dma-mapping.c 8.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * drivers/base/dma-mapping.c - arch-independent dma-mapping routines
  4. *
  5. * Copyright (c) 2006 SUSE Linux Products GmbH
  6. * Copyright (c) 2006 Tejun Heo <teheo@suse.de>
  7. *
  8. * This file is released under the GPLv2.
  9. */
  10. #include <linux/acpi.h>
  11. #include <linux/dma-mapping.h>
  12. #include <linux/export.h>
  13. #include <linux/gfp.h>
  14. #include <linux/of_device.h>
  15. #include <linux/slab.h>
  16. #include <linux/vmalloc.h>
  17. /*
  18. * Managed DMA API
  19. */
  20. struct dma_devres {
  21. size_t size;
  22. void *vaddr;
  23. dma_addr_t dma_handle;
  24. unsigned long attrs;
  25. };
  26. static void dmam_release(struct device *dev, void *res)
  27. {
  28. struct dma_devres *this = res;
  29. dma_free_attrs(dev, this->size, this->vaddr, this->dma_handle,
  30. this->attrs);
  31. }
  32. static int dmam_match(struct device *dev, void *res, void *match_data)
  33. {
  34. struct dma_devres *this = res, *match = match_data;
  35. if (this->vaddr == match->vaddr) {
  36. WARN_ON(this->size != match->size ||
  37. this->dma_handle != match->dma_handle);
  38. return 1;
  39. }
  40. return 0;
  41. }
  42. /**
  43. * dmam_alloc_coherent - Managed dma_alloc_coherent()
  44. * @dev: Device to allocate coherent memory for
  45. * @size: Size of allocation
  46. * @dma_handle: Out argument for allocated DMA handle
  47. * @gfp: Allocation flags
  48. *
  49. * Managed dma_alloc_coherent(). Memory allocated using this function
  50. * will be automatically released on driver detach.
  51. *
  52. * RETURNS:
  53. * Pointer to allocated memory on success, NULL on failure.
  54. */
  55. void *dmam_alloc_coherent(struct device *dev, size_t size,
  56. dma_addr_t *dma_handle, gfp_t gfp)
  57. {
  58. struct dma_devres *dr;
  59. void *vaddr;
  60. dr = devres_alloc(dmam_release, sizeof(*dr), gfp);
  61. if (!dr)
  62. return NULL;
  63. vaddr = dma_alloc_coherent(dev, size, dma_handle, gfp);
  64. if (!vaddr) {
  65. devres_free(dr);
  66. return NULL;
  67. }
  68. dr->vaddr = vaddr;
  69. dr->dma_handle = *dma_handle;
  70. dr->size = size;
  71. devres_add(dev, dr);
  72. return vaddr;
  73. }
  74. EXPORT_SYMBOL(dmam_alloc_coherent);
  75. /**
  76. * dmam_free_coherent - Managed dma_free_coherent()
  77. * @dev: Device to free coherent memory for
  78. * @size: Size of allocation
  79. * @vaddr: Virtual address of the memory to free
  80. * @dma_handle: DMA handle of the memory to free
  81. *
  82. * Managed dma_free_coherent().
  83. */
  84. void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
  85. dma_addr_t dma_handle)
  86. {
  87. struct dma_devres match_data = { size, vaddr, dma_handle };
  88. dma_free_coherent(dev, size, vaddr, dma_handle);
  89. WARN_ON(devres_destroy(dev, dmam_release, dmam_match, &match_data));
  90. }
  91. EXPORT_SYMBOL(dmam_free_coherent);
  92. /**
  93. * dmam_alloc_attrs - Managed dma_alloc_attrs()
  94. * @dev: Device to allocate non_coherent memory for
  95. * @size: Size of allocation
  96. * @dma_handle: Out argument for allocated DMA handle
  97. * @gfp: Allocation flags
  98. * @attrs: Flags in the DMA_ATTR_* namespace.
  99. *
  100. * Managed dma_alloc_attrs(). Memory allocated using this function will be
  101. * automatically released on driver detach.
  102. *
  103. * RETURNS:
  104. * Pointer to allocated memory on success, NULL on failure.
