gmc_v8_0.c 48 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712
  1. /*
  2. * Copyright 2014 Advanced Micro Devices, Inc.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice shall be included in
  12. * all copies or substantial portions of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  17. * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20. * OTHER DEALINGS IN THE SOFTWARE.
  21. *
  22. */
  23. #include <linux/firmware.h>
  24. #include "drmP.h"
  25. #include "amdgpu.h"
  26. #include "gmc_v8_0.h"
  27. #include "amdgpu_ucode.h"
  28. #include "gmc/gmc_8_1_d.h"
  29. #include "gmc/gmc_8_1_sh_mask.h"
  30. #include "bif/bif_5_0_d.h"
  31. #include "bif/bif_5_0_sh_mask.h"
  32. #include "oss/oss_3_0_d.h"
  33. #include "oss/oss_3_0_sh_mask.h"
  34. #include "vid.h"
  35. #include "vi.h"
  36. #include "amdgpu_atombios.h"
  37. static void gmc_v8_0_set_gart_funcs(struct amdgpu_device *adev);
  38. static void gmc_v8_0_set_irq_funcs(struct amdgpu_device *adev);
  39. static int gmc_v8_0_wait_for_idle(void *handle);
  40. MODULE_FIRMWARE("amdgpu/tonga_mc.bin");
  41. MODULE_FIRMWARE("amdgpu/polaris11_mc.bin");
  42. MODULE_FIRMWARE("amdgpu/polaris10_mc.bin");
  43. MODULE_FIRMWARE("amdgpu/polaris12_mc.bin");
  44. static const u32 golden_settings_tonga_a11[] =
  45. {
  46. mmMC_ARB_WTM_GRPWT_RD, 0x00000003, 0x00000000,
  47. mmMC_HUB_RDREQ_DMIF_LIMIT, 0x0000007f, 0x00000028,
  48. mmMC_HUB_WDP_UMC, 0x00007fb6, 0x00000991,
  49. mmVM_PRT_APERTURE0_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  50. mmVM_PRT_APERTURE1_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  51. mmVM_PRT_APERTURE2_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  52. mmVM_PRT_APERTURE3_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  53. };
  54. static const u32 tonga_mgcg_cgcg_init[] =
  55. {
  56. mmMC_MEM_POWER_LS, 0xffffffff, 0x00000104
  57. };
  58. static const u32 golden_settings_fiji_a10[] =
  59. {
  60. mmVM_PRT_APERTURE0_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  61. mmVM_PRT_APERTURE1_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  62. mmVM_PRT_APERTURE2_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  63. mmVM_PRT_APERTURE3_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  64. };
  65. static const u32 fiji_mgcg_cgcg_init[] =
  66. {
  67. mmMC_MEM_POWER_LS, 0xffffffff, 0x00000104
  68. };
  69. static const u32 golden_settings_polaris11_a11[] =
  70. {
  71. mmVM_PRT_APERTURE0_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  72. mmVM_PRT_APERTURE1_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  73. mmVM_PRT_APERTURE2_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  74. mmVM_PRT_APERTURE3_LOW_ADDR, 0x0fffffff, 0x0fffffff
  75. };
  76. static const u32 golden_settings_polaris10_a11[] =
  77. {
  78. mmMC_ARB_WTM_GRPWT_RD, 0x00000003, 0x00000000,
  79. mmVM_PRT_APERTURE0_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  80. mmVM_PRT_APERTURE1_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  81. mmVM_PRT_APERTURE2_LOW_ADDR, 0x0fffffff, 0x0fffffff,
  82. mmVM_PRT_APERTURE3_LOW_ADDR, 0x0fffffff, 0x0fffffff
  83. };
  84. static const u32 cz_mgcg_cgcg_init[] =
  85. {
  86. mmMC_MEM_POWER_LS, 0xffffffff, 0x00000104
  87. };
  88. static const u32 stoney_mgcg_cgcg_init[] =
  89. {
  90. mmATC_MISC_CG, 0xffffffff, 0x000c0200,
  91. mmMC_MEM_POWER_LS, 0xffffffff, 0x00000104
  92. };
  93. static const u32 golden_settings_stoney_common[] =
  94. {
  95. mmMC_HUB_RDREQ_UVD, MC_HUB_RDREQ_UVD__PRESCALE_MASK, 0x00000004,
  96. mmMC_RD_GRP_OTH, MC_RD_GRP_OTH__UVD_MASK, 0x00600000
  97. };
  98. static void gmc_v8_0_init_golden_registers(struct amdgpu_device *adev)
  99. {
  100. switch (adev->asic_type) {
  101. case CHIP_FIJI:
  102. amdgpu_program_register_sequence(adev,
  103. fiji_mgcg_cgcg_init,
  104. (const u32)ARRAY_SIZE(fiji_mgcg_cgcg_init));
  105. amdgpu_program_register_sequence(adev,
  106. golden_settings_fiji_a10,
  107. (const u32)ARRAY_SIZE(golden_settings_fiji_a10));
  108. break;
  109. case CHIP_TONGA:
  110. amdgpu_program_register_sequence(adev,
  111. tonga_mgcg_cgcg_init,
  112. (const u32)ARRAY_SIZE(tonga_mgcg_cgcg_init));
  113. amdgpu_program_register_sequence(adev,
  114. golden_settings_tonga_a11,
  115. (const u32)ARRAY_SIZE(golden_settings_tonga_a11));
  116. break;
  117. case CHIP_POLARIS11:
  118. case CHIP_POLARIS12:
  119. amdgpu_program_register_sequence(adev,
  120. golden_settings_polaris11_a11,
  121. (const u32)ARRAY_SIZE(golden_settings_polaris11_a11));
  122. break;
  123. case CHIP_POLARIS10:
  124. amdgpu_program_register_sequence(adev,
  125. golden_settings_polaris10_a11,
  126. (const u32)ARRAY_SIZE(golden_settings_polaris10_a11));
  127. break;
  128. case CHIP_CARRIZO:
  129. amdgpu_program_register_sequence(adev,
  130. cz_mgcg_cgcg_init,
  131. (const u32)ARRAY_SIZE(cz_mgcg_cgcg_init));
  132. break;
  133. case CHIP_STONEY:
  134. amdgpu_program_register_sequence(adev,
  135. stoney_mgcg_cgcg_init,
  136. (const u32)ARRAY_SIZE(stoney_mgcg_cgcg_init));
  137. amdgpu_program_register_sequence(adev,
  138. golden_settings_stoney_common,
  139. (const u32)ARRAY_SIZE(golden_settings_stoney_common));
  140. break;
  141. default:
  142. break;
  143. }
  144. }
  145. static void gmc_v8_0_mc_stop(struct amdgpu_device *adev,
  146. struct amdgpu_mode_mc_save *save)
  147. {
  148. u32 blackout;
  149. if (adev->mode_info.num_crtc)
  150. amdgpu_display_stop_mc_access(adev, save);
  151. gmc_v8_0_wait_for_idle(adev);
  152. blackout = RREG32(mmMC_SHARED_BLACKOUT_CNTL);
  153. if (REG_GET_FIELD(blackout, MC_SHARED_BLACKOUT_CNTL, BLACKOUT_MODE) != 1) {
  154. /* Block CPU access */
  155. WREG32(mmBIF_FB_EN, 0);
  156. /* blackout the MC */
  157. blackout = REG_SET_FIELD(blackout,
  158. MC_SHARED_BLACKOUT_CNTL, BLACKOUT_MODE, 1);
  159. WREG32(mmMC_SHARED_BLACKOUT_CNTL, blackout);
  160. }
  161. /* wait for the MC to settle */
  162. udelay(100);
  163. }
  164. static void gmc_v8_0_mc_resume(struct amdgpu_device *adev,
  165. struct amdgpu_mode_mc_save *save)
  166. {
  167. u32 tmp;
  168. /* unblackout the MC */
  169. tmp = RREG32(mmMC_SHARED_BLACKOUT_CNTL);
  170. tmp = REG_SET_FIELD(tmp, MC_SHARED_BLACKOUT_CNTL, BLACKOUT_MODE, 0);
  171. WREG32(mmMC_SHARED_BLACKOUT_CNTL, tmp);
  172. /* allow CPU access */
  173. tmp = REG_SET_FIELD(0, BIF_FB_EN, FB_READ_EN, 1);
  174. tmp = REG_SET_FIELD(tmp, BIF_FB_EN, FB_WRITE_EN, 1);
  175. WREG32(mmBIF_FB_EN, tmp);
  176. if (adev->mode_info.num_crtc)
  177. amdgpu_display_resume_mc_access(adev, save);
  178. }
  179. /**
  180. * gmc_v8_0_init_microcode - load ucode images from disk
  181. *
  182. * @adev: amdgpu_device pointer
  183. *
  184. * Use the firmware interface to load the ucode images into
  185. * the driver (not loaded into hw).
  186. * Returns 0 on success, error on failure.
