sdma_v4_0.c 48 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608
  1. /*
  2. * Copyright 2016 Advanced Micro Devices, Inc.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice shall be included in
  12. * all copies or substantial portions of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  17. * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20. * OTHER DEALINGS IN THE SOFTWARE.
  21. *
  22. */
  23. #include <linux/firmware.h>
  24. #include <drm/drmP.h>
  25. #include "amdgpu.h"
  26. #include "amdgpu_ucode.h"
  27. #include "amdgpu_trace.h"
  28. #include "vega10/soc15ip.h"
  29. #include "vega10/SDMA0/sdma0_4_0_offset.h"
  30. #include "vega10/SDMA0/sdma0_4_0_sh_mask.h"
  31. #include "vega10/SDMA1/sdma1_4_0_offset.h"
  32. #include "vega10/SDMA1/sdma1_4_0_sh_mask.h"
  33. #include "vega10/MMHUB/mmhub_1_0_offset.h"
  34. #include "vega10/MMHUB/mmhub_1_0_sh_mask.h"
  35. #include "vega10/HDP/hdp_4_0_offset.h"
  36. #include "soc15_common.h"
  37. #include "soc15.h"
  38. #include "vega10_sdma_pkt_open.h"
  39. MODULE_FIRMWARE("amdgpu/vega10_sdma.bin");
  40. MODULE_FIRMWARE("amdgpu/vega10_sdma1.bin");
  41. static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev);
  42. static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev);
  43. static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev);
  44. static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev);
  45. static const u32 golden_settings_sdma_4[] = {
  46. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CHICKEN_BITS), 0xfe931f07, 0x02831f07,
  47. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL), 0xff000ff0, 0x3f000100,
  48. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_GFX_IB_CNTL), 0x800f0100, 0x00000100,
  49. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL), 0xfffffff7, 0x00403000,
  50. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_PAGE_IB_CNTL), 0x800f0100, 0x00000100,
  51. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL), 0x0000fff0, 0x00403000,
  52. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), 0x003ff006, 0x0003c000,
  53. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL), 0x800f0100, 0x00000100,
  54. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL), 0x0000fff0, 0x00403000,
  55. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL), 0x800f0100, 0x00000100,
  56. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL), 0x0000fff0, 0x00403000,
  57. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_UTCL1_PAGE), 0x000003ff, 0x000003c0,
  58. SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CHICKEN_BITS), 0xfe931f07, 0x02831f07,
  59. SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL), 0xffffffff, 0x3f000100,
  60. SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_GFX_IB_CNTL), 0x800f0100, 0x00000100,
  61. SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL), 0x0000fff0, 0x00403000,
  62. SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_PAGE_IB_CNTL), 0x800f0100, 0x00000100,
  63. SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL), 0x0000fff0, 0x00403000,
  64. SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL), 0x003ff000, 0x0003c000,
  65. SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_RLC0_IB_CNTL), 0x800f0100, 0x00000100,
  66. SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL), 0x0000fff0, 0x00403000,
  67. SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_RLC1_IB_CNTL), 0x800f0100, 0x00000100,
  68. SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL), 0x0000fff0, 0x00403000,
  69. SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_UTCL1_PAGE), 0x000003ff, 0x000003c0
  70. };
  71. static const u32 golden_settings_sdma_vg10[] = {
  72. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG), 0x0018773f, 0x00104002,
  73. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ), 0x0018773f, 0x00104002,
  74. SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG), 0x0018773f, 0x00104002,
  75. SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ), 0x0018773f, 0x00104002
  76. };
  77. static u32 sdma_v4_0_get_reg_offset(u32 instance, u32 internal_offset)
  78. {
  79. u32 base = 0;
  80. switch (instance) {
  81. case 0:
  82. base = SDMA0_BASE.instance[0].segment[0];
  83. break;
  84. case 1:
  85. base = SDMA1_BASE.instance[0].segment[0];
  86. break;
  87. default:
  88. BUG();
  89. break;
  90. }
  91. return base + internal_offset;
  92. }
  93. static void sdma_v4_0_init_golden_registers(struct amdgpu_device *adev)
  94. {
  95. switch (adev->asic_type) {
  96. case CHIP_VEGA10:
  97. amdgpu_program_register_sequence(adev,
  98. golden_settings_sdma_4,
  99. (const u32)ARRAY_SIZE(golden_settings_sdma_4));
  100. amdgpu_program_register_sequence(adev,
  101. golden_settings_sdma_vg10,
  102. (const u32)ARRAY_SIZE(golden_settings_sdma_vg10));
  103. break;
  104. default:
  105. break;
  106. }
  107. }
  108. static void sdma_v4_0_print_ucode_regs(void *handle)
  109. {
  110. int i;
  111. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  112. dev_info(adev->dev, "VEGA10 SDMA ucode registers\n");
  113. for (i = 0; i < adev->sdma.num_instances; i++) {
  114. dev_info(adev->dev, " SDMA%d_UCODE_ADDR=0x%08X\n",
  115. i, RREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_UCODE_ADDR)));
  116. dev_info(adev->dev, " SDMA%d_UCODE_CHECKSUM=0x%08X\n",
  117. i, RREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_UCODE_CHECKSUM)));
  118. }
  119. }
  120. /**
  121. * sdma_v4_0_init_microcode - load ucode images from disk
  122. *
  123. * @adev: amdgpu_device pointer
  124. *
  125. * Use the firmware interface to load the ucode images into
  126. * the driver (not loaded into hw).
  127. * Returns 0 on success, error on failure.
  128. */
  129. // emulation only, won't work on real chip
  130. // vega10 real chip need to use PSP to load firmware
  131. static int sdma_v4_0_init_microcode(struct amdgpu_device *adev)
  132. {
  133. const char *chip_name;
  134. char fw_name[30];
  135. int err = 0, i;
  136. struct amdgpu_firmware_info *info = NULL;
  137. const struct common_firmware_header *header = NULL;
  138. const struct sdma_firmware_header_v1_0 *hdr;
  139. DRM_DEBUG("\n");
  140. switch (adev->asic_type) {
  141. case CHIP_VEGA10:
  142. chip_name = "vega10";
  143. break;
  144. default:
  145. BUG();
  146. }
  147. for (i = 0; i < adev->sdma.num_instances; i++) {
  148. if (i == 0)
  149. snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
  150. else
  151. snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name);
  152. err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
  153. if (err)
  154. goto out;
  155. err = amdgpu_ucode_validate(adev->sdma.instance[i].fw);
  156. if (err)
  157. goto out;
  158. hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
  159. adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
  160. adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version);
  161. if (adev->sdma.instance[i].feature_version >= 20)
  162. adev->sdma.instance[i].burst_nop = true;
  163. DRM_DEBUG("psp_load == '%s'\n",
  164. adev->firmware.load_type == AMDGPU_FW_LOAD_PSP ? "true" : "false");
  165. if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
  166. info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
  167. info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
  168. info->fw = adev->sdma.instance[i].fw;
  169. header = (const struct common_firmware_header *)info->fw->data;
  170. adev->firmware.fw_size +=
  171. ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
  172. }
  173. }
  174. out:
  175. if (err) {
  176. DRM_ERROR("sdma_v4_0: Failed to load firmware \"%s\"\n", fw_name);
  177. for (i = 0; i < adev->sdma.num_instances; i++) {
  178. release_firmware(adev->sdma.instance[i].fw);
  179. adev->sdma.instance[i].fw = NULL;
  180. }
  181. }
  182. return err;
  183. }
  184. /**
  185. * sdma_v4_0_ring_get_rptr - get the current read pointer
  186. *
  187. * @ring: amdgpu ring pointer
  188. *
  189. * Get the current rptr from the hardware (VEGA10+).
