atmel-aes.c 68 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798
  1. /*
  2. * Cryptographic API.
  3. *
  4. * Support for ATMEL AES HW acceleration.
  5. *
  6. * Copyright (c) 2012 Eukréa Electromatique - ATMEL
  7. * Author: Nicolas Royer <nicolas@eukrea.com>
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License version 2 as published
  11. * by the Free Software Foundation.
  12. *
  13. * Some ideas are from omap-aes.c driver.
  14. */
  15. #include <linux/kernel.h>
  16. #include <linux/module.h>
  17. #include <linux/slab.h>
  18. #include <linux/err.h>
  19. #include <linux/clk.h>
  20. #include <linux/io.h>
  21. #include <linux/hw_random.h>
  22. #include <linux/platform_device.h>
  23. #include <linux/device.h>
  24. #include <linux/init.h>
  25. #include <linux/errno.h>
  26. #include <linux/interrupt.h>
  27. #include <linux/irq.h>
  28. #include <linux/scatterlist.h>
  29. #include <linux/dma-mapping.h>
  30. #include <linux/of_device.h>
  31. #include <linux/delay.h>
  32. #include <linux/crypto.h>
  33. #include <crypto/scatterwalk.h>
  34. #include <crypto/algapi.h>
  35. #include <crypto/aes.h>
  36. #include <crypto/xts.h>
  37. #include <crypto/internal/aead.h>
  38. #include <linux/platform_data/crypto-atmel.h>
  39. #include <dt-bindings/dma/at91.h>
  40. #include "atmel-aes-regs.h"
  41. #include "atmel-authenc.h"
  42. #define ATMEL_AES_PRIORITY 300
  43. #define ATMEL_AES_BUFFER_ORDER 2
  44. #define ATMEL_AES_BUFFER_SIZE (PAGE_SIZE << ATMEL_AES_BUFFER_ORDER)
  45. #define CFB8_BLOCK_SIZE 1
  46. #define CFB16_BLOCK_SIZE 2
  47. #define CFB32_BLOCK_SIZE 4
  48. #define CFB64_BLOCK_SIZE 8
  49. #define SIZE_IN_WORDS(x) ((x) >> 2)
  50. /* AES flags */
  51. /* Reserve bits [18:16] [14:12] [1:0] for mode (same as for AES_MR) */
  52. #define AES_FLAGS_ENCRYPT AES_MR_CYPHER_ENC
  53. #define AES_FLAGS_GTAGEN AES_MR_GTAGEN
  54. #define AES_FLAGS_OPMODE_MASK (AES_MR_OPMOD_MASK | AES_MR_CFBS_MASK)
  55. #define AES_FLAGS_ECB AES_MR_OPMOD_ECB
  56. #define AES_FLAGS_CBC AES_MR_OPMOD_CBC
  57. #define AES_FLAGS_OFB AES_MR_OPMOD_OFB
  58. #define AES_FLAGS_CFB128 (AES_MR_OPMOD_CFB | AES_MR_CFBS_128b)
  59. #define AES_FLAGS_CFB64 (AES_MR_OPMOD_CFB | AES_MR_CFBS_64b)
  60. #define AES_FLAGS_CFB32 (AES_MR_OPMOD_CFB | AES_MR_CFBS_32b)
  61. #define AES_FLAGS_CFB16 (AES_MR_OPMOD_CFB | AES_MR_CFBS_16b)
  62. #define AES_FLAGS_CFB8 (AES_MR_OPMOD_CFB | AES_MR_CFBS_8b)
  63. #define AES_FLAGS_CTR AES_MR_OPMOD_CTR
  64. #define AES_FLAGS_GCM AES_MR_OPMOD_GCM
  65. #define AES_FLAGS_XTS AES_MR_OPMOD_XTS
  66. #define AES_FLAGS_MODE_MASK (AES_FLAGS_OPMODE_MASK | \
  67. AES_FLAGS_ENCRYPT | \
  68. AES_FLAGS_GTAGEN)
  69. #define AES_FLAGS_INIT BIT(2)
  70. #define AES_FLAGS_BUSY BIT(3)
  71. #define AES_FLAGS_DUMP_REG BIT(4)
  72. #define AES_FLAGS_OWN_SHA BIT(5)
  73. #define AES_FLAGS_PERSISTENT (AES_FLAGS_INIT | AES_FLAGS_BUSY)
  74. #define ATMEL_AES_QUEUE_LENGTH 50
  75. #define ATMEL_AES_DMA_THRESHOLD 256
  76. struct atmel_aes_caps {
  77. bool has_dualbuff;
  78. bool has_cfb64;
  79. bool has_ctr32;
  80. bool has_gcm;
  81. bool has_xts;
  82. bool has_authenc;
  83. u32 max_burst_size;
  84. };
  85. struct atmel_aes_dev;
  86. typedef int (*atmel_aes_fn_t)(struct atmel_aes_dev *);
  87. struct atmel_aes_base_ctx {
  88. struct atmel_aes_dev *dd;
  89. atmel_aes_fn_t start;
  90. int keylen;
  91. u32 key[AES_KEYSIZE_256 / sizeof(u32)];
  92. u16 block_size;
  93. };
  94. struct atmel_aes_ctx {
  95. struct atmel_aes_base_ctx base;
  96. };
  97. struct atmel_aes_ctr_ctx {
  98. struct atmel_aes_base_ctx base;
  99. u32 iv[AES_BLOCK_SIZE / sizeof(u32)];
  100. size_t offset;
  101. struct scatterlist src[2];
  102. struct scatterlist dst[2];
  103. };
  104. struct atmel_aes_gcm_ctx {
  105. struct atmel_aes_base_ctx base;
  106. struct scatterlist src[2];
  107. struct scatterlist dst[2];
  108. u32 j0[AES_BLOCK_SIZE / sizeof(u32)];
  109. u32 tag[AES_BLOCK_SIZE / sizeof(u32)];
  110. u32 ghash[AES_BLOCK_SIZE / sizeof(u32)];
  111. size_t textlen;
  112. const u32 *ghash_in;
  113. u32 *ghash_out;
  114. atmel_aes_fn_t ghash_resume;
  115. };
  116. struct atmel_aes_xts_ctx {
  117. struct atmel_aes_base_ctx base;
  118. u32 key2[AES_KEYSIZE_256 / sizeof(u32)];
  119. };
  120. #ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
  121. struct atmel_aes_authenc_ctx {
  122. struct atmel_aes_base_ctx base;
  123. struct atmel_sha_authenc_ctx *auth;
  124. };
  125. #endif
  126. struct atmel_aes_reqctx {
  127. unsigned long mode;
  128. };
  129. #ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
  130. struct atmel_aes_authenc_reqctx {
  131. struct atmel_aes_reqctx base;
  132. struct scatterlist src[2];
  133. struct scatterlist dst[2];
  134. size_t textlen;
  135. u32 digest[SHA512_DIGEST_SIZE / sizeof(u32)];
  136. /* auth_req MUST be place last. */
  137. struct ahash_request auth_req;
  138. };
  139. #endif
  140. struct atmel_aes_dma {
  141. struct dma_chan *chan;
  142. struct scatterlist *sg;
  143. int nents;
  144. unsigned int remainder;
  145. unsigned int sg_len;
  146. };
  147. struct atmel_aes_dev {
  148. struct list_head list;
  149. unsigned long phys_base;
  150. void __iomem *io_base;
  151. struct crypto_async_request *areq;
  152. struct atmel_aes_base_ctx *ctx;
  153. bool is_async;
  154. atmel_aes_fn_t resume;
  155. atmel_aes_fn_t cpu_transfer_complete;
  156. struct device *dev;
  157. struct clk *iclk;
  158. int irq;
  159. unsigned long flags;
  160. spinlock_t lock;
  161. struct crypto_queue queue;
  162. struct tasklet_struct done_task;
  163. struct tasklet_struct queue_task;
  164. size_t total;
  165. size_t datalen;
  166. u32 *data;
  167. struct atmel_aes_dma src;
  168. struct atmel_aes_dma dst;
  169. size_t buflen;
  170. void *buf;
  171. struct scatterlist aligned_sg;
  172. struct scatterlist *real_dst;
  173. struct atmel_aes_caps caps;
  174. u32 hw_version;
  175. };
  176. struct atmel_aes_drv {
  177. struct list_head dev_list;
  178. spinlock_t lock;
  179. };
  180. static struct atmel_aes_drv atmel_aes = {
  181. .dev_list = LIST_HEAD_INIT(atmel_aes.dev_list),
  182. .lock = __SPIN_LOCK_UNLOCKED(atmel_aes.lock),
  183. };
  184. #ifdef VERBOSE_DEBUG
  185. static const char *atmel_aes_reg_name(u32 offset, char *tmp, size_t sz)
  186. {
  187. switch (offset) {
  188. case AES_CR:
  189. return "CR";
  190. case AES_MR:
  191. return "MR";
  192. case AES_ISR:
  193. return "ISR";
  194. case AES_IMR:
  195. return "IMR";
  196. case AES_IER:
  197. return "IER";
  198. case AES_IDR:
  199. return "IDR";
  200. case AES_KEYWR(0):
  201. case AES_KEYWR(1):
  202. case AES_KEYWR(2):
  203. case AES_KEYWR(3):
  204. case AES_KEYWR(4):
  205. case AES_KEYWR(5):
  206. case AES_KEYWR(6):
  207. case AES_KEYWR(7):
  208. snprintf(tmp, sz, "KEYWR[%u]", (offset - AES_KEYWR(0)) >> 2);
  209. break;
  210. case AES_IDATAR(0):
  211. case AES_IDATAR(1):
  212. case AES_IDATAR(2):
  213. case AES_IDATAR(3):
  214. snprintf(tmp, sz, "IDATAR[%u]", (offset - AES_IDATAR(0)) >> 2);
  215. break;
  216. case AES_ODATAR(0):
  217. case AES_ODATAR(1):
  218. case AES_ODATAR(2):
  219. case AES_ODATAR(3):
  220. snprintf(tmp, sz, "ODATAR[%u]", (offset - AES_ODATAR(0)) >> 2);
  221. break;
  222. case AES_IVR(0):
  223. case AES_IVR(1):
  224. case AES_IVR(2):
  225. case AES_IVR(3):
  226. snprintf(tmp, sz, "IVR[%u]", (offset - AES_IVR(0)) >> 2);
  227. break;
  228. case AES_AADLENR:
  229. return "AADLENR";
  230. case AES_CLENR:
  231. return "CLENR";
  232. case AES_GHASHR(0):
  233. case AES_GHASHR(1):
  234. case AES_GHASHR(2):
  235. case AES_GHASHR(3):
  236. snprintf(tmp, sz, "GHASHR[%u]", (offset - AES_GHASHR(0)) >> 2);
  237. break;
  238. case AES_TAGR(0):
  239. case AES_TAGR(1):
  240. case AES_TAGR(2):
  241. case AES_TAGR(3):
  242. snprintf(tmp, sz, "TAGR[%u]", (offset - AES_TAGR(0)) >> 2);
  243. break;
  244. case AES_CTRR:
  245. return "CTRR";
  246. case AES_GCMHR(0):
  247. case AES_GCMHR(1):
  248. case AES_GCMHR(2):
  249. case AES_GCMHR(3):
  250. snprintf(tmp, sz, "GCMHR[%u]", (offset - AES_GCMHR(0)) >> 2);
  251. break;
  252. case AES_EMR:
  253. return "EMR";
  254. case AES_TWR(0):
  255. case AES_TWR(1):
  256. case AES_TWR(2):
  257. case AES_TWR(3):
  258. snprintf(tmp, sz, "TWR[%u]", (offset - AES_TWR(0)) >> 2);
  259. break;
  260. case AES_ALPHAR(0):
  261. case AES_ALPHAR(1):
  262. case AES_ALPHAR(2):
  263. case AES_ALPHAR(3):
  264. snprintf(tmp, sz, "ALPHAR[%u]", (offset - AES_ALPHAR(0)) >> 2);
  265. break;
  266. default:
  267. snprintf(tmp, sz, "0x%02x", offset);
  268. break;
  269. }
  270. return tmp;
  271. }
  272. #endif /* VERBOSE_DEBUG */
  273. /* Shared functions */
  274. static inline u32 atmel_aes_read(struct atmel_aes_dev *dd, u32 offset)
  275. {
  276. u32 value = readl_relaxed(dd->io_base + offset);
  277. #ifdef VERBOSE_DEBUG
  278. if (dd->flags & AES_FLAGS_DUMP_REG) {
  279. char tmp[16];
  280. dev_vdbg(dd->dev, "read 0x%08x from %s\n", value,
  281. atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
  282. }
  283. #endif /* VERBOSE_DEBUG */
  284. return value;
  285. }
  286. static inline void atmel_aes_write(struct atmel_aes_dev *dd,
  287. u32 offset, u32 value)
  288. {
  289. #ifdef VERBOSE_DEBUG
  290. if (dd->flags & AES_FLAGS_DUMP_REG) {
  291. char tmp[16];
  292. dev_vdbg(dd->dev, "write 0x%08x into %s\n", value,
  293. atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
  294. }
  295. #endif /* VERBOSE_DEBUG */
  296. writel_relaxed(value, dd->io_base + offset);
  297. }
  298. static void atmel_aes_read_n(struct atmel_aes_dev *dd, u32 offset,
  299. u32 *value, int count)
  300. {
  301. for (; count--; value++, offset += 4)
  302. *value = atmel_aes_read(dd, offset);
  303. }
  304. static void atmel_aes_write_n(struct atmel_aes_dev *dd, u32 offset,
  305. const u32 *value, int count)
  306. {
  307. for (; count--; value++, offset += 4)
  308. atmel_aes_write(dd, offset, *value);
  309. }
  310. static inline void atmel_aes_read_block(struct atmel_aes_dev *dd, u32 offset,
  311. u32 *value)
  312. {
  313. atmel_aes_read_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
  314. }
  315. static inline void atmel_aes_write_block(struct atmel_aes_dev *dd, u32 offset,
  316. const u32 *value)
  317. {
  318. atmel_aes_write_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
  319. }
  320. static inline int atmel_aes_wait_for_data_ready(struct atmel_aes_dev *dd,
  321. atmel_aes_fn_t resume)
  322. {
  323. u32 isr = atmel_aes_read(dd, AES_ISR);
  324. if (unlikely(isr & AES_INT_DATARDY))
  325. return resume(dd);
  326. dd->resume = resume;
  327. atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
  328. return -EINPROGRESS;
  329. }
  330. static inline size_t atmel_aes_padlen(size_t len, size_t block_size)
  331. {
  332. len &= block_size - 1;
  333. return len ? block_size - len : 0;
  334. }
  335. static struct atmel_aes_dev *atmel_aes_find_dev(struct atmel_aes_base_ctx *ctx)
  336. {
  337. struct atmel_aes_dev *aes_dd = NULL;
  338. struct atmel_aes_dev *tmp;
  339. spin_lock_bh(&atmel_aes.lock);
  340. if (!ctx->dd) {
