_ring_init(struct net_device *ndev, int q)
  249. {
  250. struct ravb_private *priv = netdev_priv(ndev);
  251. struct sk_buff *skb;
  252. int ring_size;
  253. int i;
  254. /* Allocate RX and TX skb rings */
  255. priv->rx_skb[q] = kcalloc(priv->num_rx_ring[q],
  256. sizeof(*priv->rx_skb[q]), GFP_KERNEL);
  257. priv->tx_skb[q] = kcalloc(priv->num_tx_ring[q],
  258. sizeof(*priv->tx_skb[q]), GFP_KERNEL);
  259. if (!priv->rx_skb[q] || !priv->tx_skb[q])
  260. goto error;
  261. for (i = 0; i < priv->num_rx_ring[q]; i++) {
  262. skb = netdev_alloc_skb(ndev, PKT_BUF_SZ + RAVB_ALIGN - 1);
  263. if (!skb)
  264. goto error;
  265. ravb_set_buffer_align(skb);
  266. priv->rx_skb[q][i] = skb;
  267. }
  268. /* Allocate rings for the aligned buffers */
  269. priv->tx_align[q] = kmalloc(DPTR_ALIGN * priv->num_tx_ring[q] +
  270. DPTR_ALIGN - 1, GFP_KERNEL);
  271. if (!priv->tx_align[q])
  272. goto error;
  273. /* Allocate all RX descriptors. */
  274. ring_size = sizeof(struct ravb_ex_rx_desc) * (priv->num_rx_ring[q] + 1);
  275. priv->rx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
  276. &priv->rx_desc_dma[q],
  277. GFP_KERNEL);
  278. if (!priv->rx_ring[q])
  279. goto error;
  280. priv->dirty_rx[q] = 0;
  281. /* Allocate all TX descriptors. */
  282. ring_size = sizeof(struct ravb_tx_desc) *
  283. (priv->num_tx_ring[q] * NUM_TX_DESC + 1);
  284. priv->tx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
  285. &priv->tx_desc_dma[q],
  286. GFP_KERNEL);
  287. if (!priv->tx_ring[q])
  288. goto error;
  289. return 0;
  290. error:
  291. ravb_ring_free(ndev, q);
  292. return -ENOMEM;
  293. }
  294. /* E-MAC init function */
  295. static void ravb_emac_init(struct net_device *ndev)
  296. {
  297. struct ravb_private *priv = netdev_priv(ndev);
  298. /* Receive frame limit set register */
  299. ravb_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN, RFLR);
  300. /* PAUSE prohibition */
  301. ravb_write(ndev, ECMR_ZPF | (priv->duplex ? ECMR_DM : 0) |
  302. ECMR_TE | ECMR_RE, ECMR);
  303. ravb_set_rate(ndev);
  304. /* Set MAC address */
  305. ravb_write(ndev,
  306. (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
  307. (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
  308. ravb_write(ndev,
  309. (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
  310. ravb_write(ndev, 1, MPR);
  311. /* E-MAC status register clear */
  312. ravb_write(ndev, ECSR_ICD | ECSR_MPD, ECSR);
  313. /* E-MAC interrupt enable register */
  314. ravb_write(ndev, ECSIPR_ICDIP | ECSIPR_MPDIP | ECSIPR_LCHNGIP, ECSIPR);
  315. }
  316. /* Device init function for Ethernet AVB */
  317. static int ravb_dmac_init(struct net_device *ndev)
  318. {
  319. int error;
  320. /* Set CONFIG mode */
  321. error = ravb_config(ndev);
  322. if (error)
  323. return error;
  324. error = ravb_ring_init(ndev, RAVB_BE);
  325. if (error)
  326. return error;
  327. error = ravb_ring_init(ndev, RAVB_NC);
  328. if (error) {
  329. ravb_ring_free(ndev, RAVB_BE);
  330. return error;
  331. }
  332. /* Descriptor format */
  333. ravb_ring_format(ndev, RAVB_BE);
  334. ravb_ring_format(ndev, RAVB_NC);
  335. #if defined(__LITTLE_ENDIAN)
  336. ravb_write(ndev, ravb_read(ndev, CCC) & ~CCC_BOC, CCC);
  337. #else
  338. ravb_write(ndev, ravb_read(ndev, CCC) | CCC_BOC, CCC);
  339. #endif
  340. /* Set AVB RX */
  341. ravb_write(ndev, RCR_EFFS | RCR_ENCF | RCR_ETS0 | 0x18000000, RCR);
  342. /* Set FIFO size */
  343. ravb_write(ndev, TGC_TQP_AVBMODE1 | 0x00222200, TGC);
  344. /* Timestamp enable */
  345. ravb_write(ndev, TCCR_TFEN, TCCR);
  346. /* Interrupt init: */
  347. /* Frame receive */
  348. ravb_write(ndev, RIC0_FRE0 | RIC0_FRE1, RIC0);
  349. /* Disable FIFO full warning */
  350. ravb_write(ndev, 0, RIC1);
  351. /* Receive FIFO full error, descriptor empty */
  352. ravb_write(ndev, RIC2_QFE0 | RIC2_QFE1 | RIC2_RFFE, RIC2);
  353. /* Frame transmitted, timestamp FIFO updated */
  354. ravb_write(ndev, TIC_FTE0 | TIC_FTE1 | TIC_TFUE, TIC);
  355. /* Setting the control will start the AVB-DMAC process. */
  356. ravb_write(ndev, (ravb_read(ndev, CCC) & ~CCC_OPC) | CCC_OPC_OPERATION,
  357. CCC);
  358. return 0;
  359. }
  360. /* Free TX skb function for AVB-IP */
  361. static int ravb_tx_free(struct net_device *ndev, int q)
  362. {
  363. struct ravb_private *priv = netdev_priv(ndev);
  364. struct net_device_stats *stats = &priv->stats[q];
  365. struct ravb_tx_desc *desc;
  366. int free_num = 0;
  367. int entry;
  368. u32 size;
  369. for (; priv->cur_tx[q] - priv->dirty_tx[q] > 0; priv->dirty_tx[q]++) {
  370. entry = priv->dirty_tx[q] % (priv->num_tx_ring[q] *
  371. NUM_TX_DESC);
  372. desc = &priv->tx_ring[q][entry];
  373. if (desc->die_dt != DT_FEMPTY)
  374. break;
  375. /* Descriptor type must be checked before all other reads */
  376. dma_rmb();
  377. size = le16_to_cpu(desc->ds_tagl) & TX_DS;
  378. /* Free the original skb. */
  379. if (priv->tx_skb[q][entry / NUM_TX_DESC]) {
  380. dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
  381. size, DMA_TO_DEVICE);
  382. /* Last packet descriptor? */
  383. if (entry % NUM_TX_DESC == NUM_TX_DESC - 1) {
  384. entry /= NUM_TX_DESC;
  385. dev_kfree_skb_any(priv->tx_skb[q][entry]);
  386. priv->tx_skb[q][entry] = NULL;
  387. stats->tx_packets++;
  388. }
  389. free_num++;
  390. }
  391. stats->tx_bytes += size;
  392. desc->die_dt = DT_EEMPTY;
  393. }
  394. return free_num;
  395. }
  396. static void ravb_get_tx_tstamp(struct net_device *ndev)
  397. {
  398. struct ravb_private *priv = netdev_priv(ndev);
  399. struct ravb_tstamp_skb *ts_skb, *ts_skb2;
  400. struct skb_shared_hwtstamps shhwtstamps;
  401. struct sk_buff *skb;
  402. struct timespec64 ts;
  403. u16 tag, tfa_tag;
  404. int count;
  405. u32 tfa2;
  406. count = (ravb_read(ndev, TSR) & TSR_TFFL) >> 8;
  407. while (count--) {
  408. tfa2 = ravb_read(ndev, TFA2);
  409. tfa_tag = (tfa2 & TFA2_TST) >> 16;
  410. ts.tv_nsec = (u64)ravb_read(ndev, TFA0);
  411. ts.tv_sec = ((u64)(tfa2 & TFA2_TSV) << 32) |
  412. ravb_read(ndev, TFA1);
  413. memset(&shhwtstamps, 0, sizeof(shhwtstamps));
  414. shhwtstamps.hwtstamp = timespec64_to_ktime(ts);
  415. list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list,
  416. list) {
  417. skb = ts_skb->skb;
