sched.c 226 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/kthread.h>
  57. #include <linux/proc_fs.h>
  58. #include <linux/seq_file.h>
  59. #include <linux/sysctl.h>
  60. #include <linux/syscalls.h>
  61. #include <linux/times.h>
  62. #include <linux/tsacct_kern.h>
  63. #include <linux/kprobes.h>
  64. #include <linux/delayacct.h>
  65. #include <linux/reciprocal_div.h>
  66. #include <linux/unistd.h>
  67. #include <linux/pagemap.h>
  68. #include <linux/hrtimer.h>
  69. #include <linux/tick.h>
  70. #include <linux/bootmem.h>
  71. #include <linux/debugfs.h>
  72. #include <linux/ctype.h>
  73. #include <linux/ftrace.h>
  74. #include <trace/sched.h>
  75. #include <asm/tlb.h>
  76. #include <asm/irq_regs.h>
  77. #include "sched_cpupri.h"
  78. /*
  79. * Convert user-nice values [ -20 ... 0 ... 19 ]
  80. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  81. * and back.
  82. */
  83. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  84. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  85. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  86. /*
  87. * 'User priority' is the nice value converted to something we
  88. * can work with better when scaling various scheduler parameters,
  89. * it's a [ 0 ... 39 ] range.
  90. */
  91. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  92. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  93. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  94. /*
  95. * Helpers for converting nanosecond timing to jiffy resolution
  96. */
  97. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  98. #define NICE_0_LOAD SCHED_LOAD_SCALE
  99. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  100. /*
  101. * These are the 'tuning knobs' of the scheduler:
  102. *
  103. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  104. * Timeslices get refilled after they expire.
  105. */
  106. #define DEF_TIMESLICE (100 * HZ / 1000)
  107. /*
  108. * single value that denotes runtime == period, ie unlimited time.
  109. */
  110. #define RUNTIME_INF ((u64)~0ULL)
  111. #ifdef CONFIG_SMP
  112. /*
  113. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  114. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  115. */
  116. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  117. {
  118. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  119. }
  120. /*
  121. * Each time a sched group cpu_power is changed,
  122. * we must compute its reciprocal value
  123. */
  124. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  125. {
  126. sg->__cpu_power += val;
  127. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  128. }
  129. #endif
  130. static inline int rt_policy(int policy)
  131. {
  132. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  133. return 1;
  134. return 0;
  135. }
  136. static inline int task_has_rt_policy(struct task_struct *p)
  137. {
  138. return rt_policy(p->policy);
  139. }
  140. /*
  141. * This is the priority-queue data structure of the RT scheduling class:
  142. */
  143. struct rt_prio_array {
  144. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  145. struct list_head queue[MAX_RT_PRIO];
  146. };
  147. struct rt_bandwidth {
  148. /* nests inside the rq lock: */
  149. spinlock_t rt_runtime_lock;
  150. ktime_t rt_period;
  151. u64 rt_runtime;
  152. struct hrtimer rt_period_timer;
  153. };
  154. static struct rt_bandwidth def_rt_bandwidth;
  155. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  156. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  157. {
  158. struct rt_bandwidth *rt_b =
  159. container_of(timer, struct rt_bandwidth, rt_period_timer);
  160. ktime_t now;
  161. int overrun;
  162. int idle = 0;
  163. for (;;) {
  164. now = hrtimer_cb_get_time(timer);
  165. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  166. if (!overrun)
  167. break;
  168. idle = do_sched_rt_period_timer(rt_b, overrun);
  169. }
  170. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  171. }
  172. static
  173. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  174. {
  175. rt_b->rt_period = ns_to_ktime(period);
  176. rt_b->rt_runtime = runtime;
  177. spin_lock_init(&rt_b->rt_runtime_lock);
  178. hrtimer_init(&rt_b->rt_period_timer,
  179. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  180. rt_b->rt_period_timer.function = sched_rt_period_timer;
  181. rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_UNLOCKED;
  182. }
  183. static inline int rt_bandwidth_enabled(void)
  184. {
  185. return sysctl_sched_rt_runtime >= 0;
  186. }
  187. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  188. {
  189. ktime_t now;
  190. if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF)
  191. return;
  192. if (hrtimer_active(&rt_b->rt_period_timer))
  193. return;
  194. spin_lock(&rt_b->rt_runtime_lock);
  195. for (;;) {
  196. if (hrtimer_active(&rt_b->rt_period_timer))
  197. break;
  198. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  199. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  200. hrtimer_start_expires(&rt_b->rt_period_timer,
  201. HRTIMER_MODE_ABS);
  202. }
  203. spin_unlock(&rt_b->rt_runtime_lock);
  204. }
  205. #ifdef CONFIG_RT_GROUP_SCHED
  206. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  207. {
  208. hrtimer_cancel(&rt_b->rt_period_timer);
  209. }
  210. #endif
  211. /*
  212. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  213. * detach_destroy_domains and partition_sched_domains.
  214. */
  215. static DEFINE_MUTEX(sched_domains_mutex);
  216. #ifdef CONFIG_GROUP_SCHED
  217. #include <linux/cgroup.h>
  218. struct cfs_rq;
  219. static LIST_HEAD(task_groups);
  220. /* task group related information */
  221. struct task_group {
  222. #ifdef CONFIG_CGROUP_SCHED
  223. struct cgroup_subsys_state css;
  224. #endif
  225. #ifdef CONFIG_FAIR_GROUP_SCHED
  226. /* schedulable entities of this group on each cpu */
  227. struct sched_entity **se;
  228. /* runqueue "owned" by this group on each cpu */
  229. struct cfs_rq **cfs_rq;
  230. unsigned long shares;
  231. #endif
  232. #ifdef CONFIG_RT_GROUP_SCHED
  233. struct sched_rt_entity **rt_se;
  234. struct rt_rq **rt_rq;
  235. struct rt_bandwidth rt_bandwidth;
  236. #endif
  237. struct rcu_head rcu;
  238. struct list_head list;
  239. struct task_group *parent;
  240. struct list_head siblings;
  241. struct list_head children;
  242. };
  243. #ifdef CONFIG_USER_SCHED
  244. /*
  245. * Root task group.
  246. * Every UID task group (including init_task_group aka UID-0) will
  247. * be a child to this group.
  248. */
  249. struct task_group root_task_group;
  250. #ifdef CONFIG_FAIR_GROUP_SCHED
  251. /* Default task group's sched entity on each cpu */
  252. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  253. /* Default task group's cfs_rq on each cpu */
  254. static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
  255. #endif /* CONFIG_FAIR_GROUP_SCHED */
  256. #ifdef CONFIG_RT_GROUP_SCHED
  257. static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
  258. static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
  259. #endif /* CONFIG_RT_GROUP_SCHED */
  260. #else /* !CONFIG_USER_SCHED */
  261. #define root_task_group init_task_group
  262. #endif /* CONFIG_USER_SCHED */
  263. /* task_group_lock serializes add/remove of task groups and also changes to
  264. * a task group's cpu shares.
  265. */
  266. static DEFINE_SPINLOCK(task_group_lock);
  267. #ifdef CONFIG_FAIR_GROUP_SCHED
  268. #ifdef CONFIG_USER_SCHED
  269. # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
  270. #else /* !CONFIG_USER_SCHED */
  271. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  272. #endif /* CONFIG_USER_SCHED */
  273. /*
  274. * A weight of 0 or 1 can cause arithmetics problems.
  275. * A weight of a cfs_rq is the sum of weights of which entities
  276. * are queued on this cfs_rq, so a weight of a entity should not be
  277. * too large, so as the shares value of a task group.
  278. * (The default weight is 1024 - so there's no practical
  279. * limitation from this.)
  280. */
  281. #define MIN_SHARES 2
  282. #define MAX_SHARES (1UL << 18)
  283. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  284. #endif
  285. /* Default task group.
  286. * Every task in system belong to this group at bootup.
  287. */
  288. struct task_group init_task_group;
  289. /* return group to which a task belongs */
  290. static inline struct task_group *task_group(struct task_struct *p)
  291. {
  292. struct task_group *tg;
  293. #ifdef CONFIG_USER_SCHED
  294. tg = p->user->tg;
  295. #elif defined(CONFIG_CGROUP_SCHED)
  296. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  297. struct task_group, css);
  298. #else
  299. tg = &init_task_group;
  300. #endif
  301. return tg;
  302. }
  303. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  304. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  305. {
  306. #ifdef CONFIG_FAIR_GROUP_SCHED
  307. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  308. p->se.parent = task_group(p)->se[cpu];
  309. #endif
  310. #ifdef CONFIG_RT_GROUP_SCHED
  311. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  312. p->rt.parent = task_group(p)->rt_se[cpu];
  313. #endif
  314. }
  315. #else
  316. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  317. static inline struct task_group *task_group(struct task_struct *p)
  318. {
  319. return NULL;
  320. }
  321. #endif /* CONFIG_GROUP_SCHED */
  322. /* CFS-related fields in a runqueue */
  323. struct cfs_rq {
  324. struct load_weight load;
  325. unsigned long nr_running;
  326. u64 exec_clock;
  327. u64 min_vruntime;
  328. struct rb_root tasks_timeline;
  329. struct rb_node *rb_leftmost;
  330. struct list_head tasks;
  331. struct list_head *balance_iterator;
  332. /*
  333. * 'curr' points to currently running entity on this cfs_rq.
  334. * It is set to NULL otherwise (i.e when none are currently running).
  335. */
  336. struct sched_entity *curr, *next, *last;
  337. unsigned int nr_spread_over;
  338. #ifdef CONFIG_FAIR_GROUP_SCHED
  339. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  340. /*
  341. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  342. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  343. * (like users, containers etc.)
  344. *
  345. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  346. * list is used during load balance.
  347. */
  348. struct list_head leaf_cfs_rq_list;
  349. struct task_group *tg; /* group that "owns" this runqueue */
  350. #ifdef CONFIG_SMP
  351. /*
  352. * the part of load.weight contributed by tasks
  353. */
  354. unsigned long task_weight;
  355. /*
  356. * h_load = weight * f(tg)
  357. *
  358. * Where f(tg) is the recursive weight fraction assigned to
  359. * this group.
  360. */
  361. unsigned long h_load;
  362. /*
  363. * this cpu's part of tg->shares
  364. */
  365. unsigned long shares;
  366. /*
  367. * load.weight at the time we set shares
  368. */
  369. unsigned long rq_weight;
  370. #endif
  371. #endif
  372. };
  373. /* Real-Time classes' related field in a runqueue: */
  374. struct rt_rq {
  375. struct rt_prio_array active;
  376. unsigned long rt_nr_running;
  377. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  378. int highest_prio; /* highest queued rt task prio */
  379. #endif
  380. #ifdef CONFIG_SMP
  381. unsigned long rt_nr_migratory;
  382. int overloaded;
  383. #endif
  384. int rt_throttled;
  385. u64 rt_time;
  386. u64 rt_runtime;
  387. /* Nests inside the rq lock: */
  388. spinlock_t rt_runtime_lock;
  389. #ifdef CONFIG_RT_GROUP_SCHED
  390. unsigned long rt_nr_boosted;
  391. struct rq *rq;
  392. struct list_head leaf_rt_rq_list;
  393. struct task_group *tg;
  394. struct sched_rt_entity *rt_se;
  395. #endif
  396. };
  397. #ifdef CONFIG_SMP
  398. /*
  399. * We add the notion of a root-domain which will be used to define per-domain
  400. * variables. Each exclusive cpuset essentially defines an island domain by
  401. * fully partitioning the member cpus from any other cpuset. Whenever a new
  402. * exclusive cpuset is created, we also create and attach a new root-domain
  403. * object.
  404. *
  405. */
  406. struct root_domain {
  407. atomic_t refcount;
  408. cpumask_t span;
  409. cpumask_t online;
  410. /*
  411. * The "RT overload" flag: it gets set if a CPU has more than
  412. * one runnable RT task.
  413. */
  414. cpumask_t rto_mask;
  415. atomic_t rto_count;
  416. #ifdef CONFIG_SMP
  417. struct cpupri cpupri;
  418. #endif
  419. };
  420. /*
  421. * By default the system creates a single root-domain with all cpus as
  422. * members (mimicking the global state we have today).
  423. */
  424. static struct root_domain def_root_domain;
  425. #endif
  426. /*
  427. * This is the main, per-CPU runqueue data structure.
  428. *
  429. * Locking rule: those places that want to lock multiple runqueues
  430. * (such as the load balancing or the thread migration code), lock
  431. * acquire operations must be ordered by ascending &runqueue.
  432. */
  433. struct rq {
  434. /* runqueue lock: */
  435. spinlock_t lock;
  436. /*
  437. * nr_running and cpu_load should be in the same cacheline because
  438. * remote CPUs use both these fields when doing load calculation.
  439. */
  440. unsigned long nr_running;
  441. #define CPU_LOAD_IDX_MAX 5
  442. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  443. unsigned char idle_at_tick;
  444. #ifdef CONFIG_NO_HZ
  445. unsigned long last_tick_seen;
  446. unsigned char in_nohz_recently;
  447. #endif
  448. /* capture load from *all* tasks on this cpu: */
  449. struct load_weight load;
  450. unsigned long nr_load_updates;
  451. u64 nr_switches;
  452. struct cfs_rq cfs;
  453. struct rt_rq rt;
  454. #ifdef CONFIG_FAIR_GROUP_SCHED
  455. /* list of leaf cfs_rq on this cpu: */
  456. struct list_head leaf_cfs_rq_list;
  457. #endif
  458. #ifdef CONFIG_RT_GROUP_SCHED
  459. struct list_head leaf_rt_rq_list;
  460. #endif
  461. /*
  462. * This is part of a global counter where only the total sum
  463. * over all CPUs matters. A task can increase this counter on
  464. * one CPU and if it got migrated afterwards it may decrease
  465. * it on another CPU. Always updated under the runqueue lock:
  466. */
  467. unsigned long nr_uninterruptible;
  468. struct task_struct *curr, *idle;
  469. unsigned long next_balance;
  470. struct mm_struct *prev_mm;
  471. u64 clock;
  472. atomic_t nr_iowait;
  473. #ifdef CONFIG_SMP
  474. struct root_domain *rd;
  475. struct sched_domain *sd;
  476. /* For active balancing */
  477. int active_balance;
  478. int push_cpu;
  479. /* cpu of this runqueue: */
  480. int cpu;
  481. int online;
  482. unsigned long avg_load_per_task;
  483. struct task_struct *migration_thread;
  484. struct list_head migration_queue;
  485. #endif
  486. #ifdef CONFIG_SCHED_HRTICK
  487. #ifdef CONFIG_SMP
  488. int hrtick_csd_pending;
  489. struct call_single_data hrtick_csd;
  490. #endif
  491. struct hrtimer hrtick_timer;
  492. #endif
  493. #ifdef CONFIG_SCHEDSTATS
  494. /* latency stats */
  495. struct sched_info rq_sched_info;
  496. /* sys_sched_yield() stats */
  497. unsigned int yld_exp_empty;
  498. unsigned int yld_act_empty;
  499. unsigned int yld_both_empty;
  500. unsigned int yld_count;
  501. /* schedule() stats */
  502. unsigned int sched_switch;
  503. unsigned int sched_count;
  504. unsigned int sched_goidle;
  505. /* try_to_wake_up() stats */
  506. unsigned int ttwu_count;
  507. unsigned int ttwu_local;
  508. /* BKL stats */
  509. unsigned int bkl_count;
  510. #endif
  511. };
  512. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  513. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
  514. {
  515. rq->curr->sched_class->check_preempt_curr(rq, p, sync);
  516. }
  517. static inline int cpu_of(struct rq *rq)
  518. {
  519. #ifdef CONFIG_SMP
  520. return rq->cpu;
  521. #else
  522. return 0;
  523. #endif
  524. }
  525. /*
  526. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  527. * See detach_destroy_domains: synchronize_sched for details.
  528. *
  529. * The domain tree of any CPU may only be accessed from within
  530. * preempt-disabled sections.
  531. */
  532. #define for_each_domain(cpu, __sd) \
  533. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  534. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  535. #define this_rq() (&__get_cpu_var(runqueues))
  536. #define task_rq(p) cpu_rq(task_cpu(p))
  537. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  538. static inline void update_rq_clock(struct rq *rq)
  539. {
  540. rq->clock = sched_clock_cpu(cpu_of(rq));
  541. }
  542. /*
  543. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  544. */
  545. #ifdef CONFIG_SCHED_DEBUG
  546. # define const_debug __read_mostly
  547. #else
  548. # define const_debug static const
  549. #endif
  550. /**
  551. * runqueue_is_locked
  552. *
  553. * Returns true if the current cpu runqueue is locked.
  554. * This interface allows printk to be called with the runqueue lock
  555. * held and know whether or not it is OK to wake up the klogd.
  556. */
  557. int runqueue_is_locked(void)
  558. {
  559. int cpu = get_cpu();
  560. struct rq *rq = cpu_rq(cpu);
  561. int ret;
  562. ret = spin_is_locked(&rq->lock);
  563. put_cpu();
  564. return ret;
  565. }
  566. /*
  567. * Debugging: various feature bits
  568. */
  569. #define SCHED_FEAT(name, enabled) \
  570. __SCHED_FEAT_##name ,
  571. enum {
  572. #include "sched_features.h"
  573. };
  574. #undef SCHED_FEAT
  575. #define SCHED_FEAT(name, enabled) \
  576. (1UL << __SCHED_FEAT_##name) * enabled |
  577. const_debug unsigned int sysctl_sched_features =
  578. #include "sched_features.h"
  579. 0;
  580. #undef SCHED_FEAT
  581. #ifdef CONFIG_SCHED_DEBUG
  582. #define SCHED_FEAT(name, enabled) \
  583. #name ,
  584. static __read_mostly char *sched_feat_names[] = {
  585. #include "sched_features.h"
  586. NULL
  587. };
  588. #undef SCHED_FEAT
  589. static int sched_feat_open(struct inode *inode, struct file *filp)
  590. {
  591. filp->private_data = inode->i_private;
  592. return 0;
  593. }
  594. static ssize_t
  595. sched_feat_read(struct file *filp, char __user *ubuf,
  596. size_t cnt, loff_t *ppos)
  597. {
  598. char *buf;
  599. int r = 0;
  600. int len = 0;
  601. int i;
  602. for (i = 0; sched_feat_names[i]; i++) {
  603. len += strlen(sched_feat_names[i]);
  604. len += 4;
  605. }
  606. buf = kmalloc(len + 2, GFP_KERNEL);
  607. if (!buf)
  608. return -ENOMEM;
  609. for (i = 0; sched_feat_names[i]; i++) {
  610. if (sysctl_sched_features & (1UL << i))
  611. r += sprintf(buf + r, "%s ", sched_feat_names[i]);
  612. else
  613. r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
  614. }
  615. r += sprintf(buf + r, "\n");
  616. WARN_ON(r >= len + 2);
  617. r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
  618. kfree(buf);
  619. return r;
  620. }
  621. static ssize_t
  622. sched_feat_write(struct file *filp, const char __user *ubuf,
  623. size_t cnt, loff_t *ppos)
  624. {
  625. char buf[64];
  626. char *cmp = buf;
  627. int neg = 0;
  628. int i;
  629. if (cnt > 63)
  630. cnt = 63;
  631. if (copy_from_user(&buf, ubuf, cnt))
  632. return -EFAULT;
  633. buf[cnt] = 0;
  634. if (strncmp(buf, "NO_", 3) == 0) {
  635. neg = 1;
  636. cmp += 3;
  637. }
  638. for (i = 0; sched_feat_names[i]; i++) {
  639. int len = strlen(sched_feat_names[i]);
  640. if (strncmp(cmp, sched_feat_names[i], len) == 0) {
  641. if (neg)
  642. sysctl_sched_features &= ~(1UL << i);
  643. else
  644. sysctl_sched_features |= (1UL << i);
  645. break;
  646. }
  647. }
  648. if (!sched_feat_names[i])
  649. return -EINVAL;
  650. filp->f_pos += cnt;
  651. return cnt;
  652. }
  653. static struct file_operations sched_feat_fops = {
  654. .open = sched_feat_open,
  655. .read = sched_feat_read,
  656. .write = sched_feat_write,
  657. };
  658. static __init int sched_init_debug(void)
  659. {
  660. debugfs_create_file("sched_features", 0644, NULL, NULL,
  661. &sched_feat_fops);
  662. return 0;
  663. }
  664. late_initcall(sched_init_debug);
  665. #endif
  666. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  667. /*
  668. * Number of tasks to iterate in a single balance run.
  669. * Limited because this is done with IRQs disabled.
  670. */
  671. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  672. /*
  673. * ratelimit for updating the group shares.
  674. * default: 0.25ms
  675. */
  676. unsigned int sysctl_sched_shares_ratelimit = 250000;
  677. /*
  678. * Inject some fuzzyness into changing the per-cpu group shares
  679. * this avoids remote rq-locks at the expense of fairness.
  680. * default: 4
  681. */
  682. unsigned int sysctl_sched_shares_thresh = 4;
  683. /*
  684. * period over which we measure -rt task cpu usage in us.
  685. * default: 1s
  686. */
  687. unsigned int sysctl_sched_rt_period = 1000000;
  688. static __read_mostly int scheduler_running;
  689. /*
  690. * part of the period that we allow rt tasks to run in us.
  691. * default: 0.95s
  692. */
  693. int sysctl_sched_rt_runtime = 950000;
  694. static inline u64 global_rt_period(void)
  695. {
  696. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  697. }
  698. static inline u64 global_rt_runtime(void)
  699. {
  700. if (sysctl_sched_rt_runtime < 0)
  701. return RUNTIME_INF;
  702. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  703. }
  704. #ifndef prepare_arch_switch
  705. # define prepare_arch_switch(next) do { } while (0)
  706. #endif
  707. #ifndef finish_arch_switch
  708. # define finish_arch_switch(prev) do { } while (0)
  709. #endif
  710. static inline int task_current(struct rq *rq, struct task_struct *p)
  711. {
  712. return rq->curr == p;
  713. }
  714. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  715. static inline int task_running(struct rq *rq, struct task_struct *p)
  716. {
  717. return task_current(rq, p);
  718. }
  719. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  720. {
  721. }
  722. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  723. {
  724. #ifdef CONFIG_DEBUG_SPINLOCK
  725. /* this is a valid case when another task releases the spinlock */
  726. rq->lock.owner = current;
  727. #endif
  728. /*
  729. * If we are tracking spinlock dependencies then we have to
  730. * fix up the runqueue lock - which gets 'carried over' from
  731. * prev into current:
  732. */
  733. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  734. spin_unlock_irq(&rq->lock);
  735. }
  736. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  737. static inline int task_running(struct rq *rq, struct task_struct *p)
  738. {
  739. #ifdef CONFIG_SMP
  740. return p->oncpu;
  741. #else
  742. return task_current(rq, p);
  743. #endif
  744. }
  745. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  746. {
  747. #ifdef CONFIG_SMP
  748. /*
  749. * We can optimise this out completely for !SMP, because the
  750. * SMP rebalancing from interrupt is the only thing that cares
  751. * here.
  752. */
  753. next->oncpu = 1;
  754. #endif
  755. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  756. spin_unlock_irq(&rq->lock);
  757. #else
  758. spin_unlock(&rq->lock);
  759. #endif
  760. }
  761. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  762. {
  763. #ifdef CONFIG_SMP
  764. /*
  765. * After ->oncpu is cleared, the task can be moved to a different CPU.
  766. * We must ensure this doesn't happen until the switch is completely
  767. * finished.
  768. */
  769. smp_wmb();
  770. prev->oncpu = 0;
  771. #endif
  772. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  773. local_irq_enable();
  774. #endif
  775. }
  776. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  777. /*
  778. * __task_rq_lock - lock the runqueue a given task resides on.
  779. * Must be called interrupts disabled.
  780. */
  781. static inline struct rq *__task_rq_lock(struct task_struct *p)
  782. __acquires(rq->lock)
  783. {
  784. for (;;) {
  785. struct rq *rq = task_rq(p);
  786. spin_lock(&rq->lock);
  787. if (likely(rq == task_rq(p)))
  788. return rq;
  789. spin_unlock(&rq->lock);
  790. }
  791. }
  792. /*
  793. * task_rq_lock - lock the runqueue a given task resides on and disable
  794. * interrupts. Note the ordering: we can safely lookup the task_rq without
  795. * explicitly disabling preemption.
  796. */
  797. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  798. __acquires(rq->lock)
  799. {
  800. struct rq *rq;
  801. for (;;) {
  802. local_irq_save(*flags);
  803. rq = task_rq(p);
  804. spin_lock(&rq->lock);
  805. if (likely(rq == task_rq(p)))
  806. return rq;
  807. spin_unlock_irqrestore(&rq->lock, *flags);
  808. }
  809. }
  810. void task_rq_unlock_wait(struct task_struct *p)
  811. {
  812. struct rq *rq = task_rq(p);
  813. smp_mb(); /* spin-unlock-wait is not a full memory barrier */
  814. spin_unlock_wait(&rq->lock);
  815. }
  816. static void __task_rq_unlock(struct rq *rq)
  817. __releases(rq->lock)
  818. {
  819. spin_unlock(&rq->lock);
  820. }
  821. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  822. __releases(rq->lock)
  823. {
  824. spin_unlock_irqrestore(&rq->lock, *flags);
  825. }
  826. /*
  827. * this_rq_lock - lock this runqueue and disable interrupts.
  828. */
  829. static struct rq *this_rq_lock(void)
  830. __acquires(rq->lock)
  831. {
  832. struct rq *rq;
  833. local_irq_disable();
  834. rq = this_rq();
  835. spin_lock(&rq->lock);
  836. return rq;
  837. }
  838. #ifdef CONFIG_SCHED_HRTICK
  839. /*
  840. * Use HR-timers to deliver accurate preemption points.
  841. *
  842. * Its all a bit involved since we cannot program an hrt while holding the
  843. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  844. * reschedule event.
  845. *
  846. * When we get rescheduled we reprogram the hrtick_timer outside of the
  847. * rq->lock.
  848. */
  849. /*
  850. * Use hrtick when:
  851. * - enabled by features
  852. * - hrtimer is actually high res
  853. */
  854. static inline int hrtick_enabled(struct rq *rq)
  855. {
  856. if (!sched_feat(HRTICK))
  857. return 0;
  858. if (!cpu_active(cpu_of(rq)))
  859. return 0;
  860. return hrtimer_is_hres_active(&rq->hrtick_timer);
  861. }
  862. static void hrtick_clear(struct rq *rq)
  863. {
  864. if (hrtimer_active(&rq->hrtick_timer))
  865. hrtimer_cancel(&rq->hrtick_timer);
  866. }
  867. /*
  868. * High-resolution timer tick.
  869. * Runs from hardirq context with interrupts disabled.
  870. */
  871. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  872. {
  873. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  874. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  875. spin_lock(&rq->lock);
  876. update_rq_clock(rq);
  877. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  878. spin_unlock(&rq->lock);
  879. return HRTIMER_NORESTART;
  880. }
  881. #ifdef CONFIG_SMP
  882. /*
  883. * called from hardirq (IPI) context
  884. */
  885. static void __hrtick_start(void *arg)
  886. {
  887. struct rq *rq = arg;
  888. spin_lock(&rq->lock);
  889. hrtimer_restart(&rq->hrtick_timer);
  890. rq->hrtick_csd_pending = 0;
  891. spin_unlock(&rq->lock);
  892. }
  893. /*
  894. * Called to set the hrtick timer state.
  895. *
  896. * called with rq->lock held and irqs disabled
  897. */
  898. static void hrtick_start(struct rq *rq, u64 delay)
  899. {
  900. struct hrtimer *timer = &rq->hrtick_timer;
  901. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  902. hrtimer_set_expires(timer, time);
  903. if (rq == this_rq()) {
  904. hrtimer_restart(timer);
  905. } else if (!rq->hrtick_csd_pending) {
  906. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
  907. rq->hrtick_csd_pending = 1;
  908. }
  909. }
  910. static int
  911. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  912. {
  913. int cpu = (int)(long)hcpu;
  914. switch (action) {
  915. case CPU_UP_CANCELED:
  916. case CPU_UP_CANCELED_FROZEN:
  917. case CPU_DOWN_PREPARE:
  918. case CPU_DOWN_PREPARE_FROZEN:
  919. case CPU_DEAD:
  920. case CPU_DEAD_FROZEN:
  921. hrtick_clear(cpu_rq(cpu));
  922. return NOTIFY_OK;
  923. }
  924. return NOTIFY_DONE;
  925. }
  926. static __init void init_hrtick(void)
  927. {
  928. hotcpu_notifier(hotplug_hrtick, 0);
  929. }
  930. #else
  931. /*
  932. * Called to set the hrtick timer state.
  933. *
  934. * called with rq->lock held and irqs disabled
  935. */
  936. static void hrtick_start(struct rq *rq, u64 delay)
  937. {
  938. hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
  939. }
  940. static inline void init_hrtick(void)
  941. {
  942. }
  943. #endif /* CONFIG_SMP */
  944. static void init_rq_hrtick(struct rq *rq)
  945. {
  946. #ifdef CONFIG_SMP
  947. rq->hrtick_csd_pending = 0;
  948. rq->hrtick_csd.flags = 0;
  949. rq->hrtick_csd.func = __hrtick_start;
  950. rq->hrtick_csd.info = rq;
  951. #endif
  952. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  953. rq->hrtick_timer.function = hrtick;
  954. rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_PERCPU;
  955. }
  956. #else /* CONFIG_SCHED_HRTICK */
  957. static inline void hrtick_clear(struct rq *rq)
  958. {
  959. }
  960. static inline void init_rq_hrtick(struct rq *rq)
  961. {
  962. }
  963. static inline void init_hrtick(void)
  964. {
  965. }
  966. #endif /* CONFIG_SCHED_HRTICK */
  967. /*
  968. * resched_task - mark a task 'to be rescheduled now'.
  969. *
  970. * On UP this means the setting of the need_resched flag, on SMP it
  971. * might also involve a cross-CPU call to trigger the scheduler on
  972. * the target CPU.
  973. */
  974. #ifdef CONFIG_SMP
  975. #ifndef tsk_is_polling
  976. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  977. #endif
  978. static void resched_task(struct task_struct *p)
  979. {
  980. int cpu;
  981. assert_spin_locked(&task_rq(p)->lock);
  982. if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
  983. return;
  984. set_tsk_thread_flag(p, TIF_NEED_RESCHED);
  985. cpu = task_cpu(p);
  986. if (cpu == smp_processor_id())
  987. return;
  988. /* NEED_RESCHED must be visible before we test polling */
  989. smp_mb();
  990. if (!tsk_is_polling(p))
  991. smp_send_reschedule(cpu);
  992. }
  993. static void resched_cpu(int cpu)
  994. {
  995. struct rq *rq = cpu_rq(cpu);
  996. unsigned long flags;
  997. if (!spin_trylock_irqsave(&rq->lock, flags))
  998. return;
  999. resched_task(cpu_curr(cpu));
  1000. spin_unlock_irqrestore(&rq->lock, flags);
  1001. }
  1002. #ifdef CONFIG_NO_HZ
  1003. /*
  1004. * When add_timer_on() enqueues a timer into the timer wheel of an
  1005. * idle CPU then this timer might expire before the next timer event
  1006. * which is scheduled to wake up that CPU. In case of a completely
  1007. * idle system the next event might even be infinite time into the
  1008. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1009. * leaves the inner idle loop so the newly added timer is taken into
  1010. * account when the CPU goes back to idle and evaluates the timer
  1011. * wheel for the next timer event.
  1012. */
  1013. void wake_up_idle_cpu(int cpu)
  1014. {
  1015. struct rq *rq = cpu_rq(cpu);
  1016. if (cpu == smp_processor_id())
  1017. return;
  1018. /*
  1019. * This is safe, as this function is called with the timer
  1020. * wheel base lock of (cpu) held. When the CPU is on the way
  1021. * to idle and has not yet set rq->curr to idle then it will
  1022. * be serialized on the timer wheel base lock and take the new
  1023. * timer into account automatically.
  1024. */
  1025. if (rq->curr != rq->idle)
  1026. return;
  1027. /*
  1028. * We can set TIF_RESCHED on the idle task of the other CPU
  1029. * lockless. The worst case is that the other CPU runs the
  1030. * idle task through an additional NOOP schedule()
  1031. */
  1032. set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
  1033. /* NEED_RESCHED must be visible before we test polling */
  1034. smp_mb();
  1035. if (!tsk_is_polling(rq->idle))
  1036. smp_send_reschedule(cpu);
  1037. }
  1038. #endif /* CONFIG_NO_HZ */
  1039. #else /* !CONFIG_SMP */
  1040. static void resched_task(struct task_struct *p)
  1041. {
  1042. assert_spin_locked(&task_rq(p)->lock);
  1043. set_tsk_need_resched(p);
  1044. }
  1045. #endif /* CONFIG_SMP */
  1046. #if BITS_PER_LONG == 32
  1047. # define WMULT_CONST (~0UL)
  1048. #else
  1049. # define WMULT_CONST (1UL << 32)
  1050. #endif
  1051. #define WMULT_SHIFT 32
  1052. /*
  1053. * Shift right and round:
  1054. */
  1055. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1056. /*
  1057. * delta *= weight / lw
  1058. */
  1059. static unsigned long
  1060. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1061. struct load_weight *lw)
  1062. {
  1063. u64 tmp;
  1064. if (!lw->inv_weight) {
  1065. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1066. lw->inv_weight = 1;
  1067. else
  1068. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1069. / (lw->weight+1);
  1070. }
  1071. tmp = (u64)delta_exec * weight;
  1072. /*
  1073. * Check whether we'd overflow the 64-bit multiplication:
  1074. */
  1075. if (unlikely(tmp > WMULT_CONST))
  1076. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1077. WMULT_SHIFT/2);
  1078. else
  1079. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1080. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1081. }
  1082. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1083. {
  1084. lw->weight += inc;
  1085. lw->inv_weight = 0;
  1086. }
  1087. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1088. {
  1089. lw->weight -= dec;
  1090. lw->inv_weight = 0;
  1091. }
  1092. /*
  1093. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1094. * of tasks with abnormal "nice" values across CPUs the contribution that
  1095. * each task makes to its run queue's load is weighted according to its
  1096. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1097. * scaled version of the new time slice allocation that they receive on time
  1098. * slice expiry etc.
  1099. */
  1100. #define WEIGHT_IDLEPRIO 2
  1101. #define WMULT_IDLEPRIO (1 << 31)
  1102. /*
  1103. * Nice levels are multiplicative, with a gentle 10% change for every
  1104. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1105. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1106. * that remained on nice 0.
  1107. *
  1108. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1109. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1110. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1111. * If a task goes up by ~10% and another task goes down by ~10% then
  1112. * the relative distance between them is ~25%.)
