time.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959
  1. /*
  2. * linux/kernel/time.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. *
  6. * This file contains the interface functions for the various
  7. * time related system calls: time, stime, gettimeofday, settimeofday,
  8. * adjtime
  9. */
  10. /*
  11. * Modification history kernel/time.c
  12. *
  13. * 1993-09-02 Philip Gladstone
  14. * Created file with time related functions from sched/core.c and adjtimex()
  15. * 1993-10-08 Torsten Duwe
  16. * adjtime interface update and CMOS clock write code
  17. * 1995-08-13 Torsten Duwe
  18. * kernel PLL updated to 1994-12-13 specs (rfc-1589)
  19. * 1999-01-16 Ulrich Windl
  20. * Introduced error checking for many cases in adjtimex().
  21. * Updated NTP code according to technical memorandum Jan '96
  22. * "A Kernel Model for Precision Timekeeping" by Dave Mills
  23. * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
  24. * (Even though the technical memorandum forbids it)
  25. * 2004-07-14 Christoph Lameter
  26. * Added getnstimeofday to allow the posix timer functions to return
  27. * with nanosecond accuracy
  28. */
  29. #include <linux/export.h>
  30. #include <linux/kernel.h>
  31. #include <linux/timex.h>
  32. #include <linux/capability.h>
  33. #include <linux/timekeeper_internal.h>
  34. #include <linux/errno.h>
  35. #include <linux/syscalls.h>
  36. #include <linux/security.h>
  37. #include <linux/fs.h>
  38. #include <linux/math64.h>
  39. #include <linux/ptrace.h>
  40. #include <linux/uaccess.h>
  41. #include <linux/compat.h>
  42. #include <asm/unistd.h>
  43. #include <generated/timeconst.h>
  44. #include "timekeeping.h"
  45. /*
  46. * The timezone where the local system is located. Used as a default by some
  47. * programs who obtain this value by using gettimeofday.
  48. */
  49. struct timezone sys_tz;
  50. EXPORT_SYMBOL(sys_tz);
  51. #ifdef __ARCH_WANT_SYS_TIME
  52. /*
  53. * sys_time() can be implemented in user-level using
  54. * sys_gettimeofday(). Is this for backwards compatibility? If so,
  55. * why not move it into the appropriate arch directory (for those
  56. * architectures that need it).
  57. */
  58. SYSCALL_DEFINE1(time, time_t __user *, tloc)
  59. {
  60. time_t i = (time_t)ktime_get_real_seconds();
  61. if (tloc) {
  62. if (put_user(i,tloc))
  63. return -EFAULT;
  64. }
  65. force_successful_syscall_return();
  66. return i;
  67. }
  68. /*
  69. * sys_stime() can be implemented in user-level using
  70. * sys_settimeofday(). Is this for backwards compatibility? If so,
  71. * why not move it into the appropriate arch directory (for those
  72. * architectures that need it).