  187. */
  188. static int gmc_v8_0_init_microcode(struct amdgpu_device *adev)
  189. {
  190. const char *chip_name;
  191. char fw_name[30];
  192. int err;
  193. DRM_DEBUG("\n");
  194. switch (adev->asic_type) {
  195. case CHIP_TONGA:
  196. chip_name = "tonga";
  197. break;
  198. case CHIP_POLARIS11:
  199. chip_name = "polaris11";
  200. break;
  201. case CHIP_POLARIS10:
  202. chip_name = "polaris10";
  203. break;
  204. case CHIP_POLARIS12:
  205. chip_name = "polaris12";
  206. break;
  207. case CHIP_FIJI:
  208. case CHIP_CARRIZO:
  209. case CHIP_STONEY:
  210. return 0;
  211. default: BUG();
  212. }
  213. snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_mc.bin", chip_name);
  214. err = request_firmware(&adev->mc.fw, fw_name, adev->dev);
  215. if (err)
  216. goto out;
  217. err = amdgpu_ucode_validate(adev->mc.fw);
  218. out:
  219. if (err) {
  220. pr_err("mc: Failed to load firmware \"%s\"\n", fw_name);
  221. release_firmware(adev->mc.fw);
  222. adev->mc.fw = NULL;
  223. }
  224. return err;
  225. }
  226. /**
  227. * gmc_v8_0_tonga_mc_load_microcode - load tonga MC ucode into the hw
  228. *
  229. * @adev: amdgpu_device pointer
  230. *
  231. * Load the GDDR MC ucode into the hw (CIK).
  232. * Returns 0 on success, error on failure.
  233. */
  234. static int gmc_v8_0_tonga_mc_load_microcode(struct amdgpu_device *adev)
  235. {
  236. const struct mc_firmware_header_v1_0 *hdr;
  237. const __le32 *fw_data = NULL;
  238. const __le32 *io_mc_regs = NULL;
  239. u32 running;
  240. int i, ucode_size, regs_size;
  241. /* Skip MC ucode loading on SR-IOV capable boards.
  242. * vbios does this for us in asic_init in that case.
  243. * Skip MC ucode loading on VF, because hypervisor will do that
  244. * for this adaptor.
  245. */
  246. if (amdgpu_sriov_bios(adev))
  247. return 0;
  248. if (!adev->mc.fw)
  249. return -EINVAL;
  250. hdr = (const struct mc_firmware_header_v1_0 *)adev->mc.fw->data;
  251. amdgpu_ucode_print_mc_hdr(&hdr->header);
  252. adev->mc.fw_version = le32_to_cpu(hdr->header.ucode_version);
  253. regs_size = le32_to_cpu(hdr->io_debug_size_bytes) / (4 * 2);
  254. io_mc_regs = (const __le32 *)
  255. (adev->mc.fw->data + le32_to_cpu(hdr->io_debug_array_offset_bytes));
  256. ucode_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
  257. fw_data = (const __le32 *)
  258. (adev->mc.fw->data + le32_to_cpu(hdr->header.ucode_array_offset_bytes));
  259. running = REG_GET_FIELD(RREG32(mmMC_SEQ_SUP_CNTL), MC_SEQ_SUP_CNTL, RUN);
  260. if (running == 0) {
  261. /* reset the engine and set to writable */
  262. WREG32(mmMC_SEQ_SUP_CNTL, 0x00000008);
  263. WREG32(mmMC_SEQ_SUP_CNTL, 0x00000010);
  264. /* load mc io regs */
  265. for (i = 0; i < regs_size; i++) {
  266. WREG32(mmMC_SEQ_IO_DEBUG_INDEX, le32_to_cpup(io_mc_regs++));
  267. WREG32(mmMC_SEQ_IO_DEBUG_DATA, le32_to_cpup(io_mc_regs++));
  268. }
  269. /* load the MC ucode */
  270. for (i = 0; i < ucode_size; i++)
  271. WREG32(mmMC_SEQ_SUP_PGM, le32_to_cpup(fw_data++));
  272. /* put the engine back into the active state */
  273. WREG32(mmMC_SEQ_SUP_CNTL, 0x00000008);
  274. WREG32(mmMC_SEQ_SUP_CNTL, 0x00000004);
  275. WREG32(mmMC_SEQ_SUP_CNTL, 0x00000001);
  276. /* wait for training to complete */
  277. for (i = 0; i < adev->usec_timeout; i++) {
  278. if (REG_GET_FIELD(RREG32(mmMC_SEQ_TRAIN_WAKEUP_CNTL),
  279. MC_SEQ_TRAIN_WAKEUP_CNTL, TRAIN_DONE_D0))
  280. break;
  281. udelay(1);
  282. }
  283. for (i = 0; i < adev->usec_timeout; i++) {
  284. if (REG_GET_FIELD(RREG32(mmMC_SEQ_TRAIN_WAKEUP_CNTL),
  285. MC_SEQ_TRAIN_WAKEUP_CNTL, TRAIN_DONE_D1))
  286. break;
  287. udelay(1);
  288. }
  289. }
  290. return 0;
  291. }
  292. static int gmc_v8_0_polaris_mc_load_microcode(struct amdgpu_device *adev)
  293. {
  294. const struct mc_firmware_header_v1_0 *hdr;
  295. const __le32 *fw_data = NULL;
  296. const __le32 *io_mc_regs = NULL;
  297. u32 data, vbios_version;
  298. int i, ucode_size, regs_size;
  299. /* Skip MC ucode loading on SR-IOV capable boards.
  300. * vbios does this for us in asic_init in that case.
  301. * Skip MC ucode loading on VF, because hypervisor will do that
  302. * for this adaptor.
  303. */
  304. if (amdgpu_sriov_bios(adev))
  305. return 0;
  306. WREG32(mmMC_SEQ_IO_DEBUG_INDEX, 0x9F);
  307. data = RREG32(mmMC_SEQ_IO_DEBUG_DATA);
  308. vbios_version = data & 0xf;
  309. if (vbios_version == 0)
  310. return 0;
  311. if (!adev->mc.fw)
  312. return -EINVAL;
  313. hdr = (const struct mc_firmware_header_v1_0 *)adev->mc.fw->data;
  314. amdgpu_ucode_print_mc_hdr(&hdr->header);
  315. adev->mc.fw_version = le32_to_cpu(hdr->header.ucode_version);
  316. regs_size = le32_to_cpu(hdr->io_debug_size_bytes) / (4 * 2);
  317. io_mc_regs = (const __le32 *)
  318. (adev->mc.fw->data + le32_to_cpu(hdr->io_debug_array_offset_bytes));
  319. ucode_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
  320. fw_data = (const __le32 *)
  321. (adev->mc.fw->data + le32_to_cpu(hdr->header.ucode_array_offset_bytes));
  322. data = RREG32(mmMC_SEQ_MISC0);
  323. data &= ~(0x40);
  324. WREG32(mmMC_SEQ_MISC0, data);
  325. /* load mc io regs */
  326. for (i = 0; i < regs_size; i++) {
  327. WREG32(mmMC_SEQ_IO_DEBUG_INDEX, le32_to_cpup(io_mc_regs++));
  328. WREG32(mmMC_SEQ_IO_DEBUG_DATA, le32_to_cpup(io_mc_regs++));
  329. }
  330. WREG32(mmMC_SEQ_SUP_CNTL, 0x00000008);
  331. WREG32(mmMC_SEQ_SUP_CNTL, 0x00000010);
  332. /* load the MC ucode */
  333. for (i = 0; i < ucode_size; i++)
  334. WREG32(mmMC_SEQ_SUP_PGM, le32_to_cpup(fw_data++));
  335. /* put the engine back into the active state */
  336. WREG32(mmMC_SEQ_SUP_CNTL, 0x00000008);
  337. WREG32(mmMC_SEQ_SUP_CNTL, 0x00000004);
  338. WREG32(mmMC_SEQ_SUP_CNTL, 0x00000001);
  339. /* wait for training to complete */
  340. for (i = 0; i < adev->usec_timeout; i++) {
  341. data = RREG32(mmMC_SEQ_MISC0);
  342. if (data & 0x80)
  343. break;
  344. udelay(1);
  345. }
  346. return 0;
  347. }
  348. static void gmc_v8_0_vram_gtt_location(struct amdgpu_device *adev,
  349. struct amdgpu_mc *mc)
  350. {
  351. if (mc->mc_vram_size > 0xFFC0000000ULL) {
  352. /* leave room for at least 1024M GTT */
  353. dev_warn(adev->dev, "limiting VRAM\n");
  354. mc->real_vram_size = 0xFFC0000000ULL;
  355. mc->mc_vram_size = 0xFFC0000000ULL;
  356. }
  357. amdgpu_vram_location(adev, &adev->mc, 0);
  358. adev->mc.gtt_base_align = 0;
  359. amdgpu_gtt_location(adev, mc);
  360. }
  361. /**
  362. * gmc_v8_0_mc_program - program the GPU memory controller
  363. *
  364. * @adev: amdgpu_device pointer
  365. *
  366. * Set the location of vram, gart, and AGP in the GPU's
  367. * physical address space (CIK).
