bitmap.c 36 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205
  1. /*
  2. * lib/bitmap.c
  3. * Helper functions for bitmap.h.
  4. *
  5. * This source code is licensed under the GNU General Public License,
  6. * Version 2. See the file COPYING for more details.
  7. */
  8. #include <linux/export.h>
  9. #include <linux/thread_info.h>
  10. #include <linux/ctype.h>
  11. #include <linux/errno.h>
  12. #include <linux/bitmap.h>
  13. #include <linux/bitops.h>
  14. #include <linux/bug.h>
  15. #include <asm/page.h>
  16. #include <asm/uaccess.h>
  17. /*
  18. * bitmaps provide an array of bits, implemented using an an
  19. * array of unsigned longs. The number of valid bits in a
  20. * given bitmap does _not_ need to be an exact multiple of
  21. * BITS_PER_LONG.
  22. *
  23. * The possible unused bits in the last, partially used word
  24. * of a bitmap are 'don't care'. The implementation makes
  25. * no particular effort to keep them zero. It ensures that
  26. * their value will not affect the results of any operation.
  27. * The bitmap operations that return Boolean (bitmap_empty,
  28. * for example) or scalar (bitmap_weight, for example) results
  29. * carefully filter out these unused bits from impacting their
  30. * results.
  31. *
  32. * These operations actually hold to a slightly stronger rule:
  33. * if you don't input any bitmaps to these ops that have some
  34. * unused bits set, then they won't output any set unused bits
  35. * in output bitmaps.
  36. *
  37. * The byte ordering of bitmaps is more natural on little
  38. * endian architectures. See the big-endian headers
  39. * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
  40. * for the best explanations of this ordering.
  41. */
  42. int __bitmap_empty(const unsigned long *bitmap, unsigned int bits)
  43. {
  44. unsigned int k, lim = bits/BITS_PER_LONG;
  45. for (k = 0; k < lim; ++k)
  46. if (bitmap[k])
  47. return 0;
  48. if (bits % BITS_PER_LONG)
  49. if (bitmap[k] & BITMAP_LAST_WORD_MASK(bits))
  50. return 0;
  51. return 1;
  52. }
  53. EXPORT_SYMBOL(__bitmap_empty);
  54. int __bitmap_full(const unsigned long *bitmap, unsigned int bits)
  55. {
  56. unsigned int k, lim = bits/BITS_PER_LONG;
  57. for (k = 0; k < lim; ++k)
  58. if (~bitmap[k])
  59. return 0;
  60. if (bits % BITS_PER_LONG)
  61. if (~bitmap[k] & BITMAP_LAST_WORD_MASK(bits))
  62. return 0;
  63. return 1;
  64. }
  65. EXPORT_SYMBOL(__bitmap_full);
  66. int __bitmap_equal(const unsigned long *bitmap1,
  67. const unsigned long *bitmap2, unsigned int bits)
  68. {
  69. unsigned int k, lim = bits/BITS_PER_LONG;
  70. for (k = 0; k < lim; ++k)
  71. if (bitmap1[k] != bitmap2[k])
  72. return 0;
  73. if (bits % BITS_PER_LONG)
  74. if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
  75. return 0;
  76. return 1;
  77. }
  78. EXPORT_SYMBOL(__bitmap_equal);
  79. void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits)
  80. {
  81. unsigned int k, lim = bits/BITS_PER_LONG;
  82. for (k = 0; k < lim; ++k)
  83. dst[k] = ~src[k];
  84. if (bits % BITS_PER_LONG)
  85. dst[k] = ~src[k];
  86. }
  87. EXPORT_SYMBOL(__bitmap_complement);
  88. /**
  89. * __bitmap_shift_right - logical right shift of the bits in a bitmap
  90. * @dst : destination bitmap
  91. * @src : source bitmap
  92. * @shift : shift by this many bits
  93. * @bits : bitmap size, in bits
  94. *
  95. * Shifting right (dividing) means moving bits in the MS -> LS bit
  96. * direction. Zeros are fed into the vacated MS positions and the
  97. * LS bits shifted off the bottom are lost.
  98. */
  99. void __bitmap_shift_right(unsigned long *dst,
  100. const unsigned long *src, int shift, int bits)
  101. {
  102. int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG;
  103. int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
  104. unsigned long mask = (1UL << left) - 1;
  105. for (k = 0; off + k < lim; ++k) {
  106. unsigned long upper, lower;
  107. /*
  108. * If shift is not word aligned, take lower rem bits of
  109. * word above and make them the top rem bits of result.
  110. */
  111. if (!rem || off + k + 1 >= lim)
  112. upper = 0;
  113. else {
  114. upper = src[off + k + 1];
  115. if (off + k + 1 == lim - 1 && left)
  116. upper &= mask;
  117. }
  118. lower = src[off + k];
  119. if (left && off + k == lim - 1)
  120. lower &= mask;
  121. dst[k] = lower >> rem;
  122. if (rem)
  123. dst[k] |= upper << (BITS_PER_LONG - rem);
  124. if (left && k == lim - 1)
  125. dst[k] &= mask;
  126. }
  127. if (off)
  128. memset(&dst[lim - off], 0, off*sizeof(unsigned long));
  129. }
  130. EXPORT_SYMBOL(__bitmap_shift_right);
  131. /**
  132. * __bitmap_shift_left - logical left shift of the bits in a bitmap
  133. * @dst : destination bitmap
  134. * @src : source bitmap
  135. * @shift : shift by this many bits
  136. * @bits : bitmap size, in bits
  137. *
  138. * Shifting left (multiplying) means moving bits in the LS -> MS
  139. * direction. Zeros are fed into the vacated LS bit positions
  140. * and those MS bits shifted off the top are lost.
