intel_ringbuffer.c 82 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004
  1. /*
  2. * Copyright © 2008-2010 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. * Zou Nan hai <nanhai.zou@intel.com>
  26. * Xiang Hai hao<haihao.xiang@intel.com>
  27. *
  28. */
  29. #include <linux/log2.h>
  30. #include <drm/drmP.h>
  31. #include "i915_drv.h"
  32. #include <drm/i915_drm.h>
  33. #include "i915_trace.h"
  34. #include "intel_drv.h"
  35. /* Rough estimate of the typical request size, performing a flush,
  36. * set-context and then emitting the batch.
  37. */
  38. #define LEGACY_REQUEST_SIZE 200
  39. int __intel_ring_space(int head, int tail, int size)
  40. {
  41. int space = head - tail;
  42. if (space <= 0)
  43. space += size;
  44. return space - I915_RING_FREE_SPACE;
  45. }
  46. void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
  47. {
  48. if (ringbuf->last_retired_head != -1) {
  49. ringbuf->head = ringbuf->last_retired_head;
  50. ringbuf->last_retired_head = -1;
  51. }
  52. ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
  53. ringbuf->tail, ringbuf->size);
  54. }
  55. static void __intel_ring_advance(struct intel_engine_cs *engine)
  56. {
  57. struct intel_ringbuffer *ringbuf = engine->buffer;
  58. ringbuf->tail &= ringbuf->size - 1;
  59. engine->write_tail(engine, ringbuf->tail);
  60. }
  61. static int
  62. gen2_render_ring_flush(struct drm_i915_gem_request *req,
  63. u32 invalidate_domains,
  64. u32 flush_domains)
  65. {
  66. struct intel_engine_cs *engine = req->engine;
  67. u32 cmd;
  68. int ret;
  69. cmd = MI_FLUSH;
  70. if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
  71. cmd |= MI_NO_WRITE_FLUSH;
  72. if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
  73. cmd |= MI_READ_FLUSH;
  74. ret = intel_ring_begin(req, 2);
  75. if (ret)
  76. return ret;
  77. intel_ring_emit(engine, cmd);
  78. intel_ring_emit(engine, MI_NOOP);
  79. intel_ring_advance(engine);
  80. return 0;
  81. }
  82. static int
  83. gen4_render_ring_flush(struct drm_i915_gem_request *req,
  84. u32 invalidate_domains,
  85. u32 flush_domains)
  86. {
  87. struct intel_engine_cs *engine = req->engine;
  88. u32 cmd;
  89. int ret;
  90. /*
  91. * read/write caches:
  92. *
  93. * I915_GEM_DOMAIN_RENDER is always invalidated, but is
  94. * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
  95. * also flushed at 2d versus 3d pipeline switches.
  96. *
  97. * read-only caches:
  98. *
  99. * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
  100. * MI_READ_FLUSH is set, and is always flushed on 965.
  101. *
  102. * I915_GEM_DOMAIN_COMMAND may not exist?
  103. *
  104. * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
  105. * invalidated when MI_EXE_FLUSH is set.
  106. *
  107. * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
  108. * invalidated with every MI_FLUSH.
  109. *
  110. * TLBs:
  111. *
  112. * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
  113. * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
  114. * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
  115. * are flushed at any MI_FLUSH.
  116. */
  117. cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
  118. if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
  119. cmd &= ~MI_NO_WRITE_FLUSH;
  120. if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
  121. cmd |= MI_EXE_FLUSH;
  122. if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
  123. (IS_G4X(req->i915) || IS_GEN5(req->i915)))
  124. cmd |= MI_INVALIDATE_ISP;
  125. ret = intel_ring_begin(req, 2);
  126. if (ret)
  127. return ret;
  128. intel_ring_emit(engine, cmd);
  129. intel_ring_emit(engine, MI_NOOP);
  130. intel_ring_advance(engine);
  131. return 0;
  132. }
  133. /**
  134. * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
  135. * implementing two workarounds on gen6. From section 1.4.7.1
  136. * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
  137. *
  138. * [DevSNB-C+{W/A}] Before any depth stall flush (including those
  139. * produced by non-pipelined state commands), software needs to first
  140. * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
  141. * 0.
  142. *
  143. * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
  144. * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
  145. *
  146. * And the workaround for these two requires this workaround first:
  147. *
  148. * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
  149. * BEFORE the pipe-control with a post-sync op and no write-cache
  150. * flushes.
  151. *
  152. * And this last workaround is tricky because of the requirements on
  153. * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
  154. * volume 2 part 1:
  155. *
  156. * "1 of the following must also be set:
  157. * - Render Target Cache Flush Enable ([12] of DW1)
  158. * - Depth Cache Flush Enable ([0] of DW1)
  159. * - Stall at Pixel Scoreboard ([1] of DW1)
  160. * - Depth Stall ([13] of DW1)
  161. * - Post-Sync Operation ([13] of DW1)
  162. * - Notify Enable ([8] of DW1)"
  163. *
  164. * The cache flushes require the workaround flush that triggered this
  165. * one, so we can't use it. Depth stall would trigger the same.
  166. * Post-sync nonzero is what triggered this second workaround, so we
  167. * can't use that one either. Notify enable is IRQs, which aren't
  168. * really our business. That leaves only stall at scoreboard.
  169. */
  170. static int
  171. intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
  172. {
  173. struct intel_engine_cs *engine = req->engine;
  174. u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  175. int ret;
  176. ret = intel_ring_begin(req, 6);
  177. if (ret)
  178. return ret;
  179. intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(5));
  180. intel_ring_emit(engine, PIPE_CONTROL_CS_STALL |
  181. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  182. intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  183. intel_ring_emit(engine, 0); /* low dword */
  184. intel_ring_emit(engine, 0); /* high dword */
  185. intel_ring_emit(engine, MI_NOOP);
  186. intel_ring_advance(engine);
  187. ret = intel_ring_begin(req, 6);
  188. if (ret)
  189. return ret;
  190. intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(5));
  191. intel_ring_emit(engine, PIPE_CONTROL_QW_WRITE);
  192. intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  193. intel_ring_emit(engine, 0);
  194. intel_ring_emit(engine, 0);
  195. intel_ring_emit(engine, MI_NOOP);
  196. intel_ring_advance(engine);
  197. return 0;
  198. }
  199. static int
  200. gen6_render_ring_flush(struct drm_i915_gem_request *req,
  201. u32 invalidate_domains, u32 flush_domains)
  202. {
  203. struct intel_engine_cs *engine = req->engine;
  204. u32 flags = 0;
  205. u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  206. int ret;
  207. /* Force SNB workarounds for PIPE_CONTROL flushes */
  208. ret = intel_emit_post_sync_nonzero_flush(req);
  209. if (ret)
  210. return ret;
  211. /* Just flush everything. Experiments have shown that reducing the
  212. * number of bits based on the write domains has little performance
  213. * impact.
  214. */
  215. if (flush_domains) {
  216. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  217. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  218. /*
  219. * Ensure that any following seqno writes only happen
  220. * when the render cache is indeed flushed.
  221. */
  222. flags |= PIPE_CONTROL_CS_STALL;
  223. }
  224. if (invalidate_domains) {
  225. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  226. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  227. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  228. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  229. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  230. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  231. /*
  232. * TLB invalidate requires a post-sync write.
  233. */
  234. flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
  235. }
  236. ret = intel_ring_begin(req, 4);
  237. if (ret)
  238. return ret;
  239. intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
  240. intel_ring_emit(engine, flags);
  241. intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
  242. intel_ring_emit(engine, 0);
  243. intel_ring_advance(engine);
  244. return 0;
  245. }
  246. static int
  247. gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
  248. {
  249. struct intel_engine_cs *engine = req->engine;
  250. int ret;
  251. ret = intel_ring_begin(req, 4);
  252. if (ret)
  253. return ret;
  254. intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
  255. intel_ring_emit(engine, PIPE_CONTROL_CS_STALL |
  256. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  257. intel_ring_emit(engine, 0);
  258. intel_ring_emit(engine, 0);
  259. intel_ring_advance(engine);
  260. return 0;
  261. }
  262. static int
  263. gen7_render_ring_flush(struct drm_i915_gem_request *req,
  264. u32 invalidate_domains, u32 flush_domains)
  265. {
  266. struct intel_engine_cs *engine = req->engine;
  267. u32 flags = 0;
  268. u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  269. int ret;
  270. /*
  271. * Ensure that any following seqno writes only happen when the render
  272. * cache is indeed flushed.
  273. *
  274. * Workaround: 4th PIPE_CONTROL command (except the ones with only
  275. * read-cache invalidate bits set) must have the CS_STALL bit set. We
  276. * don't try to be clever and just set it unconditionally.
  277. */
  278. flags |= PIPE_CONTROL_CS_STALL;
  279. /* Just flush everything. Experiments have shown that reducing the
  280. * number of bits based on the write domains has little performance
  281. * impact.
  282. */
  283. if (flush_domains) {
  284. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  285. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  286. flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
  287. flags |= PIPE_CONTROL_FLUSH_ENABLE;
  288. }
  289. if (invalidate_domains) {
  290. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  291. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  292. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  293. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  294. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  295. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  296. flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
  297. /*
  298. * TLB invalidate requires a post-sync write.
  299. */
  300. flags |= PIPE_CONTROL_QW_WRITE;
  301. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  302. flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
  303. /* Workaround: we must issue a pipe_control with CS-stall bit
  304. * set before a pipe_control command that has the state cache
  305. * invalidate bit set. */
  306. gen7_render_ring_cs_stall_wa(req);
  307. }
  308. ret = intel_ring_begin(req, 4);
  309. if (ret)
  310. return ret;
  311. intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
  312. intel_ring_emit(engine, flags);
  313. intel_ring_emit(engine, scratch_addr);
  314. intel_ring_emit(engine, 0);
  315. intel_ring_advance(engine);
  316. return 0;
  317. }
  318. static int
  319. gen8_emit_pipe_control(struct drm_i915_gem_request *req,
  320. u32 flags, u32 scratch_addr)
  321. {
  322. struct intel_engine_cs *engine = req->engine;
  323. int ret;
  324. ret = intel_ring_begin(req, 6);
  325. if (ret)
  326. return ret;
  327. intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(6));
  328. intel_ring_emit(engine, flags);
  329. intel_ring_emit(engine, scratch_addr);
  330. intel_ring_emit(engine, 0);
  331. intel_ring_emit(engine, 0);
  332. intel_ring_emit(engine, 0);
  333. intel_ring_advance(engine);
  334. return 0;
  335. }
  336. static int
  337. gen8_render_ring_flush(struct drm_i915_gem_request *req,
  338. u32 invalidate_domains, u32 flush_domains)
  339. {
  340. u32 flags = 0;
  341. u32 scratch_addr = req->engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  342. int ret;
  343. flags |= PIPE_CONTROL_CS_STALL;
  344. if (flush_domains) {
  345. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  346. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  347. flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
  348. flags |= PIPE_CONTROL_FLUSH_ENABLE;
  349. }
  350. if (invalidate_domains) {
  351. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  352. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  353. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  354. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  355. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  356. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  357. flags |= PIPE_CONTROL_QW_WRITE;
  358. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  359. /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
  360. ret = gen8_emit_pipe_control(req,
  361. PIPE_CONTROL_CS_STALL |
  362. PIPE_CONTROL_STALL_AT_SCOREBOARD,
  363. 0);
  364. if (ret)
  365. return ret;
  366. }
  367. return gen8_emit_pipe_control(req, flags, scratch_addr);
  368. }
  369. static void ring_write_tail(struct intel_engine_cs *engine,
  370. u32 value)
  371. {
  372. struct drm_i915_private *dev_priv = engine->i915;
  373. I915_WRITE_TAIL(engine, value);
  374. }
  375. u64 intel_ring_get_active_head(struct intel_engine_cs *engine)
  376. {
  377. struct drm_i915_private *dev_priv = engine->i915;
  378. u64 acthd;
  379. if (INTEL_GEN(dev_priv) >= 8)
  380. acthd = I915_READ64_2x32(RING_ACTHD(engine->mmio_base),
  381. RING_ACTHD_UDW(engine->mmio_base));
  382. else if (INTEL_GEN(dev_priv) >= 4)
  383. acthd = I915_READ(RING_ACTHD(engine->mmio_base));
  384. else
  385. acthd = I915_READ(ACTHD);
  386. return acthd;
  387. }
  388. static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
  389. {
  390. struct drm_i915_private *dev_priv = engine->i915;
  391. u32 addr;
  392. addr = dev_priv->status_page_dmah->busaddr;
  393. if (INTEL_GEN(dev_priv) >= 4)
  394. addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
  395. I915_WRITE(HWS_PGA, addr);
  396. }
  397. static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
  398. {
  399. struct drm_i915_private *dev_priv = engine->i915;
  400. i915_reg_t mmio;
  401. /* The ring status page addresses are no longer next to the rest of
  402. * the ring registers as of gen7.