  105. */
  106. void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
  107. gfp_t gfp, unsigned long attrs)
  108. {
  109. struct dma_devres *dr;
  110. void *vaddr;
  111. dr = devres_alloc(dmam_release, sizeof(*dr), gfp);
  112. if (!dr)
  113. return NULL;
  114. vaddr = dma_alloc_attrs(dev, size, dma_handle, gfp, attrs);
  115. if (!vaddr) {
  116. devres_free(dr);
  117. return NULL;
  118. }
  119. dr->vaddr = vaddr;
  120. dr->dma_handle = *dma_handle;
  121. dr->size = size;
  122. dr->attrs = attrs;
  123. devres_add(dev, dr);
  124. return vaddr;
  125. }
  126. EXPORT_SYMBOL(dmam_alloc_attrs);
  127. #ifdef CONFIG_HAVE_GENERIC_DMA_COHERENT
  128. static void dmam_coherent_decl_release(struct device *dev, void *res)
  129. {
  130. dma_release_declared_memory(dev);
  131. }
  132. /**
  133. * dmam_declare_coherent_memory - Managed dma_declare_coherent_memory()
  134. * @dev: Device to declare coherent memory for
  135. * @phys_addr: Physical address of coherent memory to be declared
  136. * @device_addr: Device address of coherent memory to be declared
  137. * @size: Size of coherent memory to be declared
  138. * @flags: Flags
  139. *
  140. * Managed dma_declare_coherent_memory().
  141. *
  142. * RETURNS:
  143. * 0 on success, -errno on failure.
  144. */
  145. int dmam_declare_coherent_memory(struct device *dev, phys_addr_t phys_addr,
  146. dma_addr_t device_addr, size_t size, int flags)
  147. {
  148. void *res;
  149. int rc;
  150. res = devres_alloc(dmam_coherent_decl_release, 0, GFP_KERNEL);
  151. if (!res)
  152. return -ENOMEM;
  153. rc = dma_declare_coherent_memory(dev, phys_addr, device_addr, size,
  154. flags);
  155. if (!rc)
  156. devres_add(dev, res);
  157. else
  158. devres_free(res);
  159. return rc;
  160. }
  161. EXPORT_SYMBOL(dmam_declare_coherent_memory);
  162. /**
  163. * dmam_release_declared_memory - Managed dma_release_declared_memory().
  164. * @dev: Device to release declared coherent memory for
  165. *
  166. * Managed dmam_release_declared_memory().
  167. */
  168. void dmam_release_declared_memory(struct device *dev)
  169. {
  170. WARN_ON(devres_destroy(dev, dmam_coherent_decl_release, NULL, NULL));
  171. }
  172. EXPORT_SYMBOL(dmam_release_declared_memory);
  173. #endif
  174. /*
  175. * Create scatter-list for the already allocated DMA buffer.
  176. */
  177. int dma_common_get_sgtable(struct device *dev, struct sg_table *sgt,
  178. void *cpu_addr, dma_addr_t handle, size_t size)
  179. {
  180. struct page *page = virt_to_page(cpu_addr);
  181. int ret;
  182. ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
  183. if (unlikely(ret))
  184. return ret;
  185. sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
  186. return 0;
  187. }
  188. EXPORT_SYMBOL(dma_common_get_sgtable);
  189. /*
  190. * Create userspace mapping for the DMA-coherent memory.
