inode.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434
  1. /*
  2. * fs/f2fs/inode.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/buffer_head.h>
  14. #include <linux/writeback.h>
  15. #include "f2fs.h"
  16. #include "node.h"
  17. #include <trace/events/f2fs.h>
  18. void f2fs_set_inode_flags(struct inode *inode)
  19. {
  20. unsigned int flags = F2FS_I(inode)->i_flags;
  21. unsigned int new_fl = 0;
  22. if (flags & FS_SYNC_FL)
  23. new_fl |= S_SYNC;
  24. if (flags & FS_APPEND_FL)
  25. new_fl |= S_APPEND;
  26. if (flags & FS_IMMUTABLE_FL)
  27. new_fl |= S_IMMUTABLE;
  28. if (flags & FS_NOATIME_FL)
  29. new_fl |= S_NOATIME;
  30. if (flags & FS_DIRSYNC_FL)
  31. new_fl |= S_DIRSYNC;
  32. inode_set_flags(inode, new_fl,
  33. S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
  34. mark_inode_dirty_sync(inode);
  35. }
  36. static void __get_inode_rdev(struct inode *inode, struct f2fs_inode *ri)
  37. {
  38. if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
  39. S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
  40. if (ri->i_addr[0])
  41. inode->i_rdev =
  42. old_decode_dev(le32_to_cpu(ri->i_addr[0]));
  43. else
  44. inode->i_rdev =
  45. new_decode_dev(le32_to_cpu(ri->i_addr[1]));
  46. }
  47. }
  48. static bool __written_first_block(struct f2fs_inode *ri)
  49. {
  50. block_t addr = le32_to_cpu(ri->i_addr[0]);
  51. if (addr != NEW_ADDR && addr != NULL_ADDR)
  52. return true;
  53. return false;
  54. }
  55. static void __set_inode_rdev(struct inode *inode, struct f2fs_inode *ri)
  56. {
  57. if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
  58. if (old_valid_dev(inode->i_rdev)) {
  59. ri->i_addr[0] =
  60. cpu_to_le32(old_encode_dev(inode->i_rdev));
  61. ri->i_addr[1] = 0;
  62. } else {
  63. ri->i_addr[0] = 0;
  64. ri->i_addr[1] =
  65. cpu_to_le32(new_encode_dev(inode->i_rdev));
  66. ri->i_addr[2] = 0;
  67. }
  68. }
  69. }
  70. static void __recover_inline_status(struct inode *inode, struct page *ipage)
  71. {
  72. void *inline_data = inline_data_addr(ipage);
  73. __le32 *start = inline_data;
  74. __le32 *end = start + MAX_INLINE_DATA / sizeof(__le32);
  75. while (start < end) {
  76. if (*start++) {
  77. f2fs_wait_on_page_writeback(ipage, NODE, true);
  78. set_inode_flag(inode, FI_DATA_EXIST);
  79. set_raw_inline(inode, F2FS_INODE(ipage));
  80. set_page_dirty(ipage);
  81. return;
  82. }
  83. }
  84. return;
  85. }
  86. static int do_read_inode(struct inode *inode)
  87. {
  88. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  89. struct f2fs_inode_info *fi = F2FS_I(inode);
  90. struct page *node_page;
  91. struct f2fs_inode *ri;
  92. /* Check if ino is within scope */
  93. if (check_nid_range(sbi, inode->i_ino)) {
  94. f2fs_msg(inode->i_sb, KERN_ERR, "bad inode number: %lu",
  95. (unsigned long) inode->i_ino);
  96. WARN_ON(1);
  97. return -EINVAL;
  98. }
  99. node_page = get_node_page(sbi, inode->i_ino);
  100. if (IS_ERR(node_page))
  101. return PTR_ERR(node_page);
  102. ri = F2FS_INODE(node_page);
  103. inode->i_mode = le16_to_cpu(ri->i_mode);
  104. i_uid_write(inode, le32_to_cpu(ri->i_uid));
  105. i_gid_write(inode, le32_to_cpu(ri->i_gid));
  106. set_nlink(inode, le32_to_cpu(ri->i_links));