  73. */
  74. SYSCALL_DEFINE1(stime, time_t __user *, tptr)
  75. {
  76. struct timespec64 tv;
  77. int err;
  78. if (get_user(tv.tv_sec, tptr))
  79. return -EFAULT;
  80. tv.tv_nsec = 0;
  81. err = security_settime64(&tv, NULL);
  82. if (err)
  83. return err;
  84. do_settimeofday64(&tv);
  85. return 0;
  86. }
  87. #endif /* __ARCH_WANT_SYS_TIME */
  88. #ifdef CONFIG_COMPAT
  89. #ifdef __ARCH_WANT_COMPAT_SYS_TIME
  90. /* old_time32_t is a 32 bit "long" and needs to get converted. */
  91. COMPAT_SYSCALL_DEFINE1(time, old_time32_t __user *, tloc)
  92. {
  93. old_time32_t i;
  94. i = (old_time32_t)ktime_get_real_seconds();
  95. if (tloc) {
  96. if (put_user(i,tloc))
  97. return -EFAULT;
  98. }
  99. force_successful_syscall_return();
  100. return i;
  101. }
  102. COMPAT_SYSCALL_DEFINE1(stime, old_time32_t __user *, tptr)
  103. {
  104. struct timespec64 tv;
  105. int err;
  106. if (get_user(tv.tv_sec, tptr))
  107. return -EFAULT;
  108. tv.tv_nsec = 0;
  109. err = security_settime64(&tv, NULL);
  110. if (err)
  111. return err;
  112. do_settimeofday64(&tv);
  113. return 0;
  114. }
  115. #endif /* __ARCH_WANT_COMPAT_SYS_TIME */
  116. #endif
  117. SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv,
  118. struct timezone __user *, tz)
  119. {
  120. if (likely(tv != NULL)) {
  121. struct timespec64 ts;
  122. ktime_get_real_ts64(&ts);
  123. if (put_user(ts.tv_sec, &tv->tv_sec) ||
  124. put_user(ts.tv_nsec / 1000, &tv->tv_usec))
  125. return -EFAULT;
  126. }
  127. if (unlikely(tz != NULL)) {
  128. if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
  129. return -EFAULT;
  130. }
  131. return 0;
  132. }
  133. /*
  134. * In case for some reason the CMOS clock has not already been running
  135. * in UTC, but in some local time: The first time we set the timezone,
  136. * we will warp the clock so that it is ticking UTC time instead of
  137. * local time. Presumably, if someone is setting the timezone then we
  138. * are running in an environment where the programs understand about
  139. * timezones. This should be done at boot time in the /etc/rc script,
  140. * as soon as possible, so that the clock can be set right. Otherwise,
  141. * various programs will get confused when the clock gets warped.
  142. */
  143. int do_sys_settimeofday64(const struct timespec64 *tv, const struct timezone *tz)
  144. {
  145. static int firsttime = 1;
  146. int error = 0;
  147. if (tv && !timespec64_valid(tv))
  148. return -EINVAL;
  149. error = security_settime64(tv, tz);
  150. if (error)
  151. return error;
  152. if (tz) {
  153. /* Verify we're witin the +-15 hrs range */
  154. if (tz->tz_minuteswest > 15*60 || tz->tz_minuteswest < -15*60)
  155. return -EINVAL;
  156. sys_tz = *tz;
  157. update_vsyscall_tz();
  158. if (firsttime) {
  159. firsttime = 0;
  160. if (!tv)
  161. timekeeping_warp_clock();
  162. }
  163. }
  164. if (tv)
  165. return do_settimeofday64(tv);
  166. return 0;
  167. }
  168. SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv,
  169. struct timezone __user *, tz)
  170. {
  171. struct timespec64 new_ts;
  172. struct timeval user_tv;
  173. struct timezone new_tz;
  174. if (tv) {
  175. if (copy_from_user(&user_tv, tv, sizeof(*tv)))
  176. return -EFAULT;
  177. if (!timeval_valid(&user_tv))
  178. return -EINVAL;
  179. new_ts.tv_sec = user_tv.tv_sec;
  180. new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
  181. }
  182. if (tz) {
  183. if (copy_from_user(&new_tz, tz, sizeof(*tz)))
  184. return -EFAULT;
  185. }
  186. return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
  187. }
  188. #ifdef CONFIG_COMPAT
  189. COMPAT_SYSCALL_DEFINE2(gettimeofday, struct old_timeval32 __user *, tv,
  190. struct timezone __user *, tz)
  191. {
  192. if (tv) {
  193. struct timespec64 ts;
  194. ktime_get_real_ts64(&ts);
  195. if (put_user(ts.tv_sec, &tv->tv_sec) ||
  196. put_user(ts.tv_nsec / 1000, &tv->tv_usec))
