md.c 233 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071
  1. /*
  2. md.c : Multiple Devices driver for Linux
  3. Copyright (C) 1998, 1999, 2000 Ingo Molnar
  4. completely rewritten, based on the MD driver code from Marc Zyngier
  5. Changes:
  6. - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
  7. - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
  8. - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
  9. - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
  10. - kmod support by: Cyrus Durgin
  11. - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
  12. - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
  13. - lots of fixes and improvements to the RAID1/RAID5 and generic
  14. RAID code (such as request based resynchronization):
  15. Neil Brown <neilb@cse.unsw.edu.au>.
  16. - persistent bitmap code
  17. Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
  18. This program is free software; you can redistribute it and/or modify
  19. it under the terms of the GNU General Public License as published by
  20. the Free Software Foundation; either version 2, or (at your option)
  21. any later version.
  22. You should have received a copy of the GNU General Public License
  23. (for example /usr/src/linux/COPYING); if not, write to the Free
  24. Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25. */
  26. #include <linux/kthread.h>
  27. #include <linux/blkdev.h>
  28. #include <linux/sysctl.h>
  29. #include <linux/seq_file.h>
  30. #include <linux/fs.h>
  31. #include <linux/poll.h>
  32. #include <linux/ctype.h>
  33. #include <linux/string.h>
  34. #include <linux/hdreg.h>
  35. #include <linux/proc_fs.h>
  36. #include <linux/random.h>
  37. #include <linux/module.h>
  38. #include <linux/reboot.h>
  39. #include <linux/file.h>
  40. #include <linux/compat.h>
  41. #include <linux/delay.h>
  42. #include <linux/raid/md_p.h>
  43. #include <linux/raid/md_u.h>
  44. #include <linux/slab.h>
  45. #include "md.h"
  46. #include "bitmap.h"
  47. #include "md-cluster.h"
  48. #ifndef MODULE
  49. static void autostart_arrays(int part);
  50. #endif
  51. /* pers_list is a list of registered personalities protected
  52. * by pers_lock.
  53. * pers_lock does extra service to protect accesses to
  54. * mddev->thread when the mutex cannot be held.
  55. */
  56. static LIST_HEAD(pers_list);
  57. static DEFINE_SPINLOCK(pers_lock);
  58. struct md_cluster_operations *md_cluster_ops;
  59. EXPORT_SYMBOL(md_cluster_ops);
  60. struct module *md_cluster_mod;
  61. EXPORT_SYMBOL(md_cluster_mod);
  62. static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
  63. static struct workqueue_struct *md_wq;
  64. static struct workqueue_struct *md_misc_wq;
  65. static int remove_and_add_spares(struct mddev *mddev,
  66. struct md_rdev *this);
  67. static void mddev_detach(struct mddev *mddev);
  68. /*
  69. * Default number of read corrections we'll attempt on an rdev
  70. * before ejecting it from the array. We divide the read error
  71. * count by 2 for every hour elapsed between read errors.
  72. */
  73. #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
  74. /*
  75. * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
  76. * is 1000 KB/sec, so the extra system load does not show up that much.
  77. * Increase it if you want to have more _guaranteed_ speed. Note that
  78. * the RAID driver will use the maximum available bandwidth if the IO
  79. * subsystem is idle. There is also an 'absolute maximum' reconstruction
  80. * speed limit - in case reconstruction slows down your system despite
  81. * idle IO detection.
  82. *
  83. * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
  84. * or /sys/block/mdX/md/sync_speed_{min,max}
  85. */
  86. static int sysctl_speed_limit_min = 1000;
  87. static int sysctl_speed_limit_max = 200000;
  88. static inline int speed_min(struct mddev *mddev)
  89. {
  90. return mddev->sync_speed_min ?
  91. mddev->sync_speed_min : sysctl_speed_limit_min;
  92. }
  93. static inline int speed_max(struct mddev *mddev)
  94. {
  95. return mddev->sync_speed_max ?
  96. mddev->sync_speed_max : sysctl_speed_limit_max;
  97. }
  98. static struct ctl_table_header *raid_table_header;
  99. static struct ctl_table raid_table[] = {
  100. {
  101. .procname = "speed_limit_min",
  102. .data = &sysctl_speed_limit_min,
  103. .maxlen = sizeof(int),
  104. .mode = S_IRUGO|S_IWUSR,
  105. .proc_handler = proc_dointvec,
  106. },
  107. {
  108. .procname = "speed_limit_max",
  109. .data = &sysctl_speed_limit_max,
  110. .maxlen = sizeof(int),
  111. .mode = S_IRUGO|S_IWUSR,
  112. .proc_handler = proc_dointvec,
  113. },
  114. { }
  115. };
  116. static struct ctl_table raid_dir_table[] = {
  117. {
  118. .procname = "raid",
  119. .maxlen = 0,
  120. .mode = S_IRUGO|S_IXUGO,
  121. .child = raid_table,
  122. },
  123. { }
  124. };
  125. static struct ctl_table raid_root_table[] = {
  126. {
  127. .procname = "dev",
  128. .maxlen = 0,
  129. .mode = 0555,
  130. .child = raid_dir_table,
  131. },
  132. { }
  133. };
  134. static const struct block_device_operations md_fops;
  135. static int start_readonly;
  136. /* bio_clone_mddev
  137. * like bio_clone, but with a local bio set
  138. */
  139. struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
  140. struct mddev *mddev)
  141. {
  142. struct bio *b;
  143. if (!mddev || !mddev->bio_set)
  144. return bio_alloc(gfp_mask, nr_iovecs);
  145. b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
  146. if (!b)
  147. return NULL;
  148. return b;
  149. }
  150. EXPORT_SYMBOL_GPL(bio_alloc_mddev);
  151. struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
  152. struct mddev *mddev)
  153. {
  154. if (!mddev || !mddev->bio_set)
  155. return bio_clone(bio, gfp_mask);
  156. return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
  157. }
  158. EXPORT_SYMBOL_GPL(bio_clone_mddev);
  159. /*
  160. * We have a system wide 'event count' that is incremented
  161. * on any 'interesting' event, and readers of /proc/mdstat
  162. * can use 'poll' or 'select' to find out when the event
  163. * count increases.
  164. *
  165. * Events are:
  166. * start array, stop array, error, add device, remove device,
  167. * start build, activate spare
  168. */
  169. static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
  170. static atomic_t md_event_count;
  171. void md_new_event(struct mddev *mddev)
  172. {
  173. atomic_inc(&md_event_count);
  174. wake_up(&md_event_waiters);
  175. }
  176. EXPORT_SYMBOL_GPL(md_new_event);
  177. /* Alternate version that can be called from interrupts
  178. * when calling sysfs_notify isn't needed.
  179. */
  180. static void md_new_event_inintr(struct mddev *mddev)
  181. {
  182. atomic_inc(&md_event_count);
  183. wake_up(&md_event_waiters);
  184. }
  185. /*
  186. * Enables to iterate over all existing md arrays
  187. * all_mddevs_lock protects this list.
  188. */
  189. static LIST_HEAD(all_mddevs);
  190. static DEFINE_SPINLOCK(all_mddevs_lock);
  191. /*
  192. * iterates through all used mddevs in the system.
  193. * We take care to grab the all_mddevs_lock whenever navigating
  194. * the list, and to always hold a refcount when unlocked.
  195. * Any code which breaks out of this loop while own
  196. * a reference to the current mddev and must mddev_put it.
  197. */
  198. #define for_each_mddev(_mddev,_tmp) \
  199. \
  200. for (({ spin_lock(&all_mddevs_lock); \
  201. _tmp = all_mddevs.next; \
  202. _mddev = NULL;}); \
  203. ({ if (_tmp != &all_mddevs) \
  204. mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
  205. spin_unlock(&all_mddevs_lock); \
  206. if (_mddev) mddev_put(_mddev); \
  207. _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
  208. _tmp != &all_mddevs;}); \
  209. ({ spin_lock(&all_mddevs_lock); \
  210. _tmp = _tmp->next;}) \
  211. )
  212. /* Rather than calling directly into the personality make_request function,
  213. * IO requests come here first so that we can check if the device is
  214. * being suspended pending a reconfiguration.
  215. * We hold a refcount over the call to ->make_request. By the time that
  216. * call has finished, the bio has been linked into some internal structure
  217. * and so is visible to ->quiesce(), so we don't need the refcount any more.
  218. */
  219. static void md_make_request(struct request_queue *q, struct bio *bio)
  220. {
  221. const int rw = bio_data_dir(bio);
  222. struct mddev *mddev = q->queuedata;
  223. unsigned int sectors;
  224. int cpu;
  225. if (mddev == NULL || mddev->pers == NULL
  226. || !mddev->ready) {
  227. bio_io_error(bio);
  228. return;
  229. }
  230. if (mddev->ro == 1 && unlikely(rw == WRITE)) {
  231. bio_endio(bio, bio_sectors(bio) == 0 ? 0 : -EROFS);
  232. return;
  233. }
  234. smp_rmb(); /* Ensure implications of 'active' are visible */
  235. rcu_read_lock();
  236. if (mddev->suspended) {
  237. DEFINE_WAIT(__wait);
  238. for (;;) {
  239. prepare_to_wait(&mddev->sb_wait, &__wait,
  240. TASK_UNINTERRUPTIBLE);
  241. if (!mddev->suspended)
  242. break;
  243. rcu_read_unlock();
  244. schedule();
  245. rcu_read_lock();
  246. }
  247. finish_wait(&mddev->sb_wait, &__wait);
  248. }
  249. atomic_inc(&mddev->active_io);
  250. rcu_read_unlock();
  251. /*
  252. * save the sectors now since our bio can
  253. * go away inside make_request
  254. */
  255. sectors = bio_sectors(bio);
  256. mddev->pers->make_request(mddev, bio);
  257. cpu = part_stat_lock();
  258. part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
  259. part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
  260. part_stat_unlock();
  261. if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
  262. wake_up(&mddev->sb_wait);
  263. }
  264. /* mddev_suspend makes sure no new requests are submitted
  265. * to the device, and that any requests that have been submitted
  266. * are completely handled.
  267. * Once mddev_detach() is called and completes, the module will be
  268. * completely unused.