  191. */
  192. int dma_common_mmap(struct device *dev, struct vm_area_struct *vma,
  193. void *cpu_addr, dma_addr_t dma_addr, size_t size)
  194. {
  195. int ret = -ENXIO;
  196. #ifndef CONFIG_ARCH_NO_COHERENT_DMA_MMAP
  197. unsigned long user_count = vma_pages(vma);
  198. unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
  199. unsigned long pfn = page_to_pfn(virt_to_page(cpu_addr));
  200. unsigned long off = vma->vm_pgoff;
  201. vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
  202. if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
  203. return ret;
  204. if (off < count && user_count <= (count - off)) {
  205. ret = remap_pfn_range(vma, vma->vm_start,
  206. pfn + off,
  207. user_count << PAGE_SHIFT,
  208. vma->vm_page_prot);
  209. }
  210. #endif /* !CONFIG_ARCH_NO_COHERENT_DMA_MMAP */
  211. return ret;
  212. }
  213. EXPORT_SYMBOL(dma_common_mmap);
  214. #ifdef CONFIG_MMU
  215. static struct vm_struct *__dma_common_pages_remap(struct page **pages,
  216. size_t size, unsigned long vm_flags, pgprot_t prot,
  217. const void *caller)
  218. {
  219. struct vm_struct *area;
  220. area = get_vm_area_caller(size, vm_flags, caller);
  221. if (!area)
  222. return NULL;
  223. if (map_vm_area(area, prot, pages)) {
  224. vunmap(area->addr);
  225. return NULL;
  226. }
  227. return area;
  228. }
  229. /*
  230. * remaps an array of PAGE_SIZE pages into another vm_area
  231. * Cannot be used in non-sleeping contexts
  232. */
  233. void *dma_common_pages_remap(struct page **pages, size_t size,
  234. unsigned long vm_flags, pgprot_t prot,
  235. const void *caller)
  236. {
  237. struct vm_struct *area;
  238. area = __dma_common_pages_remap(pages, size, vm_flags, prot, caller);
  239. if (!area)
  240. return NULL;
  241. area->pages = pages;
  242. return area->addr;
  243. }
  244. /*
  245. * remaps an allocated contiguous region into another vm_area.
  246. * Cannot be used in non-sleeping contexts
  247. */
  248. void *dma_common_contiguous_remap(struct page *page, size_t size,
  249. unsigned long vm_flags,
  250. pgprot_t prot, const void *caller)
  251. {
  252. int i;
  253. struct page **pages;
  254. struct vm_struct *area;
  255. pages = kmalloc(sizeof(struct page *) << get_order(size), GFP_KERNEL);
  256. if (!pages)
  257. return NULL;
  258. for (i = 0; i < (size >> PAGE_SHIFT); i++)
  259. pages[i] = nth_page(page, i);
  260. area = __dma_common_pages_remap(pages, size, vm_flags, prot, caller);
  261. kfree(pages);
  262. if (!area)
  263. return NULL;
  264. return area->addr;
  265. }
  266. /*
  267. * unmaps a range previously mapped by dma_common_*_remap
  268. */
  269. void dma_common_free_remap(void *cpu_addr, size_t size, unsigned long vm_flags)
  270. {
  271. struct vm_struct *area = find_vm_area(cpu_addr);
  272. if (!area || (area->flags & vm_flags) != vm_flags) {
  273. WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
  274. return;
  275. }
  276. unmap_kernel_range((unsigned long)cpu_addr, PAGE_ALIGN(size));
  277. vunmap(cpu_addr);
  278. }
  279. #endif
  280. /*
  281. * Common configuration to enable DMA API use for a device
  282. */
  283. #include <linux/pci.h>
  284. int dma_configure(struct device *dev)
  285. {
  286. struct device *bridge = NULL, *dma_dev = dev;
  287. enum dev_dma_attr attr;
  288. int ret = 0;
  289. if (dev_is_pci(dev)) {
  290. bridge = pci_get_host_bridge_device(to_pci_dev(dev));
  291. dma_dev = bridge;
  292. if (IS_ENABLED(CONFIG_OF) && dma_dev->parent &&
  293. dma_dev->parent->of_node)
  294. dma_dev = dma_dev->parent;
  295. }
  296. if (dma_dev->of_node) {
  297. ret = of_dma_configure(dev, dma_dev->of_node);
  298. } else if (has_acpi_companion(dma_dev)) {
  299. attr = acpi_get_dma_attr(to_acpi_device_node(dma_dev->fwnode));
  300. if (attr != DEV_DMA_NOT_SUPPORTED)
  301. ret = acpi_dma_configure(dev, attr);
  302. }
  303. if (bridge)
  304. pci_put_host_bridge_device(bridge);
  305. return ret;
  306. }
  307. void dma_deconfigure(struct device *dev)
  308. {
  309. of_dma_deconfigure(dev);
  310. acpi_dma_deconfigure(dev);
  311. }