  1113. */
  1114. static const int prio_to_weight[40] = {
  1115. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1116. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1117. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1118. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1119. /* 0 */ 1024, 820, 655, 526, 423,
  1120. /* 5 */ 335, 272, 215, 172, 137,
  1121. /* 10 */ 110, 87, 70, 56, 45,
  1122. /* 15 */ 36, 29, 23, 18, 15,
  1123. };
  1124. /*
  1125. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1126. *
  1127. * In cases where the weight does not change often, we can use the
  1128. * precalculated inverse to speed up arithmetics by turning divisions
  1129. * into multiplications:
  1130. */
  1131. static const u32 prio_to_wmult[40] = {
  1132. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1133. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1134. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1135. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1136. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1137. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1138. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1139. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1140. };
  1141. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  1142. /*
  1143. * runqueue iterator, to support SMP load-balancing between different
  1144. * scheduling classes, without having to expose their internal data
  1145. * structures to the load-balancing proper:
  1146. */
  1147. struct rq_iterator {
  1148. void *arg;
  1149. struct task_struct *(*start)(void *);
  1150. struct task_struct *(*next)(void *);
  1151. };
  1152. #ifdef CONFIG_SMP
  1153. static unsigned long
  1154. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1155. unsigned long max_load_move, struct sched_domain *sd,
  1156. enum cpu_idle_type idle, int *all_pinned,
  1157. int *this_best_prio, struct rq_iterator *iterator);
  1158. static int
  1159. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1160. struct sched_domain *sd, enum cpu_idle_type idle,
  1161. struct rq_iterator *iterator);
  1162. #endif
  1163. #ifdef CONFIG_CGROUP_CPUACCT
  1164. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1165. #else
  1166. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1167. #endif
  1168. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1169. {
  1170. update_load_add(&rq->load, load);
  1171. }
  1172. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1173. {
  1174. update_load_sub(&rq->load, load);
  1175. }
  1176. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1177. typedef int (*tg_visitor)(struct task_group *, void *);
  1178. /*
  1179. * Iterate the full tree, calling @down when first entering a node and @up when
  1180. * leaving it for the final time.
  1181. */
  1182. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1183. {
  1184. struct task_group *parent, *child;
  1185. int ret;
  1186. rcu_read_lock();
  1187. parent = &root_task_group;
  1188. down:
  1189. ret = (*down)(parent, data);
  1190. if (ret)
  1191. goto out_unlock;
  1192. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1193. parent = child;
  1194. goto down;
  1195. up:
  1196. continue;
  1197. }
  1198. ret = (*up)(parent, data);
  1199. if (ret)
  1200. goto out_unlock;
  1201. child = parent;
  1202. parent = parent->parent;
  1203. if (parent)
  1204. goto up;
  1205. out_unlock:
  1206. rcu_read_unlock();
  1207. return ret;
  1208. }
  1209. static int tg_nop(struct task_group *tg, void *data)
  1210. {
  1211. return 0;
  1212. }
  1213. #endif
  1214. #ifdef CONFIG_SMP
  1215. static unsigned long source_load(int cpu, int type);
  1216. static unsigned long target_load(int cpu, int type);
  1217. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1218. static unsigned long cpu_avg_load_per_task(int cpu)
  1219. {
  1220. struct rq *rq = cpu_rq(cpu);
  1221. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1222. if (nr_running)
  1223. rq->avg_load_per_task = rq->load.weight / nr_running;
  1224. else
  1225. rq->avg_load_per_task = 0;
  1226. return rq->avg_load_per_task;
  1227. }
  1228. #ifdef CONFIG_FAIR_GROUP_SCHED
  1229. static void __set_se_shares(struct sched_entity *se, unsigned long shares);
  1230. /*
  1231. * Calculate and set the cpu's group shares.
  1232. */
  1233. static void
  1234. update_group_shares_cpu(struct task_group *tg, int cpu,
  1235. unsigned long sd_shares, unsigned long sd_rq_weight)
  1236. {
  1237. int boost = 0;
  1238. unsigned long shares;
  1239. unsigned long rq_weight;
  1240. if (!tg->se[cpu])
  1241. return;
  1242. rq_weight = tg->cfs_rq[cpu]->load.weight;
  1243. /*
  1244. * If there are currently no tasks on the cpu pretend there is one of
  1245. * average load so that when a new task gets to run here it will not
  1246. * get delayed by group starvation.
  1247. */
  1248. if (!rq_weight) {
  1249. boost = 1;
  1250. rq_weight = NICE_0_LOAD;
  1251. }
  1252. if (unlikely(rq_weight > sd_rq_weight))
  1253. rq_weight = sd_rq_weight;
  1254. /*
  1255. * \Sum shares * rq_weight
  1256. * shares = -----------------------
  1257. * \Sum rq_weight
  1258. *
  1259. */
  1260. shares = (sd_shares * rq_weight) / (sd_rq_weight + 1);
  1261. shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
  1262. if (abs(shares - tg->se[cpu]->load.weight) >
  1263. sysctl_sched_shares_thresh) {
  1264. struct rq *rq = cpu_rq(cpu);
  1265. unsigned long flags;
  1266. spin_lock_irqsave(&rq->lock, flags);
  1267. /*
  1268. * record the actual number of shares, not the boosted amount.
  1269. */
  1270. tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
  1271. tg->cfs_rq[cpu]->rq_weight = rq_weight;
  1272. __set_se_shares(tg->se[cpu], shares);
  1273. spin_unlock_irqrestore(&rq->lock, flags);
  1274. }
  1275. }
  1276. /*
  1277. * Re-compute the task group their per cpu shares over the given domain.
  1278. * This needs to be done in a bottom-up fashion because the rq weight of a
  1279. * parent group depends on the shares of its child groups.
  1280. */
  1281. static int tg_shares_up(struct task_group *tg, void *data)
  1282. {
  1283. unsigned long rq_weight = 0;
  1284. unsigned long shares = 0;
  1285. struct sched_domain *sd = data;
  1286. int i;
  1287. for_each_cpu_mask(i, sd->span) {
  1288. rq_weight += tg->cfs_rq[i]->load.weight;
  1289. shares += tg->cfs_rq[i]->shares;
  1290. }
  1291. if ((!shares && rq_weight) || shares > tg->shares)
  1292. shares = tg->shares;
  1293. if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
  1294. shares = tg->shares;
  1295. if (!rq_weight)
  1296. rq_weight = cpus_weight(sd->span) * NICE_0_LOAD;
  1297. for_each_cpu_mask(i, sd->span)
  1298. update_group_shares_cpu(tg, i, shares, rq_weight);
  1299. return 0;
  1300. }
  1301. /*
  1302. * Compute the cpu's hierarchical load factor for each task group.
  1303. * This needs to be done in a top-down fashion because the load of a child
  1304. * group is a fraction of its parents load.
  1305. */
  1306. static int tg_load_down(struct task_group *tg, void *data)
  1307. {
  1308. unsigned long load;
  1309. long cpu = (long)data;
  1310. if (!tg->parent) {
  1311. load = cpu_rq(cpu)->load.weight;
  1312. } else {
  1313. load = tg->parent->cfs_rq[cpu]->h_load;
  1314. load *= tg->cfs_rq[cpu]->shares;
  1315. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1316. }
  1317. tg->cfs_rq[cpu]->h_load = load;
  1318. return 0;
  1319. }
  1320. static void update_shares(struct sched_domain *sd)
  1321. {
  1322. u64 now = cpu_clock(raw_smp_processor_id());
  1323. s64 elapsed = now - sd->last_update;
  1324. if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
  1325. sd->last_update = now;
  1326. walk_tg_tree(tg_nop, tg_shares_up, sd);
  1327. }
  1328. }
  1329. static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1330. {
  1331. spin_unlock(&rq->lock);
  1332. update_shares(sd);
  1333. spin_lock(&rq->lock);
  1334. }
  1335. static void update_h_load(long cpu)
  1336. {
  1337. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1338. }
  1339. #else
  1340. static inline void update_shares(struct sched_domain *sd)
  1341. {
  1342. }
  1343. static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1344. {
  1345. }
  1346. #endif
  1347. #endif
  1348. #ifdef CONFIG_FAIR_GROUP_SCHED
  1349. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1350. {
  1351. #ifdef CONFIG_SMP
  1352. cfs_rq->shares = shares;
  1353. #endif
  1354. }
  1355. #endif
  1356. #include "sched_stats.h"
  1357. #include "sched_idletask.c"
  1358. #include "sched_fair.c"
  1359. #include "sched_rt.c"
  1360. #ifdef CONFIG_SCHED_DEBUG
  1361. # include "sched_debug.c"
  1362. #endif
  1363. #define sched_class_highest (&rt_sched_class)
  1364. #define for_each_class(class) \
  1365. for (class = sched_class_highest; class; class = class->next)
  1366. static void inc_nr_running(struct rq *rq)
  1367. {
  1368. rq->nr_running++;
  1369. }
  1370. static void dec_nr_running(struct rq *rq)
  1371. {
  1372. rq->nr_running--;
  1373. }
  1374. static void set_load_weight(struct task_struct *p)
  1375. {
  1376. if (task_has_rt_policy(p)) {
  1377. p->se.load.weight = prio_to_weight[0] * 2;
  1378. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1379. return;
  1380. }
  1381. /*
  1382. * SCHED_IDLE tasks get minimal weight:
  1383. */
  1384. if (p->policy == SCHED_IDLE) {
  1385. p->se.load.weight = WEIGHT_IDLEPRIO;
  1386. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1387. return;
  1388. }
  1389. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1390. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1391. }
  1392. static void update_avg(u64 *avg, u64 sample)
  1393. {
  1394. s64 diff = sample - *avg;
  1395. *avg += diff >> 3;
  1396. }
  1397. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  1398. {
  1399. sched_info_queued(p);
  1400. p->sched_class->enqueue_task(rq, p, wakeup);
  1401. p->se.on_rq = 1;
  1402. }
  1403. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  1404. {
  1405. if (sleep && p->se.last_wakeup) {
  1406. update_avg(&p->se.avg_overlap,
  1407. p->se.sum_exec_runtime - p->se.last_wakeup);
  1408. p->se.last_wakeup = 0;
  1409. }
  1410. sched_info_dequeued(p);
  1411. p->sched_class->dequeue_task(rq, p, sleep);
  1412. p->se.on_rq = 0;
  1413. }
  1414. /*
  1415. * __normal_prio - return the priority that is based on the static prio
  1416. */
  1417. static inline int __normal_prio(struct task_struct *p)
  1418. {
  1419. return p->static_prio;
  1420. }
  1421. /*
  1422. * Calculate the expected normal priority: i.e. priority
  1423. * without taking RT-inheritance into account. Might be
  1424. * boosted by interactivity modifiers. Changes upon fork,
  1425. * setprio syscalls, and whenever the interactivity
  1426. * estimator recalculates.
  1427. */
  1428. static inline int normal_prio(struct task_struct *p)
  1429. {
  1430. int prio;
  1431. if (task_has_rt_policy(p))
  1432. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1433. else
  1434. prio = __normal_prio(p);
  1435. return prio;
  1436. }
  1437. /*
  1438. * Calculate the current priority, i.e. the priority
  1439. * taken into account by the scheduler. This value might
  1440. * be boosted by RT tasks, or might be boosted by
  1441. * interactivity modifiers. Will be RT if the task got
  1442. * RT-boosted. If not then it returns p->normal_prio.
  1443. */
  1444. static int effective_prio(struct task_struct *p)
  1445. {
  1446. p->normal_prio = normal_prio(p);
  1447. /*
  1448. * If we are RT tasks or we were boosted to RT priority,
  1449. * keep the priority unchanged. Otherwise, update priority
  1450. * to the normal priority:
  1451. */
  1452. if (!rt_prio(p->prio))
  1453. return p->normal_prio;
  1454. return p->prio;
  1455. }
  1456. /*
  1457. * activate_task - move a task to the runqueue.
  1458. */
  1459. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  1460. {
  1461. if (task_contributes_to_load(p))
  1462. rq->nr_uninterruptible--;
  1463. enqueue_task(rq, p, wakeup);
  1464. inc_nr_running(rq);
  1465. }
  1466. /*
  1467. * deactivate_task - remove a task from the runqueue.
  1468. */
  1469. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  1470. {
  1471. if (task_contributes_to_load(p))
  1472. rq->nr_uninterruptible++;
  1473. dequeue_task(rq, p, sleep);
  1474. dec_nr_running(rq);
  1475. }
  1476. /**
  1477. * task_curr - is this task currently executing on a CPU?
  1478. * @p: the task in question.
  1479. */
  1480. inline int task_curr(const struct task_struct *p)
  1481. {
  1482. return cpu_curr(task_cpu(p)) == p;
  1483. }
  1484. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1485. {
  1486. set_task_rq(p, cpu);
  1487. #ifdef CONFIG_SMP
  1488. /*
  1489. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1490. * successfuly executed on another CPU. We must ensure that updates of
  1491. * per-task data have been completed by this moment.
  1492. */
  1493. smp_wmb();
  1494. task_thread_info(p)->cpu = cpu;
  1495. #endif
  1496. }
  1497. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1498. const struct sched_class *prev_class,
  1499. int oldprio, int running)
  1500. {
  1501. if (prev_class != p->sched_class) {
  1502. if (prev_class->switched_from)
  1503. prev_class->switched_from(rq, p, running);
  1504. p->sched_class->switched_to(rq, p, running);
  1505. } else
  1506. p->sched_class->prio_changed(rq, p, oldprio, running);
  1507. }
  1508. #ifdef CONFIG_SMP
  1509. /* Used instead of source_load when we know the type == 0 */
  1510. static unsigned long weighted_cpuload(const int cpu)
  1511. {
  1512. return cpu_rq(cpu)->load.weight;
  1513. }
  1514. /*
  1515. * Is this task likely cache-hot:
  1516. */
  1517. static int
  1518. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1519. {
  1520. s64 delta;
  1521. /*
  1522. * Buddy candidates are cache hot:
  1523. */
  1524. if (sched_feat(CACHE_HOT_BUDDY) &&
  1525. (&p->se == cfs_rq_of(&p->se)->next ||
  1526. &p->se == cfs_rq_of(&p->se)->last))
  1527. return 1;
  1528. if (p->sched_class != &fair_sched_class)
  1529. return 0;
  1530. if (sysctl_sched_migration_cost == -1)
  1531. return 1;
  1532. if (sysctl_sched_migration_cost == 0)
  1533. return 0;
  1534. delta = now - p->se.exec_start;
  1535. return delta < (s64)sysctl_sched_migration_cost;
  1536. }
  1537. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1538. {
  1539. int old_cpu = task_cpu(p);
  1540. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  1541. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  1542. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  1543. u64 clock_offset;
  1544. clock_offset = old_rq->clock - new_rq->clock;
  1545. #ifdef CONFIG_SCHEDSTATS
  1546. if (p->se.wait_start)
  1547. p->se.wait_start -= clock_offset;
  1548. if (p->se.sleep_start)
  1549. p->se.sleep_start -= clock_offset;
  1550. if (p->se.block_start)
  1551. p->se.block_start -= clock_offset;
  1552. if (old_cpu != new_cpu) {
  1553. schedstat_inc(p, se.nr_migrations);
  1554. if (task_hot(p, old_rq->clock, NULL))
  1555. schedstat_inc(p, se.nr_forced2_migrations);
  1556. }
  1557. #endif
  1558. p->se.vruntime -= old_cfsrq->min_vruntime -
  1559. new_cfsrq->min_vruntime;
  1560. __set_task_cpu(p, new_cpu);
  1561. }
  1562. struct migration_req {
  1563. struct list_head list;
  1564. struct task_struct *task;
  1565. int dest_cpu;
  1566. struct completion done;
  1567. };
  1568. /*
  1569. * The task's runqueue lock must be held.
  1570. * Returns true if you have to wait for migration thread.
  1571. */
  1572. static int
  1573. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1574. {
  1575. struct rq *rq = task_rq(p);
  1576. /*
  1577. * If the task is not on a runqueue (and not running), then
  1578. * it is sufficient to simply update the task's cpu field.
  1579. */
  1580. if (!p->se.on_rq && !task_running(rq, p)) {
  1581. set_task_cpu(p, dest_cpu);
  1582. return 0;
  1583. }
  1584. init_completion(&req->done);
  1585. req->task = p;
  1586. req->dest_cpu = dest_cpu;
  1587. list_add(&req->list, &rq->migration_queue);
  1588. return 1;
  1589. }
  1590. /*
  1591. * wait_task_inactive - wait for a thread to unschedule.
  1592. *
  1593. * If @match_state is nonzero, it's the @p->state value just checked and
  1594. * not expected to change. If it changes, i.e. @p might have woken up,
  1595. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1596. * we return a positive number (its total switch count). If a second call
  1597. * a short while later returns the same number, the caller can be sure that
  1598. * @p has remained unscheduled the whole time.
  1599. *
  1600. * The caller must ensure that the task *will* unschedule sometime soon,
  1601. * else this function might spin for a *long* time. This function can't
  1602. * be called with interrupts off, or it may introduce deadlock with
  1603. * smp_call_function() if an IPI is sent by the same process we are
  1604. * waiting to become inactive.
  1605. */
  1606. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1607. {
  1608. unsigned long flags;
  1609. int running, on_rq;
  1610. unsigned long ncsw;
  1611. struct rq *rq;
  1612. for (;;) {
  1613. /*
  1614. * We do the initial early heuristics without holding
  1615. * any task-queue locks at all. We'll only try to get
  1616. * the runqueue lock when things look like they will
  1617. * work out!
  1618. */
  1619. rq = task_rq(p);
  1620. /*
  1621. * If the task is actively running on another CPU
  1622. * still, just relax and busy-wait without holding
  1623. * any locks.
  1624. *
  1625. * NOTE! Since we don't hold any locks, it's not
  1626. * even sure that "rq" stays as the right runqueue!
  1627. * But we don't care, since "task_running()" will
  1628. * return false if the runqueue has changed and p
  1629. * is actually now running somewhere else!
  1630. */
  1631. while (task_running(rq, p)) {
  1632. if (match_state && unlikely(p->state != match_state))
  1633. return 0;
  1634. cpu_relax();
  1635. }
  1636. /*
  1637. * Ok, time to look more closely! We need the rq
  1638. * lock now, to be *sure*. If we're wrong, we'll
  1639. * just go back and repeat.
  1640. */
  1641. rq = task_rq_lock(p, &flags);
  1642. trace_sched_wait_task(rq, p);
  1643. running = task_running(rq, p);
  1644. on_rq = p->se.on_rq;
  1645. ncsw = 0;
  1646. if (!match_state || p->state == match_state)
  1647. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1648. task_rq_unlock(rq, &flags);
  1649. /*
  1650. * If it changed from the expected state, bail out now.
  1651. */
  1652. if (unlikely(!ncsw))
  1653. break;
  1654. /*
  1655. * Was it really running after all now that we
  1656. * checked with the proper locks actually held?
  1657. *
  1658. * Oops. Go back and try again..
  1659. */
  1660. if (unlikely(running)) {
  1661. cpu_relax();
  1662. continue;
  1663. }
  1664. /*
  1665. * It's not enough that it's not actively running,
  1666. * it must be off the runqueue _entirely_, and not
  1667. * preempted!
  1668. *
  1669. * So if it wa still runnable (but just not actively
  1670. * running right now), it's preempted, and we should
  1671. * yield - it could be a while.
  1672. */
  1673. if (unlikely(on_rq)) {
  1674. schedule_timeout_uninterruptible(1);
  1675. continue;
  1676. }
  1677. /*
  1678. * Ahh, all good. It wasn't running, and it wasn't
  1679. * runnable, which means that it will never become
  1680. * running in the future either. We're all done!
  1681. */
  1682. break;
  1683. }
  1684. return ncsw;
  1685. }
  1686. /***
  1687. * kick_process - kick a running thread to enter/exit the kernel
  1688. * @p: the to-be-kicked thread
  1689. *
  1690. * Cause a process which is running on another CPU to enter
  1691. * kernel-mode, without any delay. (to get signals handled.)
  1692. *
  1693. * NOTE: this function doesnt have to take the runqueue lock,
  1694. * because all it wants to ensure is that the remote task enters
  1695. * the kernel. If the IPI races and the task has been migrated
  1696. * to another CPU then no harm is done and the purpose has been
  1697. * achieved as well.
  1698. */
  1699. void kick_process(struct task_struct *p)
  1700. {
  1701. int cpu;
  1702. preempt_disable();
  1703. cpu = task_cpu(p);
  1704. if ((cpu != smp_processor_id()) && task_curr(p))
  1705. smp_send_reschedule(cpu);
  1706. preempt_enable();
  1707. }
  1708. /*
  1709. * Return a low guess at the load of a migration-source cpu weighted
  1710. * according to the scheduling class and "nice" value.
  1711. *
  1712. * We want to under-estimate the load of migration sources, to
  1713. * balance conservatively.
  1714. */
  1715. static unsigned long source_load(int cpu, int type)
  1716. {
  1717. struct rq *rq = cpu_rq(cpu);
  1718. unsigned long total = weighted_cpuload(cpu);
  1719. if (type == 0 || !sched_feat(LB_BIAS))
  1720. return total;
  1721. return min(rq->cpu_load[type-1], total);
  1722. }
  1723. /*
  1724. * Return a high guess at the load of a migration-target cpu weighted
  1725. * according to the scheduling class and "nice" value.
  1726. */
  1727. static unsigned long target_load(int cpu, int type)
  1728. {
  1729. struct rq *rq = cpu_rq(cpu);
  1730. unsigned long total = weighted_cpuload(cpu);
  1731. if (type == 0 || !sched_feat(LB_BIAS))
  1732. return total;
  1733. return max(rq->cpu_load[type-1], total);
  1734. }
  1735. /*
  1736. * find_idlest_group finds and returns the least busy CPU group within the
  1737. * domain.
  1738. */
  1739. static struct sched_group *
  1740. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1741. {
  1742. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1743. unsigned long min_load = ULONG_MAX, this_load = 0;
  1744. int load_idx = sd->forkexec_idx;
  1745. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1746. do {
  1747. unsigned long load, avg_load;
  1748. int local_group;
  1749. int i;
  1750. /* Skip over this group if it has no CPUs allowed */
  1751. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  1752. continue;
  1753. local_group = cpu_isset(this_cpu, group->cpumask);
  1754. /* Tally up the load of all CPUs in the group */
  1755. avg_load = 0;
  1756. for_each_cpu_mask_nr(i, group->cpumask) {
  1757. /* Bias balancing toward cpus of our domain */
  1758. if (local_group)
  1759. load = source_load(i, load_idx);
  1760. else
  1761. load = target_load(i, load_idx);
  1762. avg_load += load;
  1763. }
  1764. /* Adjust by relative CPU power of the group */
  1765. avg_load = sg_div_cpu_power(group,
  1766. avg_load * SCHED_LOAD_SCALE);
  1767. if (local_group) {
  1768. this_load = avg_load;
  1769. this = group;
  1770. } else if (avg_load < min_load) {
  1771. min_load = avg_load;
  1772. idlest = group;
  1773. }
  1774. } while (group = group->next, group != sd->groups);
  1775. if (!idlest || 100*this_load < imbalance*min_load)
  1776. return NULL;
  1777. return idlest;
  1778. }
  1779. /*
  1780. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1781. */
  1782. static int
  1783. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
  1784. cpumask_t *tmp)
  1785. {
  1786. unsigned long load, min_load = ULONG_MAX;
  1787. int idlest = -1;
  1788. int i;
  1789. /* Traverse only the allowed CPUs */
  1790. cpus_and(*tmp, group->cpumask, p->cpus_allowed);
  1791. for_each_cpu_mask_nr(i, *tmp) {
  1792. load = weighted_cpuload(i);
  1793. if (load < min_load || (load == min_load && i == this_cpu)) {
  1794. min_load = load;
  1795. idlest = i;
  1796. }
  1797. }
  1798. return idlest;
  1799. }
  1800. /*
  1801. * sched_balance_self: balance the current task (running on cpu) in domains
  1802. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1803. * SD_BALANCE_EXEC.
  1804. *
  1805. * Balance, ie. select the least loaded group.
  1806. *
  1807. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1808. *
  1809. * preempt must be disabled.
  1810. */
  1811. static int sched_balance_self(int cpu, int flag)
  1812. {
  1813. struct task_struct *t = current;
  1814. struct sched_domain *tmp, *sd = NULL;
  1815. for_each_domain(cpu, tmp) {
  1816. /*
  1817. * If power savings logic is enabled for a domain, stop there.
  1818. */
  1819. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1820. break;
  1821. if (tmp->flags & flag)
  1822. sd = tmp;
  1823. }
  1824. if (sd)
  1825. update_shares(sd);
  1826. while (sd) {
  1827. cpumask_t span, tmpmask;
  1828. struct sched_group *group;
  1829. int new_cpu, weight;
  1830. if (!(sd->flags & flag)) {
  1831. sd = sd->child;
  1832. continue;
  1833. }
  1834. span = sd->span;
  1835. group = find_idlest_group(sd, t, cpu);
  1836. if (!group) {
  1837. sd = sd->child;
  1838. continue;
  1839. }
  1840. new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
  1841. if (new_cpu == -1 || new_cpu == cpu) {
  1842. /* Now try balancing at a lower domain level of cpu */
  1843. sd = sd->child;
  1844. continue;
  1845. }
  1846. /* Now try balancing at a lower domain level of new_cpu */
  1847. cpu = new_cpu;
  1848. sd = NULL;
  1849. weight = cpus_weight(span);
  1850. for_each_domain(cpu, tmp) {
  1851. if (weight <= cpus_weight(tmp->span))
  1852. break;
  1853. if (tmp->flags & flag)
  1854. sd = tmp;
  1855. }
  1856. /* while loop will break here if sd == NULL */
  1857. }
  1858. return cpu;
  1859. }
  1860. #endif /* CONFIG_SMP */
  1861. /**
  1862. * task_oncpu_function_call - call a function on the cpu on which a task runs
  1863. * @p: the task to evaluate
  1864. * @func: the function to be called
  1865. * @info: the function call argument
  1866. *
  1867. * Calls the function @func when the task is currently running. This might
  1868. * be on the current CPU, which just calls the function directly
  1869. */
  1870. void task_oncpu_function_call(struct task_struct *p,
  1871. void (*func) (void *info), void *info)
  1872. {
  1873. int cpu;
  1874. preempt_disable();
  1875. cpu = task_cpu(p);
  1876. if (task_curr(p))
  1877. smp_call_function_single(cpu, func, info, 1);
  1878. preempt_enable();
  1879. }
  1880. /***
  1881. * try_to_wake_up - wake up a thread
  1882. * @p: the to-be-woken-up thread
  1883. * @state: the mask of task states that can be woken
  1884. * @sync: do a synchronous wakeup?
  1885. *
  1886. * Put it on the run-queue if it's not already there. The "current"
  1887. * thread is always on the run-queue (except when the actual
  1888. * re-schedule is in progress), and as such you're allowed to do
  1889. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1890. * runnable without the overhead of this.
  1891. *
  1892. * returns failure only if the task is already active.
  1893. */
  1894. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1895. {
  1896. int cpu, orig_cpu, this_cpu, success = 0;
  1897. unsigned long flags;
  1898. long old_state;
  1899. struct rq *rq;
  1900. if (!sched_feat(SYNC_WAKEUPS))
  1901. sync = 0;
  1902. #ifdef CONFIG_SMP
  1903. if (sched_feat(LB_WAKEUP_UPDATE)) {
  1904. struct sched_domain *sd;
  1905. this_cpu = raw_smp_processor_id();
  1906. cpu = task_cpu(p);
  1907. for_each_domain(this_cpu, sd) {
  1908. if (cpu_isset(cpu, sd->span)) {
  1909. update_shares(sd);
  1910. break;
  1911. }
  1912. }
  1913. }
  1914. #endif
  1915. smp_wmb();
  1916. rq = task_rq_lock(p, &flags);
  1917. old_state = p->state;
  1918. if (!(old_state & state))
  1919. goto out;
  1920. if (p->se.on_rq)
  1921. goto out_running;
  1922. cpu = task_cpu(p);
  1923. orig_cpu = cpu;
  1924. this_cpu = smp_processor_id();
  1925. #ifdef CONFIG_SMP
  1926. if (unlikely(task_running(rq, p)))
  1927. goto out_activate;
  1928. cpu = p->sched_class->select_task_rq(p, sync);
  1929. if (cpu != orig_cpu) {
  1930. set_task_cpu(p, cpu);
  1931. task_rq_unlock(rq, &flags);
  1932. /* might preempt at this point */
  1933. rq = task_rq_lock(p, &flags);
  1934. old_state = p->state;
  1935. if (!(old_state & state))
  1936. goto out;
  1937. if (p->se.on_rq)
  1938. goto out_running;
  1939. this_cpu = smp_processor_id();
  1940. cpu = task_cpu(p);
  1941. }
  1942. #ifdef CONFIG_SCHEDSTATS
  1943. schedstat_inc(rq, ttwu_count);
  1944. if (cpu == this_cpu)
  1945. schedstat_inc(rq, ttwu_local);
  1946. else {
  1947. struct sched_domain *sd;
  1948. for_each_domain(this_cpu, sd) {
  1949. if (cpu_isset(cpu, sd->span)) {
  1950. schedstat_inc(sd, ttwu_wake_remote);
  1951. break;
  1952. }
  1953. }
  1954. }
  1955. #endif /* CONFIG_SCHEDSTATS */
  1956. out_activate:
  1957. #endif /* CONFIG_SMP */
  1958. schedstat_inc(p, se.nr_wakeups);
  1959. if (sync)
  1960. schedstat_inc(p, se.nr_wakeups_sync);
  1961. if (orig_cpu != cpu)
  1962. schedstat_inc(p, se.nr_wakeups_migrate);
  1963. if (cpu == this_cpu)
  1964. schedstat_inc(p, se.nr_wakeups_local);
  1965. else
  1966. schedstat_inc(p, se.nr_wakeups_remote);
  1967. update_rq_clock(rq);
  1968. activate_task(rq, p, 1);
  1969. success = 1;
  1970. out_running:
  1971. trace_sched_wakeup(rq, p);
  1972. check_preempt_curr(rq, p, sync);
  1973. p->state = TASK_RUNNING;
  1974. #ifdef CONFIG_SMP
  1975. if (p->sched_class->task_wake_up)
  1976. p->sched_class->task_wake_up(rq, p);
  1977. #endif
  1978. out:
  1979. current->se.last_wakeup = current->se.sum_exec_runtime;
  1980. task_rq_unlock(rq, &flags);
  1981. return success;
  1982. }
  1983. int wake_up_process(struct task_struct *p)
  1984. {
  1985. return try_to_wake_up(p, TASK_ALL, 0);
  1986. }
  1987. EXPORT_SYMBOL(wake_up_process);
  1988. int wake_up_state(struct task_struct *p, unsigned int state)
  1989. {
  1990. return try_to_wake_up(p, state, 0);
  1991. }
  1992. /*
  1993. * Perform scheduler related setup for a newly forked process p.
  1994. * p is forked by current.
  1995. *
  1996. * __sched_fork() is basic setup used by init_idle() too:
  1997. */
  1998. static void __sched_fork(struct task_struct *p)
  1999. {
  2000. p->se.exec_start = 0;
  2001. p->se.sum_exec_runtime = 0;
  2002. p->se.prev_sum_exec_runtime = 0;
  2003. p->se.last_wakeup = 0;
  2004. p->se.avg_overlap = 0;
  2005. #ifdef CONFIG_SCHEDSTATS
  2006. p->se.wait_start = 0;
  2007. p->se.sum_sleep_runtime = 0;
  2008. p->se.sleep_start = 0;
  2009. p->se.block_start = 0;
  2010. p->se.sleep_max = 0;
  2011. p->se.block_max = 0;
  2012. p->se.exec_max = 0;
  2013. p->se.slice_max = 0;
  2014. p->se.wait_max = 0;
  2015. #endif
  2016. INIT_LIST_HEAD(&p->rt.run_list);
  2017. p->se.on_rq = 0;
  2018. INIT_LIST_HEAD(&p->se.group_node);
  2019. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2020. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2021. #endif
  2022. /*
  2023. * We mark the process as running here, but have not actually
  2024. * inserted it onto the runqueue yet. This guarantees that
  2025. * nobody will actually run it, and a signal or other external
  2026. * event cannot wake it up and insert it on the runqueue either.
  2027. */
  2028. p->state = TASK_RUNNING;
  2029. }
  2030. /*
  2031. * fork()/clone()-time setup:
  2032. */
  2033. void sched_fork(struct task_struct *p, int clone_flags)
  2034. {
  2035. int cpu = get_cpu();
  2036. __sched_fork(p);
  2037. #ifdef CONFIG_SMP
  2038. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  2039. #endif
  2040. set_task_cpu(p, cpu);
  2041. /*
  2042. * Make sure we do not leak PI boosting priority to the child:
  2043. */
  2044. p->prio = current->normal_prio;
  2045. if (!rt_prio(p->prio))
  2046. p->sched_class = &fair_sched_class;
  2047. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2048. if (likely(sched_info_on()))
  2049. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2050. #endif
  2051. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2052. p->oncpu = 0;
  2053. #endif
  2054. #ifdef CONFIG_PREEMPT
  2055. /* Want to start with kernel preemption disabled. */
  2056. task_thread_info(p)->preempt_count = 1;
  2057. #endif
  2058. put_cpu();
  2059. }
  2060. /*
  2061. * wake_up_new_task - wake up a newly created task for the first time.
  2062. *
  2063. * This function will do some initial scheduler statistics housekeeping
  2064. * that must be done for every newly created context, then puts the task
  2065. * on the runqueue and wakes it.
  2066. */
  2067. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2068. {
  2069. unsigned long flags;
  2070. struct rq *rq;
  2071. rq = task_rq_lock(p, &flags);
  2072. BUG_ON(p->state != TASK_RUNNING);
  2073. update_rq_clock(rq);
  2074. p->prio = effective_prio(p);
  2075. if (!p->sched_class->task_new || !current->se.on_rq) {
  2076. activate_task(rq, p, 0);
  2077. } else {
  2078. /*
  2079. * Let the scheduling class do new task startup
  2080. * management (if any):
  2081. */
  2082. p->sched_class->task_new(rq, p);
  2083. inc_nr_running(rq);
  2084. }
  2085. trace_sched_wakeup_new(rq, p);
  2086. check_preempt_curr(rq, p, 0);
  2087. #ifdef CONFIG_SMP
  2088. if (p->sched_class->task_wake_up)
  2089. p->sched_class->task_wake_up(rq, p);
  2090. #endif
  2091. task_rq_unlock(rq, &flags);
  2092. }
  2093. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2094. /**
  2095. * preempt_notifier_register - tell me when current is being being preempted & rescheduled
  2096. * @notifier: notifier struct to register
  2097. */
  2098. void preempt_notifier_register(struct preempt_notifier *notifier)
  2099. {
  2100. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2101. }
  2102. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2103. /**
  2104. * preempt_notifier_unregister - no longer interested in preemption notifications
  2105. * @notifier: notifier struct to unregister
  2106. *
  2107. * This is safe to call from within a preemption notifier.
  2108. */
  2109. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2110. {
  2111. hlist_del(&notifier->link);
  2112. }
  2113. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2114. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2115. {
  2116. struct preempt_notifier *notifier;
  2117. struct hlist_node *node;
  2118. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2119. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2120. }
  2121. static void
  2122. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2123. struct task_struct *next)
  2124. {
  2125. struct preempt_notifier *notifier;
  2126. struct hlist_node *node;
  2127. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2128. notifier->ops->sched_out(notifier, next);
  2129. }
  2130. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2131. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2132. {
  2133. }
  2134. static void
  2135. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2136. struct task_struct *next)
  2137. {
  2138. }
  2139. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2140. /**
  2141. * prepare_task_switch - prepare to switch tasks
  2142. * @rq: the runqueue preparing to switch
  2143. * @prev: the current task that is being switched out
  2144. * @next: the task we are going to switch to.
  2145. *
  2146. * This is called with the rq lock held and interrupts off. It must
  2147. * be paired with a subsequent finish_task_switch after the context
  2148. * switch.
  2149. *
  2150. * prepare_task_switch sets up locking and calls architecture specific
  2151. * hooks.