  403. */
  404. if (IS_GEN7(dev_priv)) {
  405. switch (engine->id) {
  406. case RCS:
  407. mmio = RENDER_HWS_PGA_GEN7;
  408. break;
  409. case BCS:
  410. mmio = BLT_HWS_PGA_GEN7;
  411. break;
  412. /*
  413. * VCS2 actually doesn't exist on Gen7. Only shut up
  414. * gcc switch check warning
  415. */
  416. case VCS2:
  417. case VCS:
  418. mmio = BSD_HWS_PGA_GEN7;
  419. break;
  420. case VECS:
  421. mmio = VEBOX_HWS_PGA_GEN7;
  422. break;
  423. }
  424. } else if (IS_GEN6(dev_priv)) {
  425. mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
  426. } else {
  427. /* XXX: gen8 returns to sanity */
  428. mmio = RING_HWS_PGA(engine->mmio_base);
  429. }
  430. I915_WRITE(mmio, (u32)engine->status_page.gfx_addr);
  431. POSTING_READ(mmio);
  432. /*
  433. * Flush the TLB for this page
  434. *
  435. * FIXME: These two bits have disappeared on gen8, so a question
  436. * arises: do we still need this and if so how should we go about
  437. * invalidating the TLB?
  438. */
  439. if (IS_GEN(dev_priv, 6, 7)) {
  440. i915_reg_t reg = RING_INSTPM(engine->mmio_base);
  441. /* ring should be idle before issuing a sync flush*/
  442. WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
  443. I915_WRITE(reg,
  444. _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
  445. INSTPM_SYNC_FLUSH));
  446. if (intel_wait_for_register(dev_priv,
  447. reg, INSTPM_SYNC_FLUSH, 0,
  448. 1000))
  449. DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
  450. engine->name);
  451. }
  452. }
  453. static bool stop_ring(struct intel_engine_cs *engine)
  454. {
  455. struct drm_i915_private *dev_priv = engine->i915;
  456. if (!IS_GEN2(dev_priv)) {
  457. I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
  458. if (intel_wait_for_register(dev_priv,
  459. RING_MI_MODE(engine->mmio_base),
  460. MODE_IDLE,
  461. MODE_IDLE,
  462. 1000)) {
  463. DRM_ERROR("%s : timed out trying to stop ring\n",
  464. engine->name);
  465. /* Sometimes we observe that the idle flag is not
  466. * set even though the ring is empty. So double
  467. * check before giving up.
  468. */
  469. if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
  470. return false;
  471. }
  472. }
  473. I915_WRITE_CTL(engine, 0);
  474. I915_WRITE_HEAD(engine, 0);
  475. engine->write_tail(engine, 0);
  476. if (!IS_GEN2(dev_priv)) {
  477. (void)I915_READ_CTL(engine);
  478. I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
  479. }
  480. return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
  481. }
  482. static int init_ring_common(struct intel_engine_cs *engine)
  483. {
  484. struct drm_i915_private *dev_priv = engine->i915;
  485. struct intel_ringbuffer *ringbuf = engine->buffer;
  486. struct drm_i915_gem_object *obj = ringbuf->obj;
  487. int ret = 0;
  488. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  489. if (!stop_ring(engine)) {
  490. /* G45 ring initialization often fails to reset head to zero */
  491. DRM_DEBUG_KMS("%s head not reset to zero "
  492. "ctl %08x head %08x tail %08x start %08x\n",
  493. engine->name,
  494. I915_READ_CTL(engine),
  495. I915_READ_HEAD(engine),
  496. I915_READ_TAIL(engine),
  497. I915_READ_START(engine));
  498. if (!stop_ring(engine)) {
  499. DRM_ERROR("failed to set %s head to zero "
  500. "ctl %08x head %08x tail %08x start %08x\n",
  501. engine->name,
  502. I915_READ_CTL(engine),
  503. I915_READ_HEAD(engine),
  504. I915_READ_TAIL(engine),
  505. I915_READ_START(engine));
  506. ret = -EIO;
  507. goto out;
  508. }
  509. }
  510. if (I915_NEED_GFX_HWS(dev_priv))
  511. intel_ring_setup_status_page(engine);
  512. else
  513. ring_setup_phys_status_page(engine);
  514. /* Enforce ordering by reading HEAD register back */
  515. I915_READ_HEAD(engine);
  516. /* Initialize the ring. This must happen _after_ we've cleared the ring
  517. * registers with the above sequence (the readback of the HEAD registers
  518. * also enforces ordering), otherwise the hw might lose the new ring
  519. * register values. */
  520. I915_WRITE_START(engine, i915_gem_obj_ggtt_offset(obj));
  521. /* WaClearRingBufHeadRegAtInit:ctg,elk */
  522. if (I915_READ_HEAD(engine))
  523. DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
  524. engine->name, I915_READ_HEAD(engine));
  525. I915_WRITE_HEAD(engine, 0);
  526. (void)I915_READ_HEAD(engine);
  527. I915_WRITE_CTL(engine,
  528. ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
  529. | RING_VALID);
  530. /* If the head is still not zero, the ring is dead */
  531. if (wait_for((I915_READ_CTL(engine) & RING_VALID) != 0 &&
  532. I915_READ_START(engine) == i915_gem_obj_ggtt_offset(obj) &&
  533. (I915_READ_HEAD(engine) & HEAD_ADDR) == 0, 50)) {
  534. DRM_ERROR("%s initialization failed "
  535. "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
  536. engine->name,
  537. I915_READ_CTL(engine),
  538. I915_READ_CTL(engine) & RING_VALID,
  539. I915_READ_HEAD(engine), I915_READ_TAIL(engine),
  540. I915_READ_START(engine),
  541. (unsigned long)i915_gem_obj_ggtt_offset(obj));
  542. ret = -EIO;
  543. goto out;
  544. }
  545. ringbuf->last_retired_head = -1;
  546. ringbuf->head = I915_READ_HEAD(engine);
  547. ringbuf->tail = I915_READ_TAIL(engine) & TAIL_ADDR;
  548. intel_ring_update_space(ringbuf);
  549. intel_engine_init_hangcheck(engine);
  550. out:
  551. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  552. return ret;
  553. }
  554. void intel_fini_pipe_control(struct intel_engine_cs *engine)
  555. {
  556. if (engine->scratch.obj == NULL)
  557. return;
  558. i915_gem_object_ggtt_unpin(engine->scratch.obj);
  559. drm_gem_object_unreference(&engine->scratch.obj->base);
  560. engine->scratch.obj = NULL;
  561. }
  562. int intel_init_pipe_control(struct intel_engine_cs *engine, int size)
  563. {
  564. struct drm_i915_gem_object *obj;
  565. int ret;
  566. WARN_ON(engine->scratch.obj);
  567. obj = i915_gem_object_create_stolen(&engine->i915->drm, size);
  568. if (!obj)
  569. obj = i915_gem_object_create(&engine->i915->drm, size);
  570. if (IS_ERR(obj)) {
  571. DRM_ERROR("Failed to allocate scratch page\n");
  572. ret = PTR_ERR(obj);
  573. goto err;
  574. }
  575. ret = i915_gem_obj_ggtt_pin(obj, 4096, PIN_HIGH);
  576. if (ret)
  577. goto err_unref;
  578. engine->scratch.obj = obj;
  579. engine->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
  580. DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
  581. engine->name, engine->scratch.gtt_offset);
  582. return 0;
  583. err_unref:
  584. drm_gem_object_unreference(&engine->scratch.obj->base);
  585. err:
  586. return ret;
  587. }
  588. static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
  589. {
  590. struct intel_engine_cs *engine = req->engine;
  591. struct i915_workarounds *w = &req->i915->workarounds;
  592. int ret, i;
  593. if (w->count == 0)
  594. return 0;
  595. engine->gpu_caches_dirty = true;
  596. ret = intel_ring_flush_all_caches(req);
  597. if (ret)
  598. return ret;
  599. ret = intel_ring_begin(req, (w->count * 2 + 2));
  600. if (ret)
  601. return ret;
  602. intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(w->count));
  603. for (i = 0; i < w->count; i++) {
  604. intel_ring_emit_reg(engine, w->reg[i].addr);
  605. intel_ring_emit(engine, w->reg[i].value);
  606. }
  607. intel_ring_emit(engine, MI_NOOP);
  608. intel_ring_advance(engine);
  609. engine->gpu_caches_dirty = true;
  610. ret = intel_ring_flush_all_caches(req);
  611. if (ret)
  612. return ret;
  613. DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
  614. return 0;
  615. }
  616. static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
  617. {
  618. int ret;
  619. ret = intel_ring_workarounds_emit(req);
  620. if (ret != 0)
  621. return ret;
  622. ret = i915_gem_render_state_init(req);
  623. if (ret)
  624. return ret;
  625. return 0;
  626. }
  627. static int wa_add(struct drm_i915_private *dev_priv,
  628. i915_reg_t addr,
  629. const u32 mask, const u32 val)
  630. {
  631. const u32 idx = dev_priv->workarounds.count;
  632. if (WARN_ON(idx >= I915_MAX_WA_REGS))
  633. return -ENOSPC;
  634. dev_priv->workarounds.reg[idx].addr = addr;
  635. dev_priv->workarounds.reg[idx].value = val;
  636. dev_priv->workarounds.reg[idx].mask = mask;
  637. dev_priv->workarounds.count++;
  638. return 0;
  639. }
  640. #define WA_REG(addr, mask, val) do { \
  641. const int r = wa_add(dev_priv, (addr), (mask), (val)); \
  642. if (r) \
  643. return r; \
  644. } while (0)
  645. #define WA_SET_BIT_MASKED(addr, mask) \
  646. WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
  647. #define WA_CLR_BIT_MASKED(addr, mask) \
  648. WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
  649. #define WA_SET_FIELD_MASKED(addr, mask, value) \
  650. WA_REG(addr, mask, _MASKED_FIELD(mask, value))
  651. #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
  652. #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
  653. #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
  654. static int wa_ring_whitelist_reg(struct intel_engine_cs *engine,
  655. i915_reg_t reg)
  656. {
  657. struct drm_i915_private *dev_priv = engine->i915;
  658. struct i915_workarounds *wa = &dev_priv->workarounds;
  659. const uint32_t index = wa->hw_whitelist_count[engine->id];
  660. if (WARN_ON(index >= RING_MAX_NONPRIV_SLOTS))
  661. return -EINVAL;
  662. WA_WRITE(RING_FORCE_TO_NONPRIV(engine->mmio_base, index),
  663. i915_mmio_reg_offset(reg));
  664. wa->hw_whitelist_count[engine->id]++;
  665. return 0;
  666. }
  667. static int gen8_init_workarounds(struct intel_engine_cs *engine)
  668. {
  669. struct drm_i915_private *dev_priv = engine->i915;
  670. WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
  671. /* WaDisableAsyncFlipPerfMode:bdw,chv */
  672. WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
  673. /* WaDisablePartialInstShootdown:bdw,chv */
  674. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  675. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
  676. /* Use Force Non-Coherent whenever executing a 3D context. This is a
  677. * workaround for for a possible hang in the unlikely event a TLB
  678. * invalidation occurs during a PSD flush.
  679. */
  680. /* WaForceEnableNonCoherent:bdw,chv */
  681. /* WaHdcDisableFetchWhenMasked:bdw,chv */
  682. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  683. HDC_DONOT_FETCH_MEM_WHEN_MASKED |
  684. HDC_FORCE_NON_COHERENT);
  685. /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
  686. * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
  687. * polygons in the same 8x4 pixel/sample area to be processed without
  688. * stalling waiting for the earlier ones to write to Hierarchical Z
  689. * buffer."
  690. *
  691. * This optimization is off by default for BDW and CHV; turn it on.
  692. */
  693. WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
  694. /* Wa4x4STCOptimizationDisable:bdw,chv */
  695. WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
  696. /*
  697. * BSpec recommends 8x4 when MSAA is used,
  698. * however in practice 16x4 seems fastest.