  341. list_for_each_entry(tmp, &atmel_aes.dev_list, list) {
  342. aes_dd = tmp;
  343. break;
  344. }
  345. ctx->dd = aes_dd;
  346. } else {
  347. aes_dd = ctx->dd;
  348. }
  349. spin_unlock_bh(&atmel_aes.lock);
  350. return aes_dd;
  351. }
  352. static int atmel_aes_hw_init(struct atmel_aes_dev *dd)
  353. {
  354. int err;
  355. err = clk_enable(dd->iclk);
  356. if (err)
  357. return err;
  358. if (!(dd->flags & AES_FLAGS_INIT)) {
  359. atmel_aes_write(dd, AES_CR, AES_CR_SWRST);
  360. atmel_aes_write(dd, AES_MR, 0xE << AES_MR_CKEY_OFFSET);
  361. dd->flags |= AES_FLAGS_INIT;
  362. }
  363. return 0;
  364. }
  365. static inline unsigned int atmel_aes_get_version(struct atmel_aes_dev *dd)
  366. {
  367. return atmel_aes_read(dd, AES_HW_VERSION) & 0x00000fff;
  368. }
  369. static int atmel_aes_hw_version_init(struct atmel_aes_dev *dd)
  370. {
  371. int err;
  372. err = atmel_aes_hw_init(dd);
  373. if (err)
  374. return err;
  375. dd->hw_version = atmel_aes_get_version(dd);
  376. dev_info(dd->dev, "version: 0x%x\n", dd->hw_version);
  377. clk_disable(dd->iclk);
  378. return 0;
  379. }
  380. static inline void atmel_aes_set_mode(struct atmel_aes_dev *dd,
  381. const struct atmel_aes_reqctx *rctx)
  382. {
  383. /* Clear all but persistent flags and set request flags. */
  384. dd->flags = (dd->flags & AES_FLAGS_PERSISTENT) | rctx->mode;
  385. }
  386. static inline bool atmel_aes_is_encrypt(const struct atmel_aes_dev *dd)
  387. {
  388. return (dd->flags & AES_FLAGS_ENCRYPT);
  389. }
  390. #ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
  391. static void atmel_aes_authenc_complete(struct atmel_aes_dev *dd, int err);
  392. #endif
  393. static inline int atmel_aes_complete(struct atmel_aes_dev *dd, int err)
  394. {
  395. #ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
  396. atmel_aes_authenc_complete(dd, err);
  397. #endif
  398. clk_disable(dd->iclk);
  399. dd->flags &= ~AES_FLAGS_BUSY;
  400. if (dd->is_async)
  401. dd->areq->complete(dd->areq, err);
  402. tasklet_schedule(&dd->queue_task);
  403. return err;
  404. }
  405. static void atmel_aes_write_ctrl_key(struct atmel_aes_dev *dd, bool use_dma,
  406. const u32 *iv, const u32 *key, int keylen)
  407. {
  408. u32 valmr = 0;
  409. /* MR register must be set before IV registers */
  410. if (keylen == AES_KEYSIZE_128)
  411. valmr |= AES_MR_KEYSIZE_128;
  412. else if (keylen == AES_KEYSIZE_192)
  413. valmr |= AES_MR_KEYSIZE_192;
  414. else
  415. valmr |= AES_MR_KEYSIZE_256;
  416. valmr |= dd->flags & AES_FLAGS_MODE_MASK;
  417. if (use_dma) {
  418. valmr |= AES_MR_SMOD_IDATAR0;
  419. if (dd->caps.has_dualbuff)
  420. valmr |= AES_MR_DUALBUFF;
  421. } else {
  422. valmr |= AES_MR_SMOD_AUTO;
  423. }
  424. atmel_aes_write(dd, AES_MR, valmr);
  425. atmel_aes_write_n(dd, AES_KEYWR(0), key, SIZE_IN_WORDS(keylen));
  426. if (iv && (valmr & AES_MR_OPMOD_MASK) != AES_MR_OPMOD_ECB)
  427. atmel_aes_write_block(dd, AES_IVR(0), iv);
  428. }
  429. static inline void atmel_aes_write_ctrl(struct atmel_aes_dev *dd, bool use_dma,
  430. const u32 *iv)
  431. {
  432. atmel_aes_write_ctrl_key(dd, use_dma, iv,
  433. dd->ctx->key, dd->ctx->keylen);
  434. }
  435. /* CPU transfer */
  436. static int atmel_aes_cpu_transfer(struct atmel_aes_dev *dd)
  437. {
  438. int err = 0;
  439. u32 isr;
  440. for (;;) {
  441. atmel_aes_read_block(dd, AES_ODATAR(0), dd->data);
  442. dd->data += 4;
  443. dd->datalen -= AES_BLOCK_SIZE;
  444. if (dd->datalen < AES_BLOCK_SIZE)
  445. break;
  446. atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
  447. isr = atmel_aes_read(dd, AES_ISR);
  448. if (!(isr & AES_INT_DATARDY)) {
  449. dd->resume = atmel_aes_cpu_transfer;
  450. atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
  451. return -EINPROGRESS;
  452. }
  453. }
  454. if (!sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
  455. dd->buf, dd->total))
  456. err = -EINVAL;
  457. if (err)
  458. return atmel_aes_complete(dd, err);
  459. return dd->cpu_transfer_complete(dd);
  460. }
  461. static int atmel_aes_cpu_start(struct atmel_aes_dev *dd,
  462. struct scatterlist *src,
  463. struct scatterlist *dst,
  464. size_t len,
  465. atmel_aes_fn_t resume)
  466. {
  467. size_t padlen = atmel_aes_padlen(len, AES_BLOCK_SIZE);
  468. if (unlikely(len == 0))
  469. return -EINVAL;
  470. sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
  471. dd->total = len;
  472. dd->real_dst = dst;
  473. dd->cpu_transfer_complete = resume;
  474. dd->datalen = len + padlen;
  475. dd->data = (u32 *)dd->buf;
  476. atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
  477. return atmel_aes_wait_for_data_ready(dd, atmel_aes_cpu_transfer);
  478. }
  479. /* DMA transfer */
  480. static void atmel_aes_dma_callback(void *data);
  481. static bool atmel_aes_check_aligned(struct atmel_aes_dev *dd,
  482. struct scatterlist *sg,
  483. size_t len,
  484. struct atmel_aes_dma *dma)
  485. {
  486. int nents;
  487. if (!IS_ALIGNED(len, dd->ctx->block_size))
  488. return false;
  489. for (nents = 0; sg; sg = sg_next(sg), ++nents) {
  490. if (!IS_ALIGNED(sg->offset, sizeof(u32)))
  491. return false;
  492. if (len <= sg->length) {
  493. if (!IS_ALIGNED(len, dd->ctx->block_size))
  494. return false;
  495. dma->nents = nents+1;
  496. dma->remainder = sg->length - len;
  497. sg->length = len;
  498. return true;
  499. }
  500. if (!IS_ALIGNED(sg->length, dd->ctx->block_size))
  501. return false;
  502. len -= sg->length;
  503. }
  504. return false;
  505. }
  506. static inline void atmel_aes_restore_sg(const struct atmel_aes_dma *dma)
  507. {
  508. struct scatterlist *sg = dma->sg;
  509. int nents = dma->nents;
  510. if (!dma->remainder)
  511. return;
  512. while (--nents > 0 && sg)
  513. sg = sg_next(sg);
  514. if (!sg)
  515. return;
  516. sg->length += dma->remainder;
  517. }
  518. static int atmel_aes_map(struct atmel_aes_dev *dd,
  519. struct scatterlist *src,
  520. struct scatterlist *dst,
  521. size_t len)
  522. {
  523. bool src_aligned, dst_aligned;
  524. size_t padlen;
  525. dd->total = len;
  526. dd->src.sg = src;
  527. dd->dst.sg = dst;
  528. dd->real_dst = dst;
  529. src_aligned = atmel_aes_check_aligned(dd, src, len, &dd->src);
  530. if (src == dst)
  531. dst_aligned = src_aligned;
  532. else
  533. dst_aligned = atmel_aes_check_aligned(dd, dst, len, &dd->dst);
  534. if (!src_aligned || !dst_aligned) {
  535. padlen = atmel_aes_padlen(len, dd->ctx->block_size);
  536. if (dd->buflen < len + padlen)
  537. return -ENOMEM;
  538. if (!src_aligned) {
  539. sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
  540. dd->src.sg = &dd->aligned_sg;
  541. dd->src.nents = 1;
  542. dd->src.remainder = 0;
  543. }
  544. if (!dst_aligned) {
  545. dd->dst.sg = &dd->aligned_sg;
  546. dd->dst.nents = 1;
  547. dd->dst.remainder = 0;
  548. }
  549. sg_init_table(&dd->aligned_sg, 1);
  550. sg_set_buf(&dd->aligned_sg, dd->buf, len + padlen);
  551. }
  552. if (dd->src.sg == dd->dst.sg) {
  553. dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
  554. DMA_BIDIRECTIONAL);
  555. dd->dst.sg_len = dd->src.sg_len;
  556. if (!dd->src.sg_len)
  557. return -EFAULT;
  558. } else {
  559. dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
  560. DMA_TO_DEVICE);
  561. if (!dd->src.sg_len)
  562. return -EFAULT;
  563. dd->dst.sg_len = dma_map_sg(dd->dev, dd->dst.sg, dd->dst.nents,
  564. DMA_FROM_DEVICE);
  565. if (!dd->dst.sg_len) {
  566. dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
  567. DMA_TO_DEVICE);
  568. return -EFAULT;
  569. }
  570. }
  571. return 0;
  572. }
  573. static void atmel_aes_unmap(struct atmel_aes_dev *dd)
  574. {
  575. if (dd->src.sg == dd->dst.sg) {
  576. dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
  577. DMA_BIDIRECTIONAL);
  578. if (dd->src.sg != &dd->aligned_sg)
  579. atmel_aes_restore_sg(&dd->src);
  580. } else {
  581. dma_unmap_sg(dd->dev, dd->dst.sg, dd->dst.nents,
  582. DMA_FROM_DEVICE);
  583. if (dd->dst.sg != &dd->aligned_sg)
  584. atmel_aes_restore_sg(&dd->dst);
  585. dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
  586. DMA_TO_DEVICE);
  587. if (dd->src.sg != &dd->aligned_sg)
  588. atmel_aes_restore_sg(&dd->src);
  589. }
  590. if (dd->dst.sg == &dd->aligned_sg)
  591. sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
  592. dd->buf, dd->total);
  593. }
  594. static int atmel_aes_dma_transfer_start(struct atmel_aes_dev *dd,
  595. enum dma_slave_buswidth addr_width,
  596. enum dma_transfer_direction dir,
  597. u32 maxburst)
  598. {
  599. struct dma_async_tx_descriptor *desc;
  600. struct dma_slave_config config;
  601. dma_async_tx_callback callback;
  602. struct atmel_aes_dma *dma;
  603. int err;
  604. memset(&config, 0, sizeof(config));
  605. config.direction = dir;
  606. config.src_addr_width = addr_width;
  607. config.dst_addr_width = addr_width;
  608. config.src_maxburst = maxburst;
  609. config.dst_maxburst = maxburst;
  610. switch (dir) {
  611. case DMA_MEM_TO_DEV:
  612. dma = &dd->src;
  613. callback = NULL;
  614. config.dst_addr = dd->phys_base + AES_IDATAR(0);
  615. break;
  616. case DMA_DEV_TO_MEM:
  617. dma = &dd->dst;
  618. callback = atmel_aes_dma_callback;
  619. config.src_addr = dd->phys_base + AES_ODATAR(0);
  620. break;
  621. default:
  622. return -EINVAL;
  623. }
  624. err = dmaengine_slave_config(dma->chan, &config);
  625. if (err)
  626. return err;
  627. desc = dmaengine_prep_slave_sg(dma->chan, dma->sg, dma->sg_len, dir,
  628. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  629. if (!desc)
  630. return -ENOMEM;
  631. desc->callback = callback;
  632. desc->callback_param = dd;
  633. dmaengine_submit(desc);
  634. dma_async_issue_pending(dma->chan);
  635. return 0;
  636. }
  637. static void atmel_aes_dma_transfer_stop(struct atmel_aes_dev *dd,
  638. enum dma_transfer_direction dir)
  639. {
  640. struct atmel_aes_dma *dma;
  641. switch (dir) {
  642. case DMA_MEM_TO_DEV:
  643. dma = &dd->src;
  644. break;
  645. case DMA_DEV_TO_MEM:
  646. dma = &dd->dst;
  647. break;
  648. default:
  649. return;
  650. }
  651. dmaengine_terminate_all(dma->chan);
  652. }
  653. static int atmel_aes_dma_start(struct atmel_aes_dev *dd,
  654. struct scatterlist *src,
  655. struct scatterlist *dst,
  656. size_t len,
  657. atmel_aes_fn_t resume)
  658. {
  659. enum dma_slave_buswidth addr_width;
  660. u32 maxburst;
  661. int err;
  662. switch (dd->ctx->block_size) {
  663. case CFB8_BLOCK_SIZE:
  664. addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
  665. maxburst = 1;
  666. break;
  667. case CFB16_BLOCK_SIZE:
  668. addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
  669. maxburst = 1;
  670. break;
  671. case CFB32_BLOCK_SIZE:
  672. case CFB64_BLOCK_SIZE:
  673. addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
  674. maxburst = 1;
  675. break;
  676. case AES_BLOCK_SIZE:
  677. addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
  678. maxburst = dd->caps.max_burst_size;
  679. break;
  680. default:
  681. err = -EINVAL;
  682. goto exit;
  683. }
  684. err = atmel_aes_map(dd, src, dst, len);