  418. tag = ts_skb->tag;
  419. list_del(&ts_skb->list);
  420. kfree(ts_skb);
  421. if (tag == tfa_tag) {
  422. skb_tstamp_tx(skb, &shhwtstamps);
  423. break;
  424. }
  425. }
  426. ravb_write(ndev, ravb_read(ndev, TCCR) | TCCR_TFR, TCCR);
  427. }
  428. }
  429. /* Packet receive function for Ethernet AVB */
  430. static bool ravb_rx(struct net_device *ndev, int *quota, int q)
  431. {
  432. struct ravb_private *priv = netdev_priv(ndev);
  433. int entry = priv->cur_rx[q] % priv->num_rx_ring[q];
  434. int boguscnt = (priv->dirty_rx[q] + priv->num_rx_ring[q]) -
  435. priv->cur_rx[q];
  436. struct net_device_stats *stats = &priv->stats[q];
  437. struct ravb_ex_rx_desc *desc;
  438. struct sk_buff *skb;
  439. dma_addr_t dma_addr;
  440. struct timespec64 ts;
  441. u8 desc_status;
  442. u16 pkt_len;
  443. int limit;
  444. boguscnt = min(boguscnt, *quota);
  445. limit = boguscnt;
  446. desc = &priv->rx_ring[q][entry];
  447. while (desc->die_dt != DT_FEMPTY) {
  448. /* Descriptor type must be checked before all other reads */
  449. dma_rmb();
  450. desc_status = desc->msc;
  451. pkt_len = le16_to_cpu(desc->ds_cc) & RX_DS;
  452. if (--boguscnt < 0)
  453. break;
  454. /* We use 0-byte descriptors to mark the DMA mapping errors */
  455. if (!pkt_len)
  456. continue;
  457. if (desc_status & MSC_MC)
  458. stats->multicast++;
  459. if (desc_status & (MSC_CRC | MSC_RFE | MSC_RTSF | MSC_RTLF |
  460. MSC_CEEF)) {
  461. stats->rx_errors++;
  462. if (desc_status & MSC_CRC)
  463. stats->rx_crc_errors++;
  464. if (desc_status & MSC_RFE)
  465. stats->rx_frame_errors++;
  466. if (desc_status & (MSC_RTLF | MSC_RTSF))
  467. stats->rx_length_errors++;
  468. if (desc_status & MSC_CEEF)
  469. stats->rx_missed_errors++;
  470. } else {
  471. u32 get_ts = priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE;
  472. skb = priv->rx_skb[q][entry];
  473. priv->rx_skb[q][entry] = NULL;
  474. dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
  475. ALIGN(PKT_BUF_SZ, 16),
  476. DMA_FROM_DEVICE);
  477. get_ts &= (q == RAVB_NC) ?
  478. RAVB_RXTSTAMP_TYPE_V2_L2_EVENT :
  479. ~RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
  480. if (get_ts) {
  481. struct skb_shared_hwtstamps *shhwtstamps;
  482. shhwtstamps = skb_hwtstamps(skb);
  483. memset(shhwtstamps, 0, sizeof(*shhwtstamps));
  484. ts.tv_sec = ((u64) le16_to_cpu(desc->ts_sh) <<
  485. 32) | le32_to_cpu(desc->ts_sl);
  486. ts.tv_nsec = le32_to_cpu(desc->ts_n);
  487. shhwtstamps->hwtstamp = timespec64_to_ktime(ts);
  488. }
  489. skb_put(skb, pkt_len);
  490. skb->protocol = eth_type_trans(skb, ndev);
  491. napi_gro_receive(&priv->napi[q], skb);
  492. stats->rx_packets++;
  493. stats->rx_bytes += pkt_len;
  494. }
  495. entry = (++priv->cur_rx[q]) % priv->num_rx_ring[q];
  496. desc = &priv->rx_ring[q][entry];
  497. }
  498. /* Refill the RX ring buffers. */
  499. for (; priv->cur_rx[q] - priv->dirty_rx[q] > 0; priv->dirty_rx[q]++) {
  500. entry = priv->dirty_rx[q] % priv->num_rx_ring[q];
  501. desc = &priv->rx_ring[q][entry];
  502. /* The size of the buffer should be on 16-byte boundary. */
  503. desc->ds_cc = cpu_to_le16(ALIGN(PKT_BUF_SZ, 16));
  504. if (!priv->rx_skb[q][entry]) {
  505. skb = netdev_alloc_skb(ndev,
  506. PKT_BUF_SZ + RAVB_ALIGN - 1);
  507. if (!skb)
  508. break; /* Better luck next round. */
  509. ravb_set_buffer_align(skb);
  510. dma_addr = dma_map_single(ndev->dev.parent, skb->data,
  511. le16_to_cpu(desc->ds_cc),
  512. DMA_FROM_DEVICE);
  513. skb_checksum_none_assert(skb);
  514. /* We just set the data size to 0 for a failed mapping
  515. * which should prevent DMA from happening...
  516. */
  517. if (dma_mapping_error(ndev->dev.parent, dma_addr))
  518. desc->ds_cc = cpu_to_le16(0);
  519. desc->dptr = cpu_to_le32(dma_addr);
  520. priv->rx_skb[q][entry] = skb;
  521. }
  522. /* Descriptor type must be set after all the above writes */
  523. dma_wmb();
  524. desc->die_dt = DT_FEMPTY;
  525. }
  526. *quota -= limit - (++boguscnt);
  527. return boguscnt <= 0;
  528. }
  529. static void ravb_rcv_snd_disable(struct net_device *ndev)
  530. {
  531. /* Disable TX and RX */
  532. ravb_write(ndev, ravb_read(ndev, ECMR) & ~(ECMR_RE | ECMR_TE), ECMR);
  533. }
  534. static void ravb_rcv_snd_enable(struct net_device *ndev)
  535. {
  536. /* Enable TX and RX */
  537. ravb_write(ndev, ravb_read(ndev, ECMR) | ECMR_RE | ECMR_TE, ECMR);
  538. }
  539. /* function for waiting dma process finished */
  540. static int ravb_stop_dma(struct net_device *ndev)
  541. {
  542. int error;
  543. /* Wait for stopping the hardware TX process */
  544. error = ravb_wait(ndev, TCCR,
  545. TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3, 0);
  546. if (error)
  547. return error;
  548. error = ravb_wait(ndev, CSR, CSR_TPO0 | CSR_TPO1 | CSR_TPO2 | CSR_TPO3,
  549. 0);
  550. if (error)
  551. return error;
  552. /* Stop the E-MAC's RX/TX processes. */
  553. ravb_rcv_snd_disable(ndev);
  554. /* Wait for stopping the RX DMA process */
  555. error = ravb_wait(ndev, CSR, CSR_RPO, 0);
  556. if (error)
  557. return error;
  558. /* Stop AVB-DMAC process */
  559. return ravb_config(ndev);
  560. }
  561. /* E-MAC interrupt handler */
  562. static void ravb_emac_interrupt(struct net_device *ndev)
  563. {
  564. struct ravb_private *priv = netdev_priv(ndev);
  565. u32 ecsr, psr;
  566. ecsr = ravb_read(ndev, ECSR);
  567. ravb_write(ndev, ecsr, ECSR); /* clear interrupt */
  568. if (ecsr & ECSR_ICD)
  569. ndev->stats.tx_carrier_errors++;
  570. if (ecsr & ECSR_LCHNG) {
  571. /* Link changed */
  572. if (priv->no_avb_link)
  573. return;
  574. psr = ravb_read(ndev, PSR);
  575. if (priv->avb_link_active_low)
  576. psr ^= PSR_LMON;
  577. if (!(psr & PSR_LMON)) {
  578. /* DIsable RX and TX */
  579. ravb_rcv_snd_disable(ndev);
  580. } else {
  581. /* Enable RX and TX */
  582. ravb_rcv_snd_enable(ndev);
  583. }
  584. }
  585. }
  586. /* Error interrupt handler */
  587. static void ravb_error_interrupt(struct net_device *ndev)
  588. {
  589. struct ravb_private *priv = netdev_priv(ndev);
  590. u32 eis, ris2;
  591. eis = ravb_read(ndev, EIS);
  592. ravb_write(ndev, ~EIS_QFS, EIS);
  593. if (eis & EIS_QFS) {
  594. ris2 = ravb_read(ndev, RIS2);