  2152. */
  2153. static inline void
  2154. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2155. struct task_struct *next)
  2156. {
  2157. fire_sched_out_preempt_notifiers(prev, next);
  2158. perf_counter_task_sched_out(prev, cpu_of(rq));
  2159. prepare_lock_switch(rq, next);
  2160. prepare_arch_switch(next);
  2161. }
  2162. /**
  2163. * finish_task_switch - clean up after a task-switch
  2164. * @rq: runqueue associated with task-switch
  2165. * @prev: the thread we just switched away from.
  2166. *
  2167. * finish_task_switch must be called after the context switch, paired
  2168. * with a prepare_task_switch call before the context switch.
  2169. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2170. * and do any other architecture-specific cleanup actions.
  2171. *
  2172. * Note that we may have delayed dropping an mm in context_switch(). If
  2173. * so, we finish that here outside of the runqueue lock. (Doing it
  2174. * with the lock held can cause deadlocks; see schedule() for
  2175. * details.)
  2176. */
  2177. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2178. __releases(rq->lock)
  2179. {
  2180. struct mm_struct *mm = rq->prev_mm;
  2181. long prev_state;
  2182. rq->prev_mm = NULL;
  2183. /*
  2184. * A task struct has one reference for the use as "current".
  2185. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2186. * schedule one last time. The schedule call will never return, and
  2187. * the scheduled task must drop that reference.
  2188. * The test for TASK_DEAD must occur while the runqueue locks are
  2189. * still held, otherwise prev could be scheduled on another cpu, die
  2190. * there before we look at prev->state, and then the reference would
  2191. * be dropped twice.
  2192. * Manfred Spraul <manfred@colorfullife.com>
  2193. */
  2194. prev_state = prev->state;
  2195. finish_arch_switch(prev);
  2196. perf_counter_task_sched_in(current, cpu_of(rq));
  2197. finish_lock_switch(rq, prev);
  2198. #ifdef CONFIG_SMP
  2199. if (current->sched_class->post_schedule)
  2200. current->sched_class->post_schedule(rq);
  2201. #endif
  2202. fire_sched_in_preempt_notifiers(current);
  2203. if (mm)
  2204. mmdrop(mm);
  2205. if (unlikely(prev_state == TASK_DEAD)) {
  2206. /*
  2207. * Remove function-return probe instances associated with this
  2208. * task and put them back on the free list.
  2209. */
  2210. kprobe_flush_task(prev);
  2211. put_task_struct(prev);
  2212. }
  2213. }
  2214. /**
  2215. * schedule_tail - first thing a freshly forked thread must call.
  2216. * @prev: the thread we just switched away from.
  2217. */
  2218. asmlinkage void schedule_tail(struct task_struct *prev)
  2219. __releases(rq->lock)
  2220. {
  2221. struct rq *rq = this_rq();
  2222. finish_task_switch(rq, prev);
  2223. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2224. /* In this case, finish_task_switch does not reenable preemption */
  2225. preempt_enable();
  2226. #endif
  2227. if (current->set_child_tid)
  2228. put_user(task_pid_vnr(current), current->set_child_tid);
  2229. }
  2230. /*
  2231. * context_switch - switch to the new MM and the new
  2232. * thread's register state.
  2233. */
  2234. static inline void
  2235. context_switch(struct rq *rq, struct task_struct *prev,
  2236. struct task_struct *next)
  2237. {
  2238. struct mm_struct *mm, *oldmm;
  2239. prepare_task_switch(rq, prev, next);
  2240. trace_sched_switch(rq, prev, next);
  2241. mm = next->mm;
  2242. oldmm = prev->active_mm;
  2243. /*
  2244. * For paravirt, this is coupled with an exit in switch_to to
  2245. * combine the page table reload and the switch backend into
  2246. * one hypercall.
  2247. */
  2248. arch_enter_lazy_cpu_mode();
  2249. if (unlikely(!mm)) {
  2250. next->active_mm = oldmm;
  2251. atomic_inc(&oldmm->mm_count);
  2252. enter_lazy_tlb(oldmm, next);
  2253. } else
  2254. switch_mm(oldmm, mm, next);
  2255. if (unlikely(!prev->mm)) {
  2256. prev->active_mm = NULL;
  2257. rq->prev_mm = oldmm;
  2258. }
  2259. /*
  2260. * Since the runqueue lock will be released by the next
  2261. * task (which is an invalid locking op but in the case
  2262. * of the scheduler it's an obvious special-case), so we
  2263. * do an early lockdep release here:
  2264. */
  2265. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2266. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2267. #endif
  2268. /* Here we just switch the register state and the stack. */
  2269. switch_to(prev, next, prev);
  2270. barrier();
  2271. /*
  2272. * this_rq must be evaluated again because prev may have moved
  2273. * CPUs since it called schedule(), thus the 'rq' on its stack
  2274. * frame will be invalid.
  2275. */
  2276. finish_task_switch(this_rq(), prev);
  2277. }
  2278. /*
  2279. * nr_running, nr_uninterruptible and nr_context_switches:
  2280. *
  2281. * externally visible scheduler statistics: current number of runnable
  2282. * threads, current number of uninterruptible-sleeping threads, total
  2283. * number of context switches performed since bootup.
  2284. */
  2285. unsigned long nr_running(void)
  2286. {
  2287. unsigned long i, sum = 0;
  2288. for_each_online_cpu(i)
  2289. sum += cpu_rq(i)->nr_running;
  2290. return sum;
  2291. }
  2292. unsigned long nr_uninterruptible(void)
  2293. {
  2294. unsigned long i, sum = 0;
  2295. for_each_possible_cpu(i)
  2296. sum += cpu_rq(i)->nr_uninterruptible;
  2297. /*
  2298. * Since we read the counters lockless, it might be slightly
  2299. * inaccurate. Do not allow it to go below zero though:
  2300. */
  2301. if (unlikely((long)sum < 0))
  2302. sum = 0;
  2303. return sum;
  2304. }
  2305. unsigned long long nr_context_switches(void)
  2306. {
  2307. int i;
  2308. unsigned long long sum = 0;
  2309. for_each_possible_cpu(i)
  2310. sum += cpu_rq(i)->nr_switches;
  2311. return sum;
  2312. }
  2313. unsigned long nr_iowait(void)
  2314. {
  2315. unsigned long i, sum = 0;
  2316. for_each_possible_cpu(i)
  2317. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2318. return sum;
  2319. }
  2320. unsigned long nr_active(void)
  2321. {
  2322. unsigned long i, running = 0, uninterruptible = 0;
  2323. for_each_online_cpu(i) {
  2324. running += cpu_rq(i)->nr_running;
  2325. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  2326. }
  2327. if (unlikely((long)uninterruptible < 0))
  2328. uninterruptible = 0;
  2329. return running + uninterruptible;
  2330. }
  2331. /*
  2332. * Update rq->cpu_load[] statistics. This function is usually called every
  2333. * scheduler tick (TICK_NSEC).
  2334. */
  2335. static void update_cpu_load(struct rq *this_rq)
  2336. {
  2337. unsigned long this_load = this_rq->load.weight;
  2338. int i, scale;
  2339. this_rq->nr_load_updates++;
  2340. /* Update our load: */
  2341. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2342. unsigned long old_load, new_load;
  2343. /* scale is effectively 1 << i now, and >> i divides by scale */
  2344. old_load = this_rq->cpu_load[i];
  2345. new_load = this_load;
  2346. /*
  2347. * Round up the averaging division if load is increasing. This
  2348. * prevents us from getting stuck on 9 if the load is 10, for
  2349. * example.
  2350. */
  2351. if (new_load > old_load)
  2352. new_load += scale-1;
  2353. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2354. }
  2355. }
  2356. #ifdef CONFIG_SMP
  2357. /*
  2358. * double_rq_lock - safely lock two runqueues
  2359. *
  2360. * Note this does not disable interrupts like task_rq_lock,
  2361. * you need to do so manually before calling.
  2362. */
  2363. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  2364. __acquires(rq1->lock)
  2365. __acquires(rq2->lock)
  2366. {
  2367. BUG_ON(!irqs_disabled());
  2368. if (rq1 == rq2) {
  2369. spin_lock(&rq1->lock);
  2370. __acquire(rq2->lock); /* Fake it out ;) */
  2371. } else {
  2372. if (rq1 < rq2) {
  2373. spin_lock(&rq1->lock);
  2374. spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  2375. } else {
  2376. spin_lock(&rq2->lock);
  2377. spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  2378. }
  2379. }
  2380. update_rq_clock(rq1);
  2381. update_rq_clock(rq2);
  2382. }
  2383. /*
  2384. * double_rq_unlock - safely unlock two runqueues
  2385. *
  2386. * Note this does not restore interrupts like task_rq_unlock,
  2387. * you need to do so manually after calling.
  2388. */
  2389. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  2390. __releases(rq1->lock)
  2391. __releases(rq2->lock)
  2392. {
  2393. spin_unlock(&rq1->lock);
  2394. if (rq1 != rq2)
  2395. spin_unlock(&rq2->lock);
  2396. else
  2397. __release(rq2->lock);
  2398. }
  2399. /*
  2400. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  2401. */
  2402. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  2403. __releases(this_rq->lock)
  2404. __acquires(busiest->lock)
  2405. __acquires(this_rq->lock)
  2406. {
  2407. int ret = 0;
  2408. if (unlikely(!irqs_disabled())) {
  2409. /* printk() doesn't work good under rq->lock */
  2410. spin_unlock(&this_rq->lock);
  2411. BUG_ON(1);
  2412. }
  2413. if (unlikely(!spin_trylock(&busiest->lock))) {
  2414. if (busiest < this_rq) {
  2415. spin_unlock(&this_rq->lock);
  2416. spin_lock(&busiest->lock);
  2417. spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
  2418. ret = 1;
  2419. } else
  2420. spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
  2421. }
  2422. return ret;
  2423. }
  2424. static void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  2425. __releases(busiest->lock)
  2426. {
  2427. spin_unlock(&busiest->lock);
  2428. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  2429. }
  2430. /*
  2431. * If dest_cpu is allowed for this process, migrate the task to it.
  2432. * This is accomplished by forcing the cpu_allowed mask to only
  2433. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  2434. * the cpu_allowed mask is restored.
  2435. */
  2436. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  2437. {
  2438. struct migration_req req;
  2439. unsigned long flags;
  2440. struct rq *rq;
  2441. rq = task_rq_lock(p, &flags);
  2442. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  2443. || unlikely(!cpu_active(dest_cpu)))
  2444. goto out;
  2445. trace_sched_migrate_task(rq, p, dest_cpu);
  2446. /* force the process onto the specified CPU */
  2447. if (migrate_task(p, dest_cpu, &req)) {
  2448. /* Need to wait for migration thread (might exit: take ref). */
  2449. struct task_struct *mt = rq->migration_thread;
  2450. get_task_struct(mt);
  2451. task_rq_unlock(rq, &flags);
  2452. wake_up_process(mt);
  2453. put_task_struct(mt);
  2454. wait_for_completion(&req.done);
  2455. return;
  2456. }
  2457. out:
  2458. task_rq_unlock(rq, &flags);
  2459. }
  2460. /*
  2461. * sched_exec - execve() is a valuable balancing opportunity, because at
  2462. * this point the task has the smallest effective memory and cache footprint.
  2463. */
  2464. void sched_exec(void)
  2465. {
  2466. int new_cpu, this_cpu = get_cpu();
  2467. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  2468. put_cpu();
  2469. if (new_cpu != this_cpu)
  2470. sched_migrate_task(current, new_cpu);
  2471. }
  2472. /*
  2473. * pull_task - move a task from a remote runqueue to the local runqueue.
  2474. * Both runqueues must be locked.
  2475. */
  2476. static void pull_task(struct rq *src_rq, struct task_struct *p,
  2477. struct rq *this_rq, int this_cpu)
  2478. {
  2479. deactivate_task(src_rq, p, 0);
  2480. set_task_cpu(p, this_cpu);
  2481. activate_task(this_rq, p, 0);
  2482. /*
  2483. * Note that idle threads have a prio of MAX_PRIO, for this test
  2484. * to be always true for them.
  2485. */
  2486. check_preempt_curr(this_rq, p, 0);
  2487. }
  2488. /*
  2489. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2490. */
  2491. static
  2492. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  2493. struct sched_domain *sd, enum cpu_idle_type idle,
  2494. int *all_pinned)
  2495. {
  2496. /*
  2497. * We do not migrate tasks that are:
  2498. * 1) running (obviously), or
  2499. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2500. * 3) are cache-hot on their current CPU.
  2501. */
  2502. if (!cpu_isset(this_cpu, p->cpus_allowed)) {
  2503. schedstat_inc(p, se.nr_failed_migrations_affine);
  2504. return 0;
  2505. }
  2506. *all_pinned = 0;
  2507. if (task_running(rq, p)) {
  2508. schedstat_inc(p, se.nr_failed_migrations_running);
  2509. return 0;
  2510. }
  2511. /*
  2512. * Aggressive migration if:
  2513. * 1) task is cache cold, or
  2514. * 2) too many balance attempts have failed.
  2515. */
  2516. if (!task_hot(p, rq->clock, sd) ||
  2517. sd->nr_balance_failed > sd->cache_nice_tries) {
  2518. #ifdef CONFIG_SCHEDSTATS
  2519. if (task_hot(p, rq->clock, sd)) {
  2520. schedstat_inc(sd, lb_hot_gained[idle]);
  2521. schedstat_inc(p, se.nr_forced_migrations);
  2522. }
  2523. #endif
  2524. return 1;
  2525. }
  2526. if (task_hot(p, rq->clock, sd)) {
  2527. schedstat_inc(p, se.nr_failed_migrations_hot);
  2528. return 0;
  2529. }
  2530. return 1;
  2531. }
  2532. static unsigned long
  2533. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2534. unsigned long max_load_move, struct sched_domain *sd,
  2535. enum cpu_idle_type idle, int *all_pinned,
  2536. int *this_best_prio, struct rq_iterator *iterator)
  2537. {
  2538. int loops = 0, pulled = 0, pinned = 0;
  2539. struct task_struct *p;
  2540. long rem_load_move = max_load_move;
  2541. if (max_load_move == 0)
  2542. goto out;
  2543. pinned = 1;
  2544. /*
  2545. * Start the load-balancing iterator:
  2546. */
  2547. p = iterator->start(iterator->arg);
  2548. next:
  2549. if (!p || loops++ > sysctl_sched_nr_migrate)
  2550. goto out;
  2551. if ((p->se.load.weight >> 1) > rem_load_move ||
  2552. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2553. p = iterator->next(iterator->arg);
  2554. goto next;
  2555. }
  2556. pull_task(busiest, p, this_rq, this_cpu);
  2557. pulled++;
  2558. rem_load_move -= p->se.load.weight;
  2559. /*
  2560. * We only want to steal up to the prescribed amount of weighted load.
  2561. */
  2562. if (rem_load_move > 0) {
  2563. if (p->prio < *this_best_prio)
  2564. *this_best_prio = p->prio;
  2565. p = iterator->next(iterator->arg);
  2566. goto next;
  2567. }
  2568. out:
  2569. /*
  2570. * Right now, this is one of only two places pull_task() is called,
  2571. * so we can safely collect pull_task() stats here rather than
  2572. * inside pull_task().
  2573. */
  2574. schedstat_add(sd, lb_gained[idle], pulled);
  2575. if (all_pinned)
  2576. *all_pinned = pinned;
  2577. return max_load_move - rem_load_move;
  2578. }
  2579. /*
  2580. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2581. * this_rq, as part of a balancing operation within domain "sd".
  2582. * Returns 1 if successful and 0 otherwise.
  2583. *
  2584. * Called with both runqueues locked.
  2585. */
  2586. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2587. unsigned long max_load_move,
  2588. struct sched_domain *sd, enum cpu_idle_type idle,
  2589. int *all_pinned)
  2590. {
  2591. const struct sched_class *class = sched_class_highest;
  2592. unsigned long total_load_moved = 0;
  2593. int this_best_prio = this_rq->curr->prio;
  2594. do {
  2595. total_load_moved +=
  2596. class->load_balance(this_rq, this_cpu, busiest,
  2597. max_load_move - total_load_moved,
  2598. sd, idle, all_pinned, &this_best_prio);
  2599. class = class->next;
  2600. if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
  2601. break;
  2602. } while (class && max_load_move > total_load_moved);
  2603. return total_load_moved > 0;
  2604. }
  2605. static int
  2606. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2607. struct sched_domain *sd, enum cpu_idle_type idle,
  2608. struct rq_iterator *iterator)
  2609. {
  2610. struct task_struct *p = iterator->start(iterator->arg);
  2611. int pinned = 0;
  2612. while (p) {
  2613. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2614. pull_task(busiest, p, this_rq, this_cpu);
  2615. /*
  2616. * Right now, this is only the second place pull_task()
  2617. * is called, so we can safely collect pull_task()
  2618. * stats here rather than inside pull_task().
  2619. */
  2620. schedstat_inc(sd, lb_gained[idle]);
  2621. return 1;
  2622. }
  2623. p = iterator->next(iterator->arg);
  2624. }
  2625. return 0;
  2626. }
  2627. /*
  2628. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2629. * part of active balancing operations within "domain".
  2630. * Returns 1 if successful and 0 otherwise.
  2631. *
  2632. * Called with both runqueues locked.
  2633. */
  2634. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2635. struct sched_domain *sd, enum cpu_idle_type idle)
  2636. {
  2637. const struct sched_class *class;
  2638. for (class = sched_class_highest; class; class = class->next)
  2639. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2640. return 1;
  2641. return 0;
  2642. }
  2643. /*
  2644. * find_busiest_group finds and returns the busiest CPU group within the
  2645. * domain. It calculates and returns the amount of weighted load which
  2646. * should be moved to restore balance via the imbalance parameter.
  2647. */
  2648. static struct sched_group *
  2649. find_busiest_group(struct sched_domain *sd, int this_cpu,
  2650. unsigned long *imbalance, enum cpu_idle_type idle,
  2651. int *sd_idle, const cpumask_t *cpus, int *balance)
  2652. {
  2653. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  2654. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  2655. unsigned long max_pull;
  2656. unsigned long busiest_load_per_task, busiest_nr_running;
  2657. unsigned long this_load_per_task, this_nr_running;
  2658. int load_idx, group_imb = 0;
  2659. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2660. int power_savings_balance = 1;
  2661. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  2662. unsigned long min_nr_running = ULONG_MAX;
  2663. struct sched_group *group_min = NULL, *group_leader = NULL;
  2664. #endif
  2665. max_load = this_load = total_load = total_pwr = 0;
  2666. busiest_load_per_task = busiest_nr_running = 0;
  2667. this_load_per_task = this_nr_running = 0;
  2668. if (idle == CPU_NOT_IDLE)
  2669. load_idx = sd->busy_idx;
  2670. else if (idle == CPU_NEWLY_IDLE)
  2671. load_idx = sd->newidle_idx;
  2672. else
  2673. load_idx = sd->idle_idx;
  2674. do {
  2675. unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
  2676. int local_group;
  2677. int i;
  2678. int __group_imb = 0;
  2679. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2680. unsigned long sum_nr_running, sum_weighted_load;
  2681. unsigned long sum_avg_load_per_task;
  2682. unsigned long avg_load_per_task;
  2683. local_group = cpu_isset(this_cpu, group->cpumask);
  2684. if (local_group)
  2685. balance_cpu = first_cpu(group->cpumask);
  2686. /* Tally up the load of all CPUs in the group */
  2687. sum_weighted_load = sum_nr_running = avg_load = 0;
  2688. sum_avg_load_per_task = avg_load_per_task = 0;
  2689. max_cpu_load = 0;
  2690. min_cpu_load = ~0UL;
  2691. for_each_cpu_mask_nr(i, group->cpumask) {
  2692. struct rq *rq;
  2693. if (!cpu_isset(i, *cpus))
  2694. continue;
  2695. rq = cpu_rq(i);
  2696. if (*sd_idle && rq->nr_running)
  2697. *sd_idle = 0;
  2698. /* Bias balancing toward cpus of our domain */
  2699. if (local_group) {
  2700. if (idle_cpu(i) && !first_idle_cpu) {
  2701. first_idle_cpu = 1;
  2702. balance_cpu = i;
  2703. }
  2704. load = target_load(i, load_idx);
  2705. } else {
  2706. load = source_load(i, load_idx);
  2707. if (load > max_cpu_load)
  2708. max_cpu_load = load;
  2709. if (min_cpu_load > load)
  2710. min_cpu_load = load;
  2711. }
  2712. avg_load += load;
  2713. sum_nr_running += rq->nr_running;
  2714. sum_weighted_load += weighted_cpuload(i);
  2715. sum_avg_load_per_task += cpu_avg_load_per_task(i);
  2716. }
  2717. /*
  2718. * First idle cpu or the first cpu(busiest) in this sched group
  2719. * is eligible for doing load balancing at this and above
  2720. * domains. In the newly idle case, we will allow all the cpu's
  2721. * to do the newly idle load balance.
  2722. */
  2723. if (idle != CPU_NEWLY_IDLE && local_group &&
  2724. balance_cpu != this_cpu && balance) {
  2725. *balance = 0;
  2726. goto ret;
  2727. }
  2728. total_load += avg_load;
  2729. total_pwr += group->__cpu_power;
  2730. /* Adjust by relative CPU power of the group */
  2731. avg_load = sg_div_cpu_power(group,
  2732. avg_load * SCHED_LOAD_SCALE);
  2733. /*
  2734. * Consider the group unbalanced when the imbalance is larger
  2735. * than the average weight of two tasks.
  2736. *
  2737. * APZ: with cgroup the avg task weight can vary wildly and
  2738. * might not be a suitable number - should we keep a
  2739. * normalized nr_running number somewhere that negates
  2740. * the hierarchy?
  2741. */
  2742. avg_load_per_task = sg_div_cpu_power(group,
  2743. sum_avg_load_per_task * SCHED_LOAD_SCALE);
  2744. if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
  2745. __group_imb = 1;
  2746. group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  2747. if (local_group) {
  2748. this_load = avg_load;
  2749. this = group;
  2750. this_nr_running = sum_nr_running;
  2751. this_load_per_task = sum_weighted_load;
  2752. } else if (avg_load > max_load &&
  2753. (sum_nr_running > group_capacity || __group_imb)) {
  2754. max_load = avg_load;
  2755. busiest = group;
  2756. busiest_nr_running = sum_nr_running;
  2757. busiest_load_per_task = sum_weighted_load;
  2758. group_imb = __group_imb;
  2759. }
  2760. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2761. /*
  2762. * Busy processors will not participate in power savings
  2763. * balance.
  2764. */
  2765. if (idle == CPU_NOT_IDLE ||
  2766. !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2767. goto group_next;
  2768. /*
  2769. * If the local group is idle or completely loaded
  2770. * no need to do power savings balance at this domain
  2771. */
  2772. if (local_group && (this_nr_running >= group_capacity ||
  2773. !this_nr_running))
  2774. power_savings_balance = 0;
  2775. /*
  2776. * If a group is already running at full capacity or idle,
  2777. * don't include that group in power savings calculations
  2778. */
  2779. if (!power_savings_balance || sum_nr_running >= group_capacity
  2780. || !sum_nr_running)
  2781. goto group_next;
  2782. /*
  2783. * Calculate the group which has the least non-idle load.
  2784. * This is the group from where we need to pick up the load
  2785. * for saving power
  2786. */
  2787. if ((sum_nr_running < min_nr_running) ||
  2788. (sum_nr_running == min_nr_running &&
  2789. first_cpu(group->cpumask) <
  2790. first_cpu(group_min->cpumask))) {
  2791. group_min = group;
  2792. min_nr_running = sum_nr_running;
  2793. min_load_per_task = sum_weighted_load /
  2794. sum_nr_running;
  2795. }
  2796. /*
  2797. * Calculate the group which is almost near its
  2798. * capacity but still has some space to pick up some load
  2799. * from other group and save more power
  2800. */
  2801. if (sum_nr_running <= group_capacity - 1) {
  2802. if (sum_nr_running > leader_nr_running ||
  2803. (sum_nr_running == leader_nr_running &&
  2804. first_cpu(group->cpumask) >
  2805. first_cpu(group_leader->cpumask))) {
  2806. group_leader = group;
  2807. leader_nr_running = sum_nr_running;
  2808. }
  2809. }
  2810. group_next:
  2811. #endif
  2812. group = group->next;
  2813. } while (group != sd->groups);
  2814. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2815. goto out_balanced;
  2816. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2817. if (this_load >= avg_load ||
  2818. 100*max_load <= sd->imbalance_pct*this_load)
  2819. goto out_balanced;
  2820. busiest_load_per_task /= busiest_nr_running;
  2821. if (group_imb)
  2822. busiest_load_per_task = min(busiest_load_per_task, avg_load);
  2823. /*
  2824. * We're trying to get all the cpus to the average_load, so we don't
  2825. * want to push ourselves above the average load, nor do we wish to
  2826. * reduce the max loaded cpu below the average load, as either of these
  2827. * actions would just result in more rebalancing later, and ping-pong
  2828. * tasks around. Thus we look for the minimum possible imbalance.
  2829. * Negative imbalances (*we* are more loaded than anyone else) will
  2830. * be counted as no imbalance for these purposes -- we can't fix that
  2831. * by pulling tasks to us. Be careful of negative numbers as they'll
  2832. * appear as very large values with unsigned longs.
  2833. */
  2834. if (max_load <= busiest_load_per_task)
  2835. goto out_balanced;
  2836. /*
  2837. * In the presence of smp nice balancing, certain scenarios can have
  2838. * max load less than avg load(as we skip the groups at or below
  2839. * its cpu_power, while calculating max_load..)
  2840. */
  2841. if (max_load < avg_load) {
  2842. *imbalance = 0;
  2843. goto small_imbalance;
  2844. }
  2845. /* Don't want to pull so many tasks that a group would go idle */
  2846. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2847. /* How much load to actually move to equalise the imbalance */
  2848. *imbalance = min(max_pull * busiest->__cpu_power,
  2849. (avg_load - this_load) * this->__cpu_power)
  2850. / SCHED_LOAD_SCALE;
  2851. /*
  2852. * if *imbalance is less than the average load per runnable task
  2853. * there is no gaurantee that any tasks will be moved so we'll have
  2854. * a think about bumping its value to force at least one task to be
  2855. * moved
  2856. */
  2857. if (*imbalance < busiest_load_per_task) {
  2858. unsigned long tmp, pwr_now, pwr_move;
  2859. unsigned int imbn;
  2860. small_imbalance:
  2861. pwr_move = pwr_now = 0;
  2862. imbn = 2;
  2863. if (this_nr_running) {
  2864. this_load_per_task /= this_nr_running;
  2865. if (busiest_load_per_task > this_load_per_task)
  2866. imbn = 1;
  2867. } else
  2868. this_load_per_task = cpu_avg_load_per_task(this_cpu);
  2869. if (max_load - this_load + busiest_load_per_task >=
  2870. busiest_load_per_task * imbn) {
  2871. *imbalance = busiest_load_per_task;
  2872. return busiest;
  2873. }
  2874. /*
  2875. * OK, we don't have enough imbalance to justify moving tasks,
  2876. * however we may be able to increase total CPU power used by
  2877. * moving them.
  2878. */
  2879. pwr_now += busiest->__cpu_power *
  2880. min(busiest_load_per_task, max_load);
  2881. pwr_now += this->__cpu_power *
  2882. min(this_load_per_task, this_load);
  2883. pwr_now /= SCHED_LOAD_SCALE;
  2884. /* Amount of load we'd subtract */
  2885. tmp = sg_div_cpu_power(busiest,
  2886. busiest_load_per_task * SCHED_LOAD_SCALE);
  2887. if (max_load > tmp)
  2888. pwr_move += busiest->__cpu_power *
  2889. min(busiest_load_per_task, max_load - tmp);
  2890. /* Amount of load we'd add */
  2891. if (max_load * busiest->__cpu_power <
  2892. busiest_load_per_task * SCHED_LOAD_SCALE)
  2893. tmp = sg_div_cpu_power(this,
  2894. max_load * busiest->__cpu_power);
  2895. else
  2896. tmp = sg_div_cpu_power(this,
  2897. busiest_load_per_task * SCHED_LOAD_SCALE);
  2898. pwr_move += this->__cpu_power *
  2899. min(this_load_per_task, this_load + tmp);
  2900. pwr_move /= SCHED_LOAD_SCALE;
  2901. /* Move if we gain throughput */
  2902. if (pwr_move > pwr_now)
  2903. *imbalance = busiest_load_per_task;
  2904. }
  2905. return busiest;
  2906. out_balanced:
  2907. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2908. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2909. goto ret;
  2910. if (this == group_leader && group_leader != group_min) {
  2911. *imbalance = min_load_per_task;
  2912. return group_min;
  2913. }
  2914. #endif
  2915. ret:
  2916. *imbalance = 0;
  2917. return NULL;
  2918. }
  2919. /*
  2920. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2921. */
  2922. static struct rq *
  2923. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  2924. unsigned long imbalance, const cpumask_t *cpus)
  2925. {
  2926. struct rq *busiest = NULL, *rq;
  2927. unsigned long max_load = 0;
  2928. int i;
  2929. for_each_cpu_mask_nr(i, group->cpumask) {
  2930. unsigned long wl;
  2931. if (!cpu_isset(i, *cpus))
  2932. continue;
  2933. rq = cpu_rq(i);
  2934. wl = weighted_cpuload(i);
  2935. if (rq->nr_running == 1 && wl > imbalance)
  2936. continue;
  2937. if (wl > max_load) {
  2938. max_load = wl;
  2939. busiest = rq;
  2940. }
  2941. }
  2942. return busiest;
  2943. }
  2944. /*
  2945. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2946. * so long as it is large enough.
  2947. */
  2948. #define MAX_PINNED_INTERVAL 512
  2949. /*
  2950. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2951. * tasks if there is an imbalance.
  2952. */
  2953. static int load_balance(int this_cpu, struct rq *this_rq,
  2954. struct sched_domain *sd, enum cpu_idle_type idle,
  2955. int *balance, cpumask_t *cpus)
  2956. {
  2957. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2958. struct sched_group *group;
  2959. unsigned long imbalance;
  2960. struct rq *busiest;
  2961. unsigned long flags;
  2962. cpus_setall(*cpus);
  2963. /*
  2964. * When power savings policy is enabled for the parent domain, idle
  2965. * sibling can pick up load irrespective of busy siblings. In this case,
  2966. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  2967. * portraying it as CPU_NOT_IDLE.
  2968. */
  2969. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2970. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2971. sd_idle = 1;
  2972. schedstat_inc(sd, lb_count[idle]);
  2973. redo:
  2974. update_shares(sd);
  2975. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2976. cpus, balance);
  2977. if (*balance == 0)
  2978. goto out_balanced;
  2979. if (!group) {
  2980. schedstat_inc(sd, lb_nobusyg[idle]);
  2981. goto out_balanced;
  2982. }
  2983. busiest = find_busiest_queue(group, idle, imbalance, cpus);
  2984. if (!busiest) {
  2985. schedstat_inc(sd, lb_nobusyq[idle]);
  2986. goto out_balanced;
  2987. }
  2988. BUG_ON(busiest == this_rq);
  2989. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2990. ld_moved = 0;
  2991. if (busiest->nr_running > 1) {
  2992. /*
  2993. * Attempt to move tasks. If find_busiest_group has found
  2994. * an imbalance but busiest->nr_running <= 1, the group is
  2995. * still unbalanced. ld_moved simply stays zero, so it is
  2996. * correctly treated as an imbalance.
  2997. */
  2998. local_irq_save(flags);
  2999. double_rq_lock(this_rq, busiest);
  3000. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3001. imbalance, sd, idle, &all_pinned);
  3002. double_rq_unlock(this_rq, busiest);
  3003. local_irq_restore(flags);
  3004. /*
  3005. * some other cpu did the load balance for us.
  3006. */
  3007. if (ld_moved && this_cpu != smp_processor_id())
  3008. resched_cpu(this_cpu);
  3009. /* All tasks on this runqueue were pinned by CPU affinity */
  3010. if (unlikely(all_pinned)) {
  3011. cpu_clear(cpu_of(busiest), *cpus);
  3012. if (!cpus_empty(*cpus))
  3013. goto redo;
  3014. goto out_balanced;
  3015. }
  3016. }
  3017. if (!ld_moved) {
  3018. schedstat_inc(sd, lb_failed[idle]);
  3019. sd->nr_balance_failed++;
  3020. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  3021. spin_lock_irqsave(&busiest->lock, flags);
  3022. /* don't kick the migration_thread, if the curr
  3023. * task on busiest cpu can't be moved to this_cpu
  3024. */
  3025. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  3026. spin_unlock_irqrestore(&busiest->lock, flags);
  3027. all_pinned = 1;
  3028. goto out_one_pinned;
  3029. }
  3030. if (!busiest->active_balance) {
  3031. busiest->active_balance = 1;
  3032. busiest->push_cpu = this_cpu;
  3033. active_balance = 1;
  3034. }
  3035. spin_unlock_irqrestore(&busiest->lock, flags);
  3036. if (active_balance)
  3037. wake_up_process(busiest->migration_thread);
  3038. /*
  3039. * We've kicked active balancing, reset the failure
  3040. * counter.
  3041. */
  3042. sd->nr_balance_failed = sd->cache_nice_tries+1;
  3043. }
  3044. } else
  3045. sd->nr_balance_failed = 0;
  3046. if (likely(!active_balance)) {
  3047. /* We were unbalanced, so reset the balancing interval */
  3048. sd->balance_interval = sd->min_interval;
  3049. } else {
  3050. /*
  3051. * If we've begun active balancing, start to back off. This
  3052. * case may not be covered by the all_pinned logic if there
  3053. * is only 1 task on the busy runqueue (because we don't call
  3054. * move_tasks).
  3055. */
  3056. if (sd->balance_interval < sd->max_interval)
  3057. sd->balance_interval *= 2;
  3058. }
  3059. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3060. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3061. ld_moved = -1;
  3062. goto out;
  3063. out_balanced:
  3064. schedstat_inc(sd, lb_balanced[idle]);
  3065. sd->nr_balance_failed = 0;
  3066. out_one_pinned:
  3067. /* tune up the balancing interval */
  3068. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  3069. (sd->balance_interval < sd->max_interval))
  3070. sd->balance_interval *= 2;
  3071. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3072. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3073. ld_moved = -1;
  3074. else
  3075. ld_moved = 0;
  3076. out:
  3077. if (ld_moved)
  3078. update_shares(sd);
  3079. return ld_moved;
  3080. }
  3081. /*
  3082. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3083. * tasks if there is an imbalance.
  3084. *
  3085. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  3086. * this_rq is locked.
  3087. */
  3088. static int
  3089. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
  3090. cpumask_t *cpus)
  3091. {
  3092. struct sched_group *group;
  3093. struct rq *busiest = NULL;
  3094. unsigned long imbalance;
  3095. int ld_moved = 0;
  3096. int sd_idle = 0;
  3097. int all_pinned = 0;
  3098. cpus_setall(*cpus);
  3099. /*
  3100. * When power savings policy is enabled for the parent domain, idle
  3101. * sibling can pick up load irrespective of busy siblings. In this case,
  3102. * let the state of idle sibling percolate up as IDLE, instead of
  3103. * portraying it as CPU_NOT_IDLE.