  685. if (err)
  686. goto exit;
  687. dd->resume = resume;
  688. /* Set output DMA transfer first */
  689. err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_DEV_TO_MEM,
  690. maxburst);
  691. if (err)
  692. goto unmap;
  693. /* Then set input DMA transfer */
  694. err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_MEM_TO_DEV,
  695. maxburst);
  696. if (err)
  697. goto output_transfer_stop;
  698. return -EINPROGRESS;
  699. output_transfer_stop:
  700. atmel_aes_dma_transfer_stop(dd, DMA_DEV_TO_MEM);
  701. unmap:
  702. atmel_aes_unmap(dd);
  703. exit:
  704. return atmel_aes_complete(dd, err);
  705. }
  706. static void atmel_aes_dma_stop(struct atmel_aes_dev *dd)
  707. {
  708. atmel_aes_dma_transfer_stop(dd, DMA_MEM_TO_DEV);
  709. atmel_aes_dma_transfer_stop(dd, DMA_DEV_TO_MEM);
  710. atmel_aes_unmap(dd);
  711. }
  712. static void atmel_aes_dma_callback(void *data)
  713. {
  714. struct atmel_aes_dev *dd = data;
  715. atmel_aes_dma_stop(dd);
  716. dd->is_async = true;
  717. (void)dd->resume(dd);
  718. }
  719. static int atmel_aes_handle_queue(struct atmel_aes_dev *dd,
  720. struct crypto_async_request *new_areq)
  721. {
  722. struct crypto_async_request *areq, *backlog;
  723. struct atmel_aes_base_ctx *ctx;
  724. unsigned long flags;
  725. bool start_async;
  726. int err, ret = 0;
  727. spin_lock_irqsave(&dd->lock, flags);
  728. if (new_areq)
  729. ret = crypto_enqueue_request(&dd->queue, new_areq);
  730. if (dd->flags & AES_FLAGS_BUSY) {
  731. spin_unlock_irqrestore(&dd->lock, flags);
  732. return ret;
  733. }
  734. backlog = crypto_get_backlog(&dd->queue);
  735. areq = crypto_dequeue_request(&dd->queue);
  736. if (areq)
  737. dd->flags |= AES_FLAGS_BUSY;
  738. spin_unlock_irqrestore(&dd->lock, flags);
  739. if (!areq)
  740. return ret;
  741. if (backlog)
  742. backlog->complete(backlog, -EINPROGRESS);
  743. ctx = crypto_tfm_ctx(areq->tfm);
  744. dd->areq = areq;
  745. dd->ctx = ctx;
  746. start_async = (areq != new_areq);
  747. dd->is_async = start_async;
  748. /* WARNING: ctx->start() MAY change dd->is_async. */
  749. err = ctx->start(dd);
  750. return (start_async) ? ret : err;
  751. }
  752. /* AES async block ciphers */
  753. static int atmel_aes_transfer_complete(struct atmel_aes_dev *dd)
  754. {
  755. return atmel_aes_complete(dd, 0);
  756. }
  757. static int atmel_aes_start(struct atmel_aes_dev *dd)
  758. {
  759. struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
  760. struct atmel_aes_reqctx *rctx = ablkcipher_request_ctx(req);
  761. bool use_dma = (req->nbytes >= ATMEL_AES_DMA_THRESHOLD ||
  762. dd->ctx->block_size != AES_BLOCK_SIZE);
  763. int err;
  764. atmel_aes_set_mode(dd, rctx);
  765. err = atmel_aes_hw_init(dd);
  766. if (err)
  767. return atmel_aes_complete(dd, err);
  768. atmel_aes_write_ctrl(dd, use_dma, req->info);
  769. if (use_dma)
  770. return atmel_aes_dma_start(dd, req->src, req->dst, req->nbytes,
  771. atmel_aes_transfer_complete);
  772. return atmel_aes_cpu_start(dd, req->src, req->dst, req->nbytes,
  773. atmel_aes_transfer_complete);
  774. }
  775. static inline struct atmel_aes_ctr_ctx *
  776. atmel_aes_ctr_ctx_cast(struct atmel_aes_base_ctx *ctx)
  777. {
  778. return container_of(ctx, struct atmel_aes_ctr_ctx, base);
  779. }
  780. static int atmel_aes_ctr_transfer(struct atmel_aes_dev *dd)
  781. {
  782. struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
  783. struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
  784. struct scatterlist *src, *dst;
  785. u32 ctr, blocks;
  786. size_t datalen;
  787. bool use_dma, fragmented = false;
  788. /* Check for transfer completion. */
  789. ctx->offset += dd->total;
  790. if (ctx->offset >= req->nbytes)
  791. return atmel_aes_transfer_complete(dd);
  792. /* Compute data length. */
  793. datalen = req->nbytes - ctx->offset;
  794. blocks = DIV_ROUND_UP(datalen, AES_BLOCK_SIZE);
  795. ctr = be32_to_cpu(ctx->iv[3]);
  796. if (dd->caps.has_ctr32) {
  797. /* Check 32bit counter overflow. */
  798. u32 start = ctr;
  799. u32 end = start + blocks - 1;
  800. if (end < start) {
  801. ctr |= 0xffffffff;
  802. datalen = AES_BLOCK_SIZE * -start;
  803. fragmented = true;
  804. }
  805. } else {
  806. /* Check 16bit counter overflow. */
  807. u16 start = ctr & 0xffff;
  808. u16 end = start + (u16)blocks - 1;
  809. if (blocks >> 16 || end < start) {
  810. ctr |= 0xffff;
  811. datalen = AES_BLOCK_SIZE * (0x10000-start);
  812. fragmented = true;
  813. }
  814. }
  815. use_dma = (datalen >= ATMEL_AES_DMA_THRESHOLD);
  816. /* Jump to offset. */
  817. src = scatterwalk_ffwd(ctx->src, req->src, ctx->offset);
  818. dst = ((req->src == req->dst) ? src :
  819. scatterwalk_ffwd(ctx->dst, req->dst, ctx->offset));
  820. /* Configure hardware. */
  821. atmel_aes_write_ctrl(dd, use_dma, ctx->iv);
  822. if (unlikely(fragmented)) {
  823. /*
  824. * Increment the counter manually to cope with the hardware
  825. * counter overflow.
  826. */
  827. ctx->iv[3] = cpu_to_be32(ctr);
  828. crypto_inc((u8 *)ctx->iv, AES_BLOCK_SIZE);
  829. }
  830. if (use_dma)
  831. return atmel_aes_dma_start(dd, src, dst, datalen,
  832. atmel_aes_ctr_transfer);
  833. return atmel_aes_cpu_start(dd, src, dst, datalen,
  834. atmel_aes_ctr_transfer);
  835. }
  836. static int atmel_aes_ctr_start(struct atmel_aes_dev *dd)
  837. {
  838. struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
  839. struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
  840. struct atmel_aes_reqctx *rctx = ablkcipher_request_ctx(req);
  841. int err;
  842. atmel_aes_set_mode(dd, rctx);
  843. err = atmel_aes_hw_init(dd);
  844. if (err)
  845. return atmel_aes_complete(dd, err);
  846. memcpy(ctx->iv, req->info, AES_BLOCK_SIZE);
  847. ctx->offset = 0;
  848. dd->total = 0;
  849. return atmel_aes_ctr_transfer(dd);
  850. }
  851. static int atmel_aes_crypt(struct ablkcipher_request *req, unsigned long mode)
  852. {
  853. struct atmel_aes_base_ctx *ctx;
  854. struct atmel_aes_reqctx *rctx;
  855. struct atmel_aes_dev *dd;
  856. ctx = crypto_ablkcipher_ctx(crypto_ablkcipher_reqtfm(req));
  857. switch (mode & AES_FLAGS_OPMODE_MASK) {
  858. case AES_FLAGS_CFB8:
  859. ctx->block_size = CFB8_BLOCK_SIZE;
  860. break;
  861. case AES_FLAGS_CFB16:
  862. ctx->block_size = CFB16_BLOCK_SIZE;
  863. break;
  864. case AES_FLAGS_CFB32:
  865. ctx->block_size = CFB32_BLOCK_SIZE;
  866. break;
  867. case AES_FLAGS_CFB64:
  868. ctx->block_size = CFB64_BLOCK_SIZE;
  869. break;
  870. default:
  871. ctx->block_size = AES_BLOCK_SIZE;
  872. break;
  873. }
  874. dd = atmel_aes_find_dev(ctx);
  875. if (!dd)
  876. return -ENODEV;
  877. rctx = ablkcipher_request_ctx(req);
  878. rctx->mode = mode;
  879. return atmel_aes_handle_queue(dd, &req->base);
  880. }
  881. static int atmel_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
  882. unsigned int keylen)
  883. {
  884. struct atmel_aes_base_ctx *ctx = crypto_ablkcipher_ctx(tfm);
  885. if (keylen != AES_KEYSIZE_128 &&
  886. keylen != AES_KEYSIZE_192 &&
  887. keylen != AES_KEYSIZE_256) {
  888. crypto_ablkcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
  889. return -EINVAL;
  890. }
  891. memcpy(ctx->key, key, keylen);
  892. ctx->keylen = keylen;
  893. return 0;
  894. }
  895. static int atmel_aes_ecb_encrypt(struct ablkcipher_request *req)
  896. {
  897. return atmel_aes_crypt(req, AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
  898. }
  899. static int atmel_aes_ecb_decrypt(struct ablkcipher_request *req)
  900. {
  901. return atmel_aes_crypt(req, AES_FLAGS_ECB);
  902. }
  903. static int atmel_aes_cbc_encrypt(struct ablkcipher_request *req)
  904. {
  905. return atmel_aes_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT);
  906. }
  907. static int atmel_aes_cbc_decrypt(struct ablkcipher_request *req)
  908. {
  909. return atmel_aes_crypt(req, AES_FLAGS_CBC);
  910. }
  911. static int atmel_aes_ofb_encrypt(struct ablkcipher_request *req)
  912. {
  913. return atmel_aes_crypt(req, AES_FLAGS_OFB | AES_FLAGS_ENCRYPT);
  914. }
  915. static int atmel_aes_ofb_decrypt(struct ablkcipher_request *req)
  916. {
  917. return atmel_aes_crypt(req, AES_FLAGS_OFB);
  918. }
  919. static int atmel_aes_cfb_encrypt(struct ablkcipher_request *req)
  920. {
  921. return atmel_aes_crypt(req, AES_FLAGS_CFB128 | AES_FLAGS_ENCRYPT);
  922. }
  923. static int atmel_aes_cfb_decrypt(struct ablkcipher_request *req)
  924. {
  925. return atmel_aes_crypt(req, AES_FLAGS_CFB128);
  926. }
  927. static int atmel_aes_cfb64_encrypt(struct ablkcipher_request *req)
  928. {
  929. return atmel_aes_crypt(req, AES_FLAGS_CFB64 | AES_FLAGS_ENCRYPT);
  930. }
  931. static int atmel_aes_cfb64_decrypt(struct ablkcipher_request *req)
  932. {
  933. return atmel_aes_crypt(req, AES_FLAGS_CFB64);
  934. }
  935. static int atmel_aes_cfb32_encrypt(struct ablkcipher_request *req)
  936. {
  937. return atmel_aes_crypt(req, AES_FLAGS_CFB32 | AES_FLAGS_ENCRYPT);
  938. }
  939. static int atmel_aes_cfb32_decrypt(struct ablkcipher_request *req)
  940. {
  941. return atmel_aes_crypt(req, AES_FLAGS_CFB32);
  942. }
  943. static int atmel_aes_cfb16_encrypt(struct ablkcipher_request *req)
  944. {
  945. return atmel_aes_crypt(req, AES_FLAGS_CFB16 | AES_FLAGS_ENCRYPT);
  946. }
  947. static int atmel_aes_cfb16_decrypt(struct ablkcipher_request *req)
  948. {
  949. return atmel_aes_crypt(req, AES_FLAGS_CFB16);
  950. }
  951. static int atmel_aes_cfb8_encrypt(struct ablkcipher_request *req)
  952. {
  953. return atmel_aes_crypt(req, AES_FLAGS_CFB8 | AES_FLAGS_ENCRYPT);
  954. }
  955. static int atmel_aes_cfb8_decrypt(struct ablkcipher_request *req)
  956. {
  957. return atmel_aes_crypt(req, AES_FLAGS_CFB8);
  958. }
  959. static int atmel_aes_ctr_encrypt(struct ablkcipher_request *req)
  960. {
  961. return atmel_aes_crypt(req, AES_FLAGS_CTR | AES_FLAGS_ENCRYPT);
  962. }
  963. static int atmel_aes_ctr_decrypt(struct ablkcipher_request *req)
  964. {
  965. return atmel_aes_crypt(req, AES_FLAGS_CTR);
  966. }
  967. static int atmel_aes_cra_init(struct crypto_tfm *tfm)
  968. {
  969. struct atmel_aes_ctx *ctx = crypto_tfm_ctx(tfm);
  970. tfm->crt_ablkcipher.reqsize = sizeof(struct atmel_aes_reqctx);
  971. ctx->base.start = atmel_aes_start;
  972. return 0;
  973. }
  974. static int atmel_aes_ctr_cra_init(struct crypto_tfm *tfm)
  975. {
  976. struct atmel_aes_ctx *ctx = crypto_tfm_ctx(tfm);
  977. tfm->crt_ablkcipher.reqsize = sizeof(struct atmel_aes_reqctx);
  978. ctx->base.start = atmel_aes_ctr_start;
  979. return 0;
  980. }
  981. static void atmel_aes_cra_exit(struct crypto_tfm *tfm)
  982. {
  983. }
  984. static struct crypto_alg aes_algs[] = {
  985. {
  986. .cra_name = "ecb(aes)",
  987. .cra_driver_name = "atmel-ecb-aes",
  988. .cra_priority = ATMEL_AES_PRIORITY,
  989. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
  990. .cra_blocksize = AES_BLOCK_SIZE,
  991. .cra_ctxsize = sizeof(struct atmel_aes_ctx),
  992. .cra_alignmask = 0xf,
  993. .cra_type = &crypto_ablkcipher_type,
  994. .cra_module = THIS_MODULE,
  995. .cra_init = atmel_aes_cra_init,
  996. .cra_exit = atmel_aes_cra_exit,