  190. */
  191. static uint64_t sdma_v4_0_ring_get_rptr(struct amdgpu_ring *ring)
  192. {
  193. u64 *rptr;
  194. /* XXX check if swapping is necessary on BE */
  195. rptr = ((u64 *)&ring->adev->wb.wb[ring->rptr_offs]);
  196. DRM_DEBUG("rptr before shift == 0x%016llx\n", *rptr);
  197. return ((*rptr) >> 2);
  198. }
  199. /**
  200. * sdma_v4_0_ring_get_wptr - get the current write pointer
  201. *
  202. * @ring: amdgpu ring pointer
  203. *
  204. * Get the current wptr from the hardware (VEGA10+).
  205. */
  206. static uint64_t sdma_v4_0_ring_get_wptr(struct amdgpu_ring *ring)
  207. {
  208. struct amdgpu_device *adev = ring->adev;
  209. u64 *wptr = NULL;
  210. uint64_t local_wptr = 0;
  211. if (ring->use_doorbell) {
  212. /* XXX check if swapping is necessary on BE */
  213. wptr = ((u64 *)&adev->wb.wb[ring->wptr_offs]);
  214. DRM_DEBUG("wptr/doorbell before shift == 0x%016llx\n", *wptr);
  215. *wptr = (*wptr) >> 2;
  216. DRM_DEBUG("wptr/doorbell after shift == 0x%016llx\n", *wptr);
  217. } else {
  218. u32 lowbit, highbit;
  219. int me = (ring == &adev->sdma.instance[0].ring) ? 0 : 1;
  220. wptr = &local_wptr;
  221. lowbit = RREG32(sdma_v4_0_get_reg_offset(me, mmSDMA0_GFX_RB_WPTR)) >> 2;
  222. highbit = RREG32(sdma_v4_0_get_reg_offset(me, mmSDMA0_GFX_RB_WPTR_HI)) >> 2;
  223. DRM_DEBUG("wptr [%i]high== 0x%08x low==0x%08x\n",
  224. me, highbit, lowbit);
  225. *wptr = highbit;
  226. *wptr = (*wptr) << 32;
  227. *wptr |= lowbit;
  228. }
  229. return *wptr;
  230. }
  231. /**
  232. * sdma_v4_0_ring_set_wptr - commit the write pointer
  233. *
  234. * @ring: amdgpu ring pointer
  235. *
  236. * Write the wptr back to the hardware (VEGA10+).
  237. */
  238. static void sdma_v4_0_ring_set_wptr(struct amdgpu_ring *ring)
  239. {
  240. struct amdgpu_device *adev = ring->adev;
  241. DRM_DEBUG("Setting write pointer\n");
  242. if (ring->use_doorbell) {
  243. DRM_DEBUG("Using doorbell -- "
  244. "wptr_offs == 0x%08x "
  245. "lower_32_bits(ring->wptr) << 2 == 0x%08x "
  246. "upper_32_bits(ring->wptr) << 2 == 0x%08x\n",
  247. ring->wptr_offs,
  248. lower_32_bits(ring->wptr << 2),
  249. upper_32_bits(ring->wptr << 2));
  250. /* XXX check if swapping is necessary on BE */
  251. adev->wb.wb[ring->wptr_offs] = lower_32_bits(ring->wptr << 2);
  252. adev->wb.wb[ring->wptr_offs + 1] = upper_32_bits(ring->wptr << 2);
  253. DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n",
  254. ring->doorbell_index, ring->wptr << 2);
  255. WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
  256. } else {
  257. int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
  258. DRM_DEBUG("Not using doorbell -- "
  259. "mmSDMA%i_GFX_RB_WPTR == 0x%08x "
  260. "mmSDMA%i_GFX_RB_WPTR_HI == 0x%08x\n",
  261. me,
  262. lower_32_bits(ring->wptr << 2),
  263. me,
  264. upper_32_bits(ring->wptr << 2));
  265. WREG32(sdma_v4_0_get_reg_offset(me, mmSDMA0_GFX_RB_WPTR), lower_32_bits(ring->wptr << 2));
  266. WREG32(sdma_v4_0_get_reg_offset(me, mmSDMA0_GFX_RB_WPTR_HI), upper_32_bits(ring->wptr << 2));
  267. }
  268. }
  269. static void sdma_v4_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
  270. {
  271. struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
  272. int i;
  273. for (i = 0; i < count; i++)
  274. if (sdma && sdma->burst_nop && (i == 0))
  275. amdgpu_ring_write(ring, ring->funcs->nop |
  276. SDMA_PKT_NOP_HEADER_COUNT(count - 1));
  277. else
  278. amdgpu_ring_write(ring, ring->funcs->nop);
  279. }
  280. /**
  281. * sdma_v4_0_ring_emit_ib - Schedule an IB on the DMA engine
  282. *
  283. * @ring: amdgpu ring pointer
  284. * @ib: IB object to schedule
  285. *
  286. * Schedule an IB in the DMA ring (VEGA10).
  287. */
  288. static void sdma_v4_0_ring_emit_ib(struct amdgpu_ring *ring,
  289. struct amdgpu_ib *ib,
  290. unsigned vm_id, bool ctx_switch)
  291. {
  292. u32 vmid = vm_id & 0xf;
  293. /* IB packet must end on a 8 DW boundary */
  294. sdma_v4_0_ring_insert_nop(ring, (10 - (lower_32_bits(ring->wptr) & 7)) % 8);
  295. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
  296. SDMA_PKT_INDIRECT_HEADER_VMID(vmid));
  297. /* base must be 32 byte aligned */
  298. amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
  299. amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
  300. amdgpu_ring_write(ring, ib->length_dw);
  301. amdgpu_ring_write(ring, 0);
  302. amdgpu_ring_write(ring, 0);
  303. }
  304. /**
  305. * sdma_v4_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
  306. *
  307. * @ring: amdgpu ring pointer
  308. *
  309. * Emit an hdp flush packet on the requested DMA ring.
  310. */
  311. static void sdma_v4_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
  312. {
  313. u32 ref_and_mask = 0;
  314. struct nbio_hdp_flush_reg *nbio_hf_reg;
  315. if (ring->adev->asic_type == CHIP_VEGA10)
  316. nbio_hf_reg = &nbio_v6_1_hdp_flush_reg;
  317. if (ring == &ring->adev->sdma.instance[0].ring)
  318. ref_and_mask = nbio_hf_reg->ref_and_mask_sdma0;
  319. else
  320. ref_and_mask = nbio_hf_reg->ref_and_mask_sdma1;
  321. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  322. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) |
  323. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
  324. amdgpu_ring_write(ring, nbio_hf_reg->hdp_flush_done_offset << 2);
  325. amdgpu_ring_write(ring, nbio_hf_reg->hdp_flush_req_offset << 2);
  326. amdgpu_ring_write(ring, ref_and_mask); /* reference */
  327. amdgpu_ring_write(ring, ref_and_mask); /* mask */
  328. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  329. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
  330. }
  331. static void sdma_v4_0_ring_emit_hdp_invalidate(struct amdgpu_ring *ring)
  332. {
  333. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  334. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  335. amdgpu_ring_write(ring, SOC15_REG_OFFSET(HDP, 0, mmHDP_DEBUG0));
  336. amdgpu_ring_write(ring, 1);
  337. }
  338. /**
  339. * sdma_v4_0_ring_emit_fence - emit a fence on the DMA ring
  340. *
  341. * @ring: amdgpu ring pointer
  342. * @fence: amdgpu fence object
  343. *
  344. * Add a DMA fence packet to the ring to write
  345. * the fence seq number and DMA trap packet to generate
  346. * an interrupt if needed (VEGA10).