  368. */
  369. static void gmc_v8_0_mc_program(struct amdgpu_device *adev)
  370. {
  371. struct amdgpu_mode_mc_save save;
  372. u32 tmp;
  373. int i, j;
  374. /* Initialize HDP */
  375. for (i = 0, j = 0; i < 32; i++, j += 0x6) {
  376. WREG32((0xb05 + j), 0x00000000);
  377. WREG32((0xb06 + j), 0x00000000);
  378. WREG32((0xb07 + j), 0x00000000);
  379. WREG32((0xb08 + j), 0x00000000);
  380. WREG32((0xb09 + j), 0x00000000);
  381. }
  382. WREG32(mmHDP_REG_COHERENCY_FLUSH_CNTL, 0);
  383. if (adev->mode_info.num_crtc)
  384. amdgpu_display_set_vga_render_state(adev, false);
  385. gmc_v8_0_mc_stop(adev, &save);
  386. if (gmc_v8_0_wait_for_idle((void *)adev)) {
  387. dev_warn(adev->dev, "Wait for MC idle timedout !\n");
  388. }
  389. /* Update configuration */
  390. WREG32(mmMC_VM_SYSTEM_APERTURE_LOW_ADDR,
  391. adev->mc.vram_start >> 12);
  392. WREG32(mmMC_VM_SYSTEM_APERTURE_HIGH_ADDR,
  393. adev->mc.vram_end >> 12);
  394. WREG32(mmMC_VM_SYSTEM_APERTURE_DEFAULT_ADDR,
  395. adev->vram_scratch.gpu_addr >> 12);
  396. tmp = ((adev->mc.vram_end >> 24) & 0xFFFF) << 16;
  397. tmp |= ((adev->mc.vram_start >> 24) & 0xFFFF);
  398. WREG32(mmMC_VM_FB_LOCATION, tmp);
  399. /* XXX double check these! */
  400. WREG32(mmHDP_NONSURFACE_BASE, (adev->mc.vram_start >> 8));
  401. WREG32(mmHDP_NONSURFACE_INFO, (2 << 7) | (1 << 30));
  402. WREG32(mmHDP_NONSURFACE_SIZE, 0x3FFFFFFF);
  403. WREG32(mmMC_VM_AGP_BASE, 0);
  404. WREG32(mmMC_VM_AGP_TOP, 0x0FFFFFFF);
  405. WREG32(mmMC_VM_AGP_BOT, 0x0FFFFFFF);
  406. if (gmc_v8_0_wait_for_idle((void *)adev)) {
  407. dev_warn(adev->dev, "Wait for MC idle timedout !\n");
  408. }
  409. gmc_v8_0_mc_resume(adev, &save);
  410. WREG32(mmBIF_FB_EN, BIF_FB_EN__FB_READ_EN_MASK | BIF_FB_EN__FB_WRITE_EN_MASK);
  411. tmp = RREG32(mmHDP_MISC_CNTL);
  412. tmp = REG_SET_FIELD(tmp, HDP_MISC_CNTL, FLUSH_INVALIDATE_CACHE, 0);
  413. WREG32(mmHDP_MISC_CNTL, tmp);
  414. tmp = RREG32(mmHDP_HOST_PATH_CNTL);
  415. WREG32(mmHDP_HOST_PATH_CNTL, tmp);
  416. }
  417. /**
  418. * gmc_v8_0_mc_init - initialize the memory controller driver params
  419. *
  420. * @adev: amdgpu_device pointer
  421. *
  422. * Look up the amount of vram, vram width, and decide how to place
  423. * vram and gart within the GPU's physical address space (CIK).
  424. * Returns 0 for success.
  425. */
  426. static int gmc_v8_0_mc_init(struct amdgpu_device *adev)
  427. {
  428. adev->mc.vram_width = amdgpu_atombios_get_vram_width(adev);
  429. if (!adev->mc.vram_width) {
  430. u32 tmp;
  431. int chansize, numchan;
  432. /* Get VRAM informations */
  433. tmp = RREG32(mmMC_ARB_RAMCFG);
  434. if (REG_GET_FIELD(tmp, MC_ARB_RAMCFG, CHANSIZE)) {
  435. chansize = 64;
  436. } else {
  437. chansize = 32;
  438. }
  439. tmp = RREG32(mmMC_SHARED_CHMAP);
  440. switch (REG_GET_FIELD(tmp, MC_SHARED_CHMAP, NOOFCHAN)) {
  441. case 0:
  442. default:
  443. numchan = 1;
  444. break;
  445. case 1:
  446. numchan = 2;
  447. break;
  448. case 2:
  449. numchan = 4;
  450. break;
  451. case 3:
  452. numchan = 8;
  453. break;
  454. case 4:
  455. numchan = 3;
  456. break;
  457. case 5:
  458. numchan = 6;
  459. break;
  460. case 6:
  461. numchan = 10;
  462. break;
  463. case 7:
  464. numchan = 12;
  465. break;
  466. case 8:
  467. numchan = 16;
  468. break;
  469. }
  470. adev->mc.vram_width = numchan * chansize;
  471. }
  472. /* Could aper size report 0 ? */
  473. adev->mc.aper_base = pci_resource_start(adev->pdev, 0);
  474. adev->mc.aper_size = pci_resource_len(adev->pdev, 0);
  475. /* size in MB on si */
  476. adev->mc.mc_vram_size = RREG32(mmCONFIG_MEMSIZE) * 1024ULL * 1024ULL;
  477. adev->mc.real_vram_size = RREG32(mmCONFIG_MEMSIZE) * 1024ULL * 1024ULL;
  478. #ifdef CONFIG_X86_64
  479. if (adev->flags & AMD_IS_APU) {
  480. adev->mc.aper_base = ((u64)RREG32(mmMC_VM_FB_OFFSET)) << 22;
  481. adev->mc.aper_size = adev->mc.real_vram_size;
  482. }
  483. #endif
  484. /* In case the PCI BAR is larger than the actual amount of vram */
  485. adev->mc.visible_vram_size = adev->mc.aper_size;
  486. if (adev->mc.visible_vram_size > adev->mc.real_vram_size)
  487. adev->mc.visible_vram_size = adev->mc.real_vram_size;
  488. /* unless the user had overridden it, set the gart
  489. * size equal to the 1024 or vram, whichever is larger.
  490. */
  491. if (amdgpu_gart_size == -1)
  492. adev->mc.gtt_size = max((1024ULL << 20), adev->mc.mc_vram_size);
  493. else
  494. adev->mc.gtt_size = (uint64_t)amdgpu_gart_size << 20;
  495. gmc_v8_0_vram_gtt_location(adev, &adev->mc);
  496. return 0;
  497. }
  498. /*
  499. * GART
  500. * VMID 0 is the physical GPU addresses as used by the kernel.
  501. * VMIDs 1-15 are used for userspace clients and are handled
  502. * by the amdgpu vm/hsa code.
  503. */
  504. /**
  505. * gmc_v8_0_gart_flush_gpu_tlb - gart tlb flush callback
  506. *
  507. * @adev: amdgpu_device pointer
  508. * @vmid: vm instance to flush
  509. *
  510. * Flush the TLB for the requested page table (CIK).
  511. */
  512. static void gmc_v8_0_gart_flush_gpu_tlb(struct amdgpu_device *adev,
  513. uint32_t vmid)
  514. {
  515. /* flush hdp cache */
  516. WREG32(mmHDP_MEM_COHERENCY_FLUSH_CNTL, 0);
  517. /* bits 0-15 are the VM contexts0-15 */
  518. WREG32(mmVM_INVALIDATE_REQUEST, 1 << vmid);
  519. }
  520. /**
  521. * gmc_v8_0_gart_set_pte_pde - update the page tables using MMIO
  522. *
  523. * @adev: amdgpu_device pointer
  524. * @cpu_pt_addr: cpu address of the page table
  525. * @gpu_page_idx: entry in the page table to update
  526. * @addr: dst addr to write into pte/pde
  527. * @flags: access flags
  528. *
  529. * Update the page tables using the CPU.
  530. */
  531. static int gmc_v8_0_gart_set_pte_pde(struct amdgpu_device *adev,
  532. void *cpu_pt_addr,
  533. uint32_t gpu_page_idx,
  534. uint64_t addr,
  535. uint64_t flags)
  536. {
  537. void __iomem *ptr = (void *)cpu_pt_addr;
  538. uint64_t value;
  539. /*
  540. * PTE format on VI:
  541. * 63:40 reserved
  542. * 39:12 4k physical page base address
  543. * 11:7 fragment
  544. * 6 write
  545. * 5 read
  546. * 4 exe
  547. * 3 reserved
  548. * 2 snooped
  549. * 1 system
  550. * 0 valid
  551. *
  552. * PDE format on VI:
  553. * 63:59 block fragment size
  554. * 58:40 reserved
  555. * 39:1 physical base address of PTE
  556. * bits 5:1 must be 0.