  141. */
  142. void __bitmap_shift_left(unsigned long *dst,
  143. const unsigned long *src, int shift, int bits)
  144. {
  145. int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG;
  146. int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
  147. for (k = lim - off - 1; k >= 0; --k) {
  148. unsigned long upper, lower;
  149. /*
  150. * If shift is not word aligned, take upper rem bits of
  151. * word below and make them the bottom rem bits of result.
  152. */
  153. if (rem && k > 0)
  154. lower = src[k - 1];
  155. else
  156. lower = 0;
  157. upper = src[k];
  158. if (left && k == lim - 1)
  159. upper &= (1UL << left) - 1;
  160. dst[k + off] = upper << rem;
  161. if (rem)
  162. dst[k + off] |= lower >> (BITS_PER_LONG - rem);
  163. if (left && k + off == lim - 1)
  164. dst[k + off] &= (1UL << left) - 1;
  165. }
  166. if (off)
  167. memset(dst, 0, off*sizeof(unsigned long));
  168. }
  169. EXPORT_SYMBOL(__bitmap_shift_left);
  170. int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
  171. const unsigned long *bitmap2, unsigned int bits)
  172. {
  173. unsigned int k;
  174. unsigned int lim = bits/BITS_PER_LONG;
  175. unsigned long result = 0;
  176. for (k = 0; k < lim; k++)
  177. result |= (dst[k] = bitmap1[k] & bitmap2[k]);
  178. if (bits % BITS_PER_LONG)
  179. result |= (dst[k] = bitmap1[k] & bitmap2[k] &
  180. BITMAP_LAST_WORD_MASK(bits));
  181. return result != 0;
  182. }
  183. EXPORT_SYMBOL(__bitmap_and);
  184. void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
  185. const unsigned long *bitmap2, unsigned int bits)
  186. {
  187. unsigned int k;
  188. unsigned int nr = BITS_TO_LONGS(bits);
  189. for (k = 0; k < nr; k++)
  190. dst[k] = bitmap1[k] | bitmap2[k];
  191. }
  192. EXPORT_SYMBOL(__bitmap_or);
  193. void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
  194. const unsigned long *bitmap2, unsigned int bits)
  195. {
  196. unsigned int k;
  197. unsigned int nr = BITS_TO_LONGS(bits);
  198. for (k = 0; k < nr; k++)
  199. dst[k] = bitmap1[k] ^ bitmap2[k];
  200. }
  201. EXPORT_SYMBOL(__bitmap_xor);
  202. int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
  203. const unsigned long *bitmap2, unsigned int bits)
  204. {
  205. unsigned int k;
  206. unsigned int lim = bits/BITS_PER_LONG;
  207. unsigned long result = 0;
  208. for (k = 0; k < lim; k++)
  209. result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
  210. if (bits % BITS_PER_LONG)
  211. result |= (dst[k] = bitmap1[k] & ~bitmap2[k] &
  212. BITMAP_LAST_WORD_MASK(bits));
  213. return result != 0;
  214. }
  215. EXPORT_SYMBOL(__bitmap_andnot);
  216. int __bitmap_intersects(const unsigned long *bitmap1,
  217. const unsigned long *bitmap2, unsigned int bits)
  218. {
  219. unsigned int k, lim = bits/BITS_PER_LONG;
  220. for (k = 0; k < lim; ++k)
  221. if (bitmap1[k] & bitmap2[k])
  222. return 1;
  223. if (bits % BITS_PER_LONG)
  224. if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
  225. return 1;
  226. return 0;
  227. }
  228. EXPORT_SYMBOL(__bitmap_intersects);
  229. int __bitmap_subset(const unsigned long *bitmap1,
  230. const unsigned long *bitmap2, unsigned int bits)
  231. {
  232. unsigned int k, lim = bits/BITS_PER_LONG;
  233. for (k = 0; k < lim; ++k)
  234. if (bitmap1[k] & ~bitmap2[k])
  235. return 0;
  236. if (bits % BITS_PER_LONG)
  237. if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
  238. return 0;
  239. return 1;
  240. }
  241. EXPORT_SYMBOL(__bitmap_subset);
  242. int __bitmap_weight(const unsigned long *bitmap, unsigned int bits)
  243. {
  244. unsigned int k, lim = bits/BITS_PER_LONG;
  245. int w = 0;
  246. for (k = 0; k < lim; k++)
  247. w += hweight_long(bitmap[k]);
  248. if (bits % BITS_PER_LONG)
  249. w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits));
  250. return w;
  251. }
  252. EXPORT_SYMBOL(__bitmap_weight);
  253. void bitmap_set(unsigned long *map, unsigned int start, int len)
  254. {
  255. unsigned long *p = map + BIT_WORD(start);
  256. const unsigned int size = start + len;
  257. int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
  258. unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
  259. while (len - bits_to_set >= 0) {
  260. *p |= mask_to_set;
  261. len -= bits_to_set;
  262. bits_to_set = BITS_PER_LONG;
  263. mask_to_set = ~0UL;
  264. p++;
  265. }
  266. if (len) {
  267. mask_to_set &= BITMAP_LAST_WORD_MASK(size);
  268. *p |= mask_to_set;
  269. }
  270. }
  271. EXPORT_SYMBOL(bitmap_set);
  272. void bitmap_clear(unsigned long *map, unsigned int start, int len)
  273. {
  274. unsigned long *p = map + BIT_WORD(start);
  275. const unsigned int size = start + len;
  276. int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
  277. unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
  278. while (len - bits_to_clear >= 0) {
  279. *p &= ~mask_to_clear;
  280. len -= bits_to_clear;
  281. bits_to_clear = BITS_PER_LONG;
  282. mask_to_clear = ~0UL;
  283. p++;
  284. }
  285. if (len) {
  286. mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
  287. *p &= ~mask_to_clear;
  288. }
  289. }
  290. EXPORT_SYMBOL(bitmap_clear);
  291. /**
  292. * bitmap_find_next_zero_area_off - find a contiguous aligned zero area
  293. * @map: The address to base the search on
  294. * @size: The bitmap size in bits
  295. * @start: The bitnumber to start searching at
  296. * @nr: The number of zeroed bits we're looking for
  297. * @align_mask: Alignment mask for zero area
  298. * @align_offset: Alignment offset for zero area.