  997. .cra_u.ablkcipher = {
  998. .min_keysize = AES_MIN_KEY_SIZE,
  999. .max_keysize = AES_MAX_KEY_SIZE,
  1000. .setkey = atmel_aes_setkey,
  1001. .encrypt = atmel_aes_ecb_encrypt,
  1002. .decrypt = atmel_aes_ecb_decrypt,
  1003. }
  1004. },
  1005. {
  1006. .cra_name = "cbc(aes)",
  1007. .cra_driver_name = "atmel-cbc-aes",
  1008. .cra_priority = ATMEL_AES_PRIORITY,
  1009. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
  1010. .cra_blocksize = AES_BLOCK_SIZE,
  1011. .cra_ctxsize = sizeof(struct atmel_aes_ctx),
  1012. .cra_alignmask = 0xf,
  1013. .cra_type = &crypto_ablkcipher_type,
  1014. .cra_module = THIS_MODULE,
  1015. .cra_init = atmel_aes_cra_init,
  1016. .cra_exit = atmel_aes_cra_exit,
  1017. .cra_u.ablkcipher = {
  1018. .min_keysize = AES_MIN_KEY_SIZE,
  1019. .max_keysize = AES_MAX_KEY_SIZE,
  1020. .ivsize = AES_BLOCK_SIZE,
  1021. .setkey = atmel_aes_setkey,
  1022. .encrypt = atmel_aes_cbc_encrypt,
  1023. .decrypt = atmel_aes_cbc_decrypt,
  1024. }
  1025. },
  1026. {
  1027. .cra_name = "ofb(aes)",
  1028. .cra_driver_name = "atmel-ofb-aes",
  1029. .cra_priority = ATMEL_AES_PRIORITY,
  1030. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
  1031. .cra_blocksize = AES_BLOCK_SIZE,
  1032. .cra_ctxsize = sizeof(struct atmel_aes_ctx),
  1033. .cra_alignmask = 0xf,
  1034. .cra_type = &crypto_ablkcipher_type,
  1035. .cra_module = THIS_MODULE,
  1036. .cra_init = atmel_aes_cra_init,
  1037. .cra_exit = atmel_aes_cra_exit,
  1038. .cra_u.ablkcipher = {
  1039. .min_keysize = AES_MIN_KEY_SIZE,
  1040. .max_keysize = AES_MAX_KEY_SIZE,
  1041. .ivsize = AES_BLOCK_SIZE,
  1042. .setkey = atmel_aes_setkey,
  1043. .encrypt = atmel_aes_ofb_encrypt,
  1044. .decrypt = atmel_aes_ofb_decrypt,
  1045. }
  1046. },
  1047. {
  1048. .cra_name = "cfb(aes)",
  1049. .cra_driver_name = "atmel-cfb-aes",
  1050. .cra_priority = ATMEL_AES_PRIORITY,
  1051. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
  1052. .cra_blocksize = AES_BLOCK_SIZE,
  1053. .cra_ctxsize = sizeof(struct atmel_aes_ctx),
  1054. .cra_alignmask = 0xf,
  1055. .cra_type = &crypto_ablkcipher_type,
  1056. .cra_module = THIS_MODULE,
  1057. .cra_init = atmel_aes_cra_init,
  1058. .cra_exit = atmel_aes_cra_exit,
  1059. .cra_u.ablkcipher = {
  1060. .min_keysize = AES_MIN_KEY_SIZE,
  1061. .max_keysize = AES_MAX_KEY_SIZE,
  1062. .ivsize = AES_BLOCK_SIZE,
  1063. .setkey = atmel_aes_setkey,
  1064. .encrypt = atmel_aes_cfb_encrypt,
  1065. .decrypt = atmel_aes_cfb_decrypt,
  1066. }
  1067. },
  1068. {
  1069. .cra_name = "cfb32(aes)",
  1070. .cra_driver_name = "atmel-cfb32-aes",
  1071. .cra_priority = ATMEL_AES_PRIORITY,
  1072. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
  1073. .cra_blocksize = CFB32_BLOCK_SIZE,
  1074. .cra_ctxsize = sizeof(struct atmel_aes_ctx),
  1075. .cra_alignmask = 0x3,
  1076. .cra_type = &crypto_ablkcipher_type,
  1077. .cra_module = THIS_MODULE,
  1078. .cra_init = atmel_aes_cra_init,
  1079. .cra_exit = atmel_aes_cra_exit,
  1080. .cra_u.ablkcipher = {
  1081. .min_keysize = AES_MIN_KEY_SIZE,
  1082. .max_keysize = AES_MAX_KEY_SIZE,
  1083. .ivsize = AES_BLOCK_SIZE,
  1084. .setkey = atmel_aes_setkey,
  1085. .encrypt = atmel_aes_cfb32_encrypt,
  1086. .decrypt = atmel_aes_cfb32_decrypt,
  1087. }
  1088. },
  1089. {
  1090. .cra_name = "cfb16(aes)",
  1091. .cra_driver_name = "atmel-cfb16-aes",
  1092. .cra_priority = ATMEL_AES_PRIORITY,
  1093. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
  1094. .cra_blocksize = CFB16_BLOCK_SIZE,
  1095. .cra_ctxsize = sizeof(struct atmel_aes_ctx),
  1096. .cra_alignmask = 0x1,
  1097. .cra_type = &crypto_ablkcipher_type,
  1098. .cra_module = THIS_MODULE,
  1099. .cra_init = atmel_aes_cra_init,
  1100. .cra_exit = atmel_aes_cra_exit,
  1101. .cra_u.ablkcipher = {
  1102. .min_keysize = AES_MIN_KEY_SIZE,
  1103. .max_keysize = AES_MAX_KEY_SIZE,
  1104. .ivsize = AES_BLOCK_SIZE,
  1105. .setkey = atmel_aes_setkey,
  1106. .encrypt = atmel_aes_cfb16_encrypt,
  1107. .decrypt = atmel_aes_cfb16_decrypt,
  1108. }
  1109. },
  1110. {
  1111. .cra_name = "cfb8(aes)",
  1112. .cra_driver_name = "atmel-cfb8-aes",
  1113. .cra_priority = ATMEL_AES_PRIORITY,
  1114. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
  1115. .cra_blocksize = CFB8_BLOCK_SIZE,
  1116. .cra_ctxsize = sizeof(struct atmel_aes_ctx),
  1117. .cra_alignmask = 0x0,
  1118. .cra_type = &crypto_ablkcipher_type,
  1119. .cra_module = THIS_MODULE,
  1120. .cra_init = atmel_aes_cra_init,
  1121. .cra_exit = atmel_aes_cra_exit,
  1122. .cra_u.ablkcipher = {
  1123. .min_keysize = AES_MIN_KEY_SIZE,
  1124. .max_keysize = AES_MAX_KEY_SIZE,
  1125. .ivsize = AES_BLOCK_SIZE,
  1126. .setkey = atmel_aes_setkey,
  1127. .encrypt = atmel_aes_cfb8_encrypt,
  1128. .decrypt = atmel_aes_cfb8_decrypt,
  1129. }
  1130. },
  1131. {
  1132. .cra_name = "ctr(aes)",
  1133. .cra_driver_name = "atmel-ctr-aes",
  1134. .cra_priority = ATMEL_AES_PRIORITY,
  1135. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
  1136. .cra_blocksize = 1,
  1137. .cra_ctxsize = sizeof(struct atmel_aes_ctr_ctx),
  1138. .cra_alignmask = 0xf,
  1139. .cra_type = &crypto_ablkcipher_type,
  1140. .cra_module = THIS_MODULE,
  1141. .cra_init = atmel_aes_ctr_cra_init,
  1142. .cra_exit = atmel_aes_cra_exit,
  1143. .cra_u.ablkcipher = {
  1144. .min_keysize = AES_MIN_KEY_SIZE,
  1145. .max_keysize = AES_MAX_KEY_SIZE,
  1146. .ivsize = AES_BLOCK_SIZE,
  1147. .setkey = atmel_aes_setkey,
  1148. .encrypt = atmel_aes_ctr_encrypt,
  1149. .decrypt = atmel_aes_ctr_decrypt,
  1150. }
  1151. },
  1152. };
  1153. static struct crypto_alg aes_cfb64_alg = {
  1154. .cra_name = "cfb64(aes)",
  1155. .cra_driver_name = "atmel-cfb64-aes",
  1156. .cra_priority = ATMEL_AES_PRIORITY,
  1157. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
  1158. .cra_blocksize = CFB64_BLOCK_SIZE,
  1159. .cra_ctxsize = sizeof(struct atmel_aes_ctx),
  1160. .cra_alignmask = 0x7,
  1161. .cra_type = &crypto_ablkcipher_type,
  1162. .cra_module = THIS_MODULE,
  1163. .cra_init = atmel_aes_cra_init,
  1164. .cra_exit = atmel_aes_cra_exit,
  1165. .cra_u.ablkcipher = {
  1166. .min_keysize = AES_MIN_KEY_SIZE,
  1167. .max_keysize = AES_MAX_KEY_SIZE,
  1168. .ivsize = AES_BLOCK_SIZE,
  1169. .setkey = atmel_aes_setkey,
  1170. .encrypt = atmel_aes_cfb64_encrypt,
  1171. .decrypt = atmel_aes_cfb64_decrypt,
  1172. }
  1173. };
  1174. /* gcm aead functions */
  1175. static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
  1176. const u32 *data, size_t datalen,
  1177. const u32 *ghash_in, u32 *ghash_out,
  1178. atmel_aes_fn_t resume);
  1179. static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd);
  1180. static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd);
  1181. static int atmel_aes_gcm_start(struct atmel_aes_dev *dd);
  1182. static int atmel_aes_gcm_process(struct atmel_aes_dev *dd);
  1183. static int atmel_aes_gcm_length(struct atmel_aes_dev *dd);
  1184. static int atmel_aes_gcm_data(struct atmel_aes_dev *dd);
  1185. static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd);
  1186. static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd);
  1187. static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd);
  1188. static inline struct atmel_aes_gcm_ctx *
  1189. atmel_aes_gcm_ctx_cast(struct atmel_aes_base_ctx *ctx)
  1190. {
  1191. return container_of(ctx, struct atmel_aes_gcm_ctx, base);
  1192. }
  1193. static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
  1194. const u32 *data, size_t datalen,
  1195. const u32 *ghash_in, u32 *ghash_out,
  1196. atmel_aes_fn_t resume)
  1197. {
  1198. struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
  1199. dd->data = (u32 *)data;
  1200. dd->datalen = datalen;
  1201. ctx->ghash_in = ghash_in;
  1202. ctx->ghash_out = ghash_out;
  1203. ctx->ghash_resume = resume;
  1204. atmel_aes_write_ctrl(dd, false, NULL);
  1205. return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_ghash_init);
  1206. }
  1207. static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd)
  1208. {
  1209. struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
  1210. /* Set the data length. */
  1211. atmel_aes_write(dd, AES_AADLENR, dd->total);
  1212. atmel_aes_write(dd, AES_CLENR, 0);
  1213. /* If needed, overwrite the GCM Intermediate Hash Word Registers */
  1214. if (ctx->ghash_in)
  1215. atmel_aes_write_block(dd, AES_GHASHR(0), ctx->ghash_in);
  1216. return atmel_aes_gcm_ghash_finalize(dd);
  1217. }
  1218. static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd)
  1219. {
  1220. struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
  1221. u32 isr;
  1222. /* Write data into the Input Data Registers. */
  1223. while (dd->datalen > 0) {
  1224. atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
  1225. dd->data += 4;
  1226. dd->datalen -= AES_BLOCK_SIZE;
  1227. isr = atmel_aes_read(dd, AES_ISR);
  1228. if (!(isr & AES_INT_DATARDY)) {
  1229. dd->resume = atmel_aes_gcm_ghash_finalize;
  1230. atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
  1231. return -EINPROGRESS;
  1232. }
  1233. }
  1234. /* Read the computed hash from GHASHRx. */
  1235. atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash_out);
  1236. return ctx->ghash_resume(dd);
  1237. }
  1238. static int atmel_aes_gcm_start(struct atmel_aes_dev *dd)
  1239. {
  1240. struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
  1241. struct aead_request *req = aead_request_cast(dd->areq);
  1242. struct crypto_aead *tfm = crypto_aead_reqtfm(req);
  1243. struct atmel_aes_reqctx *rctx = aead_request_ctx(req);
  1244. size_t ivsize = crypto_aead_ivsize(tfm);
  1245. size_t datalen, padlen;
  1246. const void *iv = req->iv;
  1247. u8 *data = dd->buf;
  1248. int err;
  1249. atmel_aes_set_mode(dd, rctx);
  1250. err = atmel_aes_hw_init(dd);
  1251. if (err)
  1252. return atmel_aes_complete(dd, err);
  1253. if (likely(ivsize == 12)) {
  1254. memcpy(ctx->j0, iv, ivsize);
  1255. ctx->j0[3] = cpu_to_be32(1);
  1256. return atmel_aes_gcm_process(dd);
  1257. }
  1258. padlen = atmel_aes_padlen(ivsize, AES_BLOCK_SIZE);
  1259. datalen = ivsize + padlen + AES_BLOCK_SIZE;
  1260. if (datalen > dd->buflen)
  1261. return atmel_aes_complete(dd, -EINVAL);
  1262. memcpy(data, iv, ivsize);
  1263. memset(data + ivsize, 0, padlen + sizeof(u64));
  1264. ((u64 *)(data + datalen))[-1] = cpu_to_be64(ivsize * 8);
  1265. return atmel_aes_gcm_ghash(dd, (const u32 *)data, datalen,
  1266. NULL, ctx->j0, atmel_aes_gcm_process);
  1267. }
  1268. static int atmel_aes_gcm_process(struct atmel_aes_dev *dd)
  1269. {
  1270. struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
  1271. struct aead_request *req = aead_request_cast(dd->areq);
  1272. struct crypto_aead *tfm = crypto_aead_reqtfm(req);
  1273. bool enc = atmel_aes_is_encrypt(dd);
  1274. u32 authsize;
  1275. /* Compute text length. */
  1276. authsize = crypto_aead_authsize(tfm);
  1277. ctx->textlen = req->cryptlen - (enc ? 0 : authsize);
  1278. /*
  1279. * According to tcrypt test suite, the GCM Automatic Tag Generation
  1280. * fails when both the message and its associated data are empty.
