memory.c 106 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916
  1. /*
  2. * linux/mm/memory.c
  3. *
  4. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  5. */
  6. /*
  7. * demand-loading started 01.12.91 - seems it is high on the list of
  8. * things wanted, and it should be easy to implement. - Linus
  9. */
  10. /*
  11. * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
  12. * pages started 02.12.91, seems to work. - Linus.
  13. *
  14. * Tested sharing by executing about 30 /bin/sh: under the old kernel it
  15. * would have taken more than the 6M I have free, but it worked well as
  16. * far as I could see.
  17. *
  18. * Also corrected some "invalidate()"s - I wasn't doing enough of them.
  19. */
  20. /*
  21. * Real VM (paging to/from disk) started 18.12.91. Much more work and
  22. * thought has to go into this. Oh, well..
  23. * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
  24. * Found it. Everything seems to work now.
  25. * 20.12.91 - Ok, making the swap-device changeable like the root.
  26. */
  27. /*
  28. * 05.04.94 - Multi-page memory management added for v1.1.
  29. * Idea by Alex Bligh (alex@cconcepts.co.uk)
  30. *
  31. * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
  32. * (Gerhard.Wichert@pdb.siemens.de)
  33. *
  34. * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
  35. */
  36. #include <linux/kernel_stat.h>
  37. #include <linux/mm.h>
  38. #include <linux/hugetlb.h>
  39. #include <linux/mman.h>
  40. #include <linux/swap.h>
  41. #include <linux/highmem.h>
  42. #include <linux/pagemap.h>
  43. #include <linux/ksm.h>
  44. #include <linux/rmap.h>
  45. #include <linux/export.h>
  46. #include <linux/delayacct.h>
  47. #include <linux/init.h>
  48. #include <linux/pfn_t.h>
  49. #include <linux/writeback.h>
  50. #include <linux/memcontrol.h>
  51. #include <linux/mmu_notifier.h>
  52. #include <linux/kallsyms.h>
  53. #include <linux/swapops.h>
  54. #include <linux/elf.h>
  55. #include <linux/gfp.h>
  56. #include <linux/migrate.h>
  57. #include <linux/string.h>
  58. #include <linux/dma-debug.h>
  59. #include <linux/debugfs.h>
  60. #include <linux/userfaultfd_k.h>
  61. #include <asm/io.h>
  62. #include <asm/pgalloc.h>
  63. #include <asm/uaccess.h>
  64. #include <asm/tlb.h>
  65. #include <asm/tlbflush.h>
  66. #include <asm/pgtable.h>
  67. #include "internal.h"
  68. #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
  69. #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
  70. #endif
  71. #ifndef CONFIG_NEED_MULTIPLE_NODES
  72. /* use the per-pgdat data instead for discontigmem - mbligh */
  73. unsigned long max_mapnr;
  74. struct page *mem_map;
  75. EXPORT_SYMBOL(max_mapnr);
  76. EXPORT_SYMBOL(mem_map);
  77. #endif
  78. /*
  79. * A number of key systems in x86 including ioremap() rely on the assumption
  80. * that high_memory defines the upper bound on direct map memory, then end
  81. * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
  82. * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
  83. * and ZONE_HIGHMEM.
  84. */
  85. void * high_memory;
  86. EXPORT_SYMBOL(high_memory);
  87. /*
  88. * Randomize the address space (stacks, mmaps, brk, etc.).
  89. *
  90. * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
  91. * as ancient (libc5 based) binaries can segfault. )
  92. */
  93. int randomize_va_space __read_mostly =
  94. #ifdef CONFIG_COMPAT_BRK
  95. 1;
  96. #else
  97. 2;
  98. #endif
  99. static int __init disable_randmaps(char *s)
  100. {
  101. randomize_va_space = 0;
  102. return 1;
  103. }
  104. __setup("norandmaps", disable_randmaps);
  105. unsigned long zero_pfn __read_mostly;
  106. unsigned long highest_memmap_pfn __read_mostly;
  107. EXPORT_SYMBOL(zero_pfn);
  108. /*
  109. * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
  110. */
  111. static int __init init_zero_pfn(void)
  112. {
  113. zero_pfn = page_to_pfn(ZERO_PAGE(0));
  114. return 0;
  115. }
  116. core_initcall(init_zero_pfn);
  117. #if defined(SPLIT_RSS_COUNTING)
  118. void sync_mm_rss(struct mm_struct *mm)
  119. {
  120. int i;
  121. for (i = 0; i < NR_MM_COUNTERS; i++) {
  122. if (current->rss_stat.count[i]) {
  123. add_mm_counter(mm, i, current->rss_stat.count[i]);
  124. current->rss_stat.count[i] = 0;
  125. }
  126. }
  127. current->rss_stat.events = 0;
  128. }
  129. static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
  130. {
  131. struct task_struct *task = current;
  132. if (likely(task->mm == mm))
  133. task->rss_stat.count[member] += val;
  134. else
  135. add_mm_counter(mm, member, val);
  136. }
  137. #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
  138. #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
  139. /* sync counter once per 64 page faults */
  140. #define TASK_RSS_EVENTS_THRESH (64)
  141. static void check_sync_rss_stat(struct task_struct *task)
  142. {
  143. if (unlikely(task != current))
  144. return;
  145. if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
  146. sync_mm_rss(task->mm);
  147. }
  148. #else /* SPLIT_RSS_COUNTING */
  149. #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
  150. #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
  151. static void check_sync_rss_stat(struct task_struct *task)
  152. {
  153. }
  154. #endif /* SPLIT_RSS_COUNTING */
  155. #ifdef HAVE_GENERIC_MMU_GATHER
  156. static bool tlb_next_batch(struct mmu_gather *tlb)
  157. {
  158. struct mmu_gather_batch *batch;
  159. batch = tlb->active;
  160. if (batch->next) {
  161. tlb->active = batch->next;
  162. return true;
  163. }
  164. if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
  165. return false;
  166. batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
  167. if (!batch)
  168. return false;
  169. tlb->batch_count++;
  170. batch->next = NULL;
  171. batch->nr = 0;
  172. batch->max = MAX_GATHER_BATCH;
  173. tlb->active->next = batch;
  174. tlb->active = batch;
  175. return true;
  176. }
  177. /* tlb_gather_mmu
  178. * Called to initialize an (on-stack) mmu_gather structure for page-table
  179. * tear-down from @mm. The @fullmm argument is used when @mm is without
  180. * users and we're going to destroy the full address space (exit/execve).
  181. */
  182. void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
  183. {
  184. tlb->mm = mm;
  185. /* Is it from 0 to ~0? */
  186. tlb->fullmm = !(start | (end+1));
  187. tlb->need_flush_all = 0;
  188. tlb->local.next = NULL;
  189. tlb->local.nr = 0;
  190. tlb->local.max = ARRAY_SIZE(tlb->__pages);
  191. tlb->active = &tlb->local;
  192. tlb->batch_count = 0;
  193. #ifdef CONFIG_HAVE_RCU_TABLE_FREE
  194. tlb->batch = NULL;
  195. #endif
  196. __tlb_reset_range(tlb);
  197. }
  198. static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
  199. {
  200. if (!tlb->end)
  201. return;
  202. tlb_flush(tlb);
  203. mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
  204. #ifdef CONFIG_HAVE_RCU_TABLE_FREE
  205. tlb_table_flush(tlb);
  206. #endif
  207. __tlb_reset_range(tlb);
  208. }
  209. static void tlb_flush_mmu_free(struct mmu_gather *tlb)
  210. {
  211. struct mmu_gather_batch *batch;
  212. for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
  213. free_pages_and_swap_cache(batch->pages, batch->nr);
  214. batch->nr = 0;
  215. }
  216. tlb->active = &tlb->local;
  217. }
  218. void tlb_flush_mmu(struct mmu_gather *tlb)
  219. {
  220. tlb_flush_mmu_tlbonly(tlb);
  221. tlb_flush_mmu_free(tlb);
  222. }
  223. /* tlb_finish_mmu
  224. * Called at the end of the shootdown operation to free up any resources
  225. * that were required.
  226. */
  227. void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
  228. {
  229. struct mmu_gather_batch *batch, *next;
  230. tlb_flush_mmu(tlb);
  231. /* keep the page table cache within bounds */
  232. check_pgt_cache();
  233. for (batch = tlb->local.next; batch; batch = next) {
  234. next = batch->next;
  235. free_pages((unsigned long)batch, 0);
  236. }
  237. tlb->local.next = NULL;
  238. }
  239. /* __tlb_remove_page
  240. * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
  241. * handling the additional races in SMP caused by other CPUs caching valid
  242. * mappings in their TLBs. Returns the number of free page slots left.
  243. * When out of page slots we must call tlb_flush_mmu().
  244. */
  245. int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
  246. {
  247. struct mmu_gather_batch *batch;
  248. VM_BUG_ON(!tlb->end);
  249. batch = tlb->active;
  250. batch->pages[batch->nr++] = page;
  251. if (batch->nr == batch->max) {
  252. if (!tlb_next_batch(tlb))
  253. return 0;
  254. batch = tlb->active;
  255. }
  256. VM_BUG_ON_PAGE(batch->nr > batch->max, page);
  257. return batch->max - batch->nr;
  258. }
  259. #endif /* HAVE_GENERIC_MMU_GATHER */
  260. #ifdef CONFIG_HAVE_RCU_TABLE_FREE
  261. /*
  262. * See the comment near struct mmu_table_batch.
  263. */
  264. static void tlb_remove_table_smp_sync(void *arg)
  265. {
  266. /* Simply deliver the interrupt */
  267. }
  268. static void tlb_remove_table_one(void *table)
  269. {
  270. /*
  271. * This isn't an RCU grace period and hence the page-tables cannot be
  272. * assumed to be actually RCU-freed.
  273. *
  274. * It is however sufficient for software page-table walkers that rely on
  275. * IRQ disabling. See the comment near struct mmu_table_batch.
  276. */
  277. smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
  278. __tlb_remove_table(table);
  279. }
  280. static void tlb_remove_table_rcu(struct rcu_head *head)
  281. {
  282. struct mmu_table_batch *batch;
  283. int i;
  284. batch = container_of(head, struct mmu_table_batch, rcu);
  285. for (i = 0; i < batch->nr; i++)
  286. __tlb_remove_table(batch->tables[i]);
  287. free_page((unsigned long)batch);
  288. }
  289. void tlb_table_flush(struct mmu_gather *tlb)
  290. {
  291. struct mmu_table_batch **batch = &tlb->batch;
  292. if (*batch) {
  293. call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
  294. *batch = NULL;
  295. }
  296. }
  297. void tlb_remove_table(struct mmu_gather *tlb, void *table)
  298. {
  299. struct mmu_table_batch **batch = &tlb->batch;
  300. /*
  301. * When there's less then two users of this mm there cannot be a
  302. * concurrent page-table walk.
  303. */
  304. if (atomic_read(&tlb->mm->mm_users) < 2) {
  305. __tlb_remove_table(table);
  306. return;
  307. }
  308. if (*batch == NULL) {
  309. *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
  310. if (*batch == NULL) {
  311. tlb_remove_table_one(table);
  312. return;
  313. }
  314. (*batch)->nr = 0;
  315. }
  316. (*batch)->tables[(*batch)->nr++] = table;
  317. if ((*batch)->nr == MAX_TABLE_BATCH)
  318. tlb_table_flush(tlb);
  319. }
  320. #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
  321. /*
  322. * Note: this doesn't free the actual pages themselves. That
  323. * has been handled earlier when unmapping all the memory regions.
  324. */
  325. static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
  326. unsigned long addr)
  327. {
  328. pgtable_t token = pmd_pgtable(*pmd);
  329. pmd_clear(pmd);
  330. pte_free_tlb(tlb, token, addr);
  331. atomic_long_dec(&tlb->mm->nr_ptes);
  332. }
  333. static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
  334. unsigned long addr, unsigned long end,
  335. unsigned long floor, unsigned long ceiling)
  336. {
  337. pmd_t *pmd;
  338. unsigned long next;
  339. unsigned long start;
  340. start = addr;
  341. pmd = pmd_offset(pud, addr);
  342. do {
  343. next = pmd_addr_end(addr, end);
  344. if (pmd_none_or_clear_bad(pmd))
  345. continue;
  346. free_pte_range(tlb, pmd, addr);
  347. } while (pmd++, addr = next, addr != end);
  348. start &= PUD_MASK;
  349. if (start < floor)
  350. return;
  351. if (ceiling) {
  352. ceiling &= PUD_MASK;
  353. if (!ceiling)
  354. return;
  355. }
  356. if (end - 1 > ceiling - 1)
  357. return;
  358. pmd = pmd_offset(pud, start);
  359. pud_clear(pud);
  360. pmd_free_tlb(tlb, pmd, start);
  361. mm_dec_nr_pmds(tlb->mm);
  362. }
  363. static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
  364. unsigned long addr, unsigned long end,
  365. unsigned long floor, unsigned long ceiling)
  366. {
  367. pud_t *pud;
  368. unsigned long next;
  369. unsigned long start;
  370. start = addr;
  371. pud = pud_offset(pgd, addr);
  372. do {
  373. next = pud_addr_end(addr, end);
  374. if (pud_none_or_clear_bad(pud))
  375. continue;
  376. free_pmd_range(tlb, pud, addr, next, floor, ceiling);
  377. } while (pud++, addr = next, addr != end);
  378. start &= PGDIR_MASK;
  379. if (start < floor)
  380. return;
  381. if (ceiling) {
  382. ceiling &= PGDIR_MASK;
  383. if (!ceiling)
  384. return;
  385. }
  386. if (end - 1 > ceiling - 1)
  387. return;
  388. pud = pud_offset(pgd, start);
  389. pgd_clear(pgd);
  390. pud_free_tlb(tlb, pud, start);
  391. }
  392. /*
  393. * This function frees user-level page tables of a process.
  394. */
  395. void free_pgd_range(struct mmu_gather *tlb,
  396. unsigned long addr, unsigned long end,
  397. unsigned long floor, unsigned long ceiling)
  398. {
  399. pgd_t *pgd;
  400. unsigned long next;
  401. /*
  402. * The next few lines have given us lots of grief...
  403. *
  404. * Why are we testing PMD* at this top level? Because often
  405. * there will be no work to do at all, and we'd prefer not to
  406. * go all the way down to the bottom just to discover that.
  407. *
  408. * Why all these "- 1"s? Because 0 represents both the bottom
  409. * of the address space and the top of it (using -1 for the
  410. * top wouldn't help much: the masks would do the wrong thing).
  411. * The rule is that addr 0 and floor 0 refer to the bottom of
  412. * the address space, but end 0 and ceiling 0 refer to the top
  413. * Comparisons need to use "end - 1" and "ceiling - 1" (though
  414. * that end 0 case should be mythical).
  415. *
  416. * Wherever addr is brought up or ceiling brought down, we must
  417. * be careful to reject "the opposite 0" before it confuses the
  418. * subsequent tests. But what about where end is brought down
  419. * by PMD_SIZE below? no, end can't go down to 0 there.
  420. *
  421. * Whereas we round start (addr) and ceiling down, by different
  422. * masks at different levels, in order to test whether a table
  423. * now has no other vmas using it, so can be freed, we don't
  424. * bother to round floor or end up - the tests don't need that.
  425. */
  426. addr &= PMD_MASK;
  427. if (addr < floor) {
  428. addr += PMD_SIZE;
  429. if (!addr)
  430. return;
  431. }
  432. if (ceiling) {
  433. ceiling &= PMD_MASK;
  434. if (!ceiling)
  435. return;
  436. }
  437. if (end - 1 > ceiling - 1)
  438. end -= PMD_SIZE;
  439. if (addr > end - 1)
  440. return;
  441. pgd = pgd_offset(tlb->mm, addr);
  442. do {
  443. next = pgd_addr_end(addr, end);
  444. if (pgd_none_or_clear_bad(pgd))
  445. continue;
  446. free_pud_range(tlb, pgd, addr, next, floor, ceiling);
  447. } while (pgd++, addr = next, addr != end);
  448. }
  449. void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
  450. unsigned long floor, unsigned long ceiling)
  451. {
  452. while (vma) {
  453. struct vm_area_struct *next = vma->vm_next;
  454. unsigned long addr = vma->vm_start;
  455. /*
  456. * Hide vma from rmap and truncate_pagecache before freeing
  457. * pgtables
  458. */
  459. unlink_anon_vmas(vma);
  460. unlink_file_vma(vma);
  461. if (is_vm_hugetlb_page(vma)) {
  462. hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
  463. floor, next? next->vm_start: ceiling);
  464. } else {
  465. /*
  466. * Optimization: gather nearby vmas into one call down
  467. */
  468. while (next && next->vm_start <= vma->vm_end + PMD_SIZE
  469. && !is_vm_hugetlb_page(next)) {
  470. vma = next;
  471. next = vma->vm_next;
  472. unlink_anon_vmas(vma);
  473. unlink_file_vma(vma);
  474. }
  475. free_pgd_range(tlb, addr, vma->vm_end,
  476. floor, next? next->vm_start: ceiling);
  477. }
  478. vma = next;
  479. }
  480. }
  481. int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
  482. pmd_t *pmd, unsigned long address)
  483. {
  484. spinlock_t *ptl;
  485. pgtable_t new = pte_alloc_one(mm, address);
  486. if (!new)
  487. return -ENOMEM;
  488. /*
  489. * Ensure all pte setup (eg. pte page lock and page clearing) are
  490. * visible before the pte is made visible to other CPUs by being
  491. * put into page tables.