  107. inode->i_size = le64_to_cpu(ri->i_size);
  108. inode->i_blocks = le64_to_cpu(ri->i_blocks);
  109. inode->i_atime.tv_sec = le64_to_cpu(ri->i_atime);
  110. inode->i_ctime.tv_sec = le64_to_cpu(ri->i_ctime);
  111. inode->i_mtime.tv_sec = le64_to_cpu(ri->i_mtime);
  112. inode->i_atime.tv_nsec = le32_to_cpu(ri->i_atime_nsec);
  113. inode->i_ctime.tv_nsec = le32_to_cpu(ri->i_ctime_nsec);
  114. inode->i_mtime.tv_nsec = le32_to_cpu(ri->i_mtime_nsec);
  115. inode->i_generation = le32_to_cpu(ri->i_generation);
  116. fi->i_current_depth = le32_to_cpu(ri->i_current_depth);
  117. fi->i_xattr_nid = le32_to_cpu(ri->i_xattr_nid);
  118. fi->i_flags = le32_to_cpu(ri->i_flags);
  119. fi->flags = 0;
  120. fi->i_advise = ri->i_advise;
  121. fi->i_pino = le32_to_cpu(ri->i_pino);
  122. fi->i_dir_level = ri->i_dir_level;
  123. if (f2fs_init_extent_tree(inode, &ri->i_ext))
  124. set_page_dirty(node_page);
  125. get_inline_info(inode, ri);
  126. /* check data exist */
  127. if (f2fs_has_inline_data(inode) && !f2fs_exist_data(inode))
  128. __recover_inline_status(inode, node_page);
  129. /* get rdev by using inline_info */
  130. __get_inode_rdev(inode, ri);
  131. if (__written_first_block(ri))
  132. set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
  133. if (!need_inode_block_update(sbi, inode->i_ino))
  134. fi->last_disk_size = inode->i_size;
  135. f2fs_put_page(node_page, 1);
  136. stat_inc_inline_xattr(inode);
  137. stat_inc_inline_inode(inode);
  138. stat_inc_inline_dir(inode);
  139. return 0;
  140. }
  141. struct inode *f2fs_iget(struct super_block *sb, unsigned long ino)
  142. {
  143. struct f2fs_sb_info *sbi = F2FS_SB(sb);
  144. struct inode *inode;
  145. int ret = 0;
  146. inode = iget_locked(sb, ino);
  147. if (!inode)
  148. return ERR_PTR(-ENOMEM);
  149. if (!(inode->i_state & I_NEW)) {
  150. trace_f2fs_iget(inode);
  151. return inode;
  152. }
  153. if (ino == F2FS_NODE_INO(sbi) || ino == F2FS_META_INO(sbi))
  154. goto make_now;
  155. ret = do_read_inode(inode);
  156. if (ret)
  157. goto bad_inode;
  158. make_now:
  159. if (ino == F2FS_NODE_INO(sbi)) {
  160. inode->i_mapping->a_ops = &f2fs_node_aops;
  161. mapping_set_gfp_mask(inode->i_mapping, GFP_F2FS_ZERO);
  162. } else if (ino == F2FS_META_INO(sbi)) {
  163. inode->i_mapping->a_ops = &f2fs_meta_aops;
  164. mapping_set_gfp_mask(inode->i_mapping, GFP_F2FS_ZERO);
  165. } else if (S_ISREG(inode->i_mode)) {
  166. inode->i_op = &f2fs_file_inode_operations;
  167. inode->i_fop = &f2fs_file_operations;
  168. inode->i_mapping->a_ops = &f2fs_dblock_aops;
  169. } else if (S_ISDIR(inode->i_mode)) {
  170. inode->i_op = &f2fs_dir_inode_operations;
  171. inode->i_fop = &f2fs_dir_operations;
  172. inode->i_mapping->a_ops = &f2fs_dblock_aops;
  173. mapping_set_gfp_mask(inode->i_mapping, GFP_F2FS_HIGH_ZERO);
  174. } else if (S_ISLNK(inode->i_mode)) {
  175. if (f2fs_encrypted_inode(inode))
  176. inode->i_op = &f2fs_encrypted_symlink_inode_operations;
  177. else
  178. inode->i_op = &f2fs_symlink_inode_operations;
  179. inode_nohighmem(inode);
  180. inode->i_mapping->a_ops = &f2fs_dblock_aops;
  181. } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
  182. S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