  347. */
  348. static void sdma_v4_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
  349. unsigned flags)
  350. {
  351. bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
  352. /* write the fence */
  353. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
  354. /* zero in first two bits */
  355. BUG_ON(addr & 0x3);
  356. amdgpu_ring_write(ring, lower_32_bits(addr));
  357. amdgpu_ring_write(ring, upper_32_bits(addr));
  358. amdgpu_ring_write(ring, lower_32_bits(seq));
  359. /* optionally write high bits as well */
  360. if (write64bit) {
  361. addr += 4;
  362. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
  363. /* zero in first two bits */
  364. BUG_ON(addr & 0x3);
  365. amdgpu_ring_write(ring, lower_32_bits(addr));
  366. amdgpu_ring_write(ring, upper_32_bits(addr));
  367. amdgpu_ring_write(ring, upper_32_bits(seq));
  368. }
  369. /* generate an interrupt */
  370. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
  371. amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
  372. }
  373. /**
  374. * sdma_v4_0_gfx_stop - stop the gfx async dma engines
  375. *
  376. * @adev: amdgpu_device pointer
  377. *
  378. * Stop the gfx async dma ring buffers (VEGA10).
  379. */
  380. static void sdma_v4_0_gfx_stop(struct amdgpu_device *adev)
  381. {
  382. struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring;
  383. struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring;
  384. u32 rb_cntl, ib_cntl;
  385. int i;
  386. if ((adev->mman.buffer_funcs_ring == sdma0) ||
  387. (adev->mman.buffer_funcs_ring == sdma1))
  388. amdgpu_ttm_set_active_vram_size(adev, adev->mc.visible_vram_size);
  389. for (i = 0; i < adev->sdma.num_instances; i++) {
  390. rb_cntl = RREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_CNTL));
  391. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
  392. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_CNTL), rb_cntl);
  393. ib_cntl = RREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_IB_CNTL));
  394. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
  395. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_IB_CNTL), ib_cntl);
  396. }
  397. sdma0->ready = false;
  398. sdma1->ready = false;
  399. }
  400. /**
  401. * sdma_v4_0_rlc_stop - stop the compute async dma engines
  402. *
  403. * @adev: amdgpu_device pointer
  404. *
  405. * Stop the compute async dma queues (VEGA10).
  406. */
  407. static void sdma_v4_0_rlc_stop(struct amdgpu_device *adev)
  408. {
  409. /* XXX todo */
  410. }
  411. /**
  412. * sdma_v_0_ctx_switch_enable - stop the async dma engines context switch
  413. *
  414. * @adev: amdgpu_device pointer
  415. * @enable: enable/disable the DMA MEs context switch.
  416. *
  417. * Halt or unhalt the async dma engines context switch (VEGA10).
  418. */
  419. static void sdma_v4_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
  420. {
  421. u32 f32_cntl;
  422. int i;
  423. for (i = 0; i < adev->sdma.num_instances; i++) {
  424. f32_cntl = RREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_CNTL));
  425. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
  426. AUTO_CTXSW_ENABLE, enable ? 1 : 0);
  427. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_CNTL), f32_cntl);
  428. }
  429. }
  430. /**
  431. * sdma_v4_0_enable - stop the async dma engines
  432. *
  433. * @adev: amdgpu_device pointer
  434. * @enable: enable/disable the DMA MEs.
  435. *
  436. * Halt or unhalt the async dma engines (VEGA10).
  437. */
  438. static void sdma_v4_0_enable(struct amdgpu_device *adev, bool enable)
  439. {
  440. u32 f32_cntl;
  441. int i;
  442. if (enable == false) {
  443. sdma_v4_0_gfx_stop(adev);
  444. sdma_v4_0_rlc_stop(adev);
  445. }
  446. for (i = 0; i < adev->sdma.num_instances; i++) {
  447. f32_cntl = RREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_F32_CNTL));
  448. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, enable ? 0 : 1);
  449. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_F32_CNTL), f32_cntl);
  450. }
  451. }
  452. /**
  453. * sdma_v4_0_gfx_resume - setup and start the async dma engines
  454. *
  455. * @adev: amdgpu_device pointer
  456. *
  457. * Set up the gfx DMA ring buffers and enable them (VEGA10).
  458. * Returns 0 for success, error for failure.
  459. */
  460. static int sdma_v4_0_gfx_resume(struct amdgpu_device *adev)
  461. {
  462. struct amdgpu_ring *ring;
  463. u32 rb_cntl, ib_cntl;
  464. u32 rb_bufsz;
  465. u32 wb_offset;
  466. u32 doorbell;
  467. u32 doorbell_offset;
  468. u32 temp;
  469. int i, r;
  470. for (i = 0; i < adev->sdma.num_instances; i++) {
  471. ring = &adev->sdma.instance[i].ring;
  472. wb_offset = (ring->rptr_offs * 4);
  473. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL), 0);
  474. /* Set ring buffer size in dwords */
  475. rb_bufsz = order_base_2(ring->ring_size / 4);
  476. rb_cntl = RREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_CNTL));
  477. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
  478. #ifdef __BIG_ENDIAN
  479. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
  480. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
  481. RPTR_WRITEBACK_SWAP_ENABLE, 1);
  482. #endif
  483. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_CNTL), rb_cntl);
  484. /* Initialize the ring buffer's read and write pointers */
  485. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_RPTR), 0);
  486. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_RPTR_HI), 0);
  487. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_WPTR), 0);
  488. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_WPTR_HI), 0);
  489. /* set the wb address whether it's enabled or not */
  490. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_RPTR_ADDR_HI),
  491. upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
  492. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_RPTR_ADDR_LO),
  493. lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
  494. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1);
  495. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_BASE), ring->gpu_addr >> 8);
  496. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_BASE_HI), ring->gpu_addr >> 40);
  497. ring->wptr = 0;
  498. /* before programing wptr to a less value, need set minor_ptr_update first */
  499. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_MINOR_PTR_UPDATE), 1);
  500. if (!amdgpu_sriov_vf(adev)) { /* only bare-metal use register write for wptr */
  501. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_WPTR), lower_32_bits(ring->wptr) << 2);
  502. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_WPTR_HI), upper_32_bits(ring->wptr) << 2);
  503. }
  504. doorbell = RREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_DOORBELL));
  505. doorbell_offset = RREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_DOORBELL_OFFSET));
  506. if (ring->use_doorbell) {
  507. doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1);
  508. doorbell_offset = REG_SET_FIELD(doorbell_offset, SDMA0_GFX_DOORBELL_OFFSET,
  509. OFFSET, ring->doorbell_index);
  510. } else {
  511. doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 0);
  512. }
  513. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_DOORBELL), doorbell);
  514. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_DOORBELL_OFFSET), doorbell_offset);
  515. nbio_v6_1_sdma_doorbell_range(adev, i, ring->use_doorbell, ring->doorbell_index);
  516. if (amdgpu_sriov_vf(adev))
  517. sdma_v4_0_ring_set_wptr(ring);
  518. /* set minor_ptr_update to 0 after wptr programed */
  519. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_MINOR_PTR_UPDATE), 0);
  520. /* set utc l1 enable flag always to 1 */
  521. temp = RREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_CNTL));
  522. temp = REG_SET_FIELD(temp, SDMA0_CNTL, UTC_L1_ENABLE, 1);
  523. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_CNTL), temp);
  524. if (!amdgpu_sriov_vf(adev)) {
  525. /* unhalt engine */
  526. temp = RREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_F32_CNTL));
  527. temp = REG_SET_FIELD(temp, SDMA0_F32_CNTL, HALT, 0);
  528. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_F32_CNTL), temp);
  529. }
  530. /* enable DMA RB */
  531. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
  532. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_CNTL), rb_cntl);
  533. ib_cntl = RREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_IB_CNTL));
  534. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
  535. #ifdef __BIG_ENDIAN
  536. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
  537. #endif
  538. /* enable DMA IBs */
  539. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_IB_CNTL), ib_cntl);
  540. ring->ready = true;
  541. if (amdgpu_sriov_vf(adev)) { /* bare-metal sequence doesn't need below to lines */
  542. sdma_v4_0_ctx_switch_enable(adev, true);
  543. sdma_v4_0_enable(adev, true);
  544. }
  545. r = amdgpu_ring_test_ring(ring);
  546. if (r) {
  547. ring->ready = false;
  548. return r;
  549. }
  550. if (adev->mman.buffer_funcs_ring == ring)
  551. amdgpu_ttm_set_active_vram_size(adev, adev->mc.real_vram_size);
  552. }
  553. return 0;
  554. }
  555. /**
  556. * sdma_v4_0_rlc_resume - setup and start the async dma engines
  557. *
  558. * @adev: amdgpu_device pointer
  559. *
  560. * Set up the compute DMA queues and enable them (VEGA10).