  492. *
  493. * The other side of the story is the pointer chasing in the page
  494. * table walking code (when walking the page table without locking;
  495. * ie. most of the time). Fortunately, these data accesses consist
  496. * of a chain of data-dependent loads, meaning most CPUs (alpha
  497. * being the notable exception) will already guarantee loads are
  498. * seen in-order. See the alpha page table accessors for the
  499. * smp_read_barrier_depends() barriers in page table walking code.
  500. */
  501. smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
  502. ptl = pmd_lock(mm, pmd);
  503. if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
  504. atomic_long_inc(&mm->nr_ptes);
  505. pmd_populate(mm, pmd, new);
  506. new = NULL;
  507. }
  508. spin_unlock(ptl);
  509. if (new)
  510. pte_free(mm, new);
  511. return 0;
  512. }
  513. int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
  514. {
  515. pte_t *new = pte_alloc_one_kernel(&init_mm, address);
  516. if (!new)
  517. return -ENOMEM;
  518. smp_wmb(); /* See comment in __pte_alloc */
  519. spin_lock(&init_mm.page_table_lock);
  520. if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
  521. pmd_populate_kernel(&init_mm, pmd, new);
  522. new = NULL;
  523. }
  524. spin_unlock(&init_mm.page_table_lock);
  525. if (new)
  526. pte_free_kernel(&init_mm, new);
  527. return 0;
  528. }
  529. static inline void init_rss_vec(int *rss)
  530. {
  531. memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
  532. }
  533. static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
  534. {
  535. int i;
  536. if (current->mm == mm)
  537. sync_mm_rss(mm);
  538. for (i = 0; i < NR_MM_COUNTERS; i++)
  539. if (rss[i])
  540. add_mm_counter(mm, i, rss[i]);
  541. }
  542. /*
  543. * This function is called to print an error when a bad pte
  544. * is found. For example, we might have a PFN-mapped pte in
  545. * a region that doesn't allow it.
  546. *
  547. * The calling function must still handle the error.
  548. */
  549. static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
  550. pte_t pte, struct page *page)
  551. {
  552. pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
  553. pud_t *pud = pud_offset(pgd, addr);
  554. pmd_t *pmd = pmd_offset(pud, addr);
  555. struct address_space *mapping;
  556. pgoff_t index;
  557. static unsigned long resume;
  558. static unsigned long nr_shown;
  559. static unsigned long nr_unshown;
  560. /*
  561. * Allow a burst of 60 reports, then keep quiet for that minute;
  562. * or allow a steady drip of one report per second.
  563. */
  564. if (nr_shown == 60) {
  565. if (time_before(jiffies, resume)) {
  566. nr_unshown++;
  567. return;
  568. }
  569. if (nr_unshown) {
  570. printk(KERN_ALERT
  571. "BUG: Bad page map: %lu messages suppressed\n",
  572. nr_unshown);
  573. nr_unshown = 0;
  574. }
  575. nr_shown = 0;
  576. }
  577. if (nr_shown++ == 0)
  578. resume = jiffies + 60 * HZ;
  579. mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
  580. index = linear_page_index(vma, addr);
  581. printk(KERN_ALERT
  582. "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
  583. current->comm,
  584. (long long)pte_val(pte), (long long)pmd_val(*pmd));
  585. if (page)
  586. dump_page(page, "bad pte");
  587. printk(KERN_ALERT
  588. "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
  589. (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
  590. /*
  591. * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
  592. */
  593. pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
  594. vma->vm_file,
  595. vma->vm_ops ? vma->vm_ops->fault : NULL,
  596. vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
  597. mapping ? mapping->a_ops->readpage : NULL);
  598. dump_stack();
  599. add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
  600. }
  601. /*
  602. * vm_normal_page -- This function gets the "struct page" associated with a pte.
  603. *
  604. * "Special" mappings do not wish to be associated with a "struct page" (either
  605. * it doesn't exist, or it exists but they don't want to touch it). In this
  606. * case, NULL is returned here. "Normal" mappings do have a struct page.
  607. *
  608. * There are 2 broad cases. Firstly, an architecture may define a pte_special()
  609. * pte bit, in which case this function is trivial. Secondly, an architecture
  610. * may not have a spare pte bit, which requires a more complicated scheme,
  611. * described below.
  612. *
  613. * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
  614. * special mapping (even if there are underlying and valid "struct pages").
  615. * COWed pages of a VM_PFNMAP are always normal.
  616. *
  617. * The way we recognize COWed pages within VM_PFNMAP mappings is through the
  618. * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
  619. * set, and the vm_pgoff will point to the first PFN mapped: thus every special
  620. * mapping will always honor the rule
  621. *
  622. * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
  623. *
  624. * And for normal mappings this is false.
  625. *
  626. * This restricts such mappings to be a linear translation from virtual address
  627. * to pfn. To get around this restriction, we allow arbitrary mappings so long
  628. * as the vma is not a COW mapping; in that case, we know that all ptes are
  629. * special (because none can have been COWed).
  630. *
  631. *
  632. * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
  633. *
  634. * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
  635. * page" backing, however the difference is that _all_ pages with a struct
  636. * page (that is, those where pfn_valid is true) are refcounted and considered
  637. * normal pages by the VM. The disadvantage is that pages are refcounted
  638. * (which can be slower and simply not an option for some PFNMAP users). The
  639. * advantage is that we don't have to follow the strict linearity rule of
  640. * PFNMAP mappings in order to support COWable mappings.
  641. *
  642. */
  643. #ifdef __HAVE_ARCH_PTE_SPECIAL
  644. # define HAVE_PTE_SPECIAL 1
  645. #else
  646. # define HAVE_PTE_SPECIAL 0
  647. #endif
  648. struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
  649. pte_t pte)
  650. {
  651. unsigned long pfn = pte_pfn(pte);
  652. if (HAVE_PTE_SPECIAL) {
  653. if (likely(!pte_special(pte)))
  654. goto check_pfn;
  655. if (vma->vm_ops && vma->vm_ops->find_special_page)
  656. return vma->vm_ops->find_special_page(vma, addr);
  657. if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
  658. return NULL;
  659. if (!is_zero_pfn(pfn))
  660. print_bad_pte(vma, addr, pte, NULL);
  661. return NULL;
  662. }
  663. /* !HAVE_PTE_SPECIAL case follows: */
  664. if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
  665. if (vma->vm_flags & VM_MIXEDMAP) {
  666. if (!pfn_valid(pfn))
  667. return NULL;
  668. goto out;
  669. } else {
  670. unsigned long off;
  671. off = (addr - vma->vm_start) >> PAGE_SHIFT;
  672. if (pfn == vma->vm_pgoff + off)
  673. return NULL;
  674. if (!is_cow_mapping(vma->vm_flags))
  675. return NULL;
  676. }
  677. }
  678. if (is_zero_pfn(pfn))
  679. return NULL;
  680. check_pfn:
  681. if (unlikely(pfn > highest_memmap_pfn)) {
  682. print_bad_pte(vma, addr, pte, NULL);
  683. return NULL;
  684. }
  685. /*
  686. * NOTE! We still have PageReserved() pages in the page tables.
  687. * eg. VDSO mappings can cause them to exist.
  688. */
  689. out:
  690. return pfn_to_page(pfn);
  691. }
  692. /*
  693. * copy one vm_area from one task to the other. Assumes the page tables
  694. * already present in the new task to be cleared in the whole range
  695. * covered by this vma.
  696. */
  697. static inline unsigned long
  698. copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  699. pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
  700. unsigned long addr, int *rss)
  701. {
  702. unsigned long vm_flags = vma->vm_flags;
  703. pte_t pte = *src_pte;
  704. struct page *page;
  705. /* pte contains position in swap or file, so copy. */
  706. if (unlikely(!pte_present(pte))) {
  707. swp_entry_t entry = pte_to_swp_entry(pte);
  708. if (likely(!non_swap_entry(entry))) {
  709. if (swap_duplicate(entry) < 0)
  710. return entry.val;
  711. /* make sure dst_mm is on swapoff's mmlist. */
  712. if (unlikely(list_empty(&dst_mm->mmlist))) {
  713. spin_lock(&mmlist_lock);
  714. if (list_empty(&dst_mm->mmlist))
  715. list_add(&dst_mm->mmlist,
  716. &src_mm->mmlist);
  717. spin_unlock(&mmlist_lock);
  718. }
  719. rss[MM_SWAPENTS]++;
  720. } else if (is_migration_entry(entry)) {
  721. page = migration_entry_to_page(entry);
  722. rss[mm_counter(page)]++;
  723. if (is_write_migration_entry(entry) &&
  724. is_cow_mapping(vm_flags)) {
  725. /*
  726. * COW mappings require pages in both
  727. * parent and child to be set to read.
  728. */
  729. make_migration_entry_read(&entry);
  730. pte = swp_entry_to_pte(entry);
  731. if (pte_swp_soft_dirty(*src_pte))
  732. pte = pte_swp_mksoft_dirty(pte);
  733. set_pte_at(src_mm, addr, src_pte, pte);
  734. }
  735. }
  736. goto out_set_pte;
  737. }
  738. /*
  739. * If it's a COW mapping, write protect it both
  740. * in the parent and the child
  741. */
  742. if (is_cow_mapping(vm_flags)) {
  743. ptep_set_wrprotect(src_mm, addr, src_pte);
  744. pte = pte_wrprotect(pte);
  745. }
  746. /*
  747. * If it's a shared mapping, mark it clean in
  748. * the child
  749. */
  750. if (vm_flags & VM_SHARED)
  751. pte = pte_mkclean(pte);
  752. pte = pte_mkold(pte);
  753. page = vm_normal_page(vma, addr, pte);
  754. if (page) {
  755. get_page(page);
  756. page_dup_rmap(page, false);
  757. rss[mm_counter(page)]++;
  758. }
  759. out_set_pte:
  760. set_pte_at(dst_mm, addr, dst_pte, pte);
  761. return 0;
  762. }
  763. static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  764. pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
  765. unsigned long addr, unsigned long end)
  766. {
  767. pte_t *orig_src_pte, *orig_dst_pte;
  768. pte_t *src_pte, *dst_pte;
  769. spinlock_t *src_ptl, *dst_ptl;
  770. int progress = 0;
  771. int rss[NR_MM_COUNTERS];
  772. swp_entry_t entry = (swp_entry_t){0};
  773. again:
  774. init_rss_vec(rss);
  775. dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
  776. if (!dst_pte)
  777. return -ENOMEM;
  778. src_pte = pte_offset_map(src_pmd, addr);
  779. src_ptl = pte_lockptr(src_mm, src_pmd);
  780. spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
  781. orig_src_pte = src_pte;
  782. orig_dst_pte = dst_pte;
  783. arch_enter_lazy_mmu_mode();
  784. do {
  785. /*
  786. * We are holding two locks at this point - either of them
  787. * could generate latencies in another task on another CPU.
  788. */
  789. if (progress >= 32) {
  790. progress = 0;
  791. if (need_resched() ||
  792. spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
  793. break;
  794. }
  795. if (pte_none(*src_pte)) {
  796. progress++;
  797. continue;
  798. }
  799. entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
  800. vma, addr, rss);
  801. if (entry.val)
  802. break;
  803. progress += 8;
  804. } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
  805. arch_leave_lazy_mmu_mode();
  806. spin_unlock(src_ptl);
  807. pte_unmap(orig_src_pte);
  808. add_mm_rss_vec(dst_mm, rss);
  809. pte_unmap_unlock(orig_dst_pte, dst_ptl);
  810. cond_resched();
  811. if (entry.val) {
  812. if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
  813. return -ENOMEM;
  814. progress = 0;
  815. }
  816. if (addr != end)
  817. goto again;
  818. return 0;
  819. }
  820. static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  821. pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
  822. unsigned long addr, unsigned long end)
  823. {
  824. pmd_t *src_pmd, *dst_pmd;
  825. unsigned long next;
  826. dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
  827. if (!dst_pmd)
  828. return -ENOMEM;
  829. src_pmd = pmd_offset(src_pud, addr);
  830. do {
  831. next = pmd_addr_end(addr, end);
  832. if (pmd_trans_huge(*src_pmd) || pmd_devmap(*src_pmd)) {
  833. int err;
  834. VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
  835. err = copy_huge_pmd(dst_mm, src_mm,
  836. dst_pmd, src_pmd, addr, vma);
  837. if (err == -ENOMEM)
  838. return -ENOMEM;
  839. if (!err)
  840. continue;
  841. /* fall through */
  842. }
  843. if (pmd_none_or_clear_bad(src_pmd))
  844. continue;
  845. if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
  846. vma, addr, next))
  847. return -ENOMEM;
  848. } while (dst_pmd++, src_pmd++, addr = next, addr != end);
  849. return 0;
  850. }
  851. static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  852. pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
  853. unsigned long addr, unsigned long end)
  854. {
  855. pud_t *src_pud, *dst_pud;
  856. unsigned long next;
  857. dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
  858. if (!dst_pud)
  859. return -ENOMEM;
  860. src_pud = pud_offset(src_pgd, addr);
  861. do {
  862. next = pud_addr_end(addr, end);
  863. if (pud_none_or_clear_bad(src_pud))
  864. continue;
  865. if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
  866. vma, addr, next))
  867. return -ENOMEM;
  868. } while (dst_pud++, src_pud++, addr = next, addr != end);
  869. return 0;
  870. }
  871. int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  872. struct vm_area_struct *vma)
  873. {
  874. pgd_t *src_pgd, *dst_pgd;
  875. unsigned long next;
  876. unsigned long addr = vma->vm_start;
  877. unsigned long end = vma->vm_end;
  878. unsigned long mmun_start; /* For mmu_notifiers */
  879. unsigned long mmun_end; /* For mmu_notifiers */
  880. bool is_cow;
  881. int ret;
  882. /*
  883. * Don't copy ptes where a page fault will fill them correctly.
  884. * Fork becomes much lighter when there are big shared or private
  885. * readonly mappings. The tradeoff is that copy_page_range is more
  886. * efficient than faulting.
  887. */
  888. if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
  889. !vma->anon_vma)
  890. return 0;
  891. if (is_vm_hugetlb_page(vma))
  892. return copy_hugetlb_page_range(dst_mm, src_mm, vma);
  893. if (unlikely(vma->vm_flags & VM_PFNMAP)) {
  894. /*
  895. * We do not free on error cases below as remove_vma
  896. * gets called on error from higher level routine
  897. */
  898. ret = track_pfn_copy(vma);
  899. if (ret)
  900. return ret;
  901. }
  902. /*
  903. * We need to invalidate the secondary MMU mappings only when
  904. * there could be a permission downgrade on the ptes of the
  905. * parent mm. And a permission downgrade will only happen if
  906. * is_cow_mapping() returns true.