  299. *
  300. * The @align_mask should be one less than a power of 2; the effect is that
  301. * the bit offset of all zero areas this function finds plus @align_offset
  302. * is multiple of that power of 2.
  303. */
  304. unsigned long bitmap_find_next_zero_area_off(unsigned long *map,
  305. unsigned long size,
  306. unsigned long start,
  307. unsigned int nr,
  308. unsigned long align_mask,
  309. unsigned long align_offset)
  310. {
  311. unsigned long index, end, i;
  312. again:
  313. index = find_next_zero_bit(map, size, start);
  314. /* Align allocation */
  315. index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset;
  316. end = index + nr;
  317. if (end > size)
  318. return end;
  319. i = find_next_bit(map, end, index);
  320. if (i < end) {
  321. start = i + 1;
  322. goto again;
  323. }
  324. return index;
  325. }
  326. EXPORT_SYMBOL(bitmap_find_next_zero_area_off);
  327. /*
  328. * Bitmap printing & parsing functions: first version by Nadia Yvette Chambers,
  329. * second version by Paul Jackson, third by Joe Korty.
  330. */
  331. #define CHUNKSZ 32
  332. #define nbits_to_hold_value(val) fls(val)
  333. #define BASEDEC 10 /* fancier cpuset lists input in decimal */
  334. /**
  335. * bitmap_scnprintf - convert bitmap to an ASCII hex string.
  336. * @buf: byte buffer into which string is placed
  337. * @buflen: reserved size of @buf, in bytes
  338. * @maskp: pointer to bitmap to convert
  339. * @nmaskbits: size of bitmap, in bits
  340. *
  341. * Exactly @nmaskbits bits are displayed. Hex digits are grouped into
  342. * comma-separated sets of eight digits per set. Returns the number of
  343. * characters which were written to *buf, excluding the trailing \0.
  344. */
  345. int bitmap_scnprintf(char *buf, unsigned int buflen,
  346. const unsigned long *maskp, int nmaskbits)
  347. {
  348. int i, word, bit, len = 0;
  349. unsigned long val;
  350. const char *sep = "";
  351. int chunksz;
  352. u32 chunkmask;
  353. chunksz = nmaskbits & (CHUNKSZ - 1);
  354. if (chunksz == 0)
  355. chunksz = CHUNKSZ;
  356. i = ALIGN(nmaskbits, CHUNKSZ) - CHUNKSZ;
  357. for (; i >= 0; i -= CHUNKSZ) {
  358. chunkmask = ((1ULL << chunksz) - 1);
  359. word = i / BITS_PER_LONG;
  360. bit = i % BITS_PER_LONG;
  361. val = (maskp[word] >> bit) & chunkmask;
  362. len += scnprintf(buf+len, buflen-len, "%s%0*lx", sep,
  363. (chunksz+3)/4, val);
  364. chunksz = CHUNKSZ;
  365. sep = ",";
  366. }
  367. return len;
  368. }
  369. EXPORT_SYMBOL(bitmap_scnprintf);
  370. /**
  371. * __bitmap_parse - convert an ASCII hex string into a bitmap.
  372. * @buf: pointer to buffer containing string.
  373. * @buflen: buffer size in bytes. If string is smaller than this
  374. * then it must be terminated with a \0.
  375. * @is_user: location of buffer, 0 indicates kernel space
  376. * @maskp: pointer to bitmap array that will contain result.
  377. * @nmaskbits: size of bitmap, in bits.
  378. *
  379. * Commas group hex digits into chunks. Each chunk defines exactly 32
  380. * bits of the resultant bitmask. No chunk may specify a value larger
  381. * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
  382. * then leading 0-bits are prepended. %-EINVAL is returned for illegal
  383. * characters and for grouping errors such as "1,,5", ",44", "," and "".
  384. * Leading and trailing whitespace accepted, but not embedded whitespace.
  385. */
  386. int __bitmap_parse(const char *buf, unsigned int buflen,
  387. int is_user, unsigned long *maskp,
  388. int nmaskbits)
  389. {
  390. int c, old_c, totaldigits, ndigits, nchunks, nbits;
  391. u32 chunk;
  392. const char __user __force *ubuf = (const char __user __force *)buf;
  393. bitmap_zero(maskp, nmaskbits);
  394. nchunks = nbits = totaldigits = c = 0;
  395. do {
  396. chunk = ndigits = 0;
  397. /* Get the next chunk of the bitmap */
  398. while (buflen) {
  399. old_c = c;
  400. if (is_user) {
  401. if (__get_user(c, ubuf++))
  402. return -EFAULT;
  403. }
  404. else
  405. c = *buf++;
  406. buflen--;
  407. if (isspace(c))
  408. continue;
  409. /*
  410. * If the last character was a space and the current
  411. * character isn't '\0', we've got embedded whitespace.
  412. * This is a no-no, so throw an error.
  413. */
  414. if (totaldigits && c && isspace(old_c))
  415. return -EINVAL;
  416. /* A '\0' or a ',' signal the end of the chunk */
  417. if (c == '\0' || c == ',')
  418. break;
  419. if (!isxdigit(c))
  420. return -EINVAL;
  421. /*
  422. * Make sure there are at least 4 free bits in 'chunk'.
  423. * If not, this hexdigit will overflow 'chunk', so
  424. * throw an error.