  183. inode->i_op = &f2fs_special_inode_operations;
  184. init_special_inode(inode, inode->i_mode, inode->i_rdev);
  185. } else {
  186. ret = -EIO;
  187. goto bad_inode;
  188. }
  189. unlock_new_inode(inode);
  190. trace_f2fs_iget(inode);
  191. return inode;
  192. bad_inode:
  193. iget_failed(inode);
  194. trace_f2fs_iget_exit(inode, ret);
  195. return ERR_PTR(ret);
  196. }
  197. int update_inode(struct inode *inode, struct page *node_page)
  198. {
  199. struct f2fs_inode *ri;
  200. f2fs_wait_on_page_writeback(node_page, NODE, true);
  201. ri = F2FS_INODE(node_page);
  202. ri->i_mode = cpu_to_le16(inode->i_mode);
  203. ri->i_advise = F2FS_I(inode)->i_advise;
  204. ri->i_uid = cpu_to_le32(i_uid_read(inode));
  205. ri->i_gid = cpu_to_le32(i_gid_read(inode));
  206. ri->i_links = cpu_to_le32(inode->i_nlink);
  207. ri->i_size = cpu_to_le64(i_size_read(inode));
  208. ri->i_blocks = cpu_to_le64(inode->i_blocks);
  209. if (F2FS_I(inode)->extent_tree)
  210. set_raw_extent(&F2FS_I(inode)->extent_tree->largest,
  211. &ri->i_ext);
  212. else
  213. memset(&ri->i_ext, 0, sizeof(ri->i_ext));
  214. set_raw_inline(inode, ri);
  215. ri->i_atime = cpu_to_le64(inode->i_atime.tv_sec);
  216. ri->i_ctime = cpu_to_le64(inode->i_ctime.tv_sec);
  217. ri->i_mtime = cpu_to_le64(inode->i_mtime.tv_sec);
  218. ri->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
  219. ri->i_ctime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
  220. ri->i_mtime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
  221. ri->i_current_depth = cpu_to_le32(F2FS_I(inode)->i_current_depth);
  222. ri->i_xattr_nid = cpu_to_le32(F2FS_I(inode)->i_xattr_nid);
  223. ri->i_flags = cpu_to_le32(F2FS_I(inode)->i_flags);
  224. ri->i_pino = cpu_to_le32(F2FS_I(inode)->i_pino);
  225. ri->i_generation = cpu_to_le32(inode->i_generation);
  226. ri->i_dir_level = F2FS_I(inode)->i_dir_level;
  227. __set_inode_rdev(inode, ri);
  228. set_cold_node(inode, node_page);
  229. f2fs_inode_synced(inode);
  230. /* deleted inode */
  231. if (inode->i_nlink == 0)
  232. clear_inline_node(node_page);
  233. return set_page_dirty(node_page);
  234. }
  235. int update_inode_page(struct inode *inode)
  236. {
  237. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  238. struct page *node_page;
  239. int ret = 0;
  240. retry:
  241. node_page = get_node_page(sbi, inode->i_ino);
  242. if (IS_ERR(node_page)) {
  243. int err = PTR_ERR(node_page);
  244. if (err == -ENOMEM) {
  245. cond_resched();
  246. goto retry;
  247. } else if (err != -ENOENT) {
  248. f2fs_stop_checkpoint(sbi, false);
  249. }
  250. f2fs_inode_synced(inode);
  251. return 0;
  252. }
  253. ret = update_inode(inode, node_page);
  254. f2fs_put_page(node_page, 1);
  255. return ret;
  256. }
  257. int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc)
  258. {
  259. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  260. if (inode->i_ino == F2FS_NODE_INO(sbi) ||
  261. inode->i_ino == F2FS_META_INO(sbi))
  262. return 0;
  263. if (!is_inode_flag_set(inode, FI_DIRTY_INODE))
  264. return 0;
  265. /*
  266. * We need to balance fs here to prevent from producing dirty node pages
  267. * during the urgent cleaning time when runing out of free sections.