  907. */
  908. is_cow = is_cow_mapping(vma->vm_flags);
  909. mmun_start = addr;
  910. mmun_end = end;
  911. if (is_cow)
  912. mmu_notifier_invalidate_range_start(src_mm, mmun_start,
  913. mmun_end);
  914. ret = 0;
  915. dst_pgd = pgd_offset(dst_mm, addr);
  916. src_pgd = pgd_offset(src_mm, addr);
  917. do {
  918. next = pgd_addr_end(addr, end);
  919. if (pgd_none_or_clear_bad(src_pgd))
  920. continue;
  921. if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
  922. vma, addr, next))) {
  923. ret = -ENOMEM;
  924. break;
  925. }
  926. } while (dst_pgd++, src_pgd++, addr = next, addr != end);
  927. if (is_cow)
  928. mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
  929. return ret;
  930. }
  931. static unsigned long zap_pte_range(struct mmu_gather *tlb,
  932. struct vm_area_struct *vma, pmd_t *pmd,
  933. unsigned long addr, unsigned long end,
  934. struct zap_details *details)
  935. {
  936. struct mm_struct *mm = tlb->mm;
  937. int force_flush = 0;
  938. int rss[NR_MM_COUNTERS];
  939. spinlock_t *ptl;
  940. pte_t *start_pte;
  941. pte_t *pte;
  942. swp_entry_t entry;
  943. again:
  944. init_rss_vec(rss);
  945. start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
  946. pte = start_pte;
  947. arch_enter_lazy_mmu_mode();
  948. do {
  949. pte_t ptent = *pte;
  950. if (pte_none(ptent)) {
  951. continue;
  952. }
  953. if (pte_present(ptent)) {
  954. struct page *page;
  955. page = vm_normal_page(vma, addr, ptent);
  956. if (unlikely(details) && page) {
  957. /*
  958. * unmap_shared_mapping_pages() wants to
  959. * invalidate cache without truncating:
  960. * unmap shared but keep private pages.
  961. */
  962. if (details->check_mapping &&
  963. details->check_mapping != page->mapping)
  964. continue;
  965. }
  966. ptent = ptep_get_and_clear_full(mm, addr, pte,
  967. tlb->fullmm);
  968. tlb_remove_tlb_entry(tlb, pte, addr);
  969. if (unlikely(!page))
  970. continue;
  971. if (!PageAnon(page)) {
  972. if (pte_dirty(ptent)) {
  973. force_flush = 1;
  974. set_page_dirty(page);
  975. }
  976. if (pte_young(ptent) &&
  977. likely(!(vma->vm_flags & VM_SEQ_READ)))
  978. mark_page_accessed(page);
  979. }
  980. rss[mm_counter(page)]--;
  981. page_remove_rmap(page, false);
  982. if (unlikely(page_mapcount(page) < 0))
  983. print_bad_pte(vma, addr, ptent, page);
  984. if (unlikely(!__tlb_remove_page(tlb, page))) {
  985. force_flush = 1;
  986. addr += PAGE_SIZE;
  987. break;
  988. }
  989. continue;
  990. }
  991. /* If details->check_mapping, we leave swap entries. */
  992. if (unlikely(details))
  993. continue;
  994. entry = pte_to_swp_entry(ptent);
  995. if (!non_swap_entry(entry))
  996. rss[MM_SWAPENTS]--;
  997. else if (is_migration_entry(entry)) {
  998. struct page *page;
  999. page = migration_entry_to_page(entry);
  1000. rss[mm_counter(page)]--;
  1001. }
  1002. if (unlikely(!free_swap_and_cache(entry)))
  1003. print_bad_pte(vma, addr, ptent, NULL);
  1004. pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
  1005. } while (pte++, addr += PAGE_SIZE, addr != end);
  1006. add_mm_rss_vec(mm, rss);
  1007. arch_leave_lazy_mmu_mode();
  1008. /* Do the actual TLB flush before dropping ptl */
  1009. if (force_flush)
  1010. tlb_flush_mmu_tlbonly(tlb);
  1011. pte_unmap_unlock(start_pte, ptl);
  1012. /*
  1013. * If we forced a TLB flush (either due to running out of
  1014. * batch buffers or because we needed to flush dirty TLB
  1015. * entries before releasing the ptl), free the batched
  1016. * memory too. Restart if we didn't do everything.
  1017. */
  1018. if (force_flush) {
  1019. force_flush = 0;
  1020. tlb_flush_mmu_free(tlb);
  1021. if (addr != end)
  1022. goto again;
  1023. }
  1024. return addr;
  1025. }
  1026. static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
  1027. struct vm_area_struct *vma, pud_t *pud,
  1028. unsigned long addr, unsigned long end,
  1029. struct zap_details *details)
  1030. {
  1031. pmd_t *pmd;
  1032. unsigned long next;
  1033. pmd = pmd_offset(pud, addr);
  1034. do {
  1035. next = pmd_addr_end(addr, end);
  1036. if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
  1037. if (next - addr != HPAGE_PMD_SIZE) {
  1038. #ifdef CONFIG_DEBUG_VM
  1039. if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
  1040. pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
  1041. __func__, addr, end,
  1042. vma->vm_start,
  1043. vma->vm_end);
  1044. BUG();
  1045. }
  1046. #endif
  1047. split_huge_pmd(vma, pmd, addr);
  1048. } else if (zap_huge_pmd(tlb, vma, pmd, addr))
  1049. goto next;
  1050. /* fall through */
  1051. }
  1052. /*
  1053. * Here there can be other concurrent MADV_DONTNEED or
  1054. * trans huge page faults running, and if the pmd is
  1055. * none or trans huge it can change under us. This is
  1056. * because MADV_DONTNEED holds the mmap_sem in read
  1057. * mode.
  1058. */
  1059. if (pmd_none_or_trans_huge_or_clear_bad(pmd))
  1060. goto next;
  1061. next = zap_pte_range(tlb, vma, pmd, addr, next, details);
  1062. next:
  1063. cond_resched();
  1064. } while (pmd++, addr = next, addr != end);
  1065. return addr;
  1066. }
  1067. static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
  1068. struct vm_area_struct *vma, pgd_t *pgd,
  1069. unsigned long addr, unsigned long end,
  1070. struct zap_details *details)
  1071. {
  1072. pud_t *pud;
  1073. unsigned long next;
  1074. pud = pud_offset(pgd, addr);
  1075. do {
  1076. next = pud_addr_end(addr, end);
  1077. if (pud_none_or_clear_bad(pud))
  1078. continue;
  1079. next = zap_pmd_range(tlb, vma, pud, addr, next, details);
  1080. } while (pud++, addr = next, addr != end);
  1081. return addr;
  1082. }
  1083. static void unmap_page_range(struct mmu_gather *tlb,
  1084. struct vm_area_struct *vma,
  1085. unsigned long addr, unsigned long end,
  1086. struct zap_details *details)
  1087. {
  1088. pgd_t *pgd;
  1089. unsigned long next;
  1090. if (details && !details->check_mapping)
  1091. details = NULL;
  1092. BUG_ON(addr >= end);
  1093. tlb_start_vma(tlb, vma);
  1094. pgd = pgd_offset(vma->vm_mm, addr);
  1095. do {
  1096. next = pgd_addr_end(addr, end);
  1097. if (pgd_none_or_clear_bad(pgd))
  1098. continue;
  1099. next = zap_pud_range(tlb, vma, pgd, addr, next, details);
  1100. } while (pgd++, addr = next, addr != end);
  1101. tlb_end_vma(tlb, vma);
  1102. }
  1103. static void unmap_single_vma(struct mmu_gather *tlb,
  1104. struct vm_area_struct *vma, unsigned long start_addr,
  1105. unsigned long end_addr,
  1106. struct zap_details *details)
  1107. {
  1108. unsigned long start = max(vma->vm_start, start_addr);
  1109. unsigned long end;
  1110. if (start >= vma->vm_end)
  1111. return;
  1112. end = min(vma->vm_end, end_addr);
  1113. if (end <= vma->vm_start)
  1114. return;
  1115. if (vma->vm_file)
  1116. uprobe_munmap(vma, start, end);
  1117. if (unlikely(vma->vm_flags & VM_PFNMAP))
  1118. untrack_pfn(vma, 0, 0);
  1119. if (start != end) {
  1120. if (unlikely(is_vm_hugetlb_page(vma))) {
  1121. /*
  1122. * It is undesirable to test vma->vm_file as it
  1123. * should be non-null for valid hugetlb area.
  1124. * However, vm_file will be NULL in the error
  1125. * cleanup path of mmap_region. When
  1126. * hugetlbfs ->mmap method fails,
  1127. * mmap_region() nullifies vma->vm_file
  1128. * before calling this function to clean up.
  1129. * Since no pte has actually been setup, it is
  1130. * safe to do nothing in this case.
  1131. */
  1132. if (vma->vm_file) {
  1133. i_mmap_lock_write(vma->vm_file->f_mapping);
  1134. __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
  1135. i_mmap_unlock_write(vma->vm_file->f_mapping);
  1136. }
  1137. } else
  1138. unmap_page_range(tlb, vma, start, end, details);
  1139. }
  1140. }
  1141. /**
  1142. * unmap_vmas - unmap a range of memory covered by a list of vma's
  1143. * @tlb: address of the caller's struct mmu_gather
  1144. * @vma: the starting vma
  1145. * @start_addr: virtual address at which to start unmapping
  1146. * @end_addr: virtual address at which to end unmapping
  1147. *
  1148. * Unmap all pages in the vma list.
  1149. *
  1150. * Only addresses between `start' and `end' will be unmapped.
  1151. *
  1152. * The VMA list must be sorted in ascending virtual address order.
  1153. *
  1154. * unmap_vmas() assumes that the caller will flush the whole unmapped address
  1155. * range after unmap_vmas() returns. So the only responsibility here is to
  1156. * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
  1157. * drops the lock and schedules.
  1158. */
  1159. void unmap_vmas(struct mmu_gather *tlb,
  1160. struct vm_area_struct *vma, unsigned long start_addr,
  1161. unsigned long end_addr)
  1162. {
  1163. struct mm_struct *mm = vma->vm_mm;
  1164. mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
  1165. for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
  1166. unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
  1167. mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
  1168. }
  1169. /**
  1170. * zap_page_range - remove user pages in a given range
  1171. * @vma: vm_area_struct holding the applicable pages
  1172. * @start: starting address of pages to zap
  1173. * @size: number of bytes to zap
  1174. * @details: details of shared cache invalidation
  1175. *
  1176. * Caller must protect the VMA list
  1177. */
  1178. void zap_page_range(struct vm_area_struct *vma, unsigned long start,
  1179. unsigned long size, struct zap_details *details)
  1180. {
  1181. struct mm_struct *mm = vma->vm_mm;
  1182. struct mmu_gather tlb;
  1183. unsigned long end = start + size;
  1184. lru_add_drain();
  1185. tlb_gather_mmu(&tlb, mm, start, end);
  1186. update_hiwater_rss(mm);
  1187. mmu_notifier_invalidate_range_start(mm, start, end);
  1188. for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
  1189. unmap_single_vma(&tlb, vma, start, end, details);
  1190. mmu_notifier_invalidate_range_end(mm, start, end);
  1191. tlb_finish_mmu(&tlb, start, end);
  1192. }
  1193. /**
  1194. * zap_page_range_single - remove user pages in a given range
  1195. * @vma: vm_area_struct holding the applicable pages
  1196. * @address: starting address of pages to zap
  1197. * @size: number of bytes to zap
  1198. * @details: details of shared cache invalidation
  1199. *
  1200. * The range must fit into one VMA.
  1201. */
  1202. static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
  1203. unsigned long size, struct zap_details *details)
  1204. {
  1205. struct mm_struct *mm = vma->vm_mm;
  1206. struct mmu_gather tlb;
  1207. unsigned long end = address + size;
  1208. lru_add_drain();
  1209. tlb_gather_mmu(&tlb, mm, address, end);
  1210. update_hiwater_rss(mm);
  1211. mmu_notifier_invalidate_range_start(mm, address, end);
  1212. unmap_single_vma(&tlb, vma, address, end, details);
  1213. mmu_notifier_invalidate_range_end(mm, address, end);
  1214. tlb_finish_mmu(&tlb, address, end);
  1215. }
  1216. /**
  1217. * zap_vma_ptes - remove ptes mapping the vma
  1218. * @vma: vm_area_struct holding ptes to be zapped
  1219. * @address: starting address of pages to zap
  1220. * @size: number of bytes to zap
  1221. *
  1222. * This function only unmaps ptes assigned to VM_PFNMAP vmas.
  1223. *
  1224. * The entire address range must be fully contained within the vma.
  1225. *
  1226. * Returns 0 if successful.
  1227. */
  1228. int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
  1229. unsigned long size)
  1230. {
  1231. if (address < vma->vm_start || address + size > vma->vm_end ||
  1232. !(vma->vm_flags & VM_PFNMAP))
  1233. return -1;
  1234. zap_page_range_single(vma, address, size, NULL);
  1235. return 0;
  1236. }
  1237. EXPORT_SYMBOL_GPL(zap_vma_ptes);
  1238. pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1239. spinlock_t **ptl)
  1240. {
  1241. pgd_t * pgd = pgd_offset(mm, addr);
  1242. pud_t * pud = pud_alloc(mm, pgd, addr);
  1243. if (pud) {
  1244. pmd_t * pmd = pmd_alloc(mm, pud, addr);
  1245. if (pmd) {
  1246. VM_BUG_ON(pmd_trans_huge(*pmd));
  1247. return pte_alloc_map_lock(mm, pmd, addr, ptl);
  1248. }
  1249. }
  1250. return NULL;
  1251. }
  1252. /*
  1253. * This is the old fallback for page remapping.
  1254. *
  1255. * For historical reasons, it only allows reserved pages. Only
  1256. * old drivers should use this, and they needed to mark their
  1257. * pages reserved for the old functions anyway.
  1258. */
  1259. static int insert_page(struct vm_area_struct *vma, unsigned long addr,
  1260. struct page *page, pgprot_t prot)
  1261. {
  1262. struct mm_struct *mm = vma->vm_mm;
  1263. int retval;
  1264. pte_t *pte;
  1265. spinlock_t *ptl;
  1266. retval = -EINVAL;
  1267. if (PageAnon(page))
  1268. goto out;
  1269. retval = -ENOMEM;
  1270. flush_dcache_page(page);
  1271. pte = get_locked_pte(mm, addr, &ptl);
  1272. if (!pte)
  1273. goto out;
  1274. retval = -EBUSY;
  1275. if (!pte_none(*pte))
  1276. goto out_unlock;
  1277. /* Ok, finally just insert the thing.. */
  1278. get_page(page);
  1279. inc_mm_counter_fast(mm, mm_counter_file(page));
  1280. page_add_file_rmap(page);
  1281. set_pte_at(mm, addr, pte, mk_pte(page, prot));
  1282. retval = 0;
  1283. pte_unmap_unlock(pte, ptl);
  1284. return retval;
  1285. out_unlock:
  1286. pte_unmap_unlock(pte, ptl);
  1287. out:
  1288. return retval;
  1289. }
  1290. /**
  1291. * vm_insert_page - insert single page into user vma
  1292. * @vma: user vma to map to
  1293. * @addr: target user address of this page
  1294. * @page: source kernel page
  1295. *
  1296. * This allows drivers to insert individual pages they've allocated
  1297. * into a user vma.
  1298. *
  1299. * The page has to be a nice clean _individual_ kernel allocation.
  1300. * If you allocate a compound page, you need to have marked it as
  1301. * such (__GFP_COMP), or manually just split the page up yourself
  1302. * (see split_page()).
  1303. *
  1304. * NOTE! Traditionally this was done with "remap_pfn_range()" which
  1305. * took an arbitrary page protection parameter. This doesn't allow
  1306. * that. Your vma protection will have to be set up correctly, which
  1307. * means that if you want a shared writable mapping, you'd better
  1308. * ask for a shared writable mapping!
  1309. *
  1310. * The page does not need to be reserved.
  1311. *
  1312. * Usually this function is called from f_op->mmap() handler
  1313. * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
  1314. * Caller must set VM_MIXEDMAP on vma if it wants to call this
  1315. * function from other places, for example from page-fault handler.
  1316. */
  1317. int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
  1318. struct page *page)
  1319. {
  1320. if (addr < vma->vm_start || addr >= vma->vm_end)
  1321. return -EFAULT;
  1322. if (!page_count(page))
  1323. return -EINVAL;
  1324. if (!(vma->vm_flags & VM_MIXEDMAP)) {
  1325. BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
  1326. BUG_ON(vma->vm_flags & VM_PFNMAP);
  1327. vma->vm_flags |= VM_MIXEDMAP;
  1328. }
  1329. return insert_page(vma, addr, page, vma->vm_page_prot);
  1330. }
  1331. EXPORT_SYMBOL(vm_insert_page);
  1332. static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1333. pfn_t pfn, pgprot_t prot)
  1334. {
  1335. struct mm_struct *mm = vma->vm_mm;
  1336. int retval;
  1337. pte_t *pte, entry;
  1338. spinlock_t *ptl;
  1339. retval = -ENOMEM;
  1340. pte = get_locked_pte(mm, addr, &ptl);
  1341. if (!pte)
  1342. goto out;
  1343. retval = -EBUSY;
  1344. if (!pte_none(*pte))
  1345. goto out_unlock;
  1346. /* Ok, finally just insert the thing.. */
  1347. if (pfn_t_devmap(pfn))
  1348. entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
  1349. else
  1350. entry = pte_mkspecial(pfn_t_pte(pfn, prot));
  1351. set_pte_at(mm, addr, pte, entry);
  1352. update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
  1353. retval = 0;
  1354. out_unlock:
  1355. pte_unmap_unlock(pte, ptl);
  1356. out:
  1357. return retval;
  1358. }
  1359. /**
  1360. * vm_insert_pfn - insert single pfn into user vma
  1361. * @vma: user vma to map to
  1362. * @addr: target user address of this page
  1363. * @pfn: source kernel pfn
  1364. *
  1365. * Similar to vm_insert_page, this allows drivers to insert individual pages
  1366. * they've allocated into a user vma. Same comments apply.