  425. */
  426. if (chunk & ~((1UL << (CHUNKSZ - 4)) - 1))
  427. return -EOVERFLOW;
  428. chunk = (chunk << 4) | hex_to_bin(c);
  429. ndigits++; totaldigits++;
  430. }
  431. if (ndigits == 0)
  432. return -EINVAL;
  433. if (nchunks == 0 && chunk == 0)
  434. continue;
  435. __bitmap_shift_left(maskp, maskp, CHUNKSZ, nmaskbits);
  436. *maskp |= chunk;
  437. nchunks++;
  438. nbits += (nchunks == 1) ? nbits_to_hold_value(chunk) : CHUNKSZ;
  439. if (nbits > nmaskbits)
  440. return -EOVERFLOW;
  441. } while (buflen && c == ',');
  442. return 0;
  443. }
  444. EXPORT_SYMBOL(__bitmap_parse);
  445. /**
  446. * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap
  447. *
  448. * @ubuf: pointer to user buffer containing string.
  449. * @ulen: buffer size in bytes. If string is smaller than this
  450. * then it must be terminated with a \0.
  451. * @maskp: pointer to bitmap array that will contain result.
  452. * @nmaskbits: size of bitmap, in bits.
  453. *
  454. * Wrapper for __bitmap_parse(), providing it with user buffer.
  455. *
  456. * We cannot have this as an inline function in bitmap.h because it needs
  457. * linux/uaccess.h to get the access_ok() declaration and this causes
  458. * cyclic dependencies.
  459. */
  460. int bitmap_parse_user(const char __user *ubuf,
  461. unsigned int ulen, unsigned long *maskp,
  462. int nmaskbits)
  463. {
  464. if (!access_ok(VERIFY_READ, ubuf, ulen))
  465. return -EFAULT;
  466. return __bitmap_parse((const char __force *)ubuf,
  467. ulen, 1, maskp, nmaskbits);
  468. }
  469. EXPORT_SYMBOL(bitmap_parse_user);
  470. /*
  471. * bscnl_emit(buf, buflen, rbot, rtop, bp)
  472. *
  473. * Helper routine for bitmap_scnlistprintf(). Write decimal number
  474. * or range to buf, suppressing output past buf+buflen, with optional
  475. * comma-prefix. Return len of what was written to *buf, excluding the
  476. * trailing \0.
  477. */
  478. static inline int bscnl_emit(char *buf, int buflen, int rbot, int rtop, int len)
  479. {
  480. if (len > 0)
  481. len += scnprintf(buf + len, buflen - len, ",");
  482. if (rbot == rtop)
  483. len += scnprintf(buf + len, buflen - len, "%d", rbot);
  484. else
  485. len += scnprintf(buf + len, buflen - len, "%d-%d", rbot, rtop);
  486. return len;
  487. }
  488. /**
  489. * bitmap_scnlistprintf - convert bitmap to list format ASCII string
  490. * @buf: byte buffer into which string is placed
  491. * @buflen: reserved size of @buf, in bytes
  492. * @maskp: pointer to bitmap to convert
  493. * @nmaskbits: size of bitmap, in bits
  494. *
  495. * Output format is a comma-separated list of decimal numbers and
  496. * ranges. Consecutively set bits are shown as two hyphen-separated
  497. * decimal numbers, the smallest and largest bit numbers set in
  498. * the range. Output format is compatible with the format
  499. * accepted as input by bitmap_parselist().
  500. *
  501. * The return value is the number of characters which were written to *buf
  502. * excluding the trailing '\0', as per ISO C99's scnprintf.
  503. */
  504. int bitmap_scnlistprintf(char *buf, unsigned int buflen,
  505. const unsigned long *maskp, int nmaskbits)
  506. {
  507. int len = 0;
  508. /* current bit is 'cur', most recently seen range is [rbot, rtop] */
  509. int cur, rbot, rtop;
  510. if (buflen == 0)
  511. return 0;
  512. buf[0] = 0;
  513. rbot = cur = find_first_bit(maskp, nmaskbits);
  514. while (cur < nmaskbits) {
  515. rtop = cur;
  516. cur = find_next_bit(maskp, nmaskbits, cur+1);
  517. if (cur >= nmaskbits || cur > rtop + 1) {
  518. len = bscnl_emit(buf, buflen, rbot, rtop, len);
  519. rbot = cur;
  520. }
  521. }
  522. return len;
  523. }
  524. EXPORT_SYMBOL(bitmap_scnlistprintf);
  525. /**
  526. * bitmap_print_to_pagebuf - convert bitmap to list or hex format ASCII string
  527. * @list: indicates whether the bitmap must be list
  528. * @buf: page aligned buffer into which string is placed
  529. * @maskp: pointer to bitmap to convert
  530. * @nmaskbits: size of bitmap, in bits
  531. *
  532. * Output format is a comma-separated list of decimal numbers and
  533. * ranges if list is specified or hex digits grouped into comma-separated
  534. * sets of 8 digits/set. Returns the number of characters written to buf.
  535. */
  536. int bitmap_print_to_pagebuf(bool list, char *buf, const unsigned long *maskp,
  537. int nmaskbits)
  538. {
  539. ptrdiff_t len = PTR_ALIGN(buf + PAGE_SIZE - 1, PAGE_SIZE) - buf - 2;
  540. int n = 0;
  541. if (len > 1) {
  542. n = list ? bitmap_scnlistprintf(buf, len, maskp, nmaskbits) :
  543. bitmap_scnprintf(buf, len, maskp, nmaskbits);
  544. buf[n++] = '\n';
  545. buf[n] = '\0';
  546. }
  547. return n;
  548. }
  549. EXPORT_SYMBOL(bitmap_print_to_pagebuf);
  550. /**
  551. * __bitmap_parselist - convert list format ASCII string to bitmap
  552. * @buf: read nul-terminated user string from this buffer
  553. * @buflen: buffer size in bytes. If string is smaller than this
  554. * then it must be terminated with a \0.