  3104. */
  3105. if (sd->flags & SD_SHARE_CPUPOWER &&
  3106. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3107. sd_idle = 1;
  3108. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  3109. redo:
  3110. update_shares_locked(this_rq, sd);
  3111. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  3112. &sd_idle, cpus, NULL);
  3113. if (!group) {
  3114. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  3115. goto out_balanced;
  3116. }
  3117. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
  3118. if (!busiest) {
  3119. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  3120. goto out_balanced;
  3121. }
  3122. BUG_ON(busiest == this_rq);
  3123. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  3124. ld_moved = 0;
  3125. if (busiest->nr_running > 1) {
  3126. /* Attempt to move tasks */
  3127. double_lock_balance(this_rq, busiest);
  3128. /* this_rq->clock is already updated */
  3129. update_rq_clock(busiest);
  3130. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3131. imbalance, sd, CPU_NEWLY_IDLE,
  3132. &all_pinned);
  3133. double_unlock_balance(this_rq, busiest);
  3134. if (unlikely(all_pinned)) {
  3135. cpu_clear(cpu_of(busiest), *cpus);
  3136. if (!cpus_empty(*cpus))
  3137. goto redo;
  3138. }
  3139. }
  3140. if (!ld_moved) {
  3141. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  3142. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3143. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3144. return -1;
  3145. } else
  3146. sd->nr_balance_failed = 0;
  3147. update_shares_locked(this_rq, sd);
  3148. return ld_moved;
  3149. out_balanced:
  3150. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  3151. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3152. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3153. return -1;
  3154. sd->nr_balance_failed = 0;
  3155. return 0;
  3156. }
  3157. /*
  3158. * idle_balance is called by schedule() if this_cpu is about to become
  3159. * idle. Attempts to pull tasks from other CPUs.
  3160. */
  3161. static void idle_balance(int this_cpu, struct rq *this_rq)
  3162. {
  3163. struct sched_domain *sd;
  3164. int pulled_task = -1;
  3165. unsigned long next_balance = jiffies + HZ;
  3166. cpumask_t tmpmask;
  3167. for_each_domain(this_cpu, sd) {
  3168. unsigned long interval;
  3169. if (!(sd->flags & SD_LOAD_BALANCE))
  3170. continue;
  3171. if (sd->flags & SD_BALANCE_NEWIDLE)
  3172. /* If we've pulled tasks over stop searching: */
  3173. pulled_task = load_balance_newidle(this_cpu, this_rq,
  3174. sd, &tmpmask);
  3175. interval = msecs_to_jiffies(sd->balance_interval);
  3176. if (time_after(next_balance, sd->last_balance + interval))
  3177. next_balance = sd->last_balance + interval;
  3178. if (pulled_task)
  3179. break;
  3180. }
  3181. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  3182. /*
  3183. * We are going idle. next_balance may be set based on
  3184. * a busy processor. So reset next_balance.
  3185. */
  3186. this_rq->next_balance = next_balance;
  3187. }
  3188. }
  3189. /*
  3190. * active_load_balance is run by migration threads. It pushes running tasks
  3191. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  3192. * running on each physical CPU where possible, and avoids physical /
  3193. * logical imbalances.
  3194. *
  3195. * Called with busiest_rq locked.
  3196. */
  3197. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  3198. {
  3199. int target_cpu = busiest_rq->push_cpu;
  3200. struct sched_domain *sd;
  3201. struct rq *target_rq;
  3202. /* Is there any task to move? */
  3203. if (busiest_rq->nr_running <= 1)
  3204. return;
  3205. target_rq = cpu_rq(target_cpu);
  3206. /*
  3207. * This condition is "impossible", if it occurs
  3208. * we need to fix it. Originally reported by
  3209. * Bjorn Helgaas on a 128-cpu setup.
  3210. */
  3211. BUG_ON(busiest_rq == target_rq);
  3212. /* move a task from busiest_rq to target_rq */
  3213. double_lock_balance(busiest_rq, target_rq);
  3214. update_rq_clock(busiest_rq);
  3215. update_rq_clock(target_rq);
  3216. /* Search for an sd spanning us and the target CPU. */
  3217. for_each_domain(target_cpu, sd) {
  3218. if ((sd->flags & SD_LOAD_BALANCE) &&
  3219. cpu_isset(busiest_cpu, sd->span))
  3220. break;
  3221. }
  3222. if (likely(sd)) {
  3223. schedstat_inc(sd, alb_count);
  3224. if (move_one_task(target_rq, target_cpu, busiest_rq,
  3225. sd, CPU_IDLE))
  3226. schedstat_inc(sd, alb_pushed);
  3227. else
  3228. schedstat_inc(sd, alb_failed);
  3229. }
  3230. double_unlock_balance(busiest_rq, target_rq);
  3231. }
  3232. #ifdef CONFIG_NO_HZ
  3233. static struct {
  3234. atomic_t load_balancer;
  3235. cpumask_t cpu_mask;
  3236. } nohz ____cacheline_aligned = {
  3237. .load_balancer = ATOMIC_INIT(-1),
  3238. .cpu_mask = CPU_MASK_NONE,
  3239. };
  3240. /*
  3241. * This routine will try to nominate the ilb (idle load balancing)
  3242. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  3243. * load balancing on behalf of all those cpus. If all the cpus in the system
  3244. * go into this tickless mode, then there will be no ilb owner (as there is
  3245. * no need for one) and all the cpus will sleep till the next wakeup event
  3246. * arrives...
  3247. *
  3248. * For the ilb owner, tick is not stopped. And this tick will be used
  3249. * for idle load balancing. ilb owner will still be part of
  3250. * nohz.cpu_mask..
  3251. *
  3252. * While stopping the tick, this cpu will become the ilb owner if there
  3253. * is no other owner. And will be the owner till that cpu becomes busy
  3254. * or if all cpus in the system stop their ticks at which point
  3255. * there is no need for ilb owner.
  3256. *
  3257. * When the ilb owner becomes busy, it nominates another owner, during the
  3258. * next busy scheduler_tick()
  3259. */
  3260. int select_nohz_load_balancer(int stop_tick)
  3261. {
  3262. int cpu = smp_processor_id();
  3263. if (stop_tick) {
  3264. cpu_set(cpu, nohz.cpu_mask);
  3265. cpu_rq(cpu)->in_nohz_recently = 1;
  3266. /*
  3267. * If we are going offline and still the leader, give up!
  3268. */
  3269. if (!cpu_active(cpu) &&
  3270. atomic_read(&nohz.load_balancer) == cpu) {
  3271. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3272. BUG();
  3273. return 0;
  3274. }
  3275. /* time for ilb owner also to sleep */
  3276. if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  3277. if (atomic_read(&nohz.load_balancer) == cpu)
  3278. atomic_set(&nohz.load_balancer, -1);
  3279. return 0;
  3280. }
  3281. if (atomic_read(&nohz.load_balancer) == -1) {
  3282. /* make me the ilb owner */
  3283. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  3284. return 1;
  3285. } else if (atomic_read(&nohz.load_balancer) == cpu)
  3286. return 1;
  3287. } else {
  3288. if (!cpu_isset(cpu, nohz.cpu_mask))
  3289. return 0;
  3290. cpu_clear(cpu, nohz.cpu_mask);
  3291. if (atomic_read(&nohz.load_balancer) == cpu)
  3292. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3293. BUG();
  3294. }
  3295. return 0;
  3296. }
  3297. #endif
  3298. static DEFINE_SPINLOCK(balancing);
  3299. /*
  3300. * It checks each scheduling domain to see if it is due to be balanced,
  3301. * and initiates a balancing operation if so.
  3302. *
  3303. * Balancing parameters are set up in arch_init_sched_domains.
  3304. */
  3305. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  3306. {
  3307. int balance = 1;
  3308. struct rq *rq = cpu_rq(cpu);
  3309. unsigned long interval;
  3310. struct sched_domain *sd;
  3311. /* Earliest time when we have to do rebalance again */
  3312. unsigned long next_balance = jiffies + 60*HZ;
  3313. int update_next_balance = 0;
  3314. int need_serialize;
  3315. cpumask_t tmp;
  3316. for_each_domain(cpu, sd) {
  3317. if (!(sd->flags & SD_LOAD_BALANCE))
  3318. continue;
  3319. interval = sd->balance_interval;
  3320. if (idle != CPU_IDLE)
  3321. interval *= sd->busy_factor;
  3322. /* scale ms to jiffies */
  3323. interval = msecs_to_jiffies(interval);
  3324. if (unlikely(!interval))
  3325. interval = 1;
  3326. if (interval > HZ*NR_CPUS/10)
  3327. interval = HZ*NR_CPUS/10;
  3328. need_serialize = sd->flags & SD_SERIALIZE;
  3329. if (need_serialize) {
  3330. if (!spin_trylock(&balancing))
  3331. goto out;
  3332. }
  3333. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  3334. if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
  3335. /*
  3336. * We've pulled tasks over so either we're no
  3337. * longer idle, or one of our SMT siblings is
  3338. * not idle.
  3339. */
  3340. idle = CPU_NOT_IDLE;
  3341. }
  3342. sd->last_balance = jiffies;
  3343. }
  3344. if (need_serialize)
  3345. spin_unlock(&balancing);
  3346. out:
  3347. if (time_after(next_balance, sd->last_balance + interval)) {
  3348. next_balance = sd->last_balance + interval;
  3349. update_next_balance = 1;
  3350. }
  3351. /*
  3352. * Stop the load balance at this level. There is another
  3353. * CPU in our sched group which is doing load balancing more
  3354. * actively.
  3355. */
  3356. if (!balance)
  3357. break;
  3358. }
  3359. /*
  3360. * next_balance will be updated only when there is a need.
  3361. * When the cpu is attached to null domain for ex, it will not be
  3362. * updated.
  3363. */
  3364. if (likely(update_next_balance))
  3365. rq->next_balance = next_balance;
  3366. }
  3367. /*
  3368. * run_rebalance_domains is triggered when needed from the scheduler tick.
  3369. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  3370. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  3371. */
  3372. static void run_rebalance_domains(struct softirq_action *h)
  3373. {
  3374. int this_cpu = smp_processor_id();
  3375. struct rq *this_rq = cpu_rq(this_cpu);
  3376. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  3377. CPU_IDLE : CPU_NOT_IDLE;
  3378. rebalance_domains(this_cpu, idle);
  3379. #ifdef CONFIG_NO_HZ
  3380. /*
  3381. * If this cpu is the owner for idle load balancing, then do the
  3382. * balancing on behalf of the other idle cpus whose ticks are
  3383. * stopped.
  3384. */
  3385. if (this_rq->idle_at_tick &&
  3386. atomic_read(&nohz.load_balancer) == this_cpu) {
  3387. cpumask_t cpus = nohz.cpu_mask;
  3388. struct rq *rq;
  3389. int balance_cpu;
  3390. cpu_clear(this_cpu, cpus);
  3391. for_each_cpu_mask_nr(balance_cpu, cpus) {
  3392. /*
  3393. * If this cpu gets work to do, stop the load balancing
  3394. * work being done for other cpus. Next load
  3395. * balancing owner will pick it up.
  3396. */
  3397. if (need_resched())
  3398. break;
  3399. rebalance_domains(balance_cpu, CPU_IDLE);
  3400. rq = cpu_rq(balance_cpu);
  3401. if (time_after(this_rq->next_balance, rq->next_balance))
  3402. this_rq->next_balance = rq->next_balance;
  3403. }
  3404. }
  3405. #endif
  3406. }
  3407. /*
  3408. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  3409. *
  3410. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  3411. * idle load balancing owner or decide to stop the periodic load balancing,
  3412. * if the whole system is idle.
  3413. */
  3414. static inline void trigger_load_balance(struct rq *rq, int cpu)
  3415. {
  3416. #ifdef CONFIG_NO_HZ
  3417. /*
  3418. * If we were in the nohz mode recently and busy at the current
  3419. * scheduler tick, then check if we need to nominate new idle
  3420. * load balancer.
  3421. */
  3422. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  3423. rq->in_nohz_recently = 0;
  3424. if (atomic_read(&nohz.load_balancer) == cpu) {
  3425. cpu_clear(cpu, nohz.cpu_mask);
  3426. atomic_set(&nohz.load_balancer, -1);
  3427. }
  3428. if (atomic_read(&nohz.load_balancer) == -1) {
  3429. /*
  3430. * simple selection for now: Nominate the
  3431. * first cpu in the nohz list to be the next
  3432. * ilb owner.
  3433. *
  3434. * TBD: Traverse the sched domains and nominate
  3435. * the nearest cpu in the nohz.cpu_mask.
  3436. */
  3437. int ilb = first_cpu(nohz.cpu_mask);
  3438. if (ilb < nr_cpu_ids)
  3439. resched_cpu(ilb);
  3440. }
  3441. }
  3442. /*
  3443. * If this cpu is idle and doing idle load balancing for all the
  3444. * cpus with ticks stopped, is it time for that to stop?
  3445. */
  3446. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  3447. cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  3448. resched_cpu(cpu);
  3449. return;
  3450. }
  3451. /*
  3452. * If this cpu is idle and the idle load balancing is done by
  3453. * someone else, then no need raise the SCHED_SOFTIRQ
  3454. */
  3455. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  3456. cpu_isset(cpu, nohz.cpu_mask))
  3457. return;
  3458. #endif
  3459. if (time_after_eq(jiffies, rq->next_balance))
  3460. raise_softirq(SCHED_SOFTIRQ);
  3461. }
  3462. #else /* CONFIG_SMP */
  3463. /*
  3464. * on UP we do not need to balance between CPUs:
  3465. */
  3466. static inline void idle_balance(int cpu, struct rq *rq)
  3467. {
  3468. }
  3469. #endif
  3470. DEFINE_PER_CPU(struct kernel_stat, kstat);
  3471. EXPORT_PER_CPU_SYMBOL(kstat);
  3472. /*
  3473. * Return any ns on the sched_clock that have not yet been banked in
  3474. * @p in case that task is currently running.
  3475. */
  3476. unsigned long long task_delta_exec(struct task_struct *p)
  3477. {
  3478. unsigned long flags;
  3479. struct rq *rq;
  3480. u64 ns = 0;
  3481. rq = task_rq_lock(p, &flags);
  3482. if (task_current(rq, p)) {
  3483. u64 delta_exec;
  3484. update_rq_clock(rq);
  3485. delta_exec = rq->clock - p->se.exec_start;
  3486. if ((s64)delta_exec > 0)
  3487. ns = delta_exec;
  3488. }
  3489. task_rq_unlock(rq, &flags);
  3490. return ns;
  3491. }
  3492. /*
  3493. * Account user cpu time to a process.
  3494. * @p: the process that the cpu time gets accounted to
  3495. * @cputime: the cpu time spent in user space since the last update
  3496. */
  3497. void account_user_time(struct task_struct *p, cputime_t cputime)
  3498. {
  3499. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3500. cputime64_t tmp;
  3501. p->utime = cputime_add(p->utime, cputime);
  3502. account_group_user_time(p, cputime);
  3503. /* Add user time to cpustat. */
  3504. tmp = cputime_to_cputime64(cputime);
  3505. if (TASK_NICE(p) > 0)
  3506. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3507. else
  3508. cpustat->user = cputime64_add(cpustat->user, tmp);
  3509. /* Account for user time used */
  3510. acct_update_integrals(p);
  3511. }
  3512. /*
  3513. * Account guest cpu time to a process.
  3514. * @p: the process that the cpu time gets accounted to
  3515. * @cputime: the cpu time spent in virtual machine since the last update
  3516. */
  3517. static void account_guest_time(struct task_struct *p, cputime_t cputime)
  3518. {
  3519. cputime64_t tmp;
  3520. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3521. tmp = cputime_to_cputime64(cputime);
  3522. p->utime = cputime_add(p->utime, cputime);
  3523. account_group_user_time(p, cputime);
  3524. p->gtime = cputime_add(p->gtime, cputime);
  3525. cpustat->user = cputime64_add(cpustat->user, tmp);
  3526. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  3527. }
  3528. /*
  3529. * Account scaled user cpu time to a process.
  3530. * @p: the process that the cpu time gets accounted to
  3531. * @cputime: the cpu time spent in user space since the last update
  3532. */
  3533. void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
  3534. {
  3535. p->utimescaled = cputime_add(p->utimescaled, cputime);
  3536. }
  3537. /*
  3538. * Account system cpu time to a process.
  3539. * @p: the process that the cpu time gets accounted to
  3540. * @hardirq_offset: the offset to subtract from hardirq_count()
  3541. * @cputime: the cpu time spent in kernel space since the last update
  3542. */
  3543. void account_system_time(struct task_struct *p, int hardirq_offset,
  3544. cputime_t cputime)
  3545. {
  3546. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3547. struct rq *rq = this_rq();
  3548. cputime64_t tmp;
  3549. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  3550. account_guest_time(p, cputime);
  3551. return;
  3552. }
  3553. p->stime = cputime_add(p->stime, cputime);
  3554. account_group_system_time(p, cputime);
  3555. /* Add system time to cpustat. */
  3556. tmp = cputime_to_cputime64(cputime);
  3557. if (hardirq_count() - hardirq_offset)
  3558. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  3559. else if (softirq_count())
  3560. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  3561. else if (p != rq->idle)
  3562. cpustat->system = cputime64_add(cpustat->system, tmp);
  3563. else if (atomic_read(&rq->nr_iowait) > 0)
  3564. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3565. else
  3566. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3567. /* Account for system time used */
  3568. acct_update_integrals(p);
  3569. }
  3570. /*
  3571. * Account scaled system cpu time to a process.
  3572. * @p: the process that the cpu time gets accounted to
  3573. * @hardirq_offset: the offset to subtract from hardirq_count()
  3574. * @cputime: the cpu time spent in kernel space since the last update
  3575. */
  3576. void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
  3577. {
  3578. p->stimescaled = cputime_add(p->stimescaled, cputime);
  3579. }
  3580. /*
  3581. * Account for involuntary wait time.
  3582. * @p: the process from which the cpu time has been stolen
  3583. * @steal: the cpu time spent in involuntary wait
  3584. */
  3585. void account_steal_time(struct task_struct *p, cputime_t steal)
  3586. {
  3587. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3588. cputime64_t tmp = cputime_to_cputime64(steal);
  3589. struct rq *rq = this_rq();
  3590. if (p == rq->idle) {
  3591. p->stime = cputime_add(p->stime, steal);
  3592. account_group_system_time(p, steal);
  3593. if (atomic_read(&rq->nr_iowait) > 0)
  3594. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3595. else
  3596. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3597. } else
  3598. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  3599. }
  3600. /*
  3601. * Use precise platform statistics if available:
  3602. */
  3603. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  3604. cputime_t task_utime(struct task_struct *p)
  3605. {
  3606. return p->utime;
  3607. }
  3608. cputime_t task_stime(struct task_struct *p)
  3609. {
  3610. return p->stime;
  3611. }
  3612. #else
  3613. cputime_t task_utime(struct task_struct *p)
  3614. {
  3615. clock_t utime = cputime_to_clock_t(p->utime),
  3616. total = utime + cputime_to_clock_t(p->stime);
  3617. u64 temp;
  3618. /*
  3619. * Use CFS's precise accounting:
  3620. */
  3621. temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
  3622. if (total) {
  3623. temp *= utime;
  3624. do_div(temp, total);
  3625. }
  3626. utime = (clock_t)temp;
  3627. p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
  3628. return p->prev_utime;
  3629. }
  3630. cputime_t task_stime(struct task_struct *p)
  3631. {
  3632. clock_t stime;
  3633. /*
  3634. * Use CFS's precise accounting. (we subtract utime from
  3635. * the total, to make sure the total observed by userspace
  3636. * grows monotonically - apps rely on that):
  3637. */
  3638. stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
  3639. cputime_to_clock_t(task_utime(p));
  3640. if (stime >= 0)
  3641. p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
  3642. return p->prev_stime;
  3643. }
  3644. #endif
  3645. inline cputime_t task_gtime(struct task_struct *p)
  3646. {
  3647. return p->gtime;
  3648. }
  3649. /*
  3650. * This function gets called by the timer code, with HZ frequency.
  3651. * We call it with interrupts disabled.
  3652. *
  3653. * It also gets called by the fork code, when changing the parent's
  3654. * timeslices.
  3655. */
  3656. void scheduler_tick(void)
  3657. {
  3658. int cpu = smp_processor_id();
  3659. struct rq *rq = cpu_rq(cpu);
  3660. struct task_struct *curr = rq->curr;
  3661. sched_clock_tick();
  3662. spin_lock(&rq->lock);
  3663. update_rq_clock(rq);
  3664. update_cpu_load(rq);
  3665. curr->sched_class->task_tick(rq, curr, 0);
  3666. spin_unlock(&rq->lock);
  3667. #ifdef CONFIG_SMP
  3668. rq->idle_at_tick = idle_cpu(cpu);
  3669. trigger_load_balance(rq, cpu);
  3670. #endif
  3671. perf_counter_task_tick(curr, cpu);
  3672. }
  3673. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  3674. defined(CONFIG_PREEMPT_TRACER))
  3675. static inline unsigned long get_parent_ip(unsigned long addr)
  3676. {
  3677. if (in_lock_functions(addr)) {
  3678. addr = CALLER_ADDR2;
  3679. if (in_lock_functions(addr))
  3680. addr = CALLER_ADDR3;
  3681. }
  3682. return addr;
  3683. }
  3684. void __kprobes add_preempt_count(int val)
  3685. {
  3686. #ifdef CONFIG_DEBUG_PREEMPT
  3687. /*
  3688. * Underflow?
  3689. */
  3690. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3691. return;
  3692. #endif
  3693. preempt_count() += val;
  3694. #ifdef CONFIG_DEBUG_PREEMPT
  3695. /*
  3696. * Spinlock count overflowing soon?
  3697. */
  3698. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3699. PREEMPT_MASK - 10);
  3700. #endif
  3701. if (preempt_count() == val)
  3702. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3703. }
  3704. EXPORT_SYMBOL(add_preempt_count);
  3705. void __kprobes sub_preempt_count(int val)
  3706. {
  3707. #ifdef CONFIG_DEBUG_PREEMPT
  3708. /*
  3709. * Underflow?
  3710. */
  3711. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3712. return;
  3713. /*
  3714. * Is the spinlock portion underflowing?
  3715. */
  3716. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3717. !(preempt_count() & PREEMPT_MASK)))
  3718. return;
  3719. #endif
  3720. if (preempt_count() == val)
  3721. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3722. preempt_count() -= val;
  3723. }
  3724. EXPORT_SYMBOL(sub_preempt_count);
  3725. #endif
  3726. /*
  3727. * Print scheduling while atomic bug:
  3728. */
  3729. static noinline void __schedule_bug(struct task_struct *prev)
  3730. {
  3731. struct pt_regs *regs = get_irq_regs();
  3732. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3733. prev->comm, prev->pid, preempt_count());
  3734. debug_show_held_locks(prev);
  3735. print_modules();
  3736. if (irqs_disabled())
  3737. print_irqtrace_events(prev);
  3738. if (regs)
  3739. show_regs(regs);
  3740. else
  3741. dump_stack();
  3742. }
  3743. /*
  3744. * Various schedule()-time debugging checks and statistics:
  3745. */
  3746. static inline void schedule_debug(struct task_struct *prev)
  3747. {
  3748. /*
  3749. * Test if we are atomic. Since do_exit() needs to call into
  3750. * schedule() atomically, we ignore that path for now.
  3751. * Otherwise, whine if we are scheduling when we should not be.
  3752. */
  3753. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  3754. __schedule_bug(prev);
  3755. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3756. schedstat_inc(this_rq(), sched_count);
  3757. #ifdef CONFIG_SCHEDSTATS
  3758. if (unlikely(prev->lock_depth >= 0)) {
  3759. schedstat_inc(this_rq(), bkl_count);
  3760. schedstat_inc(prev, sched_info.bkl_count);
  3761. }
  3762. #endif
  3763. }
  3764. /*
  3765. * Pick up the highest-prio task:
  3766. */
  3767. static inline struct task_struct *
  3768. pick_next_task(struct rq *rq, struct task_struct *prev)
  3769. {
  3770. const struct sched_class *class;
  3771. struct task_struct *p;
  3772. /*
  3773. * Optimization: we know that if all tasks are in
  3774. * the fair class we can call that function directly:
  3775. */
  3776. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3777. p = fair_sched_class.pick_next_task(rq);
  3778. if (likely(p))
  3779. return p;
  3780. }
  3781. class = sched_class_highest;
  3782. for ( ; ; ) {
  3783. p = class->pick_next_task(rq);
  3784. if (p)
  3785. return p;
  3786. /*
  3787. * Will never be NULL as the idle class always
  3788. * returns a non-NULL p:
  3789. */
  3790. class = class->next;
  3791. }
  3792. }
  3793. /*
  3794. * schedule() is the main scheduler function.
  3795. */
  3796. asmlinkage void __sched schedule(void)
  3797. {
  3798. struct task_struct *prev, *next;
  3799. unsigned long *switch_count;
  3800. struct rq *rq;
  3801. int cpu;
  3802. need_resched:
  3803. preempt_disable();
  3804. cpu = smp_processor_id();
  3805. rq = cpu_rq(cpu);
  3806. rcu_qsctr_inc(cpu);
  3807. prev = rq->curr;
  3808. switch_count = &prev->nivcsw;
  3809. release_kernel_lock(prev);
  3810. need_resched_nonpreemptible:
  3811. schedule_debug(prev);
  3812. if (sched_feat(HRTICK))
  3813. hrtick_clear(rq);
  3814. spin_lock_irq(&rq->lock);
  3815. update_rq_clock(rq);
  3816. clear_tsk_need_resched(prev);
  3817. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3818. if (unlikely(signal_pending_state(prev->state, prev)))
  3819. prev->state = TASK_RUNNING;
  3820. else
  3821. deactivate_task(rq, prev, 1);
  3822. switch_count = &prev->nvcsw;
  3823. }
  3824. #ifdef CONFIG_SMP
  3825. if (prev->sched_class->pre_schedule)
  3826. prev->sched_class->pre_schedule(rq, prev);
  3827. #endif
  3828. if (unlikely(!rq->nr_running))
  3829. idle_balance(cpu, rq);
  3830. prev->sched_class->put_prev_task(rq, prev);
  3831. next = pick_next_task(rq, prev);
  3832. if (likely(prev != next)) {
  3833. sched_info_switch(prev, next);
  3834. rq->nr_switches++;
  3835. rq->curr = next;
  3836. ++*switch_count;
  3837. context_switch(rq, prev, next); /* unlocks the rq */
  3838. /*
  3839. * the context switch might have flipped the stack from under
  3840. * us, hence refresh the local variables.
  3841. */
  3842. cpu = smp_processor_id();
  3843. rq = cpu_rq(cpu);
  3844. } else
  3845. spin_unlock_irq(&rq->lock);
  3846. if (unlikely(reacquire_kernel_lock(current) < 0))
  3847. goto need_resched_nonpreemptible;
  3848. preempt_enable_no_resched();
  3849. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3850. goto need_resched;
  3851. }
  3852. EXPORT_SYMBOL(schedule);
  3853. #ifdef CONFIG_PREEMPT
  3854. /*
  3855. * this is the entry point to schedule() from in-kernel preemption
  3856. * off of preempt_enable. Kernel preemptions off return from interrupt
  3857. * occur there and call schedule directly.
  3858. */
  3859. asmlinkage void __sched preempt_schedule(void)
  3860. {
  3861. struct thread_info *ti = current_thread_info();
  3862. /*
  3863. * If there is a non-zero preempt_count or interrupts are disabled,
  3864. * we do not want to preempt the current task. Just return..
  3865. */
  3866. if (likely(ti->preempt_count || irqs_disabled()))
  3867. return;
  3868. do {
  3869. add_preempt_count(PREEMPT_ACTIVE);
  3870. schedule();
  3871. sub_preempt_count(PREEMPT_ACTIVE);
  3872. /*
  3873. * Check again in case we missed a preemption opportunity
  3874. * between schedule and now.
  3875. */
  3876. barrier();
  3877. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3878. }
  3879. EXPORT_SYMBOL(preempt_schedule);
  3880. /*
  3881. * this is the entry point to schedule() from kernel preemption
  3882. * off of irq context.
  3883. * Note, that this is called and return with irqs disabled. This will
  3884. * protect us against recursive calling from irq.
  3885. */
  3886. asmlinkage void __sched preempt_schedule_irq(void)
  3887. {
  3888. struct thread_info *ti = current_thread_info();
  3889. /* Catch callers which need to be fixed */
  3890. BUG_ON(ti->preempt_count || !irqs_disabled());
  3891. do {
  3892. add_preempt_count(PREEMPT_ACTIVE);
  3893. local_irq_enable();
  3894. schedule();
  3895. local_irq_disable();
  3896. sub_preempt_count(PREEMPT_ACTIVE);
  3897. /*
  3898. * Check again in case we missed a preemption opportunity
  3899. * between schedule and now.
  3900. */
  3901. barrier();
  3902. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3903. }
  3904. #endif /* CONFIG_PREEMPT */
  3905. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  3906. void *key)
  3907. {
  3908. return try_to_wake_up(curr->private, mode, sync);
  3909. }
  3910. EXPORT_SYMBOL(default_wake_function);
  3911. /*
  3912. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3913. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3914. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3915. *
  3916. * There are circumstances in which we can try to wake a task which has already
  3917. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3918. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3919. */
  3920. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3921. int nr_exclusive, int sync, void *key)
  3922. {
  3923. wait_queue_t *curr, *next;
  3924. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3925. unsigned flags = curr->flags;
  3926. if (curr->func(curr, mode, sync, key) &&
  3927. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3928. break;
  3929. }
  3930. }
  3931. /**
  3932. * __wake_up - wake up threads blocked on a waitqueue.
  3933. * @q: the waitqueue
  3934. * @mode: which threads
  3935. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3936. * @key: is directly passed to the wakeup function
  3937. */
  3938. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  3939. int nr_exclusive, void *key)
  3940. {
  3941. unsigned long flags;
  3942. spin_lock_irqsave(&q->lock, flags);
  3943. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3944. spin_unlock_irqrestore(&q->lock, flags);
  3945. }
  3946. EXPORT_SYMBOL(__wake_up);
  3947. /*
  3948. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3949. */
  3950. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3951. {
  3952. __wake_up_common(q, mode, 1, 0, NULL);
  3953. }
  3954. /**
  3955. * __wake_up_sync - wake up threads blocked on a waitqueue.
  3956. * @q: the waitqueue
  3957. * @mode: which threads
  3958. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3959. *
  3960. * The sync wakeup differs that the waker knows that it will schedule
  3961. * away soon, so while the target thread will be woken up, it will not
  3962. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3963. * with each other. This can prevent needless bouncing between CPUs.
  3964. *
  3965. * On UP it can prevent extra preemption.
  3966. */
  3967. void
  3968. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3969. {
  3970. unsigned long flags;
  3971. int sync = 1;
  3972. if (unlikely(!q))
  3973. return;
  3974. if (unlikely(!nr_exclusive))
  3975. sync = 0;
  3976. spin_lock_irqsave(&q->lock, flags);
  3977. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  3978. spin_unlock_irqrestore(&q->lock, flags);
  3979. }
  3980. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3981. /**
  3982. * complete: - signals a single thread waiting on this completion
  3983. * @x: holds the state of this particular completion
  3984. *
  3985. * This will wake up a single thread waiting on this completion. Threads will be
  3986. * awakened in the same order in which they were queued.
  3987. *
  3988. * See also complete_all(), wait_for_completion() and related routines.
  3989. */
  3990. void complete(struct completion *x)
  3991. {
  3992. unsigned long flags;
  3993. spin_lock_irqsave(&x->wait.lock, flags);
  3994. x->done++;
  3995. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  3996. spin_unlock_irqrestore(&x->wait.lock, flags);
  3997. }
  3998. EXPORT_SYMBOL(complete);
  3999. /**
  4000. * complete_all: - signals all threads waiting on this completion
  4001. * @x: holds the state of this particular completion
  4002. *
  4003. * This will wake up all threads waiting on this particular completion event.
  4004. */
  4005. void complete_all(struct completion *x)
  4006. {
  4007. unsigned long flags;
  4008. spin_lock_irqsave(&x->wait.lock, flags);
  4009. x->done += UINT_MAX/2;
  4010. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  4011. spin_unlock_irqrestore(&x->wait.lock, flags);
  4012. }
  4013. EXPORT_SYMBOL(complete_all);
  4014. static inline long __sched
  4015. do_wait_for_common(struct completion *x, long timeout, int state)
  4016. {
  4017. if (!x->done) {
  4018. DECLARE_WAITQUEUE(wait, current);
  4019. wait.flags |= WQ_FLAG_EXCLUSIVE;
  4020. __add_wait_queue_tail(&x->wait, &wait);
  4021. do {
  4022. if (signal_pending_state(state, current)) {
  4023. timeout = -ERESTARTSYS;
  4024. break;
  4025. }
  4026. __set_current_state(state);
  4027. spin_unlock_irq(&x->wait.lock);
  4028. timeout = schedule_timeout(timeout);
  4029. spin_lock_irq(&x->wait.lock);
  4030. } while (!x->done && timeout);
  4031. __remove_wait_queue(&x->wait, &wait);
  4032. if (!x->done)
  4033. return timeout;
  4034. }
  4035. x->done--;
  4036. return timeout ?: 1;
  4037. }
  4038. static long __sched
  4039. wait_for_common(struct completion *x, long timeout, int state)
  4040. {
  4041. might_sleep();
  4042. spin_lock_irq(&x->wait.lock);
  4043. timeout = do_wait_for_common(x, timeout, state);
  4044. spin_unlock_irq(&x->wait.lock);
  4045. return timeout;
  4046. }
  4047. /**
  4048. * wait_for_completion: - waits for completion of a task
  4049. * @x: holds the state of this particular completion
  4050. *
  4051. * This waits to be signaled for completion of a specific task. It is NOT
  4052. * interruptible and there is no timeout.
  4053. *
  4054. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  4055. * and interrupt capability. Also see complete().
  4056. */
  4057. void __sched wait_for_completion(struct completion *x)
  4058. {
  4059. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  4060. }
  4061. EXPORT_SYMBOL(wait_for_completion);
  4062. /**
  4063. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  4064. * @x: holds the state of this particular completion
  4065. * @timeout: timeout value in jiffies
  4066. *
  4067. * This waits for either a completion of a specific task to be signaled or for a
  4068. * specified timeout to expire. The timeout is in jiffies. It is not
  4069. * interruptible.
  4070. */
  4071. unsigned long __sched
  4072. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  4073. {
  4074. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  4075. }
  4076. EXPORT_SYMBOL(wait_for_completion_timeout);
  4077. /**
  4078. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  4079. * @x: holds the state of this particular completion
  4080. *
  4081. * This waits for completion of a specific task to be signaled. It is
  4082. * interruptible.
  4083. */
  4084. int __sched wait_for_completion_interruptible(struct completion *x)
  4085. {
  4086. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  4087. if (t == -ERESTARTSYS)
  4088. return t;
  4089. return 0;
  4090. }
  4091. EXPORT_SYMBOL(wait_for_completion_interruptible);
  4092. /**
  4093. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  4094. * @x: holds the state of this particular completion
  4095. * @timeout: timeout value in jiffies
  4096. *
  4097. * This waits for either a completion of a specific task to be signaled or for a
  4098. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  4099. */
  4100. unsigned long __sched
  4101. wait_for_completion_interruptible_timeout(struct completion *x,
  4102. unsigned long timeout)
  4103. {
  4104. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  4105. }
  4106. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  4107. /**
  4108. * wait_for_completion_killable: - waits for completion of a task (killable)
  4109. * @x: holds the state of this particular completion
  4110. *
  4111. * This waits to be signaled for completion of a specific task. It can be
  4112. * interrupted by a kill signal.