  699. *
  700. * Note that PS/WM thread counts depend on the WIZ hashing
  701. * disable bit, which we don't touch here, but it's good
  702. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  703. */
  704. WA_SET_FIELD_MASKED(GEN7_GT_MODE,
  705. GEN6_WIZ_HASHING_MASK,
  706. GEN6_WIZ_HASHING_16x4);
  707. return 0;
  708. }
  709. static int bdw_init_workarounds(struct intel_engine_cs *engine)
  710. {
  711. struct drm_i915_private *dev_priv = engine->i915;
  712. int ret;
  713. ret = gen8_init_workarounds(engine);
  714. if (ret)
  715. return ret;
  716. /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
  717. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
  718. /* WaDisableDopClockGating:bdw */
  719. WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
  720. DOP_CLOCK_GATING_DISABLE);
  721. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  722. GEN8_SAMPLER_POWER_BYPASS_DIS);
  723. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  724. /* WaForceContextSaveRestoreNonCoherent:bdw */
  725. HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
  726. /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
  727. (IS_BDW_GT3(dev_priv) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
  728. return 0;
  729. }
  730. static int chv_init_workarounds(struct intel_engine_cs *engine)
  731. {
  732. struct drm_i915_private *dev_priv = engine->i915;
  733. int ret;
  734. ret = gen8_init_workarounds(engine);
  735. if (ret)
  736. return ret;
  737. /* WaDisableThreadStallDopClockGating:chv */
  738. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
  739. /* Improve HiZ throughput on CHV. */
  740. WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
  741. return 0;
  742. }
  743. static int gen9_init_workarounds(struct intel_engine_cs *engine)
  744. {
  745. struct drm_i915_private *dev_priv = engine->i915;
  746. int ret;
  747. /* WaConextSwitchWithConcurrentTLBInvalidate:skl,bxt,kbl */
  748. I915_WRITE(GEN9_CSFE_CHICKEN1_RCS, _MASKED_BIT_ENABLE(GEN9_PREEMPT_GPGPU_SYNC_SWITCH_DISABLE));
  749. /* WaEnableLbsSlaRetryTimerDecrement:skl,bxt,kbl */
  750. I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
  751. GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
  752. /* WaDisableKillLogic:bxt,skl,kbl */
  753. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
  754. ECOCHK_DIS_TLB);
  755. /* WaClearFlowControlGpgpuContextSave:skl,bxt,kbl */
  756. /* WaDisablePartialInstShootdown:skl,bxt,kbl */
  757. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  758. FLOW_CONTROL_ENABLE |
  759. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
  760. /* Syncing dependencies between camera and graphics:skl,bxt,kbl */
  761. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  762. GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
  763. /* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
  764. if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
  765. IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
  766. WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
  767. GEN9_DG_MIRROR_FIX_ENABLE);
  768. /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
  769. if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
  770. IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
  771. WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
  772. GEN9_RHWO_OPTIMIZATION_DISABLE);
  773. /*
  774. * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
  775. * but we do that in per ctx batchbuffer as there is an issue
  776. * with this register not getting restored on ctx restore
  777. */
  778. }
  779. /* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt,kbl */
  780. /* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt,kbl */
  781. WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
  782. GEN9_ENABLE_YV12_BUGFIX |
  783. GEN9_ENABLE_GPGPU_PREEMPTION);
  784. /* Wa4x4STCOptimizationDisable:skl,bxt,kbl */
  785. /* WaDisablePartialResolveInVc:skl,bxt,kbl */
  786. WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
  787. GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
  788. /* WaCcsTlbPrefetchDisable:skl,bxt,kbl */
  789. WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
  790. GEN9_CCS_TLB_PREFETCH_ENABLE);
  791. /* WaDisableMaskBasedCammingInRCC:skl,bxt */
  792. if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, SKL_REVID_C0) ||
  793. IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
  794. WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
  795. PIXEL_MASK_CAMMING_DISABLE);
  796. /* WaForceContextSaveRestoreNonCoherent:skl,bxt,kbl */
  797. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  798. HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
  799. HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE);
  800. /* WaForceEnableNonCoherent and WaDisableHDCInvalidation are
  801. * both tied to WaForceContextSaveRestoreNonCoherent
  802. * in some hsds for skl. We keep the tie for all gen9. The
  803. * documentation is a bit hazy and so we want to get common behaviour,
  804. * even though there is no clear evidence we would need both on kbl/bxt.
  805. * This area has been source of system hangs so we play it safe
  806. * and mimic the skl regardless of what bspec says.
  807. *
  808. * Use Force Non-Coherent whenever executing a 3D context. This
  809. * is a workaround for a possible hang in the unlikely event
  810. * a TLB invalidation occurs during a PSD flush.
  811. */
  812. /* WaForceEnableNonCoherent:skl,bxt,kbl */
  813. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  814. HDC_FORCE_NON_COHERENT);
  815. /* WaDisableHDCInvalidation:skl,bxt,kbl */
  816. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
  817. BDW_DISABLE_HDC_INVALIDATION);
  818. /* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt,kbl */
  819. if (IS_SKYLAKE(dev_priv) ||
  820. IS_KABYLAKE(dev_priv) ||
  821. IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0))
  822. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  823. GEN8_SAMPLER_POWER_BYPASS_DIS);
  824. /* WaDisableSTUnitPowerOptimization:skl,bxt,kbl */
  825. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
  826. /* WaOCLCoherentLineFlush:skl,bxt,kbl */
  827. I915_WRITE(GEN8_L3SQCREG4, (I915_READ(GEN8_L3SQCREG4) |
  828. GEN8_LQSC_FLUSH_COHERENT_LINES));
  829. /* WaVFEStateAfterPipeControlwithMediaStateClear:skl,bxt */
  830. ret = wa_ring_whitelist_reg(engine, GEN9_CTX_PREEMPT_REG);
  831. if (ret)
  832. return ret;
  833. /* WaEnablePreemptionGranularityControlByUMD:skl,bxt,kbl */
  834. ret= wa_ring_whitelist_reg(engine, GEN8_CS_CHICKEN1);
  835. if (ret)
  836. return ret;
  837. /* WaAllowUMDToModifyHDCChicken1:skl,bxt,kbl */
  838. ret = wa_ring_whitelist_reg(engine, GEN8_HDC_CHICKEN1);
  839. if (ret)
  840. return ret;
  841. return 0;
  842. }
  843. static int skl_tune_iz_hashing(struct intel_engine_cs *engine)
  844. {
  845. struct drm_i915_private *dev_priv = engine->i915;
  846. u8 vals[3] = { 0, 0, 0 };
  847. unsigned int i;
  848. for (i = 0; i < 3; i++) {
  849. u8 ss;
  850. /*
  851. * Only consider slices where one, and only one, subslice has 7
  852. * EUs
  853. */
  854. if (!is_power_of_2(dev_priv->info.subslice_7eu[i]))
  855. continue;
  856. /*
  857. * subslice_7eu[i] != 0 (because of the check above) and
  858. * ss_max == 4 (maximum number of subslices possible per slice)
  859. *
  860. * -> 0 <= ss <= 3;
  861. */
  862. ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
  863. vals[i] = 3 - ss;
  864. }
  865. if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
  866. return 0;
  867. /* Tune IZ hashing. See intel_device_info_runtime_init() */
  868. WA_SET_FIELD_MASKED(GEN7_GT_MODE,
  869. GEN9_IZ_HASHING_MASK(2) |
  870. GEN9_IZ_HASHING_MASK(1) |
  871. GEN9_IZ_HASHING_MASK(0),
  872. GEN9_IZ_HASHING(2, vals[2]) |
  873. GEN9_IZ_HASHING(1, vals[1]) |
  874. GEN9_IZ_HASHING(0, vals[0]));
  875. return 0;
  876. }
  877. static int skl_init_workarounds(struct intel_engine_cs *engine)
  878. {
  879. struct drm_i915_private *dev_priv = engine->i915;
  880. int ret;
  881. ret = gen9_init_workarounds(engine);
  882. if (ret)
  883. return ret;
  884. /*
  885. * Actual WA is to disable percontext preemption granularity control
  886. * until D0 which is the default case so this is equivalent to
  887. * !WaDisablePerCtxtPreemptionGranularityControl:skl
  888. */
  889. if (IS_SKL_REVID(dev_priv, SKL_REVID_E0, REVID_FOREVER)) {
  890. I915_WRITE(GEN7_FF_SLICE_CS_CHICKEN1,
  891. _MASKED_BIT_ENABLE(GEN9_FFSC_PERCTX_PREEMPT_CTRL));
  892. }
  893. if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0)) {
  894. /* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
  895. I915_WRITE(FF_SLICE_CS_CHICKEN2,
  896. _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
  897. }
  898. /* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
  899. * involving this register should also be added to WA batch as required.
  900. */
  901. if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0))
  902. /* WaDisableLSQCROPERFforOCL:skl */
  903. I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
  904. GEN8_LQSC_RO_PERF_DIS);
  905. /* WaEnableGapsTsvCreditFix:skl */
  906. if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, REVID_FOREVER)) {
  907. I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
  908. GEN9_GAPS_TSV_CREDIT_DISABLE));
  909. }
  910. /* WaDisablePowerCompilerClockGating:skl */
  911. if (IS_SKL_REVID(dev_priv, SKL_REVID_B0, SKL_REVID_B0))
  912. WA_SET_BIT_MASKED(HIZ_CHICKEN,
  913. BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
  914. /* WaBarrierPerformanceFixDisable:skl */
  915. if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, SKL_REVID_D0))
  916. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  917. HDC_FENCE_DEST_SLM_DISABLE |
  918. HDC_BARRIER_PERFORMANCE_DISABLE);
  919. /* WaDisableSbeCacheDispatchPortSharing:skl */
  920. if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_F0))
  921. WA_SET_BIT_MASKED(
  922. GEN7_HALF_SLICE_CHICKEN1,
  923. GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
  924. /* WaDisableGafsUnitClkGating:skl */
  925. WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
  926. /* WaDisableLSQCROPERFforOCL:skl */
  927. ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
  928. if (ret)
  929. return ret;
  930. return skl_tune_iz_hashing(engine);
  931. }
  932. static int bxt_init_workarounds(struct intel_engine_cs *engine)
  933. {
  934. struct drm_i915_private *dev_priv = engine->i915;
  935. int ret;
  936. ret = gen9_init_workarounds(engine);
  937. if (ret)
  938. return ret;
  939. /* WaStoreMultiplePTEenable:bxt */
  940. /* This is a requirement according to Hardware specification */
  941. if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
  942. I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);
  943. /* WaSetClckGatingDisableMedia:bxt */
  944. if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
  945. I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
  946. ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
  947. }
  948. /* WaDisableThreadStallDopClockGating:bxt */
  949. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  950. STALL_DOP_GATING_DISABLE);
  951. /* WaDisablePooledEuLoadBalancingFix:bxt */
  952. if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER)) {
  953. WA_SET_BIT_MASKED(FF_SLICE_CS_CHICKEN2,
  954. GEN9_POOLED_EU_LOAD_BALANCING_FIX_DISABLE);
  955. }
  956. /* WaDisableSbeCacheDispatchPortSharing:bxt */
  957. if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0)) {
  958. WA_SET_BIT_MASKED(
  959. GEN7_HALF_SLICE_CHICKEN1,
  960. GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
  961. }
  962. /* WaDisableObjectLevelPreemptionForTrifanOrPolygon:bxt */
  963. /* WaDisableObjectLevelPreemptionForInstancedDraw:bxt */
  964. /* WaDisableObjectLevelPreemtionForInstanceId:bxt */
  965. /* WaDisableLSQCROPERFforOCL:bxt */
  966. if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
  967. ret = wa_ring_whitelist_reg(engine, GEN9_CS_DEBUG_MODE1);
  968. if (ret)
  969. return ret;
  970. ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
  971. if (ret)
  972. return ret;
  973. }
  974. /* WaProgramL3SqcReg1DefaultForPerf:bxt */
  975. if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
  976. I915_WRITE(GEN8_L3SQCREG1, L3_GENERAL_PRIO_CREDITS(62) |
  977. L3_HIGH_PRIO_CREDITS(2));
  978. /* WaInsertDummyPushConstPs:bxt */
  979. if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0))
  980. WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
  981. GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
  982. return 0;
  983. }
  984. static int kbl_init_workarounds(struct intel_engine_cs *engine)
  985. {
  986. struct drm_i915_private *dev_priv = engine->i915;
  987. int ret;
  988. ret = gen9_init_workarounds(engine);
  989. if (ret)
  990. return ret;
  991. /* WaEnableGapsTsvCreditFix:kbl */
  992. I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
  993. GEN9_GAPS_TSV_CREDIT_DISABLE));
  994. /* WaDisableDynamicCreditSharing:kbl */
  995. if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
  996. WA_SET_BIT(GAMT_CHKN_BIT_REG,
  997. GAMT_CHKN_DISABLE_DYNAMIC_CREDIT_SHARING);
  998. /* WaDisableFenceDestinationToSLM:kbl (pre-prod) */
  999. if (IS_KBL_REVID(dev_priv, KBL_REVID_A0, KBL_REVID_A0))
  1000. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  1001. HDC_FENCE_DEST_SLM_DISABLE);
  1002. /* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
  1003. * involving this register should also be added to WA batch as required.