  595. ravb_write(ndev, ~(RIS2_QFF0 | RIS2_RFFF), RIS2);
  596. /* Receive Descriptor Empty int */
  597. if (ris2 & RIS2_QFF0)
  598. priv->stats[RAVB_BE].rx_over_errors++;
  599. /* Receive Descriptor Empty int */
  600. if (ris2 & RIS2_QFF1)
  601. priv->stats[RAVB_NC].rx_over_errors++;
  602. /* Receive FIFO Overflow int */
  603. if (ris2 & RIS2_RFFF)
  604. priv->rx_fifo_errors++;
  605. }
  606. }
  607. static irqreturn_t ravb_interrupt(int irq, void *dev_id)
  608. {
  609. struct net_device *ndev = dev_id;
  610. struct ravb_private *priv = netdev_priv(ndev);
  611. irqreturn_t result = IRQ_NONE;
  612. u32 iss;
  613. spin_lock(&priv->lock);
  614. /* Get interrupt status */
  615. iss = ravb_read(ndev, ISS);
  616. /* Received and transmitted interrupts */
  617. if (iss & (ISS_FRS | ISS_FTS | ISS_TFUS)) {
  618. u32 ris0 = ravb_read(ndev, RIS0);
  619. u32 ric0 = ravb_read(ndev, RIC0);
  620. u32 tis = ravb_read(ndev, TIS);
  621. u32 tic = ravb_read(ndev, TIC);
  622. int q;
  623. /* Timestamp updated */
  624. if (tis & TIS_TFUF) {
  625. ravb_write(ndev, ~TIS_TFUF, TIS);
  626. ravb_get_tx_tstamp(ndev);
  627. result = IRQ_HANDLED;
  628. }
  629. /* Network control and best effort queue RX/TX */
  630. for (q = RAVB_NC; q >= RAVB_BE; q--) {
  631. if (((ris0 & ric0) & BIT(q)) ||
  632. ((tis & tic) & BIT(q))) {
  633. if (napi_schedule_prep(&priv->napi[q])) {
  634. /* Mask RX and TX interrupts */
  635. ric0 &= ~BIT(q);
  636. tic &= ~BIT(q);
  637. ravb_write(ndev, ric0, RIC0);
  638. ravb_write(ndev, tic, TIC);
  639. __napi_schedule(&priv->napi[q]);
  640. } else {
  641. netdev_warn(ndev,
  642. "ignoring interrupt, rx status 0x%08x, rx mask 0x%08x,\n",
  643. ris0, ric0);
  644. netdev_warn(ndev,
  645. " tx status 0x%08x, tx mask 0x%08x.\n",
  646. tis, tic);
  647. }
  648. result = IRQ_HANDLED;
  649. }
  650. }
  651. }
  652. /* E-MAC status summary */
  653. if (iss & ISS_MS) {
  654. ravb_emac_interrupt(ndev);
  655. result = IRQ_HANDLED;
  656. }
  657. /* Error status summary */
  658. if (iss & ISS_ES) {
  659. ravb_error_interrupt(ndev);
  660. result = IRQ_HANDLED;
  661. }
  662. if (iss & ISS_CGIS)
  663. result = ravb_ptp_interrupt(ndev);
  664. mmiowb();
  665. spin_unlock(&priv->lock);
  666. return result;
  667. }
  668. static int ravb_poll(struct napi_struct *napi, int budget)
  669. {
  670. struct net_device *ndev = napi->dev;
  671. struct ravb_private *priv = netdev_priv(ndev);
  672. unsigned long flags;
  673. int q = napi - priv->napi;
  674. int mask = BIT(q);
  675. int quota = budget;
  676. u32 ris0, tis;
  677. for (;;) {
  678. tis = ravb_read(ndev, TIS);
  679. ris0 = ravb_read(ndev, RIS0);
  680. if (!((ris0 & mask) || (tis & mask)))
  681. break;
  682. /* Processing RX Descriptor Ring */
  683. if (ris0 & mask) {
  684. /* Clear RX interrupt */
  685. ravb_write(ndev, ~mask, RIS0);
  686. if (ravb_rx(ndev, &quota, q))
  687. goto out;
  688. }
  689. /* Processing TX Descriptor Ring */
  690. if (tis & mask) {
  691. spin_lock_irqsave(&priv->lock, flags);
  692. /* Clear TX interrupt */
  693. ravb_write(ndev, ~mask, TIS);
  694. ravb_tx_free(ndev, q);
  695. netif_wake_subqueue(ndev, q);
  696. mmiowb();
  697. spin_unlock_irqrestore(&priv->lock, flags);
  698. }
  699. }
  700. napi_complete(napi);
  701. /* Re-enable RX/TX interrupts */
  702. spin_lock_irqsave(&priv->lock, flags);
  703. ravb_write(ndev, ravb_read(ndev, RIC0) | mask, RIC0);
  704. ravb_write(ndev, ravb_read(ndev, TIC) | mask, TIC);
  705. mmiowb();
  706. spin_unlock_irqrestore(&priv->lock, flags);
  707. /* Receive error message handling */
  708. priv->rx_over_errors = priv->stats[RAVB_BE].rx_over_errors;
  709. priv->rx_over_errors += priv->stats[RAVB_NC].rx_over_errors;
  710. if (priv->rx_over_errors != ndev->stats.rx_over_errors) {
  711. ndev->stats.rx_over_errors = priv->rx_over_errors;
  712. netif_err(priv, rx_err, ndev, "Receive Descriptor Empty\n");
  713. }
  714. if (priv->rx_fifo_errors != ndev->stats.rx_fifo_errors) {
  715. ndev->stats.rx_fifo_errors = priv->rx_fifo_errors;
  716. netif_err(priv, rx_err, ndev, "Receive FIFO Overflow\n");
  717. }
  718. out:
  719. return budget - quota;
  720. }
  721. /* PHY state control function */
  722. static void ravb_adjust_link(struct net_device *ndev)
  723. {
  724. struct ravb_private *priv = netdev_priv(ndev);
  725. struct phy_device *phydev = priv->phydev;
  726. bool new_state = false;
  727. if (phydev->link) {
  728. if (phydev->duplex != priv->duplex) {
  729. new_state = true;
  730. priv->duplex = phydev->duplex;
  731. ravb_set_duplex(ndev);
  732. }
  733. if (phydev->speed != priv->speed) {
  734. new_state = true;
  735. priv->speed = phydev->speed;
  736. ravb_set_rate(ndev);
  737. }
  738. if (!priv->link) {
  739. ravb_write(ndev, ravb_read(ndev, ECMR) & ~ECMR_TXF,
  740. ECMR);
  741. new_state = true;
  742. priv->link = phydev->link;
  743. if (priv->no_avb_link)
  744. ravb_rcv_snd_enable(ndev);
  745. }
  746. } else if (priv->link) {
  747. new_state = true;
  748. priv->link = 0;
  749. priv->speed = 0;
  750. priv->duplex = -1;
  751. if (priv->no_avb_link)
  752. ravb_rcv_snd_disable(ndev);
  753. }
  754. if (new_state && netif_msg_link(priv))
  755. phy_print_status(phydev);
  756. }
  757. /* PHY init function */
  758. static int ravb_phy_init(struct net_device *ndev)
  759. {
  760. struct device_node *np = ndev->dev.parent->of_node;
  761. struct ravb_private *priv = netdev_priv(ndev);
  762. struct phy_device *phydev;
  763. struct device_node *pn;
  764. int err;
  765. priv->link = 0;
  766. priv->speed = 0;
  767. priv->duplex = -1;
  768. /* Try connecting to PHY */
  769. pn = of_parse_phandle(np, "phy-handle", 0);
  770. if (!pn) {
  771. /* In the case of a fixed PHY, the DT node associated
  772. * to the PHY is the Ethernet MAC DT node.
  773. */
  774. if (of_phy_is_fixed_link(np)) {
  775. err = of_phy_register_fixed_link(np);
  776. if (err)
  777. return err;
  778. }
  779. pn = of_node_get(np);
  780. }
  781. phydev = of_phy_connect(ndev, pn, ravb_adjust_link, 0,
  782. priv->phy_interface);
  783. if (!phydev) {
  784. netdev_err(ndev, "failed to connect PHY\n");
  785. return -ENOENT;
  786. }
  787. /* This driver only support 10/100Mbit speeds on Gen3
  788. * at this time.