  561. * Returns 0 for success, error for failure.
  562. */
  563. static int sdma_v4_0_rlc_resume(struct amdgpu_device *adev)
  564. {
  565. /* XXX todo */
  566. return 0;
  567. }
  568. /**
  569. * sdma_v4_0_load_microcode - load the sDMA ME ucode
  570. *
  571. * @adev: amdgpu_device pointer
  572. *
  573. * Loads the sDMA0/1 ucode.
  574. * Returns 0 for success, -EINVAL if the ucode is not available.
  575. */
  576. static int sdma_v4_0_load_microcode(struct amdgpu_device *adev)
  577. {
  578. const struct sdma_firmware_header_v1_0 *hdr;
  579. const __le32 *fw_data;
  580. u32 fw_size;
  581. u32 digest_size = 0;
  582. int i, j;
  583. /* halt the MEs */
  584. sdma_v4_0_enable(adev, false);
  585. for (i = 0; i < adev->sdma.num_instances; i++) {
  586. uint16_t version_major;
  587. uint16_t version_minor;
  588. if (!adev->sdma.instance[i].fw)
  589. return -EINVAL;
  590. hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
  591. amdgpu_ucode_print_sdma_hdr(&hdr->header);
  592. fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
  593. version_major = le16_to_cpu(hdr->header.header_version_major);
  594. version_minor = le16_to_cpu(hdr->header.header_version_minor);
  595. if (version_major == 1 && version_minor >= 1) {
  596. const struct sdma_firmware_header_v1_1 *sdma_v1_1_hdr = (const struct sdma_firmware_header_v1_1 *) hdr;
  597. digest_size = le32_to_cpu(sdma_v1_1_hdr->digest_size);
  598. }
  599. fw_size -= digest_size;
  600. fw_data = (const __le32 *)
  601. (adev->sdma.instance[i].fw->data +
  602. le32_to_cpu(hdr->header.ucode_array_offset_bytes));
  603. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_UCODE_ADDR), 0);
  604. for (j = 0; j < fw_size; j++)
  605. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_UCODE_DATA), le32_to_cpup(fw_data++));
  606. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_UCODE_ADDR), adev->sdma.instance[i].fw_version);
  607. }
  608. sdma_v4_0_print_ucode_regs(adev);
  609. return 0;
  610. }
  611. /**
  612. * sdma_v4_0_start - setup and start the async dma engines
  613. *
  614. * @adev: amdgpu_device pointer
  615. *
  616. * Set up the DMA engines and enable them (VEGA10).
  617. * Returns 0 for success, error for failure.
  618. */
  619. static int sdma_v4_0_start(struct amdgpu_device *adev)
  620. {
  621. int r = 0;
  622. if (amdgpu_sriov_vf(adev)) {
  623. sdma_v4_0_ctx_switch_enable(adev, false);
  624. sdma_v4_0_enable(adev, false);
  625. /* set RB registers */
  626. r = sdma_v4_0_gfx_resume(adev);
  627. return r;
  628. }
  629. if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) {
  630. DRM_INFO("Loading via direct write\n");
  631. r = sdma_v4_0_load_microcode(adev);
  632. if (r)
  633. return r;
  634. }
  635. /* unhalt the MEs */
  636. sdma_v4_0_enable(adev, true);
  637. /* enable sdma ring preemption */
  638. sdma_v4_0_ctx_switch_enable(adev, true);
  639. /* start the gfx rings and rlc compute queues */
  640. r = sdma_v4_0_gfx_resume(adev);
  641. if (r)
  642. return r;
  643. r = sdma_v4_0_rlc_resume(adev);
  644. return r;
  645. }
  646. /**
  647. * sdma_v4_0_ring_test_ring - simple async dma engine test
  648. *
  649. * @ring: amdgpu_ring structure holding ring information
  650. *
  651. * Test the DMA engine by writing using it to write an
  652. * value to memory. (VEGA10).
  653. * Returns 0 for success, error for failure.
  654. */
  655. static int sdma_v4_0_ring_test_ring(struct amdgpu_ring *ring)
  656. {
  657. struct amdgpu_device *adev = ring->adev;
  658. unsigned i;
  659. unsigned index;
  660. int r;
  661. u32 tmp;
  662. u64 gpu_addr;
  663. DRM_INFO("In Ring test func\n");
  664. r = amdgpu_wb_get(adev, &index);
  665. if (r) {
  666. dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
  667. return r;
  668. }
  669. gpu_addr = adev->wb.gpu_addr + (index * 4);
  670. tmp = 0xCAFEDEAD;
  671. adev->wb.wb[index] = cpu_to_le32(tmp);
  672. r = amdgpu_ring_alloc(ring, 5);
  673. if (r) {
  674. DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r);
  675. amdgpu_wb_free(adev, index);
  676. return r;
  677. }
  678. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  679. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
  680. amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
  681. amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
  682. amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0));
  683. amdgpu_ring_write(ring, 0xDEADBEEF);
  684. amdgpu_ring_commit(ring);
  685. for (i = 0; i < adev->usec_timeout; i++) {
  686. tmp = le32_to_cpu(adev->wb.wb[index]);
  687. if (tmp == 0xDEADBEEF)
  688. break;
  689. DRM_UDELAY(1);
  690. }
  691. if (i < adev->usec_timeout) {
  692. DRM_INFO("ring test on %d succeeded in %d usecs\n", ring->idx, i);
  693. } else {
  694. DRM_ERROR("amdgpu: ring %d test failed (0x%08X)\n",
  695. ring->idx, tmp);
  696. r = -EINVAL;
  697. }
  698. amdgpu_wb_free(adev, index);
  699. return r;
  700. }
  701. /**
  702. * sdma_v4_0_ring_test_ib - test an IB on the DMA engine
  703. *
  704. * @ring: amdgpu_ring structure holding ring information
  705. *
  706. * Test a simple IB in the DMA ring (VEGA10).