  269. */
  270. void mddev_suspend(struct mddev *mddev)
  271. {
  272. BUG_ON(mddev->suspended);
  273. mddev->suspended = 1;
  274. synchronize_rcu();
  275. wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
  276. mddev->pers->quiesce(mddev, 1);
  277. del_timer_sync(&mddev->safemode_timer);
  278. }
  279. EXPORT_SYMBOL_GPL(mddev_suspend);
  280. void mddev_resume(struct mddev *mddev)
  281. {
  282. mddev->suspended = 0;
  283. wake_up(&mddev->sb_wait);
  284. mddev->pers->quiesce(mddev, 0);
  285. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  286. md_wakeup_thread(mddev->thread);
  287. md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
  288. }
  289. EXPORT_SYMBOL_GPL(mddev_resume);
  290. int mddev_congested(struct mddev *mddev, int bits)
  291. {
  292. struct md_personality *pers = mddev->pers;
  293. int ret = 0;
  294. rcu_read_lock();
  295. if (mddev->suspended)
  296. ret = 1;
  297. else if (pers && pers->congested)
  298. ret = pers->congested(mddev, bits);
  299. rcu_read_unlock();
  300. return ret;
  301. }
  302. EXPORT_SYMBOL_GPL(mddev_congested);
  303. static int md_congested(void *data, int bits)
  304. {
  305. struct mddev *mddev = data;
  306. return mddev_congested(mddev, bits);
  307. }
  308. static int md_mergeable_bvec(struct request_queue *q,
  309. struct bvec_merge_data *bvm,
  310. struct bio_vec *biovec)
  311. {
  312. struct mddev *mddev = q->queuedata;
  313. int ret;
  314. rcu_read_lock();
  315. if (mddev->suspended) {
  316. /* Must always allow one vec */
  317. if (bvm->bi_size == 0)
  318. ret = biovec->bv_len;
  319. else
  320. ret = 0;
  321. } else {
  322. struct md_personality *pers = mddev->pers;
  323. if (pers && pers->mergeable_bvec)
  324. ret = pers->mergeable_bvec(mddev, bvm, biovec);
  325. else
  326. ret = biovec->bv_len;
  327. }
  328. rcu_read_unlock();
  329. return ret;
  330. }
  331. /*
  332. * Generic flush handling for md
  333. */
  334. static void md_end_flush(struct bio *bio, int err)
  335. {
  336. struct md_rdev *rdev = bio->bi_private;
  337. struct mddev *mddev = rdev->mddev;
  338. rdev_dec_pending(rdev, mddev);
  339. if (atomic_dec_and_test(&mddev->flush_pending)) {
  340. /* The pre-request flush has finished */
  341. queue_work(md_wq, &mddev->flush_work);
  342. }
  343. bio_put(bio);
  344. }
  345. static void md_submit_flush_data(struct work_struct *ws);
  346. static void submit_flushes(struct work_struct *ws)
  347. {
  348. struct mddev *mddev = container_of(ws, struct mddev, flush_work);
  349. struct md_rdev *rdev;
  350. INIT_WORK(&mddev->flush_work, md_submit_flush_data);
  351. atomic_set(&mddev->flush_pending, 1);
  352. rcu_read_lock();
  353. rdev_for_each_rcu(rdev, mddev)
  354. if (rdev->raid_disk >= 0 &&
  355. !test_bit(Faulty, &rdev->flags)) {
  356. /* Take two references, one is dropped
  357. * when request finishes, one after
  358. * we reclaim rcu_read_lock
  359. */
  360. struct bio *bi;
  361. atomic_inc(&rdev->nr_pending);
  362. atomic_inc(&rdev->nr_pending);
  363. rcu_read_unlock();
  364. bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
  365. bi->bi_end_io = md_end_flush;
  366. bi->bi_private = rdev;
  367. bi->bi_bdev = rdev->bdev;
  368. atomic_inc(&mddev->flush_pending);
  369. submit_bio(WRITE_FLUSH, bi);
  370. rcu_read_lock();
  371. rdev_dec_pending(rdev, mddev);
  372. }
  373. rcu_read_unlock();
  374. if (atomic_dec_and_test(&mddev->flush_pending))
  375. queue_work(md_wq, &mddev->flush_work);
  376. }
  377. static void md_submit_flush_data(struct work_struct *ws)
  378. {
  379. struct mddev *mddev = container_of(ws, struct mddev, flush_work);
  380. struct bio *bio = mddev->flush_bio;
  381. if (bio->bi_iter.bi_size == 0)
  382. /* an empty barrier - all done */
  383. bio_endio(bio, 0);
  384. else {
  385. bio->bi_rw &= ~REQ_FLUSH;
  386. mddev->pers->make_request(mddev, bio);
  387. }
  388. mddev->flush_bio = NULL;
  389. wake_up(&mddev->sb_wait);
  390. }
  391. void md_flush_request(struct mddev *mddev, struct bio *bio)
  392. {
  393. spin_lock_irq(&mddev->lock);
  394. wait_event_lock_irq(mddev->sb_wait,
  395. !mddev->flush_bio,
  396. mddev->lock);
  397. mddev->flush_bio = bio;
  398. spin_unlock_irq(&mddev->lock);
  399. INIT_WORK(&mddev->flush_work, submit_flushes);
  400. queue_work(md_wq, &mddev->flush_work);
  401. }
  402. EXPORT_SYMBOL(md_flush_request);
  403. void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
  404. {
  405. struct mddev *mddev = cb->data;
  406. md_wakeup_thread(mddev->thread);
  407. kfree(cb);
  408. }
  409. EXPORT_SYMBOL(md_unplug);
  410. static inline struct mddev *mddev_get(struct mddev *mddev)
  411. {
  412. atomic_inc(&mddev->active);
  413. return mddev;
  414. }
  415. static void mddev_delayed_delete(struct work_struct *ws);
  416. static void mddev_put(struct mddev *mddev)
  417. {
  418. struct bio_set *bs = NULL;
  419. if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
  420. return;
  421. if (!mddev->raid_disks && list_empty(&mddev->disks) &&
  422. mddev->ctime == 0 && !mddev->hold_active) {
  423. /* Array is not configured at all, and not held active,
  424. * so destroy it */
  425. list_del_init(&mddev->all_mddevs);
  426. bs = mddev->bio_set;
  427. mddev->bio_set = NULL;
  428. if (mddev->gendisk) {
  429. /* We did a probe so need to clean up. Call
  430. * queue_work inside the spinlock so that
  431. * flush_workqueue() after mddev_find will
  432. * succeed in waiting for the work to be done.
  433. */
  434. INIT_WORK(&mddev->del_work, mddev_delayed_delete);
  435. queue_work(md_misc_wq, &mddev->del_work);
  436. } else
  437. kfree(mddev);
  438. }
  439. spin_unlock(&all_mddevs_lock);
  440. if (bs)
  441. bioset_free(bs);
  442. }
  443. void mddev_init(struct mddev *mddev)
  444. {
  445. mutex_init(&mddev->open_mutex);
  446. mutex_init(&mddev->reconfig_mutex);
  447. mutex_init(&mddev->bitmap_info.mutex);
  448. INIT_LIST_HEAD(&mddev->disks);
  449. INIT_LIST_HEAD(&mddev->all_mddevs);
  450. init_timer(&mddev->safemode_timer);
  451. atomic_set(&mddev->active, 1);
  452. atomic_set(&mddev->openers, 0);
  453. atomic_set(&mddev->active_io, 0);
  454. spin_lock_init(&mddev->lock);
  455. atomic_set(&mddev->flush_pending, 0);
  456. init_waitqueue_head(&mddev->sb_wait);
  457. init_waitqueue_head(&mddev->recovery_wait);
  458. mddev->reshape_position = MaxSector;
  459. mddev->reshape_backwards = 0;
  460. mddev->last_sync_action = "none";
  461. mddev->resync_min = 0;
  462. mddev->resync_max = MaxSector;
  463. mddev->level = LEVEL_NONE;
  464. }
  465. EXPORT_SYMBOL_GPL(mddev_init);
  466. static struct mddev *mddev_find(dev_t unit)
  467. {
  468. struct mddev *mddev, *new = NULL;
  469. if (unit && MAJOR(unit) != MD_MAJOR)
  470. unit &= ~((1<<MdpMinorShift)-1);
  471. retry:
  472. spin_lock(&all_mddevs_lock);
  473. if (unit) {
  474. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  475. if (mddev->unit == unit) {
  476. mddev_get(mddev);
  477. spin_unlock(&all_mddevs_lock);
  478. kfree(new);
  479. return mddev;
  480. }
  481. if (new) {
  482. list_add(&new->all_mddevs, &all_mddevs);
  483. spin_unlock(&all_mddevs_lock);
  484. new->hold_active = UNTIL_IOCTL;
  485. return new;
  486. }
  487. } else if (new) {
  488. /* find an unused unit number */
  489. static int next_minor = 512;
  490. int start = next_minor;
  491. int is_free = 0;
  492. int dev = 0;
  493. while (!is_free) {
  494. dev = MKDEV(MD_MAJOR, next_minor);
  495. next_minor++;
  496. if (next_minor > MINORMASK)
  497. next_minor = 0;
  498. if (next_minor == start) {
  499. /* Oh dear, all in use. */
  500. spin_unlock(&all_mddevs_lock);
  501. kfree(new);
  502. return NULL;
  503. }
  504. is_free = 1;
  505. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  506. if (mddev->unit == dev) {
  507. is_free = 0;
  508. break;
  509. }
  510. }
  511. new->unit = dev;
  512. new->md_minor = MINOR(dev);
  513. new->hold_active = UNTIL_STOP;
  514. list_add(&new->all_mddevs, &all_mddevs);
  515. spin_unlock(&all_mddevs_lock);
  516. return new;
  517. }
  518. spin_unlock(&all_mddevs_lock);
  519. new = kzalloc(sizeof(*new), GFP_KERNEL);
  520. if (!new)
  521. return NULL;
  522. new->unit = unit;
  523. if (MAJOR(unit) == MD_MAJOR)
  524. new->md_minor = MINOR(unit);
  525. else
  526. new->md_minor = MINOR(unit) >> MdpMinorShift;
  527. mddev_init(new);
  528. goto retry;
  529. }
  530. static struct attribute_group md_redundancy_group;
  531. void mddev_unlock(struct mddev *mddev)
  532. {
  533. if (mddev->to_remove) {
  534. /* These cannot be removed under reconfig_mutex as
  535. * an access to the files will try to take reconfig_mutex
  536. * while holding the file unremovable, which leads to
  537. * a deadlock.