  197. return -EFAULT;
  198. }
  199. if (tz) {
  200. if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
  201. return -EFAULT;
  202. }
  203. return 0;
  204. }
  205. COMPAT_SYSCALL_DEFINE2(settimeofday, struct old_timeval32 __user *, tv,
  206. struct timezone __user *, tz)
  207. {
  208. struct timespec64 new_ts;
  209. struct timeval user_tv;
  210. struct timezone new_tz;
  211. if (tv) {
  212. if (compat_get_timeval(&user_tv, tv))
  213. return -EFAULT;
  214. new_ts.tv_sec = user_tv.tv_sec;
  215. new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
  216. }
  217. if (tz) {
  218. if (copy_from_user(&new_tz, tz, sizeof(*tz)))
  219. return -EFAULT;
  220. }
  221. return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
  222. }
  223. #endif
  224. SYSCALL_DEFINE1(adjtimex, struct timex __user *, txc_p)
  225. {
  226. struct timex txc; /* Local copy of parameter */
  227. int ret;
  228. /* Copy the user data space into the kernel copy
  229. * structure. But bear in mind that the structures
  230. * may change
  231. */
  232. if (copy_from_user(&txc, txc_p, sizeof(struct timex)))
  233. return -EFAULT;
  234. ret = do_adjtimex(&txc);
  235. return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
  236. }
  237. #ifdef CONFIG_COMPAT
  238. COMPAT_SYSCALL_DEFINE1(adjtimex, struct compat_timex __user *, utp)
  239. {
  240. struct timex txc;
  241. int err, ret;
  242. err = compat_get_timex(&txc, utp);
  243. if (err)
  244. return err;
  245. ret = do_adjtimex(&txc);
  246. err = compat_put_timex(utp, &txc);
  247. if (err)
  248. return err;
  249. return ret;
  250. }
  251. #endif
  252. /*
  253. * Convert jiffies to milliseconds and back.
  254. *
  255. * Avoid unnecessary multiplications/divisions in the
  256. * two most common HZ cases:
  257. */
  258. unsigned int jiffies_to_msecs(const unsigned long j)
  259. {
  260. #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
  261. return (MSEC_PER_SEC / HZ) * j;
  262. #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
  263. return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
  264. #else
  265. # if BITS_PER_LONG == 32
  266. return (HZ_TO_MSEC_MUL32 * j + (1ULL << HZ_TO_MSEC_SHR32) - 1) >>
  267. HZ_TO_MSEC_SHR32;
  268. # else
  269. return DIV_ROUND_UP(j * HZ_TO_MSEC_NUM, HZ_TO_MSEC_DEN);
  270. # endif
  271. #endif
  272. }
  273. EXPORT_SYMBOL(jiffies_to_msecs);
  274. unsigned int jiffies_to_usecs(const unsigned long j)
  275. {
  276. /*
  277. * Hz usually doesn't go much further MSEC_PER_SEC.
  278. * jiffies_to_usecs() and usecs_to_jiffies() depend on that.
  279. */
  280. BUILD_BUG_ON(HZ > USEC_PER_SEC);
  281. #if !(USEC_PER_SEC % HZ)
  282. return (USEC_PER_SEC / HZ) * j;
  283. #else
  284. # if BITS_PER_LONG == 32
  285. return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
  286. # else
  287. return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
  288. # endif
  289. #endif
  290. }
  291. EXPORT_SYMBOL(jiffies_to_usecs);
  292. /*
  293. * mktime64 - Converts date to seconds.
  294. * Converts Gregorian date to seconds since 1970-01-01 00:00:00.
  295. * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
  296. * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
  297. *
  298. * [For the Julian calendar (which was used in Russia before 1917,
  299. * Britain & colonies before 1752, anywhere else before 1582,
  300. * and is still in use by some communities) leave out the
  301. * -year/100+year/400 terms, and add 10.]
  302. *
  303. * This algorithm was first published by Gauss (I think).
  304. *
  305. * A leap second can be indicated by calling this function with sec as
  306. * 60 (allowable under ISO 8601). The leap second is treated the same
  307. * as the following second since they don't exist in UNIX time.
  308. *
  309. * An encoding of midnight at the end of the day as 24:00:00 - ie. midnight
  310. * tomorrow - (allowable under ISO 8601) is supported.