  707. * Returns 0 on success, error on failure.
  708. */
  709. static int sdma_v4_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
  710. {
  711. struct amdgpu_device *adev = ring->adev;
  712. struct amdgpu_ib ib;
  713. struct dma_fence *f = NULL;
  714. unsigned index;
  715. long r;
  716. u32 tmp = 0;
  717. u64 gpu_addr;
  718. r = amdgpu_wb_get(adev, &index);
  719. if (r) {
  720. dev_err(adev->dev, "(%ld) failed to allocate wb slot\n", r);
  721. return r;
  722. }
  723. gpu_addr = adev->wb.gpu_addr + (index * 4);
  724. tmp = 0xCAFEDEAD;
  725. adev->wb.wb[index] = cpu_to_le32(tmp);
  726. memset(&ib, 0, sizeof(ib));
  727. r = amdgpu_ib_get(adev, NULL, 256, &ib);
  728. if (r) {
  729. DRM_ERROR("amdgpu: failed to get ib (%ld).\n", r);
  730. goto err0;
  731. }
  732. ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  733. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
  734. ib.ptr[1] = lower_32_bits(gpu_addr);
  735. ib.ptr[2] = upper_32_bits(gpu_addr);
  736. ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0);
  737. ib.ptr[4] = 0xDEADBEEF;
  738. ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  739. ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  740. ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  741. ib.length_dw = 8;
  742. r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
  743. if (r)
  744. goto err1;
  745. r = dma_fence_wait_timeout(f, false, timeout);
  746. if (r == 0) {
  747. DRM_ERROR("amdgpu: IB test timed out\n");
  748. r = -ETIMEDOUT;
  749. goto err1;
  750. } else if (r < 0) {
  751. DRM_ERROR("amdgpu: fence wait failed (%ld).\n", r);
  752. goto err1;
  753. }
  754. tmp = le32_to_cpu(adev->wb.wb[index]);
  755. if (tmp == 0xDEADBEEF) {
  756. DRM_INFO("ib test on ring %d succeeded\n", ring->idx);
  757. r = 0;
  758. } else {
  759. DRM_ERROR("amdgpu: ib test failed (0x%08X)\n", tmp);
  760. r = -EINVAL;
  761. }
  762. err1:
  763. amdgpu_ib_free(adev, &ib, NULL);
  764. dma_fence_put(f);
  765. err0:
  766. amdgpu_wb_free(adev, index);
  767. return r;
  768. }
  769. /**
  770. * sdma_v4_0_vm_copy_pte - update PTEs by copying them from the GART
  771. *
  772. * @ib: indirect buffer to fill with commands
  773. * @pe: addr of the page entry
  774. * @src: src addr to copy from
  775. * @count: number of page entries to update
  776. *
  777. * Update PTEs by copying them from the GART using sDMA (VEGA10).
  778. */
  779. static void sdma_v4_0_vm_copy_pte(struct amdgpu_ib *ib,
  780. uint64_t pe, uint64_t src,
  781. unsigned count)
  782. {
  783. unsigned bytes = count * 8;
  784. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
  785. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
  786. ib->ptr[ib->length_dw++] = bytes - 1;
  787. ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
  788. ib->ptr[ib->length_dw++] = lower_32_bits(src);
  789. ib->ptr[ib->length_dw++] = upper_32_bits(src);
  790. ib->ptr[ib->length_dw++] = lower_32_bits(pe);
  791. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  792. }
  793. /**
  794. * sdma_v4_0_vm_write_pte - update PTEs by writing them manually
  795. *
  796. * @ib: indirect buffer to fill with commands
  797. * @pe: addr of the page entry
  798. * @addr: dst addr to write into pe
  799. * @count: number of page entries to update
  800. * @incr: increase next addr by incr bytes
  801. * @flags: access flags
  802. *
  803. * Update PTEs by writing them manually using sDMA (VEGA10).
  804. */
  805. static void sdma_v4_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
  806. uint64_t value, unsigned count,
  807. uint32_t incr)
  808. {
  809. unsigned ndw = count * 2;
  810. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  811. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
  812. ib->ptr[ib->length_dw++] = lower_32_bits(pe);
  813. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  814. ib->ptr[ib->length_dw++] = ndw - 1;
  815. for (; ndw > 0; ndw -= 2) {
  816. ib->ptr[ib->length_dw++] = lower_32_bits(value);
  817. ib->ptr[ib->length_dw++] = upper_32_bits(value);
  818. value += incr;
  819. }
  820. }
  821. /**
  822. * sdma_v4_0_vm_set_pte_pde - update the page tables using sDMA
  823. *
  824. * @ib: indirect buffer to fill with commands
  825. * @pe: addr of the page entry
  826. * @addr: dst addr to write into pe
  827. * @count: number of page entries to update
  828. * @incr: increase next addr by incr bytes
  829. * @flags: access flags
  830. *
  831. * Update the page tables using sDMA (VEGA10).
  832. */
  833. static void sdma_v4_0_vm_set_pte_pde(struct amdgpu_ib *ib,
  834. uint64_t pe,
  835. uint64_t addr, unsigned count,
  836. uint32_t incr, uint64_t flags)
  837. {
  838. /* for physically contiguous pages (vram) */
  839. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_PTEPDE);
  840. ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
  841. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  842. ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
  843. ib->ptr[ib->length_dw++] = upper_32_bits(flags);
  844. ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
  845. ib->ptr[ib->length_dw++] = upper_32_bits(addr);
  846. ib->ptr[ib->length_dw++] = incr; /* increment size */
  847. ib->ptr[ib->length_dw++] = 0;
  848. ib->ptr[ib->length_dw++] = count - 1; /* number of entries */
  849. }
  850. /**
  851. * sdma_v4_0_ring_pad_ib - pad the IB to the required number of dw
  852. *
  853. * @ib: indirect buffer to fill with padding
  854. *
  855. */
  856. static void sdma_v4_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
  857. {
  858. struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
  859. u32 pad_count;
  860. int i;
  861. pad_count = (8 - (ib->length_dw & 0x7)) % 8;
  862. for (i = 0; i < pad_count; i++)
  863. if (sdma && sdma->burst_nop && (i == 0))
  864. ib->ptr[ib->length_dw++] =
  865. SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
  866. SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
  867. else
  868. ib->ptr[ib->length_dw++] =
  869. SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
  870. }
  871. /**
  872. * sdma_v4_0_ring_emit_pipeline_sync - sync the pipeline
  873. *
  874. * @ring: amdgpu_ring pointer
  875. *
  876. * Make sure all previous operations are completed (CIK).