  1281. */
  1282. if (likely(req->assoclen != 0 || ctx->textlen != 0))
  1283. dd->flags |= AES_FLAGS_GTAGEN;
  1284. atmel_aes_write_ctrl(dd, false, NULL);
  1285. return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_length);
  1286. }
  1287. static int atmel_aes_gcm_length(struct atmel_aes_dev *dd)
  1288. {
  1289. struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
  1290. struct aead_request *req = aead_request_cast(dd->areq);
  1291. u32 j0_lsw, *j0 = ctx->j0;
  1292. size_t padlen;
  1293. /* Write incr32(J0) into IV. */
  1294. j0_lsw = j0[3];
  1295. j0[3] = cpu_to_be32(be32_to_cpu(j0[3]) + 1);
  1296. atmel_aes_write_block(dd, AES_IVR(0), j0);
  1297. j0[3] = j0_lsw;
  1298. /* Set aad and text lengths. */
  1299. atmel_aes_write(dd, AES_AADLENR, req->assoclen);
  1300. atmel_aes_write(dd, AES_CLENR, ctx->textlen);
  1301. /* Check whether AAD are present. */
  1302. if (unlikely(req->assoclen == 0)) {
  1303. dd->datalen = 0;
  1304. return atmel_aes_gcm_data(dd);
  1305. }
  1306. /* Copy assoc data and add padding. */
  1307. padlen = atmel_aes_padlen(req->assoclen, AES_BLOCK_SIZE);
  1308. if (unlikely(req->assoclen + padlen > dd->buflen))
  1309. return atmel_aes_complete(dd, -EINVAL);
  1310. sg_copy_to_buffer(req->src, sg_nents(req->src), dd->buf, req->assoclen);
  1311. /* Write assoc data into the Input Data register. */
  1312. dd->data = (u32 *)dd->buf;
  1313. dd->datalen = req->assoclen + padlen;
  1314. return atmel_aes_gcm_data(dd);
  1315. }
  1316. static int atmel_aes_gcm_data(struct atmel_aes_dev *dd)
  1317. {
  1318. struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
  1319. struct aead_request *req = aead_request_cast(dd->areq);
  1320. bool use_dma = (ctx->textlen >= ATMEL_AES_DMA_THRESHOLD);
  1321. struct scatterlist *src, *dst;
  1322. u32 isr, mr;
  1323. /* Write AAD first. */
  1324. while (dd->datalen > 0) {
  1325. atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
  1326. dd->data += 4;
  1327. dd->datalen -= AES_BLOCK_SIZE;
  1328. isr = atmel_aes_read(dd, AES_ISR);
  1329. if (!(isr & AES_INT_DATARDY)) {
  1330. dd->resume = atmel_aes_gcm_data;
  1331. atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
  1332. return -EINPROGRESS;
  1333. }
  1334. }
  1335. /* GMAC only. */
  1336. if (unlikely(ctx->textlen == 0))
  1337. return atmel_aes_gcm_tag_init(dd);
  1338. /* Prepare src and dst scatter lists to transfer cipher/plain texts */
  1339. src = scatterwalk_ffwd(ctx->src, req->src, req->assoclen);
  1340. dst = ((req->src == req->dst) ? src :
  1341. scatterwalk_ffwd(ctx->dst, req->dst, req->assoclen));
  1342. if (use_dma) {
  1343. /* Update the Mode Register for DMA transfers. */
  1344. mr = atmel_aes_read(dd, AES_MR);
  1345. mr &= ~(AES_MR_SMOD_MASK | AES_MR_DUALBUFF);
  1346. mr |= AES_MR_SMOD_IDATAR0;
  1347. if (dd->caps.has_dualbuff)
  1348. mr |= AES_MR_DUALBUFF;
  1349. atmel_aes_write(dd, AES_MR, mr);
  1350. return atmel_aes_dma_start(dd, src, dst, ctx->textlen,
  1351. atmel_aes_gcm_tag_init);
  1352. }
  1353. return atmel_aes_cpu_start(dd, src, dst, ctx->textlen,
  1354. atmel_aes_gcm_tag_init);
  1355. }
  1356. static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd)
  1357. {
  1358. struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
  1359. struct aead_request *req = aead_request_cast(dd->areq);
  1360. u64 *data = dd->buf;
  1361. if (likely(dd->flags & AES_FLAGS_GTAGEN)) {
  1362. if (!(atmel_aes_read(dd, AES_ISR) & AES_INT_TAGRDY)) {
  1363. dd->resume = atmel_aes_gcm_tag_init;
  1364. atmel_aes_write(dd, AES_IER, AES_INT_TAGRDY);
  1365. return -EINPROGRESS;
  1366. }
  1367. return atmel_aes_gcm_finalize(dd);
  1368. }
  1369. /* Read the GCM Intermediate Hash Word Registers. */
  1370. atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash);
  1371. data[0] = cpu_to_be64(req->assoclen * 8);
  1372. data[1] = cpu_to_be64(ctx->textlen * 8);
  1373. return atmel_aes_gcm_ghash(dd, (const u32 *)data, AES_BLOCK_SIZE,
  1374. ctx->ghash, ctx->ghash, atmel_aes_gcm_tag);
  1375. }
  1376. static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd)
  1377. {
  1378. struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
  1379. unsigned long flags;
  1380. /*
  1381. * Change mode to CTR to complete the tag generation.
  1382. * Use J0 as Initialization Vector.
  1383. */
  1384. flags = dd->flags;
  1385. dd->flags &= ~(AES_FLAGS_OPMODE_MASK | AES_FLAGS_GTAGEN);
  1386. dd->flags |= AES_FLAGS_CTR;
  1387. atmel_aes_write_ctrl(dd, false, ctx->j0);
  1388. dd->flags = flags;
  1389. atmel_aes_write_block(dd, AES_IDATAR(0), ctx->ghash);
  1390. return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_finalize);
  1391. }
  1392. static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd)
  1393. {
  1394. struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
  1395. struct aead_request *req = aead_request_cast(dd->areq);
  1396. struct crypto_aead *tfm = crypto_aead_reqtfm(req);
  1397. bool enc = atmel_aes_is_encrypt(dd);
  1398. u32 offset, authsize, itag[4], *otag = ctx->tag;
  1399. int err;
  1400. /* Read the computed tag. */
  1401. if (likely(dd->flags & AES_FLAGS_GTAGEN))
  1402. atmel_aes_read_block(dd, AES_TAGR(0), ctx->tag);
  1403. else
  1404. atmel_aes_read_block(dd, AES_ODATAR(0), ctx->tag);
  1405. offset = req->assoclen + ctx->textlen;
  1406. authsize = crypto_aead_authsize(tfm);
  1407. if (enc) {
  1408. scatterwalk_map_and_copy(otag, req->dst, offset, authsize, 1);
  1409. err = 0;
  1410. } else {
  1411. scatterwalk_map_and_copy(itag, req->src, offset, authsize, 0);
  1412. err = crypto_memneq(itag, otag, authsize) ? -EBADMSG : 0;
  1413. }
  1414. return atmel_aes_complete(dd, err);
  1415. }
  1416. static int atmel_aes_gcm_crypt(struct aead_request *req,
  1417. unsigned long mode)
  1418. {
  1419. struct atmel_aes_base_ctx *ctx;
  1420. struct atmel_aes_reqctx *rctx;
  1421. struct atmel_aes_dev *dd;
  1422. ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
  1423. ctx->block_size = AES_BLOCK_SIZE;
  1424. dd = atmel_aes_find_dev(ctx);
  1425. if (!dd)
  1426. return -ENODEV;
  1427. rctx = aead_request_ctx(req);
  1428. rctx->mode = AES_FLAGS_GCM | mode;
  1429. return atmel_aes_handle_queue(dd, &req->base);
  1430. }
  1431. static int atmel_aes_gcm_setkey(struct crypto_aead *tfm, const u8 *key,
  1432. unsigned int keylen)
  1433. {
  1434. struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm);
  1435. if (keylen != AES_KEYSIZE_256 &&
  1436. keylen != AES_KEYSIZE_192 &&
  1437. keylen != AES_KEYSIZE_128) {
  1438. crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
  1439. return -EINVAL;
  1440. }
  1441. memcpy(ctx->key, key, keylen);
  1442. ctx->keylen = keylen;
  1443. return 0;
  1444. }
  1445. static int atmel_aes_gcm_setauthsize(struct crypto_aead *tfm,
  1446. unsigned int authsize)
  1447. {
  1448. /* Same as crypto_gcm_authsize() from crypto/gcm.c */
  1449. switch (authsize) {
  1450. case 4:
  1451. case 8:
  1452. case 12:
  1453. case 13:
  1454. case 14:
  1455. case 15:
  1456. case 16:
  1457. break;
  1458. default:
  1459. return -EINVAL;
  1460. }
  1461. return 0;
  1462. }
  1463. static int atmel_aes_gcm_encrypt(struct aead_request *req)
  1464. {
  1465. return atmel_aes_gcm_crypt(req, AES_FLAGS_ENCRYPT);
  1466. }
  1467. static int atmel_aes_gcm_decrypt(struct aead_request *req)
  1468. {
  1469. return atmel_aes_gcm_crypt(req, 0);
  1470. }
  1471. static int atmel_aes_gcm_init(struct crypto_aead *tfm)
  1472. {
  1473. struct atmel_aes_gcm_ctx *ctx = crypto_aead_ctx(tfm);
  1474. crypto_aead_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
  1475. ctx->base.start = atmel_aes_gcm_start;
  1476. return 0;
  1477. }
  1478. static void atmel_aes_gcm_exit(struct crypto_aead *tfm)
  1479. {
  1480. }
  1481. static struct aead_alg aes_gcm_alg = {
  1482. .setkey = atmel_aes_gcm_setkey,
  1483. .setauthsize = atmel_aes_gcm_setauthsize,
  1484. .encrypt = atmel_aes_gcm_encrypt,
  1485. .decrypt = atmel_aes_gcm_decrypt,
  1486. .init = atmel_aes_gcm_init,
  1487. .exit = atmel_aes_gcm_exit,
  1488. .ivsize = 12,
  1489. .maxauthsize = AES_BLOCK_SIZE,
  1490. .base = {
  1491. .cra_name = "gcm(aes)",
  1492. .cra_driver_name = "atmel-gcm-aes",
  1493. .cra_priority = ATMEL_AES_PRIORITY,
  1494. .cra_flags = CRYPTO_ALG_ASYNC,
  1495. .cra_blocksize = 1,
  1496. .cra_ctxsize = sizeof(struct atmel_aes_gcm_ctx),
  1497. .cra_alignmask = 0xf,
  1498. .cra_module = THIS_MODULE,
  1499. },
  1500. };
  1501. /* xts functions */
  1502. static inline struct atmel_aes_xts_ctx *
  1503. atmel_aes_xts_ctx_cast(struct atmel_aes_base_ctx *ctx)
  1504. {
  1505. return container_of(ctx, struct atmel_aes_xts_ctx, base);
  1506. }
  1507. static int atmel_aes_xts_process_data(struct atmel_aes_dev *dd);
  1508. static int atmel_aes_xts_start(struct atmel_aes_dev *dd)
  1509. {
  1510. struct atmel_aes_xts_ctx *ctx = atmel_aes_xts_ctx_cast(dd->ctx);
  1511. struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
  1512. struct atmel_aes_reqctx *rctx = ablkcipher_request_ctx(req);
  1513. unsigned long flags;
  1514. int err;
  1515. atmel_aes_set_mode(dd, rctx);
  1516. err = atmel_aes_hw_init(dd);
  1517. if (err)
  1518. return atmel_aes_complete(dd, err);
  1519. /* Compute the tweak value from req->info with ecb(aes). */
  1520. flags = dd->flags;
  1521. dd->flags &= ~AES_FLAGS_MODE_MASK;
  1522. dd->flags |= (AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
  1523. atmel_aes_write_ctrl_key(dd, false, NULL,
  1524. ctx->key2, ctx->base.keylen);
  1525. dd->flags = flags;
  1526. atmel_aes_write_block(dd, AES_IDATAR(0), req->info);
  1527. return atmel_aes_wait_for_data_ready(dd, atmel_aes_xts_process_data);
  1528. }
  1529. static int atmel_aes_xts_process_data(struct atmel_aes_dev *dd)
  1530. {
  1531. struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
  1532. bool use_dma = (req->nbytes >= ATMEL_AES_DMA_THRESHOLD);
  1533. u32 tweak[AES_BLOCK_SIZE / sizeof(u32)];
  1534. static const u32 one[AES_BLOCK_SIZE / sizeof(u32)] = {cpu_to_le32(1), };
  1535. u8 *tweak_bytes = (u8 *)tweak;
  1536. int i;
  1537. /* Read the computed ciphered tweak value. */
  1538. atmel_aes_read_block(dd, AES_ODATAR(0), tweak);
  1539. /*
  1540. * Hardware quirk:
  1541. * the order of the ciphered tweak bytes need to be reversed before
  1542. * writing them into the ODATARx registers.