  789. */
  790. if (priv->chip_id == RCAR_GEN3) {
  791. int err;
  792. err = phy_set_max_speed(phydev, SPEED_100);
  793. if (err) {
  794. netdev_err(ndev, "failed to limit PHY to 100Mbit/s\n");
  795. phy_disconnect(phydev);
  796. return err;
  797. }
  798. netdev_info(ndev, "limited PHY to 100Mbit/s\n");
  799. }
  800. /* 10BASE is not supported */
  801. phydev->supported &= ~PHY_10BT_FEATURES;
  802. phy_attached_info(phydev);
  803. priv->phydev = phydev;
  804. return 0;
  805. }
  806. /* PHY control start function */
  807. static int ravb_phy_start(struct net_device *ndev)
  808. {
  809. struct ravb_private *priv = netdev_priv(ndev);
  810. int error;
  811. error = ravb_phy_init(ndev);
  812. if (error)
  813. return error;
  814. phy_start(priv->phydev);
  815. return 0;
  816. }
  817. static int ravb_get_settings(struct net_device *ndev, struct ethtool_cmd *ecmd)
  818. {
  819. struct ravb_private *priv = netdev_priv(ndev);
  820. int error = -ENODEV;
  821. unsigned long flags;
  822. if (priv->phydev) {
  823. spin_lock_irqsave(&priv->lock, flags);
  824. error = phy_ethtool_gset(priv->phydev, ecmd);
  825. spin_unlock_irqrestore(&priv->lock, flags);
  826. }
  827. return error;
  828. }
  829. static int ravb_set_settings(struct net_device *ndev, struct ethtool_cmd *ecmd)
  830. {
  831. struct ravb_private *priv = netdev_priv(ndev);
  832. unsigned long flags;
  833. int error;
  834. if (!priv->phydev)
  835. return -ENODEV;
  836. spin_lock_irqsave(&priv->lock, flags);
  837. /* Disable TX and RX */
  838. ravb_rcv_snd_disable(ndev);
  839. error = phy_ethtool_sset(priv->phydev, ecmd);
  840. if (error)
  841. goto error_exit;
  842. if (ecmd->duplex == DUPLEX_FULL)
  843. priv->duplex = 1;
  844. else
  845. priv->duplex = 0;
  846. ravb_set_duplex(ndev);
  847. error_exit:
  848. mdelay(1);
  849. /* Enable TX and RX */
  850. ravb_rcv_snd_enable(ndev);
  851. mmiowb();
  852. spin_unlock_irqrestore(&priv->lock, flags);
  853. return error;
  854. }
  855. static int ravb_nway_reset(struct net_device *ndev)
  856. {
  857. struct ravb_private *priv = netdev_priv(ndev);
  858. int error = -ENODEV;
  859. unsigned long flags;
  860. if (priv->phydev) {
  861. spin_lock_irqsave(&priv->lock, flags);
  862. error = phy_start_aneg(priv->phydev);
  863. spin_unlock_irqrestore(&priv->lock, flags);
  864. }
  865. return error;
  866. }
  867. static u32 ravb_get_msglevel(struct net_device *ndev)
  868. {
  869. struct ravb_private *priv = netdev_priv(ndev);
  870. return priv->msg_enable;
  871. }
  872. static void ravb_set_msglevel(struct net_device *ndev, u32 value)
  873. {
  874. struct ravb_private *priv = netdev_priv(ndev);
  875. priv->msg_enable = value;
  876. }
  877. static const char ravb_gstrings_stats[][ETH_GSTRING_LEN] = {
  878. "rx_queue_0_current",
  879. "tx_queue_0_current",
  880. "rx_queue_0_dirty",
  881. "tx_queue_0_dirty",
  882. "rx_queue_0_packets",
  883. "tx_queue_0_packets",
  884. "rx_queue_0_bytes",
  885. "tx_queue_0_bytes",
  886. "rx_queue_0_mcast_packets",
  887. "rx_queue_0_errors",
  888. "rx_queue_0_crc_errors",
  889. "rx_queue_0_frame_errors",
  890. "rx_queue_0_length_errors",
  891. "rx_queue_0_missed_errors",
  892. "rx_queue_0_over_errors",
  893. "rx_queue_1_current",
  894. "tx_queue_1_current",
  895. "rx_queue_1_dirty",
  896. "tx_queue_1_dirty",
  897. "rx_queue_1_packets",
  898. "tx_queue_1_packets",
  899. "rx_queue_1_bytes",
  900. "tx_queue_1_bytes",
  901. "rx_queue_1_mcast_packets",
  902. "rx_queue_1_errors",
  903. "rx_queue_1_crc_errors",
  904. "rx_queue_1_frame_errors",
  905. "rx_queue_1_length_errors",
  906. "rx_queue_1_missed_errors",
  907. "rx_queue_1_over_errors",
  908. };
  909. #define RAVB_STATS_LEN ARRAY_SIZE(ravb_gstrings_stats)
  910. static int ravb_get_sset_count(struct net_device *netdev, int sset)
  911. {
  912. switch (sset) {
  913. case ETH_SS_STATS:
  914. return RAVB_STATS_LEN;
  915. default:
  916. return -EOPNOTSUPP;
  917. }
  918. }
  919. static void ravb_get_ethtool_stats(struct net_device *ndev,
  920. struct ethtool_stats *stats, u64 *data)
  921. {
  922. struct ravb_private *priv = netdev_priv(ndev);
  923. int i = 0;
  924. int q;
  925. /* Device-specific stats */
  926. for (q = RAVB_BE; q < NUM_RX_QUEUE; q++) {
  927. struct net_device_stats *stats = &priv->stats[q];
  928. data[i++] = priv->cur_rx[q];
  929. data[i++] = priv->cur_tx[q];
  930. data[i++] = priv->dirty_rx[q];
  931. data[i++] = priv->dirty_tx[q];
  932. data[i++] = stats->rx_packets;
  933. data[i++] = stats->tx_packets;
  934. data[i++] = stats->rx_bytes;
  935. data[i++] = stats->tx_bytes;
  936. data[i++] = stats->multicast;
  937. data[i++] = stats->rx_errors;
  938. data[i++] = stats->rx_crc_errors;
  939. data[i++] = stats->rx_frame_errors;
  940. data[i++] = stats->rx_length_errors;
  941. data[i++] = stats->rx_missed_errors;
  942. data[i++] = stats->rx_over_errors;
  943. }
  944. }
  945. static void ravb_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
  946. {
  947. switch (stringset) {
  948. case ETH_SS_STATS:
  949. memcpy(data, *ravb_gstrings_stats, sizeof(ravb_gstrings_stats));
  950. break;
  951. }
  952. }
  953. static void ravb_get_ringparam(struct net_device *ndev,
  954. struct ethtool_ringparam *ring)
  955. {
  956. struct ravb_private *priv = netdev_priv(ndev);
  957. ring->rx_max_pending = BE_RX_RING_MAX;
  958. ring->tx_max_pending = BE_TX_RING_MAX;
  959. ring->rx_pending = priv->num_rx_ring[RAVB_BE];
  960. ring->tx_pending = priv->num_tx_ring[RAVB_BE];
  961. }
  962. static int ravb_set_ringparam(struct net_device *ndev,
  963. struct ethtool_ringparam *ring)
  964. {
  965. struct ravb_private *priv = netdev_priv(ndev);
  966. int error;
  967. if (ring->tx_pending > BE_TX_RING_MAX ||
  968. ring->rx_pending > BE_RX_RING_MAX ||
  969. ring->tx_pending < BE_TX_RING_MIN ||
  970. ring->rx_pending < BE_RX_RING_MIN)
  971. return -EINVAL;
  972. if (ring->rx_mini_pending || ring->rx_jumbo_pending)
  973. return -EINVAL;
  974. if (netif_running(ndev)) {
  975. netif_device_detach(ndev);
  976. /* Stop PTP Clock driver */
  977. ravb_ptp_stop(ndev);
  978. /* Wait for DMA stopping */
  979. error = ravb_stop_dma(ndev);
  980. if (error) {
  981. netdev_err(ndev,
  982. "cannot set ringparam! Any AVB processes are still running?\n");