  538. * So hold set sysfs_active while the remove in happeing,
  539. * and anything else which might set ->to_remove or my
  540. * otherwise change the sysfs namespace will fail with
  541. * -EBUSY if sysfs_active is still set.
  542. * We set sysfs_active under reconfig_mutex and elsewhere
  543. * test it under the same mutex to ensure its correct value
  544. * is seen.
  545. */
  546. struct attribute_group *to_remove = mddev->to_remove;
  547. mddev->to_remove = NULL;
  548. mddev->sysfs_active = 1;
  549. mutex_unlock(&mddev->reconfig_mutex);
  550. if (mddev->kobj.sd) {
  551. if (to_remove != &md_redundancy_group)
  552. sysfs_remove_group(&mddev->kobj, to_remove);
  553. if (mddev->pers == NULL ||
  554. mddev->pers->sync_request == NULL) {
  555. sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
  556. if (mddev->sysfs_action)
  557. sysfs_put(mddev->sysfs_action);
  558. mddev->sysfs_action = NULL;
  559. }
  560. }
  561. mddev->sysfs_active = 0;
  562. } else
  563. mutex_unlock(&mddev->reconfig_mutex);
  564. /* As we've dropped the mutex we need a spinlock to
  565. * make sure the thread doesn't disappear
  566. */
  567. spin_lock(&pers_lock);
  568. md_wakeup_thread(mddev->thread);
  569. spin_unlock(&pers_lock);
  570. }
  571. EXPORT_SYMBOL_GPL(mddev_unlock);
  572. struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr)
  573. {
  574. struct md_rdev *rdev;
  575. rdev_for_each_rcu(rdev, mddev)
  576. if (rdev->desc_nr == nr)
  577. return rdev;
  578. return NULL;
  579. }
  580. EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu);
  581. static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
  582. {
  583. struct md_rdev *rdev;
  584. rdev_for_each(rdev, mddev)
  585. if (rdev->bdev->bd_dev == dev)
  586. return rdev;
  587. return NULL;
  588. }
  589. static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
  590. {
  591. struct md_rdev *rdev;
  592. rdev_for_each_rcu(rdev, mddev)
  593. if (rdev->bdev->bd_dev == dev)
  594. return rdev;
  595. return NULL;
  596. }
  597. static struct md_personality *find_pers(int level, char *clevel)
  598. {
  599. struct md_personality *pers;
  600. list_for_each_entry(pers, &pers_list, list) {
  601. if (level != LEVEL_NONE && pers->level == level)
  602. return pers;
  603. if (strcmp(pers->name, clevel)==0)
  604. return pers;
  605. }
  606. return NULL;
  607. }
  608. /* return the offset of the super block in 512byte sectors */
  609. static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
  610. {
  611. sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
  612. return MD_NEW_SIZE_SECTORS(num_sectors);
  613. }
  614. static int alloc_disk_sb(struct md_rdev *rdev)
  615. {
  616. rdev->sb_page = alloc_page(GFP_KERNEL);
  617. if (!rdev->sb_page) {
  618. printk(KERN_ALERT "md: out of memory.\n");
  619. return -ENOMEM;
  620. }
  621. return 0;
  622. }
  623. void md_rdev_clear(struct md_rdev *rdev)
  624. {
  625. if (rdev->sb_page) {
  626. put_page(rdev->sb_page);
  627. rdev->sb_loaded = 0;
  628. rdev->sb_page = NULL;
  629. rdev->sb_start = 0;
  630. rdev->sectors = 0;
  631. }
  632. if (rdev->bb_page) {
  633. put_page(rdev->bb_page);
  634. rdev->bb_page = NULL;
  635. }
  636. kfree(rdev->badblocks.page);
  637. rdev->badblocks.page = NULL;
  638. }
  639. EXPORT_SYMBOL_GPL(md_rdev_clear);
  640. static void super_written(struct bio *bio, int error)
  641. {
  642. struct md_rdev *rdev = bio->bi_private;
  643. struct mddev *mddev = rdev->mddev;
  644. if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
  645. printk("md: super_written gets error=%d, uptodate=%d\n",
  646. error, test_bit(BIO_UPTODATE, &bio->bi_flags));
  647. WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
  648. md_error(mddev, rdev);
  649. }
  650. if (atomic_dec_and_test(&mddev->pending_writes))
  651. wake_up(&mddev->sb_wait);
  652. bio_put(bio);
  653. }
  654. void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
  655. sector_t sector, int size, struct page *page)
  656. {
  657. /* write first size bytes of page to sector of rdev
  658. * Increment mddev->pending_writes before returning
  659. * and decrement it on completion, waking up sb_wait
  660. * if zero is reached.
  661. * If an error occurred, call md_error
  662. */
  663. struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
  664. bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
  665. bio->bi_iter.bi_sector = sector;
  666. bio_add_page(bio, page, size, 0);
  667. bio->bi_private = rdev;
  668. bio->bi_end_io = super_written;
  669. atomic_inc(&mddev->pending_writes);
  670. submit_bio(WRITE_FLUSH_FUA, bio);
  671. }
  672. void md_super_wait(struct mddev *mddev)
  673. {
  674. /* wait for all superblock writes that were scheduled to complete */
  675. wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
  676. }
  677. int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
  678. struct page *page, int rw, bool metadata_op)
  679. {
  680. struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
  681. int ret;
  682. bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
  683. rdev->meta_bdev : rdev->bdev;
  684. if (metadata_op)
  685. bio->bi_iter.bi_sector = sector + rdev->sb_start;
  686. else if (rdev->mddev->reshape_position != MaxSector &&
  687. (rdev->mddev->reshape_backwards ==
  688. (sector >= rdev->mddev->reshape_position)))
  689. bio->bi_iter.bi_sector = sector + rdev->new_data_offset;
  690. else
  691. bio->bi_iter.bi_sector = sector + rdev->data_offset;
  692. bio_add_page(bio, page, size, 0);
  693. submit_bio_wait(rw, bio);
  694. ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
  695. bio_put(bio);
  696. return ret;
  697. }
  698. EXPORT_SYMBOL_GPL(sync_page_io);
  699. static int read_disk_sb(struct md_rdev *rdev, int size)
  700. {
  701. char b[BDEVNAME_SIZE];
  702. if (rdev->sb_loaded)
  703. return 0;
  704. if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
  705. goto fail;
  706. rdev->sb_loaded = 1;
  707. return 0;
  708. fail:
  709. printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
  710. bdevname(rdev->bdev,b));
  711. return -EINVAL;
  712. }
  713. static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  714. {
  715. return sb1->set_uuid0 == sb2->set_uuid0 &&
  716. sb1->set_uuid1 == sb2->set_uuid1 &&
  717. sb1->set_uuid2 == sb2->set_uuid2 &&
  718. sb1->set_uuid3 == sb2->set_uuid3;
  719. }
  720. static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  721. {
  722. int ret;
  723. mdp_super_t *tmp1, *tmp2;
  724. tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
  725. tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
  726. if (!tmp1 || !tmp2) {
  727. ret = 0;
  728. printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
  729. goto abort;
  730. }
  731. *tmp1 = *sb1;
  732. *tmp2 = *sb2;
  733. /*
  734. * nr_disks is not constant
  735. */
  736. tmp1->nr_disks = 0;
  737. tmp2->nr_disks = 0;
  738. ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
  739. abort:
  740. kfree(tmp1);
  741. kfree(tmp2);
  742. return ret;
  743. }
  744. static u32 md_csum_fold(u32 csum)
  745. {
  746. csum = (csum & 0xffff) + (csum >> 16);
  747. return (csum & 0xffff) + (csum >> 16);
  748. }
  749. static unsigned int calc_sb_csum(mdp_super_t *sb)
  750. {
  751. u64 newcsum = 0;
  752. u32 *sb32 = (u32*)sb;
  753. int i;
  754. unsigned int disk_csum, csum;
  755. disk_csum = sb->sb_csum;
  756. sb->sb_csum = 0;
  757. for (i = 0; i < MD_SB_BYTES/4 ; i++)
  758. newcsum += sb32[i];
  759. csum = (newcsum & 0xffffffff) + (newcsum>>32);
  760. #ifdef CONFIG_ALPHA
  761. /* This used to use csum_partial, which was wrong for several
  762. * reasons including that different results are returned on
  763. * different architectures. It isn't critical that we get exactly
  764. * the same return value as before (we always csum_fold before
  765. * testing, and that removes any differences). However as we
  766. * know that csum_partial always returned a 16bit value on
  767. * alphas, do a fold to maximise conformity to previous behaviour.
  768. */
  769. sb->sb_csum = md_csum_fold(disk_csum);
  770. #else
  771. sb->sb_csum = disk_csum;
  772. #endif
  773. return csum;
  774. }
  775. /*
  776. * Handle superblock details.
  777. * We want to be able to handle multiple superblock formats
  778. * so we have a common interface to them all, and an array of
  779. * different handlers.
  780. * We rely on user-space to write the initial superblock, and support
  781. * reading and updating of superblocks.
  782. * Interface methods are:
  783. * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
  784. * loads and validates a superblock on dev.
  785. * if refdev != NULL, compare superblocks on both devices
  786. * Return:
  787. * 0 - dev has a superblock that is compatible with refdev
  788. * 1 - dev has a superblock that is compatible and newer than refdev
  789. * so dev should be used as the refdev in future
  790. * -EINVAL superblock incompatible or invalid
  791. * -othererror e.g. -EIO
  792. *
  793. * int validate_super(struct mddev *mddev, struct md_rdev *dev)
  794. * Verify that dev is acceptable into mddev.
  795. * The first time, mddev->raid_disks will be 0, and data from
  796. * dev should be merged in. Subsequent calls check that dev
  797. * is new enough. Return 0 or -EINVAL
  798. *
  799. * void sync_super(struct mddev *mddev, struct md_rdev *dev)
  800. * Update the superblock for rdev with data in mddev
  801. * This does not write to disc.