  877. */
  878. static void sdma_v4_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
  879. {
  880. uint32_t seq = ring->fence_drv.sync_seq;
  881. uint64_t addr = ring->fence_drv.gpu_addr;
  882. /* wait for idle */
  883. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  884. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
  885. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3) | /* equal */
  886. SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(1));
  887. amdgpu_ring_write(ring, addr & 0xfffffffc);
  888. amdgpu_ring_write(ring, upper_32_bits(addr) & 0xffffffff);
  889. amdgpu_ring_write(ring, seq); /* reference */
  890. amdgpu_ring_write(ring, 0xfffffff); /* mask */
  891. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  892. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(4)); /* retry count, poll interval */
  893. }
  894. /**
  895. * sdma_v4_0_ring_emit_vm_flush - vm flush using sDMA
  896. *
  897. * @ring: amdgpu_ring pointer
  898. * @vm: amdgpu_vm pointer
  899. *
  900. * Update the page table base and flush the VM TLB
  901. * using sDMA (VEGA10).
  902. */
  903. static void sdma_v4_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
  904. unsigned vm_id, uint64_t pd_addr)
  905. {
  906. struct amdgpu_vmhub *hub = &ring->adev->vmhub[ring->funcs->vmhub];
  907. uint32_t req = ring->adev->gart.gart_funcs->get_invalidate_req(vm_id);
  908. unsigned eng = ring->vm_inv_eng;
  909. pd_addr = pd_addr | 0x1; /* valid bit */
  910. /* now only use physical base address of PDE and valid */
  911. BUG_ON(pd_addr & 0xFFFF00000000003EULL);
  912. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  913. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  914. amdgpu_ring_write(ring, hub->ctx0_ptb_addr_lo32 + vm_id * 2);
  915. amdgpu_ring_write(ring, lower_32_bits(pd_addr));
  916. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  917. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  918. amdgpu_ring_write(ring, hub->ctx0_ptb_addr_hi32 + vm_id * 2);
  919. amdgpu_ring_write(ring, upper_32_bits(pd_addr));
  920. /* flush TLB */
  921. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  922. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  923. amdgpu_ring_write(ring, hub->vm_inv_eng0_req + eng);
  924. amdgpu_ring_write(ring, req);
  925. /* wait for flush */
  926. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  927. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
  928. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* equal */
  929. amdgpu_ring_write(ring, (hub->vm_inv_eng0_ack + eng) << 2);
  930. amdgpu_ring_write(ring, 0);
  931. amdgpu_ring_write(ring, 1 << vm_id); /* reference */
  932. amdgpu_ring_write(ring, 1 << vm_id); /* mask */
  933. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  934. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10));
  935. }
  936. static int sdma_v4_0_early_init(void *handle)
  937. {
  938. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  939. adev->sdma.num_instances = 2;
  940. sdma_v4_0_set_ring_funcs(adev);
  941. sdma_v4_0_set_buffer_funcs(adev);
  942. sdma_v4_0_set_vm_pte_funcs(adev);
  943. sdma_v4_0_set_irq_funcs(adev);
  944. return 0;
  945. }
  946. static int sdma_v4_0_sw_init(void *handle)
  947. {
  948. struct amdgpu_ring *ring;
  949. int r, i;
  950. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  951. /* SDMA trap event */
  952. r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_SDMA0, 224,
  953. &adev->sdma.trap_irq);
  954. if (r)
  955. return r;
  956. /* SDMA trap event */
  957. r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_SDMA1, 224,
  958. &adev->sdma.trap_irq);
  959. if (r)
  960. return r;
  961. r = sdma_v4_0_init_microcode(adev);
  962. if (r) {
  963. DRM_ERROR("Failed to load sdma firmware!\n");
  964. return r;
  965. }
  966. for (i = 0; i < adev->sdma.num_instances; i++) {
  967. ring = &adev->sdma.instance[i].ring;
  968. ring->ring_obj = NULL;
  969. ring->use_doorbell = true;
  970. DRM_INFO("use_doorbell being set to: [%s]\n",
  971. ring->use_doorbell?"true":"false");
  972. ring->doorbell_index = (i == 0) ?
  973. (AMDGPU_DOORBELL64_sDMA_ENGINE0 << 1) //get DWORD offset
  974. : (AMDGPU_DOORBELL64_sDMA_ENGINE1 << 1); // get DWORD offset
  975. sprintf(ring->name, "sdma%d", i);
  976. r = amdgpu_ring_init(adev, ring, 1024,
  977. &adev->sdma.trap_irq,
  978. (i == 0) ?
  979. AMDGPU_SDMA_IRQ_TRAP0 :
  980. AMDGPU_SDMA_IRQ_TRAP1);
  981. if (r)
  982. return r;
  983. }
  984. return r;
  985. }
  986. static int sdma_v4_0_sw_fini(void *handle)
  987. {
  988. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  989. int i;
  990. for (i = 0; i < adev->sdma.num_instances; i++)
  991. amdgpu_ring_fini(&adev->sdma.instance[i].ring);
  992. return 0;
  993. }
  994. static int sdma_v4_0_hw_init(void *handle)
  995. {
  996. int r;
  997. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  998. sdma_v4_0_init_golden_registers(adev);
  999. r = sdma_v4_0_start(adev);
  1000. return r;
  1001. }
  1002. static int sdma_v4_0_hw_fini(void *handle)
  1003. {
  1004. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1005. if (amdgpu_sriov_vf(adev))
  1006. return 0;
  1007. sdma_v4_0_ctx_switch_enable(adev, false);
  1008. sdma_v4_0_enable(adev, false);
  1009. return 0;
  1010. }
  1011. static int sdma_v4_0_suspend(void *handle)
  1012. {
  1013. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1014. return sdma_v4_0_hw_fini(adev);
  1015. }
  1016. static int sdma_v4_0_resume(void *handle)
  1017. {
  1018. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1019. return sdma_v4_0_hw_init(adev);
  1020. }
  1021. static bool sdma_v4_0_is_idle(void *handle)
  1022. {
  1023. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1024. u32 i;
  1025. for (i = 0; i < adev->sdma.num_instances; i++) {
  1026. u32 tmp = RREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_STATUS_REG));
  1027. if (!(tmp & SDMA0_STATUS_REG__IDLE_MASK))
  1028. return false;
  1029. }
  1030. return true;
  1031. }
  1032. static int sdma_v4_0_wait_for_idle(void *handle)
  1033. {
  1034. unsigned i;
  1035. u32 sdma0, sdma1;
  1036. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1037. for (i = 0; i < adev->usec_timeout; i++) {
  1038. sdma0 = RREG32(sdma_v4_0_get_reg_offset(0, mmSDMA0_STATUS_REG));
  1039. sdma1 = RREG32(sdma_v4_0_get_reg_offset(1, mmSDMA0_STATUS_REG));
  1040. if (sdma0 & sdma1 & SDMA0_STATUS_REG__IDLE_MASK)
  1041. return 0;
  1042. udelay(1);
  1043. }
  1044. return -ETIMEDOUT;
  1045. }
  1046. static int sdma_v4_0_soft_reset(void *handle)
  1047. {
  1048. /* todo */
  1049. return 0;
  1050. }
  1051. static int sdma_v4_0_set_trap_irq_state(struct amdgpu_device *adev,
  1052. struct amdgpu_irq_src *source,
  1053. unsigned type,
  1054. enum amdgpu_interrupt_state state)
  1055. {
  1056. u32 sdma_cntl;
  1057. u32 reg_offset = (type == AMDGPU_SDMA_IRQ_TRAP0) ?