  983. return error;
  984. }
  985. synchronize_irq(ndev->irq);
  986. /* Free all the skb's in the RX queue and the DMA buffers. */
  987. ravb_ring_free(ndev, RAVB_BE);
  988. ravb_ring_free(ndev, RAVB_NC);
  989. }
  990. /* Set new parameters */
  991. priv->num_rx_ring[RAVB_BE] = ring->rx_pending;
  992. priv->num_tx_ring[RAVB_BE] = ring->tx_pending;
  993. if (netif_running(ndev)) {
  994. error = ravb_dmac_init(ndev);
  995. if (error) {
  996. netdev_err(ndev,
  997. "%s: ravb_dmac_init() failed, error %d\n",
  998. __func__, error);
  999. return error;
  1000. }
  1001. ravb_emac_init(ndev);
  1002. /* Initialise PTP Clock driver */
  1003. ravb_ptp_init(ndev, priv->pdev);
  1004. netif_device_attach(ndev);
  1005. }
  1006. return 0;
  1007. }
  1008. static int ravb_get_ts_info(struct net_device *ndev,
  1009. struct ethtool_ts_info *info)
  1010. {
  1011. struct ravb_private *priv = netdev_priv(ndev);
  1012. info->so_timestamping =
  1013. SOF_TIMESTAMPING_TX_SOFTWARE |
  1014. SOF_TIMESTAMPING_RX_SOFTWARE |
  1015. SOF_TIMESTAMPING_SOFTWARE |
  1016. SOF_TIMESTAMPING_TX_HARDWARE |
  1017. SOF_TIMESTAMPING_RX_HARDWARE |
  1018. SOF_TIMESTAMPING_RAW_HARDWARE;
  1019. info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON);
  1020. info->rx_filters =
  1021. (1 << HWTSTAMP_FILTER_NONE) |
  1022. (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
  1023. (1 << HWTSTAMP_FILTER_ALL);
  1024. info->phc_index = ptp_clock_index(priv->ptp.clock);
  1025. return 0;
  1026. }
  1027. static const struct ethtool_ops ravb_ethtool_ops = {
  1028. .get_settings = ravb_get_settings,
  1029. .set_settings = ravb_set_settings,
  1030. .nway_reset = ravb_nway_reset,
  1031. .get_msglevel = ravb_get_msglevel,
  1032. .set_msglevel = ravb_set_msglevel,
  1033. .get_link = ethtool_op_get_link,
  1034. .get_strings = ravb_get_strings,
  1035. .get_ethtool_stats = ravb_get_ethtool_stats,
  1036. .get_sset_count = ravb_get_sset_count,
  1037. .get_ringparam = ravb_get_ringparam,
  1038. .set_ringparam = ravb_set_ringparam,
  1039. .get_ts_info = ravb_get_ts_info,
  1040. };
  1041. /* Network device open function for Ethernet AVB */
  1042. static int ravb_open(struct net_device *ndev)
  1043. {
  1044. struct ravb_private *priv = netdev_priv(ndev);
  1045. int error;
  1046. napi_enable(&priv->napi[RAVB_BE]);
  1047. napi_enable(&priv->napi[RAVB_NC]);
  1048. error = request_irq(ndev->irq, ravb_interrupt, IRQF_SHARED, ndev->name,
  1049. ndev);
  1050. if (error) {
  1051. netdev_err(ndev, "cannot request IRQ\n");
  1052. goto out_napi_off;
  1053. }
  1054. if (priv->chip_id == RCAR_GEN3) {
  1055. error = request_irq(priv->emac_irq, ravb_interrupt,
  1056. IRQF_SHARED, ndev->name, ndev);
  1057. if (error) {
  1058. netdev_err(ndev, "cannot request IRQ\n");
  1059. goto out_free_irq;
  1060. }
  1061. }
  1062. /* Device init */
  1063. error = ravb_dmac_init(ndev);
  1064. if (error)
  1065. goto out_free_irq2;
  1066. ravb_emac_init(ndev);
  1067. /* Initialise PTP Clock driver */
  1068. if (priv->chip_id == RCAR_GEN2)
  1069. ravb_ptp_init(ndev, priv->pdev);
  1070. netif_tx_start_all_queues(ndev);
  1071. /* PHY control start */
  1072. error = ravb_phy_start(ndev);
  1073. if (error)
  1074. goto out_ptp_stop;
  1075. return 0;
  1076. out_ptp_stop:
  1077. /* Stop PTP Clock driver */
  1078. if (priv->chip_id == RCAR_GEN2)
  1079. ravb_ptp_stop(ndev);
  1080. out_free_irq2:
  1081. if (priv->chip_id == RCAR_GEN3)
  1082. free_irq(priv->emac_irq, ndev);
  1083. out_free_irq:
  1084. free_irq(ndev->irq, ndev);
  1085. out_napi_off:
  1086. napi_disable(&priv->napi[RAVB_NC]);
  1087. napi_disable(&priv->napi[RAVB_BE]);
  1088. return error;
  1089. }
  1090. /* Timeout function for Ethernet AVB */
  1091. static void ravb_tx_timeout(struct net_device *ndev)
  1092. {
  1093. struct ravb_private *priv = netdev_priv(ndev);
  1094. netif_err(priv, tx_err, ndev,
  1095. "transmit timed out, status %08x, resetting...\n",
  1096. ravb_read(ndev, ISS));
  1097. /* tx_errors count up */
  1098. ndev->stats.tx_errors++;
  1099. schedule_work(&priv->work);
  1100. }
  1101. static void ravb_tx_timeout_work(struct work_struct *work)
  1102. {
  1103. struct ravb_private *priv = container_of(work, struct ravb_private,
  1104. work);
  1105. struct net_device *ndev = priv->ndev;
  1106. netif_tx_stop_all_queues(ndev);
  1107. /* Stop PTP Clock driver */
  1108. ravb_ptp_stop(ndev);
  1109. /* Wait for DMA stopping */
  1110. ravb_stop_dma(ndev);
  1111. ravb_ring_free(ndev, RAVB_BE);
  1112. ravb_ring_free(ndev, RAVB_NC);
  1113. /* Device init */
  1114. ravb_dmac_init(ndev);
  1115. ravb_emac_init(ndev);
  1116. /* Initialise PTP Clock driver */
  1117. ravb_ptp_init(ndev, priv->pdev);
  1118. netif_tx_start_all_queues(ndev);
  1119. }
  1120. /* Packet transmit function for Ethernet AVB */
  1121. static netdev_tx_t ravb_start_xmit(struct sk_buff *skb, struct net_device *ndev)
  1122. {
  1123. struct ravb_private *priv = netdev_priv(ndev);
  1124. u16 q = skb_get_queue_mapping(skb);
  1125. struct ravb_tstamp_skb *ts_skb;
  1126. struct ravb_tx_desc *desc;
  1127. unsigned long flags;
  1128. u32 dma_addr;
  1129. void *buffer;
  1130. u32 entry;
  1131. u32 len;
  1132. spin_lock_irqsave(&priv->lock, flags);
  1133. if (priv->cur_tx[q] - priv->dirty_tx[q] > (priv->num_tx_ring[q] - 1) *
  1134. NUM_TX_DESC) {
  1135. netif_err(priv, tx_queued, ndev,
  1136. "still transmitting with the full ring!\n");
  1137. netif_stop_subqueue(ndev, q);
  1138. spin_unlock_irqrestore(&priv->lock, flags);
  1139. return NETDEV_TX_BUSY;
  1140. }
  1141. entry = priv->cur_tx[q] % (priv->num_tx_ring[q] * NUM_TX_DESC);
  1142. priv->tx_skb[q][entry / NUM_TX_DESC] = skb;
  1143. if (skb_put_padto(skb, ETH_ZLEN))
  1144. goto drop;
  1145. buffer = PTR_ALIGN(priv->tx_align[q], DPTR_ALIGN) +
  1146. entry / NUM_TX_DESC * DPTR_ALIGN;
  1147. len = PTR_ALIGN(skb->data, DPTR_ALIGN) - skb->data;
  1148. memcpy(buffer, skb->data, len);
  1149. dma_addr = dma_map_single(ndev->dev.parent, buffer, len, DMA_TO_DEVICE);
  1150. if (dma_mapping_error(ndev->dev.parent, dma_addr))
  1151. goto drop;
  1152. desc = &priv->tx_ring[q][entry];
  1153. desc->ds_tagl = cpu_to_le16(len);
  1154. desc->dptr = cpu_to_le32(dma_addr);
  1155. buffer = skb->data + len;
  1156. len = skb->len - len;