  557. * 0 valid
  558. */
  559. value = addr & 0x000000FFFFFFF000ULL;
  560. value |= flags;
  561. writeq(value, ptr + (gpu_page_idx * 8));
  562. return 0;
  563. }
  564. static uint64_t gmc_v8_0_get_vm_pte_flags(struct amdgpu_device *adev,
  565. uint32_t flags)
  566. {
  567. uint64_t pte_flag = 0;
  568. if (flags & AMDGPU_VM_PAGE_EXECUTABLE)
  569. pte_flag |= AMDGPU_PTE_EXECUTABLE;
  570. if (flags & AMDGPU_VM_PAGE_READABLE)
  571. pte_flag |= AMDGPU_PTE_READABLE;
  572. if (flags & AMDGPU_VM_PAGE_WRITEABLE)
  573. pte_flag |= AMDGPU_PTE_WRITEABLE;
  574. if (flags & AMDGPU_VM_PAGE_PRT)
  575. pte_flag |= AMDGPU_PTE_PRT;
  576. return pte_flag;
  577. }
  578. /**
  579. * gmc_v8_0_set_fault_enable_default - update VM fault handling
  580. *
  581. * @adev: amdgpu_device pointer
  582. * @value: true redirects VM faults to the default page
  583. */
  584. static void gmc_v8_0_set_fault_enable_default(struct amdgpu_device *adev,
  585. bool value)
  586. {
  587. u32 tmp;
  588. tmp = RREG32(mmVM_CONTEXT1_CNTL);
  589. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
  590. RANGE_PROTECTION_FAULT_ENABLE_DEFAULT, value);
  591. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
  592. DUMMY_PAGE_PROTECTION_FAULT_ENABLE_DEFAULT, value);
  593. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
  594. PDE0_PROTECTION_FAULT_ENABLE_DEFAULT, value);
  595. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
  596. VALID_PROTECTION_FAULT_ENABLE_DEFAULT, value);
  597. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
  598. READ_PROTECTION_FAULT_ENABLE_DEFAULT, value);
  599. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
  600. WRITE_PROTECTION_FAULT_ENABLE_DEFAULT, value);
  601. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
  602. EXECUTE_PROTECTION_FAULT_ENABLE_DEFAULT, value);
  603. WREG32(mmVM_CONTEXT1_CNTL, tmp);
  604. }
  605. /**
  606. * gmc_v8_0_set_prt - set PRT VM fault
  607. *
  608. * @adev: amdgpu_device pointer
  609. * @enable: enable/disable VM fault handling for PRT
  610. */
  611. static void gmc_v8_0_set_prt(struct amdgpu_device *adev, bool enable)
  612. {
  613. u32 tmp;
  614. if (enable && !adev->mc.prt_warning) {
  615. dev_warn(adev->dev, "Disabling VM faults because of PRT request!\n");
  616. adev->mc.prt_warning = true;
  617. }
  618. tmp = RREG32(mmVM_PRT_CNTL);
  619. tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
  620. CB_DISABLE_READ_FAULT_ON_UNMAPPED_ACCESS, enable);
  621. tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
  622. CB_DISABLE_WRITE_FAULT_ON_UNMAPPED_ACCESS, enable);
  623. tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
  624. TC_DISABLE_READ_FAULT_ON_UNMAPPED_ACCESS, enable);
  625. tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
  626. TC_DISABLE_WRITE_FAULT_ON_UNMAPPED_ACCESS, enable);
  627. tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
  628. L2_CACHE_STORE_INVALID_ENTRIES, enable);
  629. tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
  630. L1_TLB_STORE_INVALID_ENTRIES, enable);
  631. tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
  632. MASK_PDE0_FAULT, enable);
  633. WREG32(mmVM_PRT_CNTL, tmp);
  634. if (enable) {
  635. uint32_t low = AMDGPU_VA_RESERVED_SIZE >> AMDGPU_GPU_PAGE_SHIFT;
  636. uint32_t high = adev->vm_manager.max_pfn;
  637. WREG32(mmVM_PRT_APERTURE0_LOW_ADDR, low);
  638. WREG32(mmVM_PRT_APERTURE1_LOW_ADDR, low);
  639. WREG32(mmVM_PRT_APERTURE2_LOW_ADDR, low);
  640. WREG32(mmVM_PRT_APERTURE3_LOW_ADDR, low);
  641. WREG32(mmVM_PRT_APERTURE0_HIGH_ADDR, high);
  642. WREG32(mmVM_PRT_APERTURE1_HIGH_ADDR, high);
  643. WREG32(mmVM_PRT_APERTURE2_HIGH_ADDR, high);
  644. WREG32(mmVM_PRT_APERTURE3_HIGH_ADDR, high);
  645. } else {
  646. WREG32(mmVM_PRT_APERTURE0_LOW_ADDR, 0xfffffff);
  647. WREG32(mmVM_PRT_APERTURE1_LOW_ADDR, 0xfffffff);
  648. WREG32(mmVM_PRT_APERTURE2_LOW_ADDR, 0xfffffff);
  649. WREG32(mmVM_PRT_APERTURE3_LOW_ADDR, 0xfffffff);
  650. WREG32(mmVM_PRT_APERTURE0_HIGH_ADDR, 0x0);
  651. WREG32(mmVM_PRT_APERTURE1_HIGH_ADDR, 0x0);
  652. WREG32(mmVM_PRT_APERTURE2_HIGH_ADDR, 0x0);
  653. WREG32(mmVM_PRT_APERTURE3_HIGH_ADDR, 0x0);
  654. }
  655. }
  656. /**
  657. * gmc_v8_0_gart_enable - gart enable
  658. *
  659. * @adev: amdgpu_device pointer
  660. *
  661. * This sets up the TLBs, programs the page tables for VMID0,
  662. * sets up the hw for VMIDs 1-15 which are allocated on
  663. * demand, and sets up the global locations for the LDS, GDS,
  664. * and GPUVM for FSA64 clients (CIK).
  665. * Returns 0 for success, errors for failure.
  666. */
  667. static int gmc_v8_0_gart_enable(struct amdgpu_device *adev)
  668. {
  669. int r, i;
  670. u32 tmp;
  671. if (adev->gart.robj == NULL) {
  672. dev_err(adev->dev, "No VRAM object for PCIE GART.\n");
  673. return -EINVAL;
  674. }
  675. r = amdgpu_gart_table_vram_pin(adev);
  676. if (r)
  677. return r;
  678. /* Setup TLB control */
  679. tmp = RREG32(mmMC_VM_MX_L1_TLB_CNTL);
  680. tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_L1_TLB, 1);
  681. tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_L1_FRAGMENT_PROCESSING, 1);
  682. tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, SYSTEM_ACCESS_MODE, 3);
  683. tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_ADVANCED_DRIVER_MODEL, 1);
  684. tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, SYSTEM_APERTURE_UNMAPPED_ACCESS, 0);
  685. WREG32(mmMC_VM_MX_L1_TLB_CNTL, tmp);
  686. /* Setup L2 cache */
  687. tmp = RREG32(mmVM_L2_CNTL);
  688. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_L2_CACHE, 1);
  689. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_L2_FRAGMENT_PROCESSING, 1);
  690. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_L2_PTE_CACHE_LRU_UPDATE_BY_WRITE, 1);
  691. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_L2_PDE0_CACHE_LRU_UPDATE_BY_WRITE, 1);
  692. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, EFFECTIVE_L2_QUEUE_SIZE, 7);
  693. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, CONTEXT1_IDENTITY_ACCESS_MODE, 1);
  694. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_DEFAULT_PAGE_OUT_TO_SYSTEM_MEMORY, 1);
  695. WREG32(mmVM_L2_CNTL, tmp);
  696. tmp = RREG32(mmVM_L2_CNTL2);
  697. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL2, INVALIDATE_ALL_L1_TLBS, 1);
  698. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL2, INVALIDATE_L2_CACHE, 1);
  699. WREG32(mmVM_L2_CNTL2, tmp);
  700. tmp = RREG32(mmVM_L2_CNTL3);
  701. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL3, L2_CACHE_BIGK_ASSOCIATIVITY, 1);
  702. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL3, BANK_SELECT, 4);
  703. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL3, L2_CACHE_BIGK_FRAGMENT_SIZE, 4);
  704. WREG32(mmVM_L2_CNTL3, tmp);
  705. /* XXX: set to enable PTE/PDE in system memory */
  706. tmp = RREG32(mmVM_L2_CNTL4);
  707. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PDE_REQUEST_PHYSICAL, 0);
  708. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PDE_REQUEST_SHARED, 0);
  709. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PDE_REQUEST_SNOOP, 0);
  710. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PTE_REQUEST_PHYSICAL, 0);
  711. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PTE_REQUEST_SHARED, 0);
  712. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PTE_REQUEST_SNOOP, 0);
  713. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PDE_REQUEST_PHYSICAL, 0);
  714. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PDE_REQUEST_SHARED, 0);
  715. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PDE_REQUEST_SNOOP, 0);
  716. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PTE_REQUEST_PHYSICAL, 0);
  717. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PTE_REQUEST_SHARED, 0);
  718. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PTE_REQUEST_SNOOP, 0);
  719. WREG32(mmVM_L2_CNTL4, tmp);
  720. /* setup context0 */
  721. WREG32(mmVM_CONTEXT0_PAGE_TABLE_START_ADDR, adev->mc.gtt_start >> 12);
  722. WREG32(mmVM_CONTEXT0_PAGE_TABLE_END_ADDR, adev->mc.gtt_end >> 12);
  723. WREG32(mmVM_CONTEXT0_PAGE_TABLE_BASE_ADDR, adev->gart.table_addr >> 12);
  724. WREG32(mmVM_CONTEXT0_PROTECTION_FAULT_DEFAULT_ADDR,
  725. (u32)(adev->dummy_page.addr >> 12));
  726. WREG32(mmVM_CONTEXT0_CNTL2, 0);
  727. tmp = RREG32(mmVM_CONTEXT0_CNTL);
  728. tmp = REG_SET_FIELD(tmp, VM_CONTEXT0_CNTL, ENABLE_CONTEXT, 1);
  729. tmp = REG_SET_FIELD(tmp, VM_CONTEXT0_CNTL, PAGE_TABLE_DEPTH, 0);
  730. tmp = REG_SET_FIELD(tmp, VM_CONTEXT0_CNTL, RANGE_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
  731. WREG32(mmVM_CONTEXT0_CNTL, tmp);
  732. WREG32(mmVM_L2_CONTEXT1_IDENTITY_APERTURE_LOW_ADDR, 0);
  733. WREG32(mmVM_L2_CONTEXT1_IDENTITY_APERTURE_HIGH_ADDR, 0);
  734. WREG32(mmVM_L2_CONTEXT_IDENTITY_PHYSICAL_OFFSET, 0);
  735. /* empty context1-15 */
  736. /* FIXME start with 4G, once using 2 level pt switch to full
  737. * vm size space
  738. */
  739. /* set vm size, must be a multiple of 4 */
  740. WREG32(mmVM_CONTEXT1_PAGE_TABLE_START_ADDR, 0);
  741. WREG32(mmVM_CONTEXT1_PAGE_TABLE_END_ADDR, adev->vm_manager.max_pfn - 1);
  742. for (i = 1; i < 16; i++) {
  743. if (i < 8)
  744. WREG32(mmVM_CONTEXT0_PAGE_TABLE_BASE_ADDR + i,
  745. adev->gart.table_addr >> 12);
  746. else
  747. WREG32(mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + i - 8,
  748. adev->gart.table_addr >> 12);
  749. }
  750. /* enable context1-15 */
  751. WREG32(mmVM_CONTEXT1_PROTECTION_FAULT_DEFAULT_ADDR,
  752. (u32)(adev->dummy_page.addr >> 12));
  753. WREG32(mmVM_CONTEXT1_CNTL2, 4);
  754. tmp = RREG32(mmVM_CONTEXT1_CNTL);
  755. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, ENABLE_CONTEXT, 1);
  756. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, PAGE_TABLE_DEPTH, 1);
  757. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, RANGE_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
  758. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, DUMMY_PAGE_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
  759. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, PDE0_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
  760. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, VALID_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
  761. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, READ_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
  762. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, WRITE_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
  763. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, EXECUTE_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
  764. tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, PAGE_TABLE_BLOCK_SIZE,
  765. adev->vm_manager.block_size - 9);
  766. WREG32(mmVM_CONTEXT1_CNTL, tmp);
  767. if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_ALWAYS)
  768. gmc_v8_0_set_fault_enable_default(adev, false);
  769. else
  770. gmc_v8_0_set_fault_enable_default(adev, true);
  771. gmc_v8_0_gart_flush_gpu_tlb(adev, 0);
  772. DRM_INFO("PCIE GART of %uM enabled (table at 0x%016llX).\n",
  773. (unsigned)(adev->mc.gtt_size >> 20),
  774. (unsigned long long)adev->gart.table_addr);
  775. adev->gart.ready = true;
  776. return 0;
  777. }
  778. static int gmc_v8_0_gart_init(struct amdgpu_device *adev)
  779. {
  780. int r;
  781. if (adev->gart.robj) {
  782. WARN(1, "R600 PCIE GART already initialized\n");
  783. return 0;
  784. }
  785. /* Initialize common gart structure */
  786. r = amdgpu_gart_init(adev);
  787. if (r)
  788. return r;
  789. adev->gart.table_size = adev->gart.num_gpu_pages * 8;
  790. adev->gart.gart_pte_flags = AMDGPU_PTE_EXECUTABLE;
  791. return amdgpu_gart_table_vram_alloc(adev);
  792. }
  793. /**
  794. * gmc_v8_0_gart_disable - gart disable
  795. *
  796. * @adev: amdgpu_device pointer
  797. *
  798. * This disables all VM page table (CIK).