  1004. */
  1005. if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_E0))
  1006. /* WaDisableLSQCROPERFforOCL:kbl */
  1007. I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
  1008. GEN8_LQSC_RO_PERF_DIS);
  1009. /* WaInsertDummyPushConstPs:kbl */
  1010. if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
  1011. WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
  1012. GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
  1013. /* WaDisableGafsUnitClkGating:kbl */
  1014. WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
  1015. /* WaDisableSbeCacheDispatchPortSharing:kbl */
  1016. WA_SET_BIT_MASKED(
  1017. GEN7_HALF_SLICE_CHICKEN1,
  1018. GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
  1019. /* WaDisableLSQCROPERFforOCL:kbl */
  1020. ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
  1021. if (ret)
  1022. return ret;
  1023. return 0;
  1024. }
  1025. int init_workarounds_ring(struct intel_engine_cs *engine)
  1026. {
  1027. struct drm_i915_private *dev_priv = engine->i915;
  1028. WARN_ON(engine->id != RCS);
  1029. dev_priv->workarounds.count = 0;
  1030. dev_priv->workarounds.hw_whitelist_count[RCS] = 0;
  1031. if (IS_BROADWELL(dev_priv))
  1032. return bdw_init_workarounds(engine);
  1033. if (IS_CHERRYVIEW(dev_priv))
  1034. return chv_init_workarounds(engine);
  1035. if (IS_SKYLAKE(dev_priv))
  1036. return skl_init_workarounds(engine);
  1037. if (IS_BROXTON(dev_priv))
  1038. return bxt_init_workarounds(engine);
  1039. if (IS_KABYLAKE(dev_priv))
  1040. return kbl_init_workarounds(engine);
  1041. return 0;
  1042. }
  1043. static int init_render_ring(struct intel_engine_cs *engine)
  1044. {
  1045. struct drm_i915_private *dev_priv = engine->i915;
  1046. int ret = init_ring_common(engine);
  1047. if (ret)
  1048. return ret;
  1049. /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
  1050. if (IS_GEN(dev_priv, 4, 6))
  1051. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
  1052. /* We need to disable the AsyncFlip performance optimisations in order
  1053. * to use MI_WAIT_FOR_EVENT within the CS. It should already be
  1054. * programmed to '1' on all products.
  1055. *
  1056. * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
  1057. */
  1058. if (IS_GEN(dev_priv, 6, 7))
  1059. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
  1060. /* Required for the hardware to program scanline values for waiting */
  1061. /* WaEnableFlushTlbInvalidationMode:snb */
  1062. if (IS_GEN6(dev_priv))
  1063. I915_WRITE(GFX_MODE,
  1064. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
  1065. /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
  1066. if (IS_GEN7(dev_priv))
  1067. I915_WRITE(GFX_MODE_GEN7,
  1068. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
  1069. _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
  1070. if (IS_GEN6(dev_priv)) {
  1071. /* From the Sandybridge PRM, volume 1 part 3, page 24:
  1072. * "If this bit is set, STCunit will have LRA as replacement
  1073. * policy. [...] This bit must be reset. LRA replacement
  1074. * policy is not supported."
  1075. */
  1076. I915_WRITE(CACHE_MODE_0,
  1077. _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  1078. }
  1079. if (IS_GEN(dev_priv, 6, 7))
  1080. I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
  1081. if (INTEL_INFO(dev_priv)->gen >= 6)
  1082. I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
  1083. return init_workarounds_ring(engine);
  1084. }
  1085. static void render_ring_cleanup(struct intel_engine_cs *engine)
  1086. {
  1087. struct drm_i915_private *dev_priv = engine->i915;
  1088. if (dev_priv->semaphore_obj) {
  1089. i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
  1090. drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
  1091. dev_priv->semaphore_obj = NULL;
  1092. }
  1093. intel_fini_pipe_control(engine);
  1094. }
  1095. static int gen8_rcs_signal(struct drm_i915_gem_request *signaller_req,
  1096. unsigned int num_dwords)
  1097. {
  1098. #define MBOX_UPDATE_DWORDS 8
  1099. struct intel_engine_cs *signaller = signaller_req->engine;
  1100. struct drm_i915_private *dev_priv = signaller_req->i915;
  1101. struct intel_engine_cs *waiter;
  1102. enum intel_engine_id id;
  1103. int ret, num_rings;
  1104. num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask);
  1105. num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
  1106. #undef MBOX_UPDATE_DWORDS
  1107. ret = intel_ring_begin(signaller_req, num_dwords);
  1108. if (ret)
  1109. return ret;
  1110. for_each_engine_id(waiter, dev_priv, id) {
  1111. u64 gtt_offset = signaller->semaphore.signal_ggtt[id];
  1112. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  1113. continue;
  1114. intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
  1115. intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
  1116. PIPE_CONTROL_QW_WRITE |
  1117. PIPE_CONTROL_CS_STALL);
  1118. intel_ring_emit(signaller, lower_32_bits(gtt_offset));
  1119. intel_ring_emit(signaller, upper_32_bits(gtt_offset));
  1120. intel_ring_emit(signaller, signaller_req->fence.seqno);
  1121. intel_ring_emit(signaller, 0);
  1122. intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
  1123. MI_SEMAPHORE_TARGET(waiter->hw_id));
  1124. intel_ring_emit(signaller, 0);
  1125. }
  1126. return 0;
  1127. }
  1128. static int gen8_xcs_signal(struct drm_i915_gem_request *signaller_req,
  1129. unsigned int num_dwords)
  1130. {
  1131. #define MBOX_UPDATE_DWORDS 6
  1132. struct intel_engine_cs *signaller = signaller_req->engine;
  1133. struct drm_i915_private *dev_priv = signaller_req->i915;
  1134. struct intel_engine_cs *waiter;
  1135. enum intel_engine_id id;
  1136. int ret, num_rings;
  1137. num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask);
  1138. num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
  1139. #undef MBOX_UPDATE_DWORDS
  1140. ret = intel_ring_begin(signaller_req, num_dwords);
  1141. if (ret)
  1142. return ret;
  1143. for_each_engine_id(waiter, dev_priv, id) {
  1144. u64 gtt_offset = signaller->semaphore.signal_ggtt[id];
  1145. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  1146. continue;
  1147. intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
  1148. MI_FLUSH_DW_OP_STOREDW);
  1149. intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
  1150. MI_FLUSH_DW_USE_GTT);
  1151. intel_ring_emit(signaller, upper_32_bits(gtt_offset));
  1152. intel_ring_emit(signaller, signaller_req->fence.seqno);
  1153. intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
  1154. MI_SEMAPHORE_TARGET(waiter->hw_id));
  1155. intel_ring_emit(signaller, 0);
  1156. }
  1157. return 0;
  1158. }
  1159. static int gen6_signal(struct drm_i915_gem_request *signaller_req,
  1160. unsigned int num_dwords)
  1161. {
  1162. struct intel_engine_cs *signaller = signaller_req->engine;
  1163. struct drm_i915_private *dev_priv = signaller_req->i915;
  1164. struct intel_engine_cs *useless;
  1165. enum intel_engine_id id;
  1166. int ret, num_rings;
  1167. #define MBOX_UPDATE_DWORDS 3
  1168. num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask);
  1169. num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
  1170. #undef MBOX_UPDATE_DWORDS
  1171. ret = intel_ring_begin(signaller_req, num_dwords);
  1172. if (ret)
  1173. return ret;
  1174. for_each_engine_id(useless, dev_priv, id) {
  1175. i915_reg_t mbox_reg = signaller->semaphore.mbox.signal[id];
  1176. if (i915_mmio_reg_valid(mbox_reg)) {
  1177. intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
  1178. intel_ring_emit_reg(signaller, mbox_reg);
  1179. intel_ring_emit(signaller, signaller_req->fence.seqno);
  1180. }
  1181. }
  1182. /* If num_dwords was rounded, make sure the tail pointer is correct */
  1183. if (num_rings % 2 == 0)
  1184. intel_ring_emit(signaller, MI_NOOP);
  1185. return 0;
  1186. }
  1187. /**
  1188. * gen6_add_request - Update the semaphore mailbox registers
  1189. *
  1190. * @request - request to write to the ring
  1191. *
  1192. * Update the mailbox registers in the *other* rings with the current seqno.
  1193. * This acts like a signal in the canonical semaphore.
  1194. */
  1195. static int
  1196. gen6_add_request(struct drm_i915_gem_request *req)
  1197. {
  1198. struct intel_engine_cs *engine = req->engine;
  1199. int ret;
  1200. if (engine->semaphore.signal)
  1201. ret = engine->semaphore.signal(req, 4);
  1202. else
  1203. ret = intel_ring_begin(req, 4);
  1204. if (ret)
  1205. return ret;
  1206. intel_ring_emit(engine, MI_STORE_DWORD_INDEX);
  1207. intel_ring_emit(engine,
  1208. I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1209. intel_ring_emit(engine, req->fence.seqno);
  1210. intel_ring_emit(engine, MI_USER_INTERRUPT);
  1211. __intel_ring_advance(engine);
  1212. return 0;
  1213. }
  1214. static int
  1215. gen8_render_add_request(struct drm_i915_gem_request *req)
  1216. {
  1217. struct intel_engine_cs *engine = req->engine;
  1218. int ret;
  1219. if (engine->semaphore.signal)
  1220. ret = engine->semaphore.signal(req, 8);
  1221. else
  1222. ret = intel_ring_begin(req, 8);
  1223. if (ret)
  1224. return ret;
  1225. intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(6));
  1226. intel_ring_emit(engine, (PIPE_CONTROL_GLOBAL_GTT_IVB |
  1227. PIPE_CONTROL_CS_STALL |
  1228. PIPE_CONTROL_QW_WRITE));
  1229. intel_ring_emit(engine, intel_hws_seqno_address(req->engine));
  1230. intel_ring_emit(engine, 0);
  1231. intel_ring_emit(engine, i915_gem_request_get_seqno(req));
  1232. /* We're thrashing one dword of HWS. */
  1233. intel_ring_emit(engine, 0);
  1234. intel_ring_emit(engine, MI_USER_INTERRUPT);
  1235. intel_ring_emit(engine, MI_NOOP);
  1236. __intel_ring_advance(engine);
  1237. return 0;
  1238. }
  1239. static inline bool i915_gem_has_seqno_wrapped(struct drm_i915_private *dev_priv,
  1240. u32 seqno)
  1241. {
  1242. return dev_priv->last_seqno < seqno;
  1243. }
  1244. /**
  1245. * intel_ring_sync - sync the waiter to the signaller on seqno
  1246. *
  1247. * @waiter - ring that is waiting
  1248. * @signaller - ring which has, or will signal
  1249. * @seqno - seqno which the waiter will block on
  1250. */
  1251. static int
  1252. gen8_ring_sync(struct drm_i915_gem_request *waiter_req,
  1253. struct intel_engine_cs *signaller,
  1254. u32 seqno)
  1255. {
  1256. struct intel_engine_cs *waiter = waiter_req->engine;
  1257. struct drm_i915_private *dev_priv = waiter_req->i915;
  1258. u64 offset = GEN8_WAIT_OFFSET(waiter, signaller->id);
  1259. struct i915_hw_ppgtt *ppgtt;
  1260. int ret;
  1261. ret = intel_ring_begin(waiter_req, 4);
  1262. if (ret)
  1263. return ret;
  1264. intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
  1265. MI_SEMAPHORE_GLOBAL_GTT |
  1266. MI_SEMAPHORE_SAD_GTE_SDD);
  1267. intel_ring_emit(waiter, seqno);
  1268. intel_ring_emit(waiter, lower_32_bits(offset));
  1269. intel_ring_emit(waiter, upper_32_bits(offset));
  1270. intel_ring_advance(waiter);
  1271. /* When the !RCS engines idle waiting upon a semaphore, they lose their
  1272. * pagetables and we must reload them before executing the batch.
  1273. * We do this on the i915_switch_context() following the wait and
  1274. * before the dispatch.
  1275. */
  1276. ppgtt = waiter_req->ctx->ppgtt;
  1277. if (ppgtt && waiter_req->engine->id != RCS)
  1278. ppgtt->pd_dirty_rings |= intel_engine_flag(waiter_req->engine);
  1279. return 0;
  1280. }
  1281. static int
  1282. gen6_ring_sync(struct drm_i915_gem_request *waiter_req,
  1283. struct intel_engine_cs *signaller,
  1284. u32 seqno)
  1285. {
  1286. struct intel_engine_cs *waiter = waiter_req->engine;
  1287. u32 dw1 = MI_SEMAPHORE_MBOX |
  1288. MI_SEMAPHORE_COMPARE |
  1289. MI_SEMAPHORE_REGISTER;
  1290. u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
  1291. int ret;
  1292. /* Throughout all of the GEM code, seqno passed implies our current
  1293. * seqno is >= the last seqno executed. However for hardware the
  1294. * comparison is strictly greater than.
  1295. */
  1296. seqno -= 1;
  1297. WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
  1298. ret = intel_ring_begin(waiter_req, 4);
  1299. if (ret)
  1300. return ret;
  1301. /* If seqno wrap happened, omit the wait with no-ops */
  1302. if (likely(!i915_gem_has_seqno_wrapped(waiter_req->i915, seqno))) {
  1303. intel_ring_emit(waiter, dw1 | wait_mbox);
  1304. intel_ring_emit(waiter, seqno);
  1305. intel_ring_emit(waiter, 0);
  1306. intel_ring_emit(waiter, MI_NOOP);
  1307. } else {
  1308. intel_ring_emit(waiter, MI_NOOP);
  1309. intel_ring_emit(waiter, MI_NOOP);
  1310. intel_ring_emit(waiter, MI_NOOP);
  1311. intel_ring_emit(waiter, MI_NOOP);
  1312. }
  1313. intel_ring_advance(waiter);
  1314. return 0;
  1315. }
  1316. static void
  1317. gen5_seqno_barrier(struct intel_engine_cs *ring)
  1318. {
  1319. /* MI_STORE are internally buffered by the GPU and not flushed
  1320. * either by MI_FLUSH or SyncFlush or any other combination of
  1321. * MI commands.