  1058. sdma_v4_0_get_reg_offset(0, mmSDMA0_CNTL) :
  1059. sdma_v4_0_get_reg_offset(1, mmSDMA0_CNTL);
  1060. sdma_cntl = RREG32(reg_offset);
  1061. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE,
  1062. state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
  1063. WREG32(reg_offset, sdma_cntl);
  1064. return 0;
  1065. }
  1066. static int sdma_v4_0_process_trap_irq(struct amdgpu_device *adev,
  1067. struct amdgpu_irq_src *source,
  1068. struct amdgpu_iv_entry *entry)
  1069. {
  1070. DRM_DEBUG("IH: SDMA trap\n");
  1071. switch (entry->client_id) {
  1072. case AMDGPU_IH_CLIENTID_SDMA0:
  1073. switch (entry->ring_id) {
  1074. case 0:
  1075. amdgpu_fence_process(&adev->sdma.instance[0].ring);
  1076. break;
  1077. case 1:
  1078. /* XXX compute */
  1079. break;
  1080. case 2:
  1081. /* XXX compute */
  1082. break;
  1083. case 3:
  1084. /* XXX page queue*/
  1085. break;
  1086. }
  1087. break;
  1088. case AMDGPU_IH_CLIENTID_SDMA1:
  1089. switch (entry->ring_id) {
  1090. case 0:
  1091. amdgpu_fence_process(&adev->sdma.instance[1].ring);
  1092. break;
  1093. case 1:
  1094. /* XXX compute */
  1095. break;
  1096. case 2:
  1097. /* XXX compute */
  1098. break;
  1099. case 3:
  1100. /* XXX page queue*/
  1101. break;
  1102. }
  1103. break;
  1104. }
  1105. return 0;
  1106. }
  1107. static int sdma_v4_0_process_illegal_inst_irq(struct amdgpu_device *adev,
  1108. struct amdgpu_irq_src *source,
  1109. struct amdgpu_iv_entry *entry)
  1110. {
  1111. DRM_ERROR("Illegal instruction in SDMA command stream\n");
  1112. schedule_work(&adev->reset_work);
  1113. return 0;
  1114. }
  1115. static void sdma_v4_0_update_medium_grain_clock_gating(
  1116. struct amdgpu_device *adev,
  1117. bool enable)
  1118. {
  1119. uint32_t data, def;
  1120. if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
  1121. /* enable sdma0 clock gating */
  1122. def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
  1123. data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
  1124. SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
  1125. SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
  1126. SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
  1127. SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
  1128. SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
  1129. SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
  1130. SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
  1131. if (def != data)
  1132. WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL), data);
  1133. if (adev->asic_type == CHIP_VEGA10) {
  1134. def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL));
  1135. data &= ~(SDMA1_CLK_CTRL__SOFT_OVERRIDE7_MASK |
  1136. SDMA1_CLK_CTRL__SOFT_OVERRIDE6_MASK |
  1137. SDMA1_CLK_CTRL__SOFT_OVERRIDE5_MASK |
  1138. SDMA1_CLK_CTRL__SOFT_OVERRIDE4_MASK |
  1139. SDMA1_CLK_CTRL__SOFT_OVERRIDE3_MASK |
  1140. SDMA1_CLK_CTRL__SOFT_OVERRIDE2_MASK |
  1141. SDMA1_CLK_CTRL__SOFT_OVERRIDE1_MASK |
  1142. SDMA1_CLK_CTRL__SOFT_OVERRIDE0_MASK);
  1143. if (def != data)
  1144. WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL), data);
  1145. }
  1146. } else {
  1147. /* disable sdma0 clock gating */
  1148. def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
  1149. data |= (SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
  1150. SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
  1151. SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
  1152. SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
  1153. SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
  1154. SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
  1155. SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
  1156. SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
  1157. if (def != data)
  1158. WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL), data);
  1159. if (adev->asic_type == CHIP_VEGA10) {
  1160. def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL));
  1161. data |= (SDMA1_CLK_CTRL__SOFT_OVERRIDE7_MASK |
  1162. SDMA1_CLK_CTRL__SOFT_OVERRIDE6_MASK |
  1163. SDMA1_CLK_CTRL__SOFT_OVERRIDE5_MASK |
  1164. SDMA1_CLK_CTRL__SOFT_OVERRIDE4_MASK |
  1165. SDMA1_CLK_CTRL__SOFT_OVERRIDE3_MASK |
  1166. SDMA1_CLK_CTRL__SOFT_OVERRIDE2_MASK |
  1167. SDMA1_CLK_CTRL__SOFT_OVERRIDE1_MASK |
  1168. SDMA1_CLK_CTRL__SOFT_OVERRIDE0_MASK);
  1169. if (def != data)
  1170. WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL), data);
  1171. }
  1172. }
  1173. }
  1174. static void sdma_v4_0_update_medium_grain_light_sleep(
  1175. struct amdgpu_device *adev,
  1176. bool enable)
  1177. {
  1178. uint32_t data, def;
  1179. if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
  1180. /* 1-not override: enable sdma0 mem light sleep */
  1181. def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
  1182. data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
  1183. if (def != data)
  1184. WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
  1185. /* 1-not override: enable sdma1 mem light sleep */
  1186. if (adev->asic_type == CHIP_VEGA10) {
  1187. def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL));
  1188. data |= SDMA1_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
  1189. if (def != data)
  1190. WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL), data);
  1191. }
  1192. } else {
  1193. /* 0-override:disable sdma0 mem light sleep */
  1194. def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
  1195. data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
  1196. if (def != data)
  1197. WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
  1198. /* 0-override:disable sdma1 mem light sleep */
  1199. if (adev->asic_type == CHIP_VEGA10) {
  1200. def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL));
  1201. data &= ~SDMA1_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
  1202. if (def != data)
  1203. WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL), data);
  1204. }
  1205. }
  1206. }
  1207. static int sdma_v4_0_set_clockgating_state(void *handle,
  1208. enum amd_clockgating_state state)
  1209. {
  1210. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1211. if (amdgpu_sriov_vf(adev))
  1212. return 0;
  1213. switch (adev->asic_type) {
  1214. case CHIP_VEGA10:
  1215. sdma_v4_0_update_medium_grain_clock_gating(adev,
  1216. state == AMD_CG_STATE_GATE ? true : false);
  1217. sdma_v4_0_update_medium_grain_light_sleep(adev,
  1218. state == AMD_CG_STATE_GATE ? true : false);
  1219. break;
  1220. default:
  1221. break;
  1222. }
  1223. return 0;
  1224. }
  1225. static int sdma_v4_0_set_powergating_state(void *handle,
  1226. enum amd_powergating_state state)
  1227. {
  1228. return 0;
  1229. }
  1230. static void sdma_v4_0_get_clockgating_state(void *handle, u32 *flags)
  1231. {