  1367. *
  1368. * This function should only be called from a vm_ops->fault handler, and
  1369. * in that case the handler should return NULL.
  1370. *
  1371. * vma cannot be a COW mapping.
  1372. *
  1373. * As this is called only for pages that do not currently exist, we
  1374. * do not need to flush old virtual caches or the TLB.
  1375. */
  1376. int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1377. unsigned long pfn)
  1378. {
  1379. int ret;
  1380. pgprot_t pgprot = vma->vm_page_prot;
  1381. /*
  1382. * Technically, architectures with pte_special can avoid all these
  1383. * restrictions (same for remap_pfn_range). However we would like
  1384. * consistency in testing and feature parity among all, so we should
  1385. * try to keep these invariants in place for everybody.
  1386. */
  1387. BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
  1388. BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
  1389. (VM_PFNMAP|VM_MIXEDMAP));
  1390. BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
  1391. BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
  1392. if (addr < vma->vm_start || addr >= vma->vm_end)
  1393. return -EFAULT;
  1394. if (track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)))
  1395. return -EINVAL;
  1396. ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot);
  1397. return ret;
  1398. }
  1399. EXPORT_SYMBOL(vm_insert_pfn);
  1400. int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
  1401. pfn_t pfn)
  1402. {
  1403. BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
  1404. if (addr < vma->vm_start || addr >= vma->vm_end)
  1405. return -EFAULT;
  1406. /*
  1407. * If we don't have pte special, then we have to use the pfn_valid()
  1408. * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
  1409. * refcount the page if pfn_valid is true (hence insert_page rather
  1410. * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
  1411. * without pte special, it would there be refcounted as a normal page.
  1412. */
  1413. if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
  1414. struct page *page;
  1415. /*
  1416. * At this point we are committed to insert_page()
  1417. * regardless of whether the caller specified flags that
  1418. * result in pfn_t_has_page() == false.
  1419. */
  1420. page = pfn_to_page(pfn_t_to_pfn(pfn));
  1421. return insert_page(vma, addr, page, vma->vm_page_prot);
  1422. }
  1423. return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
  1424. }
  1425. EXPORT_SYMBOL(vm_insert_mixed);
  1426. /*
  1427. * maps a range of physical memory into the requested pages. the old
  1428. * mappings are removed. any references to nonexistent pages results
  1429. * in null mappings (currently treated as "copy-on-access")
  1430. */
  1431. static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
  1432. unsigned long addr, unsigned long end,
  1433. unsigned long pfn, pgprot_t prot)
  1434. {
  1435. pte_t *pte;
  1436. spinlock_t *ptl;
  1437. pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
  1438. if (!pte)
  1439. return -ENOMEM;
  1440. arch_enter_lazy_mmu_mode();
  1441. do {
  1442. BUG_ON(!pte_none(*pte));
  1443. set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
  1444. pfn++;
  1445. } while (pte++, addr += PAGE_SIZE, addr != end);
  1446. arch_leave_lazy_mmu_mode();
  1447. pte_unmap_unlock(pte - 1, ptl);
  1448. return 0;
  1449. }
  1450. static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
  1451. unsigned long addr, unsigned long end,
  1452. unsigned long pfn, pgprot_t prot)
  1453. {
  1454. pmd_t *pmd;
  1455. unsigned long next;
  1456. pfn -= addr >> PAGE_SHIFT;
  1457. pmd = pmd_alloc(mm, pud, addr);
  1458. if (!pmd)
  1459. return -ENOMEM;
  1460. VM_BUG_ON(pmd_trans_huge(*pmd));
  1461. do {
  1462. next = pmd_addr_end(addr, end);
  1463. if (remap_pte_range(mm, pmd, addr, next,
  1464. pfn + (addr >> PAGE_SHIFT), prot))
  1465. return -ENOMEM;
  1466. } while (pmd++, addr = next, addr != end);
  1467. return 0;
  1468. }
  1469. static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
  1470. unsigned long addr, unsigned long end,
  1471. unsigned long pfn, pgprot_t prot)
  1472. {
  1473. pud_t *pud;
  1474. unsigned long next;
  1475. pfn -= addr >> PAGE_SHIFT;
  1476. pud = pud_alloc(mm, pgd, addr);
  1477. if (!pud)
  1478. return -ENOMEM;
  1479. do {
  1480. next = pud_addr_end(addr, end);
  1481. if (remap_pmd_range(mm, pud, addr, next,
  1482. pfn + (addr >> PAGE_SHIFT), prot))
  1483. return -ENOMEM;
  1484. } while (pud++, addr = next, addr != end);
  1485. return 0;
  1486. }
  1487. /**
  1488. * remap_pfn_range - remap kernel memory to userspace
  1489. * @vma: user vma to map to
  1490. * @addr: target user address to start at
  1491. * @pfn: physical address of kernel memory
  1492. * @size: size of map area
  1493. * @prot: page protection flags for this mapping
  1494. *
  1495. * Note: this is only safe if the mm semaphore is held when called.
  1496. */
  1497. int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
  1498. unsigned long pfn, unsigned long size, pgprot_t prot)
  1499. {
  1500. pgd_t *pgd;
  1501. unsigned long next;
  1502. unsigned long end = addr + PAGE_ALIGN(size);
  1503. struct mm_struct *mm = vma->vm_mm;
  1504. int err;
  1505. /*
  1506. * Physically remapped pages are special. Tell the
  1507. * rest of the world about it:
  1508. * VM_IO tells people not to look at these pages
  1509. * (accesses can have side effects).
  1510. * VM_PFNMAP tells the core MM that the base pages are just
  1511. * raw PFN mappings, and do not have a "struct page" associated
  1512. * with them.
  1513. * VM_DONTEXPAND
  1514. * Disable vma merging and expanding with mremap().
  1515. * VM_DONTDUMP
  1516. * Omit vma from core dump, even when VM_IO turned off.
  1517. *
  1518. * There's a horrible special case to handle copy-on-write
  1519. * behaviour that some programs depend on. We mark the "original"
  1520. * un-COW'ed pages by matching them up with "vma->vm_pgoff".
  1521. * See vm_normal_page() for details.
  1522. */
  1523. if (is_cow_mapping(vma->vm_flags)) {
  1524. if (addr != vma->vm_start || end != vma->vm_end)
  1525. return -EINVAL;
  1526. vma->vm_pgoff = pfn;
  1527. }
  1528. err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
  1529. if (err)
  1530. return -EINVAL;
  1531. vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
  1532. BUG_ON(addr >= end);
  1533. pfn -= addr >> PAGE_SHIFT;
  1534. pgd = pgd_offset(mm, addr);
  1535. flush_cache_range(vma, addr, end);
  1536. do {
  1537. next = pgd_addr_end(addr, end);
  1538. err = remap_pud_range(mm, pgd, addr, next,
  1539. pfn + (addr >> PAGE_SHIFT), prot);
  1540. if (err)
  1541. break;
  1542. } while (pgd++, addr = next, addr != end);
  1543. if (err)
  1544. untrack_pfn(vma, pfn, PAGE_ALIGN(size));
  1545. return err;
  1546. }
  1547. EXPORT_SYMBOL(remap_pfn_range);
  1548. /**
  1549. * vm_iomap_memory - remap memory to userspace
  1550. * @vma: user vma to map to
  1551. * @start: start of area
  1552. * @len: size of area
  1553. *
  1554. * This is a simplified io_remap_pfn_range() for common driver use. The
  1555. * driver just needs to give us the physical memory range to be mapped,
  1556. * we'll figure out the rest from the vma information.
  1557. *
  1558. * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
  1559. * whatever write-combining details or similar.
  1560. */
  1561. int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
  1562. {
  1563. unsigned long vm_len, pfn, pages;
  1564. /* Check that the physical memory area passed in looks valid */
  1565. if (start + len < start)
  1566. return -EINVAL;
  1567. /*
  1568. * You *really* shouldn't map things that aren't page-aligned,
  1569. * but we've historically allowed it because IO memory might
  1570. * just have smaller alignment.
  1571. */
  1572. len += start & ~PAGE_MASK;
  1573. pfn = start >> PAGE_SHIFT;
  1574. pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
  1575. if (pfn + pages < pfn)
  1576. return -EINVAL;
  1577. /* We start the mapping 'vm_pgoff' pages into the area */
  1578. if (vma->vm_pgoff > pages)
  1579. return -EINVAL;
  1580. pfn += vma->vm_pgoff;
  1581. pages -= vma->vm_pgoff;
  1582. /* Can we fit all of the mapping? */
  1583. vm_len = vma->vm_end - vma->vm_start;
  1584. if (vm_len >> PAGE_SHIFT > pages)
  1585. return -EINVAL;
  1586. /* Ok, let it rip */
  1587. return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
  1588. }
  1589. EXPORT_SYMBOL(vm_iomap_memory);
  1590. static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
  1591. unsigned long addr, unsigned long end,
  1592. pte_fn_t fn, void *data)
  1593. {
  1594. pte_t *pte;
  1595. int err;
  1596. pgtable_t token;
  1597. spinlock_t *uninitialized_var(ptl);
  1598. pte = (mm == &init_mm) ?
  1599. pte_alloc_kernel(pmd, addr) :
  1600. pte_alloc_map_lock(mm, pmd, addr, &ptl);
  1601. if (!pte)
  1602. return -ENOMEM;
  1603. BUG_ON(pmd_huge(*pmd));
  1604. arch_enter_lazy_mmu_mode();
  1605. token = pmd_pgtable(*pmd);
  1606. do {
  1607. err = fn(pte++, token, addr, data);
  1608. if (err)
  1609. break;
  1610. } while (addr += PAGE_SIZE, addr != end);
  1611. arch_leave_lazy_mmu_mode();
  1612. if (mm != &init_mm)
  1613. pte_unmap_unlock(pte-1, ptl);
  1614. return err;
  1615. }
  1616. static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
  1617. unsigned long addr, unsigned long end,
  1618. pte_fn_t fn, void *data)
  1619. {
  1620. pmd_t *pmd;
  1621. unsigned long next;
  1622. int err;
  1623. BUG_ON(pud_huge(*pud));
  1624. pmd = pmd_alloc(mm, pud, addr);
  1625. if (!pmd)
  1626. return -ENOMEM;
  1627. do {
  1628. next = pmd_addr_end(addr, end);
  1629. err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
  1630. if (err)
  1631. break;
  1632. } while (pmd++, addr = next, addr != end);
  1633. return err;
  1634. }
  1635. static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
  1636. unsigned long addr, unsigned long end,
  1637. pte_fn_t fn, void *data)
  1638. {
  1639. pud_t *pud;
  1640. unsigned long next;
  1641. int err;
  1642. pud = pud_alloc(mm, pgd, addr);
  1643. if (!pud)
  1644. return -ENOMEM;
  1645. do {
  1646. next = pud_addr_end(addr, end);
  1647. err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
  1648. if (err)
  1649. break;
  1650. } while (pud++, addr = next, addr != end);
  1651. return err;
  1652. }
  1653. /*
  1654. * Scan a region of virtual memory, filling in page tables as necessary
  1655. * and calling a provided function on each leaf page table.
  1656. */
  1657. int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
  1658. unsigned long size, pte_fn_t fn, void *data)
  1659. {
  1660. pgd_t *pgd;
  1661. unsigned long next;
  1662. unsigned long end = addr + size;
  1663. int err;
  1664. if (WARN_ON(addr >= end))
  1665. return -EINVAL;
  1666. pgd = pgd_offset(mm, addr);
  1667. do {
  1668. next = pgd_addr_end(addr, end);
  1669. err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
  1670. if (err)
  1671. break;
  1672. } while (pgd++, addr = next, addr != end);
  1673. return err;
  1674. }
  1675. EXPORT_SYMBOL_GPL(apply_to_page_range);
  1676. /*
  1677. * handle_pte_fault chooses page fault handler according to an entry which was
  1678. * read non-atomically. Before making any commitment, on those architectures
  1679. * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
  1680. * parts, do_swap_page must check under lock before unmapping the pte and
  1681. * proceeding (but do_wp_page is only called after already making such a check;
  1682. * and do_anonymous_page can safely check later on).
  1683. */
  1684. static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
  1685. pte_t *page_table, pte_t orig_pte)
  1686. {
  1687. int same = 1;
  1688. #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
  1689. if (sizeof(pte_t) > sizeof(unsigned long)) {
  1690. spinlock_t *ptl = pte_lockptr(mm, pmd);
  1691. spin_lock(ptl);
  1692. same = pte_same(*page_table, orig_pte);
  1693. spin_unlock(ptl);
  1694. }
  1695. #endif
  1696. pte_unmap(page_table);
  1697. return same;
  1698. }
  1699. static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
  1700. {
  1701. debug_dma_assert_idle(src);
  1702. /*
  1703. * If the source page was a PFN mapping, we don't have
  1704. * a "struct page" for it. We do a best-effort copy by
  1705. * just copying from the original user address. If that
  1706. * fails, we just zero-fill it. Live with it.
  1707. */
  1708. if (unlikely(!src)) {
  1709. void *kaddr = kmap_atomic(dst);
  1710. void __user *uaddr = (void __user *)(va & PAGE_MASK);
  1711. /*
  1712. * This really shouldn't fail, because the page is there
  1713. * in the page tables. But it might just be unreadable,
  1714. * in which case we just give up and fill the result with
  1715. * zeroes.
  1716. */
  1717. if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
  1718. clear_page(kaddr);
  1719. kunmap_atomic(kaddr);
  1720. flush_dcache_page(dst);
  1721. } else
  1722. copy_user_highpage(dst, src, va, vma);
  1723. }
  1724. static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
  1725. {
  1726. struct file *vm_file = vma->vm_file;
  1727. if (vm_file)
  1728. return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
  1729. /*
  1730. * Special mappings (e.g. VDSO) do not have any file so fake
  1731. * a default GFP_KERNEL for them.
  1732. */
  1733. return GFP_KERNEL;
  1734. }
  1735. /*
  1736. * Notify the address space that the page is about to become writable so that
  1737. * it can prohibit this or wait for the page to get into an appropriate state.
  1738. *
  1739. * We do this without the lock held, so that it can sleep if it needs to.
  1740. */
  1741. static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
  1742. unsigned long address)
  1743. {
  1744. struct vm_fault vmf;
  1745. int ret;
  1746. vmf.virtual_address = (void __user *)(address & PAGE_MASK);
  1747. vmf.pgoff = page->index;
  1748. vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
  1749. vmf.gfp_mask = __get_fault_gfp_mask(vma);
  1750. vmf.page = page;
  1751. vmf.cow_page = NULL;
  1752. ret = vma->vm_ops->page_mkwrite(vma, &vmf);
  1753. if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
  1754. return ret;
  1755. if (unlikely(!(ret & VM_FAULT_LOCKED))) {
  1756. lock_page(page);
  1757. if (!page->mapping) {
  1758. unlock_page(page);
  1759. return 0; /* retry */
  1760. }
  1761. ret |= VM_FAULT_LOCKED;
  1762. } else
  1763. VM_BUG_ON_PAGE(!PageLocked(page), page);
  1764. return ret;
  1765. }
  1766. /*
  1767. * Handle write page faults for pages that can be reused in the current vma
  1768. *
  1769. * This can happen either due to the mapping being with the VM_SHARED flag,
  1770. * or due to us being the last reference standing to the page. In either
  1771. * case, all we need to do here is to mark the page as writable and update
  1772. * any related book-keeping.
  1773. */
  1774. static inline int wp_page_reuse(struct mm_struct *mm,
  1775. struct vm_area_struct *vma, unsigned long address,
  1776. pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
  1777. struct page *page, int page_mkwrite,
  1778. int dirty_shared)
  1779. __releases(ptl)
  1780. {
  1781. pte_t entry;
  1782. /*
  1783. * Clear the pages cpupid information as the existing
  1784. * information potentially belongs to a now completely
  1785. * unrelated process.