  1322. *
  1323. * "Only the submission of the store operation is guaranteed.
  1324. * The write result will be complete (coherent) some time later
  1325. * (this is practically a finite period but there is no guaranteed
  1326. * latency)."
  1327. *
  1328. * Empirically, we observe that we need a delay of at least 75us to
  1329. * be sure that the seqno write is visible by the CPU.
  1330. */
  1331. usleep_range(125, 250);
  1332. }
  1333. static void
  1334. gen6_seqno_barrier(struct intel_engine_cs *engine)
  1335. {
  1336. struct drm_i915_private *dev_priv = engine->i915;
  1337. /* Workaround to force correct ordering between irq and seqno writes on
  1338. * ivb (and maybe also on snb) by reading from a CS register (like
  1339. * ACTHD) before reading the status page.
  1340. *
  1341. * Note that this effectively stalls the read by the time it takes to
  1342. * do a memory transaction, which more or less ensures that the write
  1343. * from the GPU has sufficient time to invalidate the CPU cacheline.
  1344. * Alternatively we could delay the interrupt from the CS ring to give
  1345. * the write time to land, but that would incur a delay after every
  1346. * batch i.e. much more frequent than a delay when waiting for the
  1347. * interrupt (with the same net latency).
  1348. *
  1349. * Also note that to prevent whole machine hangs on gen7, we have to
  1350. * take the spinlock to guard against concurrent cacheline access.
  1351. */
  1352. spin_lock_irq(&dev_priv->uncore.lock);
  1353. POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
  1354. spin_unlock_irq(&dev_priv->uncore.lock);
  1355. }
  1356. static void
  1357. gen5_irq_enable(struct intel_engine_cs *engine)
  1358. {
  1359. gen5_enable_gt_irq(engine->i915, engine->irq_enable_mask);
  1360. }
  1361. static void
  1362. gen5_irq_disable(struct intel_engine_cs *engine)
  1363. {
  1364. gen5_disable_gt_irq(engine->i915, engine->irq_enable_mask);
  1365. }
  1366. static void
  1367. i9xx_irq_enable(struct intel_engine_cs *engine)
  1368. {
  1369. struct drm_i915_private *dev_priv = engine->i915;
  1370. dev_priv->irq_mask &= ~engine->irq_enable_mask;
  1371. I915_WRITE(IMR, dev_priv->irq_mask);
  1372. POSTING_READ_FW(RING_IMR(engine->mmio_base));
  1373. }
  1374. static void
  1375. i9xx_irq_disable(struct intel_engine_cs *engine)
  1376. {
  1377. struct drm_i915_private *dev_priv = engine->i915;
  1378. dev_priv->irq_mask |= engine->irq_enable_mask;
  1379. I915_WRITE(IMR, dev_priv->irq_mask);
  1380. }
  1381. static void
  1382. i8xx_irq_enable(struct intel_engine_cs *engine)
  1383. {
  1384. struct drm_i915_private *dev_priv = engine->i915;
  1385. dev_priv->irq_mask &= ~engine->irq_enable_mask;
  1386. I915_WRITE16(IMR, dev_priv->irq_mask);
  1387. POSTING_READ16(RING_IMR(engine->mmio_base));
  1388. }
  1389. static void
  1390. i8xx_irq_disable(struct intel_engine_cs *engine)
  1391. {
  1392. struct drm_i915_private *dev_priv = engine->i915;
  1393. dev_priv->irq_mask |= engine->irq_enable_mask;
  1394. I915_WRITE16(IMR, dev_priv->irq_mask);
  1395. }
  1396. static int
  1397. bsd_ring_flush(struct drm_i915_gem_request *req,
  1398. u32 invalidate_domains,
  1399. u32 flush_domains)
  1400. {
  1401. struct intel_engine_cs *engine = req->engine;
  1402. int ret;
  1403. ret = intel_ring_begin(req, 2);
  1404. if (ret)
  1405. return ret;
  1406. intel_ring_emit(engine, MI_FLUSH);
  1407. intel_ring_emit(engine, MI_NOOP);
  1408. intel_ring_advance(engine);
  1409. return 0;
  1410. }
  1411. static int
  1412. i9xx_add_request(struct drm_i915_gem_request *req)
  1413. {
  1414. struct intel_engine_cs *engine = req->engine;
  1415. int ret;
  1416. ret = intel_ring_begin(req, 4);
  1417. if (ret)
  1418. return ret;
  1419. intel_ring_emit(engine, MI_STORE_DWORD_INDEX);
  1420. intel_ring_emit(engine,
  1421. I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1422. intel_ring_emit(engine, req->fence.seqno);
  1423. intel_ring_emit(engine, MI_USER_INTERRUPT);
  1424. __intel_ring_advance(engine);
  1425. return 0;
  1426. }
  1427. static void
  1428. gen6_irq_enable(struct intel_engine_cs *engine)
  1429. {
  1430. struct drm_i915_private *dev_priv = engine->i915;
  1431. I915_WRITE_IMR(engine,
  1432. ~(engine->irq_enable_mask |
  1433. engine->irq_keep_mask));
  1434. gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
  1435. }
  1436. static void
  1437. gen6_irq_disable(struct intel_engine_cs *engine)
  1438. {
  1439. struct drm_i915_private *dev_priv = engine->i915;
  1440. I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
  1441. gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
  1442. }
  1443. static void
  1444. hsw_vebox_irq_enable(struct intel_engine_cs *engine)
  1445. {
  1446. struct drm_i915_private *dev_priv = engine->i915;
  1447. I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
  1448. gen6_enable_pm_irq(dev_priv, engine->irq_enable_mask);
  1449. }
  1450. static void
  1451. hsw_vebox_irq_disable(struct intel_engine_cs *engine)
  1452. {
  1453. struct drm_i915_private *dev_priv = engine->i915;
  1454. I915_WRITE_IMR(engine, ~0);
  1455. gen6_disable_pm_irq(dev_priv, engine->irq_enable_mask);
  1456. }
  1457. static void
  1458. gen8_irq_enable(struct intel_engine_cs *engine)
  1459. {
  1460. struct drm_i915_private *dev_priv = engine->i915;
  1461. I915_WRITE_IMR(engine,
  1462. ~(engine->irq_enable_mask |
  1463. engine->irq_keep_mask));
  1464. POSTING_READ_FW(RING_IMR(engine->mmio_base));
  1465. }
  1466. static void
  1467. gen8_irq_disable(struct intel_engine_cs *engine)
  1468. {
  1469. struct drm_i915_private *dev_priv = engine->i915;
  1470. I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
  1471. }
  1472. static int
  1473. i965_dispatch_execbuffer(struct drm_i915_gem_request *req,
  1474. u64 offset, u32 length,
  1475. unsigned dispatch_flags)
  1476. {
  1477. struct intel_engine_cs *engine = req->engine;
  1478. int ret;
  1479. ret = intel_ring_begin(req, 2);
  1480. if (ret)
  1481. return ret;
  1482. intel_ring_emit(engine,
  1483. MI_BATCH_BUFFER_START |
  1484. MI_BATCH_GTT |
  1485. (dispatch_flags & I915_DISPATCH_SECURE ?
  1486. 0 : MI_BATCH_NON_SECURE_I965));
  1487. intel_ring_emit(engine, offset);
  1488. intel_ring_advance(engine);
  1489. return 0;
  1490. }
  1491. /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
  1492. #define I830_BATCH_LIMIT (256*1024)
  1493. #define I830_TLB_ENTRIES (2)
  1494. #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
  1495. static int
  1496. i830_dispatch_execbuffer(struct drm_i915_gem_request *req,
  1497. u64 offset, u32 len,
  1498. unsigned dispatch_flags)
  1499. {
  1500. struct intel_engine_cs *engine = req->engine;
  1501. u32 cs_offset = engine->scratch.gtt_offset;
  1502. int ret;
  1503. ret = intel_ring_begin(req, 6);
  1504. if (ret)
  1505. return ret;
  1506. /* Evict the invalid PTE TLBs */
  1507. intel_ring_emit(engine, COLOR_BLT_CMD | BLT_WRITE_RGBA);
  1508. intel_ring_emit(engine, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
  1509. intel_ring_emit(engine, I830_TLB_ENTRIES << 16 | 4); /* load each page */
  1510. intel_ring_emit(engine, cs_offset);
  1511. intel_ring_emit(engine, 0xdeadbeef);
  1512. intel_ring_emit(engine, MI_NOOP);
  1513. intel_ring_advance(engine);
  1514. if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
  1515. if (len > I830_BATCH_LIMIT)
  1516. return -ENOSPC;
  1517. ret = intel_ring_begin(req, 6 + 2);
  1518. if (ret)
  1519. return ret;
  1520. /* Blit the batch (which has now all relocs applied) to the
  1521. * stable batch scratch bo area (so that the CS never
  1522. * stumbles over its tlb invalidation bug) ...
  1523. */
  1524. intel_ring_emit(engine, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
  1525. intel_ring_emit(engine,
  1526. BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
  1527. intel_ring_emit(engine, DIV_ROUND_UP(len, 4096) << 16 | 4096);
  1528. intel_ring_emit(engine, cs_offset);
  1529. intel_ring_emit(engine, 4096);
  1530. intel_ring_emit(engine, offset);
  1531. intel_ring_emit(engine, MI_FLUSH);
  1532. intel_ring_emit(engine, MI_NOOP);
  1533. intel_ring_advance(engine);
  1534. /* ... and execute it. */
  1535. offset = cs_offset;
  1536. }
  1537. ret = intel_ring_begin(req, 2);
  1538. if (ret)
  1539. return ret;
  1540. intel_ring_emit(engine, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
  1541. intel_ring_emit(engine, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
  1542. 0 : MI_BATCH_NON_SECURE));
  1543. intel_ring_advance(engine);
  1544. return 0;
  1545. }
  1546. static int
  1547. i915_dispatch_execbuffer(struct drm_i915_gem_request *req,
  1548. u64 offset, u32 len,
  1549. unsigned dispatch_flags)
  1550. {
  1551. struct intel_engine_cs *engine = req->engine;
  1552. int ret;
  1553. ret = intel_ring_begin(req, 2);
  1554. if (ret)
  1555. return ret;
  1556. intel_ring_emit(engine, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
  1557. intel_ring_emit(engine, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
  1558. 0 : MI_BATCH_NON_SECURE));
  1559. intel_ring_advance(engine);
  1560. return 0;
  1561. }
  1562. static void cleanup_phys_status_page(struct intel_engine_cs *engine)
  1563. {
  1564. struct drm_i915_private *dev_priv = engine->i915;
  1565. if (!dev_priv->status_page_dmah)
  1566. return;
  1567. drm_pci_free(&dev_priv->drm, dev_priv->status_page_dmah);
  1568. engine->status_page.page_addr = NULL;
  1569. }
  1570. static void cleanup_status_page(struct intel_engine_cs *engine)
  1571. {
  1572. struct drm_i915_gem_object *obj;
  1573. obj = engine->status_page.obj;
  1574. if (obj == NULL)
  1575. return;
  1576. kunmap(sg_page(obj->pages->sgl));
  1577. i915_gem_object_ggtt_unpin(obj);
  1578. drm_gem_object_unreference(&obj->base);
  1579. engine->status_page.obj = NULL;
  1580. }
  1581. static int init_status_page(struct intel_engine_cs *engine)
  1582. {
  1583. struct drm_i915_gem_object *obj = engine->status_page.obj;
  1584. if (obj == NULL) {
  1585. unsigned flags;
  1586. int ret;
  1587. obj = i915_gem_object_create(&engine->i915->drm, 4096);
  1588. if (IS_ERR(obj)) {
  1589. DRM_ERROR("Failed to allocate status page\n");
  1590. return PTR_ERR(obj);
  1591. }
  1592. ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  1593. if (ret)
  1594. goto err_unref;
  1595. flags = 0;
  1596. if (!HAS_LLC(engine->i915))
  1597. /* On g33, we cannot place HWS above 256MiB, so
  1598. * restrict its pinning to the low mappable arena.
  1599. * Though this restriction is not documented for
  1600. * gen4, gen5, or byt, they also behave similarly
  1601. * and hang if the HWS is placed at the top of the
  1602. * GTT. To generalise, it appears that all !llc
  1603. * platforms have issues with us placing the HWS
  1604. * above the mappable region (even though we never
  1605. * actualy map it).