  311. */
  312. time64_t mktime64(const unsigned int year0, const unsigned int mon0,
  313. const unsigned int day, const unsigned int hour,
  314. const unsigned int min, const unsigned int sec)
  315. {
  316. unsigned int mon = mon0, year = year0;
  317. /* 1..12 -> 11,12,1..10 */
  318. if (0 >= (int) (mon -= 2)) {
  319. mon += 12; /* Puts Feb last since it has leap day */
  320. year -= 1;
  321. }
  322. return ((((time64_t)
  323. (year/4 - year/100 + year/400 + 367*mon/12 + day) +
  324. year*365 - 719499
  325. )*24 + hour /* now have hours - midnight tomorrow handled here */
  326. )*60 + min /* now have minutes */
  327. )*60 + sec; /* finally seconds */
  328. }
  329. EXPORT_SYMBOL(mktime64);
  330. /**
  331. * set_normalized_timespec - set timespec sec and nsec parts and normalize
  332. *
  333. * @ts: pointer to timespec variable to be set
  334. * @sec: seconds to set
  335. * @nsec: nanoseconds to set
  336. *
  337. * Set seconds and nanoseconds field of a timespec variable and
  338. * normalize to the timespec storage format
  339. *
  340. * Note: The tv_nsec part is always in the range of
  341. * 0 <= tv_nsec < NSEC_PER_SEC
  342. * For negative values only the tv_sec field is negative !
  343. */
  344. void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec)
  345. {
  346. while (nsec >= NSEC_PER_SEC) {
  347. /*
  348. * The following asm() prevents the compiler from
  349. * optimising this loop into a modulo operation. See
  350. * also __iter_div_u64_rem() in include/linux/time.h
  351. */
  352. asm("" : "+rm"(nsec));
  353. nsec -= NSEC_PER_SEC;
  354. ++sec;
  355. }
  356. while (nsec < 0) {
  357. asm("" : "+rm"(nsec));
  358. nsec += NSEC_PER_SEC;
  359. --sec;
  360. }
  361. ts->tv_sec = sec;
  362. ts->tv_nsec = nsec;
  363. }
  364. EXPORT_SYMBOL(set_normalized_timespec);
  365. /**
  366. * ns_to_timespec - Convert nanoseconds to timespec
  367. * @nsec: the nanoseconds value to be converted
  368. *
  369. * Returns the timespec representation of the nsec parameter.
  370. */
  371. struct timespec ns_to_timespec(const s64 nsec)
  372. {
  373. struct timespec ts;
  374. s32 rem;
  375. if (!nsec)
  376. return (struct timespec) {0, 0};
  377. ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
  378. if (unlikely(rem < 0)) {
  379. ts.tv_sec--;
  380. rem += NSEC_PER_SEC;
  381. }
  382. ts.tv_nsec = rem;
  383. return ts;
  384. }
  385. EXPORT_SYMBOL(ns_to_timespec);
  386. /**
  387. * ns_to_timeval - Convert nanoseconds to timeval
  388. * @nsec: the nanoseconds value to be converted
  389. *
  390. * Returns the timeval representation of the nsec parameter.
  391. */
  392. struct timeval ns_to_timeval(const s64 nsec)
  393. {
  394. struct timespec ts = ns_to_timespec(nsec);
  395. struct timeval tv;
  396. tv.tv_sec = ts.tv_sec;
  397. tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
  398. return tv;
  399. }
  400. EXPORT_SYMBOL(ns_to_timeval);
  401. struct __kernel_old_timeval ns_to_kernel_old_timeval(const s64 nsec)
  402. {
  403. struct timespec64 ts = ns_to_timespec64(nsec);
  404. struct __kernel_old_timeval tv;
  405. tv.tv_sec = ts.tv_sec;
  406. tv.tv_usec = (suseconds_t)ts.tv_nsec / 1000;
  407. return tv;
  408. }
  409. EXPORT_SYMBOL(ns_to_kernel_old_timeval);
  410. /**
  411. * set_normalized_timespec - set timespec sec and nsec parts and normalize
  412. *
  413. * @ts: pointer to timespec variable to be set
  414. * @sec: seconds to set
  415. * @nsec: nanoseconds to set
  416. *
  417. * Set seconds and nanoseconds field of a timespec variable and
  418. * normalize to the timespec storage format
  419. *
  420. * Note: The tv_nsec part is always in the range of
  421. * 0 <= tv_nsec < NSEC_PER_SEC
  422. * For negative values only the tv_sec field is negative !