  802. *
  803. */
  804. struct super_type {
  805. char *name;
  806. struct module *owner;
  807. int (*load_super)(struct md_rdev *rdev,
  808. struct md_rdev *refdev,
  809. int minor_version);
  810. int (*validate_super)(struct mddev *mddev,
  811. struct md_rdev *rdev);
  812. void (*sync_super)(struct mddev *mddev,
  813. struct md_rdev *rdev);
  814. unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
  815. sector_t num_sectors);
  816. int (*allow_new_offset)(struct md_rdev *rdev,
  817. unsigned long long new_offset);
  818. };
  819. /*
  820. * Check that the given mddev has no bitmap.
  821. *
  822. * This function is called from the run method of all personalities that do not
  823. * support bitmaps. It prints an error message and returns non-zero if mddev
  824. * has a bitmap. Otherwise, it returns 0.
  825. *
  826. */
  827. int md_check_no_bitmap(struct mddev *mddev)
  828. {
  829. if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
  830. return 0;
  831. printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
  832. mdname(mddev), mddev->pers->name);
  833. return 1;
  834. }
  835. EXPORT_SYMBOL(md_check_no_bitmap);
  836. /*
  837. * load_super for 0.90.0
  838. */
  839. static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
  840. {
  841. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  842. mdp_super_t *sb;
  843. int ret;
  844. /*
  845. * Calculate the position of the superblock (512byte sectors),
  846. * it's at the end of the disk.
  847. *
  848. * It also happens to be a multiple of 4Kb.
  849. */
  850. rdev->sb_start = calc_dev_sboffset(rdev);
  851. ret = read_disk_sb(rdev, MD_SB_BYTES);
  852. if (ret) return ret;
  853. ret = -EINVAL;
  854. bdevname(rdev->bdev, b);
  855. sb = page_address(rdev->sb_page);
  856. if (sb->md_magic != MD_SB_MAGIC) {
  857. printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
  858. b);
  859. goto abort;
  860. }
  861. if (sb->major_version != 0 ||
  862. sb->minor_version < 90 ||
  863. sb->minor_version > 91) {
  864. printk(KERN_WARNING "Bad version number %d.%d on %s\n",
  865. sb->major_version, sb->minor_version,
  866. b);
  867. goto abort;
  868. }
  869. if (sb->raid_disks <= 0)
  870. goto abort;
  871. if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
  872. printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
  873. b);
  874. goto abort;
  875. }
  876. rdev->preferred_minor = sb->md_minor;
  877. rdev->data_offset = 0;
  878. rdev->new_data_offset = 0;
  879. rdev->sb_size = MD_SB_BYTES;
  880. rdev->badblocks.shift = -1;
  881. if (sb->level == LEVEL_MULTIPATH)
  882. rdev->desc_nr = -1;
  883. else
  884. rdev->desc_nr = sb->this_disk.number;
  885. if (!refdev) {
  886. ret = 1;
  887. } else {
  888. __u64 ev1, ev2;
  889. mdp_super_t *refsb = page_address(refdev->sb_page);
  890. if (!uuid_equal(refsb, sb)) {
  891. printk(KERN_WARNING "md: %s has different UUID to %s\n",
  892. b, bdevname(refdev->bdev,b2));
  893. goto abort;
  894. }
  895. if (!sb_equal(refsb, sb)) {
  896. printk(KERN_WARNING "md: %s has same UUID"
  897. " but different superblock to %s\n",
  898. b, bdevname(refdev->bdev, b2));
  899. goto abort;
  900. }
  901. ev1 = md_event(sb);
  902. ev2 = md_event(refsb);
  903. if (ev1 > ev2)
  904. ret = 1;
  905. else
  906. ret = 0;
  907. }
  908. rdev->sectors = rdev->sb_start;
  909. /* Limit to 4TB as metadata cannot record more than that.
  910. * (not needed for Linear and RAID0 as metadata doesn't
  911. * record this size)
  912. */
  913. if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
  914. rdev->sectors = (2ULL << 32) - 2;
  915. if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
  916. /* "this cannot possibly happen" ... */
  917. ret = -EINVAL;
  918. abort:
  919. return ret;
  920. }
  921. /*
  922. * validate_super for 0.90.0
  923. */
  924. static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
  925. {
  926. mdp_disk_t *desc;
  927. mdp_super_t *sb = page_address(rdev->sb_page);
  928. __u64 ev1 = md_event(sb);
  929. rdev->raid_disk = -1;
  930. clear_bit(Faulty, &rdev->flags);
  931. clear_bit(In_sync, &rdev->flags);
  932. clear_bit(Bitmap_sync, &rdev->flags);
  933. clear_bit(WriteMostly, &rdev->flags);
  934. if (mddev->raid_disks == 0) {
  935. mddev->major_version = 0;
  936. mddev->minor_version = sb->minor_version;
  937. mddev->patch_version = sb->patch_version;
  938. mddev->external = 0;
  939. mddev->chunk_sectors = sb->chunk_size >> 9;
  940. mddev->ctime = sb->ctime;
  941. mddev->utime = sb->utime;
  942. mddev->level = sb->level;
  943. mddev->clevel[0] = 0;
  944. mddev->layout = sb->layout;
  945. mddev->raid_disks = sb->raid_disks;
  946. mddev->dev_sectors = ((sector_t)sb->size) * 2;
  947. mddev->events = ev1;
  948. mddev->bitmap_info.offset = 0;
  949. mddev->bitmap_info.space = 0;
  950. /* bitmap can use 60 K after the 4K superblocks */
  951. mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
  952. mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
  953. mddev->reshape_backwards = 0;
  954. if (mddev->minor_version >= 91) {
  955. mddev->reshape_position = sb->reshape_position;
  956. mddev->delta_disks = sb->delta_disks;
  957. mddev->new_level = sb->new_level;
  958. mddev->new_layout = sb->new_layout;
  959. mddev->new_chunk_sectors = sb->new_chunk >> 9;
  960. if (mddev->delta_disks < 0)
  961. mddev->reshape_backwards = 1;
  962. } else {
  963. mddev->reshape_position = MaxSector;
  964. mddev->delta_disks = 0;
  965. mddev->new_level = mddev->level;
  966. mddev->new_layout = mddev->layout;
  967. mddev->new_chunk_sectors = mddev->chunk_sectors;
  968. }
  969. if (sb->state & (1<<MD_SB_CLEAN))
  970. mddev->recovery_cp = MaxSector;
  971. else {
  972. if (sb->events_hi == sb->cp_events_hi &&
  973. sb->events_lo == sb->cp_events_lo) {
  974. mddev->recovery_cp = sb->recovery_cp;
  975. } else
  976. mddev->recovery_cp = 0;
  977. }
  978. memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
  979. memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
  980. memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
  981. memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
  982. mddev->max_disks = MD_SB_DISKS;
  983. if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
  984. mddev->bitmap_info.file == NULL) {
  985. mddev->bitmap_info.offset =
  986. mddev->bitmap_info.default_offset;
  987. mddev->bitmap_info.space =
  988. mddev->bitmap_info.default_space;
  989. }
  990. } else if (mddev->pers == NULL) {
  991. /* Insist on good event counter while assembling, except
  992. * for spares (which don't need an event count) */
  993. ++ev1;
  994. if (sb->disks[rdev->desc_nr].state & (
  995. (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
  996. if (ev1 < mddev->events)
  997. return -EINVAL;
  998. } else if (mddev->bitmap) {
  999. /* if adding to array with a bitmap, then we can accept an
  1000. * older device ... but not too old.
  1001. */
  1002. if (ev1 < mddev->bitmap->events_cleared)
  1003. return 0;
  1004. if (ev1 < mddev->events)
  1005. set_bit(Bitmap_sync, &rdev->flags);
  1006. } else {
  1007. if (ev1 < mddev->events)
  1008. /* just a hot-add of a new device, leave raid_disk at -1 */
  1009. return 0;
  1010. }
  1011. if (mddev->level != LEVEL_MULTIPATH) {
  1012. desc = sb->disks + rdev->desc_nr;
  1013. if (desc->state & (1<<MD_DISK_FAULTY))
  1014. set_bit(Faulty, &rdev->flags);
  1015. else if (desc->state & (1<<MD_DISK_SYNC) /* &&
  1016. desc->raid_disk < mddev->raid_disks */) {
  1017. set_bit(In_sync, &rdev->flags);
  1018. rdev->raid_disk = desc->raid_disk;
  1019. rdev->saved_raid_disk = desc->raid_disk;
  1020. } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
  1021. /* active but not in sync implies recovery up to
  1022. * reshape position. We don't know exactly where
  1023. * that is, so set to zero for now */
  1024. if (mddev->minor_version >= 91) {
  1025. rdev->recovery_offset = 0;
  1026. rdev->raid_disk = desc->raid_disk;
  1027. }
  1028. }
  1029. if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
  1030. set_bit(WriteMostly, &rdev->flags);
  1031. } else /* MULTIPATH are always insync */
  1032. set_bit(In_sync, &rdev->flags);
  1033. return 0;
  1034. }
  1035. /*
  1036. * sync_super for 0.90.0
  1037. */
  1038. static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
  1039. {
  1040. mdp_super_t *sb;
  1041. struct md_rdev *rdev2;
  1042. int next_spare = mddev->raid_disks;
  1043. /* make rdev->sb match mddev data..
  1044. *
  1045. * 1/ zero out disks
  1046. * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
  1047. * 3/ any empty disks < next_spare become removed
  1048. *
  1049. * disks[0] gets initialised to REMOVED because
  1050. * we cannot be sure from other fields if it has
  1051. * been initialised or not.