  1606. */
  1607. flags |= PIN_MAPPABLE;
  1608. ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
  1609. if (ret) {
  1610. err_unref:
  1611. drm_gem_object_unreference(&obj->base);
  1612. return ret;
  1613. }
  1614. engine->status_page.obj = obj;
  1615. }
  1616. engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
  1617. engine->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
  1618. memset(engine->status_page.page_addr, 0, PAGE_SIZE);
  1619. DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
  1620. engine->name, engine->status_page.gfx_addr);
  1621. return 0;
  1622. }
  1623. static int init_phys_status_page(struct intel_engine_cs *engine)
  1624. {
  1625. struct drm_i915_private *dev_priv = engine->i915;
  1626. if (!dev_priv->status_page_dmah) {
  1627. dev_priv->status_page_dmah =
  1628. drm_pci_alloc(&dev_priv->drm, PAGE_SIZE, PAGE_SIZE);
  1629. if (!dev_priv->status_page_dmah)
  1630. return -ENOMEM;
  1631. }
  1632. engine->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
  1633. memset(engine->status_page.page_addr, 0, PAGE_SIZE);
  1634. return 0;
  1635. }
  1636. void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
  1637. {
  1638. GEM_BUG_ON(ringbuf->vma == NULL);
  1639. GEM_BUG_ON(ringbuf->virtual_start == NULL);
  1640. if (HAS_LLC(ringbuf->obj->base.dev) && !ringbuf->obj->stolen)
  1641. i915_gem_object_unpin_map(ringbuf->obj);
  1642. else
  1643. i915_vma_unpin_iomap(ringbuf->vma);
  1644. ringbuf->virtual_start = NULL;
  1645. i915_gem_object_ggtt_unpin(ringbuf->obj);
  1646. ringbuf->vma = NULL;
  1647. }
  1648. int intel_pin_and_map_ringbuffer_obj(struct drm_i915_private *dev_priv,
  1649. struct intel_ringbuffer *ringbuf)
  1650. {
  1651. struct drm_i915_gem_object *obj = ringbuf->obj;
  1652. /* Ring wraparound at offset 0 sometimes hangs. No idea why. */
  1653. unsigned flags = PIN_OFFSET_BIAS | 4096;
  1654. void *addr;
  1655. int ret;
  1656. if (HAS_LLC(dev_priv) && !obj->stolen) {
  1657. ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, flags);
  1658. if (ret)
  1659. return ret;
  1660. ret = i915_gem_object_set_to_cpu_domain(obj, true);
  1661. if (ret)
  1662. goto err_unpin;
  1663. addr = i915_gem_object_pin_map(obj);
  1664. if (IS_ERR(addr)) {
  1665. ret = PTR_ERR(addr);
  1666. goto err_unpin;
  1667. }
  1668. } else {
  1669. ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE,
  1670. flags | PIN_MAPPABLE);
  1671. if (ret)
  1672. return ret;
  1673. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  1674. if (ret)
  1675. goto err_unpin;
  1676. /* Access through the GTT requires the device to be awake. */
  1677. assert_rpm_wakelock_held(dev_priv);
  1678. addr = i915_vma_pin_iomap(i915_gem_obj_to_ggtt(obj));
  1679. if (IS_ERR(addr)) {
  1680. ret = PTR_ERR(addr);
  1681. goto err_unpin;
  1682. }
  1683. }
  1684. ringbuf->virtual_start = addr;
  1685. ringbuf->vma = i915_gem_obj_to_ggtt(obj);
  1686. return 0;
  1687. err_unpin:
  1688. i915_gem_object_ggtt_unpin(obj);
  1689. return ret;
  1690. }
  1691. static void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
  1692. {
  1693. drm_gem_object_unreference(&ringbuf->obj->base);
  1694. ringbuf->obj = NULL;
  1695. }
  1696. static int intel_alloc_ringbuffer_obj(struct drm_device *dev,
  1697. struct intel_ringbuffer *ringbuf)
  1698. {
  1699. struct drm_i915_gem_object *obj;
  1700. obj = NULL;
  1701. if (!HAS_LLC(dev))
  1702. obj = i915_gem_object_create_stolen(dev, ringbuf->size);
  1703. if (obj == NULL)
  1704. obj = i915_gem_object_create(dev, ringbuf->size);
  1705. if (IS_ERR(obj))
  1706. return PTR_ERR(obj);
  1707. /* mark ring buffers as read-only from GPU side by default */
  1708. obj->gt_ro = 1;
  1709. ringbuf->obj = obj;
  1710. return 0;
  1711. }
  1712. struct intel_ringbuffer *
  1713. intel_engine_create_ringbuffer(struct intel_engine_cs *engine, int size)
  1714. {
  1715. struct intel_ringbuffer *ring;
  1716. int ret;
  1717. ring = kzalloc(sizeof(*ring), GFP_KERNEL);
  1718. if (ring == NULL) {
  1719. DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
  1720. engine->name);
  1721. return ERR_PTR(-ENOMEM);
  1722. }
  1723. ring->engine = engine;
  1724. list_add(&ring->link, &engine->buffers);
  1725. ring->size = size;
  1726. /* Workaround an erratum on the i830 which causes a hang if
  1727. * the TAIL pointer points to within the last 2 cachelines
  1728. * of the buffer.
  1729. */
  1730. ring->effective_size = size;
  1731. if (IS_I830(engine->i915) || IS_845G(engine->i915))
  1732. ring->effective_size -= 2 * CACHELINE_BYTES;
  1733. ring->last_retired_head = -1;
  1734. intel_ring_update_space(ring);
  1735. ret = intel_alloc_ringbuffer_obj(&engine->i915->drm, ring);
  1736. if (ret) {
  1737. DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s: %d\n",
  1738. engine->name, ret);
  1739. list_del(&ring->link);
  1740. kfree(ring);
  1741. return ERR_PTR(ret);
  1742. }
  1743. return ring;
  1744. }
  1745. void
  1746. intel_ringbuffer_free(struct intel_ringbuffer *ring)
  1747. {
  1748. intel_destroy_ringbuffer_obj(ring);
  1749. list_del(&ring->link);
  1750. kfree(ring);
  1751. }
  1752. static int intel_ring_context_pin(struct i915_gem_context *ctx,
  1753. struct intel_engine_cs *engine)
  1754. {
  1755. struct intel_context *ce = &ctx->engine[engine->id];
  1756. int ret;
  1757. lockdep_assert_held(&ctx->i915->drm.struct_mutex);
  1758. if (ce->pin_count++)
  1759. return 0;
  1760. if (ce->state) {
  1761. ret = i915_gem_obj_ggtt_pin(ce->state, ctx->ggtt_alignment, 0);
  1762. if (ret)
  1763. goto error;
  1764. }
  1765. /* The kernel context is only used as a placeholder for flushing the
  1766. * active context. It is never used for submitting user rendering and
  1767. * as such never requires the golden render context, and so we can skip
  1768. * emitting it when we switch to the kernel context. This is required
  1769. * as during eviction we cannot allocate and pin the renderstate in
  1770. * order to initialise the context.
  1771. */
  1772. if (ctx == ctx->i915->kernel_context)
  1773. ce->initialised = true;
  1774. i915_gem_context_get(ctx);
  1775. return 0;
  1776. error:
  1777. ce->pin_count = 0;
  1778. return ret;
  1779. }
  1780. static void intel_ring_context_unpin(struct i915_gem_context *ctx,
  1781. struct intel_engine_cs *engine)
  1782. {
  1783. struct intel_context *ce = &ctx->engine[engine->id];
  1784. lockdep_assert_held(&ctx->i915->drm.struct_mutex);
  1785. if (--ce->pin_count)
  1786. return;
  1787. if (ce->state)
  1788. i915_gem_object_ggtt_unpin(ce->state);
  1789. i915_gem_context_put(ctx);
  1790. }
  1791. static int intel_init_ring_buffer(struct intel_engine_cs *engine)
  1792. {
  1793. struct drm_i915_private *dev_priv = engine->i915;
  1794. struct intel_ringbuffer *ringbuf;
  1795. int ret;
  1796. WARN_ON(engine->buffer);
  1797. intel_engine_setup_common(engine);
  1798. memset(engine->semaphore.sync_seqno, 0,
  1799. sizeof(engine->semaphore.sync_seqno));
  1800. ret = intel_engine_init_common(engine);
  1801. if (ret)
  1802. goto error;
  1803. /* We may need to do things with the shrinker which
  1804. * require us to immediately switch back to the default
  1805. * context. This can cause a problem as pinning the
  1806. * default context also requires GTT space which may not
  1807. * be available. To avoid this we always pin the default
  1808. * context.
  1809. */
  1810. ret = intel_ring_context_pin(dev_priv->kernel_context, engine);
  1811. if (ret)
  1812. goto error;
  1813. ringbuf = intel_engine_create_ringbuffer(engine, 32 * PAGE_SIZE);
  1814. if (IS_ERR(ringbuf)) {
  1815. ret = PTR_ERR(ringbuf);
  1816. goto error;
  1817. }
  1818. engine->buffer = ringbuf;
  1819. if (I915_NEED_GFX_HWS(dev_priv)) {
  1820. ret = init_status_page(engine);
  1821. if (ret)
  1822. goto error;
  1823. } else {
  1824. WARN_ON(engine->id != RCS);
  1825. ret = init_phys_status_page(engine);
  1826. if (ret)
  1827. goto error;
  1828. }
  1829. ret = intel_pin_and_map_ringbuffer_obj(dev_priv, ringbuf);
  1830. if (ret) {
  1831. DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
  1832. engine->name, ret);
  1833. intel_destroy_ringbuffer_obj(ringbuf);
  1834. goto error;
  1835. }
  1836. return 0;
  1837. error:
  1838. intel_cleanup_engine(engine);
  1839. return ret;
  1840. }
  1841. void intel_cleanup_engine(struct intel_engine_cs *engine)
  1842. {
  1843. struct drm_i915_private *dev_priv;
  1844. if (!intel_engine_initialized(engine))
  1845. return;
  1846. dev_priv = engine->i915;
  1847. if (engine->buffer) {
  1848. intel_stop_engine(engine);
  1849. WARN_ON(!IS_GEN2(dev_priv) && (I915_READ_MODE(engine) & MODE_IDLE) == 0);
  1850. intel_unpin_ringbuffer_obj(engine->buffer);
  1851. intel_ringbuffer_free(engine->buffer);
  1852. engine->buffer = NULL;
  1853. }
  1854. if (engine->cleanup)
  1855. engine->cleanup(engine);
  1856. if (I915_NEED_GFX_HWS(dev_priv)) {
  1857. cleanup_status_page(engine);
  1858. } else {
  1859. WARN_ON(engine->id != RCS);
  1860. cleanup_phys_status_page(engine);
  1861. }
  1862. i915_cmd_parser_fini_ring(engine);
  1863. i915_gem_batch_pool_fini(&engine->batch_pool);
  1864. intel_engine_fini_breadcrumbs(engine);
  1865. intel_ring_context_unpin(dev_priv->kernel_context, engine);
  1866. engine->i915 = NULL;
  1867. }
  1868. int intel_engine_idle(struct intel_engine_cs *engine)
  1869. {
  1870. struct drm_i915_gem_request *req;
  1871. /* Wait upon the last request to be completed */
  1872. if (list_empty(&engine->request_list))
  1873. return 0;
  1874. req = list_entry(engine->request_list.prev,
  1875. struct drm_i915_gem_request,
  1876. list);
  1877. /* Make sure we do not trigger any retires */
  1878. return __i915_wait_request(req,
  1879. req->i915->mm.interruptible,
  1880. NULL, NULL);
  1881. }
  1882. int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
  1883. {
  1884. int ret;
  1885. /* Flush enough space to reduce the likelihood of waiting after
  1886. * we start building the request - in which case we will just
  1887. * have to repeat work.
  1888. */
  1889. request->reserved_space += LEGACY_REQUEST_SIZE;
  1890. request->ringbuf = request->engine->buffer;
  1891. ret = intel_ring_begin(request, 0);
  1892. if (ret)
  1893. return ret;
  1894. request->reserved_space -= LEGACY_REQUEST_SIZE;
  1895. return 0;
  1896. }
  1897. static int wait_for_space(struct drm_i915_gem_request *req, int bytes)
  1898. {
  1899. struct intel_ringbuffer *ringbuf = req->ringbuf;
  1900. struct intel_engine_cs *engine = req->engine;
  1901. struct drm_i915_gem_request *target;
  1902. intel_ring_update_space(ringbuf);
  1903. if (ringbuf->space >= bytes)
  1904. return 0;
  1905. /*
  1906. * Space is reserved in the ringbuffer for finalising the request,
  1907. * as that cannot be allowed to fail. During request finalisation,
  1908. * reserved_space is set to 0 to stop the overallocation and the
  1909. * assumption is that then we never need to wait (which has the
  1910. * risk of failing with EINTR).
  1911. *
  1912. * See also i915_gem_request_alloc() and i915_add_request().
  1913. */
  1914. GEM_BUG_ON(!req->reserved_space);
  1915. list_for_each_entry(target, &engine->request_list, list) {
  1916. unsigned space;
  1917. /*
  1918. * The request queue is per-engine, so can contain requests
  1919. * from multiple ringbuffers. Here, we must ignore any that
  1920. * aren't from the ringbuffer we're considering.