  4113. */
  4114. int __sched wait_for_completion_killable(struct completion *x)
  4115. {
  4116. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  4117. if (t == -ERESTARTSYS)
  4118. return t;
  4119. return 0;
  4120. }
  4121. EXPORT_SYMBOL(wait_for_completion_killable);
  4122. /**
  4123. * try_wait_for_completion - try to decrement a completion without blocking
  4124. * @x: completion structure
  4125. *
  4126. * Returns: 0 if a decrement cannot be done without blocking
  4127. * 1 if a decrement succeeded.
  4128. *
  4129. * If a completion is being used as a counting completion,
  4130. * attempt to decrement the counter without blocking. This
  4131. * enables us to avoid waiting if the resource the completion
  4132. * is protecting is not available.
  4133. */
  4134. bool try_wait_for_completion(struct completion *x)
  4135. {
  4136. int ret = 1;
  4137. spin_lock_irq(&x->wait.lock);
  4138. if (!x->done)
  4139. ret = 0;
  4140. else
  4141. x->done--;
  4142. spin_unlock_irq(&x->wait.lock);
  4143. return ret;
  4144. }
  4145. EXPORT_SYMBOL(try_wait_for_completion);
  4146. /**
  4147. * completion_done - Test to see if a completion has any waiters
  4148. * @x: completion structure
  4149. *
  4150. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  4151. * 1 if there are no waiters.
  4152. *
  4153. */
  4154. bool completion_done(struct completion *x)
  4155. {
  4156. int ret = 1;
  4157. spin_lock_irq(&x->wait.lock);
  4158. if (!x->done)
  4159. ret = 0;
  4160. spin_unlock_irq(&x->wait.lock);
  4161. return ret;
  4162. }
  4163. EXPORT_SYMBOL(completion_done);
  4164. static long __sched
  4165. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  4166. {
  4167. unsigned long flags;
  4168. wait_queue_t wait;
  4169. init_waitqueue_entry(&wait, current);
  4170. __set_current_state(state);
  4171. spin_lock_irqsave(&q->lock, flags);
  4172. __add_wait_queue(q, &wait);
  4173. spin_unlock(&q->lock);
  4174. timeout = schedule_timeout(timeout);
  4175. spin_lock_irq(&q->lock);
  4176. __remove_wait_queue(q, &wait);
  4177. spin_unlock_irqrestore(&q->lock, flags);
  4178. return timeout;
  4179. }
  4180. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  4181. {
  4182. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4183. }
  4184. EXPORT_SYMBOL(interruptible_sleep_on);
  4185. long __sched
  4186. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4187. {
  4188. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  4189. }
  4190. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  4191. void __sched sleep_on(wait_queue_head_t *q)
  4192. {
  4193. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4194. }
  4195. EXPORT_SYMBOL(sleep_on);
  4196. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4197. {
  4198. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  4199. }
  4200. EXPORT_SYMBOL(sleep_on_timeout);
  4201. #ifdef CONFIG_RT_MUTEXES
  4202. /*
  4203. * rt_mutex_setprio - set the current priority of a task
  4204. * @p: task
  4205. * @prio: prio value (kernel-internal form)
  4206. *
  4207. * This function changes the 'effective' priority of a task. It does
  4208. * not touch ->normal_prio like __setscheduler().
  4209. *
  4210. * Used by the rt_mutex code to implement priority inheritance logic.
  4211. */
  4212. void rt_mutex_setprio(struct task_struct *p, int prio)
  4213. {
  4214. unsigned long flags;
  4215. int oldprio, on_rq, running;
  4216. struct rq *rq;
  4217. const struct sched_class *prev_class = p->sched_class;
  4218. BUG_ON(prio < 0 || prio > MAX_PRIO);
  4219. rq = task_rq_lock(p, &flags);
  4220. update_rq_clock(rq);
  4221. oldprio = p->prio;
  4222. on_rq = p->se.on_rq;
  4223. running = task_current(rq, p);
  4224. if (on_rq)
  4225. dequeue_task(rq, p, 0);
  4226. if (running)
  4227. p->sched_class->put_prev_task(rq, p);
  4228. if (rt_prio(prio))
  4229. p->sched_class = &rt_sched_class;
  4230. else
  4231. p->sched_class = &fair_sched_class;
  4232. p->prio = prio;
  4233. if (running)
  4234. p->sched_class->set_curr_task(rq);
  4235. if (on_rq) {
  4236. enqueue_task(rq, p, 0);
  4237. check_class_changed(rq, p, prev_class, oldprio, running);
  4238. }
  4239. task_rq_unlock(rq, &flags);
  4240. }
  4241. #endif
  4242. void set_user_nice(struct task_struct *p, long nice)
  4243. {
  4244. int old_prio, delta, on_rq;
  4245. unsigned long flags;
  4246. struct rq *rq;
  4247. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  4248. return;
  4249. /*
  4250. * We have to be careful, if called from sys_setpriority(),
  4251. * the task might be in the middle of scheduling on another CPU.
  4252. */
  4253. rq = task_rq_lock(p, &flags);
  4254. update_rq_clock(rq);
  4255. /*
  4256. * The RT priorities are set via sched_setscheduler(), but we still
  4257. * allow the 'normal' nice value to be set - but as expected
  4258. * it wont have any effect on scheduling until the task is
  4259. * SCHED_FIFO/SCHED_RR:
  4260. */
  4261. if (task_has_rt_policy(p)) {
  4262. p->static_prio = NICE_TO_PRIO(nice);
  4263. goto out_unlock;
  4264. }
  4265. on_rq = p->se.on_rq;
  4266. if (on_rq)
  4267. dequeue_task(rq, p, 0);
  4268. p->static_prio = NICE_TO_PRIO(nice);
  4269. set_load_weight(p);
  4270. old_prio = p->prio;
  4271. p->prio = effective_prio(p);
  4272. delta = p->prio - old_prio;
  4273. if (on_rq) {
  4274. enqueue_task(rq, p, 0);
  4275. /*
  4276. * If the task increased its priority or is running and
  4277. * lowered its priority, then reschedule its CPU:
  4278. */
  4279. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  4280. resched_task(rq->curr);
  4281. }
  4282. out_unlock:
  4283. task_rq_unlock(rq, &flags);
  4284. }
  4285. EXPORT_SYMBOL(set_user_nice);
  4286. /*
  4287. * can_nice - check if a task can reduce its nice value
  4288. * @p: task
  4289. * @nice: nice value
  4290. */
  4291. int can_nice(const struct task_struct *p, const int nice)
  4292. {
  4293. /* convert nice value [19,-20] to rlimit style value [1,40] */
  4294. int nice_rlim = 20 - nice;
  4295. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  4296. capable(CAP_SYS_NICE));
  4297. }
  4298. #ifdef __ARCH_WANT_SYS_NICE
  4299. /*
  4300. * sys_nice - change the priority of the current process.
  4301. * @increment: priority increment
  4302. *
  4303. * sys_setpriority is a more generic, but much slower function that
  4304. * does similar things.
  4305. */
  4306. asmlinkage long sys_nice(int increment)
  4307. {
  4308. long nice, retval;
  4309. /*
  4310. * Setpriority might change our priority at the same moment.
  4311. * We don't have to worry. Conceptually one call occurs first
  4312. * and we have a single winner.
  4313. */
  4314. if (increment < -40)
  4315. increment = -40;
  4316. if (increment > 40)
  4317. increment = 40;
  4318. nice = PRIO_TO_NICE(current->static_prio) + increment;
  4319. if (nice < -20)
  4320. nice = -20;
  4321. if (nice > 19)
  4322. nice = 19;
  4323. if (increment < 0 && !can_nice(current, nice))
  4324. return -EPERM;
  4325. retval = security_task_setnice(current, nice);
  4326. if (retval)
  4327. return retval;
  4328. set_user_nice(current, nice);
  4329. return 0;
  4330. }
  4331. #endif
  4332. /**
  4333. * task_prio - return the priority value of a given task.
  4334. * @p: the task in question.
  4335. *
  4336. * This is the priority value as seen by users in /proc.
  4337. * RT tasks are offset by -200. Normal tasks are centered
  4338. * around 0, value goes from -16 to +15.
  4339. */
  4340. int task_prio(const struct task_struct *p)
  4341. {
  4342. return p->prio - MAX_RT_PRIO;
  4343. }
  4344. /**
  4345. * task_nice - return the nice value of a given task.
  4346. * @p: the task in question.
  4347. */
  4348. int task_nice(const struct task_struct *p)
  4349. {
  4350. return TASK_NICE(p);
  4351. }
  4352. EXPORT_SYMBOL(task_nice);
  4353. /**
  4354. * idle_cpu - is a given cpu idle currently?
  4355. * @cpu: the processor in question.
  4356. */
  4357. int idle_cpu(int cpu)
  4358. {
  4359. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  4360. }
  4361. /**
  4362. * idle_task - return the idle task for a given cpu.
  4363. * @cpu: the processor in question.
  4364. */
  4365. struct task_struct *idle_task(int cpu)
  4366. {
  4367. return cpu_rq(cpu)->idle;
  4368. }
  4369. /**
  4370. * find_process_by_pid - find a process with a matching PID value.
  4371. * @pid: the pid in question.
  4372. */
  4373. static struct task_struct *find_process_by_pid(pid_t pid)
  4374. {
  4375. return pid ? find_task_by_vpid(pid) : current;
  4376. }
  4377. /* Actually do priority change: must hold rq lock. */
  4378. static void
  4379. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  4380. {
  4381. BUG_ON(p->se.on_rq);
  4382. p->policy = policy;
  4383. switch (p->policy) {
  4384. case SCHED_NORMAL:
  4385. case SCHED_BATCH:
  4386. case SCHED_IDLE:
  4387. p->sched_class = &fair_sched_class;
  4388. break;
  4389. case SCHED_FIFO:
  4390. case SCHED_RR:
  4391. p->sched_class = &rt_sched_class;
  4392. break;
  4393. }
  4394. p->rt_priority = prio;
  4395. p->normal_prio = normal_prio(p);
  4396. /* we are holding p->pi_lock already */
  4397. p->prio = rt_mutex_getprio(p);
  4398. set_load_weight(p);
  4399. }
  4400. static int __sched_setscheduler(struct task_struct *p, int policy,
  4401. struct sched_param *param, bool user)
  4402. {
  4403. int retval, oldprio, oldpolicy = -1, on_rq, running;
  4404. unsigned long flags;
  4405. const struct sched_class *prev_class = p->sched_class;
  4406. struct rq *rq;
  4407. /* may grab non-irq protected spin_locks */
  4408. BUG_ON(in_interrupt());
  4409. recheck:
  4410. /* double check policy once rq lock held */
  4411. if (policy < 0)
  4412. policy = oldpolicy = p->policy;
  4413. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  4414. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  4415. policy != SCHED_IDLE)
  4416. return -EINVAL;
  4417. /*
  4418. * Valid priorities for SCHED_FIFO and SCHED_RR are
  4419. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  4420. * SCHED_BATCH and SCHED_IDLE is 0.
  4421. */
  4422. if (param->sched_priority < 0 ||
  4423. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  4424. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  4425. return -EINVAL;
  4426. if (rt_policy(policy) != (param->sched_priority != 0))
  4427. return -EINVAL;
  4428. /*
  4429. * Allow unprivileged RT tasks to decrease priority:
  4430. */
  4431. if (user && !capable(CAP_SYS_NICE)) {
  4432. if (rt_policy(policy)) {
  4433. unsigned long rlim_rtprio;
  4434. if (!lock_task_sighand(p, &flags))
  4435. return -ESRCH;
  4436. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  4437. unlock_task_sighand(p, &flags);
  4438. /* can't set/change the rt policy */
  4439. if (policy != p->policy && !rlim_rtprio)
  4440. return -EPERM;
  4441. /* can't increase priority */
  4442. if (param->sched_priority > p->rt_priority &&
  4443. param->sched_priority > rlim_rtprio)
  4444. return -EPERM;
  4445. }
  4446. /*
  4447. * Like positive nice levels, dont allow tasks to
  4448. * move out of SCHED_IDLE either:
  4449. */
  4450. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  4451. return -EPERM;
  4452. /* can't change other user's priorities */
  4453. if ((current->euid != p->euid) &&
  4454. (current->euid != p->uid))
  4455. return -EPERM;
  4456. }
  4457. if (user) {
  4458. #ifdef CONFIG_RT_GROUP_SCHED
  4459. /*
  4460. * Do not allow realtime tasks into groups that have no runtime
  4461. * assigned.
  4462. */
  4463. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  4464. task_group(p)->rt_bandwidth.rt_runtime == 0)
  4465. return -EPERM;
  4466. #endif
  4467. retval = security_task_setscheduler(p, policy, param);
  4468. if (retval)
  4469. return retval;
  4470. }
  4471. /*
  4472. * make sure no PI-waiters arrive (or leave) while we are
  4473. * changing the priority of the task:
  4474. */
  4475. spin_lock_irqsave(&p->pi_lock, flags);
  4476. /*
  4477. * To be able to change p->policy safely, the apropriate
  4478. * runqueue lock must be held.
  4479. */
  4480. rq = __task_rq_lock(p);
  4481. /* recheck policy now with rq lock held */
  4482. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  4483. policy = oldpolicy = -1;
  4484. __task_rq_unlock(rq);
  4485. spin_unlock_irqrestore(&p->pi_lock, flags);
  4486. goto recheck;
  4487. }
  4488. update_rq_clock(rq);
  4489. on_rq = p->se.on_rq;
  4490. running = task_current(rq, p);
  4491. if (on_rq)
  4492. deactivate_task(rq, p, 0);
  4493. if (running)
  4494. p->sched_class->put_prev_task(rq, p);
  4495. oldprio = p->prio;
  4496. __setscheduler(rq, p, policy, param->sched_priority);
  4497. if (running)
  4498. p->sched_class->set_curr_task(rq);
  4499. if (on_rq) {
  4500. activate_task(rq, p, 0);
  4501. check_class_changed(rq, p, prev_class, oldprio, running);
  4502. }
  4503. __task_rq_unlock(rq);
  4504. spin_unlock_irqrestore(&p->pi_lock, flags);
  4505. rt_mutex_adjust_pi(p);
  4506. return 0;
  4507. }
  4508. /**
  4509. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  4510. * @p: the task in question.
  4511. * @policy: new policy.
  4512. * @param: structure containing the new RT priority.
  4513. *
  4514. * NOTE that the task may be already dead.
  4515. */
  4516. int sched_setscheduler(struct task_struct *p, int policy,
  4517. struct sched_param *param)
  4518. {
  4519. return __sched_setscheduler(p, policy, param, true);
  4520. }
  4521. EXPORT_SYMBOL_GPL(sched_setscheduler);
  4522. /**
  4523. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  4524. * @p: the task in question.
  4525. * @policy: new policy.
  4526. * @param: structure containing the new RT priority.
  4527. *
  4528. * Just like sched_setscheduler, only don't bother checking if the
  4529. * current context has permission. For example, this is needed in
  4530. * stop_machine(): we create temporary high priority worker threads,
  4531. * but our caller might not have that capability.
  4532. */
  4533. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  4534. struct sched_param *param)
  4535. {
  4536. return __sched_setscheduler(p, policy, param, false);
  4537. }
  4538. static int
  4539. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4540. {
  4541. struct sched_param lparam;
  4542. struct task_struct *p;
  4543. int retval;
  4544. if (!param || pid < 0)
  4545. return -EINVAL;
  4546. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  4547. return -EFAULT;
  4548. rcu_read_lock();
  4549. retval = -ESRCH;
  4550. p = find_process_by_pid(pid);
  4551. if (p != NULL)
  4552. retval = sched_setscheduler(p, policy, &lparam);
  4553. rcu_read_unlock();
  4554. return retval;
  4555. }
  4556. /**
  4557. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  4558. * @pid: the pid in question.
  4559. * @policy: new policy.
  4560. * @param: structure containing the new RT priority.
  4561. */
  4562. asmlinkage long
  4563. sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4564. {
  4565. /* negative values for policy are not valid */
  4566. if (policy < 0)
  4567. return -EINVAL;
  4568. return do_sched_setscheduler(pid, policy, param);
  4569. }
  4570. /**
  4571. * sys_sched_setparam - set/change the RT priority of a thread
  4572. * @pid: the pid in question.
  4573. * @param: structure containing the new RT priority.
  4574. */
  4575. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  4576. {
  4577. return do_sched_setscheduler(pid, -1, param);
  4578. }
  4579. /**
  4580. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  4581. * @pid: the pid in question.
  4582. */
  4583. asmlinkage long sys_sched_getscheduler(pid_t pid)
  4584. {
  4585. struct task_struct *p;
  4586. int retval;
  4587. if (pid < 0)
  4588. return -EINVAL;
  4589. retval = -ESRCH;
  4590. read_lock(&tasklist_lock);
  4591. p = find_process_by_pid(pid);
  4592. if (p) {
  4593. retval = security_task_getscheduler(p);
  4594. if (!retval)
  4595. retval = p->policy;
  4596. }
  4597. read_unlock(&tasklist_lock);
  4598. return retval;
  4599. }
  4600. /**
  4601. * sys_sched_getscheduler - get the RT priority of a thread
  4602. * @pid: the pid in question.
  4603. * @param: structure containing the RT priority.
  4604. */
  4605. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  4606. {
  4607. struct sched_param lp;
  4608. struct task_struct *p;
  4609. int retval;
  4610. if (!param || pid < 0)
  4611. return -EINVAL;
  4612. read_lock(&tasklist_lock);
  4613. p = find_process_by_pid(pid);
  4614. retval = -ESRCH;
  4615. if (!p)
  4616. goto out_unlock;
  4617. retval = security_task_getscheduler(p);
  4618. if (retval)
  4619. goto out_unlock;
  4620. lp.sched_priority = p->rt_priority;
  4621. read_unlock(&tasklist_lock);
  4622. /*
  4623. * This one might sleep, we cannot do it with a spinlock held ...
  4624. */
  4625. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  4626. return retval;
  4627. out_unlock:
  4628. read_unlock(&tasklist_lock);
  4629. return retval;
  4630. }
  4631. long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
  4632. {
  4633. cpumask_t cpus_allowed;
  4634. cpumask_t new_mask = *in_mask;
  4635. struct task_struct *p;
  4636. int retval;
  4637. get_online_cpus();
  4638. read_lock(&tasklist_lock);
  4639. p = find_process_by_pid(pid);
  4640. if (!p) {
  4641. read_unlock(&tasklist_lock);
  4642. put_online_cpus();
  4643. return -ESRCH;
  4644. }
  4645. /*
  4646. * It is not safe to call set_cpus_allowed with the
  4647. * tasklist_lock held. We will bump the task_struct's
  4648. * usage count and then drop tasklist_lock.
  4649. */
  4650. get_task_struct(p);
  4651. read_unlock(&tasklist_lock);
  4652. retval = -EPERM;
  4653. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  4654. !capable(CAP_SYS_NICE))
  4655. goto out_unlock;
  4656. retval = security_task_setscheduler(p, 0, NULL);
  4657. if (retval)
  4658. goto out_unlock;
  4659. cpuset_cpus_allowed(p, &cpus_allowed);
  4660. cpus_and(new_mask, new_mask, cpus_allowed);
  4661. again:
  4662. retval = set_cpus_allowed_ptr(p, &new_mask);
  4663. if (!retval) {
  4664. cpuset_cpus_allowed(p, &cpus_allowed);
  4665. if (!cpus_subset(new_mask, cpus_allowed)) {
  4666. /*
  4667. * We must have raced with a concurrent cpuset
  4668. * update. Just reset the cpus_allowed to the
  4669. * cpuset's cpus_allowed
  4670. */
  4671. new_mask = cpus_allowed;
  4672. goto again;
  4673. }
  4674. }
  4675. out_unlock:
  4676. put_task_struct(p);
  4677. put_online_cpus();
  4678. return retval;
  4679. }
  4680. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4681. cpumask_t *new_mask)
  4682. {
  4683. if (len < sizeof(cpumask_t)) {
  4684. memset(new_mask, 0, sizeof(cpumask_t));
  4685. } else if (len > sizeof(cpumask_t)) {
  4686. len = sizeof(cpumask_t);
  4687. }
  4688. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4689. }
  4690. /**
  4691. * sys_sched_setaffinity - set the cpu affinity of a process
  4692. * @pid: pid of the process
  4693. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4694. * @user_mask_ptr: user-space pointer to the new cpu mask
  4695. */
  4696. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  4697. unsigned long __user *user_mask_ptr)
  4698. {
  4699. cpumask_t new_mask;
  4700. int retval;
  4701. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  4702. if (retval)
  4703. return retval;
  4704. return sched_setaffinity(pid, &new_mask);
  4705. }
  4706. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  4707. {
  4708. struct task_struct *p;
  4709. int retval;
  4710. get_online_cpus();
  4711. read_lock(&tasklist_lock);
  4712. retval = -ESRCH;
  4713. p = find_process_by_pid(pid);
  4714. if (!p)
  4715. goto out_unlock;
  4716. retval = security_task_getscheduler(p);
  4717. if (retval)
  4718. goto out_unlock;
  4719. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  4720. out_unlock:
  4721. read_unlock(&tasklist_lock);
  4722. put_online_cpus();
  4723. return retval;
  4724. }
  4725. /**
  4726. * sys_sched_getaffinity - get the cpu affinity of a process
  4727. * @pid: pid of the process
  4728. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4729. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4730. */
  4731. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  4732. unsigned long __user *user_mask_ptr)
  4733. {
  4734. int ret;
  4735. cpumask_t mask;
  4736. if (len < sizeof(cpumask_t))
  4737. return -EINVAL;
  4738. ret = sched_getaffinity(pid, &mask);
  4739. if (ret < 0)
  4740. return ret;
  4741. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  4742. return -EFAULT;
  4743. return sizeof(cpumask_t);
  4744. }
  4745. /**
  4746. * sys_sched_yield - yield the current processor to other threads.
  4747. *
  4748. * This function yields the current CPU to other tasks. If there are no
  4749. * other threads running on this CPU then this function will return.
  4750. */
  4751. asmlinkage long sys_sched_yield(void)
  4752. {
  4753. struct rq *rq = this_rq_lock();
  4754. schedstat_inc(rq, yld_count);
  4755. current->sched_class->yield_task(rq);
  4756. /*
  4757. * Since we are going to call schedule() anyway, there's
  4758. * no need to preempt or enable interrupts:
  4759. */
  4760. __release(rq->lock);
  4761. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4762. _raw_spin_unlock(&rq->lock);
  4763. preempt_enable_no_resched();
  4764. schedule();
  4765. return 0;
  4766. }
  4767. static void __cond_resched(void)
  4768. {
  4769. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  4770. __might_sleep(__FILE__, __LINE__);
  4771. #endif
  4772. /*
  4773. * The BKS might be reacquired before we have dropped
  4774. * PREEMPT_ACTIVE, which could trigger a second
  4775. * cond_resched() call.
  4776. */
  4777. do {
  4778. add_preempt_count(PREEMPT_ACTIVE);
  4779. schedule();
  4780. sub_preempt_count(PREEMPT_ACTIVE);
  4781. } while (need_resched());
  4782. }
  4783. int __sched _cond_resched(void)
  4784. {
  4785. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  4786. system_state == SYSTEM_RUNNING) {
  4787. __cond_resched();
  4788. return 1;
  4789. }
  4790. return 0;
  4791. }
  4792. EXPORT_SYMBOL(_cond_resched);
  4793. /*
  4794. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4795. * call schedule, and on return reacquire the lock.
  4796. *
  4797. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4798. * operations here to prevent schedule() from being called twice (once via
  4799. * spin_unlock(), once by hand).
  4800. */
  4801. int cond_resched_lock(spinlock_t *lock)
  4802. {
  4803. int resched = need_resched() && system_state == SYSTEM_RUNNING;
  4804. int ret = 0;
  4805. if (spin_needbreak(lock) || resched) {
  4806. spin_unlock(lock);
  4807. if (resched && need_resched())
  4808. __cond_resched();
  4809. else
  4810. cpu_relax();
  4811. ret = 1;
  4812. spin_lock(lock);
  4813. }
  4814. return ret;
  4815. }
  4816. EXPORT_SYMBOL(cond_resched_lock);
  4817. int __sched cond_resched_softirq(void)
  4818. {
  4819. BUG_ON(!in_softirq());
  4820. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4821. local_bh_enable();
  4822. __cond_resched();
  4823. local_bh_disable();
  4824. return 1;
  4825. }
  4826. return 0;
  4827. }
  4828. EXPORT_SYMBOL(cond_resched_softirq);
  4829. /**
  4830. * yield - yield the current processor to other threads.
  4831. *
  4832. * This is a shortcut for kernel-space yielding - it marks the
  4833. * thread runnable and calls sys_sched_yield().
  4834. */
  4835. void __sched yield(void)
  4836. {
  4837. set_current_state(TASK_RUNNING);
  4838. sys_sched_yield();
  4839. }
  4840. EXPORT_SYMBOL(yield);
  4841. /*
  4842. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4843. * that process accounting knows that this is a task in IO wait state.
  4844. *
  4845. * But don't do that if it is a deliberate, throttling IO wait (this task
  4846. * has set its backing_dev_info: the queue against which it should throttle)
  4847. */
  4848. void __sched io_schedule(void)
  4849. {
  4850. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4851. delayacct_blkio_start();
  4852. atomic_inc(&rq->nr_iowait);
  4853. schedule();
  4854. atomic_dec(&rq->nr_iowait);
  4855. delayacct_blkio_end();
  4856. }
  4857. EXPORT_SYMBOL(io_schedule);
  4858. long __sched io_schedule_timeout(long timeout)
  4859. {
  4860. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4861. long ret;
  4862. delayacct_blkio_start();
  4863. atomic_inc(&rq->nr_iowait);
  4864. ret = schedule_timeout(timeout);
  4865. atomic_dec(&rq->nr_iowait);
  4866. delayacct_blkio_end();
  4867. return ret;
  4868. }
  4869. /**
  4870. * sys_sched_get_priority_max - return maximum RT priority.
  4871. * @policy: scheduling class.
  4872. *
  4873. * this syscall returns the maximum rt_priority that can be used
  4874. * by a given scheduling class.
  4875. */
  4876. asmlinkage long sys_sched_get_priority_max(int policy)
  4877. {
  4878. int ret = -EINVAL;
  4879. switch (policy) {
  4880. case SCHED_FIFO:
  4881. case SCHED_RR:
  4882. ret = MAX_USER_RT_PRIO-1;
  4883. break;
  4884. case SCHED_NORMAL:
  4885. case SCHED_BATCH:
  4886. case SCHED_IDLE:
  4887. ret = 0;
  4888. break;
  4889. }
  4890. return ret;
  4891. }
  4892. /**
  4893. * sys_sched_get_priority_min - return minimum RT priority.
  4894. * @policy: scheduling class.
  4895. *
  4896. * this syscall returns the minimum rt_priority that can be used
  4897. * by a given scheduling class.
  4898. */
  4899. asmlinkage long sys_sched_get_priority_min(int policy)
  4900. {
  4901. int ret = -EINVAL;
  4902. switch (policy) {
  4903. case SCHED_FIFO:
  4904. case SCHED_RR:
  4905. ret = 1;
  4906. break;
  4907. case SCHED_NORMAL:
  4908. case SCHED_BATCH:
  4909. case SCHED_IDLE:
  4910. ret = 0;
  4911. }
  4912. return ret;
  4913. }
  4914. /**
  4915. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4916. * @pid: pid of the process.
  4917. * @interval: userspace pointer to the timeslice value.
  4918. *
  4919. * this syscall writes the default timeslice value of a given process
  4920. * into the user-space timespec buffer. A value of '0' means infinity.
  4921. */
  4922. asmlinkage
  4923. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  4924. {
  4925. struct task_struct *p;
  4926. unsigned int time_slice;
  4927. int retval;
  4928. struct timespec t;
  4929. if (pid < 0)
  4930. return -EINVAL;
  4931. retval = -ESRCH;
  4932. read_lock(&tasklist_lock);
  4933. p = find_process_by_pid(pid);
  4934. if (!p)
  4935. goto out_unlock;
  4936. retval = security_task_getscheduler(p);
  4937. if (retval)
  4938. goto out_unlock;
  4939. /*
  4940. * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
  4941. * tasks that are on an otherwise idle runqueue:
  4942. */
  4943. time_slice = 0;
  4944. if (p->policy == SCHED_RR) {
  4945. time_slice = DEF_TIMESLICE;
  4946. } else if (p->policy != SCHED_FIFO) {
  4947. struct sched_entity *se = &p->se;
  4948. unsigned long flags;
  4949. struct rq *rq;
  4950. rq = task_rq_lock(p, &flags);
  4951. if (rq->cfs.load.weight)
  4952. time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  4953. task_rq_unlock(rq, &flags);
  4954. }
  4955. read_unlock(&tasklist_lock);
  4956. jiffies_to_timespec(time_slice, &t);
  4957. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4958. return retval;
  4959. out_unlock:
  4960. read_unlock(&tasklist_lock);
  4961. return retval;
  4962. }
  4963. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  4964. void sched_show_task(struct task_struct *p)
  4965. {
  4966. unsigned long free = 0;
  4967. unsigned state;
  4968. state = p->state ? __ffs(p->state) + 1 : 0;
  4969. printk(KERN_INFO "%-13.13s %c", p->comm,
  4970. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4971. #if BITS_PER_LONG == 32
  4972. if (state == TASK_RUNNING)
  4973. printk(KERN_CONT " running ");
  4974. else
  4975. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4976. #else
  4977. if (state == TASK_RUNNING)
  4978. printk(KERN_CONT " running task ");
  4979. else
  4980. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4981. #endif
  4982. #ifdef CONFIG_DEBUG_STACK_USAGE
  4983. {
  4984. unsigned long *n = end_of_stack(p);
  4985. while (!*n)
  4986. n++;
  4987. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  4988. }
  4989. #endif
  4990. printk(KERN_CONT "%5lu %5d %6d\n", free,
  4991. task_pid_nr(p), task_pid_nr(p->real_parent));
  4992. show_stack(p, NULL);
  4993. }
  4994. void show_state_filter(unsigned long state_filter)
  4995. {
  4996. struct task_struct *g, *p;
  4997. #if BITS_PER_LONG == 32
  4998. printk(KERN_INFO
  4999. " task PC stack pid father\n");
  5000. #else
  5001. printk(KERN_INFO
  5002. " task PC stack pid father\n");
  5003. #endif
  5004. read_lock(&tasklist_lock);
  5005. do_each_thread(g, p) {
  5006. /*
  5007. * reset the NMI-timeout, listing all files on a slow
  5008. * console might take alot of time:
  5009. */
  5010. touch_nmi_watchdog();
  5011. if (!state_filter || (p->state & state_filter))
  5012. sched_show_task(p);
  5013. } while_each_thread(g, p);
  5014. touch_all_softlockup_watchdogs();
  5015. #ifdef CONFIG_SCHED_DEBUG
  5016. sysrq_sched_debug_show();
  5017. #endif
  5018. read_unlock(&tasklist_lock);
  5019. /*
  5020. * Only show locks if all tasks are dumped:
  5021. */
  5022. if (state_filter == -1)
  5023. debug_show_all_locks();
  5024. }
  5025. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  5026. {
  5027. idle->sched_class = &idle_sched_class;
  5028. }
  5029. /**
  5030. * init_idle - set up an idle thread for a given CPU
  5031. * @idle: task in question
  5032. * @cpu: cpu the idle task belongs to
  5033. *
  5034. * NOTE: this function does not set the idle thread's NEED_RESCHED
  5035. * flag, to make booting more robust.
  5036. */
  5037. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  5038. {
  5039. struct rq *rq = cpu_rq(cpu);
  5040. unsigned long flags;
  5041. spin_lock_irqsave(&rq->lock, flags);
  5042. __sched_fork(idle);
  5043. idle->se.exec_start = sched_clock();
  5044. idle->prio = idle->normal_prio = MAX_PRIO;
  5045. idle->cpus_allowed = cpumask_of_cpu(cpu);
  5046. __set_task_cpu(idle, cpu);
  5047. rq->curr = rq->idle = idle;
  5048. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  5049. idle->oncpu = 1;
  5050. #endif
  5051. spin_unlock_irqrestore(&rq->lock, flags);
  5052. /* Set the preempt count _outside_ the spinlocks! */
  5053. #if defined(CONFIG_PREEMPT)
  5054. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  5055. #else
  5056. task_thread_info(idle)->preempt_count = 0;
  5057. #endif
  5058. /*
  5059. * The idle tasks have their own, simple scheduling class:
  5060. */
  5061. idle->sched_class = &idle_sched_class;
  5062. }
  5063. /*
  5064. * In a system that switches off the HZ timer nohz_cpu_mask
  5065. * indicates which cpus entered this state. This is used
  5066. * in the rcu update to wait only for active cpus. For system
  5067. * which do not switch off the HZ timer nohz_cpu_mask should
  5068. * always be CPU_MASK_NONE.
  5069. */
  5070. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  5071. /*
  5072. * Increase the granularity value when there are more CPUs,
  5073. * because with more CPUs the 'effective latency' as visible
  5074. * to users decreases. But the relationship is not linear,
  5075. * so pick a second-best guess by going with the log2 of the
  5076. * number of CPUs.
  5077. *
  5078. * This idea comes from the SD scheduler of Con Kolivas:
  5079. */
  5080. static inline void sched_init_granularity(void)
  5081. {
  5082. unsigned int factor = 1 + ilog2(num_online_cpus());
  5083. const unsigned long limit = 200000000;
  5084. sysctl_sched_min_granularity *= factor;
  5085. if (sysctl_sched_min_granularity > limit)
  5086. sysctl_sched_min_granularity = limit;
  5087. sysctl_sched_latency *= factor;
  5088. if (sysctl_sched_latency > limit)
  5089. sysctl_sched_latency = limit;
  5090. sysctl_sched_wakeup_granularity *= factor;
  5091. sysctl_sched_shares_ratelimit *= factor;
  5092. }
  5093. #ifdef CONFIG_SMP
  5094. /*
  5095. * This is how migration works:
  5096. *
  5097. * 1) we queue a struct migration_req structure in the source CPU's
  5098. * runqueue and wake up that CPU's migration thread.
  5099. * 2) we down() the locked semaphore => thread blocks.
  5100. * 3) migration thread wakes up (implicitly it forces the migrated
  5101. * thread off the CPU)
  5102. * 4) it gets the migration request and checks whether the migrated
  5103. * task is still in the wrong runqueue.
  5104. * 5) if it's in the wrong runqueue then the migration thread removes
  5105. * it and puts it into the right queue.
  5106. * 6) migration thread up()s the semaphore.
  5107. * 7) we wake up and the migration is done.
  5108. */
  5109. /*
  5110. * Change a given task's CPU affinity. Migrate the thread to a
  5111. * proper CPU and schedule it away if the CPU it's executing on
  5112. * is removed from the allowed bitmask.
  5113. *
  5114. * NOTE: the caller must have a valid reference to the task, the
  5115. * task must not exit() & deallocate itself prematurely. The
  5116. * call is not atomic; no spinlocks may be held.