  799. */
  800. static void gmc_v8_0_gart_disable(struct amdgpu_device *adev)
  801. {
  802. u32 tmp;
  803. /* Disable all tables */
  804. WREG32(mmVM_CONTEXT0_CNTL, 0);
  805. WREG32(mmVM_CONTEXT1_CNTL, 0);
  806. /* Setup TLB control */
  807. tmp = RREG32(mmMC_VM_MX_L1_TLB_CNTL);
  808. tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_L1_TLB, 0);
  809. tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_L1_FRAGMENT_PROCESSING, 0);
  810. tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_ADVANCED_DRIVER_MODEL, 0);
  811. WREG32(mmMC_VM_MX_L1_TLB_CNTL, tmp);
  812. /* Setup L2 cache */
  813. tmp = RREG32(mmVM_L2_CNTL);
  814. tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_L2_CACHE, 0);
  815. WREG32(mmVM_L2_CNTL, tmp);
  816. WREG32(mmVM_L2_CNTL2, 0);
  817. amdgpu_gart_table_vram_unpin(adev);
  818. }
  819. /**
  820. * gmc_v8_0_gart_fini - vm fini callback
  821. *
  822. * @adev: amdgpu_device pointer
  823. *
  824. * Tears down the driver GART/VM setup (CIK).
  825. */
  826. static void gmc_v8_0_gart_fini(struct amdgpu_device *adev)
  827. {
  828. amdgpu_gart_table_vram_free(adev);
  829. amdgpu_gart_fini(adev);
  830. }
  831. /*
  832. * vm
  833. * VMID 0 is the physical GPU addresses as used by the kernel.
  834. * VMIDs 1-15 are used for userspace clients and are handled
  835. * by the amdgpu vm/hsa code.
  836. */
  837. /**
  838. * gmc_v8_0_vm_init - cik vm init callback
  839. *
  840. * @adev: amdgpu_device pointer
  841. *
  842. * Inits cik specific vm parameters (number of VMs, base of vram for
  843. * VMIDs 1-15) (CIK).
  844. * Returns 0 for success.
  845. */
  846. static int gmc_v8_0_vm_init(struct amdgpu_device *adev)
  847. {
  848. /*
  849. * number of VMs
  850. * VMID 0 is reserved for System
  851. * amdgpu graphics/compute will use VMIDs 1-7
  852. * amdkfd will use VMIDs 8-15
  853. */
  854. adev->vm_manager.id_mgr[0].num_ids = AMDGPU_NUM_OF_VMIDS;
  855. adev->vm_manager.num_level = 1;
  856. amdgpu_vm_manager_init(adev);
  857. /* base offset of vram pages */
  858. if (adev->flags & AMD_IS_APU) {
  859. u64 tmp = RREG32(mmMC_VM_FB_OFFSET);
  860. tmp <<= 22;
  861. adev->vm_manager.vram_base_offset = tmp;
  862. } else
  863. adev->vm_manager.vram_base_offset = 0;
  864. return 0;
  865. }
  866. /**
  867. * gmc_v8_0_vm_fini - cik vm fini callback
  868. *
  869. * @adev: amdgpu_device pointer
  870. *
  871. * Tear down any asic specific VM setup (CIK).
  872. */
  873. static void gmc_v8_0_vm_fini(struct amdgpu_device *adev)
  874. {
  875. }
  876. /**
  877. * gmc_v8_0_vm_decode_fault - print human readable fault info
  878. *
  879. * @adev: amdgpu_device pointer
  880. * @status: VM_CONTEXT1_PROTECTION_FAULT_STATUS register value
  881. * @addr: VM_CONTEXT1_PROTECTION_FAULT_ADDR register value
  882. *
  883. * Print human readable fault information (CIK).
  884. */
  885. static void gmc_v8_0_vm_decode_fault(struct amdgpu_device *adev,
  886. u32 status, u32 addr, u32 mc_client)
  887. {
  888. u32 mc_id;
  889. u32 vmid = REG_GET_FIELD(status, VM_CONTEXT1_PROTECTION_FAULT_STATUS, VMID);
  890. u32 protections = REG_GET_FIELD(status, VM_CONTEXT1_PROTECTION_FAULT_STATUS,
  891. PROTECTIONS);
  892. char block[5] = { mc_client >> 24, (mc_client >> 16) & 0xff,
  893. (mc_client >> 8) & 0xff, mc_client & 0xff, 0 };
  894. mc_id = REG_GET_FIELD(status, VM_CONTEXT1_PROTECTION_FAULT_STATUS,
  895. MEMORY_CLIENT_ID);
  896. dev_err(adev->dev, "VM fault (0x%02x, vmid %d) at page %u, %s from '%s' (0x%08x) (%d)\n",
  897. protections, vmid, addr,
  898. REG_GET_FIELD(status, VM_CONTEXT1_PROTECTION_FAULT_STATUS,
  899. MEMORY_CLIENT_RW) ?
  900. "write" : "read", block, mc_client, mc_id);
  901. }
  902. static int gmc_v8_0_convert_vram_type(int mc_seq_vram_type)
  903. {
  904. switch (mc_seq_vram_type) {
  905. case MC_SEQ_MISC0__MT__GDDR1:
  906. return AMDGPU_VRAM_TYPE_GDDR1;
  907. case MC_SEQ_MISC0__MT__DDR2:
  908. return AMDGPU_VRAM_TYPE_DDR2;
  909. case MC_SEQ_MISC0__MT__GDDR3:
  910. return AMDGPU_VRAM_TYPE_GDDR3;
  911. case MC_SEQ_MISC0__MT__GDDR4:
  912. return AMDGPU_VRAM_TYPE_GDDR4;
  913. case MC_SEQ_MISC0__MT__GDDR5:
  914. return AMDGPU_VRAM_TYPE_GDDR5;
  915. case MC_SEQ_MISC0__MT__HBM:
  916. return AMDGPU_VRAM_TYPE_HBM;
  917. case MC_SEQ_MISC0__MT__DDR3:
  918. return AMDGPU_VRAM_TYPE_DDR3;
  919. default:
  920. return AMDGPU_VRAM_TYPE_UNKNOWN;
  921. }
  922. }
  923. static int gmc_v8_0_early_init(void *handle)
  924. {
  925. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  926. gmc_v8_0_set_gart_funcs(adev);
  927. gmc_v8_0_set_irq_funcs(adev);
  928. adev->mc.shared_aperture_start = 0x2000000000000000ULL;
  929. adev->mc.shared_aperture_end =
  930. adev->mc.shared_aperture_start + (4ULL << 30) - 1;
  931. adev->mc.private_aperture_start =
  932. adev->mc.shared_aperture_end + 1;
  933. adev->mc.private_aperture_end =
  934. adev->mc.private_aperture_start + (4ULL << 30) - 1;
  935. return 0;
  936. }
  937. static int gmc_v8_0_late_init(void *handle)
  938. {
  939. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  940. if (amdgpu_vm_fault_stop != AMDGPU_VM_FAULT_STOP_ALWAYS)
  941. return amdgpu_irq_get(adev, &adev->mc.vm_fault, 0);
  942. else
  943. return 0;
  944. }
  945. #define mmMC_SEQ_MISC0_FIJI 0xA71
  946. static int gmc_v8_0_sw_init(void *handle)
  947. {
  948. int r;
  949. int dma_bits;
  950. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  951. if (adev->flags & AMD_IS_APU) {
  952. adev->mc.vram_type = AMDGPU_VRAM_TYPE_UNKNOWN;
  953. } else {
  954. u32 tmp;
  955. if (adev->asic_type == CHIP_FIJI)
  956. tmp = RREG32(mmMC_SEQ_MISC0_FIJI);
  957. else
  958. tmp = RREG32(mmMC_SEQ_MISC0);
  959. tmp &= MC_SEQ_MISC0__MT__MASK;
  960. adev->mc.vram_type = gmc_v8_0_convert_vram_type(tmp);
  961. }
  962. r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_LEGACY, 146, &adev->mc.vm_fault);
  963. if (r)
  964. return r;
  965. r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_LEGACY, 147, &adev->mc.vm_fault);
  966. if (r)
  967. return r;
  968. /* Adjust VM size here.