  555. * @is_user: location of buffer, 0 indicates kernel space
  556. * @maskp: write resulting mask here
  557. * @nmaskbits: number of bits in mask to be written
  558. *
  559. * Input format is a comma-separated list of decimal numbers and
  560. * ranges. Consecutively set bits are shown as two hyphen-separated
  561. * decimal numbers, the smallest and largest bit numbers set in
  562. * the range.
  563. *
  564. * Returns 0 on success, -errno on invalid input strings.
  565. * Error values:
  566. * %-EINVAL: second number in range smaller than first
  567. * %-EINVAL: invalid character in string
  568. * %-ERANGE: bit number specified too large for mask
  569. */
  570. static int __bitmap_parselist(const char *buf, unsigned int buflen,
  571. int is_user, unsigned long *maskp,
  572. int nmaskbits)
  573. {
  574. unsigned a, b;
  575. int c, old_c, totaldigits;
  576. const char __user __force *ubuf = (const char __user __force *)buf;
  577. int exp_digit, in_range;
  578. totaldigits = c = 0;
  579. bitmap_zero(maskp, nmaskbits);
  580. do {
  581. exp_digit = 1;
  582. in_range = 0;
  583. a = b = 0;
  584. /* Get the next cpu# or a range of cpu#'s */
  585. while (buflen) {
  586. old_c = c;
  587. if (is_user) {
  588. if (__get_user(c, ubuf++))
  589. return -EFAULT;
  590. } else
  591. c = *buf++;
  592. buflen--;
  593. if (isspace(c))
  594. continue;
  595. /*
  596. * If the last character was a space and the current
  597. * character isn't '\0', we've got embedded whitespace.
  598. * This is a no-no, so throw an error.
  599. */
  600. if (totaldigits && c && isspace(old_c))
  601. return -EINVAL;
  602. /* A '\0' or a ',' signal the end of a cpu# or range */
  603. if (c == '\0' || c == ',')
  604. break;
  605. if (c == '-') {
  606. if (exp_digit || in_range)
  607. return -EINVAL;
  608. b = 0;
  609. in_range = 1;
  610. exp_digit = 1;
  611. continue;
  612. }
  613. if (!isdigit(c))
  614. return -EINVAL;
  615. b = b * 10 + (c - '0');
  616. if (!in_range)
  617. a = b;
  618. exp_digit = 0;
  619. totaldigits++;
  620. }
  621. if (!(a <= b))
  622. return -EINVAL;
  623. if (b >= nmaskbits)
  624. return -ERANGE;
  625. while (a <= b) {
  626. set_bit(a, maskp);
  627. a++;
  628. }
  629. } while (buflen && c == ',');
  630. return 0;
  631. }
  632. int bitmap_parselist(const char *bp, unsigned long *maskp, int nmaskbits)
  633. {
  634. char *nl = strchrnul(bp, '\n');
  635. int len = nl - bp;
  636. return __bitmap_parselist(bp, len, 0, maskp, nmaskbits);
  637. }
  638. EXPORT_SYMBOL(bitmap_parselist);
  639. /**
  640. * bitmap_parselist_user()
  641. *
  642. * @ubuf: pointer to user buffer containing string.
  643. * @ulen: buffer size in bytes. If string is smaller than this
  644. * then it must be terminated with a \0.
  645. * @maskp: pointer to bitmap array that will contain result.
  646. * @nmaskbits: size of bitmap, in bits.
  647. *
  648. * Wrapper for bitmap_parselist(), providing it with user buffer.
  649. *
  650. * We cannot have this as an inline function in bitmap.h because it needs
  651. * linux/uaccess.h to get the access_ok() declaration and this causes
  652. * cyclic dependencies.
  653. */
  654. int bitmap_parselist_user(const char __user *ubuf,
  655. unsigned int ulen, unsigned long *maskp,
  656. int nmaskbits)
  657. {
  658. if (!access_ok(VERIFY_READ, ubuf, ulen))
  659. return -EFAULT;
  660. return __bitmap_parselist((const char __force *)ubuf,
  661. ulen, 1, maskp, nmaskbits);
  662. }
  663. EXPORT_SYMBOL(bitmap_parselist_user);
  664. /**
  665. * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
  666. * @buf: pointer to a bitmap
  667. * @pos: a bit position in @buf (0 <= @pos < @nbits)
  668. * @nbits: number of valid bit positions in @buf
  669. *
  670. * Map the bit at position @pos in @buf (of length @nbits) to the
  671. * ordinal of which set bit it is. If it is not set or if @pos
  672. * is not a valid bit position, map to -1.
  673. *
  674. * If for example, just bits 4 through 7 are set in @buf, then @pos
  675. * values 4 through 7 will get mapped to 0 through 3, respectively,
  676. * and other @pos values will get mapped to -1. When @pos value 7
  677. * gets mapped to (returns) @ord value 3 in this example, that means
  678. * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
  679. *
  680. * The bit positions 0 through @bits are valid positions in @buf.
  681. */
  682. static int bitmap_pos_to_ord(const unsigned long *buf, unsigned int pos, unsigned int nbits)
  683. {
  684. if (pos >= nbits || !test_bit(pos, buf))
  685. return -1;
  686. return __bitmap_weight(buf, pos);
  687. }
  688. /**
  689. * bitmap_ord_to_pos - find position of n-th set bit in bitmap
  690. * @buf: pointer to bitmap
  691. * @ord: ordinal bit position (n-th set bit, n >= 0)
  692. * @nbits: number of valid bit positions in @buf
  693. *
  694. * Map the ordinal offset of bit @ord in @buf to its position in @buf.
  695. * Value of @ord should be in range 0 <= @ord < weight(buf). If @ord
  696. * >= weight(buf), returns @nbits.