  1543. */
  1544. for (i = 0; i < AES_BLOCK_SIZE/2; ++i) {
  1545. u8 tmp = tweak_bytes[AES_BLOCK_SIZE - 1 - i];
  1546. tweak_bytes[AES_BLOCK_SIZE - 1 - i] = tweak_bytes[i];
  1547. tweak_bytes[i] = tmp;
  1548. }
  1549. /* Process the data. */
  1550. atmel_aes_write_ctrl(dd, use_dma, NULL);
  1551. atmel_aes_write_block(dd, AES_TWR(0), tweak);
  1552. atmel_aes_write_block(dd, AES_ALPHAR(0), one);
  1553. if (use_dma)
  1554. return atmel_aes_dma_start(dd, req->src, req->dst, req->nbytes,
  1555. atmel_aes_transfer_complete);
  1556. return atmel_aes_cpu_start(dd, req->src, req->dst, req->nbytes,
  1557. atmel_aes_transfer_complete);
  1558. }
  1559. static int atmel_aes_xts_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
  1560. unsigned int keylen)
  1561. {
  1562. struct atmel_aes_xts_ctx *ctx = crypto_ablkcipher_ctx(tfm);
  1563. int err;
  1564. err = xts_check_key(crypto_ablkcipher_tfm(tfm), key, keylen);
  1565. if (err)
  1566. return err;
  1567. memcpy(ctx->base.key, key, keylen/2);
  1568. memcpy(ctx->key2, key + keylen/2, keylen/2);
  1569. ctx->base.keylen = keylen/2;
  1570. return 0;
  1571. }
  1572. static int atmel_aes_xts_encrypt(struct ablkcipher_request *req)
  1573. {
  1574. return atmel_aes_crypt(req, AES_FLAGS_XTS | AES_FLAGS_ENCRYPT);
  1575. }
  1576. static int atmel_aes_xts_decrypt(struct ablkcipher_request *req)
  1577. {
  1578. return atmel_aes_crypt(req, AES_FLAGS_XTS);
  1579. }
  1580. static int atmel_aes_xts_cra_init(struct crypto_tfm *tfm)
  1581. {
  1582. struct atmel_aes_xts_ctx *ctx = crypto_tfm_ctx(tfm);
  1583. tfm->crt_ablkcipher.reqsize = sizeof(struct atmel_aes_reqctx);
  1584. ctx->base.start = atmel_aes_xts_start;
  1585. return 0;
  1586. }
  1587. static struct crypto_alg aes_xts_alg = {
  1588. .cra_name = "xts(aes)",
  1589. .cra_driver_name = "atmel-xts-aes",
  1590. .cra_priority = ATMEL_AES_PRIORITY,
  1591. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
  1592. .cra_blocksize = AES_BLOCK_SIZE,
  1593. .cra_ctxsize = sizeof(struct atmel_aes_xts_ctx),
  1594. .cra_alignmask = 0xf,
  1595. .cra_type = &crypto_ablkcipher_type,
  1596. .cra_module = THIS_MODULE,
  1597. .cra_init = atmel_aes_xts_cra_init,
  1598. .cra_exit = atmel_aes_cra_exit,
  1599. .cra_u.ablkcipher = {
  1600. .min_keysize = 2 * AES_MIN_KEY_SIZE,
  1601. .max_keysize = 2 * AES_MAX_KEY_SIZE,
  1602. .ivsize = AES_BLOCK_SIZE,
  1603. .setkey = atmel_aes_xts_setkey,
  1604. .encrypt = atmel_aes_xts_encrypt,
  1605. .decrypt = atmel_aes_xts_decrypt,
  1606. }
  1607. };
  1608. #ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
  1609. /* authenc aead functions */
  1610. static int atmel_aes_authenc_start(struct atmel_aes_dev *dd);
  1611. static int atmel_aes_authenc_init(struct atmel_aes_dev *dd, int err,
  1612. bool is_async);
  1613. static int atmel_aes_authenc_transfer(struct atmel_aes_dev *dd, int err,
  1614. bool is_async);
  1615. static int atmel_aes_authenc_digest(struct atmel_aes_dev *dd);
  1616. static int atmel_aes_authenc_final(struct atmel_aes_dev *dd, int err,
  1617. bool is_async);
  1618. static void atmel_aes_authenc_complete(struct atmel_aes_dev *dd, int err)
  1619. {
  1620. struct aead_request *req = aead_request_cast(dd->areq);
  1621. struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
  1622. if (err && (dd->flags & AES_FLAGS_OWN_SHA))
  1623. atmel_sha_authenc_abort(&rctx->auth_req);
  1624. dd->flags &= ~AES_FLAGS_OWN_SHA;
  1625. }
  1626. static int atmel_aes_authenc_start(struct atmel_aes_dev *dd)
  1627. {
  1628. struct aead_request *req = aead_request_cast(dd->areq);
  1629. struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
  1630. struct crypto_aead *tfm = crypto_aead_reqtfm(req);
  1631. struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
  1632. int err;
  1633. atmel_aes_set_mode(dd, &rctx->base);
  1634. err = atmel_aes_hw_init(dd);
  1635. if (err)
  1636. return atmel_aes_complete(dd, err);
  1637. return atmel_sha_authenc_schedule(&rctx->auth_req, ctx->auth,
  1638. atmel_aes_authenc_init, dd);
  1639. }
  1640. static int atmel_aes_authenc_init(struct atmel_aes_dev *dd, int err,
  1641. bool is_async)
  1642. {
  1643. struct aead_request *req = aead_request_cast(dd->areq);
  1644. struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
  1645. if (is_async)
  1646. dd->is_async = true;
  1647. if (err)
  1648. return atmel_aes_complete(dd, err);
  1649. /* If here, we've got the ownership of the SHA device. */
  1650. dd->flags |= AES_FLAGS_OWN_SHA;
  1651. /* Configure the SHA device. */
  1652. return atmel_sha_authenc_init(&rctx->auth_req,
  1653. req->src, req->assoclen,
  1654. rctx->textlen,
  1655. atmel_aes_authenc_transfer, dd);
  1656. }
  1657. static int atmel_aes_authenc_transfer(struct atmel_aes_dev *dd, int err,
  1658. bool is_async)
  1659. {
  1660. struct aead_request *req = aead_request_cast(dd->areq);
  1661. struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
  1662. bool enc = atmel_aes_is_encrypt(dd);
  1663. struct scatterlist *src, *dst;
  1664. u32 iv[AES_BLOCK_SIZE / sizeof(u32)];
  1665. u32 emr;
  1666. if (is_async)
  1667. dd->is_async = true;
  1668. if (err)
  1669. return atmel_aes_complete(dd, err);
  1670. /* Prepare src and dst scatter-lists to transfer cipher/plain texts. */
  1671. src = scatterwalk_ffwd(rctx->src, req->src, req->assoclen);
  1672. dst = src;
  1673. if (req->src != req->dst)
  1674. dst = scatterwalk_ffwd(rctx->dst, req->dst, req->assoclen);
  1675. /* Configure the AES device. */
  1676. memcpy(iv, req->iv, sizeof(iv));
  1677. /*
  1678. * Here we always set the 2nd parameter of atmel_aes_write_ctrl() to
  1679. * 'true' even if the data transfer is actually performed by the CPU (so
  1680. * not by the DMA) because we must force the AES_MR_SMOD bitfield to the
  1681. * value AES_MR_SMOD_IDATAR0. Indeed, both AES_MR_SMOD and SHA_MR_SMOD
  1682. * must be set to *_MR_SMOD_IDATAR0.