  423. */
  424. void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec)
  425. {
  426. while (nsec >= NSEC_PER_SEC) {
  427. /*
  428. * The following asm() prevents the compiler from
  429. * optimising this loop into a modulo operation. See
  430. * also __iter_div_u64_rem() in include/linux/time.h
  431. */
  432. asm("" : "+rm"(nsec));
  433. nsec -= NSEC_PER_SEC;
  434. ++sec;
  435. }
  436. while (nsec < 0) {
  437. asm("" : "+rm"(nsec));
  438. nsec += NSEC_PER_SEC;
  439. --sec;
  440. }
  441. ts->tv_sec = sec;
  442. ts->tv_nsec = nsec;
  443. }
  444. EXPORT_SYMBOL(set_normalized_timespec64);
  445. /**
  446. * ns_to_timespec64 - Convert nanoseconds to timespec64
  447. * @nsec: the nanoseconds value to be converted
  448. *
  449. * Returns the timespec64 representation of the nsec parameter.
  450. */
  451. struct timespec64 ns_to_timespec64(const s64 nsec)
  452. {
  453. struct timespec64 ts;
  454. s32 rem;
  455. if (!nsec)
  456. return (struct timespec64) {0, 0};
  457. ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
  458. if (unlikely(rem < 0)) {
  459. ts.tv_sec--;
  460. rem += NSEC_PER_SEC;
  461. }
  462. ts.tv_nsec = rem;
  463. return ts;
  464. }
  465. EXPORT_SYMBOL(ns_to_timespec64);
  466. /**
  467. * msecs_to_jiffies: - convert milliseconds to jiffies
  468. * @m: time in milliseconds
  469. *
  470. * conversion is done as follows:
  471. *
  472. * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
  473. *
  474. * - 'too large' values [that would result in larger than
  475. * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
  476. *
  477. * - all other values are converted to jiffies by either multiplying
  478. * the input value by a factor or dividing it with a factor and
  479. * handling any 32-bit overflows.
  480. * for the details see __msecs_to_jiffies()
  481. *
  482. * msecs_to_jiffies() checks for the passed in value being a constant
  483. * via __builtin_constant_p() allowing gcc to eliminate most of the
  484. * code, __msecs_to_jiffies() is called if the value passed does not
  485. * allow constant folding and the actual conversion must be done at
  486. * runtime.
  487. * the _msecs_to_jiffies helpers are the HZ dependent conversion
  488. * routines found in include/linux/jiffies.h
  489. */
  490. unsigned long __msecs_to_jiffies(const unsigned int m)
  491. {
  492. /*
  493. * Negative value, means infinite timeout:
  494. */
  495. if ((int)m < 0)
  496. return MAX_JIFFY_OFFSET;
  497. return _msecs_to_jiffies(m);
  498. }
  499. EXPORT_SYMBOL(__msecs_to_jiffies);
  500. unsigned long __usecs_to_jiffies(const unsigned int u)
  501. {
  502. if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
  503. return MAX_JIFFY_OFFSET;
  504. return _usecs_to_jiffies(u);
  505. }
  506. EXPORT_SYMBOL(__usecs_to_jiffies);
  507. /*
  508. * The TICK_NSEC - 1 rounds up the value to the next resolution. Note
  509. * that a remainder subtract here would not do the right thing as the
  510. * resolution values don't fall on second boundries. I.e. the line:
  511. * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
  512. * Note that due to the small error in the multiplier here, this
  513. * rounding is incorrect for sufficiently large values of tv_nsec, but
  514. * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're
  515. * OK.
  516. *
  517. * Rather, we just shift the bits off the right.
  518. *
  519. * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
  520. * value to a scaled second value.