  1232. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1233. int data;
  1234. if (amdgpu_sriov_vf(adev))
  1235. *flags = 0;
  1236. /* AMD_CG_SUPPORT_SDMA_MGCG */
  1237. data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
  1238. if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK))
  1239. *flags |= AMD_CG_SUPPORT_SDMA_MGCG;
  1240. /* AMD_CG_SUPPORT_SDMA_LS */
  1241. data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
  1242. if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
  1243. *flags |= AMD_CG_SUPPORT_SDMA_LS;
  1244. }
  1245. const struct amd_ip_funcs sdma_v4_0_ip_funcs = {
  1246. .name = "sdma_v4_0",
  1247. .early_init = sdma_v4_0_early_init,
  1248. .late_init = NULL,
  1249. .sw_init = sdma_v4_0_sw_init,
  1250. .sw_fini = sdma_v4_0_sw_fini,
  1251. .hw_init = sdma_v4_0_hw_init,
  1252. .hw_fini = sdma_v4_0_hw_fini,
  1253. .suspend = sdma_v4_0_suspend,
  1254. .resume = sdma_v4_0_resume,
  1255. .is_idle = sdma_v4_0_is_idle,
  1256. .wait_for_idle = sdma_v4_0_wait_for_idle,
  1257. .soft_reset = sdma_v4_0_soft_reset,
  1258. .set_clockgating_state = sdma_v4_0_set_clockgating_state,
  1259. .set_powergating_state = sdma_v4_0_set_powergating_state,
  1260. .get_clockgating_state = sdma_v4_0_get_clockgating_state,
  1261. };
  1262. static const struct amdgpu_ring_funcs sdma_v4_0_ring_funcs = {
  1263. .type = AMDGPU_RING_TYPE_SDMA,
  1264. .align_mask = 0xf,
  1265. .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
  1266. .support_64bit_ptrs = true,
  1267. .vmhub = AMDGPU_MMHUB,
  1268. .get_rptr = sdma_v4_0_ring_get_rptr,
  1269. .get_wptr = sdma_v4_0_ring_get_wptr,
  1270. .set_wptr = sdma_v4_0_ring_set_wptr,
  1271. .emit_frame_size =
  1272. 6 + /* sdma_v4_0_ring_emit_hdp_flush */
  1273. 3 + /* sdma_v4_0_ring_emit_hdp_invalidate */
  1274. 6 + /* sdma_v4_0_ring_emit_pipeline_sync */
  1275. 18 + /* sdma_v4_0_ring_emit_vm_flush */
  1276. 10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
  1277. .emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
  1278. .emit_ib = sdma_v4_0_ring_emit_ib,
  1279. .emit_fence = sdma_v4_0_ring_emit_fence,
  1280. .emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
  1281. .emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
  1282. .emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
  1283. .emit_hdp_invalidate = sdma_v4_0_ring_emit_hdp_invalidate,
  1284. .test_ring = sdma_v4_0_ring_test_ring,
  1285. .test_ib = sdma_v4_0_ring_test_ib,
  1286. .insert_nop = sdma_v4_0_ring_insert_nop,
  1287. .pad_ib = sdma_v4_0_ring_pad_ib,
  1288. };
  1289. static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev)
  1290. {
  1291. int i;
  1292. for (i = 0; i < adev->sdma.num_instances; i++)
  1293. adev->sdma.instance[i].ring.funcs = &sdma_v4_0_ring_funcs;
  1294. }
  1295. static const struct amdgpu_irq_src_funcs sdma_v4_0_trap_irq_funcs = {
  1296. .set = sdma_v4_0_set_trap_irq_state,
  1297. .process = sdma_v4_0_process_trap_irq,
  1298. };
  1299. static const struct amdgpu_irq_src_funcs sdma_v4_0_illegal_inst_irq_funcs = {
  1300. .process = sdma_v4_0_process_illegal_inst_irq,
  1301. };
  1302. static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev)
  1303. {
  1304. adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
  1305. adev->sdma.trap_irq.funcs = &sdma_v4_0_trap_irq_funcs;
  1306. adev->sdma.illegal_inst_irq.funcs = &sdma_v4_0_illegal_inst_irq_funcs;
  1307. }
  1308. /**
  1309. * sdma_v4_0_emit_copy_buffer - copy buffer using the sDMA engine
  1310. *
  1311. * @ring: amdgpu_ring structure holding ring information
  1312. * @src_offset: src GPU address
  1313. * @dst_offset: dst GPU address
  1314. * @byte_count: number of bytes to xfer
  1315. *
  1316. * Copy GPU buffers using the DMA engine (VEGA10).
  1317. * Used by the amdgpu ttm implementation to move pages if
  1318. * registered as the asic copy callback.
  1319. */
  1320. static void sdma_v4_0_emit_copy_buffer(struct amdgpu_ib *ib,
  1321. uint64_t src_offset,
  1322. uint64_t dst_offset,
  1323. uint32_t byte_count)
  1324. {
  1325. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
  1326. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
  1327. ib->ptr[ib->length_dw++] = byte_count - 1;
  1328. ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
  1329. ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
  1330. ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
  1331. ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
  1332. ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
  1333. }
  1334. /**
  1335. * sdma_v4_0_emit_fill_buffer - fill buffer using the sDMA engine
  1336. *
  1337. * @ring: amdgpu_ring structure holding ring information
  1338. * @src_data: value to write to buffer
  1339. * @dst_offset: dst GPU address
  1340. * @byte_count: number of bytes to xfer
  1341. *
  1342. * Fill GPU buffers using the DMA engine (VEGA10).
  1343. */
  1344. static void sdma_v4_0_emit_fill_buffer(struct amdgpu_ib *ib,
  1345. uint32_t src_data,
  1346. uint64_t dst_offset,
  1347. uint32_t byte_count)
  1348. {
  1349. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
  1350. ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
  1351. ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
  1352. ib->ptr[ib->length_dw++] = src_data;
  1353. ib->ptr[ib->length_dw++] = byte_count - 1;
  1354. }
  1355. static const struct amdgpu_buffer_funcs sdma_v4_0_buffer_funcs = {
  1356. .copy_max_bytes = 0x400000,
  1357. .copy_num_dw = 7,
  1358. .emit_copy_buffer = sdma_v4_0_emit_copy_buffer,
  1359. .fill_max_bytes = 0x400000,
  1360. .fill_num_dw = 5,
  1361. .emit_fill_buffer = sdma_v4_0_emit_fill_buffer,
  1362. };
  1363. static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev)
  1364. {
  1365. if (adev->mman.buffer_funcs == NULL) {
  1366. adev->mman.buffer_funcs = &sdma_v4_0_buffer_funcs;
  1367. adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
  1368. }
  1369. }
  1370. static const struct amdgpu_vm_pte_funcs sdma_v4_0_vm_pte_funcs = {
  1371. .copy_pte = sdma_v4_0_vm_copy_pte,
  1372. .write_pte = sdma_v4_0_vm_write_pte,
  1373. .set_pte_pde = sdma_v4_0_vm_set_pte_pde,
  1374. };
  1375. static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev)
  1376. {
  1377. unsigned i;
  1378. if (adev->vm_manager.vm_pte_funcs == NULL) {
  1379. adev->vm_manager.vm_pte_funcs = &sdma_v4_0_vm_pte_funcs;
  1380. for (i = 0; i < adev->sdma.num_instances; i++)
  1381. adev->vm_manager.vm_pte_rings[i] =
  1382. &adev->sdma.instance[i].ring;
  1383. adev->vm_manager.vm_pte_num_rings = adev->sdma.num_instances;
  1384. }
  1385. }
  1386. const struct amdgpu_ip_block_version sdma_v4_0_ip_block = {
  1387. .type = AMD_IP_BLOCK_TYPE_SDMA,
  1388. .major = 4,
  1389. .minor = 0,
  1390. .rev = 0,
  1391. .funcs = &sdma_v4_0_ip_funcs,
  1392. };