  5117. */
  5118. int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
  5119. {
  5120. struct migration_req req;
  5121. unsigned long flags;
  5122. struct rq *rq;
  5123. int ret = 0;
  5124. rq = task_rq_lock(p, &flags);
  5125. if (!cpus_intersects(*new_mask, cpu_online_map)) {
  5126. ret = -EINVAL;
  5127. goto out;
  5128. }
  5129. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  5130. !cpus_equal(p->cpus_allowed, *new_mask))) {
  5131. ret = -EINVAL;
  5132. goto out;
  5133. }
  5134. if (p->sched_class->set_cpus_allowed)
  5135. p->sched_class->set_cpus_allowed(p, new_mask);
  5136. else {
  5137. p->cpus_allowed = *new_mask;
  5138. p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
  5139. }
  5140. /* Can the task run on the task's current CPU? If so, we're done */
  5141. if (cpu_isset(task_cpu(p), *new_mask))
  5142. goto out;
  5143. if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
  5144. /* Need help from migration thread: drop lock and wait. */
  5145. task_rq_unlock(rq, &flags);
  5146. wake_up_process(rq->migration_thread);
  5147. wait_for_completion(&req.done);
  5148. tlb_migrate_finish(p->mm);
  5149. return 0;
  5150. }
  5151. out:
  5152. task_rq_unlock(rq, &flags);
  5153. return ret;
  5154. }
  5155. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  5156. /*
  5157. * Move (not current) task off this cpu, onto dest cpu. We're doing
  5158. * this because either it can't run here any more (set_cpus_allowed()
  5159. * away from this CPU, or CPU going down), or because we're
  5160. * attempting to rebalance this task on exec (sched_exec).
  5161. *
  5162. * So we race with normal scheduler movements, but that's OK, as long
  5163. * as the task is no longer on this CPU.
  5164. *
  5165. * Returns non-zero if task was successfully migrated.
  5166. */
  5167. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  5168. {
  5169. struct rq *rq_dest, *rq_src;
  5170. int ret = 0, on_rq;
  5171. if (unlikely(!cpu_active(dest_cpu)))
  5172. return ret;
  5173. rq_src = cpu_rq(src_cpu);
  5174. rq_dest = cpu_rq(dest_cpu);
  5175. double_rq_lock(rq_src, rq_dest);
  5176. /* Already moved. */
  5177. if (task_cpu(p) != src_cpu)
  5178. goto done;
  5179. /* Affinity changed (again). */
  5180. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  5181. goto fail;
  5182. on_rq = p->se.on_rq;
  5183. if (on_rq)
  5184. deactivate_task(rq_src, p, 0);
  5185. set_task_cpu(p, dest_cpu);
  5186. if (on_rq) {
  5187. activate_task(rq_dest, p, 0);
  5188. check_preempt_curr(rq_dest, p, 0);
  5189. }
  5190. done:
  5191. ret = 1;
  5192. fail:
  5193. double_rq_unlock(rq_src, rq_dest);
  5194. return ret;
  5195. }
  5196. /*
  5197. * migration_thread - this is a highprio system thread that performs
  5198. * thread migration by bumping thread off CPU then 'pushing' onto
  5199. * another runqueue.
  5200. */
  5201. static int migration_thread(void *data)
  5202. {
  5203. int cpu = (long)data;
  5204. struct rq *rq;
  5205. rq = cpu_rq(cpu);
  5206. BUG_ON(rq->migration_thread != current);
  5207. set_current_state(TASK_INTERRUPTIBLE);
  5208. while (!kthread_should_stop()) {
  5209. struct migration_req *req;
  5210. struct list_head *head;
  5211. spin_lock_irq(&rq->lock);
  5212. if (cpu_is_offline(cpu)) {
  5213. spin_unlock_irq(&rq->lock);
  5214. goto wait_to_die;
  5215. }
  5216. if (rq->active_balance) {
  5217. active_load_balance(rq, cpu);
  5218. rq->active_balance = 0;
  5219. }
  5220. head = &rq->migration_queue;
  5221. if (list_empty(head)) {
  5222. spin_unlock_irq(&rq->lock);
  5223. schedule();
  5224. set_current_state(TASK_INTERRUPTIBLE);
  5225. continue;
  5226. }
  5227. req = list_entry(head->next, struct migration_req, list);
  5228. list_del_init(head->next);
  5229. spin_unlock(&rq->lock);
  5230. __migrate_task(req->task, cpu, req->dest_cpu);
  5231. local_irq_enable();
  5232. complete(&req->done);
  5233. }
  5234. __set_current_state(TASK_RUNNING);
  5235. return 0;
  5236. wait_to_die:
  5237. /* Wait for kthread_stop */
  5238. set_current_state(TASK_INTERRUPTIBLE);
  5239. while (!kthread_should_stop()) {
  5240. schedule();
  5241. set_current_state(TASK_INTERRUPTIBLE);
  5242. }
  5243. __set_current_state(TASK_RUNNING);
  5244. return 0;
  5245. }
  5246. #ifdef CONFIG_HOTPLUG_CPU
  5247. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  5248. {
  5249. int ret;
  5250. local_irq_disable();
  5251. ret = __migrate_task(p, src_cpu, dest_cpu);
  5252. local_irq_enable();
  5253. return ret;
  5254. }
  5255. /*
  5256. * Figure out where task on dead CPU should go, use force if necessary.
  5257. * NOTE: interrupts should be disabled by the caller
  5258. */
  5259. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  5260. {
  5261. unsigned long flags;
  5262. cpumask_t mask;
  5263. struct rq *rq;
  5264. int dest_cpu;
  5265. do {
  5266. /* On same node? */
  5267. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  5268. cpus_and(mask, mask, p->cpus_allowed);
  5269. dest_cpu = any_online_cpu(mask);
  5270. /* On any allowed CPU? */
  5271. if (dest_cpu >= nr_cpu_ids)
  5272. dest_cpu = any_online_cpu(p->cpus_allowed);
  5273. /* No more Mr. Nice Guy. */
  5274. if (dest_cpu >= nr_cpu_ids) {
  5275. cpumask_t cpus_allowed;
  5276. cpuset_cpus_allowed_locked(p, &cpus_allowed);
  5277. /*
  5278. * Try to stay on the same cpuset, where the
  5279. * current cpuset may be a subset of all cpus.
  5280. * The cpuset_cpus_allowed_locked() variant of
  5281. * cpuset_cpus_allowed() will not block. It must be
  5282. * called within calls to cpuset_lock/cpuset_unlock.
  5283. */
  5284. rq = task_rq_lock(p, &flags);
  5285. p->cpus_allowed = cpus_allowed;
  5286. dest_cpu = any_online_cpu(p->cpus_allowed);
  5287. task_rq_unlock(rq, &flags);
  5288. /*
  5289. * Don't tell them about moving exiting tasks or
  5290. * kernel threads (both mm NULL), since they never
  5291. * leave kernel.
  5292. */
  5293. if (p->mm && printk_ratelimit()) {
  5294. printk(KERN_INFO "process %d (%s) no "
  5295. "longer affine to cpu%d\n",
  5296. task_pid_nr(p), p->comm, dead_cpu);
  5297. }
  5298. }
  5299. } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
  5300. }
  5301. /*
  5302. * While a dead CPU has no uninterruptible tasks queued at this point,
  5303. * it might still have a nonzero ->nr_uninterruptible counter, because
  5304. * for performance reasons the counter is not stricly tracking tasks to
  5305. * their home CPUs. So we just add the counter to another CPU's counter,
  5306. * to keep the global sum constant after CPU-down:
  5307. */
  5308. static void migrate_nr_uninterruptible(struct rq *rq_src)
  5309. {
  5310. struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
  5311. unsigned long flags;
  5312. local_irq_save(flags);
  5313. double_rq_lock(rq_src, rq_dest);
  5314. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  5315. rq_src->nr_uninterruptible = 0;
  5316. double_rq_unlock(rq_src, rq_dest);
  5317. local_irq_restore(flags);
  5318. }
  5319. /* Run through task list and migrate tasks from the dead cpu. */
  5320. static void migrate_live_tasks(int src_cpu)
  5321. {
  5322. struct task_struct *p, *t;
  5323. read_lock(&tasklist_lock);
  5324. do_each_thread(t, p) {
  5325. if (p == current)
  5326. continue;
  5327. if (task_cpu(p) == src_cpu)
  5328. move_task_off_dead_cpu(src_cpu, p);
  5329. } while_each_thread(t, p);
  5330. read_unlock(&tasklist_lock);
  5331. }
  5332. /*
  5333. * Schedules idle task to be the next runnable task on current CPU.
  5334. * It does so by boosting its priority to highest possible.
  5335. * Used by CPU offline code.
  5336. */
  5337. void sched_idle_next(void)
  5338. {
  5339. int this_cpu = smp_processor_id();
  5340. struct rq *rq = cpu_rq(this_cpu);
  5341. struct task_struct *p = rq->idle;
  5342. unsigned long flags;
  5343. /* cpu has to be offline */
  5344. BUG_ON(cpu_online(this_cpu));
  5345. /*
  5346. * Strictly not necessary since rest of the CPUs are stopped by now
  5347. * and interrupts disabled on the current cpu.
  5348. */
  5349. spin_lock_irqsave(&rq->lock, flags);
  5350. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5351. update_rq_clock(rq);
  5352. activate_task(rq, p, 0);
  5353. spin_unlock_irqrestore(&rq->lock, flags);
  5354. }
  5355. /*
  5356. * Ensures that the idle task is using init_mm right before its cpu goes
  5357. * offline.
  5358. */
  5359. void idle_task_exit(void)
  5360. {
  5361. struct mm_struct *mm = current->active_mm;
  5362. BUG_ON(cpu_online(smp_processor_id()));
  5363. if (mm != &init_mm)
  5364. switch_mm(mm, &init_mm, current);
  5365. mmdrop(mm);
  5366. }
  5367. /* called under rq->lock with disabled interrupts */
  5368. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  5369. {
  5370. struct rq *rq = cpu_rq(dead_cpu);
  5371. /* Must be exiting, otherwise would be on tasklist. */
  5372. BUG_ON(!p->exit_state);
  5373. /* Cannot have done final schedule yet: would have vanished. */
  5374. BUG_ON(p->state == TASK_DEAD);
  5375. get_task_struct(p);
  5376. /*
  5377. * Drop lock around migration; if someone else moves it,
  5378. * that's OK. No task can be added to this CPU, so iteration is
  5379. * fine.
  5380. */
  5381. spin_unlock_irq(&rq->lock);
  5382. move_task_off_dead_cpu(dead_cpu, p);
  5383. spin_lock_irq(&rq->lock);
  5384. put_task_struct(p);
  5385. }
  5386. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  5387. static void migrate_dead_tasks(unsigned int dead_cpu)
  5388. {
  5389. struct rq *rq = cpu_rq(dead_cpu);
  5390. struct task_struct *next;
  5391. for ( ; ; ) {
  5392. if (!rq->nr_running)
  5393. break;
  5394. update_rq_clock(rq);
  5395. next = pick_next_task(rq, rq->curr);
  5396. if (!next)
  5397. break;
  5398. next->sched_class->put_prev_task(rq, next);
  5399. migrate_dead(dead_cpu, next);
  5400. }
  5401. }
  5402. #endif /* CONFIG_HOTPLUG_CPU */
  5403. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  5404. static struct ctl_table sd_ctl_dir[] = {
  5405. {
  5406. .procname = "sched_domain",
  5407. .mode = 0555,
  5408. },
  5409. {0, },
  5410. };
  5411. static struct ctl_table sd_ctl_root[] = {
  5412. {
  5413. .ctl_name = CTL_KERN,
  5414. .procname = "kernel",
  5415. .mode = 0555,
  5416. .child = sd_ctl_dir,
  5417. },
  5418. {0, },
  5419. };
  5420. static struct ctl_table *sd_alloc_ctl_entry(int n)
  5421. {
  5422. struct ctl_table *entry =
  5423. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  5424. return entry;
  5425. }
  5426. static void sd_free_ctl_entry(struct ctl_table **tablep)
  5427. {
  5428. struct ctl_table *entry;
  5429. /*
  5430. * In the intermediate directories, both the child directory and
  5431. * procname are dynamically allocated and could fail but the mode
  5432. * will always be set. In the lowest directory the names are
  5433. * static strings and all have proc handlers.
  5434. */
  5435. for (entry = *tablep; entry->mode; entry++) {
  5436. if (entry->child)
  5437. sd_free_ctl_entry(&entry->child);
  5438. if (entry->proc_handler == NULL)
  5439. kfree(entry->procname);
  5440. }
  5441. kfree(*tablep);
  5442. *tablep = NULL;
  5443. }
  5444. static void
  5445. set_table_entry(struct ctl_table *entry,
  5446. const char *procname, void *data, int maxlen,
  5447. mode_t mode, proc_handler *proc_handler)
  5448. {
  5449. entry->procname = procname;
  5450. entry->data = data;
  5451. entry->maxlen = maxlen;
  5452. entry->mode = mode;
  5453. entry->proc_handler = proc_handler;
  5454. }
  5455. static struct ctl_table *
  5456. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  5457. {
  5458. struct ctl_table *table = sd_alloc_ctl_entry(13);
  5459. if (table == NULL)
  5460. return NULL;
  5461. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  5462. sizeof(long), 0644, proc_doulongvec_minmax);
  5463. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  5464. sizeof(long), 0644, proc_doulongvec_minmax);
  5465. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  5466. sizeof(int), 0644, proc_dointvec_minmax);
  5467. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  5468. sizeof(int), 0644, proc_dointvec_minmax);
  5469. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  5470. sizeof(int), 0644, proc_dointvec_minmax);
  5471. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  5472. sizeof(int), 0644, proc_dointvec_minmax);
  5473. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  5474. sizeof(int), 0644, proc_dointvec_minmax);
  5475. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  5476. sizeof(int), 0644, proc_dointvec_minmax);
  5477. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  5478. sizeof(int), 0644, proc_dointvec_minmax);
  5479. set_table_entry(&table[9], "cache_nice_tries",
  5480. &sd->cache_nice_tries,
  5481. sizeof(int), 0644, proc_dointvec_minmax);
  5482. set_table_entry(&table[10], "flags", &sd->flags,
  5483. sizeof(int), 0644, proc_dointvec_minmax);
  5484. set_table_entry(&table[11], "name", sd->name,
  5485. CORENAME_MAX_SIZE, 0444, proc_dostring);
  5486. /* &table[12] is terminator */
  5487. return table;
  5488. }
  5489. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  5490. {
  5491. struct ctl_table *entry, *table;
  5492. struct sched_domain *sd;
  5493. int domain_num = 0, i;
  5494. char buf[32];
  5495. for_each_domain(cpu, sd)
  5496. domain_num++;
  5497. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  5498. if (table == NULL)
  5499. return NULL;
  5500. i = 0;
  5501. for_each_domain(cpu, sd) {
  5502. snprintf(buf, 32, "domain%d", i);
  5503. entry->procname = kstrdup(buf, GFP_KERNEL);
  5504. entry->mode = 0555;
  5505. entry->child = sd_alloc_ctl_domain_table(sd);
  5506. entry++;
  5507. i++;
  5508. }
  5509. return table;
  5510. }
  5511. static struct ctl_table_header *sd_sysctl_header;
  5512. static void register_sched_domain_sysctl(void)
  5513. {
  5514. int i, cpu_num = num_online_cpus();
  5515. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  5516. char buf[32];
  5517. WARN_ON(sd_ctl_dir[0].child);
  5518. sd_ctl_dir[0].child = entry;
  5519. if (entry == NULL)
  5520. return;
  5521. for_each_online_cpu(i) {
  5522. snprintf(buf, 32, "cpu%d", i);
  5523. entry->procname = kstrdup(buf, GFP_KERNEL);
  5524. entry->mode = 0555;
  5525. entry->child = sd_alloc_ctl_cpu_table(i);
  5526. entry++;
  5527. }
  5528. WARN_ON(sd_sysctl_header);
  5529. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  5530. }
  5531. /* may be called multiple times per register */
  5532. static void unregister_sched_domain_sysctl(void)
  5533. {
  5534. if (sd_sysctl_header)
  5535. unregister_sysctl_table(sd_sysctl_header);
  5536. sd_sysctl_header = NULL;
  5537. if (sd_ctl_dir[0].child)
  5538. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  5539. }
  5540. #else
  5541. static void register_sched_domain_sysctl(void)
  5542. {
  5543. }
  5544. static void unregister_sched_domain_sysctl(void)
  5545. {
  5546. }
  5547. #endif
  5548. static void set_rq_online(struct rq *rq)
  5549. {
  5550. if (!rq->online) {
  5551. const struct sched_class *class;
  5552. cpu_set(rq->cpu, rq->rd->online);
  5553. rq->online = 1;
  5554. for_each_class(class) {
  5555. if (class->rq_online)
  5556. class->rq_online(rq);
  5557. }
  5558. }
  5559. }
  5560. static void set_rq_offline(struct rq *rq)
  5561. {
  5562. if (rq->online) {
  5563. const struct sched_class *class;
  5564. for_each_class(class) {
  5565. if (class->rq_offline)
  5566. class->rq_offline(rq);
  5567. }
  5568. cpu_clear(rq->cpu, rq->rd->online);
  5569. rq->online = 0;
  5570. }
  5571. }
  5572. /*
  5573. * migration_call - callback that gets triggered when a CPU is added.
  5574. * Here we can start up the necessary migration thread for the new CPU.
  5575. */
  5576. static int __cpuinit
  5577. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  5578. {
  5579. struct task_struct *p;
  5580. int cpu = (long)hcpu;
  5581. unsigned long flags;
  5582. struct rq *rq;
  5583. switch (action) {
  5584. case CPU_UP_PREPARE:
  5585. case CPU_UP_PREPARE_FROZEN:
  5586. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  5587. if (IS_ERR(p))
  5588. return NOTIFY_BAD;
  5589. kthread_bind(p, cpu);
  5590. /* Must be high prio: stop_machine expects to yield to it. */
  5591. rq = task_rq_lock(p, &flags);
  5592. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5593. task_rq_unlock(rq, &flags);
  5594. cpu_rq(cpu)->migration_thread = p;
  5595. break;
  5596. case CPU_ONLINE:
  5597. case CPU_ONLINE_FROZEN:
  5598. /* Strictly unnecessary, as first user will wake it. */
  5599. wake_up_process(cpu_rq(cpu)->migration_thread);
  5600. /* Update our root-domain */
  5601. rq = cpu_rq(cpu);
  5602. spin_lock_irqsave(&rq->lock, flags);
  5603. if (rq->rd) {
  5604. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  5605. set_rq_online(rq);
  5606. }
  5607. spin_unlock_irqrestore(&rq->lock, flags);
  5608. break;
  5609. #ifdef CONFIG_HOTPLUG_CPU
  5610. case CPU_UP_CANCELED:
  5611. case CPU_UP_CANCELED_FROZEN:
  5612. if (!cpu_rq(cpu)->migration_thread)
  5613. break;
  5614. /* Unbind it from offline cpu so it can run. Fall thru. */
  5615. kthread_bind(cpu_rq(cpu)->migration_thread,
  5616. any_online_cpu(cpu_online_map));
  5617. kthread_stop(cpu_rq(cpu)->migration_thread);
  5618. cpu_rq(cpu)->migration_thread = NULL;
  5619. break;
  5620. case CPU_DEAD:
  5621. case CPU_DEAD_FROZEN:
  5622. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  5623. migrate_live_tasks(cpu);
  5624. rq = cpu_rq(cpu);
  5625. kthread_stop(rq->migration_thread);
  5626. rq->migration_thread = NULL;
  5627. /* Idle task back to normal (off runqueue, low prio) */
  5628. spin_lock_irq(&rq->lock);
  5629. update_rq_clock(rq);
  5630. deactivate_task(rq, rq->idle, 0);
  5631. rq->idle->static_prio = MAX_PRIO;
  5632. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  5633. rq->idle->sched_class = &idle_sched_class;
  5634. migrate_dead_tasks(cpu);
  5635. spin_unlock_irq(&rq->lock);
  5636. cpuset_unlock();
  5637. migrate_nr_uninterruptible(rq);
  5638. BUG_ON(rq->nr_running != 0);
  5639. /*
  5640. * No need to migrate the tasks: it was best-effort if
  5641. * they didn't take sched_hotcpu_mutex. Just wake up
  5642. * the requestors.
  5643. */
  5644. spin_lock_irq(&rq->lock);
  5645. while (!list_empty(&rq->migration_queue)) {
  5646. struct migration_req *req;
  5647. req = list_entry(rq->migration_queue.next,
  5648. struct migration_req, list);
  5649. list_del_init(&req->list);
  5650. spin_unlock_irq(&rq->lock);
  5651. complete(&req->done);
  5652. spin_lock_irq(&rq->lock);
  5653. }
  5654. spin_unlock_irq(&rq->lock);
  5655. break;
  5656. case CPU_DYING:
  5657. case CPU_DYING_FROZEN:
  5658. /* Update our root-domain */
  5659. rq = cpu_rq(cpu);
  5660. spin_lock_irqsave(&rq->lock, flags);
  5661. if (rq->rd) {
  5662. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  5663. set_rq_offline(rq);
  5664. }
  5665. spin_unlock_irqrestore(&rq->lock, flags);
  5666. break;
  5667. #endif
  5668. }
  5669. return NOTIFY_OK;
  5670. }
  5671. /* Register at highest priority so that task migration (migrate_all_tasks)
  5672. * happens before everything else.
  5673. */
  5674. static struct notifier_block __cpuinitdata migration_notifier = {
  5675. .notifier_call = migration_call,
  5676. .priority = 10
  5677. };
  5678. static int __init migration_init(void)
  5679. {
  5680. void *cpu = (void *)(long)smp_processor_id();
  5681. int err;
  5682. /* Start one for the boot CPU: */
  5683. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  5684. BUG_ON(err == NOTIFY_BAD);
  5685. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  5686. register_cpu_notifier(&migration_notifier);
  5687. return err;
  5688. }
  5689. early_initcall(migration_init);
  5690. #endif
  5691. #ifdef CONFIG_SMP
  5692. #ifdef CONFIG_SCHED_DEBUG
  5693. static inline const char *sd_level_to_string(enum sched_domain_level lvl)
  5694. {
  5695. switch (lvl) {
  5696. case SD_LV_NONE:
  5697. return "NONE";
  5698. case SD_LV_SIBLING:
  5699. return "SIBLING";
  5700. case SD_LV_MC:
  5701. return "MC";
  5702. case SD_LV_CPU:
  5703. return "CPU";
  5704. case SD_LV_NODE:
  5705. return "NODE";
  5706. case SD_LV_ALLNODES:
  5707. return "ALLNODES";
  5708. case SD_LV_MAX:
  5709. return "MAX";
  5710. }
  5711. return "MAX";
  5712. }
  5713. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  5714. cpumask_t *groupmask)
  5715. {
  5716. struct sched_group *group = sd->groups;
  5717. char str[256];
  5718. cpulist_scnprintf(str, sizeof(str), sd->span);
  5719. cpus_clear(*groupmask);
  5720. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  5721. if (!(sd->flags & SD_LOAD_BALANCE)) {
  5722. printk("does not load-balance\n");
  5723. if (sd->parent)
  5724. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  5725. " has parent");
  5726. return -1;
  5727. }
  5728. printk(KERN_CONT "span %s level %s\n",
  5729. str, sd_level_to_string(sd->level));
  5730. if (!cpu_isset(cpu, sd->span)) {
  5731. printk(KERN_ERR "ERROR: domain->span does not contain "
  5732. "CPU%d\n", cpu);
  5733. }
  5734. if (!cpu_isset(cpu, group->cpumask)) {
  5735. printk(KERN_ERR "ERROR: domain->groups does not contain"
  5736. " CPU%d\n", cpu);
  5737. }
  5738. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  5739. do {
  5740. if (!group) {
  5741. printk("\n");
  5742. printk(KERN_ERR "ERROR: group is NULL\n");
  5743. break;
  5744. }
  5745. if (!group->__cpu_power) {
  5746. printk(KERN_CONT "\n");
  5747. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5748. "set\n");
  5749. break;
  5750. }
  5751. if (!cpus_weight(group->cpumask)) {
  5752. printk(KERN_CONT "\n");
  5753. printk(KERN_ERR "ERROR: empty group\n");
  5754. break;
  5755. }
  5756. if (cpus_intersects(*groupmask, group->cpumask)) {
  5757. printk(KERN_CONT "\n");
  5758. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5759. break;
  5760. }
  5761. cpus_or(*groupmask, *groupmask, group->cpumask);
  5762. cpulist_scnprintf(str, sizeof(str), group->cpumask);
  5763. printk(KERN_CONT " %s", str);
  5764. group = group->next;
  5765. } while (group != sd->groups);
  5766. printk(KERN_CONT "\n");
  5767. if (!cpus_equal(sd->span, *groupmask))
  5768. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5769. if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
  5770. printk(KERN_ERR "ERROR: parent span is not a superset "
  5771. "of domain->span\n");
  5772. return 0;
  5773. }
  5774. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5775. {
  5776. cpumask_t *groupmask;
  5777. int level = 0;
  5778. if (!sd) {
  5779. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5780. return;
  5781. }
  5782. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5783. groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  5784. if (!groupmask) {
  5785. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  5786. return;
  5787. }
  5788. for (;;) {
  5789. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  5790. break;
  5791. level++;
  5792. sd = sd->parent;
  5793. if (!sd)
  5794. break;
  5795. }
  5796. kfree(groupmask);
  5797. }
  5798. #else /* !CONFIG_SCHED_DEBUG */
  5799. # define sched_domain_debug(sd, cpu) do { } while (0)
  5800. #endif /* CONFIG_SCHED_DEBUG */
  5801. static int sd_degenerate(struct sched_domain *sd)
  5802. {
  5803. if (cpus_weight(sd->span) == 1)
  5804. return 1;
  5805. /* Following flags need at least 2 groups */
  5806. if (sd->flags & (SD_LOAD_BALANCE |
  5807. SD_BALANCE_NEWIDLE |
  5808. SD_BALANCE_FORK |
  5809. SD_BALANCE_EXEC |
  5810. SD_SHARE_CPUPOWER |
  5811. SD_SHARE_PKG_RESOURCES)) {
  5812. if (sd->groups != sd->groups->next)
  5813. return 0;
  5814. }
  5815. /* Following flags don't use groups */
  5816. if (sd->flags & (SD_WAKE_IDLE |
  5817. SD_WAKE_AFFINE |
  5818. SD_WAKE_BALANCE))
  5819. return 0;
  5820. return 1;
  5821. }
  5822. static int
  5823. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5824. {
  5825. unsigned long cflags = sd->flags, pflags = parent->flags;
  5826. if (sd_degenerate(parent))
  5827. return 1;
  5828. if (!cpus_equal(sd->span, parent->span))
  5829. return 0;
  5830. /* Does parent contain flags not in child? */
  5831. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  5832. if (cflags & SD_WAKE_AFFINE)
  5833. pflags &= ~SD_WAKE_BALANCE;
  5834. /* Flags needing groups don't count if only 1 group in parent */
  5835. if (parent->groups == parent->groups->next) {
  5836. pflags &= ~(SD_LOAD_BALANCE |
  5837. SD_BALANCE_NEWIDLE |
  5838. SD_BALANCE_FORK |
  5839. SD_BALANCE_EXEC |
  5840. SD_SHARE_CPUPOWER |
  5841. SD_SHARE_PKG_RESOURCES);
  5842. }
  5843. if (~cflags & pflags)
  5844. return 0;
  5845. return 1;
  5846. }
  5847. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5848. {
  5849. unsigned long flags;
  5850. spin_lock_irqsave(&rq->lock, flags);
  5851. if (rq->rd) {
  5852. struct root_domain *old_rd = rq->rd;
  5853. if (cpu_isset(rq->cpu, old_rd->online))
  5854. set_rq_offline(rq);
  5855. cpu_clear(rq->cpu, old_rd->span);
  5856. if (atomic_dec_and_test(&old_rd->refcount))
  5857. kfree(old_rd);
  5858. }
  5859. atomic_inc(&rd->refcount);
  5860. rq->rd = rd;
  5861. cpu_set(rq->cpu, rd->span);
  5862. if (cpu_isset(rq->cpu, cpu_online_map))
  5863. set_rq_online(rq);
  5864. spin_unlock_irqrestore(&rq->lock, flags);
  5865. }
  5866. static void init_rootdomain(struct root_domain *rd)
  5867. {
  5868. memset(rd, 0, sizeof(*rd));
  5869. cpus_clear(rd->span);
  5870. cpus_clear(rd->online);
  5871. cpupri_init(&rd->cpupri);
  5872. }
  5873. static void init_defrootdomain(void)
  5874. {
  5875. init_rootdomain(&def_root_domain);
  5876. atomic_set(&def_root_domain.refcount, 1);
  5877. }
  5878. static struct root_domain *alloc_rootdomain(void)
  5879. {
  5880. struct root_domain *rd;
  5881. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5882. if (!rd)
  5883. return NULL;
  5884. init_rootdomain(rd);
  5885. return rd;
  5886. }
  5887. /*
  5888. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5889. * hold the hotplug lock.
  5890. */
  5891. static void
  5892. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5893. {
  5894. struct rq *rq = cpu_rq(cpu);
  5895. struct sched_domain *tmp;
  5896. /* Remove the sched domains which do not contribute to scheduling. */
  5897. for (tmp = sd; tmp; ) {
  5898. struct sched_domain *parent = tmp->parent;
  5899. if (!parent)
  5900. break;
  5901. if (sd_parent_degenerate(tmp, parent)) {
  5902. tmp->parent = parent->parent;
  5903. if (parent->parent)
  5904. parent->parent->child = tmp;
  5905. } else
  5906. tmp = tmp->parent;
  5907. }
  5908. if (sd && sd_degenerate(sd)) {
  5909. sd = sd->parent;
  5910. if (sd)
  5911. sd->child = NULL;
  5912. }
  5913. sched_domain_debug(sd, cpu);
  5914. rq_attach_root(rq, rd);
  5915. rcu_assign_pointer(rq->sd, sd);
  5916. }
  5917. /* cpus with isolated domains */
  5918. static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
  5919. /* Setup the mask of cpus configured for isolated domains */
  5920. static int __init isolated_cpu_setup(char *str)
  5921. {
  5922. static int __initdata ints[NR_CPUS];
  5923. int i;
  5924. str = get_options(str, ARRAY_SIZE(ints), ints);
  5925. cpus_clear(cpu_isolated_map);
  5926. for (i = 1; i <= ints[0]; i++)
  5927. if (ints[i] < NR_CPUS)
  5928. cpu_set(ints[i], cpu_isolated_map);
  5929. return 1;
  5930. }
  5931. __setup("isolcpus=", isolated_cpu_setup);
  5932. /*
  5933. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5934. * to a function which identifies what group(along with sched group) a CPU
  5935. * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
  5936. * (due to the fact that we keep track of groups covered with a cpumask_t).
  5937. *
  5938. * init_sched_build_groups will build a circular linked list of the groups
  5939. * covered by the given span, and will set each group's ->cpumask correctly,
  5940. * and ->cpu_power to 0.
  5941. */
  5942. static void
  5943. init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
  5944. int (*group_fn)(int cpu, const cpumask_t *cpu_map,
  5945. struct sched_group **sg,
  5946. cpumask_t *tmpmask),
  5947. cpumask_t *covered, cpumask_t *tmpmask)
  5948. {
  5949. struct sched_group *first = NULL, *last = NULL;
  5950. int i;
  5951. cpus_clear(*covered);
  5952. for_each_cpu_mask_nr(i, *span) {
  5953. struct sched_group *sg;
  5954. int group = group_fn(i, cpu_map, &sg, tmpmask);
  5955. int j;
  5956. if (cpu_isset(i, *covered))
  5957. continue;
  5958. cpus_clear(sg->cpumask);
  5959. sg->__cpu_power = 0;
  5960. for_each_cpu_mask_nr(j, *span) {
  5961. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  5962. continue;
  5963. cpu_set(j, *covered);
  5964. cpu_set(j, sg->cpumask);
  5965. }
  5966. if (!first)
  5967. first = sg;
  5968. if (last)
  5969. last->next = sg;
  5970. last = sg;
  5971. }
  5972. last->next = first;
  5973. }
  5974. #define SD_NODES_PER_DOMAIN 16
  5975. #ifdef CONFIG_NUMA
  5976. /**
  5977. * find_next_best_node - find the next node to include in a sched_domain
  5978. * @node: node whose sched_domain we're building
  5979. * @used_nodes: nodes already in the sched_domain
  5980. *
  5981. * Find the next node to include in a given scheduling domain. Simply
  5982. * finds the closest node not already in the @used_nodes map.
  5983. *
  5984. * Should use nodemask_t.
  5985. */
  5986. static int find_next_best_node(int node, nodemask_t *used_nodes)
  5987. {
  5988. int i, n, val, min_val, best_node = 0;
  5989. min_val = INT_MAX;
  5990. for (i = 0; i < nr_node_ids; i++) {
  5991. /* Start at @node */
  5992. n = (node + i) % nr_node_ids;
  5993. if (!nr_cpus_node(n))
  5994. continue;
  5995. /* Skip already used nodes */
  5996. if (node_isset(n, *used_nodes))
  5997. continue;
  5998. /* Simple min distance search */
  5999. val = node_distance(node, n);
  6000. if (val < min_val) {
  6001. min_val = val;
  6002. best_node = n;
  6003. }
  6004. }
  6005. node_set(best_node, *used_nodes);
  6006. return best_node;
  6007. }
  6008. /**
  6009. * sched_domain_node_span - get a cpumask for a node's sched_domain
  6010. * @node: node whose cpumask we're constructing
  6011. * @span: resulting cpumask
  6012. *
  6013. * Given a node, construct a good cpumask for its sched_domain to span. It
  6014. * should be one that prevents unnecessary balancing, but also spreads tasks
  6015. * out optimally.
  6016. */
  6017. static void sched_domain_node_span(int node, cpumask_t *span)
  6018. {
  6019. nodemask_t used_nodes;
  6020. node_to_cpumask_ptr(nodemask, node);
  6021. int i;
  6022. cpus_clear(*span);
  6023. nodes_clear(used_nodes);
  6024. cpus_or(*span, *span, *nodemask);
  6025. node_set(node, used_nodes);
  6026. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  6027. int next_node = find_next_best_node(node, &used_nodes);
  6028. node_to_cpumask_ptr_next(nodemask, next_node);
  6029. cpus_or(*span, *span, *nodemask);
  6030. }
  6031. }
  6032. #endif /* CONFIG_NUMA */
  6033. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  6034. /*
  6035. * SMT sched-domains:
  6036. */
  6037. #ifdef CONFIG_SCHED_SMT
  6038. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  6039. static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
  6040. static int
  6041. cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  6042. cpumask_t *unused)
  6043. {
  6044. if (sg)
  6045. *sg = &per_cpu(sched_group_cpus, cpu);
  6046. return cpu;
  6047. }
  6048. #endif /* CONFIG_SCHED_SMT */
  6049. /*
  6050. * multi-core sched-domains:
  6051. */
  6052. #ifdef CONFIG_SCHED_MC
  6053. static DEFINE_PER_CPU(struct sched_domain, core_domains);
  6054. static DEFINE_PER_CPU(struct sched_group, sched_group_core);
  6055. #endif /* CONFIG_SCHED_MC */
  6056. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  6057. static int
  6058. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  6059. cpumask_t *mask)
  6060. {
  6061. int group;
  6062. *mask = per_cpu(cpu_sibling_map, cpu);
  6063. cpus_and(*mask, *mask, *cpu_map);
  6064. group = first_cpu(*mask);
  6065. if (sg)
  6066. *sg = &per_cpu(sched_group_core, group);
  6067. return group;
  6068. }
  6069. #elif defined(CONFIG_SCHED_MC)
  6070. static int
  6071. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  6072. cpumask_t *unused)
  6073. {
  6074. if (sg)
  6075. *sg = &per_cpu(sched_group_core, cpu);
  6076. return cpu;
  6077. }
  6078. #endif
  6079. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  6080. static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
  6081. static int
  6082. cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  6083. cpumask_t *mask)
  6084. {
  6085. int group;
  6086. #ifdef CONFIG_SCHED_MC
  6087. *mask = cpu_coregroup_map(cpu);
  6088. cpus_and(*mask, *mask, *cpu_map);
  6089. group = first_cpu(*mask);
  6090. #elif defined(CONFIG_SCHED_SMT)
  6091. *mask = per_cpu(cpu_sibling_map, cpu);
  6092. cpus_and(*mask, *mask, *cpu_map);
  6093. group = first_cpu(*mask);
  6094. #else
  6095. group = cpu;
  6096. #endif
  6097. if (sg)
  6098. *sg = &per_cpu(sched_group_phys, group);
  6099. return group;
  6100. }
  6101. #ifdef CONFIG_NUMA
  6102. /*
  6103. * The init_sched_build_groups can't handle what we want to do with node
  6104. * groups, so roll our own. Now each node has its own list of groups which
  6105. * gets dynamically allocated.