  1052. */
  1053. int i;
  1054. int active=0, working=0,failed=0,spare=0,nr_disks=0;
  1055. rdev->sb_size = MD_SB_BYTES;
  1056. sb = page_address(rdev->sb_page);
  1057. memset(sb, 0, sizeof(*sb));
  1058. sb->md_magic = MD_SB_MAGIC;
  1059. sb->major_version = mddev->major_version;
  1060. sb->patch_version = mddev->patch_version;
  1061. sb->gvalid_words = 0; /* ignored */
  1062. memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
  1063. memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
  1064. memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
  1065. memcpy(&sb->set_uuid3, mddev->uuid+12,4);
  1066. sb->ctime = mddev->ctime;
  1067. sb->level = mddev->level;
  1068. sb->size = mddev->dev_sectors / 2;
  1069. sb->raid_disks = mddev->raid_disks;
  1070. sb->md_minor = mddev->md_minor;
  1071. sb->not_persistent = 0;
  1072. sb->utime = mddev->utime;
  1073. sb->state = 0;
  1074. sb->events_hi = (mddev->events>>32);
  1075. sb->events_lo = (u32)mddev->events;
  1076. if (mddev->reshape_position == MaxSector)
  1077. sb->minor_version = 90;
  1078. else {
  1079. sb->minor_version = 91;
  1080. sb->reshape_position = mddev->reshape_position;
  1081. sb->new_level = mddev->new_level;
  1082. sb->delta_disks = mddev->delta_disks;
  1083. sb->new_layout = mddev->new_layout;
  1084. sb->new_chunk = mddev->new_chunk_sectors << 9;
  1085. }
  1086. mddev->minor_version = sb->minor_version;
  1087. if (mddev->in_sync)
  1088. {
  1089. sb->recovery_cp = mddev->recovery_cp;
  1090. sb->cp_events_hi = (mddev->events>>32);
  1091. sb->cp_events_lo = (u32)mddev->events;
  1092. if (mddev->recovery_cp == MaxSector)
  1093. sb->state = (1<< MD_SB_CLEAN);
  1094. } else
  1095. sb->recovery_cp = 0;
  1096. sb->layout = mddev->layout;
  1097. sb->chunk_size = mddev->chunk_sectors << 9;
  1098. if (mddev->bitmap && mddev->bitmap_info.file == NULL)
  1099. sb->state |= (1<<MD_SB_BITMAP_PRESENT);
  1100. sb->disks[0].state = (1<<MD_DISK_REMOVED);
  1101. rdev_for_each(rdev2, mddev) {
  1102. mdp_disk_t *d;
  1103. int desc_nr;
  1104. int is_active = test_bit(In_sync, &rdev2->flags);
  1105. if (rdev2->raid_disk >= 0 &&
  1106. sb->minor_version >= 91)
  1107. /* we have nowhere to store the recovery_offset,
  1108. * but if it is not below the reshape_position,
  1109. * we can piggy-back on that.
  1110. */
  1111. is_active = 1;
  1112. if (rdev2->raid_disk < 0 ||
  1113. test_bit(Faulty, &rdev2->flags))
  1114. is_active = 0;
  1115. if (is_active)
  1116. desc_nr = rdev2->raid_disk;
  1117. else
  1118. desc_nr = next_spare++;
  1119. rdev2->desc_nr = desc_nr;
  1120. d = &sb->disks[rdev2->desc_nr];
  1121. nr_disks++;
  1122. d->number = rdev2->desc_nr;
  1123. d->major = MAJOR(rdev2->bdev->bd_dev);
  1124. d->minor = MINOR(rdev2->bdev->bd_dev);
  1125. if (is_active)
  1126. d->raid_disk = rdev2->raid_disk;
  1127. else
  1128. d->raid_disk = rdev2->desc_nr; /* compatibility */
  1129. if (test_bit(Faulty, &rdev2->flags))
  1130. d->state = (1<<MD_DISK_FAULTY);
  1131. else if (is_active) {
  1132. d->state = (1<<MD_DISK_ACTIVE);
  1133. if (test_bit(In_sync, &rdev2->flags))
  1134. d->state |= (1<<MD_DISK_SYNC);
  1135. active++;
  1136. working++;
  1137. } else {
  1138. d->state = 0;
  1139. spare++;
  1140. working++;
  1141. }
  1142. if (test_bit(WriteMostly, &rdev2->flags))
  1143. d->state |= (1<<MD_DISK_WRITEMOSTLY);
  1144. }
  1145. /* now set the "removed" and "faulty" bits on any missing devices */
  1146. for (i=0 ; i < mddev->raid_disks ; i++) {
  1147. mdp_disk_t *d = &sb->disks[i];
  1148. if (d->state == 0 && d->number == 0) {
  1149. d->number = i;
  1150. d->raid_disk = i;
  1151. d->state = (1<<MD_DISK_REMOVED);
  1152. d->state |= (1<<MD_DISK_FAULTY);
  1153. failed++;
  1154. }
  1155. }
  1156. sb->nr_disks = nr_disks;
  1157. sb->active_disks = active;
  1158. sb->working_disks = working;
  1159. sb->failed_disks = failed;
  1160. sb->spare_disks = spare;
  1161. sb->this_disk = sb->disks[rdev->desc_nr];
  1162. sb->sb_csum = calc_sb_csum(sb);
  1163. }
  1164. /*
  1165. * rdev_size_change for 0.90.0
  1166. */
  1167. static unsigned long long
  1168. super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
  1169. {
  1170. if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
  1171. return 0; /* component must fit device */
  1172. if (rdev->mddev->bitmap_info.offset)
  1173. return 0; /* can't move bitmap */
  1174. rdev->sb_start = calc_dev_sboffset(rdev);
  1175. if (!num_sectors || num_sectors > rdev->sb_start)
  1176. num_sectors = rdev->sb_start;
  1177. /* Limit to 4TB as metadata cannot record more than that.
  1178. * 4TB == 2^32 KB, or 2*2^32 sectors.
  1179. */
  1180. if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
  1181. num_sectors = (2ULL << 32) - 2;
  1182. md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
  1183. rdev->sb_page);
  1184. md_super_wait(rdev->mddev);
  1185. return num_sectors;
  1186. }
  1187. static int
  1188. super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
  1189. {
  1190. /* non-zero offset changes not possible with v0.90 */
  1191. return new_offset == 0;
  1192. }
  1193. /*
  1194. * version 1 superblock
  1195. */
  1196. static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
  1197. {
  1198. __le32 disk_csum;
  1199. u32 csum;
  1200. unsigned long long newcsum;
  1201. int size = 256 + le32_to_cpu(sb->max_dev)*2;
  1202. __le32 *isuper = (__le32*)sb;
  1203. disk_csum = sb->sb_csum;
  1204. sb->sb_csum = 0;
  1205. newcsum = 0;
  1206. for (; size >= 4; size -= 4)
  1207. newcsum += le32_to_cpu(*isuper++);
  1208. if (size == 2)
  1209. newcsum += le16_to_cpu(*(__le16*) isuper);
  1210. csum = (newcsum & 0xffffffff) + (newcsum >> 32);
  1211. sb->sb_csum = disk_csum;
  1212. return cpu_to_le32(csum);
  1213. }
  1214. static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
  1215. int acknowledged);
  1216. static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
  1217. {
  1218. struct mdp_superblock_1 *sb;
  1219. int ret;
  1220. sector_t sb_start;
  1221. sector_t sectors;
  1222. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  1223. int bmask;
  1224. /*
  1225. * Calculate the position of the superblock in 512byte sectors.
  1226. * It is always aligned to a 4K boundary and
  1227. * depeding on minor_version, it can be:
  1228. * 0: At least 8K, but less than 12K, from end of device
  1229. * 1: At start of device
  1230. * 2: 4K from start of device.
  1231. */
  1232. switch(minor_version) {
  1233. case 0:
  1234. sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
  1235. sb_start -= 8*2;
  1236. sb_start &= ~(sector_t)(4*2-1);
  1237. break;
  1238. case 1:
  1239. sb_start = 0;
  1240. break;
  1241. case 2:
  1242. sb_start = 8;
  1243. break;
  1244. default:
  1245. return -EINVAL;
  1246. }
  1247. rdev->sb_start = sb_start;
  1248. /* superblock is rarely larger than 1K, but it can be larger,
  1249. * and it is safe to read 4k, so we do that
  1250. */
  1251. ret = read_disk_sb(rdev, 4096);
  1252. if (ret) return ret;
  1253. sb = page_address(rdev->sb_page);
  1254. if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
  1255. sb->major_version != cpu_to_le32(1) ||
  1256. le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
  1257. le64_to_cpu(sb->super_offset) != rdev->sb_start ||
  1258. (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
  1259. return -EINVAL;
  1260. if (calc_sb_1_csum(sb) != sb->sb_csum) {
  1261. printk("md: invalid superblock checksum on %s\n",
  1262. bdevname(rdev->bdev,b));
  1263. return -EINVAL;
  1264. }
  1265. if (le64_to_cpu(sb->data_size) < 10) {
  1266. printk("md: data_size too small on %s\n",
  1267. bdevname(rdev->bdev,b));
  1268. return -EINVAL;
  1269. }
  1270. if (sb->pad0 ||
  1271. sb->pad3[0] ||
  1272. memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
  1273. /* Some padding is non-zero, might be a new feature */
  1274. return -EINVAL;
  1275. rdev->preferred_minor = 0xffff;
  1276. rdev->data_offset = le64_to_cpu(sb->data_offset);
  1277. rdev->new_data_offset = rdev->data_offset;
  1278. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
  1279. (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
  1280. rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
  1281. atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
  1282. rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
  1283. bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
  1284. if (rdev->sb_size & bmask)
  1285. rdev->sb_size = (rdev->sb_size | bmask) + 1;
  1286. if (minor_version
  1287. && rdev->data_offset < sb_start + (rdev->sb_size/512))
  1288. return -EINVAL;
  1289. if (minor_version
  1290. && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
  1291. return -EINVAL;
  1292. if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
  1293. rdev->desc_nr = -1;
  1294. else
  1295. rdev->desc_nr = le32_to_cpu(sb->dev_number);
  1296. if (!rdev->bb_page) {
  1297. rdev->bb_page = alloc_page(GFP_KERNEL);
  1298. if (!rdev->bb_page)
  1299. return -ENOMEM;
  1300. }
  1301. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
  1302. rdev->badblocks.count == 0) {
  1303. /* need to load the bad block list.
  1304. * Currently we limit it to one page.