  1921. */
  1922. if (target->ringbuf != ringbuf)
  1923. continue;
  1924. /* Would completion of this request free enough space? */
  1925. space = __intel_ring_space(target->postfix, ringbuf->tail,
  1926. ringbuf->size);
  1927. if (space >= bytes)
  1928. break;
  1929. }
  1930. if (WARN_ON(&target->list == &engine->request_list))
  1931. return -ENOSPC;
  1932. return i915_wait_request(target);
  1933. }
  1934. int intel_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
  1935. {
  1936. struct intel_ringbuffer *ringbuf = req->ringbuf;
  1937. int remain_actual = ringbuf->size - ringbuf->tail;
  1938. int remain_usable = ringbuf->effective_size - ringbuf->tail;
  1939. int bytes = num_dwords * sizeof(u32);
  1940. int total_bytes, wait_bytes;
  1941. bool need_wrap = false;
  1942. total_bytes = bytes + req->reserved_space;
  1943. if (unlikely(bytes > remain_usable)) {
  1944. /*
  1945. * Not enough space for the basic request. So need to flush
  1946. * out the remainder and then wait for base + reserved.
  1947. */
  1948. wait_bytes = remain_actual + total_bytes;
  1949. need_wrap = true;
  1950. } else if (unlikely(total_bytes > remain_usable)) {
  1951. /*
  1952. * The base request will fit but the reserved space
  1953. * falls off the end. So we don't need an immediate wrap
  1954. * and only need to effectively wait for the reserved
  1955. * size space from the start of ringbuffer.
  1956. */
  1957. wait_bytes = remain_actual + req->reserved_space;
  1958. } else {
  1959. /* No wrapping required, just waiting. */
  1960. wait_bytes = total_bytes;
  1961. }
  1962. if (wait_bytes > ringbuf->space) {
  1963. int ret = wait_for_space(req, wait_bytes);
  1964. if (unlikely(ret))
  1965. return ret;
  1966. intel_ring_update_space(ringbuf);
  1967. if (unlikely(ringbuf->space < wait_bytes))
  1968. return -EAGAIN;
  1969. }
  1970. if (unlikely(need_wrap)) {
  1971. GEM_BUG_ON(remain_actual > ringbuf->space);
  1972. GEM_BUG_ON(ringbuf->tail + remain_actual > ringbuf->size);
  1973. /* Fill the tail with MI_NOOP */
  1974. memset(ringbuf->virtual_start + ringbuf->tail,
  1975. 0, remain_actual);
  1976. ringbuf->tail = 0;
  1977. ringbuf->space -= remain_actual;
  1978. }
  1979. ringbuf->space -= bytes;
  1980. GEM_BUG_ON(ringbuf->space < 0);
  1981. return 0;
  1982. }
  1983. /* Align the ring tail to a cacheline boundary */
  1984. int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
  1985. {
  1986. struct intel_engine_cs *engine = req->engine;
  1987. int num_dwords = (engine->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
  1988. int ret;
  1989. if (num_dwords == 0)
  1990. return 0;
  1991. num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
  1992. ret = intel_ring_begin(req, num_dwords);
  1993. if (ret)
  1994. return ret;
  1995. while (num_dwords--)
  1996. intel_ring_emit(engine, MI_NOOP);
  1997. intel_ring_advance(engine);
  1998. return 0;
  1999. }
  2000. void intel_ring_init_seqno(struct intel_engine_cs *engine, u32 seqno)
  2001. {
  2002. struct drm_i915_private *dev_priv = engine->i915;
  2003. /* Our semaphore implementation is strictly monotonic (i.e. we proceed
  2004. * so long as the semaphore value in the register/page is greater
  2005. * than the sync value), so whenever we reset the seqno,
  2006. * so long as we reset the tracking semaphore value to 0, it will
  2007. * always be before the next request's seqno. If we don't reset
  2008. * the semaphore value, then when the seqno moves backwards all
  2009. * future waits will complete instantly (causing rendering corruption).
  2010. */
  2011. if (IS_GEN6(dev_priv) || IS_GEN7(dev_priv)) {
  2012. I915_WRITE(RING_SYNC_0(engine->mmio_base), 0);
  2013. I915_WRITE(RING_SYNC_1(engine->mmio_base), 0);
  2014. if (HAS_VEBOX(dev_priv))
  2015. I915_WRITE(RING_SYNC_2(engine->mmio_base), 0);
  2016. }
  2017. if (dev_priv->semaphore_obj) {
  2018. struct drm_i915_gem_object *obj = dev_priv->semaphore_obj;
  2019. struct page *page = i915_gem_object_get_dirty_page(obj, 0);
  2020. void *semaphores = kmap(page);
  2021. memset(semaphores + GEN8_SEMAPHORE_OFFSET(engine->id, 0),
  2022. 0, I915_NUM_ENGINES * gen8_semaphore_seqno_size);
  2023. kunmap(page);
  2024. }
  2025. memset(engine->semaphore.sync_seqno, 0,
  2026. sizeof(engine->semaphore.sync_seqno));
  2027. intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
  2028. if (engine->irq_seqno_barrier)
  2029. engine->irq_seqno_barrier(engine);
  2030. engine->last_submitted_seqno = seqno;
  2031. engine->hangcheck.seqno = seqno;
  2032. /* After manually advancing the seqno, fake the interrupt in case
  2033. * there are any waiters for that seqno.
  2034. */
  2035. rcu_read_lock();
  2036. intel_engine_wakeup(engine);
  2037. rcu_read_unlock();
  2038. }
  2039. static void gen6_bsd_ring_write_tail(struct intel_engine_cs *engine,
  2040. u32 value)
  2041. {
  2042. struct drm_i915_private *dev_priv = engine->i915;
  2043. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  2044. /* Every tail move must follow the sequence below */
  2045. /* Disable notification that the ring is IDLE. The GT
  2046. * will then assume that it is busy and bring it out of rc6.
  2047. */
  2048. I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
  2049. _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  2050. /* Clear the context id. Here be magic! */
  2051. I915_WRITE64_FW(GEN6_BSD_RNCID, 0x0);
  2052. /* Wait for the ring not to be idle, i.e. for it to wake up. */
  2053. if (intel_wait_for_register_fw(dev_priv,
  2054. GEN6_BSD_SLEEP_PSMI_CONTROL,
  2055. GEN6_BSD_SLEEP_INDICATOR,
  2056. 0,
  2057. 50))
  2058. DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
  2059. /* Now that the ring is fully powered up, update the tail */
  2060. I915_WRITE_FW(RING_TAIL(engine->mmio_base), value);
  2061. POSTING_READ_FW(RING_TAIL(engine->mmio_base));
  2062. /* Let the ring send IDLE messages to the GT again,
  2063. * and so let it sleep to conserve power when idle.
  2064. */
  2065. I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
  2066. _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  2067. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  2068. }
  2069. static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req,
  2070. u32 invalidate, u32 flush)
  2071. {
  2072. struct intel_engine_cs *engine = req->engine;
  2073. uint32_t cmd;
  2074. int ret;
  2075. ret = intel_ring_begin(req, 4);
  2076. if (ret)
  2077. return ret;
  2078. cmd = MI_FLUSH_DW;
  2079. if (INTEL_GEN(req->i915) >= 8)
  2080. cmd += 1;
  2081. /* We always require a command barrier so that subsequent
  2082. * commands, such as breadcrumb interrupts, are strictly ordered
  2083. * wrt the contents of the write cache being flushed to memory
  2084. * (and thus being coherent from the CPU).
  2085. */
  2086. cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  2087. /*
  2088. * Bspec vol 1c.5 - video engine command streamer:
  2089. * "If ENABLED, all TLBs will be invalidated once the flush
  2090. * operation is complete. This bit is only valid when the
  2091. * Post-Sync Operation field is a value of 1h or 3h."
  2092. */
  2093. if (invalidate & I915_GEM_GPU_DOMAINS)
  2094. cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
  2095. intel_ring_emit(engine, cmd);
  2096. intel_ring_emit(engine,
  2097. I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  2098. if (INTEL_GEN(req->i915) >= 8) {
  2099. intel_ring_emit(engine, 0); /* upper addr */
  2100. intel_ring_emit(engine, 0); /* value */
  2101. } else {
  2102. intel_ring_emit(engine, 0);
  2103. intel_ring_emit(engine, MI_NOOP);
  2104. }
  2105. intel_ring_advance(engine);
  2106. return 0;
  2107. }
  2108. static int
  2109. gen8_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
  2110. u64 offset, u32 len,
  2111. unsigned dispatch_flags)
  2112. {
  2113. struct intel_engine_cs *engine = req->engine;
  2114. bool ppgtt = USES_PPGTT(engine->dev) &&
  2115. !(dispatch_flags & I915_DISPATCH_SECURE);
  2116. int ret;
  2117. ret = intel_ring_begin(req, 4);
  2118. if (ret)
  2119. return ret;
  2120. /* FIXME(BDW): Address space and security selectors. */
  2121. intel_ring_emit(engine, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
  2122. (dispatch_flags & I915_DISPATCH_RS ?
  2123. MI_BATCH_RESOURCE_STREAMER : 0));
  2124. intel_ring_emit(engine, lower_32_bits(offset));
  2125. intel_ring_emit(engine, upper_32_bits(offset));
  2126. intel_ring_emit(engine, MI_NOOP);
  2127. intel_ring_advance(engine);
  2128. return 0;
  2129. }
  2130. static int
  2131. hsw_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
  2132. u64 offset, u32 len,
  2133. unsigned dispatch_flags)
  2134. {
  2135. struct intel_engine_cs *engine = req->engine;
  2136. int ret;
  2137. ret = intel_ring_begin(req, 2);
  2138. if (ret)
  2139. return ret;
  2140. intel_ring_emit(engine,
  2141. MI_BATCH_BUFFER_START |
  2142. (dispatch_flags & I915_DISPATCH_SECURE ?
  2143. 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
  2144. (dispatch_flags & I915_DISPATCH_RS ?
  2145. MI_BATCH_RESOURCE_STREAMER : 0));
  2146. /* bit0-7 is the length on GEN6+ */
  2147. intel_ring_emit(engine, offset);
  2148. intel_ring_advance(engine);
  2149. return 0;
  2150. }
  2151. static int
  2152. gen6_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
  2153. u64 offset, u32 len,
  2154. unsigned dispatch_flags)
  2155. {
  2156. struct intel_engine_cs *engine = req->engine;
  2157. int ret;
  2158. ret = intel_ring_begin(req, 2);
  2159. if (ret)
  2160. return ret;
  2161. intel_ring_emit(engine,
  2162. MI_BATCH_BUFFER_START |
  2163. (dispatch_flags & I915_DISPATCH_SECURE ?
  2164. 0 : MI_BATCH_NON_SECURE_I965));
  2165. /* bit0-7 is the length on GEN6+ */
  2166. intel_ring_emit(engine, offset);
  2167. intel_ring_advance(engine);
  2168. return 0;
  2169. }
  2170. /* Blitter support (SandyBridge+) */
  2171. static int gen6_ring_flush(struct drm_i915_gem_request *req,
  2172. u32 invalidate, u32 flush)
  2173. {
  2174. struct intel_engine_cs *engine = req->engine;
  2175. uint32_t cmd;
  2176. int ret;
  2177. ret = intel_ring_begin(req, 4);
  2178. if (ret)
  2179. return ret;
  2180. cmd = MI_FLUSH_DW;
  2181. if (INTEL_GEN(req->i915) >= 8)
  2182. cmd += 1;
  2183. /* We always require a command barrier so that subsequent
  2184. * commands, such as breadcrumb interrupts, are strictly ordered
  2185. * wrt the contents of the write cache being flushed to memory
  2186. * (and thus being coherent from the CPU).
  2187. */
  2188. cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  2189. /*
  2190. * Bspec vol 1c.3 - blitter engine command streamer:
  2191. * "If ENABLED, all TLBs will be invalidated once the flush
  2192. * operation is complete. This bit is only valid when the
  2193. * Post-Sync Operation field is a value of 1h or 3h."