  521. */
  522. static unsigned long
  523. __timespec64_to_jiffies(u64 sec, long nsec)
  524. {
  525. nsec = nsec + TICK_NSEC - 1;
  526. if (sec >= MAX_SEC_IN_JIFFIES){
  527. sec = MAX_SEC_IN_JIFFIES;
  528. nsec = 0;
  529. }
  530. return ((sec * SEC_CONVERSION) +
  531. (((u64)nsec * NSEC_CONVERSION) >>
  532. (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
  533. }
  534. static unsigned long
  535. __timespec_to_jiffies(unsigned long sec, long nsec)
  536. {
  537. return __timespec64_to_jiffies((u64)sec, nsec);
  538. }
  539. unsigned long
  540. timespec64_to_jiffies(const struct timespec64 *value)
  541. {
  542. return __timespec64_to_jiffies(value->tv_sec, value->tv_nsec);
  543. }
  544. EXPORT_SYMBOL(timespec64_to_jiffies);
  545. void
  546. jiffies_to_timespec64(const unsigned long jiffies, struct timespec64 *value)
  547. {
  548. /*
  549. * Convert jiffies to nanoseconds and separate with
  550. * one divide.
  551. */
  552. u32 rem;
  553. value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
  554. NSEC_PER_SEC, &rem);
  555. value->tv_nsec = rem;
  556. }
  557. EXPORT_SYMBOL(jiffies_to_timespec64);
  558. /*
  559. * We could use a similar algorithm to timespec_to_jiffies (with a
  560. * different multiplier for usec instead of nsec). But this has a
  561. * problem with rounding: we can't exactly add TICK_NSEC - 1 to the
  562. * usec value, since it's not necessarily integral.
  563. *
  564. * We could instead round in the intermediate scaled representation
  565. * (i.e. in units of 1/2^(large scale) jiffies) but that's also
  566. * perilous: the scaling introduces a small positive error, which
  567. * combined with a division-rounding-upward (i.e. adding 2^(scale) - 1
  568. * units to the intermediate before shifting) leads to accidental
  569. * overflow and overestimates.
  570. *
  571. * At the cost of one additional multiplication by a constant, just
  572. * use the timespec implementation.
  573. */
  574. unsigned long
  575. timeval_to_jiffies(const struct timeval *value)
  576. {
  577. return __timespec_to_jiffies(value->tv_sec,
  578. value->tv_usec * NSEC_PER_USEC);
  579. }
  580. EXPORT_SYMBOL(timeval_to_jiffies);
  581. void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
  582. {
  583. /*
  584. * Convert jiffies to nanoseconds and separate with
  585. * one divide.
  586. */
  587. u32 rem;
  588. value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
  589. NSEC_PER_SEC, &rem);
  590. value->tv_usec = rem / NSEC_PER_USEC;
  591. }
  592. EXPORT_SYMBOL(jiffies_to_timeval);
  593. /*
  594. * Convert jiffies/jiffies_64 to clock_t and back.
  595. */
  596. clock_t jiffies_to_clock_t(unsigned long x)
  597. {
  598. #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
  599. # if HZ < USER_HZ
  600. return x * (USER_HZ / HZ);
  601. # else
  602. return x / (HZ / USER_HZ);
  603. # endif
  604. #else
  605. return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
  606. #endif
  607. }
  608. EXPORT_SYMBOL(jiffies_to_clock_t);
  609. unsigned long clock_t_to_jiffies(unsigned long x)
  610. {
  611. #if (HZ % USER_HZ)==0
  612. if (x >= ~0UL / (HZ / USER_HZ))
  613. return ~0UL;
  614. return x * (HZ / USER_HZ);
  615. #else
  616. /* Don't worry about loss of precision here .. */
  617. if (x >= ~0UL / HZ * USER_HZ)
  618. return ~0UL;
  619. /* .. but do try to contain it here */
  620. return div_u64((u64)x * HZ, USER_HZ);
  621. #endif
  622. }
  623. EXPORT_SYMBOL(clock_t_to_jiffies);
  624. u64 jiffies_64_to_clock_t(u64 x)
  625. {
  626. #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
  627. # if HZ < USER_HZ
  628. x = div_u64(x * USER_HZ, HZ);
  629. # elif HZ > USER_HZ
  630. x = div_u64(x, HZ / USER_HZ);
  631. # else
  632. /* Nothing to do */
  633. # endif
  634. #else
  635. /*
  636. * There are better ways that don't overflow early,
  637. * but even this doesn't overflow in hundreds of years
  638. * in 64 bits, so..