  1157. dma_addr = dma_map_single(ndev->dev.parent, buffer, len, DMA_TO_DEVICE);
  1158. if (dma_mapping_error(ndev->dev.parent, dma_addr))
  1159. goto unmap;
  1160. desc++;
  1161. desc->ds_tagl = cpu_to_le16(len);
  1162. desc->dptr = cpu_to_le32(dma_addr);
  1163. /* TX timestamp required */
  1164. if (q == RAVB_NC) {
  1165. ts_skb = kmalloc(sizeof(*ts_skb), GFP_ATOMIC);
  1166. if (!ts_skb) {
  1167. desc--;
  1168. dma_unmap_single(ndev->dev.parent, dma_addr, len,
  1169. DMA_TO_DEVICE);
  1170. goto unmap;
  1171. }
  1172. ts_skb->skb = skb;
  1173. ts_skb->tag = priv->ts_skb_tag++;
  1174. priv->ts_skb_tag &= 0x3ff;
  1175. list_add_tail(&ts_skb->list, &priv->ts_skb_list);
  1176. /* TAG and timestamp required flag */
  1177. skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
  1178. skb_tx_timestamp(skb);
  1179. desc->tagh_tsr = (ts_skb->tag >> 4) | TX_TSR;
  1180. desc->ds_tagl |= le16_to_cpu(ts_skb->tag << 12);
  1181. }
  1182. /* Descriptor type must be set after all the above writes */
  1183. dma_wmb();
  1184. desc->die_dt = DT_FEND;
  1185. desc--;
  1186. desc->die_dt = DT_FSTART;
  1187. ravb_write(ndev, ravb_read(ndev, TCCR) | (TCCR_TSRQ0 << q), TCCR);
  1188. priv->cur_tx[q] += NUM_TX_DESC;
  1189. if (priv->cur_tx[q] - priv->dirty_tx[q] >
  1190. (priv->num_tx_ring[q] - 1) * NUM_TX_DESC && !ravb_tx_free(ndev, q))
  1191. netif_stop_subqueue(ndev, q);
  1192. exit:
  1193. mmiowb();
  1194. spin_unlock_irqrestore(&priv->lock, flags);
  1195. return NETDEV_TX_OK;
  1196. unmap:
  1197. dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
  1198. le16_to_cpu(desc->ds_tagl), DMA_TO_DEVICE);
  1199. drop:
  1200. dev_kfree_skb_any(skb);
  1201. priv->tx_skb[q][entry / NUM_TX_DESC] = NULL;
  1202. goto exit;
  1203. }
  1204. static u16 ravb_select_queue(struct net_device *ndev, struct sk_buff *skb,
  1205. void *accel_priv, select_queue_fallback_t fallback)
  1206. {
  1207. /* If skb needs TX timestamp, it is handled in network control queue */
  1208. return (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) ? RAVB_NC :
  1209. RAVB_BE;
  1210. }
  1211. static struct net_device_stats *ravb_get_stats(struct net_device *ndev)
  1212. {
  1213. struct ravb_private *priv = netdev_priv(ndev);
  1214. struct net_device_stats *nstats, *stats0, *stats1;
  1215. nstats = &ndev->stats;
  1216. stats0 = &priv->stats[RAVB_BE];
  1217. stats1 = &priv->stats[RAVB_NC];
  1218. nstats->tx_dropped += ravb_read(ndev, TROCR);
  1219. ravb_write(ndev, 0, TROCR); /* (write clear) */
  1220. nstats->collisions += ravb_read(ndev, CDCR);
  1221. ravb_write(ndev, 0, CDCR); /* (write clear) */
  1222. nstats->tx_carrier_errors += ravb_read(ndev, LCCR);
  1223. ravb_write(ndev, 0, LCCR); /* (write clear) */
  1224. nstats->tx_carrier_errors += ravb_read(ndev, CERCR);
  1225. ravb_write(ndev, 0, CERCR); /* (write clear) */
  1226. nstats->tx_carrier_errors += ravb_read(ndev, CEECR);
  1227. ravb_write(ndev, 0, CEECR); /* (write clear) */
  1228. nstats->rx_packets = stats0->rx_packets + stats1->rx_packets;
  1229. nstats->tx_packets = stats0->tx_packets + stats1->tx_packets;
  1230. nstats->rx_bytes = stats0->rx_bytes + stats1->rx_bytes;
  1231. nstats->tx_bytes = stats0->tx_bytes + stats1->tx_bytes;
  1232. nstats->multicast = stats0->multicast + stats1->multicast;
  1233. nstats->rx_errors = stats0->rx_errors + stats1->rx_errors;
  1234. nstats->rx_crc_errors = stats0->rx_crc_errors + stats1->rx_crc_errors;
  1235. nstats->rx_frame_errors =
  1236. stats0->rx_frame_errors + stats1->rx_frame_errors;
  1237. nstats->rx_length_errors =
  1238. stats0->rx_length_errors + stats1->rx_length_errors;
  1239. nstats->rx_missed_errors =
  1240. stats0->rx_missed_errors + stats1->rx_missed_errors;
  1241. nstats->rx_over_errors =
  1242. stats0->rx_over_errors + stats1->rx_over_errors;
  1243. return nstats;
  1244. }
  1245. /* Update promiscuous bit */
  1246. static void ravb_set_rx_mode(struct net_device *ndev)
  1247. {
  1248. struct ravb_private *priv = netdev_priv(ndev);
  1249. unsigned long flags;
  1250. u32 ecmr;
  1251. spin_lock_irqsave(&priv->lock, flags);
  1252. ecmr = ravb_read(ndev, ECMR);
  1253. if (ndev->flags & IFF_PROMISC)
  1254. ecmr |= ECMR_PRM;
  1255. else
  1256. ecmr &= ~ECMR_PRM;
  1257. ravb_write(ndev, ecmr, ECMR);
  1258. mmiowb();
  1259. spin_unlock_irqrestore(&priv->lock, flags);
  1260. }
  1261. /* Device close function for Ethernet AVB */
  1262. static int ravb_close(struct net_device *ndev)
  1263. {
  1264. struct ravb_private *priv = netdev_priv(ndev);
  1265. struct ravb_tstamp_skb *ts_skb, *ts_skb2;
  1266. netif_tx_stop_all_queues(ndev);
  1267. /* Disable interrupts by clearing the interrupt masks. */
  1268. ravb_write(ndev, 0, RIC0);
  1269. ravb_write(ndev, 0, RIC2);
  1270. ravb_write(ndev, 0, TIC);
  1271. /* Stop PTP Clock driver */
  1272. if (priv->chip_id == RCAR_GEN2)
  1273. ravb_ptp_stop(ndev);
  1274. /* Set the config mode to stop the AVB-DMAC's processes */
  1275. if (ravb_stop_dma(ndev) < 0)
  1276. netdev_err(ndev,
  1277. "device will be stopped after h/w processes are done.\n");
  1278. /* Clear the timestamp list */
  1279. list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list, list) {
  1280. list_del(&ts_skb->list);
  1281. kfree(ts_skb);
  1282. }
  1283. /* PHY disconnect */
  1284. if (priv->phydev) {
  1285. phy_stop(priv->phydev);
  1286. phy_disconnect(priv->phydev);
  1287. priv->phydev = NULL;
  1288. }
  1289. free_irq(ndev->irq, ndev);
  1290. napi_disable(&priv->napi[RAVB_NC]);
  1291. napi_disable(&priv->napi[RAVB_BE]);
  1292. /* Free all the skb's in the RX queue and the DMA buffers. */
  1293. ravb_ring_free(ndev, RAVB_BE);
  1294. ravb_ring_free(ndev, RAVB_NC);
  1295. return 0;
  1296. }
  1297. static int ravb_hwtstamp_get(struct net_device *ndev, struct ifreq *req)
  1298. {
  1299. struct ravb_private *priv = netdev_priv(ndev);
  1300. struct hwtstamp_config config;
  1301. config.flags = 0;
  1302. config.tx_type = priv->tstamp_tx_ctrl ? HWTSTAMP_TX_ON :
  1303. HWTSTAMP_TX_OFF;
  1304. if (priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE_V2_L2_EVENT)
  1305. config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
  1306. else if (priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE_ALL)
  1307. config.rx_filter = HWTSTAMP_FILTER_ALL;
  1308. else