  2194. */
  2195. if (invalidate & I915_GEM_DOMAIN_RENDER)
  2196. cmd |= MI_INVALIDATE_TLB;
  2197. intel_ring_emit(engine, cmd);
  2198. intel_ring_emit(engine,
  2199. I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  2200. if (INTEL_GEN(req->i915) >= 8) {
  2201. intel_ring_emit(engine, 0); /* upper addr */
  2202. intel_ring_emit(engine, 0); /* value */
  2203. } else {
  2204. intel_ring_emit(engine, 0);
  2205. intel_ring_emit(engine, MI_NOOP);
  2206. }
  2207. intel_ring_advance(engine);
  2208. return 0;
  2209. }
  2210. static void intel_ring_init_semaphores(struct drm_i915_private *dev_priv,
  2211. struct intel_engine_cs *engine)
  2212. {
  2213. struct drm_i915_gem_object *obj;
  2214. int ret, i;
  2215. if (!i915_semaphore_is_enabled(dev_priv))
  2216. return;
  2217. if (INTEL_GEN(dev_priv) >= 8 && !dev_priv->semaphore_obj) {
  2218. obj = i915_gem_object_create(&dev_priv->drm, 4096);
  2219. if (IS_ERR(obj)) {
  2220. DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
  2221. i915.semaphores = 0;
  2222. } else {
  2223. i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  2224. ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
  2225. if (ret != 0) {
  2226. drm_gem_object_unreference(&obj->base);
  2227. DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
  2228. i915.semaphores = 0;
  2229. } else {
  2230. dev_priv->semaphore_obj = obj;
  2231. }
  2232. }
  2233. }
  2234. if (!i915_semaphore_is_enabled(dev_priv))
  2235. return;
  2236. if (INTEL_GEN(dev_priv) >= 8) {
  2237. u64 offset = i915_gem_obj_ggtt_offset(dev_priv->semaphore_obj);
  2238. engine->semaphore.sync_to = gen8_ring_sync;
  2239. engine->semaphore.signal = gen8_xcs_signal;
  2240. for (i = 0; i < I915_NUM_ENGINES; i++) {
  2241. u64 ring_offset;
  2242. if (i != engine->id)
  2243. ring_offset = offset + GEN8_SEMAPHORE_OFFSET(engine->id, i);
  2244. else
  2245. ring_offset = MI_SEMAPHORE_SYNC_INVALID;
  2246. engine->semaphore.signal_ggtt[i] = ring_offset;
  2247. }
  2248. } else if (INTEL_GEN(dev_priv) >= 6) {
  2249. engine->semaphore.sync_to = gen6_ring_sync;
  2250. engine->semaphore.signal = gen6_signal;
  2251. /*
  2252. * The current semaphore is only applied on pre-gen8
  2253. * platform. And there is no VCS2 ring on the pre-gen8
  2254. * platform. So the semaphore between RCS and VCS2 is
  2255. * initialized as INVALID. Gen8 will initialize the
  2256. * sema between VCS2 and RCS later.
  2257. */
  2258. for (i = 0; i < I915_NUM_ENGINES; i++) {
  2259. static const struct {
  2260. u32 wait_mbox;
  2261. i915_reg_t mbox_reg;
  2262. } sem_data[I915_NUM_ENGINES][I915_NUM_ENGINES] = {
  2263. [RCS] = {
  2264. [VCS] = { .wait_mbox = MI_SEMAPHORE_SYNC_RV, .mbox_reg = GEN6_VRSYNC },
  2265. [BCS] = { .wait_mbox = MI_SEMAPHORE_SYNC_RB, .mbox_reg = GEN6_BRSYNC },
  2266. [VECS] = { .wait_mbox = MI_SEMAPHORE_SYNC_RVE, .mbox_reg = GEN6_VERSYNC },
  2267. },
  2268. [VCS] = {
  2269. [RCS] = { .wait_mbox = MI_SEMAPHORE_SYNC_VR, .mbox_reg = GEN6_RVSYNC },
  2270. [BCS] = { .wait_mbox = MI_SEMAPHORE_SYNC_VB, .mbox_reg = GEN6_BVSYNC },
  2271. [VECS] = { .wait_mbox = MI_SEMAPHORE_SYNC_VVE, .mbox_reg = GEN6_VEVSYNC },
  2272. },
  2273. [BCS] = {
  2274. [RCS] = { .wait_mbox = MI_SEMAPHORE_SYNC_BR, .mbox_reg = GEN6_RBSYNC },
  2275. [VCS] = { .wait_mbox = MI_SEMAPHORE_SYNC_BV, .mbox_reg = GEN6_VBSYNC },
  2276. [VECS] = { .wait_mbox = MI_SEMAPHORE_SYNC_BVE, .mbox_reg = GEN6_VEBSYNC },
  2277. },
  2278. [VECS] = {
  2279. [RCS] = { .wait_mbox = MI_SEMAPHORE_SYNC_VER, .mbox_reg = GEN6_RVESYNC },
  2280. [VCS] = { .wait_mbox = MI_SEMAPHORE_SYNC_VEV, .mbox_reg = GEN6_VVESYNC },
  2281. [BCS] = { .wait_mbox = MI_SEMAPHORE_SYNC_VEB, .mbox_reg = GEN6_BVESYNC },
  2282. },
  2283. };
  2284. u32 wait_mbox;
  2285. i915_reg_t mbox_reg;
  2286. if (i == engine->id || i == VCS2) {
  2287. wait_mbox = MI_SEMAPHORE_SYNC_INVALID;
  2288. mbox_reg = GEN6_NOSYNC;
  2289. } else {
  2290. wait_mbox = sem_data[engine->id][i].wait_mbox;
  2291. mbox_reg = sem_data[engine->id][i].mbox_reg;
  2292. }
  2293. engine->semaphore.mbox.wait[i] = wait_mbox;
  2294. engine->semaphore.mbox.signal[i] = mbox_reg;
  2295. }
  2296. }
  2297. }
  2298. static void intel_ring_init_irq(struct drm_i915_private *dev_priv,
  2299. struct intel_engine_cs *engine)
  2300. {
  2301. engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << engine->irq_shift;
  2302. if (INTEL_GEN(dev_priv) >= 8) {
  2303. engine->irq_enable = gen8_irq_enable;
  2304. engine->irq_disable = gen8_irq_disable;
  2305. engine->irq_seqno_barrier = gen6_seqno_barrier;
  2306. } else if (INTEL_GEN(dev_priv) >= 6) {
  2307. engine->irq_enable = gen6_irq_enable;
  2308. engine->irq_disable = gen6_irq_disable;
  2309. engine->irq_seqno_barrier = gen6_seqno_barrier;
  2310. } else if (INTEL_GEN(dev_priv) >= 5) {
  2311. engine->irq_enable = gen5_irq_enable;
  2312. engine->irq_disable = gen5_irq_disable;
  2313. engine->irq_seqno_barrier = gen5_seqno_barrier;
  2314. } else if (INTEL_GEN(dev_priv) >= 3) {
  2315. engine->irq_enable = i9xx_irq_enable;
  2316. engine->irq_disable = i9xx_irq_disable;
  2317. } else {
  2318. engine->irq_enable = i8xx_irq_enable;
  2319. engine->irq_disable = i8xx_irq_disable;
  2320. }
  2321. }
  2322. static void intel_ring_default_vfuncs(struct drm_i915_private *dev_priv,
  2323. struct intel_engine_cs *engine)
  2324. {
  2325. engine->init_hw = init_ring_common;
  2326. engine->write_tail = ring_write_tail;
  2327. engine->add_request = i9xx_add_request;
  2328. if (INTEL_GEN(dev_priv) >= 6)
  2329. engine->add_request = gen6_add_request;
  2330. if (INTEL_GEN(dev_priv) >= 8)
  2331. engine->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2332. else if (INTEL_GEN(dev_priv) >= 6)
  2333. engine->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2334. else if (INTEL_GEN(dev_priv) >= 4)
  2335. engine->dispatch_execbuffer = i965_dispatch_execbuffer;
  2336. else if (IS_I830(dev_priv) || IS_845G(dev_priv))
  2337. engine->dispatch_execbuffer = i830_dispatch_execbuffer;
  2338. else
  2339. engine->dispatch_execbuffer = i915_dispatch_execbuffer;
  2340. intel_ring_init_irq(dev_priv, engine);
  2341. intel_ring_init_semaphores(dev_priv, engine);
  2342. }
  2343. int intel_init_render_ring_buffer(struct intel_engine_cs *engine)
  2344. {
  2345. struct drm_i915_private *dev_priv = engine->i915;
  2346. int ret;
  2347. intel_ring_default_vfuncs(dev_priv, engine);
  2348. if (HAS_L3_DPF(dev_priv))
  2349. engine->irq_keep_mask = GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
  2350. if (INTEL_GEN(dev_priv) >= 8) {
  2351. engine->init_context = intel_rcs_ctx_init;
  2352. engine->add_request = gen8_render_add_request;
  2353. engine->flush = gen8_render_ring_flush;
  2354. if (i915_semaphore_is_enabled(dev_priv))
  2355. engine->semaphore.signal = gen8_rcs_signal;
  2356. } else if (INTEL_GEN(dev_priv) >= 6) {
  2357. engine->init_context = intel_rcs_ctx_init;
  2358. engine->flush = gen7_render_ring_flush;
  2359. if (IS_GEN6(dev_priv))
  2360. engine->flush = gen6_render_ring_flush;
  2361. } else if (IS_GEN5(dev_priv)) {
  2362. engine->flush = gen4_render_ring_flush;
  2363. } else {
  2364. if (INTEL_GEN(dev_priv) < 4)
  2365. engine->flush = gen2_render_ring_flush;
  2366. else
  2367. engine->flush = gen4_render_ring_flush;
  2368. engine->irq_enable_mask = I915_USER_INTERRUPT;
  2369. }
  2370. if (IS_HASWELL(dev_priv))
  2371. engine->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
  2372. engine->init_hw = init_render_ring;
  2373. engine->cleanup = render_ring_cleanup;
  2374. ret = intel_init_ring_buffer(engine);
  2375. if (ret)
  2376. return ret;
  2377. if (INTEL_GEN(dev_priv) >= 6) {
  2378. ret = intel_init_pipe_control(engine, 4096);
  2379. if (ret)
  2380. return ret;
  2381. } else if (HAS_BROKEN_CS_TLB(dev_priv)) {
  2382. ret = intel_init_pipe_control(engine, I830_WA_SIZE);
  2383. if (ret)
  2384. return ret;
  2385. }
  2386. return 0;
  2387. }
  2388. int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine)
  2389. {
  2390. struct drm_i915_private *dev_priv = engine->i915;
  2391. intel_ring_default_vfuncs(dev_priv, engine);
  2392. if (INTEL_GEN(dev_priv) >= 6) {
  2393. /* gen6 bsd needs a special wa for tail updates */
  2394. if (IS_GEN6(dev_priv))
  2395. engine->write_tail = gen6_bsd_ring_write_tail;
  2396. engine->flush = gen6_bsd_ring_flush;
  2397. if (INTEL_GEN(dev_priv) < 8)
  2398. engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
  2399. } else {
  2400. engine->mmio_base = BSD_RING_BASE;
  2401. engine->flush = bsd_ring_flush;
  2402. if (IS_GEN5(dev_priv))
  2403. engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
  2404. else
  2405. engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
  2406. }
  2407. return intel_init_ring_buffer(engine);
  2408. }
  2409. /**
  2410. * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
  2411. */
  2412. int intel_init_bsd2_ring_buffer(struct intel_engine_cs *engine)
  2413. {
  2414. struct drm_i915_private *dev_priv = engine->i915;
  2415. intel_ring_default_vfuncs(dev_priv, engine);
  2416. engine->flush = gen6_bsd_ring_flush;
  2417. return intel_init_ring_buffer(engine);
  2418. }
  2419. int intel_init_blt_ring_buffer(struct intel_engine_cs *engine)
  2420. {
  2421. struct drm_i915_private *dev_priv = engine->i915;
  2422. intel_ring_default_vfuncs(dev_priv, engine);
  2423. engine->flush = gen6_ring_flush;
  2424. if (INTEL_GEN(dev_priv) < 8)
  2425. engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
  2426. return intel_init_ring_buffer(engine);
  2427. }
  2428. int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine)
  2429. {
  2430. struct drm_i915_private *dev_priv = engine->i915;
  2431. intel_ring_default_vfuncs(dev_priv, engine);
  2432. engine->flush = gen6_ring_flush;
  2433. if (INTEL_GEN(dev_priv) < 8) {
  2434. engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
  2435. engine->irq_enable = hsw_vebox_irq_enable;
  2436. engine->irq_disable = hsw_vebox_irq_disable;
  2437. }
  2438. return intel_init_ring_buffer(engine);
  2439. }
  2440. int
  2441. intel_ring_flush_all_caches(struct drm_i915_gem_request *req)
  2442. {
  2443. struct intel_engine_cs *engine = req->engine;
  2444. int ret;
  2445. if (!engine->gpu_caches_dirty)
  2446. return 0;
  2447. ret = engine->flush(req, 0, I915_GEM_GPU_DOMAINS);
  2448. if (ret)
  2449. return ret;
  2450. trace_i915_gem_ring_flush(req, 0, I915_GEM_GPU_DOMAINS);
  2451. engine->gpu_caches_dirty = false;
  2452. return 0;
  2453. }
  2454. int
  2455. intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
  2456. {
  2457. struct intel_engine_cs *engine = req->engine;
  2458. uint32_t flush_domains;
  2459. int ret;
  2460. flush_domains = 0;
  2461. if (engine->gpu_caches_dirty)
  2462. flush_domains = I915_GEM_GPU_DOMAINS;
  2463. ret = engine->flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
  2464. if (ret)
  2465. return ret;
  2466. trace_i915_gem_ring_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
  2467. engine->gpu_caches_dirty = false;
  2468. return 0;
  2469. }
  2470. void
  2471. intel_stop_engine(struct intel_engine_cs *engine)
  2472. {
  2473. int ret;
  2474. if (!intel_engine_initialized(engine))
  2475. return;
  2476. ret = intel_engine_idle(engine);
  2477. if (ret)
  2478. DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
  2479. engine->name, ret);
  2480. stop_ring(engine);
  2481. }