  6106. */
  6107. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  6108. static struct sched_group ***sched_group_nodes_bycpu;
  6109. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  6110. static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
  6111. static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
  6112. struct sched_group **sg, cpumask_t *nodemask)
  6113. {
  6114. int group;
  6115. *nodemask = node_to_cpumask(cpu_to_node(cpu));
  6116. cpus_and(*nodemask, *nodemask, *cpu_map);
  6117. group = first_cpu(*nodemask);
  6118. if (sg)
  6119. *sg = &per_cpu(sched_group_allnodes, group);
  6120. return group;
  6121. }
  6122. static void init_numa_sched_groups_power(struct sched_group *group_head)
  6123. {
  6124. struct sched_group *sg = group_head;
  6125. int j;
  6126. if (!sg)
  6127. return;
  6128. do {
  6129. for_each_cpu_mask_nr(j, sg->cpumask) {
  6130. struct sched_domain *sd;
  6131. sd = &per_cpu(phys_domains, j);
  6132. if (j != first_cpu(sd->groups->cpumask)) {
  6133. /*
  6134. * Only add "power" once for each
  6135. * physical package.
  6136. */
  6137. continue;
  6138. }
  6139. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  6140. }
  6141. sg = sg->next;
  6142. } while (sg != group_head);
  6143. }
  6144. #endif /* CONFIG_NUMA */
  6145. #ifdef CONFIG_NUMA
  6146. /* Free memory allocated for various sched_group structures */
  6147. static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
  6148. {
  6149. int cpu, i;
  6150. for_each_cpu_mask_nr(cpu, *cpu_map) {
  6151. struct sched_group **sched_group_nodes
  6152. = sched_group_nodes_bycpu[cpu];
  6153. if (!sched_group_nodes)
  6154. continue;
  6155. for (i = 0; i < nr_node_ids; i++) {
  6156. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  6157. *nodemask = node_to_cpumask(i);
  6158. cpus_and(*nodemask, *nodemask, *cpu_map);
  6159. if (cpus_empty(*nodemask))
  6160. continue;
  6161. if (sg == NULL)
  6162. continue;
  6163. sg = sg->next;
  6164. next_sg:
  6165. oldsg = sg;
  6166. sg = sg->next;
  6167. kfree(oldsg);
  6168. if (oldsg != sched_group_nodes[i])
  6169. goto next_sg;
  6170. }
  6171. kfree(sched_group_nodes);
  6172. sched_group_nodes_bycpu[cpu] = NULL;
  6173. }
  6174. }
  6175. #else /* !CONFIG_NUMA */
  6176. static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
  6177. {
  6178. }
  6179. #endif /* CONFIG_NUMA */
  6180. /*
  6181. * Initialize sched groups cpu_power.
  6182. *
  6183. * cpu_power indicates the capacity of sched group, which is used while
  6184. * distributing the load between different sched groups in a sched domain.
  6185. * Typically cpu_power for all the groups in a sched domain will be same unless
  6186. * there are asymmetries in the topology. If there are asymmetries, group
  6187. * having more cpu_power will pickup more load compared to the group having
  6188. * less cpu_power.
  6189. *
  6190. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  6191. * the maximum number of tasks a group can handle in the presence of other idle
  6192. * or lightly loaded groups in the same sched domain.
  6193. */
  6194. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  6195. {
  6196. struct sched_domain *child;
  6197. struct sched_group *group;
  6198. WARN_ON(!sd || !sd->groups);
  6199. if (cpu != first_cpu(sd->groups->cpumask))
  6200. return;
  6201. child = sd->child;
  6202. sd->groups->__cpu_power = 0;
  6203. /*
  6204. * For perf policy, if the groups in child domain share resources
  6205. * (for example cores sharing some portions of the cache hierarchy
  6206. * or SMT), then set this domain groups cpu_power such that each group
  6207. * can handle only one task, when there are other idle groups in the
  6208. * same sched domain.
  6209. */
  6210. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  6211. (child->flags &
  6212. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  6213. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  6214. return;
  6215. }
  6216. /*
  6217. * add cpu_power of each child group to this groups cpu_power
  6218. */
  6219. group = child->groups;
  6220. do {
  6221. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  6222. group = group->next;
  6223. } while (group != child->groups);
  6224. }
  6225. /*
  6226. * Initializers for schedule domains
  6227. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  6228. */
  6229. #ifdef CONFIG_SCHED_DEBUG
  6230. # define SD_INIT_NAME(sd, type) sd->name = #type
  6231. #else
  6232. # define SD_INIT_NAME(sd, type) do { } while (0)
  6233. #endif
  6234. #define SD_INIT(sd, type) sd_init_##type(sd)
  6235. #define SD_INIT_FUNC(type) \
  6236. static noinline void sd_init_##type(struct sched_domain *sd) \
  6237. { \
  6238. memset(sd, 0, sizeof(*sd)); \
  6239. *sd = SD_##type##_INIT; \
  6240. sd->level = SD_LV_##type; \
  6241. SD_INIT_NAME(sd, type); \
  6242. }
  6243. SD_INIT_FUNC(CPU)
  6244. #ifdef CONFIG_NUMA
  6245. SD_INIT_FUNC(ALLNODES)
  6246. SD_INIT_FUNC(NODE)
  6247. #endif
  6248. #ifdef CONFIG_SCHED_SMT
  6249. SD_INIT_FUNC(SIBLING)
  6250. #endif
  6251. #ifdef CONFIG_SCHED_MC
  6252. SD_INIT_FUNC(MC)
  6253. #endif
  6254. /*
  6255. * To minimize stack usage kmalloc room for cpumasks and share the
  6256. * space as the usage in build_sched_domains() dictates. Used only
  6257. * if the amount of space is significant.
  6258. */
  6259. struct allmasks {
  6260. cpumask_t tmpmask; /* make this one first */
  6261. union {
  6262. cpumask_t nodemask;
  6263. cpumask_t this_sibling_map;
  6264. cpumask_t this_core_map;
  6265. };
  6266. cpumask_t send_covered;
  6267. #ifdef CONFIG_NUMA
  6268. cpumask_t domainspan;
  6269. cpumask_t covered;
  6270. cpumask_t notcovered;
  6271. #endif
  6272. };
  6273. #if NR_CPUS > 128
  6274. #define SCHED_CPUMASK_ALLOC 1
  6275. #define SCHED_CPUMASK_FREE(v) kfree(v)
  6276. #define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
  6277. #else
  6278. #define SCHED_CPUMASK_ALLOC 0
  6279. #define SCHED_CPUMASK_FREE(v)
  6280. #define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
  6281. #endif
  6282. #define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
  6283. ((unsigned long)(a) + offsetof(struct allmasks, v))
  6284. static int default_relax_domain_level = -1;
  6285. static int __init setup_relax_domain_level(char *str)
  6286. {
  6287. unsigned long val;
  6288. val = simple_strtoul(str, NULL, 0);
  6289. if (val < SD_LV_MAX)
  6290. default_relax_domain_level = val;
  6291. return 1;
  6292. }
  6293. __setup("relax_domain_level=", setup_relax_domain_level);
  6294. static void set_domain_attribute(struct sched_domain *sd,
  6295. struct sched_domain_attr *attr)
  6296. {
  6297. int request;
  6298. if (!attr || attr->relax_domain_level < 0) {
  6299. if (default_relax_domain_level < 0)
  6300. return;
  6301. else
  6302. request = default_relax_domain_level;
  6303. } else
  6304. request = attr->relax_domain_level;
  6305. if (request < sd->level) {
  6306. /* turn off idle balance on this domain */
  6307. sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
  6308. } else {
  6309. /* turn on idle balance on this domain */
  6310. sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
  6311. }
  6312. }
  6313. /*
  6314. * Build sched domains for a given set of cpus and attach the sched domains
  6315. * to the individual cpus
  6316. */
  6317. static int __build_sched_domains(const cpumask_t *cpu_map,
  6318. struct sched_domain_attr *attr)
  6319. {
  6320. int i;
  6321. struct root_domain *rd;
  6322. SCHED_CPUMASK_DECLARE(allmasks);
  6323. cpumask_t *tmpmask;
  6324. #ifdef CONFIG_NUMA
  6325. struct sched_group **sched_group_nodes = NULL;
  6326. int sd_allnodes = 0;
  6327. /*
  6328. * Allocate the per-node list of sched groups
  6329. */
  6330. sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
  6331. GFP_KERNEL);
  6332. if (!sched_group_nodes) {
  6333. printk(KERN_WARNING "Can not alloc sched group node list\n");
  6334. return -ENOMEM;
  6335. }
  6336. #endif
  6337. rd = alloc_rootdomain();
  6338. if (!rd) {
  6339. printk(KERN_WARNING "Cannot alloc root domain\n");
  6340. #ifdef CONFIG_NUMA
  6341. kfree(sched_group_nodes);
  6342. #endif
  6343. return -ENOMEM;
  6344. }
  6345. #if SCHED_CPUMASK_ALLOC
  6346. /* get space for all scratch cpumask variables */
  6347. allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
  6348. if (!allmasks) {
  6349. printk(KERN_WARNING "Cannot alloc cpumask array\n");
  6350. kfree(rd);
  6351. #ifdef CONFIG_NUMA
  6352. kfree(sched_group_nodes);
  6353. #endif
  6354. return -ENOMEM;
  6355. }
  6356. #endif
  6357. tmpmask = (cpumask_t *)allmasks;
  6358. #ifdef CONFIG_NUMA
  6359. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  6360. #endif
  6361. /*
  6362. * Set up domains for cpus specified by the cpu_map.
  6363. */
  6364. for_each_cpu_mask_nr(i, *cpu_map) {
  6365. struct sched_domain *sd = NULL, *p;
  6366. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6367. *nodemask = node_to_cpumask(cpu_to_node(i));
  6368. cpus_and(*nodemask, *nodemask, *cpu_map);
  6369. #ifdef CONFIG_NUMA
  6370. if (cpus_weight(*cpu_map) >
  6371. SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
  6372. sd = &per_cpu(allnodes_domains, i);
  6373. SD_INIT(sd, ALLNODES);
  6374. set_domain_attribute(sd, attr);
  6375. sd->span = *cpu_map;
  6376. cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
  6377. p = sd;
  6378. sd_allnodes = 1;
  6379. } else
  6380. p = NULL;
  6381. sd = &per_cpu(node_domains, i);
  6382. SD_INIT(sd, NODE);
  6383. set_domain_attribute(sd, attr);
  6384. sched_domain_node_span(cpu_to_node(i), &sd->span);
  6385. sd->parent = p;
  6386. if (p)
  6387. p->child = sd;
  6388. cpus_and(sd->span, sd->span, *cpu_map);
  6389. #endif
  6390. p = sd;
  6391. sd = &per_cpu(phys_domains, i);
  6392. SD_INIT(sd, CPU);
  6393. set_domain_attribute(sd, attr);
  6394. sd->span = *nodemask;
  6395. sd->parent = p;
  6396. if (p)
  6397. p->child = sd;
  6398. cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
  6399. #ifdef CONFIG_SCHED_MC
  6400. p = sd;
  6401. sd = &per_cpu(core_domains, i);
  6402. SD_INIT(sd, MC);
  6403. set_domain_attribute(sd, attr);
  6404. sd->span = cpu_coregroup_map(i);
  6405. cpus_and(sd->span, sd->span, *cpu_map);
  6406. sd->parent = p;
  6407. p->child = sd;
  6408. cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
  6409. #endif
  6410. #ifdef CONFIG_SCHED_SMT
  6411. p = sd;
  6412. sd = &per_cpu(cpu_domains, i);
  6413. SD_INIT(sd, SIBLING);
  6414. set_domain_attribute(sd, attr);
  6415. sd->span = per_cpu(cpu_sibling_map, i);
  6416. cpus_and(sd->span, sd->span, *cpu_map);
  6417. sd->parent = p;
  6418. p->child = sd;
  6419. cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
  6420. #endif
  6421. }
  6422. #ifdef CONFIG_SCHED_SMT
  6423. /* Set up CPU (sibling) groups */
  6424. for_each_cpu_mask_nr(i, *cpu_map) {
  6425. SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
  6426. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6427. *this_sibling_map = per_cpu(cpu_sibling_map, i);
  6428. cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
  6429. if (i != first_cpu(*this_sibling_map))
  6430. continue;
  6431. init_sched_build_groups(this_sibling_map, cpu_map,
  6432. &cpu_to_cpu_group,
  6433. send_covered, tmpmask);
  6434. }
  6435. #endif
  6436. #ifdef CONFIG_SCHED_MC
  6437. /* Set up multi-core groups */
  6438. for_each_cpu_mask_nr(i, *cpu_map) {
  6439. SCHED_CPUMASK_VAR(this_core_map, allmasks);
  6440. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6441. *this_core_map = cpu_coregroup_map(i);
  6442. cpus_and(*this_core_map, *this_core_map, *cpu_map);
  6443. if (i != first_cpu(*this_core_map))
  6444. continue;
  6445. init_sched_build_groups(this_core_map, cpu_map,
  6446. &cpu_to_core_group,
  6447. send_covered, tmpmask);
  6448. }
  6449. #endif
  6450. /* Set up physical groups */
  6451. for (i = 0; i < nr_node_ids; i++) {
  6452. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6453. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6454. *nodemask = node_to_cpumask(i);
  6455. cpus_and(*nodemask, *nodemask, *cpu_map);
  6456. if (cpus_empty(*nodemask))
  6457. continue;
  6458. init_sched_build_groups(nodemask, cpu_map,
  6459. &cpu_to_phys_group,
  6460. send_covered, tmpmask);
  6461. }
  6462. #ifdef CONFIG_NUMA
  6463. /* Set up node groups */
  6464. if (sd_allnodes) {
  6465. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6466. init_sched_build_groups(cpu_map, cpu_map,
  6467. &cpu_to_allnodes_group,
  6468. send_covered, tmpmask);
  6469. }
  6470. for (i = 0; i < nr_node_ids; i++) {
  6471. /* Set up node groups */
  6472. struct sched_group *sg, *prev;
  6473. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6474. SCHED_CPUMASK_VAR(domainspan, allmasks);
  6475. SCHED_CPUMASK_VAR(covered, allmasks);
  6476. int j;
  6477. *nodemask = node_to_cpumask(i);
  6478. cpus_clear(*covered);
  6479. cpus_and(*nodemask, *nodemask, *cpu_map);
  6480. if (cpus_empty(*nodemask)) {
  6481. sched_group_nodes[i] = NULL;
  6482. continue;
  6483. }
  6484. sched_domain_node_span(i, domainspan);
  6485. cpus_and(*domainspan, *domainspan, *cpu_map);
  6486. sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
  6487. if (!sg) {
  6488. printk(KERN_WARNING "Can not alloc domain group for "
  6489. "node %d\n", i);
  6490. goto error;
  6491. }
  6492. sched_group_nodes[i] = sg;
  6493. for_each_cpu_mask_nr(j, *nodemask) {
  6494. struct sched_domain *sd;
  6495. sd = &per_cpu(node_domains, j);
  6496. sd->groups = sg;
  6497. }
  6498. sg->__cpu_power = 0;
  6499. sg->cpumask = *nodemask;
  6500. sg->next = sg;
  6501. cpus_or(*covered, *covered, *nodemask);
  6502. prev = sg;
  6503. for (j = 0; j < nr_node_ids; j++) {
  6504. SCHED_CPUMASK_VAR(notcovered, allmasks);
  6505. int n = (i + j) % nr_node_ids;
  6506. node_to_cpumask_ptr(pnodemask, n);
  6507. cpus_complement(*notcovered, *covered);
  6508. cpus_and(*tmpmask, *notcovered, *cpu_map);
  6509. cpus_and(*tmpmask, *tmpmask, *domainspan);
  6510. if (cpus_empty(*tmpmask))
  6511. break;
  6512. cpus_and(*tmpmask, *tmpmask, *pnodemask);
  6513. if (cpus_empty(*tmpmask))
  6514. continue;
  6515. sg = kmalloc_node(sizeof(struct sched_group),
  6516. GFP_KERNEL, i);
  6517. if (!sg) {
  6518. printk(KERN_WARNING
  6519. "Can not alloc domain group for node %d\n", j);
  6520. goto error;
  6521. }
  6522. sg->__cpu_power = 0;
  6523. sg->cpumask = *tmpmask;
  6524. sg->next = prev->next;
  6525. cpus_or(*covered, *covered, *tmpmask);
  6526. prev->next = sg;
  6527. prev = sg;
  6528. }
  6529. }
  6530. #endif
  6531. /* Calculate CPU power for physical packages and nodes */
  6532. #ifdef CONFIG_SCHED_SMT
  6533. for_each_cpu_mask_nr(i, *cpu_map) {
  6534. struct sched_domain *sd = &per_cpu(cpu_domains, i);
  6535. init_sched_groups_power(i, sd);
  6536. }
  6537. #endif
  6538. #ifdef CONFIG_SCHED_MC
  6539. for_each_cpu_mask_nr(i, *cpu_map) {
  6540. struct sched_domain *sd = &per_cpu(core_domains, i);
  6541. init_sched_groups_power(i, sd);
  6542. }
  6543. #endif
  6544. for_each_cpu_mask_nr(i, *cpu_map) {
  6545. struct sched_domain *sd = &per_cpu(phys_domains, i);
  6546. init_sched_groups_power(i, sd);
  6547. }
  6548. #ifdef CONFIG_NUMA
  6549. for (i = 0; i < nr_node_ids; i++)
  6550. init_numa_sched_groups_power(sched_group_nodes[i]);
  6551. if (sd_allnodes) {
  6552. struct sched_group *sg;
  6553. cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
  6554. tmpmask);
  6555. init_numa_sched_groups_power(sg);
  6556. }
  6557. #endif
  6558. /* Attach the domains */
  6559. for_each_cpu_mask_nr(i, *cpu_map) {
  6560. struct sched_domain *sd;
  6561. #ifdef CONFIG_SCHED_SMT
  6562. sd = &per_cpu(cpu_domains, i);
  6563. #elif defined(CONFIG_SCHED_MC)
  6564. sd = &per_cpu(core_domains, i);
  6565. #else
  6566. sd = &per_cpu(phys_domains, i);
  6567. #endif
  6568. cpu_attach_domain(sd, rd, i);
  6569. }
  6570. SCHED_CPUMASK_FREE((void *)allmasks);
  6571. return 0;
  6572. #ifdef CONFIG_NUMA
  6573. error:
  6574. free_sched_groups(cpu_map, tmpmask);
  6575. SCHED_CPUMASK_FREE((void *)allmasks);
  6576. kfree(rd);
  6577. return -ENOMEM;
  6578. #endif
  6579. }
  6580. static int build_sched_domains(const cpumask_t *cpu_map)
  6581. {
  6582. return __build_sched_domains(cpu_map, NULL);
  6583. }
  6584. static cpumask_t *doms_cur; /* current sched domains */
  6585. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  6586. static struct sched_domain_attr *dattr_cur;
  6587. /* attribues of custom domains in 'doms_cur' */
  6588. /*
  6589. * Special case: If a kmalloc of a doms_cur partition (array of
  6590. * cpumask_t) fails, then fallback to a single sched domain,
  6591. * as determined by the single cpumask_t fallback_doms.
  6592. */
  6593. static cpumask_t fallback_doms;
  6594. void __attribute__((weak)) arch_update_cpu_topology(void)
  6595. {
  6596. }
  6597. /*
  6598. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  6599. * For now this just excludes isolated cpus, but could be used to
  6600. * exclude other special cases in the future.
  6601. */
  6602. static int arch_init_sched_domains(const cpumask_t *cpu_map)
  6603. {
  6604. int err;
  6605. arch_update_cpu_topology();
  6606. ndoms_cur = 1;
  6607. doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  6608. if (!doms_cur)
  6609. doms_cur = &fallback_doms;
  6610. cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
  6611. dattr_cur = NULL;
  6612. err = build_sched_domains(doms_cur);
  6613. register_sched_domain_sysctl();
  6614. return err;
  6615. }
  6616. static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
  6617. cpumask_t *tmpmask)
  6618. {
  6619. free_sched_groups(cpu_map, tmpmask);
  6620. }
  6621. /*
  6622. * Detach sched domains from a group of cpus specified in cpu_map
  6623. * These cpus will now be attached to the NULL domain
  6624. */
  6625. static void detach_destroy_domains(const cpumask_t *cpu_map)
  6626. {
  6627. cpumask_t tmpmask;
  6628. int i;
  6629. unregister_sched_domain_sysctl();
  6630. for_each_cpu_mask_nr(i, *cpu_map)
  6631. cpu_attach_domain(NULL, &def_root_domain, i);
  6632. synchronize_sched();
  6633. arch_destroy_sched_domains(cpu_map, &tmpmask);
  6634. }
  6635. /* handle null as "default" */
  6636. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  6637. struct sched_domain_attr *new, int idx_new)
  6638. {
  6639. struct sched_domain_attr tmp;
  6640. /* fast path */
  6641. if (!new && !cur)
  6642. return 1;
  6643. tmp = SD_ATTR_INIT;
  6644. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  6645. new ? (new + idx_new) : &tmp,
  6646. sizeof(struct sched_domain_attr));
  6647. }
  6648. /*
  6649. * Partition sched domains as specified by the 'ndoms_new'
  6650. * cpumasks in the array doms_new[] of cpumasks. This compares
  6651. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6652. * It destroys each deleted domain and builds each new domain.
  6653. *
  6654. * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
  6655. * The masks don't intersect (don't overlap.) We should setup one
  6656. * sched domain for each mask. CPUs not in any of the cpumasks will
  6657. * not be load balanced. If the same cpumask appears both in the
  6658. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6659. * it as it is.
  6660. *
  6661. * The passed in 'doms_new' should be kmalloc'd. This routine takes
  6662. * ownership of it and will kfree it when done with it. If the caller
  6663. * failed the kmalloc call, then it can pass in doms_new == NULL &&
  6664. * ndoms_new == 1, and partition_sched_domains() will fallback to
  6665. * the single partition 'fallback_doms', it also forces the domains
  6666. * to be rebuilt.
  6667. *
  6668. * If doms_new == NULL it will be replaced with cpu_online_map.
  6669. * ndoms_new == 0 is a special case for destroying existing domains,
  6670. * and it will not create the default domain.
  6671. *
  6672. * Call with hotplug lock held
  6673. */
  6674. void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
  6675. struct sched_domain_attr *dattr_new)
  6676. {
  6677. int i, j, n;
  6678. mutex_lock(&sched_domains_mutex);
  6679. /* always unregister in case we don't destroy any domains */
  6680. unregister_sched_domain_sysctl();
  6681. n = doms_new ? ndoms_new : 0;
  6682. /* Destroy deleted domains */
  6683. for (i = 0; i < ndoms_cur; i++) {
  6684. for (j = 0; j < n; j++) {
  6685. if (cpus_equal(doms_cur[i], doms_new[j])
  6686. && dattrs_equal(dattr_cur, i, dattr_new, j))
  6687. goto match1;
  6688. }
  6689. /* no match - a current sched domain not in new doms_new[] */
  6690. detach_destroy_domains(doms_cur + i);
  6691. match1:
  6692. ;
  6693. }
  6694. if (doms_new == NULL) {
  6695. ndoms_cur = 0;
  6696. doms_new = &fallback_doms;
  6697. cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
  6698. dattr_new = NULL;
  6699. }
  6700. /* Build new domains */
  6701. for (i = 0; i < ndoms_new; i++) {
  6702. for (j = 0; j < ndoms_cur; j++) {
  6703. if (cpus_equal(doms_new[i], doms_cur[j])
  6704. && dattrs_equal(dattr_new, i, dattr_cur, j))
  6705. goto match2;
  6706. }
  6707. /* no match - add a new doms_new */
  6708. __build_sched_domains(doms_new + i,
  6709. dattr_new ? dattr_new + i : NULL);
  6710. match2:
  6711. ;
  6712. }
  6713. /* Remember the new sched domains */
  6714. if (doms_cur != &fallback_doms)
  6715. kfree(doms_cur);
  6716. kfree(dattr_cur); /* kfree(NULL) is safe */
  6717. doms_cur = doms_new;
  6718. dattr_cur = dattr_new;
  6719. ndoms_cur = ndoms_new;
  6720. register_sched_domain_sysctl();
  6721. mutex_unlock(&sched_domains_mutex);
  6722. }
  6723. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  6724. int arch_reinit_sched_domains(void)
  6725. {
  6726. get_online_cpus();
  6727. /* Destroy domains first to force the rebuild */
  6728. partition_sched_domains(0, NULL, NULL);
  6729. rebuild_sched_domains();
  6730. put_online_cpus();
  6731. return 0;
  6732. }
  6733. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  6734. {
  6735. int ret;
  6736. if (buf[0] != '0' && buf[0] != '1')
  6737. return -EINVAL;
  6738. if (smt)
  6739. sched_smt_power_savings = (buf[0] == '1');
  6740. else
  6741. sched_mc_power_savings = (buf[0] == '1');
  6742. ret = arch_reinit_sched_domains();
  6743. return ret ? ret : count;
  6744. }
  6745. #ifdef CONFIG_SCHED_MC
  6746. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  6747. char *page)
  6748. {
  6749. return sprintf(page, "%u\n", sched_mc_power_savings);
  6750. }
  6751. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  6752. const char *buf, size_t count)
  6753. {
  6754. return sched_power_savings_store(buf, count, 0);
  6755. }
  6756. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  6757. sched_mc_power_savings_show,
  6758. sched_mc_power_savings_store);
  6759. #endif
  6760. #ifdef CONFIG_SCHED_SMT
  6761. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  6762. char *page)
  6763. {
  6764. return sprintf(page, "%u\n", sched_smt_power_savings);
  6765. }
  6766. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  6767. const char *buf, size_t count)
  6768. {
  6769. return sched_power_savings_store(buf, count, 1);
  6770. }
  6771. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  6772. sched_smt_power_savings_show,
  6773. sched_smt_power_savings_store);
  6774. #endif
  6775. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  6776. {
  6777. int err = 0;
  6778. #ifdef CONFIG_SCHED_SMT
  6779. if (smt_capable())
  6780. err = sysfs_create_file(&cls->kset.kobj,
  6781. &attr_sched_smt_power_savings.attr);
  6782. #endif
  6783. #ifdef CONFIG_SCHED_MC
  6784. if (!err && mc_capable())
  6785. err = sysfs_create_file(&cls->kset.kobj,
  6786. &attr_sched_mc_power_savings.attr);
  6787. #endif
  6788. return err;
  6789. }
  6790. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  6791. #ifndef CONFIG_CPUSETS
  6792. /*
  6793. * Add online and remove offline CPUs from the scheduler domains.
  6794. * When cpusets are enabled they take over this function.
  6795. */
  6796. static int update_sched_domains(struct notifier_block *nfb,
  6797. unsigned long action, void *hcpu)
  6798. {
  6799. switch (action) {
  6800. case CPU_ONLINE:
  6801. case CPU_ONLINE_FROZEN:
  6802. case CPU_DEAD:
  6803. case CPU_DEAD_FROZEN:
  6804. partition_sched_domains(1, NULL, NULL);
  6805. return NOTIFY_OK;
  6806. default:
  6807. return NOTIFY_DONE;
  6808. }
  6809. }
  6810. #endif
  6811. static int update_runtime(struct notifier_block *nfb,
  6812. unsigned long action, void *hcpu)
  6813. {
  6814. int cpu = (int)(long)hcpu;
  6815. switch (action) {
  6816. case CPU_DOWN_PREPARE:
  6817. case CPU_DOWN_PREPARE_FROZEN:
  6818. disable_runtime(cpu_rq(cpu));
  6819. return NOTIFY_OK;
  6820. case CPU_DOWN_FAILED:
  6821. case CPU_DOWN_FAILED_FROZEN:
  6822. case CPU_ONLINE:
  6823. case CPU_ONLINE_FROZEN:
  6824. enable_runtime(cpu_rq(cpu));
  6825. return NOTIFY_OK;
  6826. default:
  6827. return NOTIFY_DONE;
  6828. }
  6829. }
  6830. void __init sched_init_smp(void)
  6831. {
  6832. cpumask_t non_isolated_cpus;
  6833. #if defined(CONFIG_NUMA)
  6834. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  6835. GFP_KERNEL);
  6836. BUG_ON(sched_group_nodes_bycpu == NULL);
  6837. #endif
  6838. get_online_cpus();
  6839. mutex_lock(&sched_domains_mutex);
  6840. arch_init_sched_domains(&cpu_online_map);
  6841. cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
  6842. if (cpus_empty(non_isolated_cpus))
  6843. cpu_set(smp_processor_id(), non_isolated_cpus);
  6844. mutex_unlock(&sched_domains_mutex);
  6845. put_online_cpus();
  6846. #ifndef CONFIG_CPUSETS
  6847. /* XXX: Theoretical race here - CPU may be hotplugged now */
  6848. hotcpu_notifier(update_sched_domains, 0);
  6849. #endif
  6850. /* RT runtime code needs to handle some hotplug events */
  6851. hotcpu_notifier(update_runtime, 0);
  6852. init_hrtick();
  6853. /* Move init over to a non-isolated CPU */
  6854. if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
  6855. BUG();
  6856. sched_init_granularity();
  6857. }
  6858. #else
  6859. void __init sched_init_smp(void)
  6860. {
  6861. sched_init_granularity();
  6862. }
  6863. #endif /* CONFIG_SMP */
  6864. int in_sched_functions(unsigned long addr)
  6865. {
  6866. return in_lock_functions(addr) ||
  6867. (addr >= (unsigned long)__sched_text_start
  6868. && addr < (unsigned long)__sched_text_end);
  6869. }
  6870. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  6871. {
  6872. cfs_rq->tasks_timeline = RB_ROOT;
  6873. INIT_LIST_HEAD(&cfs_rq->tasks);
  6874. #ifdef CONFIG_FAIR_GROUP_SCHED
  6875. cfs_rq->rq = rq;
  6876. #endif
  6877. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6878. }
  6879. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  6880. {
  6881. struct rt_prio_array *array;
  6882. int i;
  6883. array = &rt_rq->active;
  6884. for (i = 0; i < MAX_RT_PRIO; i++) {
  6885. INIT_LIST_HEAD(array->queue + i);
  6886. __clear_bit(i, array->bitmap);
  6887. }
  6888. /* delimiter for bitsearch: */
  6889. __set_bit(MAX_RT_PRIO, array->bitmap);
  6890. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  6891. rt_rq->highest_prio = MAX_RT_PRIO;
  6892. #endif
  6893. #ifdef CONFIG_SMP
  6894. rt_rq->rt_nr_migratory = 0;
  6895. rt_rq->overloaded = 0;
  6896. #endif
  6897. rt_rq->rt_time = 0;
  6898. rt_rq->rt_throttled = 0;
  6899. rt_rq->rt_runtime = 0;
  6900. spin_lock_init(&rt_rq->rt_runtime_lock);
  6901. #ifdef CONFIG_RT_GROUP_SCHED
  6902. rt_rq->rt_nr_boosted = 0;
  6903. rt_rq->rq = rq;
  6904. #endif
  6905. }
  6906. #ifdef CONFIG_FAIR_GROUP_SCHED
  6907. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  6908. struct sched_entity *se, int cpu, int add,
  6909. struct sched_entity *parent)
  6910. {
  6911. struct rq *rq = cpu_rq(cpu);
  6912. tg->cfs_rq[cpu] = cfs_rq;
  6913. init_cfs_rq(cfs_rq, rq);
  6914. cfs_rq->tg = tg;
  6915. if (add)
  6916. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  6917. tg->se[cpu] = se;
  6918. /* se could be NULL for init_task_group */
  6919. if (!se)
  6920. return;
  6921. if (!parent)
  6922. se->cfs_rq = &rq->cfs;
  6923. else
  6924. se->cfs_rq = parent->my_q;
  6925. se->my_q = cfs_rq;
  6926. se->load.weight = tg->shares;
  6927. se->load.inv_weight = 0;
  6928. se->parent = parent;
  6929. }
  6930. #endif
  6931. #ifdef CONFIG_RT_GROUP_SCHED
  6932. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  6933. struct sched_rt_entity *rt_se, int cpu, int add,
  6934. struct sched_rt_entity *parent)
  6935. {
  6936. struct rq *rq = cpu_rq(cpu);
  6937. tg->rt_rq[cpu] = rt_rq;
  6938. init_rt_rq(rt_rq, rq);
  6939. rt_rq->tg = tg;
  6940. rt_rq->rt_se = rt_se;
  6941. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  6942. if (add)
  6943. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  6944. tg->rt_se[cpu] = rt_se;
  6945. if (!rt_se)
  6946. return;
  6947. if (!parent)
  6948. rt_se->rt_rq = &rq->rt;
  6949. else
  6950. rt_se->rt_rq = parent->my_q;
  6951. rt_se->my_q = rt_rq;
  6952. rt_se->parent = parent;
  6953. INIT_LIST_HEAD(&rt_se->run_list);
  6954. }
  6955. #endif
  6956. void __init sched_init(void)
  6957. {
  6958. int i, j;
  6959. unsigned long alloc_size = 0, ptr;
  6960. #ifdef CONFIG_FAIR_GROUP_SCHED
  6961. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6962. #endif
  6963. #ifdef CONFIG_RT_GROUP_SCHED
  6964. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6965. #endif
  6966. #ifdef CONFIG_USER_SCHED
  6967. alloc_size *= 2;
  6968. #endif
  6969. /*
  6970. * As sched_init() is called before page_alloc is setup,
  6971. * we use alloc_bootmem().