  969. * Currently set to 4GB ((1 << 20) 4k pages).
  970. * Max GPUVM size for cayman and SI is 40 bits.
  971. */
  972. amdgpu_vm_adjust_size(adev, 64);
  973. adev->vm_manager.max_pfn = adev->vm_manager.vm_size << 18;
  974. /* Set the internal MC address mask
  975. * This is the max address of the GPU's
  976. * internal address space.
  977. */
  978. adev->mc.mc_mask = 0xffffffffffULL; /* 40 bit MC */
  979. /* set DMA mask + need_dma32 flags.
  980. * PCIE - can handle 40-bits.
  981. * IGP - can handle 40-bits
  982. * PCI - dma32 for legacy pci gart, 40 bits on newer asics
  983. */
  984. adev->need_dma32 = false;
  985. dma_bits = adev->need_dma32 ? 32 : 40;
  986. r = pci_set_dma_mask(adev->pdev, DMA_BIT_MASK(dma_bits));
  987. if (r) {
  988. adev->need_dma32 = true;
  989. dma_bits = 32;
  990. pr_warn("amdgpu: No suitable DMA available\n");
  991. }
  992. r = pci_set_consistent_dma_mask(adev->pdev, DMA_BIT_MASK(dma_bits));
  993. if (r) {
  994. pci_set_consistent_dma_mask(adev->pdev, DMA_BIT_MASK(32));
  995. pr_warn("amdgpu: No coherent DMA available\n");
  996. }
  997. r = gmc_v8_0_init_microcode(adev);
  998. if (r) {
  999. DRM_ERROR("Failed to load mc firmware!\n");
  1000. return r;
  1001. }
  1002. r = gmc_v8_0_mc_init(adev);
  1003. if (r)
  1004. return r;
  1005. /* Memory manager */
  1006. r = amdgpu_bo_init(adev);
  1007. if (r)
  1008. return r;
  1009. r = gmc_v8_0_gart_init(adev);
  1010. if (r)
  1011. return r;
  1012. if (!adev->vm_manager.enabled) {
  1013. r = gmc_v8_0_vm_init(adev);
  1014. if (r) {
  1015. dev_err(adev->dev, "vm manager initialization failed (%d).\n", r);
  1016. return r;
  1017. }
  1018. adev->vm_manager.enabled = true;
  1019. }
  1020. return r;
  1021. }
  1022. static int gmc_v8_0_sw_fini(void *handle)
  1023. {
  1024. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1025. if (adev->vm_manager.enabled) {
  1026. amdgpu_vm_manager_fini(adev);
  1027. gmc_v8_0_vm_fini(adev);
  1028. adev->vm_manager.enabled = false;
  1029. }
  1030. gmc_v8_0_gart_fini(adev);
  1031. amdgpu_gem_force_release(adev);
  1032. amdgpu_bo_fini(adev);
  1033. return 0;
  1034. }
  1035. static int gmc_v8_0_hw_init(void *handle)
  1036. {
  1037. int r;
  1038. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1039. gmc_v8_0_init_golden_registers(adev);
  1040. gmc_v8_0_mc_program(adev);
  1041. if (adev->asic_type == CHIP_TONGA) {
  1042. r = gmc_v8_0_tonga_mc_load_microcode(adev);
  1043. if (r) {
  1044. DRM_ERROR("Failed to load MC firmware!\n");
  1045. return r;
  1046. }
  1047. } else if (adev->asic_type == CHIP_POLARIS11 ||
  1048. adev->asic_type == CHIP_POLARIS10 ||
  1049. adev->asic_type == CHIP_POLARIS12) {
  1050. r = gmc_v8_0_polaris_mc_load_microcode(adev);
  1051. if (r) {
  1052. DRM_ERROR("Failed to load MC firmware!\n");
  1053. return r;
  1054. }
  1055. }
  1056. r = gmc_v8_0_gart_enable(adev);
  1057. if (r)
  1058. return r;
  1059. return r;
  1060. }
  1061. static int gmc_v8_0_hw_fini(void *handle)
  1062. {
  1063. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1064. amdgpu_irq_put(adev, &adev->mc.vm_fault, 0);
  1065. gmc_v8_0_gart_disable(adev);
  1066. return 0;
  1067. }
  1068. static int gmc_v8_0_suspend(void *handle)
  1069. {
  1070. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1071. if (adev->vm_manager.enabled) {
  1072. gmc_v8_0_vm_fini(adev);
  1073. adev->vm_manager.enabled = false;
  1074. }
  1075. gmc_v8_0_hw_fini(adev);
  1076. return 0;
  1077. }
  1078. static int gmc_v8_0_resume(void *handle)
  1079. {
  1080. int r;
  1081. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1082. r = gmc_v8_0_hw_init(adev);
  1083. if (r)
  1084. return r;
  1085. if (!adev->vm_manager.enabled) {
  1086. r = gmc_v8_0_vm_init(adev);
  1087. if (r) {
  1088. dev_err(adev->dev, "vm manager initialization failed (%d).\n", r);
  1089. return r;
  1090. }
  1091. adev->vm_manager.enabled = true;
  1092. }
  1093. return r;
  1094. }
  1095. static bool gmc_v8_0_is_idle(void *handle)
  1096. {
  1097. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1098. u32 tmp = RREG32(mmSRBM_STATUS);
  1099. if (tmp & (SRBM_STATUS__MCB_BUSY_MASK | SRBM_STATUS__MCB_NON_DISPLAY_BUSY_MASK |
  1100. SRBM_STATUS__MCC_BUSY_MASK | SRBM_STATUS__MCD_BUSY_MASK | SRBM_STATUS__VMC_BUSY_MASK))
  1101. return false;
  1102. return true;
  1103. }
  1104. static int gmc_v8_0_wait_for_idle(void *handle)
  1105. {
  1106. unsigned i;
  1107. u32 tmp;
  1108. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1109. for (i = 0; i < adev->usec_timeout; i++) {
  1110. /* read MC_STATUS */
  1111. tmp = RREG32(mmSRBM_STATUS) & (SRBM_STATUS__MCB_BUSY_MASK |
  1112. SRBM_STATUS__MCB_NON_DISPLAY_BUSY_MASK |
  1113. SRBM_STATUS__MCC_BUSY_MASK |
  1114. SRBM_STATUS__MCD_BUSY_MASK |
  1115. SRBM_STATUS__VMC_BUSY_MASK |
  1116. SRBM_STATUS__VMC1_BUSY_MASK);
  1117. if (!tmp)
  1118. return 0;
  1119. udelay(1);
  1120. }
  1121. return -ETIMEDOUT;
  1122. }
  1123. static bool gmc_v8_0_check_soft_reset(void *handle)
  1124. {
  1125. u32 srbm_soft_reset = 0;
  1126. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1127. u32 tmp = RREG32(mmSRBM_STATUS);
  1128. if (tmp & SRBM_STATUS__VMC_BUSY_MASK)
  1129. srbm_soft_reset = REG_SET_FIELD(srbm_soft_reset,
  1130. SRBM_SOFT_RESET, SOFT_RESET_VMC, 1);
  1131. if (tmp & (SRBM_STATUS__MCB_BUSY_MASK | SRBM_STATUS__MCB_NON_DISPLAY_BUSY_MASK |
  1132. SRBM_STATUS__MCC_BUSY_MASK | SRBM_STATUS__MCD_BUSY_MASK)) {
  1133. if (!(adev->flags & AMD_IS_APU))
  1134. srbm_soft_reset = REG_SET_FIELD(srbm_soft_reset,
  1135. SRBM_SOFT_RESET, SOFT_RESET_MC, 1);
  1136. }
  1137. if (srbm_soft_reset) {
  1138. adev->mc.srbm_soft_reset = srbm_soft_reset;
  1139. return true;
  1140. } else {
  1141. adev->mc.srbm_soft_reset = 0;
  1142. return false;
  1143. }
  1144. }
  1145. static int gmc_v8_0_pre_soft_reset(void *handle)
  1146. {
  1147. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1148. if (!adev->mc.srbm_soft_reset)
  1149. return 0;
  1150. gmc_v8_0_mc_stop(adev, &adev->mc.save);
  1151. if (gmc_v8_0_wait_for_idle(adev)) {
  1152. dev_warn(adev->dev, "Wait for GMC idle timed out !\n");
  1153. }
  1154. return 0;
  1155. }
  1156. static int gmc_v8_0_soft_reset(void *handle)
  1157. {
  1158. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1159. u32 srbm_soft_reset;