  639. */
  640. x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
  641. #endif
  642. return x;
  643. }
  644. EXPORT_SYMBOL(jiffies_64_to_clock_t);
  645. u64 nsec_to_clock_t(u64 x)
  646. {
  647. #if (NSEC_PER_SEC % USER_HZ) == 0
  648. return div_u64(x, NSEC_PER_SEC / USER_HZ);
  649. #elif (USER_HZ % 512) == 0
  650. return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
  651. #else
  652. /*
  653. * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
  654. * overflow after 64.99 years.
  655. * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
  656. */
  657. return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
  658. #endif
  659. }
  660. u64 jiffies64_to_nsecs(u64 j)
  661. {
  662. #if !(NSEC_PER_SEC % HZ)
  663. return (NSEC_PER_SEC / HZ) * j;
  664. # else
  665. return div_u64(j * HZ_TO_NSEC_NUM, HZ_TO_NSEC_DEN);
  666. #endif
  667. }
  668. EXPORT_SYMBOL(jiffies64_to_nsecs);
  669. /**
  670. * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
  671. *
  672. * @n: nsecs in u64
  673. *
  674. * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
  675. * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
  676. * for scheduler, not for use in device drivers to calculate timeout value.
  677. *
  678. * note:
  679. * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
  680. * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
  681. */
  682. u64 nsecs_to_jiffies64(u64 n)
  683. {
  684. #if (NSEC_PER_SEC % HZ) == 0
  685. /* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
  686. return div_u64(n, NSEC_PER_SEC / HZ);
  687. #elif (HZ % 512) == 0
  688. /* overflow after 292 years if HZ = 1024 */
  689. return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
  690. #else
  691. /*
  692. * Generic case - optimized for cases where HZ is a multiple of 3.
  693. * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
  694. */
  695. return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
  696. #endif
  697. }
  698. EXPORT_SYMBOL(nsecs_to_jiffies64);
  699. /**
  700. * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
  701. *
  702. * @n: nsecs in u64
  703. *
  704. * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
  705. * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
  706. * for scheduler, not for use in device drivers to calculate timeout value.
  707. *
  708. * note:
  709. * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
  710. * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
  711. */
  712. unsigned long nsecs_to_jiffies(u64 n)
  713. {
  714. return (unsigned long)nsecs_to_jiffies64(n);
  715. }
  716. EXPORT_SYMBOL_GPL(nsecs_to_jiffies);
  717. /*
  718. * Add two timespec64 values and do a safety check for overflow.
  719. * It's assumed that both values are valid (>= 0).
  720. * And, each timespec64 is in normalized form.
  721. */
  722. struct timespec64 timespec64_add_safe(const struct timespec64 lhs,
  723. const struct timespec64 rhs)
  724. {
  725. struct timespec64 res;
  726. set_normalized_timespec64(&res, (timeu64_t) lhs.tv_sec + rhs.tv_sec,
  727. lhs.tv_nsec + rhs.tv_nsec);
  728. if (unlikely(res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)) {
  729. res.tv_sec = TIME64_MAX;
  730. res.tv_nsec = 0;
  731. }
  732. return res;
  733. }
  734. int get_timespec64(struct timespec64 *ts,
  735. const struct __kernel_timespec __user *uts)
  736. {
  737. struct __kernel_timespec kts;