  697. *
  698. * If for example, just bits 4 through 7 are set in @buf, then @ord
  699. * values 0 through 3 will get mapped to 4 through 7, respectively,
  700. * and all other @ord values returns @nbits. When @ord value 3
  701. * gets mapped to (returns) @pos value 7 in this example, that means
  702. * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
  703. *
  704. * The bit positions 0 through @nbits-1 are valid positions in @buf.
  705. */
  706. unsigned int bitmap_ord_to_pos(const unsigned long *buf, unsigned int ord, unsigned int nbits)
  707. {
  708. unsigned int pos;
  709. for (pos = find_first_bit(buf, nbits);
  710. pos < nbits && ord;
  711. pos = find_next_bit(buf, nbits, pos + 1))
  712. ord--;
  713. return pos;
  714. }
  715. /**
  716. * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
  717. * @dst: remapped result
  718. * @src: subset to be remapped
  719. * @old: defines domain of map
  720. * @new: defines range of map
  721. * @nbits: number of bits in each of these bitmaps
  722. *
  723. * Let @old and @new define a mapping of bit positions, such that
  724. * whatever position is held by the n-th set bit in @old is mapped
  725. * to the n-th set bit in @new. In the more general case, allowing
  726. * for the possibility that the weight 'w' of @new is less than the
  727. * weight of @old, map the position of the n-th set bit in @old to
  728. * the position of the m-th set bit in @new, where m == n % w.
  729. *
  730. * If either of the @old and @new bitmaps are empty, or if @src and
  731. * @dst point to the same location, then this routine copies @src
  732. * to @dst.
  733. *
  734. * The positions of unset bits in @old are mapped to themselves
  735. * (the identify map).
  736. *
  737. * Apply the above specified mapping to @src, placing the result in
  738. * @dst, clearing any bits previously set in @dst.
  739. *
  740. * For example, lets say that @old has bits 4 through 7 set, and
  741. * @new has bits 12 through 15 set. This defines the mapping of bit
  742. * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
  743. * bit positions unchanged. So if say @src comes into this routine
  744. * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
  745. * 13 and 15 set.
  746. */
  747. void bitmap_remap(unsigned long *dst, const unsigned long *src,
  748. const unsigned long *old, const unsigned long *new,
  749. unsigned int nbits)
  750. {
  751. unsigned int oldbit, w;
  752. if (dst == src) /* following doesn't handle inplace remaps */
  753. return;
  754. bitmap_zero(dst, nbits);
  755. w = bitmap_weight(new, nbits);
  756. for_each_set_bit(oldbit, src, nbits) {
  757. int n = bitmap_pos_to_ord(old, oldbit, nbits);
  758. if (n < 0 || w == 0)
  759. set_bit(oldbit, dst); /* identity map */
  760. else
  761. set_bit(bitmap_ord_to_pos(new, n % w, nbits), dst);
  762. }
  763. }
  764. EXPORT_SYMBOL(bitmap_remap);
  765. /**
  766. * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
  767. * @oldbit: bit position to be mapped
  768. * @old: defines domain of map
  769. * @new: defines range of map
  770. * @bits: number of bits in each of these bitmaps
  771. *
  772. * Let @old and @new define a mapping of bit positions, such that
  773. * whatever position is held by the n-th set bit in @old is mapped
  774. * to the n-th set bit in @new. In the more general case, allowing
  775. * for the possibility that the weight 'w' of @new is less than the
  776. * weight of @old, map the position of the n-th set bit in @old to
  777. * the position of the m-th set bit in @new, where m == n % w.
  778. *
  779. * The positions of unset bits in @old are mapped to themselves
  780. * (the identify map).
  781. *
  782. * Apply the above specified mapping to bit position @oldbit, returning
  783. * the new bit position.
  784. *
  785. * For example, lets say that @old has bits 4 through 7 set, and
  786. * @new has bits 12 through 15 set. This defines the mapping of bit
  787. * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
  788. * bit positions unchanged. So if say @oldbit is 5, then this routine
  789. * returns 13.
  790. */
  791. int bitmap_bitremap(int oldbit, const unsigned long *old,
  792. const unsigned long *new, int bits)
  793. {
  794. int w = bitmap_weight(new, bits);
  795. int n = bitmap_pos_to_ord(old, oldbit, bits);
  796. if (n < 0 || w == 0)
  797. return oldbit;
  798. else
  799. return bitmap_ord_to_pos(new, n % w, bits);
  800. }
  801. EXPORT_SYMBOL(bitmap_bitremap);
  802. /**
  803. * bitmap_onto - translate one bitmap relative to another
  804. * @dst: resulting translated bitmap
  805. * @orig: original untranslated bitmap
  806. * @relmap: bitmap relative to which translated
  807. * @bits: number of bits in each of these bitmaps
  808. *
  809. * Set the n-th bit of @dst iff there exists some m such that the
  810. * n-th bit of @relmap is set, the m-th bit of @orig is set, and
  811. * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
  812. * (If you understood the previous sentence the first time your
  813. * read it, you're overqualified for your current job.)
  814. *
  815. * In other words, @orig is mapped onto (surjectively) @dst,
  816. * using the map { <n, m> | the n-th bit of @relmap is the
  817. * m-th set bit of @relmap }.
  818. *
  819. * Any set bits in @orig above bit number W, where W is the
  820. * weight of (number of set bits in) @relmap are mapped nowhere.
  821. * In particular, if for all bits m set in @orig, m >= W, then
  822. * @dst will end up empty. In situations where the possibility
  823. * of such an empty result is not desired, one way to avoid it is
  824. * to use the bitmap_fold() operator, below, to first fold the
  825. * @orig bitmap over itself so that all its set bits x are in the
  826. * range 0 <= x < W. The bitmap_fold() operator does this by
  827. * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
  828. *
  829. * Example [1] for bitmap_onto():
  830. * Let's say @relmap has bits 30-39 set, and @orig has bits
  831. * 1, 3, 5, 7, 9 and 11 set. Then on return from this routine,
  832. * @dst will have bits 31, 33, 35, 37 and 39 set.