  268. */
  269. if (update_inode_page(inode))
  270. f2fs_balance_fs(sbi, true);
  271. return 0;
  272. }
  273. /*
  274. * Called at the last iput() if i_nlink is zero
  275. */
  276. void f2fs_evict_inode(struct inode *inode)
  277. {
  278. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  279. nid_t xnid = F2FS_I(inode)->i_xattr_nid;
  280. int err = 0;
  281. /* some remained atomic pages should discarded */
  282. if (f2fs_is_atomic_file(inode))
  283. drop_inmem_pages(inode);
  284. trace_f2fs_evict_inode(inode);
  285. truncate_inode_pages_final(&inode->i_data);
  286. if (inode->i_ino == F2FS_NODE_INO(sbi) ||
  287. inode->i_ino == F2FS_META_INO(sbi))
  288. goto out_clear;
  289. f2fs_bug_on(sbi, get_dirty_pages(inode));
  290. remove_dirty_inode(inode);
  291. f2fs_destroy_extent_tree(inode);
  292. if (inode->i_nlink || is_bad_inode(inode))
  293. goto no_delete;
  294. #ifdef CONFIG_F2FS_FAULT_INJECTION
  295. if (time_to_inject(FAULT_EVICT_INODE))
  296. goto no_delete;
  297. #endif
  298. sb_start_intwrite(inode->i_sb);
  299. set_inode_flag(inode, FI_NO_ALLOC);
  300. i_size_write(inode, 0);
  301. retry:
  302. if (F2FS_HAS_BLOCKS(inode))
  303. err = f2fs_truncate(inode);
  304. if (!err) {
  305. f2fs_lock_op(sbi);
  306. err = remove_inode_page(inode);
  307. f2fs_unlock_op(sbi);
  308. }
  309. /* give more chances, if ENOMEM case */
  310. if (err == -ENOMEM) {
  311. err = 0;
  312. goto retry;
  313. }
  314. if (err)
  315. update_inode_page(inode);
  316. sb_end_intwrite(inode->i_sb);
  317. no_delete:
  318. stat_dec_inline_xattr(inode);
  319. stat_dec_inline_dir(inode);
  320. stat_dec_inline_inode(inode);
  321. invalidate_mapping_pages(NODE_MAPPING(sbi), inode->i_ino, inode->i_ino);
  322. if (xnid)
  323. invalidate_mapping_pages(NODE_MAPPING(sbi), xnid, xnid);
  324. if (is_inode_flag_set(inode, FI_APPEND_WRITE))
  325. add_ino_entry(sbi, inode->i_ino, APPEND_INO);
  326. if (is_inode_flag_set(inode, FI_UPDATE_WRITE))
  327. add_ino_entry(sbi, inode->i_ino, UPDATE_INO);
  328. if (is_inode_flag_set(inode, FI_FREE_NID)) {
  329. alloc_nid_failed(sbi, inode->i_ino);
  330. clear_inode_flag(inode, FI_FREE_NID);
  331. }
  332. f2fs_bug_on(sbi, err &&
  333. !exist_written_data(sbi, inode->i_ino, ORPHAN_INO));
  334. out_clear:
  335. fscrypt_put_encryption_info(inode, NULL);
  336. f2fs_bug_on(sbi, is_inode_flag_set(inode, FI_DIRTY_INODE));
  337. clear_inode(inode);
  338. }
  339. /* caller should call f2fs_lock_op() */
  340. void handle_failed_inode(struct inode *inode)
  341. {
  342. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  343. struct node_info ni;
  344. /* don't make bad inode, since it becomes a regular file. */
  345. unlock_new_inode(inode);
  346. /*
  347. * Note: we should add inode to orphan list before f2fs_unlock_op()
  348. * so we can prevent losing this orphan when encoutering checkpoint
  349. * and following suddenly power-off.
  350. */
  351. get_node_info(sbi, inode->i_ino, &ni);
  352. if (ni.blk_addr != NULL_ADDR) {
  353. int err = acquire_orphan_inode(sbi);
  354. if (err) {
  355. set_sbi_flag(sbi, SBI_NEED_FSCK);
  356. f2fs_msg(sbi->sb, KERN_WARNING,
  357. "Too many orphan inodes, run fsck to fix.");
  358. } else {
  359. add_orphan_inode(sbi, inode->i_ino);
  360. }
  361. alloc_nid_done(sbi, inode->i_ino);
  362. } else {
  363. set_inode_flag(inode, FI_FREE_NID);
  364. }
  365. f2fs_unlock_op(sbi);
  366. /* iput will drop the inode object */
  367. iput(inode);
  368. }