  1309. config.rx_filter = HWTSTAMP_FILTER_NONE;
  1310. return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
  1311. -EFAULT : 0;
  1312. }
  1313. /* Control hardware time stamping */
  1314. static int ravb_hwtstamp_set(struct net_device *ndev, struct ifreq *req)
  1315. {
  1316. struct ravb_private *priv = netdev_priv(ndev);
  1317. struct hwtstamp_config config;
  1318. u32 tstamp_rx_ctrl = RAVB_RXTSTAMP_ENABLED;
  1319. u32 tstamp_tx_ctrl;
  1320. if (copy_from_user(&config, req->ifr_data, sizeof(config)))
  1321. return -EFAULT;
  1322. /* Reserved for future extensions */
  1323. if (config.flags)
  1324. return -EINVAL;
  1325. switch (config.tx_type) {
  1326. case HWTSTAMP_TX_OFF:
  1327. tstamp_tx_ctrl = 0;
  1328. break;
  1329. case HWTSTAMP_TX_ON:
  1330. tstamp_tx_ctrl = RAVB_TXTSTAMP_ENABLED;
  1331. break;
  1332. default:
  1333. return -ERANGE;
  1334. }
  1335. switch (config.rx_filter) {
  1336. case HWTSTAMP_FILTER_NONE:
  1337. tstamp_rx_ctrl = 0;
  1338. break;
  1339. case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
  1340. tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
  1341. break;
  1342. default:
  1343. config.rx_filter = HWTSTAMP_FILTER_ALL;
  1344. tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_ALL;
  1345. }
  1346. priv->tstamp_tx_ctrl = tstamp_tx_ctrl;
  1347. priv->tstamp_rx_ctrl = tstamp_rx_ctrl;
  1348. return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
  1349. -EFAULT : 0;
  1350. }
  1351. /* ioctl to device function */
  1352. static int ravb_do_ioctl(struct net_device *ndev, struct ifreq *req, int cmd)
  1353. {
  1354. struct ravb_private *priv = netdev_priv(ndev);
  1355. struct phy_device *phydev = priv->phydev;
  1356. if (!netif_running(ndev))
  1357. return -EINVAL;
  1358. if (!phydev)
  1359. return -ENODEV;
  1360. switch (cmd) {
  1361. case SIOCGHWTSTAMP:
  1362. return ravb_hwtstamp_get(ndev, req);
  1363. case SIOCSHWTSTAMP:
  1364. return ravb_hwtstamp_set(ndev, req);
  1365. }
  1366. return phy_mii_ioctl(phydev, req, cmd);
  1367. }
  1368. static const struct net_device_ops ravb_netdev_ops = {
  1369. .ndo_open = ravb_open,
  1370. .ndo_stop = ravb_close,
  1371. .ndo_start_xmit = ravb_start_xmit,
  1372. .ndo_select_queue = ravb_select_queue,
  1373. .ndo_get_stats = ravb_get_stats,
  1374. .ndo_set_rx_mode = ravb_set_rx_mode,
  1375. .ndo_tx_timeout = ravb_tx_timeout,
  1376. .ndo_do_ioctl = ravb_do_ioctl,
  1377. .ndo_validate_addr = eth_validate_addr,
  1378. .ndo_set_mac_address = eth_mac_addr,
  1379. .ndo_change_mtu = eth_change_mtu,
  1380. };
  1381. /* MDIO bus init function */
  1382. static int ravb_mdio_init(struct ravb_private *priv)
  1383. {
  1384. struct platform_device *pdev = priv->pdev;
  1385. struct device *dev = &pdev->dev;
  1386. int error;
  1387. /* Bitbang init */
  1388. priv->mdiobb.ops = &bb_ops;
  1389. /* MII controller setting */
  1390. priv->mii_bus = alloc_mdio_bitbang(&priv->mdiobb);
  1391. if (!priv->mii_bus)
  1392. return -ENOMEM;
  1393. /* Hook up MII support for ethtool */
  1394. priv->mii_bus->name = "ravb_mii";
  1395. priv->mii_bus->parent = dev;
  1396. snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
  1397. pdev->name, pdev->id);
  1398. /* Register MDIO bus */
  1399. error = of_mdiobus_register(priv->mii_bus, dev->of_node);
  1400. if (error)
  1401. goto out_free_bus;
  1402. return 0;
  1403. out_free_bus:
  1404. free_mdio_bitbang(priv->mii_bus);
  1405. return error;
  1406. }
  1407. /* MDIO bus release function */
  1408. static int ravb_mdio_release(struct ravb_private *priv)
  1409. {
  1410. /* Unregister mdio bus */
  1411. mdiobus_unregister(priv->mii_bus);
  1412. /* Free bitbang info */
  1413. free_mdio_bitbang(priv->mii_bus);
  1414. return 0;
  1415. }
  1416. static const struct of_device_id ravb_match_table[] = {
  1417. { .compatible = "renesas,etheravb-r8a7790", .data = (void *)RCAR_GEN2 },
  1418. { .compatible = "renesas,etheravb-r8a7794", .data = (void *)RCAR_GEN2 },
  1419. { .compatible = "renesas,etheravb-rcar-gen2", .data = (void *)RCAR_GEN2 },
  1420. { .compatible = "renesas,etheravb-r8a7795", .data = (void *)RCAR_GEN3 },
  1421. { .compatible = "renesas,etheravb-rcar-gen3", .data = (void *)RCAR_GEN3 },
  1422. { }
  1423. };
  1424. MODULE_DEVICE_TABLE(of, ravb_match_table);
  1425. static int ravb_set_gti(struct net_device *ndev)
  1426. {
  1427. struct device *dev = ndev->dev.parent;
  1428. struct device_node *np = dev->of_node;
  1429. unsigned long rate;
  1430. struct clk *clk;
  1431. uint64_t inc;
  1432. clk = of_clk_get(np, 0);
  1433. if (IS_ERR(clk)) {
  1434. dev_err(dev, "could not get clock\n");
  1435. return PTR_ERR(clk);
  1436. }
  1437. rate = clk_get_rate(clk);
  1438. clk_put(clk);
  1439. inc = 1000000000ULL << 20;
  1440. do_div(inc, rate);
  1441. if (inc < GTI_TIV_MIN || inc > GTI_TIV_MAX) {
  1442. dev_err(dev, "gti.tiv increment 0x%llx is outside the range 0x%x - 0x%x\n",
  1443. inc, GTI_TIV_MIN, GTI_TIV_MAX);
  1444. return -EINVAL;
  1445. }
  1446. ravb_write(ndev, inc, GTI);
  1447. return 0;
  1448. }
  1449. static int ravb_probe(struct platform_device *pdev)
  1450. {
  1451. struct device_node *np = pdev->dev.of_node;
  1452. const struct of_device_id *match;
  1453. struct ravb_private *priv;
  1454. enum ravb_chip_id chip_id;
  1455. struct net_device *ndev;
  1456. int error, irq, q;
  1457. struct resource *res;
  1458. if (!np) {
  1459. dev_err(&pdev->dev,
  1460. "this driver is required to be instantiated from device tree\n");
  1461. return -EINVAL;
  1462. }
  1463. /* Get base address */
  1464. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1465. if (!res) {
  1466. dev_err(&pdev->dev, "invalid resource\n");
  1467. return -EINVAL;
  1468. }
  1469. ndev = alloc_etherdev_mqs(sizeof(struct ravb_private),
  1470. NUM_TX_QUEUE, NUM_RX_QUEUE);
  1471. if (!ndev)
  1472. return -ENOMEM;
  1473. pm_runtime_enable(&pdev->dev);
  1474. pm_runtime_get_sync(&pdev->dev);
  1475. /* The Ether-specific entries in the device structure. */
  1476. ndev->base_addr = res->start;
  1477. ndev->dma = -1;
  1478. match = of_match_device(of_match_ptr(ravb_match_table), &pdev->dev);
  1479. chip_id = (enum ravb_chip_id)match->data;
  1480. if (chip_id == RCAR_GEN3)
  1481. irq = platform_get_irq_byname(pdev, "ch22");
  1482. else
  1483. irq = platform_get_irq(pdev, 0);