  833. *
  834. * When bit 0 is set in @orig, it means turn on the bit in
  835. * @dst corresponding to whatever is the first bit (if any)
  836. * that is turned on in @relmap. Since bit 0 was off in the
  837. * above example, we leave off that bit (bit 30) in @dst.
  838. *
  839. * When bit 1 is set in @orig (as in the above example), it
  840. * means turn on the bit in @dst corresponding to whatever
  841. * is the second bit that is turned on in @relmap. The second
  842. * bit in @relmap that was turned on in the above example was
  843. * bit 31, so we turned on bit 31 in @dst.
  844. *
  845. * Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
  846. * because they were the 4th, 6th, 8th and 10th set bits
  847. * set in @relmap, and the 4th, 6th, 8th and 10th bits of
  848. * @orig (i.e. bits 3, 5, 7 and 9) were also set.
  849. *
  850. * When bit 11 is set in @orig, it means turn on the bit in
  851. * @dst corresponding to whatever is the twelfth bit that is
  852. * turned on in @relmap. In the above example, there were
  853. * only ten bits turned on in @relmap (30..39), so that bit
  854. * 11 was set in @orig had no affect on @dst.
  855. *
  856. * Example [2] for bitmap_fold() + bitmap_onto():
  857. * Let's say @relmap has these ten bits set:
  858. * 40 41 42 43 45 48 53 61 74 95
  859. * (for the curious, that's 40 plus the first ten terms of the
  860. * Fibonacci sequence.)
  861. *
  862. * Further lets say we use the following code, invoking
  863. * bitmap_fold() then bitmap_onto, as suggested above to
  864. * avoid the possibility of an empty @dst result:
  865. *
  866. * unsigned long *tmp; // a temporary bitmap's bits
  867. *
  868. * bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
  869. * bitmap_onto(dst, tmp, relmap, bits);
  870. *
  871. * Then this table shows what various values of @dst would be, for
  872. * various @orig's. I list the zero-based positions of each set bit.
  873. * The tmp column shows the intermediate result, as computed by
  874. * using bitmap_fold() to fold the @orig bitmap modulo ten
  875. * (the weight of @relmap).
  876. *
  877. * @orig tmp @dst
  878. * 0 0 40
  879. * 1 1 41
  880. * 9 9 95
  881. * 10 0 40 (*)
  882. * 1 3 5 7 1 3 5 7 41 43 48 61
  883. * 0 1 2 3 4 0 1 2 3 4 40 41 42 43 45
  884. * 0 9 18 27 0 9 8 7 40 61 74 95
  885. * 0 10 20 30 0 40
  886. * 0 11 22 33 0 1 2 3 40 41 42 43
  887. * 0 12 24 36 0 2 4 6 40 42 45 53
  888. * 78 102 211 1 2 8 41 42 74 (*)
  889. *
  890. * (*) For these marked lines, if we hadn't first done bitmap_fold()
  891. * into tmp, then the @dst result would have been empty.
  892. *
  893. * If either of @orig or @relmap is empty (no set bits), then @dst
  894. * will be returned empty.
  895. *
  896. * If (as explained above) the only set bits in @orig are in positions
  897. * m where m >= W, (where W is the weight of @relmap) then @dst will
  898. * once again be returned empty.
  899. *
  900. * All bits in @dst not set by the above rule are cleared.
  901. */
  902. void bitmap_onto(unsigned long *dst, const unsigned long *orig,
  903. const unsigned long *relmap, unsigned int bits)
  904. {
  905. unsigned int n, m; /* same meaning as in above comment */
  906. if (dst == orig) /* following doesn't handle inplace mappings */
  907. return;
  908. bitmap_zero(dst, bits);
  909. /*
  910. * The following code is a more efficient, but less
  911. * obvious, equivalent to the loop:
  912. * for (m = 0; m < bitmap_weight(relmap, bits); m++) {
  913. * n = bitmap_ord_to_pos(orig, m, bits);
  914. * if (test_bit(m, orig))
  915. * set_bit(n, dst);
  916. * }
  917. */
  918. m = 0;
  919. for_each_set_bit(n, relmap, bits) {
  920. /* m == bitmap_pos_to_ord(relmap, n, bits) */
  921. if (test_bit(m, orig))
  922. set_bit(n, dst);
  923. m++;
  924. }
  925. }
  926. EXPORT_SYMBOL(bitmap_onto);
  927. /**
  928. * bitmap_fold - fold larger bitmap into smaller, modulo specified size
  929. * @dst: resulting smaller bitmap
  930. * @orig: original larger bitmap
  931. * @sz: specified size
  932. * @nbits: number of bits in each of these bitmaps
  933. *
  934. * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
  935. * Clear all other bits in @dst. See further the comment and
  936. * Example [2] for bitmap_onto() for why and how to use this.
  937. */
  938. void bitmap_fold(unsigned long *dst, const unsigned long *orig,
  939. unsigned int sz, unsigned int nbits)
  940. {
  941. unsigned int oldbit;
  942. if (dst == orig) /* following doesn't handle inplace mappings */
  943. return;
  944. bitmap_zero(dst, nbits);
  945. for_each_set_bit(oldbit, orig, nbits)
  946. set_bit(oldbit % sz, dst);
  947. }
  948. EXPORT_SYMBOL(bitmap_fold);
  949. /*
  950. * Common code for bitmap_*_region() routines.
  951. * bitmap: array of unsigned longs corresponding to the bitmap
  952. * pos: the beginning of the region
  953. * order: region size (log base 2 of number of bits)
  954. * reg_op: operation(s) to perform on that region of bitmap
  955. *
  956. * Can set, verify and/or release a region of bits in a bitmap,
  957. * depending on which combination of REG_OP_* flag bits is set.