  1786. */
  1787. if (page)
  1788. page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
  1789. flush_cache_page(vma, address, pte_pfn(orig_pte));
  1790. entry = pte_mkyoung(orig_pte);
  1791. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1792. if (ptep_set_access_flags(vma, address, page_table, entry, 1))
  1793. update_mmu_cache(vma, address, page_table);
  1794. pte_unmap_unlock(page_table, ptl);
  1795. if (dirty_shared) {
  1796. struct address_space *mapping;
  1797. int dirtied;
  1798. if (!page_mkwrite)
  1799. lock_page(page);
  1800. dirtied = set_page_dirty(page);
  1801. VM_BUG_ON_PAGE(PageAnon(page), page);
  1802. mapping = page->mapping;
  1803. unlock_page(page);
  1804. page_cache_release(page);
  1805. if ((dirtied || page_mkwrite) && mapping) {
  1806. /*
  1807. * Some device drivers do not set page.mapping
  1808. * but still dirty their pages
  1809. */
  1810. balance_dirty_pages_ratelimited(mapping);
  1811. }
  1812. if (!page_mkwrite)
  1813. file_update_time(vma->vm_file);
  1814. }
  1815. return VM_FAULT_WRITE;
  1816. }
  1817. /*
  1818. * Handle the case of a page which we actually need to copy to a new page.
  1819. *
  1820. * Called with mmap_sem locked and the old page referenced, but
  1821. * without the ptl held.
  1822. *
  1823. * High level logic flow:
  1824. *
  1825. * - Allocate a page, copy the content of the old page to the new one.
  1826. * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
  1827. * - Take the PTL. If the pte changed, bail out and release the allocated page
  1828. * - If the pte is still the way we remember it, update the page table and all
  1829. * relevant references. This includes dropping the reference the page-table
  1830. * held to the old page, as well as updating the rmap.
  1831. * - In any case, unlock the PTL and drop the reference we took to the old page.
  1832. */
  1833. static int wp_page_copy(struct mm_struct *mm, struct vm_area_struct *vma,
  1834. unsigned long address, pte_t *page_table, pmd_t *pmd,
  1835. pte_t orig_pte, struct page *old_page)
  1836. {
  1837. struct page *new_page = NULL;
  1838. spinlock_t *ptl = NULL;
  1839. pte_t entry;
  1840. int page_copied = 0;
  1841. const unsigned long mmun_start = address & PAGE_MASK; /* For mmu_notifiers */
  1842. const unsigned long mmun_end = mmun_start + PAGE_SIZE; /* For mmu_notifiers */
  1843. struct mem_cgroup *memcg;
  1844. if (unlikely(anon_vma_prepare(vma)))
  1845. goto oom;
  1846. if (is_zero_pfn(pte_pfn(orig_pte))) {
  1847. new_page = alloc_zeroed_user_highpage_movable(vma, address);
  1848. if (!new_page)
  1849. goto oom;
  1850. } else {
  1851. new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
  1852. if (!new_page)
  1853. goto oom;
  1854. cow_user_page(new_page, old_page, address, vma);
  1855. }
  1856. if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
  1857. goto oom_free_new;
  1858. __SetPageUptodate(new_page);
  1859. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  1860. /*
  1861. * Re-check the pte - we dropped the lock
  1862. */
  1863. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  1864. if (likely(pte_same(*page_table, orig_pte))) {
  1865. if (old_page) {
  1866. if (!PageAnon(old_page)) {
  1867. dec_mm_counter_fast(mm,
  1868. mm_counter_file(old_page));
  1869. inc_mm_counter_fast(mm, MM_ANONPAGES);
  1870. }
  1871. } else {
  1872. inc_mm_counter_fast(mm, MM_ANONPAGES);
  1873. }
  1874. flush_cache_page(vma, address, pte_pfn(orig_pte));
  1875. entry = mk_pte(new_page, vma->vm_page_prot);
  1876. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1877. /*
  1878. * Clear the pte entry and flush it first, before updating the
  1879. * pte with the new entry. This will avoid a race condition
  1880. * seen in the presence of one thread doing SMC and another
  1881. * thread doing COW.
  1882. */
  1883. ptep_clear_flush_notify(vma, address, page_table);
  1884. page_add_new_anon_rmap(new_page, vma, address, false);
  1885. mem_cgroup_commit_charge(new_page, memcg, false, false);
  1886. lru_cache_add_active_or_unevictable(new_page, vma);
  1887. /*
  1888. * We call the notify macro here because, when using secondary
  1889. * mmu page tables (such as kvm shadow page tables), we want the
  1890. * new page to be mapped directly into the secondary page table.
  1891. */
  1892. set_pte_at_notify(mm, address, page_table, entry);
  1893. update_mmu_cache(vma, address, page_table);
  1894. if (old_page) {
  1895. /*
  1896. * Only after switching the pte to the new page may
  1897. * we remove the mapcount here. Otherwise another
  1898. * process may come and find the rmap count decremented
  1899. * before the pte is switched to the new page, and
  1900. * "reuse" the old page writing into it while our pte
  1901. * here still points into it and can be read by other
  1902. * threads.
  1903. *
  1904. * The critical issue is to order this
  1905. * page_remove_rmap with the ptp_clear_flush above.
  1906. * Those stores are ordered by (if nothing else,)
  1907. * the barrier present in the atomic_add_negative
  1908. * in page_remove_rmap.
  1909. *
  1910. * Then the TLB flush in ptep_clear_flush ensures that
  1911. * no process can access the old page before the
  1912. * decremented mapcount is visible. And the old page
  1913. * cannot be reused until after the decremented
  1914. * mapcount is visible. So transitively, TLBs to
  1915. * old page will be flushed before it can be reused.
  1916. */
  1917. page_remove_rmap(old_page, false);
  1918. }
  1919. /* Free the old page.. */
  1920. new_page = old_page;
  1921. page_copied = 1;
  1922. } else {
  1923. mem_cgroup_cancel_charge(new_page, memcg, false);
  1924. }
  1925. if (new_page)
  1926. page_cache_release(new_page);
  1927. pte_unmap_unlock(page_table, ptl);
  1928. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  1929. if (old_page) {
  1930. /*
  1931. * Don't let another task, with possibly unlocked vma,
  1932. * keep the mlocked page.
  1933. */
  1934. if (page_copied && (vma->vm_flags & VM_LOCKED)) {
  1935. lock_page(old_page); /* LRU manipulation */
  1936. if (PageMlocked(old_page))
  1937. munlock_vma_page(old_page);
  1938. unlock_page(old_page);
  1939. }
  1940. page_cache_release(old_page);
  1941. }
  1942. return page_copied ? VM_FAULT_WRITE : 0;
  1943. oom_free_new:
  1944. page_cache_release(new_page);
  1945. oom:
  1946. if (old_page)
  1947. page_cache_release(old_page);
  1948. return VM_FAULT_OOM;
  1949. }
  1950. /*
  1951. * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
  1952. * mapping
  1953. */
  1954. static int wp_pfn_shared(struct mm_struct *mm,
  1955. struct vm_area_struct *vma, unsigned long address,
  1956. pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
  1957. pmd_t *pmd)
  1958. {
  1959. if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
  1960. struct vm_fault vmf = {
  1961. .page = NULL,
  1962. .pgoff = linear_page_index(vma, address),
  1963. .virtual_address = (void __user *)(address & PAGE_MASK),
  1964. .flags = FAULT_FLAG_WRITE | FAULT_FLAG_MKWRITE,
  1965. };
  1966. int ret;
  1967. pte_unmap_unlock(page_table, ptl);
  1968. ret = vma->vm_ops->pfn_mkwrite(vma, &vmf);
  1969. if (ret & VM_FAULT_ERROR)
  1970. return ret;
  1971. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  1972. /*
  1973. * We might have raced with another page fault while we
  1974. * released the pte_offset_map_lock.
  1975. */
  1976. if (!pte_same(*page_table, orig_pte)) {
  1977. pte_unmap_unlock(page_table, ptl);
  1978. return 0;
  1979. }
  1980. }
  1981. return wp_page_reuse(mm, vma, address, page_table, ptl, orig_pte,
  1982. NULL, 0, 0);
  1983. }
  1984. static int wp_page_shared(struct mm_struct *mm, struct vm_area_struct *vma,
  1985. unsigned long address, pte_t *page_table,
  1986. pmd_t *pmd, spinlock_t *ptl, pte_t orig_pte,
  1987. struct page *old_page)
  1988. __releases(ptl)
  1989. {
  1990. int page_mkwrite = 0;
  1991. page_cache_get(old_page);
  1992. if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
  1993. int tmp;
  1994. pte_unmap_unlock(page_table, ptl);
  1995. tmp = do_page_mkwrite(vma, old_page, address);
  1996. if (unlikely(!tmp || (tmp &
  1997. (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
  1998. page_cache_release(old_page);
  1999. return tmp;
  2000. }
  2001. /*
  2002. * Since we dropped the lock we need to revalidate
  2003. * the PTE as someone else may have changed it. If
  2004. * they did, we just return, as we can count on the
  2005. * MMU to tell us if they didn't also make it writable.
  2006. */
  2007. page_table = pte_offset_map_lock(mm, pmd, address,
  2008. &ptl);
  2009. if (!pte_same(*page_table, orig_pte)) {
  2010. unlock_page(old_page);
  2011. pte_unmap_unlock(page_table, ptl);
  2012. page_cache_release(old_page);
  2013. return 0;
  2014. }
  2015. page_mkwrite = 1;
  2016. }
  2017. return wp_page_reuse(mm, vma, address, page_table, ptl,
  2018. orig_pte, old_page, page_mkwrite, 1);
  2019. }
  2020. /*
  2021. * This routine handles present pages, when users try to write
  2022. * to a shared page. It is done by copying the page to a new address
  2023. * and decrementing the shared-page counter for the old page.
  2024. *
  2025. * Note that this routine assumes that the protection checks have been
  2026. * done by the caller (the low-level page fault routine in most cases).
  2027. * Thus we can safely just mark it writable once we've done any necessary
  2028. * COW.
  2029. *
  2030. * We also mark the page dirty at this point even though the page will
  2031. * change only once the write actually happens. This avoids a few races,
  2032. * and potentially makes it more efficient.
  2033. *
  2034. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2035. * but allow concurrent faults), with pte both mapped and locked.
  2036. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2037. */
  2038. static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2039. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2040. spinlock_t *ptl, pte_t orig_pte)
  2041. __releases(ptl)
  2042. {
  2043. struct page *old_page;
  2044. old_page = vm_normal_page(vma, address, orig_pte);
  2045. if (!old_page) {
  2046. /*
  2047. * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
  2048. * VM_PFNMAP VMA.
  2049. *
  2050. * We should not cow pages in a shared writeable mapping.
  2051. * Just mark the pages writable and/or call ops->pfn_mkwrite.
  2052. */
  2053. if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
  2054. (VM_WRITE|VM_SHARED))
  2055. return wp_pfn_shared(mm, vma, address, page_table, ptl,
  2056. orig_pte, pmd);
  2057. pte_unmap_unlock(page_table, ptl);
  2058. return wp_page_copy(mm, vma, address, page_table, pmd,
  2059. orig_pte, old_page);
  2060. }
  2061. /*
  2062. * Take out anonymous pages first, anonymous shared vmas are
  2063. * not dirty accountable.
  2064. */
  2065. if (PageAnon(old_page) && !PageKsm(old_page)) {
  2066. if (!trylock_page(old_page)) {
  2067. page_cache_get(old_page);
  2068. pte_unmap_unlock(page_table, ptl);
  2069. lock_page(old_page);
  2070. page_table = pte_offset_map_lock(mm, pmd, address,
  2071. &ptl);
  2072. if (!pte_same(*page_table, orig_pte)) {
  2073. unlock_page(old_page);
  2074. pte_unmap_unlock(page_table, ptl);
  2075. page_cache_release(old_page);
  2076. return 0;
  2077. }
  2078. page_cache_release(old_page);
  2079. }
  2080. if (reuse_swap_page(old_page)) {
  2081. /*
  2082. * The page is all ours. Move it to our anon_vma so
  2083. * the rmap code will not search our parent or siblings.
  2084. * Protected against the rmap code by the page lock.
  2085. */
  2086. page_move_anon_rmap(old_page, vma, address);
  2087. unlock_page(old_page);
  2088. return wp_page_reuse(mm, vma, address, page_table, ptl,
  2089. orig_pte, old_page, 0, 0);
  2090. }
  2091. unlock_page(old_page);
  2092. } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
  2093. (VM_WRITE|VM_SHARED))) {
  2094. return wp_page_shared(mm, vma, address, page_table, pmd,
  2095. ptl, orig_pte, old_page);
  2096. }
  2097. /*
  2098. * Ok, we need to copy. Oh, well..
  2099. */
  2100. page_cache_get(old_page);
  2101. pte_unmap_unlock(page_table, ptl);
  2102. return wp_page_copy(mm, vma, address, page_table, pmd,
  2103. orig_pte, old_page);
  2104. }
  2105. static void unmap_mapping_range_vma(struct vm_area_struct *vma,
  2106. unsigned long start_addr, unsigned long end_addr,
  2107. struct zap_details *details)
  2108. {
  2109. zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
  2110. }
  2111. static inline void unmap_mapping_range_tree(struct rb_root *root,
  2112. struct zap_details *details)
  2113. {
  2114. struct vm_area_struct *vma;
  2115. pgoff_t vba, vea, zba, zea;
  2116. vma_interval_tree_foreach(vma, root,
  2117. details->first_index, details->last_index) {
  2118. vba = vma->vm_pgoff;
  2119. vea = vba + vma_pages(vma) - 1;
  2120. /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
  2121. zba = details->first_index;
  2122. if (zba < vba)
  2123. zba = vba;
  2124. zea = details->last_index;
  2125. if (zea > vea)
  2126. zea = vea;
  2127. unmap_mapping_range_vma(vma,
  2128. ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
  2129. ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
  2130. details);
  2131. }
  2132. }
  2133. /**
  2134. * unmap_mapping_range - unmap the portion of all mmaps in the specified
  2135. * address_space corresponding to the specified page range in the underlying
  2136. * file.
  2137. *
  2138. * @mapping: the address space containing mmaps to be unmapped.
  2139. * @holebegin: byte in first page to unmap, relative to the start of
  2140. * the underlying file. This will be rounded down to a PAGE_SIZE
  2141. * boundary. Note that this is different from truncate_pagecache(), which
  2142. * must keep the partial page. In contrast, we must get rid of
  2143. * partial pages.
  2144. * @holelen: size of prospective hole in bytes. This will be rounded
  2145. * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
  2146. * end of the file.
  2147. * @even_cows: 1 when truncating a file, unmap even private COWed pages;
  2148. * but 0 when invalidating pagecache, don't throw away private data.
  2149. */
  2150. void unmap_mapping_range(struct address_space *mapping,
  2151. loff_t const holebegin, loff_t const holelen, int even_cows)
  2152. {
  2153. struct zap_details details;
  2154. pgoff_t hba = holebegin >> PAGE_SHIFT;
  2155. pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  2156. /* Check for overflow. */
  2157. if (sizeof(holelen) > sizeof(hlen)) {
  2158. long long holeend =
  2159. (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  2160. if (holeend & ~(long long)ULONG_MAX)
  2161. hlen = ULONG_MAX - hba + 1;
  2162. }
  2163. details.check_mapping = even_cows? NULL: mapping;
  2164. details.first_index = hba;
  2165. details.last_index = hba + hlen - 1;
  2166. if (details.last_index < details.first_index)
  2167. details.last_index = ULONG_MAX;
  2168. /* DAX uses i_mmap_lock to serialise file truncate vs page fault */
  2169. i_mmap_lock_write(mapping);
  2170. if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
  2171. unmap_mapping_range_tree(&mapping->i_mmap, &details);
  2172. i_mmap_unlock_write(mapping);
  2173. }
  2174. EXPORT_SYMBOL(unmap_mapping_range);
  2175. /*
  2176. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2177. * but allow concurrent faults), and pte mapped but not yet locked.
  2178. * We return with pte unmapped and unlocked.
  2179. *
  2180. * We return with the mmap_sem locked or unlocked in the same cases
  2181. * as does filemap_fault().