  1160. if (!adev->mc.srbm_soft_reset)
  1161. return 0;
  1162. srbm_soft_reset = adev->mc.srbm_soft_reset;
  1163. if (srbm_soft_reset) {
  1164. u32 tmp;
  1165. tmp = RREG32(mmSRBM_SOFT_RESET);
  1166. tmp |= srbm_soft_reset;
  1167. dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
  1168. WREG32(mmSRBM_SOFT_RESET, tmp);
  1169. tmp = RREG32(mmSRBM_SOFT_RESET);
  1170. udelay(50);
  1171. tmp &= ~srbm_soft_reset;
  1172. WREG32(mmSRBM_SOFT_RESET, tmp);
  1173. tmp = RREG32(mmSRBM_SOFT_RESET);
  1174. /* Wait a little for things to settle down */
  1175. udelay(50);
  1176. }
  1177. return 0;
  1178. }
  1179. static int gmc_v8_0_post_soft_reset(void *handle)
  1180. {
  1181. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1182. if (!adev->mc.srbm_soft_reset)
  1183. return 0;
  1184. gmc_v8_0_mc_resume(adev, &adev->mc.save);
  1185. return 0;
  1186. }
  1187. static int gmc_v8_0_vm_fault_interrupt_state(struct amdgpu_device *adev,
  1188. struct amdgpu_irq_src *src,
  1189. unsigned type,
  1190. enum amdgpu_interrupt_state state)
  1191. {
  1192. u32 tmp;
  1193. u32 bits = (VM_CONTEXT1_CNTL__RANGE_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK |
  1194. VM_CONTEXT1_CNTL__DUMMY_PAGE_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK |
  1195. VM_CONTEXT1_CNTL__PDE0_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK |
  1196. VM_CONTEXT1_CNTL__VALID_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK |
  1197. VM_CONTEXT1_CNTL__READ_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK |
  1198. VM_CONTEXT1_CNTL__WRITE_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK |
  1199. VM_CONTEXT1_CNTL__EXECUTE_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK);
  1200. switch (state) {
  1201. case AMDGPU_IRQ_STATE_DISABLE:
  1202. /* system context */
  1203. tmp = RREG32(mmVM_CONTEXT0_CNTL);
  1204. tmp &= ~bits;
  1205. WREG32(mmVM_CONTEXT0_CNTL, tmp);
  1206. /* VMs */
  1207. tmp = RREG32(mmVM_CONTEXT1_CNTL);
  1208. tmp &= ~bits;
  1209. WREG32(mmVM_CONTEXT1_CNTL, tmp);
  1210. break;
  1211. case AMDGPU_IRQ_STATE_ENABLE:
  1212. /* system context */
  1213. tmp = RREG32(mmVM_CONTEXT0_CNTL);
  1214. tmp |= bits;
  1215. WREG32(mmVM_CONTEXT0_CNTL, tmp);
  1216. /* VMs */
  1217. tmp = RREG32(mmVM_CONTEXT1_CNTL);
  1218. tmp |= bits;
  1219. WREG32(mmVM_CONTEXT1_CNTL, tmp);
  1220. break;
  1221. default:
  1222. break;
  1223. }
  1224. return 0;
  1225. }
  1226. static int gmc_v8_0_process_interrupt(struct amdgpu_device *adev,
  1227. struct amdgpu_irq_src *source,
  1228. struct amdgpu_iv_entry *entry)
  1229. {
  1230. u32 addr, status, mc_client;
  1231. if (amdgpu_sriov_vf(adev)) {
  1232. dev_err(adev->dev, "GPU fault detected: %d 0x%08x\n",
  1233. entry->src_id, entry->src_data[0]);
  1234. dev_err(adev->dev, " Can't decode VM fault info here on SRIOV VF\n");
  1235. return 0;
  1236. }
  1237. addr = RREG32(mmVM_CONTEXT1_PROTECTION_FAULT_ADDR);
  1238. status = RREG32(mmVM_CONTEXT1_PROTECTION_FAULT_STATUS);
  1239. mc_client = RREG32(mmVM_CONTEXT1_PROTECTION_FAULT_MCCLIENT);
  1240. /* reset addr and status */
  1241. WREG32_P(mmVM_CONTEXT1_CNTL2, 1, ~1);
  1242. if (!addr && !status)
  1243. return 0;
  1244. if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_FIRST)
  1245. gmc_v8_0_set_fault_enable_default(adev, false);
  1246. if (printk_ratelimit()) {
  1247. dev_err(adev->dev, "GPU fault detected: %d 0x%08x\n",
  1248. entry->src_id, entry->src_data[0]);
  1249. dev_err(adev->dev, " VM_CONTEXT1_PROTECTION_FAULT_ADDR 0x%08X\n",
  1250. addr);
  1251. dev_err(adev->dev, " VM_CONTEXT1_PROTECTION_FAULT_STATUS 0x%08X\n",
  1252. status);
  1253. gmc_v8_0_vm_decode_fault(adev, status, addr, mc_client);
  1254. }
  1255. return 0;
  1256. }
  1257. static void fiji_update_mc_medium_grain_clock_gating(struct amdgpu_device *adev,
  1258. bool enable)
  1259. {
  1260. uint32_t data;
  1261. if (enable && (adev->cg_flags & AMD_CG_SUPPORT_MC_MGCG)) {
  1262. data = RREG32(mmMC_HUB_MISC_HUB_CG);
  1263. data |= MC_HUB_MISC_HUB_CG__ENABLE_MASK;
  1264. WREG32(mmMC_HUB_MISC_HUB_CG, data);
  1265. data = RREG32(mmMC_HUB_MISC_SIP_CG);
  1266. data |= MC_HUB_MISC_SIP_CG__ENABLE_MASK;
  1267. WREG32(mmMC_HUB_MISC_SIP_CG, data);
  1268. data = RREG32(mmMC_HUB_MISC_VM_CG);
  1269. data |= MC_HUB_MISC_VM_CG__ENABLE_MASK;
  1270. WREG32(mmMC_HUB_MISC_VM_CG, data);
  1271. data = RREG32(mmMC_XPB_CLK_GAT);
  1272. data |= MC_XPB_CLK_GAT__ENABLE_MASK;
  1273. WREG32(mmMC_XPB_CLK_GAT, data);
  1274. data = RREG32(mmATC_MISC_CG);
  1275. data |= ATC_MISC_CG__ENABLE_MASK;
  1276. WREG32(mmATC_MISC_CG, data);
  1277. data = RREG32(mmMC_CITF_MISC_WR_CG);
  1278. data |= MC_CITF_MISC_WR_CG__ENABLE_MASK;
  1279. WREG32(mmMC_CITF_MISC_WR_CG, data);
  1280. data = RREG32(mmMC_CITF_MISC_RD_CG);
  1281. data |= MC_CITF_MISC_RD_CG__ENABLE_MASK;
  1282. WREG32(mmMC_CITF_MISC_RD_CG, data);
  1283. data = RREG32(mmMC_CITF_MISC_VM_CG);
  1284. data |= MC_CITF_MISC_VM_CG__ENABLE_MASK;
  1285. WREG32(mmMC_CITF_MISC_VM_CG, data);
  1286. data = RREG32(mmVM_L2_CG);
  1287. data |= VM_L2_CG__ENABLE_MASK;
  1288. WREG32(mmVM_L2_CG, data);
  1289. } else {
  1290. data = RREG32(mmMC_HUB_MISC_HUB_CG);
  1291. data &= ~MC_HUB_MISC_HUB_CG__ENABLE_MASK;
  1292. WREG32(mmMC_HUB_MISC_HUB_CG, data);
  1293. data = RREG32(mmMC_HUB_MISC_SIP_CG);
  1294. data &= ~MC_HUB_MISC_SIP_CG__ENABLE_MASK;
  1295. WREG32(mmMC_HUB_MISC_SIP_CG, data);
  1296. data = RREG32(mmMC_HUB_MISC_VM_CG);
  1297. data &= ~MC_HUB_MISC_VM_CG__ENABLE_MASK;
  1298. WREG32(mmMC_HUB_MISC_VM_CG, data);
  1299. data = RREG32(mmMC_XPB_CLK_GAT);
  1300. data &= ~MC_XPB_CLK_GAT__ENABLE_MASK;
  1301. WREG32(mmMC_XPB_CLK_GAT, data);
  1302. data = RREG32(mmATC_MISC_CG);
  1303. data &= ~ATC_MISC_CG__ENABLE_MASK;
  1304. WREG32(mmATC_MISC_CG, data);
  1305. data = RREG32(mmMC_CITF_MISC_WR_CG);
  1306. data &= ~MC_CITF_MISC_WR_CG__ENABLE_MASK;
  1307. WREG32(mmMC_CITF_MISC_WR_CG, data);
  1308. data = RREG32(mmMC_CITF_MISC_RD_CG);
  1309. data &= ~MC_CITF_MISC_RD_CG__ENABLE_MASK;
  1310. WREG32(mmMC_CITF_MISC_RD_CG, data);
  1311. data = RREG32(mmMC_CITF_MISC_VM_CG);
  1312. data &= ~MC_CITF_MISC_VM_CG__ENABLE_MASK;
  1313. WREG32(mmMC_CITF_MISC_VM_CG, data);
  1314. data = RREG32(mmVM_L2_CG);
  1315. data &= ~VM_L2_CG__ENABLE_MASK;