  1305. */
  1306. s32 offset;
  1307. sector_t bb_sector;
  1308. u64 *bbp;
  1309. int i;
  1310. int sectors = le16_to_cpu(sb->bblog_size);
  1311. if (sectors > (PAGE_SIZE / 512))
  1312. return -EINVAL;
  1313. offset = le32_to_cpu(sb->bblog_offset);
  1314. if (offset == 0)
  1315. return -EINVAL;
  1316. bb_sector = (long long)offset;
  1317. if (!sync_page_io(rdev, bb_sector, sectors << 9,
  1318. rdev->bb_page, READ, true))
  1319. return -EIO;
  1320. bbp = (u64 *)page_address(rdev->bb_page);
  1321. rdev->badblocks.shift = sb->bblog_shift;
  1322. for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
  1323. u64 bb = le64_to_cpu(*bbp);
  1324. int count = bb & (0x3ff);
  1325. u64 sector = bb >> 10;
  1326. sector <<= sb->bblog_shift;
  1327. count <<= sb->bblog_shift;
  1328. if (bb + 1 == 0)
  1329. break;
  1330. if (md_set_badblocks(&rdev->badblocks,
  1331. sector, count, 1) == 0)
  1332. return -EINVAL;
  1333. }
  1334. } else if (sb->bblog_offset != 0)
  1335. rdev->badblocks.shift = 0;
  1336. if (!refdev) {
  1337. ret = 1;
  1338. } else {
  1339. __u64 ev1, ev2;
  1340. struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
  1341. if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
  1342. sb->level != refsb->level ||
  1343. sb->layout != refsb->layout ||
  1344. sb->chunksize != refsb->chunksize) {
  1345. printk(KERN_WARNING "md: %s has strangely different"
  1346. " superblock to %s\n",
  1347. bdevname(rdev->bdev,b),
  1348. bdevname(refdev->bdev,b2));
  1349. return -EINVAL;
  1350. }
  1351. ev1 = le64_to_cpu(sb->events);
  1352. ev2 = le64_to_cpu(refsb->events);
  1353. if (ev1 > ev2)
  1354. ret = 1;
  1355. else
  1356. ret = 0;
  1357. }
  1358. if (minor_version) {
  1359. sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
  1360. sectors -= rdev->data_offset;
  1361. } else
  1362. sectors = rdev->sb_start;
  1363. if (sectors < le64_to_cpu(sb->data_size))
  1364. return -EINVAL;
  1365. rdev->sectors = le64_to_cpu(sb->data_size);
  1366. return ret;
  1367. }
  1368. static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
  1369. {
  1370. struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
  1371. __u64 ev1 = le64_to_cpu(sb->events);
  1372. rdev->raid_disk = -1;
  1373. clear_bit(Faulty, &rdev->flags);
  1374. clear_bit(In_sync, &rdev->flags);
  1375. clear_bit(Bitmap_sync, &rdev->flags);
  1376. clear_bit(WriteMostly, &rdev->flags);
  1377. if (mddev->raid_disks == 0) {
  1378. mddev->major_version = 1;
  1379. mddev->patch_version = 0;
  1380. mddev->external = 0;
  1381. mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
  1382. mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
  1383. mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
  1384. mddev->level = le32_to_cpu(sb->level);
  1385. mddev->clevel[0] = 0;
  1386. mddev->layout = le32_to_cpu(sb->layout);
  1387. mddev->raid_disks = le32_to_cpu(sb->raid_disks);
  1388. mddev->dev_sectors = le64_to_cpu(sb->size);
  1389. mddev->events = ev1;
  1390. mddev->bitmap_info.offset = 0;
  1391. mddev->bitmap_info.space = 0;
  1392. /* Default location for bitmap is 1K after superblock
  1393. * using 3K - total of 4K
  1394. */
  1395. mddev->bitmap_info.default_offset = 1024 >> 9;
  1396. mddev->bitmap_info.default_space = (4096-1024) >> 9;
  1397. mddev->reshape_backwards = 0;
  1398. mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
  1399. memcpy(mddev->uuid, sb->set_uuid, 16);
  1400. mddev->max_disks = (4096-256)/2;
  1401. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
  1402. mddev->bitmap_info.file == NULL) {
  1403. mddev->bitmap_info.offset =
  1404. (__s32)le32_to_cpu(sb->bitmap_offset);
  1405. /* Metadata doesn't record how much space is available.
  1406. * For 1.0, we assume we can use up to the superblock
  1407. * if before, else to 4K beyond superblock.
  1408. * For others, assume no change is possible.
  1409. */
  1410. if (mddev->minor_version > 0)
  1411. mddev->bitmap_info.space = 0;
  1412. else if (mddev->bitmap_info.offset > 0)
  1413. mddev->bitmap_info.space =
  1414. 8 - mddev->bitmap_info.offset;
  1415. else
  1416. mddev->bitmap_info.space =
  1417. -mddev->bitmap_info.offset;
  1418. }
  1419. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
  1420. mddev->reshape_position = le64_to_cpu(sb->reshape_position);
  1421. mddev->delta_disks = le32_to_cpu(sb->delta_disks);
  1422. mddev->new_level = le32_to_cpu(sb->new_level);
  1423. mddev->new_layout = le32_to_cpu(sb->new_layout);
  1424. mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
  1425. if (mddev->delta_disks < 0 ||
  1426. (mddev->delta_disks == 0 &&
  1427. (le32_to_cpu(sb->feature_map)
  1428. & MD_FEATURE_RESHAPE_BACKWARDS)))
  1429. mddev->reshape_backwards = 1;
  1430. } else {
  1431. mddev->reshape_position = MaxSector;
  1432. mddev->delta_disks = 0;
  1433. mddev->new_level = mddev->level;
  1434. mddev->new_layout = mddev->layout;
  1435. mddev->new_chunk_sectors = mddev->chunk_sectors;
  1436. }
  1437. } else if (mddev->pers == NULL) {
  1438. /* Insist of good event counter while assembling, except for
  1439. * spares (which don't need an event count) */
  1440. ++ev1;
  1441. if (rdev->desc_nr >= 0 &&
  1442. rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
  1443. le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
  1444. if (ev1 < mddev->events)
  1445. return -EINVAL;
  1446. } else if (mddev->bitmap) {
  1447. /* If adding to array with a bitmap, then we can accept an
  1448. * older device, but not too old.
  1449. */
  1450. if (ev1 < mddev->bitmap->events_cleared)
  1451. return 0;
  1452. if (ev1 < mddev->events)
  1453. set_bit(Bitmap_sync, &rdev->flags);
  1454. } else {
  1455. if (ev1 < mddev->events)
  1456. /* just a hot-add of a new device, leave raid_disk at -1 */
  1457. return 0;
  1458. }
  1459. if (mddev->level != LEVEL_MULTIPATH) {
  1460. int role;
  1461. if (rdev->desc_nr < 0 ||
  1462. rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
  1463. role = 0xffff;
  1464. rdev->desc_nr = -1;
  1465. } else
  1466. role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
  1467. switch(role) {
  1468. case 0xffff: /* spare */
  1469. break;
  1470. case 0xfffe: /* faulty */
  1471. set_bit(Faulty, &rdev->flags);
  1472. break;
  1473. default:
  1474. rdev->saved_raid_disk = role;
  1475. if ((le32_to_cpu(sb->feature_map) &
  1476. MD_FEATURE_RECOVERY_OFFSET)) {
  1477. rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
  1478. if (!(le32_to_cpu(sb->feature_map) &
  1479. MD_FEATURE_RECOVERY_BITMAP))
  1480. rdev->saved_raid_disk = -1;
  1481. } else
  1482. set_bit(In_sync, &rdev->flags);
  1483. rdev->raid_disk = role;
  1484. break;
  1485. }
  1486. if (sb->devflags & WriteMostly1)
  1487. set_bit(WriteMostly, &rdev->flags);
  1488. if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
  1489. set_bit(Replacement, &rdev->flags);
  1490. } else /* MULTIPATH are always insync */
  1491. set_bit(In_sync, &rdev->flags);
  1492. return 0;
  1493. }
  1494. static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
  1495. {
  1496. struct mdp_superblock_1 *sb;
  1497. struct md_rdev *rdev2;
  1498. int max_dev, i;
  1499. /* make rdev->sb match mddev and rdev data. */
  1500. sb = page_address(rdev->sb_page);
  1501. sb->feature_map = 0;
  1502. sb->pad0 = 0;
  1503. sb->recovery_offset = cpu_to_le64(0);
  1504. memset(sb->pad3, 0, sizeof(sb->pad3));
  1505. sb->utime = cpu_to_le64((__u64)mddev->utime);
  1506. sb->events = cpu_to_le64(mddev->events);
  1507. if (mddev->in_sync)
  1508. sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
  1509. else
  1510. sb->resync_offset = cpu_to_le64(0);
  1511. sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
  1512. sb->raid_disks = cpu_to_le32(mddev->raid_disks);
  1513. sb->size = cpu_to_le64(mddev->dev_sectors);
  1514. sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
  1515. sb->level = cpu_to_le32(mddev->level);
  1516. sb->layout = cpu_to_le32(mddev->layout);
  1517. if (test_bit(WriteMostly, &rdev->flags))
  1518. sb->devflags |= WriteMostly1;
  1519. else
  1520. sb->devflags &= ~WriteMostly1;
  1521. sb->data_offset = cpu_to_le64(rdev->data_offset);
  1522. sb->data_size = cpu_to_le64(rdev->sectors);
  1523. if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
  1524. sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
  1525. sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
  1526. }
  1527. if (rdev->raid_disk >= 0 &&
  1528. !test_bit(In_sync, &rdev->flags)) {
  1529. sb->feature_map |=
  1530. cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
  1531. sb->recovery_offset =
  1532. cpu_to_le64(rdev->recovery_offset);
  1533. if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
  1534. sb->feature_map |=
  1535. cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
  1536. }
  1537. if (test_bit(Replacement, &rdev->flags))
  1538. sb->feature_map |=
  1539. cpu_to_le32(MD_FEATURE_REPLACEMENT);
  1540. if (mddev->reshape_position != MaxSector) {
  1541. sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
  1542. sb->reshape_position = cpu_to_le64(mddev->reshape_position);
  1543. sb->new_layout = cpu_to_le32(mddev->new_layout);
  1544. sb->delta_disks = cpu_to_le32(mddev->delta_disks);
  1545. sb->new_level = cpu_to_le32(mddev->new_level);
  1546. sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
  1547. if (mddev->delta_disks == 0 &&
  1548. mddev->reshape_backwards)
  1549. sb->feature_map
  1550. |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
  1551. if (rdev->new_data_offset != rdev->data_offset) {
  1552. sb->feature_map
  1553. |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
  1554. sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