  2182. */
  2183. static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2184. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2185. unsigned int flags, pte_t orig_pte)
  2186. {
  2187. spinlock_t *ptl;
  2188. struct page *page, *swapcache;
  2189. struct mem_cgroup *memcg;
  2190. swp_entry_t entry;
  2191. pte_t pte;
  2192. int locked;
  2193. int exclusive = 0;
  2194. int ret = 0;
  2195. if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
  2196. goto out;
  2197. entry = pte_to_swp_entry(orig_pte);
  2198. if (unlikely(non_swap_entry(entry))) {
  2199. if (is_migration_entry(entry)) {
  2200. migration_entry_wait(mm, pmd, address);
  2201. } else if (is_hwpoison_entry(entry)) {
  2202. ret = VM_FAULT_HWPOISON;
  2203. } else {
  2204. print_bad_pte(vma, address, orig_pte, NULL);
  2205. ret = VM_FAULT_SIGBUS;
  2206. }
  2207. goto out;
  2208. }
  2209. delayacct_set_flag(DELAYACCT_PF_SWAPIN);
  2210. page = lookup_swap_cache(entry);
  2211. if (!page) {
  2212. page = swapin_readahead(entry,
  2213. GFP_HIGHUSER_MOVABLE, vma, address);
  2214. if (!page) {
  2215. /*
  2216. * Back out if somebody else faulted in this pte
  2217. * while we released the pte lock.
  2218. */
  2219. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2220. if (likely(pte_same(*page_table, orig_pte)))
  2221. ret = VM_FAULT_OOM;
  2222. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2223. goto unlock;
  2224. }
  2225. /* Had to read the page from swap area: Major fault */
  2226. ret = VM_FAULT_MAJOR;
  2227. count_vm_event(PGMAJFAULT);
  2228. mem_cgroup_count_vm_event(mm, PGMAJFAULT);
  2229. } else if (PageHWPoison(page)) {
  2230. /*
  2231. * hwpoisoned dirty swapcache pages are kept for killing
  2232. * owner processes (which may be unknown at hwpoison time)
  2233. */
  2234. ret = VM_FAULT_HWPOISON;
  2235. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2236. swapcache = page;
  2237. goto out_release;
  2238. }
  2239. swapcache = page;
  2240. locked = lock_page_or_retry(page, mm, flags);
  2241. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2242. if (!locked) {
  2243. ret |= VM_FAULT_RETRY;
  2244. goto out_release;
  2245. }
  2246. /*
  2247. * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
  2248. * release the swapcache from under us. The page pin, and pte_same
  2249. * test below, are not enough to exclude that. Even if it is still
  2250. * swapcache, we need to check that the page's swap has not changed.
  2251. */
  2252. if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
  2253. goto out_page;
  2254. page = ksm_might_need_to_copy(page, vma, address);
  2255. if (unlikely(!page)) {
  2256. ret = VM_FAULT_OOM;
  2257. page = swapcache;
  2258. goto out_page;
  2259. }
  2260. if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg, false)) {
  2261. ret = VM_FAULT_OOM;
  2262. goto out_page;
  2263. }
  2264. /*
  2265. * Back out if somebody else already faulted in this pte.
  2266. */
  2267. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2268. if (unlikely(!pte_same(*page_table, orig_pte)))
  2269. goto out_nomap;
  2270. if (unlikely(!PageUptodate(page))) {
  2271. ret = VM_FAULT_SIGBUS;
  2272. goto out_nomap;
  2273. }
  2274. /*
  2275. * The page isn't present yet, go ahead with the fault.
  2276. *
  2277. * Be careful about the sequence of operations here.
  2278. * To get its accounting right, reuse_swap_page() must be called
  2279. * while the page is counted on swap but not yet in mapcount i.e.
  2280. * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
  2281. * must be called after the swap_free(), or it will never succeed.
  2282. */
  2283. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2284. dec_mm_counter_fast(mm, MM_SWAPENTS);
  2285. pte = mk_pte(page, vma->vm_page_prot);
  2286. if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
  2287. pte = maybe_mkwrite(pte_mkdirty(pte), vma);
  2288. flags &= ~FAULT_FLAG_WRITE;
  2289. ret |= VM_FAULT_WRITE;
  2290. exclusive = RMAP_EXCLUSIVE;
  2291. }
  2292. flush_icache_page(vma, page);
  2293. if (pte_swp_soft_dirty(orig_pte))
  2294. pte = pte_mksoft_dirty(pte);
  2295. set_pte_at(mm, address, page_table, pte);
  2296. if (page == swapcache) {
  2297. do_page_add_anon_rmap(page, vma, address, exclusive);
  2298. mem_cgroup_commit_charge(page, memcg, true, false);
  2299. } else { /* ksm created a completely new copy */
  2300. page_add_new_anon_rmap(page, vma, address, false);
  2301. mem_cgroup_commit_charge(page, memcg, false, false);
  2302. lru_cache_add_active_or_unevictable(page, vma);
  2303. }
  2304. swap_free(entry);
  2305. if (mem_cgroup_swap_full(page) ||
  2306. (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
  2307. try_to_free_swap(page);
  2308. unlock_page(page);
  2309. if (page != swapcache) {
  2310. /*
  2311. * Hold the lock to avoid the swap entry to be reused
  2312. * until we take the PT lock for the pte_same() check
  2313. * (to avoid false positives from pte_same). For
  2314. * further safety release the lock after the swap_free
  2315. * so that the swap count won't change under a
  2316. * parallel locked swapcache.
  2317. */
  2318. unlock_page(swapcache);
  2319. page_cache_release(swapcache);
  2320. }
  2321. if (flags & FAULT_FLAG_WRITE) {
  2322. ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
  2323. if (ret & VM_FAULT_ERROR)
  2324. ret &= VM_FAULT_ERROR;
  2325. goto out;
  2326. }
  2327. /* No need to invalidate - it was non-present before */
  2328. update_mmu_cache(vma, address, page_table);
  2329. unlock:
  2330. pte_unmap_unlock(page_table, ptl);
  2331. out:
  2332. return ret;
  2333. out_nomap:
  2334. mem_cgroup_cancel_charge(page, memcg, false);
  2335. pte_unmap_unlock(page_table, ptl);
  2336. out_page:
  2337. unlock_page(page);
  2338. out_release:
  2339. page_cache_release(page);
  2340. if (page != swapcache) {
  2341. unlock_page(swapcache);
  2342. page_cache_release(swapcache);
  2343. }
  2344. return ret;
  2345. }
  2346. /*
  2347. * This is like a special single-page "expand_{down|up}wards()",
  2348. * except we must first make sure that 'address{-|+}PAGE_SIZE'
  2349. * doesn't hit another vma.
  2350. */
  2351. static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
  2352. {
  2353. address &= PAGE_MASK;
  2354. if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
  2355. struct vm_area_struct *prev = vma->vm_prev;
  2356. /*
  2357. * Is there a mapping abutting this one below?
  2358. *
  2359. * That's only ok if it's the same stack mapping
  2360. * that has gotten split..
  2361. */
  2362. if (prev && prev->vm_end == address)
  2363. return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
  2364. return expand_downwards(vma, address - PAGE_SIZE);
  2365. }
  2366. if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
  2367. struct vm_area_struct *next = vma->vm_next;
  2368. /* As VM_GROWSDOWN but s/below/above/ */
  2369. if (next && next->vm_start == address + PAGE_SIZE)
  2370. return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
  2371. return expand_upwards(vma, address + PAGE_SIZE);
  2372. }
  2373. return 0;
  2374. }
  2375. /*
  2376. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2377. * but allow concurrent faults), and pte mapped but not yet locked.
  2378. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2379. */
  2380. static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2381. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2382. unsigned int flags)
  2383. {
  2384. struct mem_cgroup *memcg;
  2385. struct page *page;
  2386. spinlock_t *ptl;
  2387. pte_t entry;
  2388. pte_unmap(page_table);
  2389. /* File mapping without ->vm_ops ? */
  2390. if (vma->vm_flags & VM_SHARED)
  2391. return VM_FAULT_SIGBUS;
  2392. /* Check if we need to add a guard page to the stack */
  2393. if (check_stack_guard_page(vma, address) < 0)
  2394. return VM_FAULT_SIGSEGV;
  2395. /* Use the zero-page for reads */
  2396. if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm)) {
  2397. entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
  2398. vma->vm_page_prot));
  2399. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2400. if (!pte_none(*page_table))
  2401. goto unlock;
  2402. /* Deliver the page fault to userland, check inside PT lock */
  2403. if (userfaultfd_missing(vma)) {
  2404. pte_unmap_unlock(page_table, ptl);
  2405. return handle_userfault(vma, address, flags,
  2406. VM_UFFD_MISSING);
  2407. }
  2408. goto setpte;
  2409. }
  2410. /* Allocate our own private page. */
  2411. if (unlikely(anon_vma_prepare(vma)))
  2412. goto oom;
  2413. page = alloc_zeroed_user_highpage_movable(vma, address);
  2414. if (!page)
  2415. goto oom;
  2416. if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg, false))
  2417. goto oom_free_page;
  2418. /*
  2419. * The memory barrier inside __SetPageUptodate makes sure that
  2420. * preceeding stores to the page contents become visible before
  2421. * the set_pte_at() write.
  2422. */
  2423. __SetPageUptodate(page);
  2424. entry = mk_pte(page, vma->vm_page_prot);
  2425. if (vma->vm_flags & VM_WRITE)
  2426. entry = pte_mkwrite(pte_mkdirty(entry));
  2427. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2428. if (!pte_none(*page_table))
  2429. goto release;
  2430. /* Deliver the page fault to userland, check inside PT lock */
  2431. if (userfaultfd_missing(vma)) {
  2432. pte_unmap_unlock(page_table, ptl);
  2433. mem_cgroup_cancel_charge(page, memcg, false);
  2434. page_cache_release(page);
  2435. return handle_userfault(vma, address, flags,
  2436. VM_UFFD_MISSING);
  2437. }
  2438. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2439. page_add_new_anon_rmap(page, vma, address, false);
  2440. mem_cgroup_commit_charge(page, memcg, false, false);
  2441. lru_cache_add_active_or_unevictable(page, vma);
  2442. setpte:
  2443. set_pte_at(mm, address, page_table, entry);
  2444. /* No need to invalidate - it was non-present before */
  2445. update_mmu_cache(vma, address, page_table);
  2446. unlock:
  2447. pte_unmap_unlock(page_table, ptl);
  2448. return 0;
  2449. release:
  2450. mem_cgroup_cancel_charge(page, memcg, false);
  2451. page_cache_release(page);
  2452. goto unlock;
  2453. oom_free_page:
  2454. page_cache_release(page);
  2455. oom:
  2456. return VM_FAULT_OOM;
  2457. }
  2458. /*
  2459. * The mmap_sem must have been held on entry, and may have been
  2460. * released depending on flags and vma->vm_ops->fault() return value.
  2461. * See filemap_fault() and __lock_page_retry().
  2462. */
  2463. static int __do_fault(struct vm_area_struct *vma, unsigned long address,
  2464. pgoff_t pgoff, unsigned int flags,
  2465. struct page *cow_page, struct page **page)
  2466. {
  2467. struct vm_fault vmf;
  2468. int ret;
  2469. vmf.virtual_address = (void __user *)(address & PAGE_MASK);
  2470. vmf.pgoff = pgoff;
  2471. vmf.flags = flags;
  2472. vmf.page = NULL;
  2473. vmf.gfp_mask = __get_fault_gfp_mask(vma);
  2474. vmf.cow_page = cow_page;
  2475. ret = vma->vm_ops->fault(vma, &vmf);
  2476. if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
  2477. return ret;
  2478. if (!vmf.page)
  2479. goto out;
  2480. if (unlikely(PageHWPoison(vmf.page))) {
  2481. if (ret & VM_FAULT_LOCKED)
  2482. unlock_page(vmf.page);
  2483. page_cache_release(vmf.page);
  2484. return VM_FAULT_HWPOISON;
  2485. }
  2486. if (unlikely(!(ret & VM_FAULT_LOCKED)))
  2487. lock_page(vmf.page);
  2488. else
  2489. VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
  2490. out:
  2491. *page = vmf.page;
  2492. return ret;
  2493. }
  2494. /**
  2495. * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
  2496. *
  2497. * @vma: virtual memory area
  2498. * @address: user virtual address
  2499. * @page: page to map
  2500. * @pte: pointer to target page table entry
  2501. * @write: true, if new entry is writable
  2502. * @anon: true, if it's anonymous page
  2503. *
  2504. * Caller must hold page table lock relevant for @pte.
  2505. *
  2506. * Target users are page handler itself and implementations of
  2507. * vm_ops->map_pages.
  2508. */
  2509. void do_set_pte(struct vm_area_struct *vma, unsigned long address,
  2510. struct page *page, pte_t *pte, bool write, bool anon)
  2511. {
  2512. pte_t entry;
  2513. flush_icache_page(vma, page);
  2514. entry = mk_pte(page, vma->vm_page_prot);
  2515. if (write)
  2516. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2517. if (anon) {
  2518. inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
  2519. page_add_new_anon_rmap(page, vma, address, false);
  2520. } else {
  2521. inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
  2522. page_add_file_rmap(page);
  2523. }
  2524. set_pte_at(vma->vm_mm, address, pte, entry);
  2525. /* no need to invalidate: a not-present page won't be cached */
  2526. update_mmu_cache(vma, address, pte);
  2527. }
  2528. static unsigned long fault_around_bytes __read_mostly =
  2529. rounddown_pow_of_two(65536);
  2530. #ifdef CONFIG_DEBUG_FS
  2531. static int fault_around_bytes_get(void *data, u64 *val)
  2532. {
  2533. *val = fault_around_bytes;
  2534. return 0;
  2535. }
  2536. /*
  2537. * fault_around_pages() and fault_around_mask() expects fault_around_bytes
  2538. * rounded down to nearest page order. It's what do_fault_around() expects to
  2539. * see.
  2540. */
  2541. static int fault_around_bytes_set(void *data, u64 val)
  2542. {
  2543. if (val / PAGE_SIZE > PTRS_PER_PTE)
  2544. return -EINVAL;
  2545. if (val > PAGE_SIZE)
  2546. fault_around_bytes = rounddown_pow_of_two(val);
  2547. else
  2548. fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
  2549. return 0;
  2550. }
  2551. DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
  2552. fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
  2553. static int __init fault_around_debugfs(void)
  2554. {
  2555. void *ret;
  2556. ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
  2557. &fault_around_bytes_fops);
  2558. if (!ret)
  2559. pr_warn("Failed to create fault_around_bytes in debugfs");
  2560. return 0;
  2561. }
  2562. late_initcall(fault_around_debugfs);
  2563. #endif
  2564. /*
  2565. * do_fault_around() tries to map few pages around the fault address. The hope
  2566. * is that the pages will be needed soon and this will lower the number of
  2567. * faults to handle.
  2568. *
  2569. * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
  2570. * not ready to be mapped: not up-to-date, locked, etc.
  2571. *
  2572. * This function is called with the page table lock taken. In the split ptlock
  2573. * case the page table lock only protects only those entries which belong to
  2574. * the page table corresponding to the fault address.
  2575. *
  2576. * This function doesn't cross the VMA boundaries, in order to call map_pages()
  2577. * only once.
  2578. *
  2579. * fault_around_pages() defines how many pages we'll try to map.
  2580. * do_fault_around() expects it to return a power of two less than or equal to
  2581. * PTRS_PER_PTE.
  2582. *
  2583. * The virtual address of the area that we map is naturally aligned to the
  2584. * fault_around_pages() value (and therefore to page order). This way it's
  2585. * easier to guarantee that we don't cross page table boundaries.
  2586. */
  2587. static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
  2588. pte_t *pte, pgoff_t pgoff, unsigned int flags)
  2589. {
  2590. unsigned long start_addr, nr_pages, mask;
  2591. pgoff_t max_pgoff;
  2592. struct vm_fault vmf;
  2593. int off;
  2594. nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
  2595. mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
  2596. start_addr = max(address & mask, vma->vm_start);
  2597. off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
  2598. pte -= off;
  2599. pgoff -= off;
  2600. /*
  2601. * max_pgoff is either end of page table or end of vma
  2602. * or fault_around_pages() from pgoff, depending what is nearest.
  2603. */
  2604. max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
  2605. PTRS_PER_PTE - 1;
  2606. max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
  2607. pgoff + nr_pages - 1);
  2608. /* Check if it makes any sense to call ->map_pages */
  2609. while (!pte_none(*pte)) {
  2610. if (++pgoff > max_pgoff)
  2611. return;
  2612. start_addr += PAGE_SIZE;
  2613. if (start_addr >= vma->vm_end)
  2614. return;
  2615. pte++;
  2616. }
  2617. vmf.virtual_address = (void __user *) start_addr;
  2618. vmf.pte = pte;
  2619. vmf.pgoff = pgoff;
  2620. vmf.max_pgoff = max_pgoff;
  2621. vmf.flags = flags;
  2622. vmf.gfp_mask = __get_fault_gfp_mask(vma);
  2623. vma->vm_ops->map_pages(vma, &vmf);
  2624. }
  2625. static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2626. unsigned long address, pmd_t *pmd,
  2627. pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
  2628. {
  2629. struct page *fault_page;
  2630. spinlock_t *ptl;
  2631. pte_t *pte;
  2632. int ret = 0;
  2633. /*
  2634. * Let's call ->map_pages() first and use ->fault() as fallback
  2635. * if page by the offset is not ready to be mapped (cold cache or
  2636. * something).