  1683. */
  1684. atmel_aes_write_ctrl(dd, true, iv);
  1685. emr = AES_EMR_PLIPEN;
  1686. if (!enc)
  1687. emr |= AES_EMR_PLIPD;
  1688. atmel_aes_write(dd, AES_EMR, emr);
  1689. /* Transfer data. */
  1690. return atmel_aes_dma_start(dd, src, dst, rctx->textlen,
  1691. atmel_aes_authenc_digest);
  1692. }
  1693. static int atmel_aes_authenc_digest(struct atmel_aes_dev *dd)
  1694. {
  1695. struct aead_request *req = aead_request_cast(dd->areq);
  1696. struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
  1697. /* atmel_sha_authenc_final() releases the SHA device. */
  1698. dd->flags &= ~AES_FLAGS_OWN_SHA;
  1699. return atmel_sha_authenc_final(&rctx->auth_req,
  1700. rctx->digest, sizeof(rctx->digest),
  1701. atmel_aes_authenc_final, dd);
  1702. }
  1703. static int atmel_aes_authenc_final(struct atmel_aes_dev *dd, int err,
  1704. bool is_async)
  1705. {
  1706. struct aead_request *req = aead_request_cast(dd->areq);
  1707. struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
  1708. struct crypto_aead *tfm = crypto_aead_reqtfm(req);
  1709. bool enc = atmel_aes_is_encrypt(dd);
  1710. u32 idigest[SHA512_DIGEST_SIZE / sizeof(u32)], *odigest = rctx->digest;
  1711. u32 offs, authsize;
  1712. if (is_async)
  1713. dd->is_async = true;
  1714. if (err)
  1715. goto complete;
  1716. offs = req->assoclen + rctx->textlen;
  1717. authsize = crypto_aead_authsize(tfm);
  1718. if (enc) {
  1719. scatterwalk_map_and_copy(odigest, req->dst, offs, authsize, 1);
  1720. } else {
  1721. scatterwalk_map_and_copy(idigest, req->src, offs, authsize, 0);
  1722. if (crypto_memneq(idigest, odigest, authsize))
  1723. err = -EBADMSG;
  1724. }
  1725. complete:
  1726. return atmel_aes_complete(dd, err);
  1727. }
  1728. static int atmel_aes_authenc_setkey(struct crypto_aead *tfm, const u8 *key,
  1729. unsigned int keylen)
  1730. {
  1731. struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
  1732. struct crypto_authenc_keys keys;
  1733. u32 flags;
  1734. int err;
  1735. if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
  1736. goto badkey;
  1737. if (keys.enckeylen > sizeof(ctx->base.key))
  1738. goto badkey;
  1739. /* Save auth key. */
  1740. flags = crypto_aead_get_flags(tfm);
  1741. err = atmel_sha_authenc_setkey(ctx->auth,
  1742. keys.authkey, keys.authkeylen,
  1743. &flags);
  1744. crypto_aead_set_flags(tfm, flags & CRYPTO_TFM_RES_MASK);
  1745. if (err) {
  1746. memzero_explicit(&keys, sizeof(keys));
  1747. return err;
  1748. }
  1749. /* Save enc key. */
  1750. ctx->base.keylen = keys.enckeylen;
  1751. memcpy(ctx->base.key, keys.enckey, keys.enckeylen);
  1752. memzero_explicit(&keys, sizeof(keys));
  1753. return 0;
  1754. badkey:
  1755. crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
  1756. memzero_explicit(&key, sizeof(keys));
  1757. return -EINVAL;
  1758. }
  1759. static int atmel_aes_authenc_init_tfm(struct crypto_aead *tfm,
  1760. unsigned long auth_mode)
  1761. {
  1762. struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
  1763. unsigned int auth_reqsize = atmel_sha_authenc_get_reqsize();
  1764. ctx->auth = atmel_sha_authenc_spawn(auth_mode);
  1765. if (IS_ERR(ctx->auth))
  1766. return PTR_ERR(ctx->auth);
  1767. crypto_aead_set_reqsize(tfm, (sizeof(struct atmel_aes_authenc_reqctx) +
  1768. auth_reqsize));
  1769. ctx->base.start = atmel_aes_authenc_start;
  1770. return 0;
  1771. }
  1772. static int atmel_aes_authenc_hmac_sha1_init_tfm(struct crypto_aead *tfm)
  1773. {
  1774. return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA1);
  1775. }
  1776. static int atmel_aes_authenc_hmac_sha224_init_tfm(struct crypto_aead *tfm)
  1777. {
  1778. return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA224);
  1779. }
  1780. static int atmel_aes_authenc_hmac_sha256_init_tfm(struct crypto_aead *tfm)
  1781. {
  1782. return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA256);
  1783. }
  1784. static int atmel_aes_authenc_hmac_sha384_init_tfm(struct crypto_aead *tfm)
  1785. {
  1786. return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA384);
  1787. }
  1788. static int atmel_aes_authenc_hmac_sha512_init_tfm(struct crypto_aead *tfm)
  1789. {
  1790. return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA512);
  1791. }
  1792. static void atmel_aes_authenc_exit_tfm(struct crypto_aead *tfm)
  1793. {
  1794. struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
  1795. atmel_sha_authenc_free(ctx->auth);
  1796. }
  1797. static int atmel_aes_authenc_crypt(struct aead_request *req,
  1798. unsigned long mode)
  1799. {
  1800. struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
  1801. struct crypto_aead *tfm = crypto_aead_reqtfm(req);
  1802. struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm);
  1803. u32 authsize = crypto_aead_authsize(tfm);
  1804. bool enc = (mode & AES_FLAGS_ENCRYPT);
  1805. struct atmel_aes_dev *dd;
  1806. /* Compute text length. */
  1807. if (!enc && req->cryptlen < authsize)
  1808. return -EINVAL;
  1809. rctx->textlen = req->cryptlen - (enc ? 0 : authsize);
  1810. /*
  1811. * Currently, empty messages are not supported yet:
  1812. * the SHA auto-padding can be used only on non-empty messages.
  1813. * Hence a special case needs to be implemented for empty message.
  1814. */
  1815. if (!rctx->textlen && !req->assoclen)
  1816. return -EINVAL;
  1817. rctx->base.mode = mode;
  1818. ctx->block_size = AES_BLOCK_SIZE;
  1819. dd = atmel_aes_find_dev(ctx);
  1820. if (!dd)
  1821. return -ENODEV;
  1822. return atmel_aes_handle_queue(dd, &req->base);
  1823. }
  1824. static int atmel_aes_authenc_cbc_aes_encrypt(struct aead_request *req)
  1825. {
  1826. return atmel_aes_authenc_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT);
  1827. }
  1828. static int atmel_aes_authenc_cbc_aes_decrypt(struct aead_request *req)
  1829. {
  1830. return atmel_aes_authenc_crypt(req, AES_FLAGS_CBC);
  1831. }
  1832. static struct aead_alg aes_authenc_algs[] = {
  1833. {
  1834. .setkey = atmel_aes_authenc_setkey,
  1835. .encrypt = atmel_aes_authenc_cbc_aes_encrypt,
  1836. .decrypt = atmel_aes_authenc_cbc_aes_decrypt,
  1837. .init = atmel_aes_authenc_hmac_sha1_init_tfm,
  1838. .exit = atmel_aes_authenc_exit_tfm,
  1839. .ivsize = AES_BLOCK_SIZE,
  1840. .maxauthsize = SHA1_DIGEST_SIZE,
  1841. .base = {
  1842. .cra_name = "authenc(hmac(sha1),cbc(aes))",
  1843. .cra_driver_name = "atmel-authenc-hmac-sha1-cbc-aes",
  1844. .cra_priority = ATMEL_AES_PRIORITY,
  1845. .cra_flags = CRYPTO_ALG_ASYNC,
  1846. .cra_blocksize = AES_BLOCK_SIZE,
  1847. .cra_ctxsize = sizeof(struct atmel_aes_authenc_ctx),
  1848. .cra_alignmask = 0xf,
  1849. .cra_module = THIS_MODULE,
  1850. },
  1851. },
  1852. {
  1853. .setkey = atmel_aes_authenc_setkey,
  1854. .encrypt = atmel_aes_authenc_cbc_aes_encrypt,
  1855. .decrypt = atmel_aes_authenc_cbc_aes_decrypt,
  1856. .init = atmel_aes_authenc_hmac_sha224_init_tfm,
  1857. .exit = atmel_aes_authenc_exit_tfm,
  1858. .ivsize = AES_BLOCK_SIZE,
  1859. .maxauthsize = SHA224_DIGEST_SIZE,
  1860. .base = {
  1861. .cra_name = "authenc(hmac(sha224),cbc(aes))",
  1862. .cra_driver_name = "atmel-authenc-hmac-sha224-cbc-aes",
  1863. .cra_priority = ATMEL_AES_PRIORITY,
  1864. .cra_flags = CRYPTO_ALG_ASYNC,
  1865. .cra_blocksize = AES_BLOCK_SIZE,
  1866. .cra_ctxsize = sizeof(struct atmel_aes_authenc_ctx),
  1867. .cra_alignmask = 0xf,
  1868. .cra_module = THIS_MODULE,
  1869. },
  1870. },
  1871. {
  1872. .setkey = atmel_aes_authenc_setkey,
  1873. .encrypt = atmel_aes_authenc_cbc_aes_encrypt,
  1874. .decrypt = atmel_aes_authenc_cbc_aes_decrypt,
  1875. .init = atmel_aes_authenc_hmac_sha256_init_tfm,
  1876. .exit = atmel_aes_authenc_exit_tfm,
  1877. .ivsize = AES_BLOCK_SIZE,
  1878. .maxauthsize = SHA256_DIGEST_SIZE,
  1879. .base = {
  1880. .cra_name = "authenc(hmac(sha256),cbc(aes))",
  1881. .cra_driver_name = "atmel-authenc-hmac-sha256-cbc-aes",
  1882. .cra_priority = ATMEL_AES_PRIORITY,
  1883. .cra_flags = CRYPTO_ALG_ASYNC,
  1884. .cra_blocksize = AES_BLOCK_SIZE,
  1885. .cra_ctxsize = sizeof(struct atmel_aes_authenc_ctx),
  1886. .cra_alignmask = 0xf,
  1887. .cra_module = THIS_MODULE,
  1888. },
  1889. },
  1890. {
  1891. .setkey = atmel_aes_authenc_setkey,
  1892. .encrypt = atmel_aes_authenc_cbc_aes_encrypt,
  1893. .decrypt = atmel_aes_authenc_cbc_aes_decrypt,
  1894. .init = atmel_aes_authenc_hmac_sha384_init_tfm,
  1895. .exit = atmel_aes_authenc_exit_tfm,
  1896. .ivsize = AES_BLOCK_SIZE,
  1897. .maxauthsize = SHA384_DIGEST_SIZE,
  1898. .base = {
  1899. .cra_name = "authenc(hmac(sha384),cbc(aes))",
  1900. .cra_driver_name = "atmel-authenc-hmac-sha384-cbc-aes",
  1901. .cra_priority = ATMEL_AES_PRIORITY,
  1902. .cra_flags = CRYPTO_ALG_ASYNC,
  1903. .cra_blocksize = AES_BLOCK_SIZE,
  1904. .cra_ctxsize = sizeof(struct atmel_aes_authenc_ctx),
  1905. .cra_alignmask = 0xf,
  1906. .cra_module = THIS_MODULE,
  1907. },
  1908. },
  1909. {
  1910. .setkey = atmel_aes_authenc_setkey,
  1911. .encrypt = atmel_aes_authenc_cbc_aes_encrypt,
  1912. .decrypt = atmel_aes_authenc_cbc_aes_decrypt,
  1913. .init = atmel_aes_authenc_hmac_sha512_init_tfm,
  1914. .exit = atmel_aes_authenc_exit_tfm,
  1915. .ivsize = AES_BLOCK_SIZE,
  1916. .maxauthsize = SHA512_DIGEST_SIZE,
  1917. .base = {
  1918. .cra_name = "authenc(hmac(sha512),cbc(aes))",
  1919. .cra_driver_name = "atmel-authenc-hmac-sha512-cbc-aes",
  1920. .cra_priority = ATMEL_AES_PRIORITY,
  1921. .cra_flags = CRYPTO_ALG_ASYNC,
  1922. .cra_blocksize = AES_BLOCK_SIZE,
  1923. .cra_ctxsize = sizeof(struct atmel_aes_authenc_ctx),
  1924. .cra_alignmask = 0xf,
  1925. .cra_module = THIS_MODULE,
  1926. },
  1927. },
  1928. };
  1929. #endif /* CONFIG_CRYPTO_DEV_ATMEL_AUTHENC */
  1930. /* Probe functions */
  1931. static int atmel_aes_buff_init(struct atmel_aes_dev *dd)
  1932. {
  1933. dd->buf = (void *)__get_free_pages(GFP_KERNEL, ATMEL_AES_BUFFER_ORDER);
  1934. dd->buflen = ATMEL_AES_BUFFER_SIZE;
  1935. dd->buflen &= ~(AES_BLOCK_SIZE - 1);
  1936. if (!dd->buf) {
  1937. dev_err(dd->dev, "unable to alloc pages.\n");
  1938. return -ENOMEM;
  1939. }
  1940. return 0;
  1941. }
  1942. static void atmel_aes_buff_cleanup(struct atmel_aes_dev *dd)
  1943. {
  1944. free_page((unsigned long)dd->buf);
  1945. }
  1946. static bool atmel_aes_filter(struct dma_chan *chan, void *slave)
  1947. {
  1948. struct at_dma_slave *sl = slave;
  1949. if (sl && sl->dma_dev == chan->device->dev) {
  1950. chan->private = sl;
  1951. return true;
  1952. } else {
  1953. return false;
  1954. }
  1955. }
  1956. static int atmel_aes_dma_init(struct atmel_aes_dev *dd,
  1957. struct crypto_platform_data *pdata)
  1958. {
  1959. struct at_dma_slave *slave;
  1960. int err = -ENOMEM;
  1961. dma_cap_mask_t mask;
  1962. dma_cap_zero(mask);
  1963. dma_cap_set(DMA_SLAVE, mask);
  1964. /* Try to grab 2 DMA channels */
  1965. slave = &pdata->dma_slave->rxdata;
  1966. dd->src.chan = dma_request_slave_channel_compat(mask, atmel_aes_filter,
  1967. slave, dd->dev, "tx");
  1968. if (!dd->src.chan)
  1969. goto err_dma_in;