  1555. - rdev->data_offset));
  1556. }
  1557. }
  1558. if (rdev->badblocks.count == 0)
  1559. /* Nothing to do for bad blocks*/ ;
  1560. else if (sb->bblog_offset == 0)
  1561. /* Cannot record bad blocks on this device */
  1562. md_error(mddev, rdev);
  1563. else {
  1564. struct badblocks *bb = &rdev->badblocks;
  1565. u64 *bbp = (u64 *)page_address(rdev->bb_page);
  1566. u64 *p = bb->page;
  1567. sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
  1568. if (bb->changed) {
  1569. unsigned seq;
  1570. retry:
  1571. seq = read_seqbegin(&bb->lock);
  1572. memset(bbp, 0xff, PAGE_SIZE);
  1573. for (i = 0 ; i < bb->count ; i++) {
  1574. u64 internal_bb = p[i];
  1575. u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
  1576. | BB_LEN(internal_bb));
  1577. bbp[i] = cpu_to_le64(store_bb);
  1578. }
  1579. bb->changed = 0;
  1580. if (read_seqretry(&bb->lock, seq))
  1581. goto retry;
  1582. bb->sector = (rdev->sb_start +
  1583. (int)le32_to_cpu(sb->bblog_offset));
  1584. bb->size = le16_to_cpu(sb->bblog_size);
  1585. }
  1586. }
  1587. max_dev = 0;
  1588. rdev_for_each(rdev2, mddev)
  1589. if (rdev2->desc_nr+1 > max_dev)
  1590. max_dev = rdev2->desc_nr+1;
  1591. if (max_dev > le32_to_cpu(sb->max_dev)) {
  1592. int bmask;
  1593. sb->max_dev = cpu_to_le32(max_dev);
  1594. rdev->sb_size = max_dev * 2 + 256;
  1595. bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
  1596. if (rdev->sb_size & bmask)
  1597. rdev->sb_size = (rdev->sb_size | bmask) + 1;
  1598. } else
  1599. max_dev = le32_to_cpu(sb->max_dev);
  1600. for (i=0; i<max_dev;i++)
  1601. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1602. rdev_for_each(rdev2, mddev) {
  1603. i = rdev2->desc_nr;
  1604. if (test_bit(Faulty, &rdev2->flags))
  1605. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1606. else if (test_bit(In_sync, &rdev2->flags))
  1607. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1608. else if (rdev2->raid_disk >= 0)
  1609. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1610. else
  1611. sb->dev_roles[i] = cpu_to_le16(0xffff);
  1612. }
  1613. sb->sb_csum = calc_sb_1_csum(sb);
  1614. }
  1615. static unsigned long long
  1616. super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
  1617. {
  1618. struct mdp_superblock_1 *sb;
  1619. sector_t max_sectors;
  1620. if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
  1621. return 0; /* component must fit device */
  1622. if (rdev->data_offset != rdev->new_data_offset)
  1623. return 0; /* too confusing */
  1624. if (rdev->sb_start < rdev->data_offset) {
  1625. /* minor versions 1 and 2; superblock before data */
  1626. max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
  1627. max_sectors -= rdev->data_offset;
  1628. if (!num_sectors || num_sectors > max_sectors)
  1629. num_sectors = max_sectors;
  1630. } else if (rdev->mddev->bitmap_info.offset) {
  1631. /* minor version 0 with bitmap we can't move */
  1632. return 0;
  1633. } else {
  1634. /* minor version 0; superblock after data */
  1635. sector_t sb_start;
  1636. sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
  1637. sb_start &= ~(sector_t)(4*2 - 1);
  1638. max_sectors = rdev->sectors + sb_start - rdev->sb_start;
  1639. if (!num_sectors || num_sectors > max_sectors)
  1640. num_sectors = max_sectors;
  1641. rdev->sb_start = sb_start;
  1642. }
  1643. sb = page_address(rdev->sb_page);
  1644. sb->data_size = cpu_to_le64(num_sectors);
  1645. sb->super_offset = rdev->sb_start;
  1646. sb->sb_csum = calc_sb_1_csum(sb);
  1647. md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
  1648. rdev->sb_page);
  1649. md_super_wait(rdev->mddev);
  1650. return num_sectors;
  1651. }
  1652. static int
  1653. super_1_allow_new_offset(struct md_rdev *rdev,
  1654. unsigned long long new_offset)
  1655. {
  1656. /* All necessary checks on new >= old have been done */
  1657. struct bitmap *bitmap;
  1658. if (new_offset >= rdev->data_offset)
  1659. return 1;
  1660. /* with 1.0 metadata, there is no metadata to tread on
  1661. * so we can always move back */
  1662. if (rdev->mddev->minor_version == 0)
  1663. return 1;
  1664. /* otherwise we must be sure not to step on
  1665. * any metadata, so stay:
  1666. * 36K beyond start of superblock
  1667. * beyond end of badblocks
  1668. * beyond write-intent bitmap
  1669. */
  1670. if (rdev->sb_start + (32+4)*2 > new_offset)
  1671. return 0;
  1672. bitmap = rdev->mddev->bitmap;
  1673. if (bitmap && !rdev->mddev->bitmap_info.file &&
  1674. rdev->sb_start + rdev->mddev->bitmap_info.offset +
  1675. bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
  1676. return 0;
  1677. if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
  1678. return 0;
  1679. return 1;
  1680. }
  1681. static struct super_type super_types[] = {
  1682. [0] = {
  1683. .name = "0.90.0",
  1684. .owner = THIS_MODULE,
  1685. .load_super = super_90_load,
  1686. .validate_super = super_90_validate,
  1687. .sync_super = super_90_sync,
  1688. .rdev_size_change = super_90_rdev_size_change,
  1689. .allow_new_offset = super_90_allow_new_offset,
  1690. },
  1691. [1] = {
  1692. .name = "md-1",
  1693. .owner = THIS_MODULE,
  1694. .load_super = super_1_load,
  1695. .validate_super = super_1_validate,
  1696. .sync_super = super_1_sync,
  1697. .rdev_size_change = super_1_rdev_size_change,
  1698. .allow_new_offset = super_1_allow_new_offset,
  1699. },
  1700. };
  1701. static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
  1702. {
  1703. if (mddev->sync_super) {
  1704. mddev->sync_super(mddev, rdev);
  1705. return;
  1706. }
  1707. BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
  1708. super_types[mddev->major_version].sync_super(mddev, rdev);
  1709. }
  1710. static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
  1711. {
  1712. struct md_rdev *rdev, *rdev2;
  1713. rcu_read_lock();
  1714. rdev_for_each_rcu(rdev, mddev1)
  1715. rdev_for_each_rcu(rdev2, mddev2)
  1716. if (rdev->bdev->bd_contains ==
  1717. rdev2->bdev->bd_contains) {
  1718. rcu_read_unlock();
  1719. return 1;
  1720. }
  1721. rcu_read_unlock();
  1722. return 0;
  1723. }
  1724. static LIST_HEAD(pending_raid_disks);
  1725. /*
  1726. * Try to register data integrity profile for an mddev
  1727. *
  1728. * This is called when an array is started and after a disk has been kicked
  1729. * from the array. It only succeeds if all working and active component devices
  1730. * are integrity capable with matching profiles.
  1731. */
  1732. int md_integrity_register(struct mddev *mddev)
  1733. {
  1734. struct md_rdev *rdev, *reference = NULL;
  1735. if (list_empty(&mddev->disks))
  1736. return 0; /* nothing to do */
  1737. if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
  1738. return 0; /* shouldn't register, or already is */
  1739. rdev_for_each(rdev, mddev) {
  1740. /* skip spares and non-functional disks */
  1741. if (test_bit(Faulty, &rdev->flags))
  1742. continue;
  1743. if (rdev->raid_disk < 0)
  1744. continue;
  1745. if (!reference) {
  1746. /* Use the first rdev as the reference */
  1747. reference = rdev;
  1748. continue;
  1749. }
  1750. /* does this rdev's profile match the reference profile? */
  1751. if (blk_integrity_compare(reference->bdev->bd_disk,
  1752. rdev->bdev->bd_disk) < 0)
  1753. return -EINVAL;
  1754. }
  1755. if (!reference || !bdev_get_integrity(reference->bdev))
  1756. return 0;
  1757. /*
  1758. * All component devices are integrity capable and have matching
  1759. * profiles, register the common profile for the md device.
  1760. */
  1761. if (blk_integrity_register(mddev->gendisk,
  1762. bdev_get_integrity(reference->bdev)) != 0) {
  1763. printk(KERN_ERR "md: failed to register integrity for %s\n",
  1764. mdname(mddev));
  1765. return -EINVAL;
  1766. }
  1767. printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
  1768. if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
  1769. printk(KERN_ERR "md: failed to create integrity pool for %s\n",
  1770. mdname(mddev));
  1771. return -EINVAL;
  1772. }
  1773. return 0;
  1774. }
  1775. EXPORT_SYMBOL(md_integrity_register);
  1776. /* Disable data integrity if non-capable/non-matching disk is being added */
  1777. void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
  1778. {
  1779. struct blk_integrity *bi_rdev;
  1780. struct blk_integrity *bi_mddev;
  1781. if (!mddev->gendisk)
  1782. return;
  1783. bi_rdev = bdev_get_integrity(rdev->bdev);
  1784. bi_mddev = blk_get_integrity(mddev->gendisk);
  1785. if (!bi_mddev) /* nothing to do */
  1786. return;
  1787. if (rdev->raid_disk < 0) /* skip spares */
  1788. return;
  1789. if (bi_rdev && blk_integrity_compare(mddev->gendisk,
  1790. rdev->bdev->bd_disk) >= 0)
  1791. return;
  1792. printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
  1793. blk_integrity_unregister(mddev->gendisk);
  1794. }
  1795. EXPORT_SYMBOL(md_integrity_add_rdev);
  1796. static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
  1797. {
  1798. char b[BDEVNAME_SIZE];
  1799. struct kobject *ko;
  1800. int err;
  1801. /* prevent duplicates */
  1802. if (find_rdev(mddev, rdev->bdev->bd_dev))
  1803. return -EEXIST;
  1804. /* make sure rdev->sectors exceeds mddev->dev_sectors */
  1805. if (rdev->sectors && (mddev->dev_sectors == 0 ||
  1806. rdev->sectors < mddev->dev_sectors)) {
  1807. if (mddev->pers) {
  1808. /* Cannot change size, so fail
  1809. * If mddev->level <= 0, then we don't care
  1810. * about aligning sizes (e.g. linear)
  1811. */
  1812. if (mddev->level > 0)
  1813. return -ENOSPC;
  1814. } else
  1815. mddev->dev_sectors = rdev->sectors;
  1816. }
  1817. /* Verify rdev->desc_nr is unique.