  2637. */
  2638. if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
  2639. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  2640. do_fault_around(vma, address, pte, pgoff, flags);
  2641. if (!pte_same(*pte, orig_pte))
  2642. goto unlock_out;
  2643. pte_unmap_unlock(pte, ptl);
  2644. }
  2645. ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
  2646. if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
  2647. return ret;
  2648. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  2649. if (unlikely(!pte_same(*pte, orig_pte))) {
  2650. pte_unmap_unlock(pte, ptl);
  2651. unlock_page(fault_page);
  2652. page_cache_release(fault_page);
  2653. return ret;
  2654. }
  2655. do_set_pte(vma, address, fault_page, pte, false, false);
  2656. unlock_page(fault_page);
  2657. unlock_out:
  2658. pte_unmap_unlock(pte, ptl);
  2659. return ret;
  2660. }
  2661. static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2662. unsigned long address, pmd_t *pmd,
  2663. pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
  2664. {
  2665. struct page *fault_page, *new_page;
  2666. struct mem_cgroup *memcg;
  2667. spinlock_t *ptl;
  2668. pte_t *pte;
  2669. int ret;
  2670. if (unlikely(anon_vma_prepare(vma)))
  2671. return VM_FAULT_OOM;
  2672. new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
  2673. if (!new_page)
  2674. return VM_FAULT_OOM;
  2675. if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false)) {
  2676. page_cache_release(new_page);
  2677. return VM_FAULT_OOM;
  2678. }
  2679. ret = __do_fault(vma, address, pgoff, flags, new_page, &fault_page);
  2680. if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
  2681. goto uncharge_out;
  2682. if (fault_page)
  2683. copy_user_highpage(new_page, fault_page, address, vma);
  2684. __SetPageUptodate(new_page);
  2685. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  2686. if (unlikely(!pte_same(*pte, orig_pte))) {
  2687. pte_unmap_unlock(pte, ptl);
  2688. if (fault_page) {
  2689. unlock_page(fault_page);
  2690. page_cache_release(fault_page);
  2691. } else {
  2692. /*
  2693. * The fault handler has no page to lock, so it holds
  2694. * i_mmap_lock for read to protect against truncate.
  2695. */
  2696. i_mmap_unlock_read(vma->vm_file->f_mapping);
  2697. }
  2698. goto uncharge_out;
  2699. }
  2700. do_set_pte(vma, address, new_page, pte, true, true);
  2701. mem_cgroup_commit_charge(new_page, memcg, false, false);
  2702. lru_cache_add_active_or_unevictable(new_page, vma);
  2703. pte_unmap_unlock(pte, ptl);
  2704. if (fault_page) {
  2705. unlock_page(fault_page);
  2706. page_cache_release(fault_page);
  2707. } else {
  2708. /*
  2709. * The fault handler has no page to lock, so it holds
  2710. * i_mmap_lock for read to protect against truncate.
  2711. */
  2712. i_mmap_unlock_read(vma->vm_file->f_mapping);
  2713. }
  2714. return ret;
  2715. uncharge_out:
  2716. mem_cgroup_cancel_charge(new_page, memcg, false);
  2717. page_cache_release(new_page);
  2718. return ret;
  2719. }
  2720. static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2721. unsigned long address, pmd_t *pmd,
  2722. pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
  2723. {
  2724. struct page *fault_page;
  2725. struct address_space *mapping;
  2726. spinlock_t *ptl;
  2727. pte_t *pte;
  2728. int dirtied = 0;
  2729. int ret, tmp;
  2730. ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
  2731. if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
  2732. return ret;
  2733. /*
  2734. * Check if the backing address space wants to know that the page is
  2735. * about to become writable
  2736. */
  2737. if (vma->vm_ops->page_mkwrite) {
  2738. unlock_page(fault_page);
  2739. tmp = do_page_mkwrite(vma, fault_page, address);
  2740. if (unlikely(!tmp ||
  2741. (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
  2742. page_cache_release(fault_page);
  2743. return tmp;
  2744. }
  2745. }
  2746. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  2747. if (unlikely(!pte_same(*pte, orig_pte))) {
  2748. pte_unmap_unlock(pte, ptl);
  2749. unlock_page(fault_page);
  2750. page_cache_release(fault_page);
  2751. return ret;
  2752. }
  2753. do_set_pte(vma, address, fault_page, pte, true, false);
  2754. pte_unmap_unlock(pte, ptl);
  2755. if (set_page_dirty(fault_page))
  2756. dirtied = 1;
  2757. /*
  2758. * Take a local copy of the address_space - page.mapping may be zeroed
  2759. * by truncate after unlock_page(). The address_space itself remains
  2760. * pinned by vma->vm_file's reference. We rely on unlock_page()'s
  2761. * release semantics to prevent the compiler from undoing this copying.
  2762. */
  2763. mapping = page_rmapping(fault_page);
  2764. unlock_page(fault_page);
  2765. if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
  2766. /*
  2767. * Some device drivers do not set page.mapping but still
  2768. * dirty their pages
  2769. */
  2770. balance_dirty_pages_ratelimited(mapping);
  2771. }
  2772. if (!vma->vm_ops->page_mkwrite)
  2773. file_update_time(vma->vm_file);
  2774. return ret;
  2775. }
  2776. /*
  2777. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2778. * but allow concurrent faults).
  2779. * The mmap_sem may have been released depending on flags and our
  2780. * return value. See filemap_fault() and __lock_page_or_retry().
  2781. */
  2782. static int do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2783. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2784. unsigned int flags, pte_t orig_pte)
  2785. {
  2786. pgoff_t pgoff = (((address & PAGE_MASK)
  2787. - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  2788. pte_unmap(page_table);
  2789. /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
  2790. if (!vma->vm_ops->fault)
  2791. return VM_FAULT_SIGBUS;
  2792. if (!(flags & FAULT_FLAG_WRITE))
  2793. return do_read_fault(mm, vma, address, pmd, pgoff, flags,
  2794. orig_pte);
  2795. if (!(vma->vm_flags & VM_SHARED))
  2796. return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
  2797. orig_pte);
  2798. return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
  2799. }
  2800. static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
  2801. unsigned long addr, int page_nid,
  2802. int *flags)
  2803. {
  2804. get_page(page);
  2805. count_vm_numa_event(NUMA_HINT_FAULTS);
  2806. if (page_nid == numa_node_id()) {
  2807. count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
  2808. *flags |= TNF_FAULT_LOCAL;
  2809. }
  2810. return mpol_misplaced(page, vma, addr);
  2811. }
  2812. static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2813. unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
  2814. {
  2815. struct page *page = NULL;
  2816. spinlock_t *ptl;
  2817. int page_nid = -1;
  2818. int last_cpupid;
  2819. int target_nid;
  2820. bool migrated = false;
  2821. bool was_writable = pte_write(pte);
  2822. int flags = 0;
  2823. /* A PROT_NONE fault should not end up here */
  2824. BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
  2825. /*
  2826. * The "pte" at this point cannot be used safely without
  2827. * validation through pte_unmap_same(). It's of NUMA type but
  2828. * the pfn may be screwed if the read is non atomic.
  2829. *
  2830. * We can safely just do a "set_pte_at()", because the old
  2831. * page table entry is not accessible, so there would be no
  2832. * concurrent hardware modifications to the PTE.
  2833. */
  2834. ptl = pte_lockptr(mm, pmd);
  2835. spin_lock(ptl);
  2836. if (unlikely(!pte_same(*ptep, pte))) {
  2837. pte_unmap_unlock(ptep, ptl);
  2838. goto out;
  2839. }
  2840. /* Make it present again */
  2841. pte = pte_modify(pte, vma->vm_page_prot);
  2842. pte = pte_mkyoung(pte);
  2843. if (was_writable)
  2844. pte = pte_mkwrite(pte);
  2845. set_pte_at(mm, addr, ptep, pte);
  2846. update_mmu_cache(vma, addr, ptep);
  2847. page = vm_normal_page(vma, addr, pte);
  2848. if (!page) {
  2849. pte_unmap_unlock(ptep, ptl);
  2850. return 0;
  2851. }
  2852. /* TODO: handle PTE-mapped THP */
  2853. if (PageCompound(page)) {
  2854. pte_unmap_unlock(ptep, ptl);
  2855. return 0;
  2856. }
  2857. /*
  2858. * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
  2859. * much anyway since they can be in shared cache state. This misses
  2860. * the case where a mapping is writable but the process never writes
  2861. * to it but pte_write gets cleared during protection updates and
  2862. * pte_dirty has unpredictable behaviour between PTE scan updates,
  2863. * background writeback, dirty balancing and application behaviour.
  2864. */
  2865. if (!(vma->vm_flags & VM_WRITE))
  2866. flags |= TNF_NO_GROUP;
  2867. /*
  2868. * Flag if the page is shared between multiple address spaces. This
  2869. * is later used when determining whether to group tasks together
  2870. */
  2871. if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
  2872. flags |= TNF_SHARED;
  2873. last_cpupid = page_cpupid_last(page);
  2874. page_nid = page_to_nid(page);
  2875. target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
  2876. pte_unmap_unlock(ptep, ptl);
  2877. if (target_nid == -1) {
  2878. put_page(page);
  2879. goto out;
  2880. }
  2881. /* Migrate to the requested node */
  2882. migrated = migrate_misplaced_page(page, vma, target_nid);
  2883. if (migrated) {
  2884. page_nid = target_nid;
  2885. flags |= TNF_MIGRATED;
  2886. } else
  2887. flags |= TNF_MIGRATE_FAIL;
  2888. out:
  2889. if (page_nid != -1)
  2890. task_numa_fault(last_cpupid, page_nid, 1, flags);
  2891. return 0;
  2892. }
  2893. static int create_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
  2894. unsigned long address, pmd_t *pmd, unsigned int flags)
  2895. {
  2896. if (vma_is_anonymous(vma))
  2897. return do_huge_pmd_anonymous_page(mm, vma, address, pmd, flags);
  2898. if (vma->vm_ops->pmd_fault)
  2899. return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
  2900. return VM_FAULT_FALLBACK;
  2901. }
  2902. static int wp_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
  2903. unsigned long address, pmd_t *pmd, pmd_t orig_pmd,
  2904. unsigned int flags)
  2905. {
  2906. if (vma_is_anonymous(vma))
  2907. return do_huge_pmd_wp_page(mm, vma, address, pmd, orig_pmd);
  2908. if (vma->vm_ops->pmd_fault)
  2909. return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
  2910. return VM_FAULT_FALLBACK;
  2911. }
  2912. /*
  2913. * These routines also need to handle stuff like marking pages dirty
  2914. * and/or accessed for architectures that don't do it in hardware (most
  2915. * RISC architectures). The early dirtying is also good on the i386.
  2916. *
  2917. * There is also a hook called "update_mmu_cache()" that architectures
  2918. * with external mmu caches can use to update those (ie the Sparc or
  2919. * PowerPC hashed page tables that act as extended TLBs).
  2920. *
  2921. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2922. * but allow concurrent faults), and pte mapped but not yet locked.
  2923. * We return with pte unmapped and unlocked.
  2924. *
  2925. * The mmap_sem may have been released depending on flags and our
  2926. * return value. See filemap_fault() and __lock_page_or_retry().
  2927. */
  2928. static int handle_pte_fault(struct mm_struct *mm,
  2929. struct vm_area_struct *vma, unsigned long address,
  2930. pte_t *pte, pmd_t *pmd, unsigned int flags)
  2931. {
  2932. pte_t entry;
  2933. spinlock_t *ptl;
  2934. /*
  2935. * some architectures can have larger ptes than wordsize,
  2936. * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and CONFIG_32BIT=y,
  2937. * so READ_ONCE or ACCESS_ONCE cannot guarantee atomic accesses.
  2938. * The code below just needs a consistent view for the ifs and
  2939. * we later double check anyway with the ptl lock held. So here
  2940. * a barrier will do.
  2941. */
  2942. entry = *pte;
  2943. barrier();
  2944. if (!pte_present(entry)) {
  2945. if (pte_none(entry)) {
  2946. if (vma_is_anonymous(vma))
  2947. return do_anonymous_page(mm, vma, address,
  2948. pte, pmd, flags);
  2949. else
  2950. return do_fault(mm, vma, address, pte, pmd,
  2951. flags, entry);
  2952. }
  2953. return do_swap_page(mm, vma, address,
  2954. pte, pmd, flags, entry);
  2955. }
  2956. if (pte_protnone(entry))
  2957. return do_numa_page(mm, vma, address, entry, pte, pmd);
  2958. ptl = pte_lockptr(mm, pmd);
  2959. spin_lock(ptl);
  2960. if (unlikely(!pte_same(*pte, entry)))
  2961. goto unlock;
  2962. if (flags & FAULT_FLAG_WRITE) {
  2963. if (!pte_write(entry))
  2964. return do_wp_page(mm, vma, address,
  2965. pte, pmd, ptl, entry);
  2966. entry = pte_mkdirty(entry);
  2967. }
  2968. entry = pte_mkyoung(entry);
  2969. if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
  2970. update_mmu_cache(vma, address, pte);
  2971. } else {
  2972. /*
  2973. * This is needed only for protection faults but the arch code
  2974. * is not yet telling us if this is a protection fault or not.
  2975. * This still avoids useless tlb flushes for .text page faults
  2976. * with threads.
  2977. */
  2978. if (flags & FAULT_FLAG_WRITE)
  2979. flush_tlb_fix_spurious_fault(vma, address);
  2980. }
  2981. unlock:
  2982. pte_unmap_unlock(pte, ptl);
  2983. return 0;
  2984. }
  2985. /*
  2986. * By the time we get here, we already hold the mm semaphore
  2987. *
  2988. * The mmap_sem may have been released depending on flags and our
  2989. * return value. See filemap_fault() and __lock_page_or_retry().
  2990. */
  2991. static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2992. unsigned long address, unsigned int flags)
  2993. {
  2994. pgd_t *pgd;
  2995. pud_t *pud;
  2996. pmd_t *pmd;
  2997. pte_t *pte;
  2998. if (unlikely(is_vm_hugetlb_page(vma)))
  2999. return hugetlb_fault(mm, vma, address, flags);
  3000. pgd = pgd_offset(mm, address);
  3001. pud = pud_alloc(mm, pgd, address);
  3002. if (!pud)
  3003. return VM_FAULT_OOM;
  3004. pmd = pmd_alloc(mm, pud, address);
  3005. if (!pmd)
  3006. return VM_FAULT_OOM;
  3007. if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
  3008. int ret = create_huge_pmd(mm, vma, address, pmd, flags);
  3009. if (!(ret & VM_FAULT_FALLBACK))
  3010. return ret;
  3011. } else {
  3012. pmd_t orig_pmd = *pmd;
  3013. int ret;
  3014. barrier();
  3015. if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
  3016. unsigned int dirty = flags & FAULT_FLAG_WRITE;
  3017. if (pmd_protnone(orig_pmd))
  3018. return do_huge_pmd_numa_page(mm, vma, address,
  3019. orig_pmd, pmd);
  3020. if (dirty && !pmd_write(orig_pmd)) {
  3021. ret = wp_huge_pmd(mm, vma, address, pmd,
  3022. orig_pmd, flags);
  3023. if (!(ret & VM_FAULT_FALLBACK))
  3024. return ret;
  3025. } else {
  3026. huge_pmd_set_accessed(mm, vma, address, pmd,
  3027. orig_pmd, dirty);
  3028. return 0;
  3029. }
  3030. }
  3031. }
  3032. /*
  3033. * Use __pte_alloc instead of pte_alloc_map, because we can't
  3034. * run pte_offset_map on the pmd, if an huge pmd could
  3035. * materialize from under us from a different thread.
  3036. */
  3037. if (unlikely(pmd_none(*pmd)) &&
  3038. unlikely(__pte_alloc(mm, vma, pmd, address)))
  3039. return VM_FAULT_OOM;
  3040. /*
  3041. * If a huge pmd materialized under us just retry later. Use
  3042. * pmd_trans_unstable() instead of pmd_trans_huge() to ensure the pmd
  3043. * didn't become pmd_trans_huge under us and then back to pmd_none, as
  3044. * a result of MADV_DONTNEED running immediately after a huge pmd fault
  3045. * in a different thread of this mm, in turn leading to a misleading
  3046. * pmd_trans_huge() retval. All we have to ensure is that it is a
  3047. * regular pmd that we can walk with pte_offset_map() and we can do that
  3048. * through an atomic read in C, which is what pmd_trans_unstable()
  3049. * provides.