  1484. if (irq < 0) {
  1485. error = irq;
  1486. goto out_release;
  1487. }
  1488. ndev->irq = irq;
  1489. SET_NETDEV_DEV(ndev, &pdev->dev);
  1490. priv = netdev_priv(ndev);
  1491. priv->ndev = ndev;
  1492. priv->pdev = pdev;
  1493. priv->num_tx_ring[RAVB_BE] = BE_TX_RING_SIZE;
  1494. priv->num_rx_ring[RAVB_BE] = BE_RX_RING_SIZE;
  1495. priv->num_tx_ring[RAVB_NC] = NC_TX_RING_SIZE;
  1496. priv->num_rx_ring[RAVB_NC] = NC_RX_RING_SIZE;
  1497. priv->addr = devm_ioremap_resource(&pdev->dev, res);
  1498. if (IS_ERR(priv->addr)) {
  1499. error = PTR_ERR(priv->addr);
  1500. goto out_release;
  1501. }
  1502. spin_lock_init(&priv->lock);
  1503. INIT_WORK(&priv->work, ravb_tx_timeout_work);
  1504. priv->phy_interface = of_get_phy_mode(np);
  1505. priv->no_avb_link = of_property_read_bool(np, "renesas,no-ether-link");
  1506. priv->avb_link_active_low =
  1507. of_property_read_bool(np, "renesas,ether-link-active-low");
  1508. if (chip_id == RCAR_GEN3) {
  1509. irq = platform_get_irq_byname(pdev, "ch24");
  1510. if (irq < 0) {
  1511. error = irq;
  1512. goto out_release;
  1513. }
  1514. priv->emac_irq = irq;
  1515. }
  1516. priv->chip_id = chip_id;
  1517. /* Set function */
  1518. ndev->netdev_ops = &ravb_netdev_ops;
  1519. ndev->ethtool_ops = &ravb_ethtool_ops;
  1520. /* Set AVB config mode */
  1521. if (chip_id == RCAR_GEN2) {
  1522. ravb_write(ndev, (ravb_read(ndev, CCC) & ~CCC_OPC) |
  1523. CCC_OPC_CONFIG, CCC);
  1524. /* Set CSEL value */
  1525. ravb_write(ndev, (ravb_read(ndev, CCC) & ~CCC_CSEL) |
  1526. CCC_CSEL_HPB, CCC);
  1527. } else {
  1528. ravb_write(ndev, (ravb_read(ndev, CCC) & ~CCC_OPC) |
  1529. CCC_OPC_CONFIG | CCC_GAC | CCC_CSEL_HPB, CCC);
  1530. }
  1531. /* Set CSEL value */
  1532. ravb_write(ndev, (ravb_read(ndev, CCC) & ~CCC_CSEL) | CCC_CSEL_HPB,
  1533. CCC);
  1534. /* Set GTI value */
  1535. error = ravb_set_gti(ndev);
  1536. if (error)
  1537. goto out_release;
  1538. /* Request GTI loading */
  1539. ravb_write(ndev, ravb_read(ndev, GCCR) | GCCR_LTI, GCCR);
  1540. /* Allocate descriptor base address table */
  1541. priv->desc_bat_size = sizeof(struct ravb_desc) * DBAT_ENTRY_NUM;
  1542. priv->desc_bat = dma_alloc_coherent(ndev->dev.parent, priv->desc_bat_size,
  1543. &priv->desc_bat_dma, GFP_KERNEL);
  1544. if (!priv->desc_bat) {
  1545. dev_err(&pdev->dev,
  1546. "Cannot allocate desc base address table (size %d bytes)\n",
  1547. priv->desc_bat_size);
  1548. error = -ENOMEM;
  1549. goto out_release;
  1550. }
  1551. for (q = RAVB_BE; q < DBAT_ENTRY_NUM; q++)
  1552. priv->desc_bat[q].die_dt = DT_EOS;
  1553. ravb_write(ndev, priv->desc_bat_dma, DBAT);
  1554. /* Initialise HW timestamp list */
  1555. INIT_LIST_HEAD(&priv->ts_skb_list);
  1556. /* Initialise PTP Clock driver */
  1557. if (chip_id != RCAR_GEN2)
  1558. ravb_ptp_init(ndev, pdev);
  1559. /* Debug message level */
  1560. priv->msg_enable = RAVB_DEF_MSG_ENABLE;
  1561. /* Read and set MAC address */
  1562. ravb_read_mac_address(ndev, of_get_mac_address(np));
  1563. if (!is_valid_ether_addr(ndev->dev_addr)) {
  1564. dev_warn(&pdev->dev,
  1565. "no valid MAC address supplied, using a random one\n");
  1566. eth_hw_addr_random(ndev);
  1567. }
  1568. /* MDIO bus init */
  1569. error = ravb_mdio_init(priv);
  1570. if (error) {
  1571. dev_err(&pdev->dev, "failed to initialize MDIO\n");
  1572. goto out_dma_free;
  1573. }
  1574. netif_napi_add(ndev, &priv->napi[RAVB_BE], ravb_poll, 64);
  1575. netif_napi_add(ndev, &priv->napi[RAVB_NC], ravb_poll, 64);
  1576. /* Network device register */
  1577. error = register_netdev(ndev);
  1578. if (error)
  1579. goto out_napi_del;
  1580. /* Print device information */
  1581. netdev_info(ndev, "Base address at %#x, %pM, IRQ %d.\n",
  1582. (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
  1583. platform_set_drvdata(pdev, ndev);
  1584. return 0;
  1585. out_napi_del:
  1586. netif_napi_del(&priv->napi[RAVB_NC]);
  1587. netif_napi_del(&priv->napi[RAVB_BE]);
  1588. ravb_mdio_release(priv);
  1589. out_dma_free:
  1590. dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
  1591. priv->desc_bat_dma);
  1592. /* Stop PTP Clock driver */
  1593. if (chip_id != RCAR_GEN2)
  1594. ravb_ptp_stop(ndev);
  1595. out_release:
  1596. if (ndev)
  1597. free_netdev(ndev);
  1598. pm_runtime_put(&pdev->dev);
  1599. pm_runtime_disable(&pdev->dev);
  1600. return error;
  1601. }
  1602. static int ravb_remove(struct platform_device *pdev)
  1603. {
  1604. struct net_device *ndev = platform_get_drvdata(pdev);
  1605. struct ravb_private *priv = netdev_priv(ndev);
  1606. /* Stop PTP Clock driver */
  1607. if (priv->chip_id != RCAR_GEN2)
  1608. ravb_ptp_stop(ndev);
  1609. dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
  1610. priv->desc_bat_dma);
  1611. /* Set reset mode */
  1612. ravb_write(ndev, CCC_OPC_RESET, CCC);
  1613. pm_runtime_put_sync(&pdev->dev);
  1614. unregister_netdev(ndev);
  1615. netif_napi_del(&priv->napi[RAVB_NC]);
  1616. netif_napi_del(&priv->napi[RAVB_BE]);
  1617. ravb_mdio_release(priv);
  1618. pm_runtime_disable(&pdev->dev);
  1619. free_netdev(ndev);
  1620. platform_set_drvdata(pdev, NULL);
  1621. return 0;
  1622. }
  1623. #ifdef CONFIG_PM
  1624. static int ravb_runtime_nop(struct device *dev)
  1625. {
  1626. /* Runtime PM callback shared between ->runtime_suspend()
  1627. * and ->runtime_resume(). Simply returns success.
  1628. *
  1629. * This driver re-initializes all registers after
  1630. * pm_runtime_get_sync() anyway so there is no need
  1631. * to save and restore registers here.
  1632. */
  1633. return 0;
  1634. }
  1635. static const struct dev_pm_ops ravb_dev_pm_ops = {
  1636. .runtime_suspend = ravb_runtime_nop,
  1637. .runtime_resume = ravb_runtime_nop,
  1638. };
  1639. #define RAVB_PM_OPS (&ravb_dev_pm_ops)
  1640. #else
  1641. #define RAVB_PM_OPS NULL
  1642. #endif
  1643. static struct platform_driver ravb_driver = {
  1644. .probe = ravb_probe,
  1645. .remove = ravb_remove,
  1646. .driver = {
  1647. .name = "ravb",
  1648. .pm = RAVB_PM_OPS,
  1649. .of_match_table = ravb_match_table,
  1650. },
  1651. };
  1652. module_platform_driver(ravb_driver);
  1653. MODULE_AUTHOR("Mitsuhiro Kimura, Masaru Nagai");
  1654. MODULE_DESCRIPTION("Renesas Ethernet AVB driver");
  1655. MODULE_LICENSE("GPL v2");