  738. int ret;
  739. ret = copy_from_user(&kts, uts, sizeof(kts));
  740. if (ret)
  741. return -EFAULT;
  742. ts->tv_sec = kts.tv_sec;
  743. /* Zero out the padding for 32 bit systems or in compat mode */
  744. if (IS_ENABLED(CONFIG_64BIT_TIME) && (!IS_ENABLED(CONFIG_64BIT) || in_compat_syscall()))
  745. kts.tv_nsec &= 0xFFFFFFFFUL;
  746. ts->tv_nsec = kts.tv_nsec;
  747. return 0;
  748. }
  749. EXPORT_SYMBOL_GPL(get_timespec64);
  750. int put_timespec64(const struct timespec64 *ts,
  751. struct __kernel_timespec __user *uts)
  752. {
  753. struct __kernel_timespec kts = {
  754. .tv_sec = ts->tv_sec,
  755. .tv_nsec = ts->tv_nsec
  756. };
  757. return copy_to_user(uts, &kts, sizeof(kts)) ? -EFAULT : 0;
  758. }
  759. EXPORT_SYMBOL_GPL(put_timespec64);
  760. int __get_old_timespec32(struct timespec64 *ts64,
  761. const struct old_timespec32 __user *cts)
  762. {
  763. struct old_timespec32 ts;
  764. int ret;
  765. ret = copy_from_user(&ts, cts, sizeof(ts));
  766. if (ret)
  767. return -EFAULT;
  768. ts64->tv_sec = ts.tv_sec;
  769. ts64->tv_nsec = ts.tv_nsec;
  770. return 0;
  771. }
  772. int __put_old_timespec32(const struct timespec64 *ts64,
  773. struct old_timespec32 __user *cts)
  774. {
  775. struct old_timespec32 ts = {
  776. .tv_sec = ts64->tv_sec,
  777. .tv_nsec = ts64->tv_nsec
  778. };
  779. return copy_to_user(cts, &ts, sizeof(ts)) ? -EFAULT : 0;
  780. }
  781. int get_old_timespec32(struct timespec64 *ts, const void __user *uts)
  782. {
  783. if (COMPAT_USE_64BIT_TIME)
  784. return copy_from_user(ts, uts, sizeof(*ts)) ? -EFAULT : 0;
  785. else
  786. return __get_old_timespec32(ts, uts);
  787. }
  788. EXPORT_SYMBOL_GPL(get_old_timespec32);
  789. int put_old_timespec32(const struct timespec64 *ts, void __user *uts)
  790. {
  791. if (COMPAT_USE_64BIT_TIME)
  792. return copy_to_user(uts, ts, sizeof(*ts)) ? -EFAULT : 0;
  793. else
  794. return __put_old_timespec32(ts, uts);
  795. }
  796. EXPORT_SYMBOL_GPL(put_old_timespec32);
  797. int get_itimerspec64(struct itimerspec64 *it,
  798. const struct __kernel_itimerspec __user *uit)
  799. {
  800. int ret;
  801. ret = get_timespec64(&it->it_interval, &uit->it_interval);
  802. if (ret)
  803. return ret;
  804. ret = get_timespec64(&it->it_value, &uit->it_value);
  805. return ret;
  806. }
  807. EXPORT_SYMBOL_GPL(get_itimerspec64);
  808. int put_itimerspec64(const struct itimerspec64 *it,
  809. struct __kernel_itimerspec __user *uit)
  810. {
  811. int ret;
  812. ret = put_timespec64(&it->it_interval, &uit->it_interval);
  813. if (ret)
  814. return ret;
  815. ret = put_timespec64(&it->it_value, &uit->it_value);
  816. return ret;
  817. }
  818. EXPORT_SYMBOL_GPL(put_itimerspec64);
  819. int get_old_itimerspec32(struct itimerspec64 *its,
  820. const struct old_itimerspec32 __user *uits)
  821. {
  822. if (__get_old_timespec32(&its->it_interval, &uits->it_interval) ||
  823. __get_old_timespec32(&its->it_value, &uits->it_value))
  824. return -EFAULT;
  825. return 0;
  826. }
  827. EXPORT_SYMBOL_GPL(get_old_itimerspec32);
  828. int put_old_itimerspec32(const struct itimerspec64 *its,
  829. struct old_itimerspec32 __user *uits)
  830. {
  831. if (__put_old_timespec32(&its->it_interval, &uits->it_interval) ||
  832. __put_old_timespec32(&its->it_value, &uits->it_value))
  833. return -EFAULT;
  834. return 0;
  835. }
  836. EXPORT_SYMBOL_GPL(put_old_itimerspec32);