  3050. */
  3051. if (unlikely(pmd_trans_unstable(pmd) || pmd_devmap(*pmd)))
  3052. return 0;
  3053. /*
  3054. * A regular pmd is established and it can't morph into a huge pmd
  3055. * from under us anymore at this point because we hold the mmap_sem
  3056. * read mode and khugepaged takes it in write mode. So now it's
  3057. * safe to run pte_offset_map().
  3058. */
  3059. pte = pte_offset_map(pmd, address);
  3060. return handle_pte_fault(mm, vma, address, pte, pmd, flags);
  3061. }
  3062. /*
  3063. * By the time we get here, we already hold the mm semaphore
  3064. *
  3065. * The mmap_sem may have been released depending on flags and our
  3066. * return value. See filemap_fault() and __lock_page_or_retry().
  3067. */
  3068. int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  3069. unsigned long address, unsigned int flags)
  3070. {
  3071. int ret;
  3072. __set_current_state(TASK_RUNNING);
  3073. count_vm_event(PGFAULT);
  3074. mem_cgroup_count_vm_event(mm, PGFAULT);
  3075. /* do counter updates before entering really critical section. */
  3076. check_sync_rss_stat(current);
  3077. /*
  3078. * Enable the memcg OOM handling for faults triggered in user
  3079. * space. Kernel faults are handled more gracefully.
  3080. */
  3081. if (flags & FAULT_FLAG_USER)
  3082. mem_cgroup_oom_enable();
  3083. ret = __handle_mm_fault(mm, vma, address, flags);
  3084. if (flags & FAULT_FLAG_USER) {
  3085. mem_cgroup_oom_disable();
  3086. /*
  3087. * The task may have entered a memcg OOM situation but
  3088. * if the allocation error was handled gracefully (no
  3089. * VM_FAULT_OOM), there is no need to kill anything.
  3090. * Just clean up the OOM state peacefully.
  3091. */
  3092. if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
  3093. mem_cgroup_oom_synchronize(false);
  3094. }
  3095. return ret;
  3096. }
  3097. EXPORT_SYMBOL_GPL(handle_mm_fault);
  3098. #ifndef __PAGETABLE_PUD_FOLDED
  3099. /*
  3100. * Allocate page upper directory.
  3101. * We've already handled the fast-path in-line.
  3102. */
  3103. int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
  3104. {
  3105. pud_t *new = pud_alloc_one(mm, address);
  3106. if (!new)
  3107. return -ENOMEM;
  3108. smp_wmb(); /* See comment in __pte_alloc */
  3109. spin_lock(&mm->page_table_lock);
  3110. if (pgd_present(*pgd)) /* Another has populated it */
  3111. pud_free(mm, new);
  3112. else
  3113. pgd_populate(mm, pgd, new);
  3114. spin_unlock(&mm->page_table_lock);
  3115. return 0;
  3116. }
  3117. #endif /* __PAGETABLE_PUD_FOLDED */
  3118. #ifndef __PAGETABLE_PMD_FOLDED
  3119. /*
  3120. * Allocate page middle directory.
  3121. * We've already handled the fast-path in-line.
  3122. */
  3123. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  3124. {
  3125. pmd_t *new = pmd_alloc_one(mm, address);
  3126. if (!new)
  3127. return -ENOMEM;
  3128. smp_wmb(); /* See comment in __pte_alloc */
  3129. spin_lock(&mm->page_table_lock);
  3130. #ifndef __ARCH_HAS_4LEVEL_HACK
  3131. if (!pud_present(*pud)) {
  3132. mm_inc_nr_pmds(mm);
  3133. pud_populate(mm, pud, new);
  3134. } else /* Another has populated it */
  3135. pmd_free(mm, new);
  3136. #else
  3137. if (!pgd_present(*pud)) {
  3138. mm_inc_nr_pmds(mm);
  3139. pgd_populate(mm, pud, new);
  3140. } else /* Another has populated it */
  3141. pmd_free(mm, new);
  3142. #endif /* __ARCH_HAS_4LEVEL_HACK */
  3143. spin_unlock(&mm->page_table_lock);
  3144. return 0;
  3145. }
  3146. #endif /* __PAGETABLE_PMD_FOLDED */
  3147. static int __follow_pte(struct mm_struct *mm, unsigned long address,
  3148. pte_t **ptepp, spinlock_t **ptlp)
  3149. {
  3150. pgd_t *pgd;
  3151. pud_t *pud;
  3152. pmd_t *pmd;
  3153. pte_t *ptep;
  3154. pgd = pgd_offset(mm, address);
  3155. if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
  3156. goto out;
  3157. pud = pud_offset(pgd, address);
  3158. if (pud_none(*pud) || unlikely(pud_bad(*pud)))
  3159. goto out;
  3160. pmd = pmd_offset(pud, address);
  3161. VM_BUG_ON(pmd_trans_huge(*pmd));
  3162. if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
  3163. goto out;
  3164. /* We cannot handle huge page PFN maps. Luckily they don't exist. */
  3165. if (pmd_huge(*pmd))
  3166. goto out;
  3167. ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
  3168. if (!ptep)
  3169. goto out;
  3170. if (!pte_present(*ptep))
  3171. goto unlock;
  3172. *ptepp = ptep;
  3173. return 0;
  3174. unlock:
  3175. pte_unmap_unlock(ptep, *ptlp);
  3176. out:
  3177. return -EINVAL;
  3178. }
  3179. static inline int follow_pte(struct mm_struct *mm, unsigned long address,
  3180. pte_t **ptepp, spinlock_t **ptlp)
  3181. {
  3182. int res;
  3183. /* (void) is needed to make gcc happy */
  3184. (void) __cond_lock(*ptlp,
  3185. !(res = __follow_pte(mm, address, ptepp, ptlp)));
  3186. return res;
  3187. }
  3188. /**
  3189. * follow_pfn - look up PFN at a user virtual address
  3190. * @vma: memory mapping
  3191. * @address: user virtual address
  3192. * @pfn: location to store found PFN
  3193. *
  3194. * Only IO mappings and raw PFN mappings are allowed.
  3195. *
  3196. * Returns zero and the pfn at @pfn on success, -ve otherwise.
  3197. */
  3198. int follow_pfn(struct vm_area_struct *vma, unsigned long address,
  3199. unsigned long *pfn)
  3200. {
  3201. int ret = -EINVAL;
  3202. spinlock_t *ptl;
  3203. pte_t *ptep;
  3204. if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
  3205. return ret;
  3206. ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
  3207. if (ret)
  3208. return ret;
  3209. *pfn = pte_pfn(*ptep);
  3210. pte_unmap_unlock(ptep, ptl);
  3211. return 0;
  3212. }
  3213. EXPORT_SYMBOL(follow_pfn);
  3214. #ifdef CONFIG_HAVE_IOREMAP_PROT
  3215. int follow_phys(struct vm_area_struct *vma,
  3216. unsigned long address, unsigned int flags,
  3217. unsigned long *prot, resource_size_t *phys)
  3218. {
  3219. int ret = -EINVAL;
  3220. pte_t *ptep, pte;
  3221. spinlock_t *ptl;
  3222. if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
  3223. goto out;
  3224. if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
  3225. goto out;
  3226. pte = *ptep;
  3227. if ((flags & FOLL_WRITE) && !pte_write(pte))
  3228. goto unlock;
  3229. *prot = pgprot_val(pte_pgprot(pte));
  3230. *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
  3231. ret = 0;
  3232. unlock:
  3233. pte_unmap_unlock(ptep, ptl);
  3234. out:
  3235. return ret;
  3236. }
  3237. int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
  3238. void *buf, int len, int write)
  3239. {
  3240. resource_size_t phys_addr;
  3241. unsigned long prot = 0;
  3242. void __iomem *maddr;
  3243. int offset = addr & (PAGE_SIZE-1);
  3244. if (follow_phys(vma, addr, write, &prot, &phys_addr))
  3245. return -EINVAL;
  3246. maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
  3247. if (write)
  3248. memcpy_toio(maddr + offset, buf, len);
  3249. else
  3250. memcpy_fromio(buf, maddr + offset, len);
  3251. iounmap(maddr);
  3252. return len;
  3253. }
  3254. EXPORT_SYMBOL_GPL(generic_access_phys);
  3255. #endif
  3256. /*
  3257. * Access another process' address space as given in mm. If non-NULL, use the
  3258. * given task for page fault accounting.
  3259. */
  3260. static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
  3261. unsigned long addr, void *buf, int len, int write)
  3262. {
  3263. struct vm_area_struct *vma;
  3264. void *old_buf = buf;
  3265. down_read(&mm->mmap_sem);
  3266. /* ignore errors, just check how much was successfully transferred */
  3267. while (len) {
  3268. int bytes, ret, offset;
  3269. void *maddr;
  3270. struct page *page = NULL;
  3271. ret = get_user_pages(tsk, mm, addr, 1,
  3272. write, 1, &page, &vma);
  3273. if (ret <= 0) {
  3274. #ifndef CONFIG_HAVE_IOREMAP_PROT
  3275. break;
  3276. #else
  3277. /*
  3278. * Check if this is a VM_IO | VM_PFNMAP VMA, which
  3279. * we can access using slightly different code.
  3280. */
  3281. vma = find_vma(mm, addr);
  3282. if (!vma || vma->vm_start > addr)
  3283. break;
  3284. if (vma->vm_ops && vma->vm_ops->access)
  3285. ret = vma->vm_ops->access(vma, addr, buf,
  3286. len, write);
  3287. if (ret <= 0)
  3288. break;
  3289. bytes = ret;
  3290. #endif
  3291. } else {
  3292. bytes = len;
  3293. offset = addr & (PAGE_SIZE-1);
  3294. if (bytes > PAGE_SIZE-offset)
  3295. bytes = PAGE_SIZE-offset;
  3296. maddr = kmap(page);
  3297. if (write) {
  3298. copy_to_user_page(vma, page, addr,
  3299. maddr + offset, buf, bytes);
  3300. set_page_dirty_lock(page);
  3301. } else {
  3302. copy_from_user_page(vma, page, addr,
  3303. buf, maddr + offset, bytes);
  3304. }
  3305. kunmap(page);
  3306. page_cache_release(page);
  3307. }
  3308. len -= bytes;
  3309. buf += bytes;
  3310. addr += bytes;
  3311. }
  3312. up_read(&mm->mmap_sem);
  3313. return buf - old_buf;
  3314. }
  3315. /**
  3316. * access_remote_vm - access another process' address space
  3317. * @mm: the mm_struct of the target address space
  3318. * @addr: start address to access
  3319. * @buf: source or destination buffer
  3320. * @len: number of bytes to transfer
  3321. * @write: whether the access is a write
  3322. *
  3323. * The caller must hold a reference on @mm.
  3324. */
  3325. int access_remote_vm(struct mm_struct *mm, unsigned long addr,
  3326. void *buf, int len, int write)
  3327. {
  3328. return __access_remote_vm(NULL, mm, addr, buf, len, write);
  3329. }
  3330. /*
  3331. * Access another process' address space.
  3332. * Source/target buffer must be kernel space,
  3333. * Do not walk the page table directly, use get_user_pages
  3334. */
  3335. int access_process_vm(struct task_struct *tsk, unsigned long addr,
  3336. void *buf, int len, int write)
  3337. {
  3338. struct mm_struct *mm;
  3339. int ret;
  3340. mm = get_task_mm(tsk);
  3341. if (!mm)
  3342. return 0;
  3343. ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
  3344. mmput(mm);
  3345. return ret;
  3346. }
  3347. /*
  3348. * Print the name of a VMA.
  3349. */
  3350. void print_vma_addr(char *prefix, unsigned long ip)
  3351. {
  3352. struct mm_struct *mm = current->mm;
  3353. struct vm_area_struct *vma;
  3354. /*
  3355. * Do not print if we are in atomic
  3356. * contexts (in exception stacks, etc.):
  3357. */
  3358. if (preempt_count())
  3359. return;
  3360. down_read(&mm->mmap_sem);
  3361. vma = find_vma(mm, ip);
  3362. if (vma && vma->vm_file) {
  3363. struct file *f = vma->vm_file;
  3364. char *buf = (char *)__get_free_page(GFP_KERNEL);
  3365. if (buf) {
  3366. char *p;
  3367. p = file_path(f, buf, PAGE_SIZE);
  3368. if (IS_ERR(p))
  3369. p = "?";
  3370. printk("%s%s[%lx+%lx]", prefix, kbasename(p),
  3371. vma->vm_start,
  3372. vma->vm_end - vma->vm_start);
  3373. free_page((unsigned long)buf);
  3374. }
  3375. }
  3376. up_read(&mm->mmap_sem);
  3377. }
  3378. #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
  3379. void __might_fault(const char *file, int line)
  3380. {
  3381. /*
  3382. * Some code (nfs/sunrpc) uses socket ops on kernel memory while
  3383. * holding the mmap_sem, this is safe because kernel memory doesn't
  3384. * get paged out, therefore we'll never actually fault, and the
  3385. * below annotations will generate false positives.
  3386. */
  3387. if (segment_eq(get_fs(), KERNEL_DS))
  3388. return;
  3389. if (pagefault_disabled())
  3390. return;
  3391. __might_sleep(file, line, 0);
  3392. #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
  3393. if (current->mm)
  3394. might_lock_read(&current->mm->mmap_sem);
  3395. #endif
  3396. }
  3397. EXPORT_SYMBOL(__might_fault);
  3398. #endif
  3399. #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
  3400. static void clear_gigantic_page(struct page *page,
  3401. unsigned long addr,
  3402. unsigned int pages_per_huge_page)
  3403. {
  3404. int i;
  3405. struct page *p = page;
  3406. might_sleep();
  3407. for (i = 0; i < pages_per_huge_page;
  3408. i++, p = mem_map_next(p, page, i)) {
  3409. cond_resched();
  3410. clear_user_highpage(p, addr + i * PAGE_SIZE);
  3411. }
  3412. }
  3413. void clear_huge_page(struct page *page,
  3414. unsigned long addr, unsigned int pages_per_huge_page)
  3415. {
  3416. int i;
  3417. if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
  3418. clear_gigantic_page(page, addr, pages_per_huge_page);
  3419. return;
  3420. }
  3421. might_sleep();
  3422. for (i = 0; i < pages_per_huge_page; i++) {
  3423. cond_resched();
  3424. clear_user_highpage(page + i, addr + i * PAGE_SIZE);
  3425. }
  3426. }
  3427. static void copy_user_gigantic_page(struct page *dst, struct page *src,
  3428. unsigned long addr,
  3429. struct vm_area_struct *vma,
  3430. unsigned int pages_per_huge_page)
  3431. {
  3432. int i;
  3433. struct page *dst_base = dst;
  3434. struct page *src_base = src;
  3435. for (i = 0; i < pages_per_huge_page; ) {
  3436. cond_resched();
  3437. copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
  3438. i++;
  3439. dst = mem_map_next(dst, dst_base, i);
  3440. src = mem_map_next(src, src_base, i);
  3441. }
  3442. }
  3443. void copy_user_huge_page(struct page *dst, struct page *src,
  3444. unsigned long addr, struct vm_area_struct *vma,
  3445. unsigned int pages_per_huge_page)
  3446. {
  3447. int i;
  3448. if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
  3449. copy_user_gigantic_page(dst, src, addr, vma,
  3450. pages_per_huge_page);
  3451. return;
  3452. }
  3453. might_sleep();
  3454. for (i = 0; i < pages_per_huge_page; i++) {
  3455. cond_resched();
  3456. copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
  3457. }
  3458. }
  3459. #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
  3460. #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
  3461. static struct kmem_cache *page_ptl_cachep;
  3462. void __init ptlock_cache_init(void)
  3463. {
  3464. page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
  3465. SLAB_PANIC, NULL);
  3466. }
  3467. bool ptlock_alloc(struct page *page)
  3468. {
  3469. spinlock_t *ptl;
  3470. ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
  3471. if (!ptl)
  3472. return false;
  3473. page->ptl = ptl;
  3474. return true;
  3475. }
  3476. void ptlock_free(struct page *page)
  3477. {
  3478. kmem_cache_free(page_ptl_cachep, page->ptl);
  3479. }
  3480. #endif