  1316. WREG32(mmVM_L2_CG, data);
  1317. }
  1318. }
  1319. static void fiji_update_mc_light_sleep(struct amdgpu_device *adev,
  1320. bool enable)
  1321. {
  1322. uint32_t data;
  1323. if (enable && (adev->cg_flags & AMD_CG_SUPPORT_MC_LS)) {
  1324. data = RREG32(mmMC_HUB_MISC_HUB_CG);
  1325. data |= MC_HUB_MISC_HUB_CG__MEM_LS_ENABLE_MASK;
  1326. WREG32(mmMC_HUB_MISC_HUB_CG, data);
  1327. data = RREG32(mmMC_HUB_MISC_SIP_CG);
  1328. data |= MC_HUB_MISC_SIP_CG__MEM_LS_ENABLE_MASK;
  1329. WREG32(mmMC_HUB_MISC_SIP_CG, data);
  1330. data = RREG32(mmMC_HUB_MISC_VM_CG);
  1331. data |= MC_HUB_MISC_VM_CG__MEM_LS_ENABLE_MASK;
  1332. WREG32(mmMC_HUB_MISC_VM_CG, data);
  1333. data = RREG32(mmMC_XPB_CLK_GAT);
  1334. data |= MC_XPB_CLK_GAT__MEM_LS_ENABLE_MASK;
  1335. WREG32(mmMC_XPB_CLK_GAT, data);
  1336. data = RREG32(mmATC_MISC_CG);
  1337. data |= ATC_MISC_CG__MEM_LS_ENABLE_MASK;
  1338. WREG32(mmATC_MISC_CG, data);
  1339. data = RREG32(mmMC_CITF_MISC_WR_CG);
  1340. data |= MC_CITF_MISC_WR_CG__MEM_LS_ENABLE_MASK;
  1341. WREG32(mmMC_CITF_MISC_WR_CG, data);
  1342. data = RREG32(mmMC_CITF_MISC_RD_CG);
  1343. data |= MC_CITF_MISC_RD_CG__MEM_LS_ENABLE_MASK;
  1344. WREG32(mmMC_CITF_MISC_RD_CG, data);
  1345. data = RREG32(mmMC_CITF_MISC_VM_CG);
  1346. data |= MC_CITF_MISC_VM_CG__MEM_LS_ENABLE_MASK;
  1347. WREG32(mmMC_CITF_MISC_VM_CG, data);
  1348. data = RREG32(mmVM_L2_CG);
  1349. data |= VM_L2_CG__MEM_LS_ENABLE_MASK;
  1350. WREG32(mmVM_L2_CG, data);
  1351. } else {
  1352. data = RREG32(mmMC_HUB_MISC_HUB_CG);
  1353. data &= ~MC_HUB_MISC_HUB_CG__MEM_LS_ENABLE_MASK;
  1354. WREG32(mmMC_HUB_MISC_HUB_CG, data);
  1355. data = RREG32(mmMC_HUB_MISC_SIP_CG);
  1356. data &= ~MC_HUB_MISC_SIP_CG__MEM_LS_ENABLE_MASK;
  1357. WREG32(mmMC_HUB_MISC_SIP_CG, data);
  1358. data = RREG32(mmMC_HUB_MISC_VM_CG);
  1359. data &= ~MC_HUB_MISC_VM_CG__MEM_LS_ENABLE_MASK;
  1360. WREG32(mmMC_HUB_MISC_VM_CG, data);
  1361. data = RREG32(mmMC_XPB_CLK_GAT);
  1362. data &= ~MC_XPB_CLK_GAT__MEM_LS_ENABLE_MASK;
  1363. WREG32(mmMC_XPB_CLK_GAT, data);
  1364. data = RREG32(mmATC_MISC_CG);
  1365. data &= ~ATC_MISC_CG__MEM_LS_ENABLE_MASK;
  1366. WREG32(mmATC_MISC_CG, data);
  1367. data = RREG32(mmMC_CITF_MISC_WR_CG);
  1368. data &= ~MC_CITF_MISC_WR_CG__MEM_LS_ENABLE_MASK;
  1369. WREG32(mmMC_CITF_MISC_WR_CG, data);
  1370. data = RREG32(mmMC_CITF_MISC_RD_CG);
  1371. data &= ~MC_CITF_MISC_RD_CG__MEM_LS_ENABLE_MASK;
  1372. WREG32(mmMC_CITF_MISC_RD_CG, data);
  1373. data = RREG32(mmMC_CITF_MISC_VM_CG);
  1374. data &= ~MC_CITF_MISC_VM_CG__MEM_LS_ENABLE_MASK;
  1375. WREG32(mmMC_CITF_MISC_VM_CG, data);
  1376. data = RREG32(mmVM_L2_CG);
  1377. data &= ~VM_L2_CG__MEM_LS_ENABLE_MASK;
  1378. WREG32(mmVM_L2_CG, data);
  1379. }
  1380. }
  1381. static int gmc_v8_0_set_clockgating_state(void *handle,
  1382. enum amd_clockgating_state state)
  1383. {
  1384. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1385. if (amdgpu_sriov_vf(adev))
  1386. return 0;
  1387. switch (adev->asic_type) {
  1388. case CHIP_FIJI:
  1389. fiji_update_mc_medium_grain_clock_gating(adev,
  1390. state == AMD_CG_STATE_GATE);
  1391. fiji_update_mc_light_sleep(adev,
  1392. state == AMD_CG_STATE_GATE);
  1393. break;
  1394. default:
  1395. break;
  1396. }
  1397. return 0;
  1398. }
  1399. static int gmc_v8_0_set_powergating_state(void *handle,
  1400. enum amd_powergating_state state)
  1401. {
  1402. return 0;
  1403. }
  1404. static void gmc_v8_0_get_clockgating_state(void *handle, u32 *flags)
  1405. {
  1406. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1407. int data;
  1408. if (amdgpu_sriov_vf(adev))
  1409. *flags = 0;
  1410. /* AMD_CG_SUPPORT_MC_MGCG */
  1411. data = RREG32(mmMC_HUB_MISC_HUB_CG);
  1412. if (data & MC_HUB_MISC_HUB_CG__ENABLE_MASK)
  1413. *flags |= AMD_CG_SUPPORT_MC_MGCG;
  1414. /* AMD_CG_SUPPORT_MC_LS */
  1415. if (data & MC_HUB_MISC_HUB_CG__MEM_LS_ENABLE_MASK)
  1416. *flags |= AMD_CG_SUPPORT_MC_LS;
  1417. }
  1418. static const struct amd_ip_funcs gmc_v8_0_ip_funcs = {
  1419. .name = "gmc_v8_0",
  1420. .early_init = gmc_v8_0_early_init,
  1421. .late_init = gmc_v8_0_late_init,
  1422. .sw_init = gmc_v8_0_sw_init,
  1423. .sw_fini = gmc_v8_0_sw_fini,
  1424. .hw_init = gmc_v8_0_hw_init,
  1425. .hw_fini = gmc_v8_0_hw_fini,
  1426. .suspend = gmc_v8_0_suspend,
  1427. .resume = gmc_v8_0_resume,
  1428. .is_idle = gmc_v8_0_is_idle,
  1429. .wait_for_idle = gmc_v8_0_wait_for_idle,
  1430. .check_soft_reset = gmc_v8_0_check_soft_reset,
  1431. .pre_soft_reset = gmc_v8_0_pre_soft_reset,
  1432. .soft_reset = gmc_v8_0_soft_reset,
  1433. .post_soft_reset = gmc_v8_0_post_soft_reset,
  1434. .set_clockgating_state = gmc_v8_0_set_clockgating_state,
  1435. .set_powergating_state = gmc_v8_0_set_powergating_state,
  1436. .get_clockgating_state = gmc_v8_0_get_clockgating_state,
  1437. };
  1438. static const struct amdgpu_gart_funcs gmc_v8_0_gart_funcs = {
  1439. .flush_gpu_tlb = gmc_v8_0_gart_flush_gpu_tlb,
  1440. .set_pte_pde = gmc_v8_0_gart_set_pte_pde,
  1441. .set_prt = gmc_v8_0_set_prt,
  1442. .get_vm_pte_flags = gmc_v8_0_get_vm_pte_flags
  1443. };
  1444. static const struct amdgpu_irq_src_funcs gmc_v8_0_irq_funcs = {
  1445. .set = gmc_v8_0_vm_fault_interrupt_state,
  1446. .process = gmc_v8_0_process_interrupt,
  1447. };
  1448. static void gmc_v8_0_set_gart_funcs(struct amdgpu_device *adev)
  1449. {
  1450. if (adev->gart.gart_funcs == NULL)
  1451. adev->gart.gart_funcs = &gmc_v8_0_gart_funcs;
  1452. }
  1453. static void gmc_v8_0_set_irq_funcs(struct amdgpu_device *adev)
  1454. {
  1455. adev->mc.vm_fault.num_types = 1;
  1456. adev->mc.vm_fault.funcs = &gmc_v8_0_irq_funcs;
  1457. }
  1458. const struct amdgpu_ip_block_version gmc_v8_0_ip_block =
  1459. {
  1460. .type = AMD_IP_BLOCK_TYPE_GMC,
  1461. .major = 8,
  1462. .minor = 0,
  1463. .rev = 0,
  1464. .funcs = &gmc_v8_0_ip_funcs,
  1465. };
  1466. const struct amdgpu_ip_block_version gmc_v8_1_ip_block =
  1467. {
  1468. .type = AMD_IP_BLOCK_TYPE_GMC,
  1469. .major = 8,
  1470. .minor = 1,
  1471. .rev = 0,
  1472. .funcs = &gmc_v8_0_ip_funcs,
  1473. };
  1474. const struct amdgpu_ip_block_version gmc_v8_5_ip_block =
  1475. {
  1476. .type = AMD_IP_BLOCK_TYPE_GMC,
  1477. .major = 8,
  1478. .minor = 5,
  1479. .rev = 0,
  1480. .funcs = &gmc_v8_0_ip_funcs,
  1481. };