  1970. slave = &pdata->dma_slave->txdata;
  1971. dd->dst.chan = dma_request_slave_channel_compat(mask, atmel_aes_filter,
  1972. slave, dd->dev, "rx");
  1973. if (!dd->dst.chan)
  1974. goto err_dma_out;
  1975. return 0;
  1976. err_dma_out:
  1977. dma_release_channel(dd->src.chan);
  1978. err_dma_in:
  1979. dev_warn(dd->dev, "no DMA channel available\n");
  1980. return err;
  1981. }
  1982. static void atmel_aes_dma_cleanup(struct atmel_aes_dev *dd)
  1983. {
  1984. dma_release_channel(dd->dst.chan);
  1985. dma_release_channel(dd->src.chan);
  1986. }
  1987. static void atmel_aes_queue_task(unsigned long data)
  1988. {
  1989. struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
  1990. atmel_aes_handle_queue(dd, NULL);
  1991. }
  1992. static void atmel_aes_done_task(unsigned long data)
  1993. {
  1994. struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
  1995. dd->is_async = true;
  1996. (void)dd->resume(dd);
  1997. }
  1998. static irqreturn_t atmel_aes_irq(int irq, void *dev_id)
  1999. {
  2000. struct atmel_aes_dev *aes_dd = dev_id;
  2001. u32 reg;
  2002. reg = atmel_aes_read(aes_dd, AES_ISR);
  2003. if (reg & atmel_aes_read(aes_dd, AES_IMR)) {
  2004. atmel_aes_write(aes_dd, AES_IDR, reg);
  2005. if (AES_FLAGS_BUSY & aes_dd->flags)
  2006. tasklet_schedule(&aes_dd->done_task);
  2007. else
  2008. dev_warn(aes_dd->dev, "AES interrupt when no active requests.\n");
  2009. return IRQ_HANDLED;
  2010. }
  2011. return IRQ_NONE;
  2012. }
  2013. static void atmel_aes_unregister_algs(struct atmel_aes_dev *dd)
  2014. {
  2015. int i;
  2016. #ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
  2017. if (dd->caps.has_authenc)
  2018. for (i = 0; i < ARRAY_SIZE(aes_authenc_algs); i++)
  2019. crypto_unregister_aead(&aes_authenc_algs[i]);
  2020. #endif
  2021. if (dd->caps.has_xts)
  2022. crypto_unregister_alg(&aes_xts_alg);
  2023. if (dd->caps.has_gcm)
  2024. crypto_unregister_aead(&aes_gcm_alg);
  2025. if (dd->caps.has_cfb64)
  2026. crypto_unregister_alg(&aes_cfb64_alg);
  2027. for (i = 0; i < ARRAY_SIZE(aes_algs); i++)
  2028. crypto_unregister_alg(&aes_algs[i]);
  2029. }
  2030. static int atmel_aes_register_algs(struct atmel_aes_dev *dd)
  2031. {
  2032. int err, i, j;
  2033. for (i = 0; i < ARRAY_SIZE(aes_algs); i++) {
  2034. err = crypto_register_alg(&aes_algs[i]);
  2035. if (err)
  2036. goto err_aes_algs;
  2037. }
  2038. if (dd->caps.has_cfb64) {
  2039. err = crypto_register_alg(&aes_cfb64_alg);
  2040. if (err)
  2041. goto err_aes_cfb64_alg;
  2042. }
  2043. if (dd->caps.has_gcm) {
  2044. err = crypto_register_aead(&aes_gcm_alg);
  2045. if (err)
  2046. goto err_aes_gcm_alg;
  2047. }
  2048. if (dd->caps.has_xts) {
  2049. err = crypto_register_alg(&aes_xts_alg);
  2050. if (err)
  2051. goto err_aes_xts_alg;
  2052. }
  2053. #ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
  2054. if (dd->caps.has_authenc) {
  2055. for (i = 0; i < ARRAY_SIZE(aes_authenc_algs); i++) {
  2056. err = crypto_register_aead(&aes_authenc_algs[i]);
  2057. if (err)
  2058. goto err_aes_authenc_alg;
  2059. }
  2060. }
  2061. #endif
  2062. return 0;
  2063. #ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
  2064. /* i = ARRAY_SIZE(aes_authenc_algs); */
  2065. err_aes_authenc_alg:
  2066. for (j = 0; j < i; j++)
  2067. crypto_unregister_aead(&aes_authenc_algs[j]);
  2068. crypto_unregister_alg(&aes_xts_alg);
  2069. #endif
  2070. err_aes_xts_alg:
  2071. crypto_unregister_aead(&aes_gcm_alg);
  2072. err_aes_gcm_alg:
  2073. crypto_unregister_alg(&aes_cfb64_alg);
  2074. err_aes_cfb64_alg:
  2075. i = ARRAY_SIZE(aes_algs);
  2076. err_aes_algs:
  2077. for (j = 0; j < i; j++)
  2078. crypto_unregister_alg(&aes_algs[j]);
  2079. return err;
  2080. }
  2081. static void atmel_aes_get_cap(struct atmel_aes_dev *dd)
  2082. {
  2083. dd->caps.has_dualbuff = 0;
  2084. dd->caps.has_cfb64 = 0;
  2085. dd->caps.has_ctr32 = 0;
  2086. dd->caps.has_gcm = 0;
  2087. dd->caps.has_xts = 0;
  2088. dd->caps.has_authenc = 0;
  2089. dd->caps.max_burst_size = 1;
  2090. /* keep only major version number */
  2091. switch (dd->hw_version & 0xff0) {
  2092. case 0x500:
  2093. dd->caps.has_dualbuff = 1;
  2094. dd->caps.has_cfb64 = 1;
  2095. dd->caps.has_ctr32 = 1;
  2096. dd->caps.has_gcm = 1;
  2097. dd->caps.has_xts = 1;
  2098. dd->caps.has_authenc = 1;
  2099. dd->caps.max_burst_size = 4;
  2100. break;
  2101. case 0x200:
  2102. dd->caps.has_dualbuff = 1;
  2103. dd->caps.has_cfb64 = 1;
  2104. dd->caps.has_ctr32 = 1;
  2105. dd->caps.has_gcm = 1;
  2106. dd->caps.max_burst_size = 4;
  2107. break;
  2108. case 0x130:
  2109. dd->caps.has_dualbuff = 1;
  2110. dd->caps.has_cfb64 = 1;
  2111. dd->caps.max_burst_size = 4;
  2112. break;
  2113. case 0x120:
  2114. break;
  2115. default:
  2116. dev_warn(dd->dev,
  2117. "Unmanaged aes version, set minimum capabilities\n");
  2118. break;
  2119. }
  2120. }
  2121. #if defined(CONFIG_OF)
  2122. static const struct of_device_id atmel_aes_dt_ids[] = {
  2123. { .compatible = "atmel,at91sam9g46-aes" },
  2124. { /* sentinel */ }
  2125. };
  2126. MODULE_DEVICE_TABLE(of, atmel_aes_dt_ids);
  2127. static struct crypto_platform_data *atmel_aes_of_init(struct platform_device *pdev)
  2128. {
  2129. struct device_node *np = pdev->dev.of_node;
  2130. struct crypto_platform_data *pdata;
  2131. if (!np) {
  2132. dev_err(&pdev->dev, "device node not found\n");
  2133. return ERR_PTR(-EINVAL);
  2134. }
  2135. pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
  2136. if (!pdata) {
  2137. dev_err(&pdev->dev, "could not allocate memory for pdata\n");
  2138. return ERR_PTR(-ENOMEM);
  2139. }
  2140. pdata->dma_slave = devm_kzalloc(&pdev->dev,
  2141. sizeof(*(pdata->dma_slave)),
  2142. GFP_KERNEL);
  2143. if (!pdata->dma_slave) {
  2144. dev_err(&pdev->dev, "could not allocate memory for dma_slave\n");
  2145. devm_kfree(&pdev->dev, pdata);
  2146. return ERR_PTR(-ENOMEM);
  2147. }
  2148. return pdata;
  2149. }
  2150. #else
  2151. static inline struct crypto_platform_data *atmel_aes_of_init(struct platform_device *pdev)
  2152. {
  2153. return ERR_PTR(-EINVAL);
  2154. }
  2155. #endif
  2156. static int atmel_aes_probe(struct platform_device *pdev)
  2157. {
  2158. struct atmel_aes_dev *aes_dd;
  2159. struct crypto_platform_data *pdata;
  2160. struct device *dev = &pdev->dev;
  2161. struct resource *aes_res;
  2162. int err;
  2163. pdata = pdev->dev.platform_data;
  2164. if (!pdata) {
  2165. pdata = atmel_aes_of_init(pdev);
  2166. if (IS_ERR(pdata)) {
  2167. err = PTR_ERR(pdata);
  2168. goto aes_dd_err;
  2169. }
  2170. }
  2171. if (!pdata->dma_slave) {
  2172. err = -ENXIO;
  2173. goto aes_dd_err;
  2174. }
  2175. aes_dd = devm_kzalloc(&pdev->dev, sizeof(*aes_dd), GFP_KERNEL);
  2176. if (aes_dd == NULL) {
  2177. dev_err(dev, "unable to alloc data struct.\n");
  2178. err = -ENOMEM;
  2179. goto aes_dd_err;
  2180. }
  2181. aes_dd->dev = dev;
  2182. platform_set_drvdata(pdev, aes_dd);
  2183. INIT_LIST_HEAD(&aes_dd->list);
  2184. spin_lock_init(&aes_dd->lock);
  2185. tasklet_init(&aes_dd->done_task, atmel_aes_done_task,
  2186. (unsigned long)aes_dd);
  2187. tasklet_init(&aes_dd->queue_task, atmel_aes_queue_task,
  2188. (unsigned long)aes_dd);
  2189. crypto_init_queue(&aes_dd->queue, ATMEL_AES_QUEUE_LENGTH);
  2190. aes_dd->irq = -1;
  2191. /* Get the base address */
  2192. aes_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  2193. if (!aes_res) {
  2194. dev_err(dev, "no MEM resource info\n");
  2195. err = -ENODEV;
  2196. goto res_err;
  2197. }
  2198. aes_dd->phys_base = aes_res->start;
  2199. /* Get the IRQ */
  2200. aes_dd->irq = platform_get_irq(pdev, 0);
  2201. if (aes_dd->irq < 0) {
  2202. dev_err(dev, "no IRQ resource info\n");
  2203. err = aes_dd->irq;
  2204. goto res_err;
  2205. }
  2206. err = devm_request_irq(&pdev->dev, aes_dd->irq, atmel_aes_irq,
  2207. IRQF_SHARED, "atmel-aes", aes_dd);
  2208. if (err) {
  2209. dev_err(dev, "unable to request aes irq.\n");
  2210. goto res_err;
  2211. }
  2212. /* Initializing the clock */
  2213. aes_dd->iclk = devm_clk_get(&pdev->dev, "aes_clk");
  2214. if (IS_ERR(aes_dd->iclk)) {
  2215. dev_err(dev, "clock initialization failed.\n");
  2216. err = PTR_ERR(aes_dd->iclk);
  2217. goto res_err;
  2218. }
  2219. aes_dd->io_base = devm_ioremap_resource(&pdev->dev, aes_res);
  2220. if (IS_ERR(aes_dd->io_base)) {
  2221. dev_err(dev, "can't ioremap\n");
  2222. err = PTR_ERR(aes_dd->io_base);
  2223. goto res_err;
  2224. }
  2225. err = clk_prepare(aes_dd->iclk);
  2226. if (err)
  2227. goto res_err;
  2228. err = atmel_aes_hw_version_init(aes_dd);
  2229. if (err)
  2230. goto iclk_unprepare;
  2231. atmel_aes_get_cap(aes_dd);
  2232. #ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
  2233. if (aes_dd->caps.has_authenc && !atmel_sha_authenc_is_ready()) {
  2234. err = -EPROBE_DEFER;
  2235. goto iclk_unprepare;
  2236. }
  2237. #endif
  2238. err = atmel_aes_buff_init(aes_dd);
  2239. if (err)
  2240. goto err_aes_buff;
  2241. err = atmel_aes_dma_init(aes_dd, pdata);
  2242. if (err)
  2243. goto err_aes_dma;
  2244. spin_lock(&atmel_aes.lock);
  2245. list_add_tail(&aes_dd->list, &atmel_aes.dev_list);
  2246. spin_unlock(&atmel_aes.lock);
  2247. err = atmel_aes_register_algs(aes_dd);
  2248. if (err)
  2249. goto err_algs;
  2250. dev_info(dev, "Atmel AES - Using %s, %s for DMA transfers\n",
  2251. dma_chan_name(aes_dd->src.chan),
  2252. dma_chan_name(aes_dd->dst.chan));
  2253. return 0;
  2254. err_algs:
  2255. spin_lock(&atmel_aes.lock);
  2256. list_del(&aes_dd->list);
  2257. spin_unlock(&atmel_aes.lock);
  2258. atmel_aes_dma_cleanup(aes_dd);
  2259. err_aes_dma:
  2260. atmel_aes_buff_cleanup(aes_dd);
  2261. err_aes_buff:
  2262. iclk_unprepare:
  2263. clk_unprepare(aes_dd->iclk);
  2264. res_err:
  2265. tasklet_kill(&aes_dd->done_task);
  2266. tasklet_kill(&aes_dd->queue_task);
  2267. aes_dd_err:
  2268. if (err != -EPROBE_DEFER)
  2269. dev_err(dev, "initialization failed.\n");
  2270. return err;
  2271. }
  2272. static int atmel_aes_remove(struct platform_device *pdev)
  2273. {
  2274. struct atmel_aes_dev *aes_dd;
  2275. aes_dd = platform_get_drvdata(pdev);
  2276. if (!aes_dd)
  2277. return -ENODEV;
  2278. spin_lock(&atmel_aes.lock);
  2279. list_del(&aes_dd->list);
  2280. spin_unlock(&atmel_aes.lock);
  2281. atmel_aes_unregister_algs(aes_dd);
  2282. tasklet_kill(&aes_dd->done_task);
  2283. tasklet_kill(&aes_dd->queue_task);
  2284. atmel_aes_dma_cleanup(aes_dd);
  2285. atmel_aes_buff_cleanup(aes_dd);
  2286. clk_unprepare(aes_dd->iclk);
  2287. return 0;
  2288. }
  2289. static struct platform_driver atmel_aes_driver = {
  2290. .probe = atmel_aes_probe,
  2291. .remove = atmel_aes_remove,
  2292. .driver = {
  2293. .name = "atmel_aes",
  2294. .of_match_table = of_match_ptr(atmel_aes_dt_ids),
  2295. },
  2296. };
  2297. module_platform_driver(atmel_aes_driver);
  2298. MODULE_DESCRIPTION("Atmel AES hw acceleration support.");
  2299. MODULE_LICENSE("GPL v2");
  2300. MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");