  958. *
  959. * A region of a bitmap is a sequence of bits in the bitmap, of
  960. * some size '1 << order' (a power of two), aligned to that same
  961. * '1 << order' power of two.
  962. *
  963. * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
  964. * Returns 0 in all other cases and reg_ops.
  965. */
  966. enum {
  967. REG_OP_ISFREE, /* true if region is all zero bits */
  968. REG_OP_ALLOC, /* set all bits in region */
  969. REG_OP_RELEASE, /* clear all bits in region */
  970. };
  971. static int __reg_op(unsigned long *bitmap, unsigned int pos, int order, int reg_op)
  972. {
  973. int nbits_reg; /* number of bits in region */
  974. int index; /* index first long of region in bitmap */
  975. int offset; /* bit offset region in bitmap[index] */
  976. int nlongs_reg; /* num longs spanned by region in bitmap */
  977. int nbitsinlong; /* num bits of region in each spanned long */
  978. unsigned long mask; /* bitmask for one long of region */
  979. int i; /* scans bitmap by longs */
  980. int ret = 0; /* return value */
  981. /*
  982. * Either nlongs_reg == 1 (for small orders that fit in one long)
  983. * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
  984. */
  985. nbits_reg = 1 << order;
  986. index = pos / BITS_PER_LONG;
  987. offset = pos - (index * BITS_PER_LONG);
  988. nlongs_reg = BITS_TO_LONGS(nbits_reg);
  989. nbitsinlong = min(nbits_reg, BITS_PER_LONG);
  990. /*
  991. * Can't do "mask = (1UL << nbitsinlong) - 1", as that
  992. * overflows if nbitsinlong == BITS_PER_LONG.
  993. */
  994. mask = (1UL << (nbitsinlong - 1));
  995. mask += mask - 1;
  996. mask <<= offset;
  997. switch (reg_op) {
  998. case REG_OP_ISFREE:
  999. for (i = 0; i < nlongs_reg; i++) {
  1000. if (bitmap[index + i] & mask)
  1001. goto done;
  1002. }
  1003. ret = 1; /* all bits in region free (zero) */
  1004. break;
  1005. case REG_OP_ALLOC:
  1006. for (i = 0; i < nlongs_reg; i++)
  1007. bitmap[index + i] |= mask;
  1008. break;
  1009. case REG_OP_RELEASE:
  1010. for (i = 0; i < nlongs_reg; i++)
  1011. bitmap[index + i] &= ~mask;
  1012. break;
  1013. }
  1014. done:
  1015. return ret;
  1016. }
  1017. /**
  1018. * bitmap_find_free_region - find a contiguous aligned mem region
  1019. * @bitmap: array of unsigned longs corresponding to the bitmap
  1020. * @bits: number of bits in the bitmap
  1021. * @order: region size (log base 2 of number of bits) to find
  1022. *
  1023. * Find a region of free (zero) bits in a @bitmap of @bits bits and
  1024. * allocate them (set them to one). Only consider regions of length
  1025. * a power (@order) of two, aligned to that power of two, which
  1026. * makes the search algorithm much faster.
  1027. *
  1028. * Return the bit offset in bitmap of the allocated region,
  1029. * or -errno on failure.
  1030. */
  1031. int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order)
  1032. {
  1033. unsigned int pos, end; /* scans bitmap by regions of size order */
  1034. for (pos = 0 ; (end = pos + (1U << order)) <= bits; pos = end) {
  1035. if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
  1036. continue;
  1037. __reg_op(bitmap, pos, order, REG_OP_ALLOC);
  1038. return pos;
  1039. }
  1040. return -ENOMEM;
  1041. }
  1042. EXPORT_SYMBOL(bitmap_find_free_region);
  1043. /**
  1044. * bitmap_release_region - release allocated bitmap region
  1045. * @bitmap: array of unsigned longs corresponding to the bitmap
  1046. * @pos: beginning of bit region to release
  1047. * @order: region size (log base 2 of number of bits) to release
  1048. *
  1049. * This is the complement to __bitmap_find_free_region() and releases
  1050. * the found region (by clearing it in the bitmap).
  1051. *
  1052. * No return value.
  1053. */
  1054. void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order)
  1055. {
  1056. __reg_op(bitmap, pos, order, REG_OP_RELEASE);
  1057. }
  1058. EXPORT_SYMBOL(bitmap_release_region);
  1059. /**
  1060. * bitmap_allocate_region - allocate bitmap region
  1061. * @bitmap: array of unsigned longs corresponding to the bitmap
  1062. * @pos: beginning of bit region to allocate
  1063. * @order: region size (log base 2 of number of bits) to allocate
  1064. *
  1065. * Allocate (set bits in) a specified region of a bitmap.
  1066. *
  1067. * Return 0 on success, or %-EBUSY if specified region wasn't
  1068. * free (not all bits were zero).
  1069. */
  1070. int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order)
  1071. {
  1072. if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
  1073. return -EBUSY;
  1074. return __reg_op(bitmap, pos, order, REG_OP_ALLOC);
  1075. }
  1076. EXPORT_SYMBOL(bitmap_allocate_region);
  1077. /**
  1078. * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order.
  1079. * @dst: destination buffer
  1080. * @src: bitmap to copy
  1081. * @nbits: number of bits in the bitmap
  1082. *
  1083. * Require nbits % BITS_PER_LONG == 0.
  1084. */
  1085. void bitmap_copy_le(unsigned long *dst, const unsigned long *src, unsigned int nbits)
  1086. {
  1087. unsigned int i;
  1088. for (i = 0; i < nbits/BITS_PER_LONG; i++) {
  1089. if (BITS_PER_LONG == 64)
  1090. dst[i] = cpu_to_le64(src[i]);
  1091. else
  1092. dst[i] = cpu_to_le32(src[i]);
  1093. }
  1094. }
  1095. EXPORT_SYMBOL(bitmap_copy_le);