  6972. */
  6973. if (alloc_size) {
  6974. ptr = (unsigned long)alloc_bootmem(alloc_size);
  6975. #ifdef CONFIG_FAIR_GROUP_SCHED
  6976. init_task_group.se = (struct sched_entity **)ptr;
  6977. ptr += nr_cpu_ids * sizeof(void **);
  6978. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6979. ptr += nr_cpu_ids * sizeof(void **);
  6980. #ifdef CONFIG_USER_SCHED
  6981. root_task_group.se = (struct sched_entity **)ptr;
  6982. ptr += nr_cpu_ids * sizeof(void **);
  6983. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6984. ptr += nr_cpu_ids * sizeof(void **);
  6985. #endif /* CONFIG_USER_SCHED */
  6986. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6987. #ifdef CONFIG_RT_GROUP_SCHED
  6988. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6989. ptr += nr_cpu_ids * sizeof(void **);
  6990. init_task_group.rt_rq = (struct rt_rq **)ptr;
  6991. ptr += nr_cpu_ids * sizeof(void **);
  6992. #ifdef CONFIG_USER_SCHED
  6993. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6994. ptr += nr_cpu_ids * sizeof(void **);
  6995. root_task_group.rt_rq = (struct rt_rq **)ptr;
  6996. ptr += nr_cpu_ids * sizeof(void **);
  6997. #endif /* CONFIG_USER_SCHED */
  6998. #endif /* CONFIG_RT_GROUP_SCHED */
  6999. }
  7000. #ifdef CONFIG_SMP
  7001. init_defrootdomain();
  7002. #endif
  7003. init_rt_bandwidth(&def_rt_bandwidth,
  7004. global_rt_period(), global_rt_runtime());
  7005. #ifdef CONFIG_RT_GROUP_SCHED
  7006. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  7007. global_rt_period(), global_rt_runtime());
  7008. #ifdef CONFIG_USER_SCHED
  7009. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  7010. global_rt_period(), RUNTIME_INF);
  7011. #endif /* CONFIG_USER_SCHED */
  7012. #endif /* CONFIG_RT_GROUP_SCHED */
  7013. #ifdef CONFIG_GROUP_SCHED
  7014. list_add(&init_task_group.list, &task_groups);
  7015. INIT_LIST_HEAD(&init_task_group.children);
  7016. #ifdef CONFIG_USER_SCHED
  7017. INIT_LIST_HEAD(&root_task_group.children);
  7018. init_task_group.parent = &root_task_group;
  7019. list_add(&init_task_group.siblings, &root_task_group.children);
  7020. #endif /* CONFIG_USER_SCHED */
  7021. #endif /* CONFIG_GROUP_SCHED */
  7022. for_each_possible_cpu(i) {
  7023. struct rq *rq;
  7024. rq = cpu_rq(i);
  7025. spin_lock_init(&rq->lock);
  7026. rq->nr_running = 0;
  7027. init_cfs_rq(&rq->cfs, rq);
  7028. init_rt_rq(&rq->rt, rq);
  7029. #ifdef CONFIG_FAIR_GROUP_SCHED
  7030. init_task_group.shares = init_task_group_load;
  7031. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  7032. #ifdef CONFIG_CGROUP_SCHED
  7033. /*
  7034. * How much cpu bandwidth does init_task_group get?
  7035. *
  7036. * In case of task-groups formed thr' the cgroup filesystem, it
  7037. * gets 100% of the cpu resources in the system. This overall
  7038. * system cpu resource is divided among the tasks of
  7039. * init_task_group and its child task-groups in a fair manner,
  7040. * based on each entity's (task or task-group's) weight
  7041. * (se->load.weight).
  7042. *
  7043. * In other words, if init_task_group has 10 tasks of weight
  7044. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  7045. * then A0's share of the cpu resource is:
  7046. *
  7047. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  7048. *
  7049. * We achieve this by letting init_task_group's tasks sit
  7050. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  7051. */
  7052. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  7053. #elif defined CONFIG_USER_SCHED
  7054. root_task_group.shares = NICE_0_LOAD;
  7055. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
  7056. /*
  7057. * In case of task-groups formed thr' the user id of tasks,
  7058. * init_task_group represents tasks belonging to root user.
  7059. * Hence it forms a sibling of all subsequent groups formed.
  7060. * In this case, init_task_group gets only a fraction of overall
  7061. * system cpu resource, based on the weight assigned to root
  7062. * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
  7063. * by letting tasks of init_task_group sit in a separate cfs_rq
  7064. * (init_cfs_rq) and having one entity represent this group of
  7065. * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
  7066. */
  7067. init_tg_cfs_entry(&init_task_group,
  7068. &per_cpu(init_cfs_rq, i),
  7069. &per_cpu(init_sched_entity, i), i, 1,
  7070. root_task_group.se[i]);
  7071. #endif
  7072. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7073. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  7074. #ifdef CONFIG_RT_GROUP_SCHED
  7075. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  7076. #ifdef CONFIG_CGROUP_SCHED
  7077. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  7078. #elif defined CONFIG_USER_SCHED
  7079. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
  7080. init_tg_rt_entry(&init_task_group,
  7081. &per_cpu(init_rt_rq, i),
  7082. &per_cpu(init_sched_rt_entity, i), i, 1,
  7083. root_task_group.rt_se[i]);
  7084. #endif
  7085. #endif
  7086. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  7087. rq->cpu_load[j] = 0;
  7088. #ifdef CONFIG_SMP
  7089. rq->sd = NULL;
  7090. rq->rd = NULL;
  7091. rq->active_balance = 0;
  7092. rq->next_balance = jiffies;
  7093. rq->push_cpu = 0;
  7094. rq->cpu = i;
  7095. rq->online = 0;
  7096. rq->migration_thread = NULL;
  7097. INIT_LIST_HEAD(&rq->migration_queue);
  7098. rq_attach_root(rq, &def_root_domain);
  7099. #endif
  7100. init_rq_hrtick(rq);
  7101. atomic_set(&rq->nr_iowait, 0);
  7102. }
  7103. set_load_weight(&init_task);
  7104. #ifdef CONFIG_PREEMPT_NOTIFIERS
  7105. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  7106. #endif
  7107. #ifdef CONFIG_SMP
  7108. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  7109. #endif
  7110. #ifdef CONFIG_RT_MUTEXES
  7111. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  7112. #endif
  7113. /*
  7114. * The boot idle thread does lazy MMU switching as well:
  7115. */
  7116. atomic_inc(&init_mm.mm_count);
  7117. enter_lazy_tlb(&init_mm, current);
  7118. /*
  7119. * Make us the idle thread. Technically, schedule() should not be
  7120. * called from this thread, however somewhere below it might be,
  7121. * but because we are the idle thread, we just pick up running again
  7122. * when this runqueue becomes "idle".
  7123. */
  7124. init_idle(current, smp_processor_id());
  7125. /*
  7126. * During early bootup we pretend to be a normal task:
  7127. */
  7128. current->sched_class = &fair_sched_class;
  7129. scheduler_running = 1;
  7130. }
  7131. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  7132. void __might_sleep(char *file, int line)
  7133. {
  7134. #ifdef in_atomic
  7135. static unsigned long prev_jiffy; /* ratelimiting */
  7136. if ((!in_atomic() && !irqs_disabled()) ||
  7137. system_state != SYSTEM_RUNNING || oops_in_progress)
  7138. return;
  7139. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  7140. return;
  7141. prev_jiffy = jiffies;
  7142. printk(KERN_ERR
  7143. "BUG: sleeping function called from invalid context at %s:%d\n",
  7144. file, line);
  7145. printk(KERN_ERR
  7146. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  7147. in_atomic(), irqs_disabled(),
  7148. current->pid, current->comm);
  7149. debug_show_held_locks(current);
  7150. if (irqs_disabled())
  7151. print_irqtrace_events(current);
  7152. dump_stack();
  7153. #endif
  7154. }
  7155. EXPORT_SYMBOL(__might_sleep);
  7156. #endif
  7157. #ifdef CONFIG_MAGIC_SYSRQ
  7158. static void normalize_task(struct rq *rq, struct task_struct *p)
  7159. {
  7160. int on_rq;
  7161. update_rq_clock(rq);
  7162. on_rq = p->se.on_rq;
  7163. if (on_rq)
  7164. deactivate_task(rq, p, 0);
  7165. __setscheduler(rq, p, SCHED_NORMAL, 0);
  7166. if (on_rq) {
  7167. activate_task(rq, p, 0);
  7168. resched_task(rq->curr);
  7169. }
  7170. }
  7171. void normalize_rt_tasks(void)
  7172. {
  7173. struct task_struct *g, *p;
  7174. unsigned long flags;
  7175. struct rq *rq;
  7176. read_lock_irqsave(&tasklist_lock, flags);
  7177. do_each_thread(g, p) {
  7178. /*
  7179. * Only normalize user tasks:
  7180. */
  7181. if (!p->mm)
  7182. continue;
  7183. p->se.exec_start = 0;
  7184. #ifdef CONFIG_SCHEDSTATS
  7185. p->se.wait_start = 0;
  7186. p->se.sleep_start = 0;
  7187. p->se.block_start = 0;
  7188. #endif
  7189. if (!rt_task(p)) {
  7190. /*
  7191. * Renice negative nice level userspace
  7192. * tasks back to 0:
  7193. */
  7194. if (TASK_NICE(p) < 0 && p->mm)
  7195. set_user_nice(p, 0);
  7196. continue;
  7197. }
  7198. spin_lock(&p->pi_lock);
  7199. rq = __task_rq_lock(p);
  7200. normalize_task(rq, p);
  7201. __task_rq_unlock(rq);
  7202. spin_unlock(&p->pi_lock);
  7203. } while_each_thread(g, p);
  7204. read_unlock_irqrestore(&tasklist_lock, flags);
  7205. }
  7206. #endif /* CONFIG_MAGIC_SYSRQ */
  7207. #ifdef CONFIG_IA64
  7208. /*
  7209. * These functions are only useful for the IA64 MCA handling.
  7210. *
  7211. * They can only be called when the whole system has been
  7212. * stopped - every CPU needs to be quiescent, and no scheduling
  7213. * activity can take place. Using them for anything else would
  7214. * be a serious bug, and as a result, they aren't even visible
  7215. * under any other configuration.
  7216. */
  7217. /**
  7218. * curr_task - return the current task for a given cpu.
  7219. * @cpu: the processor in question.
  7220. *
  7221. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7222. */
  7223. struct task_struct *curr_task(int cpu)
  7224. {
  7225. return cpu_curr(cpu);
  7226. }
  7227. /**
  7228. * set_curr_task - set the current task for a given cpu.
  7229. * @cpu: the processor in question.
  7230. * @p: the task pointer to set.
  7231. *
  7232. * Description: This function must only be used when non-maskable interrupts
  7233. * are serviced on a separate stack. It allows the architecture to switch the
  7234. * notion of the current task on a cpu in a non-blocking manner. This function
  7235. * must be called with all CPU's synchronized, and interrupts disabled, the
  7236. * and caller must save the original value of the current task (see
  7237. * curr_task() above) and restore that value before reenabling interrupts and
  7238. * re-starting the system.
  7239. *
  7240. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7241. */
  7242. void set_curr_task(int cpu, struct task_struct *p)
  7243. {
  7244. cpu_curr(cpu) = p;
  7245. }
  7246. #endif
  7247. #ifdef CONFIG_FAIR_GROUP_SCHED
  7248. static void free_fair_sched_group(struct task_group *tg)
  7249. {
  7250. int i;
  7251. for_each_possible_cpu(i) {
  7252. if (tg->cfs_rq)
  7253. kfree(tg->cfs_rq[i]);
  7254. if (tg->se)
  7255. kfree(tg->se[i]);
  7256. }
  7257. kfree(tg->cfs_rq);
  7258. kfree(tg->se);
  7259. }
  7260. static
  7261. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7262. {
  7263. struct cfs_rq *cfs_rq;
  7264. struct sched_entity *se, *parent_se;
  7265. struct rq *rq;
  7266. int i;
  7267. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  7268. if (!tg->cfs_rq)
  7269. goto err;
  7270. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  7271. if (!tg->se)
  7272. goto err;
  7273. tg->shares = NICE_0_LOAD;
  7274. for_each_possible_cpu(i) {
  7275. rq = cpu_rq(i);
  7276. cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
  7277. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  7278. if (!cfs_rq)
  7279. goto err;
  7280. se = kmalloc_node(sizeof(struct sched_entity),
  7281. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  7282. if (!se)
  7283. goto err;
  7284. parent_se = parent ? parent->se[i] : NULL;
  7285. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
  7286. }
  7287. return 1;
  7288. err:
  7289. return 0;
  7290. }
  7291. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7292. {
  7293. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  7294. &cpu_rq(cpu)->leaf_cfs_rq_list);
  7295. }
  7296. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7297. {
  7298. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  7299. }
  7300. #else /* !CONFG_FAIR_GROUP_SCHED */
  7301. static inline void free_fair_sched_group(struct task_group *tg)
  7302. {
  7303. }
  7304. static inline
  7305. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7306. {
  7307. return 1;
  7308. }
  7309. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7310. {
  7311. }
  7312. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7313. {
  7314. }
  7315. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7316. #ifdef CONFIG_RT_GROUP_SCHED
  7317. static void free_rt_sched_group(struct task_group *tg)
  7318. {
  7319. int i;
  7320. destroy_rt_bandwidth(&tg->rt_bandwidth);
  7321. for_each_possible_cpu(i) {
  7322. if (tg->rt_rq)
  7323. kfree(tg->rt_rq[i]);
  7324. if (tg->rt_se)
  7325. kfree(tg->rt_se[i]);
  7326. }
  7327. kfree(tg->rt_rq);
  7328. kfree(tg->rt_se);
  7329. }
  7330. static
  7331. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7332. {
  7333. struct rt_rq *rt_rq;
  7334. struct sched_rt_entity *rt_se, *parent_se;
  7335. struct rq *rq;
  7336. int i;
  7337. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  7338. if (!tg->rt_rq)
  7339. goto err;
  7340. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  7341. if (!tg->rt_se)
  7342. goto err;
  7343. init_rt_bandwidth(&tg->rt_bandwidth,
  7344. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  7345. for_each_possible_cpu(i) {
  7346. rq = cpu_rq(i);
  7347. rt_rq = kmalloc_node(sizeof(struct rt_rq),
  7348. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  7349. if (!rt_rq)
  7350. goto err;
  7351. rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
  7352. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  7353. if (!rt_se)
  7354. goto err;
  7355. parent_se = parent ? parent->rt_se[i] : NULL;
  7356. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
  7357. }
  7358. return 1;
  7359. err:
  7360. return 0;
  7361. }
  7362. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  7363. {
  7364. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  7365. &cpu_rq(cpu)->leaf_rt_rq_list);
  7366. }
  7367. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  7368. {
  7369. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  7370. }
  7371. #else /* !CONFIG_RT_GROUP_SCHED */
  7372. static inline void free_rt_sched_group(struct task_group *tg)
  7373. {
  7374. }
  7375. static inline
  7376. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7377. {
  7378. return 1;
  7379. }
  7380. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  7381. {
  7382. }
  7383. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  7384. {
  7385. }
  7386. #endif /* CONFIG_RT_GROUP_SCHED */
  7387. #ifdef CONFIG_GROUP_SCHED
  7388. static void free_sched_group(struct task_group *tg)
  7389. {
  7390. free_fair_sched_group(tg);
  7391. free_rt_sched_group(tg);
  7392. kfree(tg);
  7393. }
  7394. /* allocate runqueue etc for a new task group */
  7395. struct task_group *sched_create_group(struct task_group *parent)
  7396. {
  7397. struct task_group *tg;
  7398. unsigned long flags;
  7399. int i;
  7400. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  7401. if (!tg)
  7402. return ERR_PTR(-ENOMEM);
  7403. if (!alloc_fair_sched_group(tg, parent))
  7404. goto err;
  7405. if (!alloc_rt_sched_group(tg, parent))
  7406. goto err;
  7407. spin_lock_irqsave(&task_group_lock, flags);
  7408. for_each_possible_cpu(i) {
  7409. register_fair_sched_group(tg, i);
  7410. register_rt_sched_group(tg, i);
  7411. }
  7412. list_add_rcu(&tg->list, &task_groups);
  7413. WARN_ON(!parent); /* root should already exist */
  7414. tg->parent = parent;
  7415. INIT_LIST_HEAD(&tg->children);
  7416. list_add_rcu(&tg->siblings, &parent->children);
  7417. spin_unlock_irqrestore(&task_group_lock, flags);
  7418. return tg;
  7419. err:
  7420. free_sched_group(tg);
  7421. return ERR_PTR(-ENOMEM);
  7422. }
  7423. /* rcu callback to free various structures associated with a task group */
  7424. static void free_sched_group_rcu(struct rcu_head *rhp)
  7425. {
  7426. /* now it should be safe to free those cfs_rqs */
  7427. free_sched_group(container_of(rhp, struct task_group, rcu));
  7428. }
  7429. /* Destroy runqueue etc associated with a task group */
  7430. void sched_destroy_group(struct task_group *tg)
  7431. {
  7432. unsigned long flags;
  7433. int i;
  7434. spin_lock_irqsave(&task_group_lock, flags);
  7435. for_each_possible_cpu(i) {
  7436. unregister_fair_sched_group(tg, i);
  7437. unregister_rt_sched_group(tg, i);
  7438. }
  7439. list_del_rcu(&tg->list);
  7440. list_del_rcu(&tg->siblings);
  7441. spin_unlock_irqrestore(&task_group_lock, flags);
  7442. /* wait for possible concurrent references to cfs_rqs complete */
  7443. call_rcu(&tg->rcu, free_sched_group_rcu);
  7444. }
  7445. /* change task's runqueue when it moves between groups.
  7446. * The caller of this function should have put the task in its new group
  7447. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  7448. * reflect its new group.
  7449. */
  7450. void sched_move_task(struct task_struct *tsk)
  7451. {
  7452. int on_rq, running;
  7453. unsigned long flags;
  7454. struct rq *rq;
  7455. rq = task_rq_lock(tsk, &flags);
  7456. update_rq_clock(rq);
  7457. running = task_current(rq, tsk);
  7458. on_rq = tsk->se.on_rq;
  7459. if (on_rq)
  7460. dequeue_task(rq, tsk, 0);
  7461. if (unlikely(running))
  7462. tsk->sched_class->put_prev_task(rq, tsk);
  7463. set_task_rq(tsk, task_cpu(tsk));
  7464. #ifdef CONFIG_FAIR_GROUP_SCHED
  7465. if (tsk->sched_class->moved_group)
  7466. tsk->sched_class->moved_group(tsk);
  7467. #endif
  7468. if (unlikely(running))
  7469. tsk->sched_class->set_curr_task(rq);
  7470. if (on_rq)
  7471. enqueue_task(rq, tsk, 0);
  7472. task_rq_unlock(rq, &flags);
  7473. }
  7474. #endif /* CONFIG_GROUP_SCHED */
  7475. #ifdef CONFIG_FAIR_GROUP_SCHED
  7476. static void __set_se_shares(struct sched_entity *se, unsigned long shares)
  7477. {
  7478. struct cfs_rq *cfs_rq = se->cfs_rq;
  7479. int on_rq;
  7480. on_rq = se->on_rq;
  7481. if (on_rq)
  7482. dequeue_entity(cfs_rq, se, 0);
  7483. se->load.weight = shares;
  7484. se->load.inv_weight = 0;
  7485. if (on_rq)
  7486. enqueue_entity(cfs_rq, se, 0);
  7487. }
  7488. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  7489. {
  7490. struct cfs_rq *cfs_rq = se->cfs_rq;
  7491. struct rq *rq = cfs_rq->rq;
  7492. unsigned long flags;
  7493. spin_lock_irqsave(&rq->lock, flags);
  7494. __set_se_shares(se, shares);
  7495. spin_unlock_irqrestore(&rq->lock, flags);
  7496. }
  7497. static DEFINE_MUTEX(shares_mutex);
  7498. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  7499. {
  7500. int i;
  7501. unsigned long flags;
  7502. /*
  7503. * We can't change the weight of the root cgroup.
  7504. */
  7505. if (!tg->se[0])
  7506. return -EINVAL;
  7507. if (shares < MIN_SHARES)
  7508. shares = MIN_SHARES;
  7509. else if (shares > MAX_SHARES)
  7510. shares = MAX_SHARES;
  7511. mutex_lock(&shares_mutex);
  7512. if (tg->shares == shares)
  7513. goto done;
  7514. spin_lock_irqsave(&task_group_lock, flags);
  7515. for_each_possible_cpu(i)
  7516. unregister_fair_sched_group(tg, i);
  7517. list_del_rcu(&tg->siblings);
  7518. spin_unlock_irqrestore(&task_group_lock, flags);
  7519. /* wait for any ongoing reference to this group to finish */
  7520. synchronize_sched();
  7521. /*
  7522. * Now we are free to modify the group's share on each cpu
  7523. * w/o tripping rebalance_share or load_balance_fair.
  7524. */
  7525. tg->shares = shares;
  7526. for_each_possible_cpu(i) {
  7527. /*
  7528. * force a rebalance
  7529. */
  7530. cfs_rq_set_shares(tg->cfs_rq[i], 0);
  7531. set_se_shares(tg->se[i], shares);
  7532. }
  7533. /*
  7534. * Enable load balance activity on this group, by inserting it back on
  7535. * each cpu's rq->leaf_cfs_rq_list.
  7536. */
  7537. spin_lock_irqsave(&task_group_lock, flags);
  7538. for_each_possible_cpu(i)
  7539. register_fair_sched_group(tg, i);
  7540. list_add_rcu(&tg->siblings, &tg->parent->children);
  7541. spin_unlock_irqrestore(&task_group_lock, flags);
  7542. done:
  7543. mutex_unlock(&shares_mutex);
  7544. return 0;
  7545. }
  7546. unsigned long sched_group_shares(struct task_group *tg)
  7547. {
  7548. return tg->shares;
  7549. }
  7550. #endif
  7551. #ifdef CONFIG_RT_GROUP_SCHED
  7552. /*
  7553. * Ensure that the real time constraints are schedulable.
  7554. */
  7555. static DEFINE_MUTEX(rt_constraints_mutex);
  7556. static unsigned long to_ratio(u64 period, u64 runtime)
  7557. {
  7558. if (runtime == RUNTIME_INF)
  7559. return 1ULL << 20;
  7560. return div64_u64(runtime << 20, period);
  7561. }
  7562. /* Must be called with tasklist_lock held */
  7563. static inline int tg_has_rt_tasks(struct task_group *tg)
  7564. {
  7565. struct task_struct *g, *p;
  7566. do_each_thread(g, p) {
  7567. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  7568. return 1;
  7569. } while_each_thread(g, p);
  7570. return 0;
  7571. }
  7572. struct rt_schedulable_data {
  7573. struct task_group *tg;
  7574. u64 rt_period;
  7575. u64 rt_runtime;
  7576. };
  7577. static int tg_schedulable(struct task_group *tg, void *data)
  7578. {
  7579. struct rt_schedulable_data *d = data;
  7580. struct task_group *child;
  7581. unsigned long total, sum = 0;
  7582. u64 period, runtime;
  7583. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7584. runtime = tg->rt_bandwidth.rt_runtime;
  7585. if (tg == d->tg) {
  7586. period = d->rt_period;
  7587. runtime = d->rt_runtime;
  7588. }
  7589. /*
  7590. * Cannot have more runtime than the period.
  7591. */
  7592. if (runtime > period && runtime != RUNTIME_INF)
  7593. return -EINVAL;
  7594. /*
  7595. * Ensure we don't starve existing RT tasks.
  7596. */
  7597. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  7598. return -EBUSY;
  7599. total = to_ratio(period, runtime);
  7600. /*
  7601. * Nobody can have more than the global setting allows.
  7602. */
  7603. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  7604. return -EINVAL;
  7605. /*
  7606. * The sum of our children's runtime should not exceed our own.
  7607. */
  7608. list_for_each_entry_rcu(child, &tg->children, siblings) {
  7609. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  7610. runtime = child->rt_bandwidth.rt_runtime;
  7611. if (child == d->tg) {
  7612. period = d->rt_period;
  7613. runtime = d->rt_runtime;
  7614. }
  7615. sum += to_ratio(period, runtime);
  7616. }
  7617. if (sum > total)
  7618. return -EINVAL;
  7619. return 0;
  7620. }
  7621. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7622. {
  7623. struct rt_schedulable_data data = {
  7624. .tg = tg,
  7625. .rt_period = period,
  7626. .rt_runtime = runtime,
  7627. };
  7628. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  7629. }
  7630. static int tg_set_bandwidth(struct task_group *tg,
  7631. u64 rt_period, u64 rt_runtime)
  7632. {
  7633. int i, err = 0;
  7634. mutex_lock(&rt_constraints_mutex);
  7635. read_lock(&tasklist_lock);
  7636. err = __rt_schedulable(tg, rt_period, rt_runtime);
  7637. if (err)
  7638. goto unlock;
  7639. spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7640. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  7641. tg->rt_bandwidth.rt_runtime = rt_runtime;
  7642. for_each_possible_cpu(i) {
  7643. struct rt_rq *rt_rq = tg->rt_rq[i];
  7644. spin_lock(&rt_rq->rt_runtime_lock);
  7645. rt_rq->rt_runtime = rt_runtime;
  7646. spin_unlock(&rt_rq->rt_runtime_lock);
  7647. }
  7648. spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7649. unlock:
  7650. read_unlock(&tasklist_lock);
  7651. mutex_unlock(&rt_constraints_mutex);
  7652. return err;
  7653. }
  7654. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  7655. {
  7656. u64 rt_runtime, rt_period;
  7657. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7658. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  7659. if (rt_runtime_us < 0)
  7660. rt_runtime = RUNTIME_INF;
  7661. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7662. }
  7663. long sched_group_rt_runtime(struct task_group *tg)
  7664. {
  7665. u64 rt_runtime_us;
  7666. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  7667. return -1;
  7668. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  7669. do_div(rt_runtime_us, NSEC_PER_USEC);
  7670. return rt_runtime_us;
  7671. }
  7672. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  7673. {
  7674. u64 rt_runtime, rt_period;
  7675. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  7676. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7677. if (rt_period == 0)
  7678. return -EINVAL;
  7679. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7680. }
  7681. long sched_group_rt_period(struct task_group *tg)
  7682. {
  7683. u64 rt_period_us;
  7684. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7685. do_div(rt_period_us, NSEC_PER_USEC);
  7686. return rt_period_us;
  7687. }
  7688. static int sched_rt_global_constraints(void)
  7689. {
  7690. u64 runtime, period;
  7691. int ret = 0;
  7692. if (sysctl_sched_rt_period <= 0)
  7693. return -EINVAL;
  7694. runtime = global_rt_runtime();
  7695. period = global_rt_period();
  7696. /*
  7697. * Sanity check on the sysctl variables.
  7698. */
  7699. if (runtime > period && runtime != RUNTIME_INF)
  7700. return -EINVAL;
  7701. mutex_lock(&rt_constraints_mutex);
  7702. read_lock(&tasklist_lock);
  7703. ret = __rt_schedulable(NULL, 0, 0);
  7704. read_unlock(&tasklist_lock);
  7705. mutex_unlock(&rt_constraints_mutex);
  7706. return ret;
  7707. }
  7708. #else /* !CONFIG_RT_GROUP_SCHED */
  7709. static int sched_rt_global_constraints(void)
  7710. {
  7711. unsigned long flags;
  7712. int i;
  7713. if (sysctl_sched_rt_period <= 0)
  7714. return -EINVAL;
  7715. spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  7716. for_each_possible_cpu(i) {
  7717. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  7718. spin_lock(&rt_rq->rt_runtime_lock);
  7719. rt_rq->rt_runtime = global_rt_runtime();
  7720. spin_unlock(&rt_rq->rt_runtime_lock);
  7721. }
  7722. spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  7723. return 0;
  7724. }
  7725. #endif /* CONFIG_RT_GROUP_SCHED */
  7726. int sched_rt_handler(struct ctl_table *table, int write,
  7727. struct file *filp, void __user *buffer, size_t *lenp,
  7728. loff_t *ppos)
  7729. {
  7730. int ret;
  7731. int old_period, old_runtime;
  7732. static DEFINE_MUTEX(mutex);
  7733. mutex_lock(&mutex);
  7734. old_period = sysctl_sched_rt_period;
  7735. old_runtime = sysctl_sched_rt_runtime;
  7736. ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
  7737. if (!ret && write) {
  7738. ret = sched_rt_global_constraints();
  7739. if (ret) {
  7740. sysctl_sched_rt_period = old_period;
  7741. sysctl_sched_rt_runtime = old_runtime;
  7742. } else {
  7743. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  7744. def_rt_bandwidth.rt_period =
  7745. ns_to_ktime(global_rt_period());
  7746. }
  7747. }
  7748. mutex_unlock(&mutex);
  7749. return ret;
  7750. }
  7751. #ifdef CONFIG_CGROUP_SCHED
  7752. /* return corresponding task_group object of a cgroup */
  7753. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  7754. {
  7755. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  7756. struct task_group, css);
  7757. }
  7758. static struct cgroup_subsys_state *
  7759. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7760. {
  7761. struct task_group *tg, *parent;
  7762. if (!cgrp->parent) {
  7763. /* This is early initialization for the top cgroup */
  7764. return &init_task_group.css;
  7765. }
  7766. parent = cgroup_tg(cgrp->parent);
  7767. tg = sched_create_group(parent);
  7768. if (IS_ERR(tg))
  7769. return ERR_PTR(-ENOMEM);
  7770. return &tg->css;
  7771. }
  7772. static void
  7773. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7774. {
  7775. struct task_group *tg = cgroup_tg(cgrp);
  7776. sched_destroy_group(tg);
  7777. }
  7778. static int
  7779. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7780. struct task_struct *tsk)
  7781. {
  7782. #ifdef CONFIG_RT_GROUP_SCHED
  7783. /* Don't accept realtime tasks when there is no way for them to run */
  7784. if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
  7785. return -EINVAL;
  7786. #else
  7787. /* We don't support RT-tasks being in separate groups */
  7788. if (tsk->sched_class != &fair_sched_class)
  7789. return -EINVAL;
  7790. #endif
  7791. return 0;
  7792. }
  7793. static void
  7794. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7795. struct cgroup *old_cont, struct task_struct *tsk)
  7796. {
  7797. sched_move_task(tsk);
  7798. }
  7799. #ifdef CONFIG_FAIR_GROUP_SCHED
  7800. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  7801. u64 shareval)
  7802. {
  7803. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  7804. }
  7805. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  7806. {
  7807. struct task_group *tg = cgroup_tg(cgrp);
  7808. return (u64) tg->shares;
  7809. }
  7810. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7811. #ifdef CONFIG_RT_GROUP_SCHED
  7812. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  7813. s64 val)
  7814. {
  7815. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  7816. }
  7817. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  7818. {
  7819. return sched_group_rt_runtime(cgroup_tg(cgrp));
  7820. }
  7821. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7822. u64 rt_period_us)
  7823. {
  7824. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  7825. }
  7826. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7827. {
  7828. return sched_group_rt_period(cgroup_tg(cgrp));
  7829. }
  7830. #endif /* CONFIG_RT_GROUP_SCHED */
  7831. static struct cftype cpu_files[] = {
  7832. #ifdef CONFIG_FAIR_GROUP_SCHED
  7833. {
  7834. .name = "shares",
  7835. .read_u64 = cpu_shares_read_u64,
  7836. .write_u64 = cpu_shares_write_u64,
  7837. },
  7838. #endif
  7839. #ifdef CONFIG_RT_GROUP_SCHED
  7840. {
  7841. .name = "rt_runtime_us",
  7842. .read_s64 = cpu_rt_runtime_read,
  7843. .write_s64 = cpu_rt_runtime_write,
  7844. },
  7845. {
  7846. .name = "rt_period_us",
  7847. .read_u64 = cpu_rt_period_read_uint,
  7848. .write_u64 = cpu_rt_period_write_uint,
  7849. },
  7850. #endif
  7851. };
  7852. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  7853. {
  7854. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  7855. }
  7856. struct cgroup_subsys cpu_cgroup_subsys = {
  7857. .name = "cpu",
  7858. .create = cpu_cgroup_create,
  7859. .destroy = cpu_cgroup_destroy,
  7860. .can_attach = cpu_cgroup_can_attach,
  7861. .attach = cpu_cgroup_attach,
  7862. .populate = cpu_cgroup_populate,
  7863. .subsys_id = cpu_cgroup_subsys_id,
  7864. .early_init = 1,
  7865. };
  7866. #endif /* CONFIG_CGROUP_SCHED */
  7867. #ifdef CONFIG_CGROUP_CPUACCT
  7868. /*
  7869. * CPU accounting code for task groups.
  7870. *
  7871. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  7872. * (balbir@in.ibm.com).
  7873. */
  7874. /* track cpu usage of a group of tasks */
  7875. struct cpuacct {
  7876. struct cgroup_subsys_state css;
  7877. /* cpuusage holds pointer to a u64-type object on every cpu */
  7878. u64 *cpuusage;
  7879. };
  7880. struct cgroup_subsys cpuacct_subsys;
  7881. /* return cpu accounting group corresponding to this container */
  7882. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  7883. {
  7884. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  7885. struct cpuacct, css);
  7886. }
  7887. /* return cpu accounting group to which this task belongs */
  7888. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  7889. {
  7890. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  7891. struct cpuacct, css);
  7892. }
  7893. /* create a new cpu accounting group */
  7894. static struct cgroup_subsys_state *cpuacct_create(
  7895. struct cgroup_subsys *ss, struct cgroup *cgrp)
  7896. {
  7897. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  7898. if (!ca)
  7899. return ERR_PTR(-ENOMEM);
  7900. ca->cpuusage = alloc_percpu(u64);
  7901. if (!ca->cpuusage) {
  7902. kfree(ca);
  7903. return ERR_PTR(-ENOMEM);
  7904. }
  7905. return &ca->css;
  7906. }
  7907. /* destroy an existing cpu accounting group */
  7908. static void
  7909. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7910. {
  7911. struct cpuacct *ca = cgroup_ca(cgrp);
  7912. free_percpu(ca->cpuusage);
  7913. kfree(ca);
  7914. }
  7915. /* return total cpu usage (in nanoseconds) of a group */
  7916. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  7917. {
  7918. struct cpuacct *ca = cgroup_ca(cgrp);
  7919. u64 totalcpuusage = 0;
  7920. int i;
  7921. for_each_possible_cpu(i) {
  7922. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  7923. /*
  7924. * Take rq->lock to make 64-bit addition safe on 32-bit
  7925. * platforms.
  7926. */
  7927. spin_lock_irq(&cpu_rq(i)->lock);
  7928. totalcpuusage += *cpuusage;
  7929. spin_unlock_irq(&cpu_rq(i)->lock);
  7930. }
  7931. return totalcpuusage;
  7932. }
  7933. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  7934. u64 reset)
  7935. {
  7936. struct cpuacct *ca = cgroup_ca(cgrp);
  7937. int err = 0;
  7938. int i;
  7939. if (reset) {
  7940. err = -EINVAL;
  7941. goto out;
  7942. }
  7943. for_each_possible_cpu(i) {
  7944. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  7945. spin_lock_irq(&cpu_rq(i)->lock);
  7946. *cpuusage = 0;
  7947. spin_unlock_irq(&cpu_rq(i)->lock);
  7948. }
  7949. out:
  7950. return err;
  7951. }
  7952. static struct cftype files[] = {
  7953. {
  7954. .name = "usage",
  7955. .read_u64 = cpuusage_read,
  7956. .write_u64 = cpuusage_write,
  7957. },
  7958. };
  7959. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7960. {
  7961. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  7962. }
  7963. /*
  7964. * charge this task's execution time to its accounting group.
  7965. *
  7966. * called with rq->lock held.
  7967. */
  7968. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  7969. {
  7970. struct cpuacct *ca;
  7971. if (!cpuacct_subsys.active)
  7972. return;
  7973. ca = task_ca(tsk);
  7974. if (ca) {
  7975. u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
  7976. *cpuusage += cputime;
  7977. }
  7978. }
  7979. struct cgroup_subsys cpuacct_subsys = {
  7980. .name = "cpuacct",
  7981. .create = cpuacct_create,
  7982. .destroy = cpuacct_destroy,
  7983. .populate = cpuacct_populate,
  7984. .subsys_id = cpuacct_subsys_id,
  7985. };
  7986. #endif /* CONFIG_CGROUP_CPUACCT */