  1818. * If it is -1, assign a free number, else
  1819. * check number is not in use
  1820. */
  1821. rcu_read_lock();
  1822. if (rdev->desc_nr < 0) {
  1823. int choice = 0;
  1824. if (mddev->pers)
  1825. choice = mddev->raid_disks;
  1826. while (md_find_rdev_nr_rcu(mddev, choice))
  1827. choice++;
  1828. rdev->desc_nr = choice;
  1829. } else {
  1830. if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
  1831. rcu_read_unlock();
  1832. return -EBUSY;
  1833. }
  1834. }
  1835. rcu_read_unlock();
  1836. if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
  1837. printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
  1838. mdname(mddev), mddev->max_disks);
  1839. return -EBUSY;
  1840. }
  1841. bdevname(rdev->bdev,b);
  1842. strreplace(b, '/', '!');
  1843. rdev->mddev = mddev;
  1844. printk(KERN_INFO "md: bind<%s>\n", b);
  1845. if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
  1846. goto fail;
  1847. ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
  1848. if (sysfs_create_link(&rdev->kobj, ko, "block"))
  1849. /* failure here is OK */;
  1850. rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
  1851. list_add_rcu(&rdev->same_set, &mddev->disks);
  1852. bd_link_disk_holder(rdev->bdev, mddev->gendisk);
  1853. /* May as well allow recovery to be retried once */
  1854. mddev->recovery_disabled++;
  1855. return 0;
  1856. fail:
  1857. printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
  1858. b, mdname(mddev));
  1859. return err;
  1860. }
  1861. static void md_delayed_delete(struct work_struct *ws)
  1862. {
  1863. struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
  1864. kobject_del(&rdev->kobj);
  1865. kobject_put(&rdev->kobj);
  1866. }
  1867. static void unbind_rdev_from_array(struct md_rdev *rdev)
  1868. {
  1869. char b[BDEVNAME_SIZE];
  1870. bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
  1871. list_del_rcu(&rdev->same_set);
  1872. printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
  1873. rdev->mddev = NULL;
  1874. sysfs_remove_link(&rdev->kobj, "block");
  1875. sysfs_put(rdev->sysfs_state);
  1876. rdev->sysfs_state = NULL;
  1877. rdev->badblocks.count = 0;
  1878. /* We need to delay this, otherwise we can deadlock when
  1879. * writing to 'remove' to "dev/state". We also need
  1880. * to delay it due to rcu usage.
  1881. */
  1882. synchronize_rcu();
  1883. INIT_WORK(&rdev->del_work, md_delayed_delete);
  1884. kobject_get(&rdev->kobj);
  1885. queue_work(md_misc_wq, &rdev->del_work);
  1886. }
  1887. /*
  1888. * prevent the device from being mounted, repartitioned or
  1889. * otherwise reused by a RAID array (or any other kernel
  1890. * subsystem), by bd_claiming the device.
  1891. */
  1892. static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
  1893. {
  1894. int err = 0;
  1895. struct block_device *bdev;
  1896. char b[BDEVNAME_SIZE];
  1897. bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
  1898. shared ? (struct md_rdev *)lock_rdev : rdev);
  1899. if (IS_ERR(bdev)) {
  1900. printk(KERN_ERR "md: could not open %s.\n",
  1901. __bdevname(dev, b));
  1902. return PTR_ERR(bdev);
  1903. }
  1904. rdev->bdev = bdev;
  1905. return err;
  1906. }
  1907. static void unlock_rdev(struct md_rdev *rdev)
  1908. {
  1909. struct block_device *bdev = rdev->bdev;
  1910. rdev->bdev = NULL;
  1911. blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
  1912. }
  1913. void md_autodetect_dev(dev_t dev);
  1914. static void export_rdev(struct md_rdev *rdev)
  1915. {
  1916. char b[BDEVNAME_SIZE];
  1917. printk(KERN_INFO "md: export_rdev(%s)\n",
  1918. bdevname(rdev->bdev,b));
  1919. md_rdev_clear(rdev);
  1920. #ifndef MODULE
  1921. if (test_bit(AutoDetected, &rdev->flags))
  1922. md_autodetect_dev(rdev->bdev->bd_dev);
  1923. #endif
  1924. unlock_rdev(rdev);
  1925. kobject_put(&rdev->kobj);
  1926. }
  1927. void md_kick_rdev_from_array(struct md_rdev *rdev)
  1928. {
  1929. unbind_rdev_from_array(rdev);
  1930. export_rdev(rdev);
  1931. }
  1932. EXPORT_SYMBOL_GPL(md_kick_rdev_from_array);
  1933. static void export_array(struct mddev *mddev)
  1934. {
  1935. struct md_rdev *rdev;
  1936. while (!list_empty(&mddev->disks)) {
  1937. rdev = list_first_entry(&mddev->disks, struct md_rdev,
  1938. same_set);
  1939. md_kick_rdev_from_array(rdev);
  1940. }
  1941. mddev->raid_disks = 0;
  1942. mddev->major_version = 0;
  1943. }
  1944. static void sync_sbs(struct mddev *mddev, int nospares)
  1945. {
  1946. /* Update each superblock (in-memory image), but
  1947. * if we are allowed to, skip spares which already
  1948. * have the right event counter, or have one earlier
  1949. * (which would mean they aren't being marked as dirty
  1950. * with the rest of the array)
  1951. */
  1952. struct md_rdev *rdev;
  1953. rdev_for_each(rdev, mddev) {
  1954. if (rdev->sb_events == mddev->events ||
  1955. (nospares &&
  1956. rdev->raid_disk < 0 &&
  1957. rdev->sb_events+1 == mddev->events)) {
  1958. /* Don't update this superblock */
  1959. rdev->sb_loaded = 2;
  1960. } else {
  1961. sync_super(mddev, rdev);
  1962. rdev->sb_loaded = 1;
  1963. }
  1964. }
  1965. }
  1966. void md_update_sb(struct mddev *mddev, int force_change)
  1967. {
  1968. struct md_rdev *rdev;
  1969. int sync_req;
  1970. int nospares = 0;
  1971. int any_badblocks_changed = 0;
  1972. if (mddev->ro) {
  1973. if (force_change)
  1974. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  1975. return;
  1976. }
  1977. repeat:
  1978. /* First make sure individual recovery_offsets are correct */
  1979. rdev_for_each(rdev, mddev) {
  1980. if (rdev->raid_disk >= 0 &&
  1981. mddev->delta_disks >= 0 &&
  1982. !test_bit(In_sync, &rdev->flags) &&
  1983. mddev->curr_resync_completed > rdev->recovery_offset)
  1984. rdev->recovery_offset = mddev->curr_resync_completed;
  1985. }
  1986. if (!mddev->persistent) {
  1987. clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
  1988. clear_bit(MD_CHANGE_DEVS, &mddev->flags);
  1989. if (!mddev->external) {
  1990. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  1991. rdev_for_each(rdev, mddev) {
  1992. if (rdev->badblocks.changed) {
  1993. rdev->badblocks.changed = 0;
  1994. md_ack_all_badblocks(&rdev->badblocks);
  1995. md_error(mddev, rdev);
  1996. }
  1997. clear_bit(Blocked, &rdev->flags);
  1998. clear_bit(BlockedBadBlocks, &rdev->flags);
  1999. wake_up(&rdev->blocked_wait);
  2000. }
  2001. }
  2002. wake_up(&mddev->sb_wait);
  2003. return;
  2004. }
  2005. spin_lock(&mddev->lock);
  2006. mddev->utime = get_seconds();
  2007. if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
  2008. force_change = 1;
  2009. if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
  2010. /* just a clean<-> dirty transition, possibly leave spares alone,
  2011. * though if events isn't the right even/odd, we will have to do
  2012. * spares after all
  2013. */
  2014. nospares = 1;
  2015. if (force_change)
  2016. nospares = 0;
  2017. if (mddev->degraded)
  2018. /* If the array is degraded, then skipping spares is both
  2019. * dangerous and fairly pointless.
  2020. * Dangerous because a device that was removed from the array
  2021. * might have a event_count that still looks up-to-date,
  2022. * so it can be re-added without a resync.
  2023. * Pointless because if there are any spares to skip,
  2024. * then a recovery will happen and soon that array won't
  2025. * be degraded any more and the spare can go back to sleep then.
  2026. */
  2027. nospares = 0;
  2028. sync_req = mddev->in_sync;
  2029. /* If this is just a dirty<->clean transition, and the array is clean
  2030. * and 'events' is odd, we can roll back to the previous clean state */
  2031. if (nospares
  2032. && (mddev->in_sync && mddev->recovery_cp == MaxSector)
  2033. && mddev->can_decrease_events
  2034. && mddev->events != 1) {
  2035. mddev->events--;
  2036. mddev->can_decrease_events = 0;
  2037. } else {
  2038. /* otherwise we have to go forward and ... */
  2039. mddev->events ++;
  2040. mddev->can_decrease_events = nospares;
  2041. }
  2042. /*
  2043. * This 64-bit counter should never wrap.
  2044. * Either we are in around ~1 trillion A.C., assuming
  2045. * 1 reboot per second, or we have a bug...
  2046. */
  2047. WARN_ON(mddev->events == 0);
  2048. rdev_for_each(rdev, mddev) {
  2049. if (rdev->badblocks.changed)
  2050. any_badblocks_changed++;
  2051. if (test_bit(Faulty, &rdev->flags))
  2052. set_bit(FaultRecorded, &rdev->flags);
  2053. }
  2054. sync_sbs(mddev, nospares);
  2055. spin_unlock(&mddev->lock);
  2056. pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
  2057. mdname(mddev), mddev->in_sync);
  2058. bitmap_update_sb(mddev->bitmap);
  2059. rdev_for_each(rdev, mddev) {
  2060. char b[BDEVNAME_SIZE];
  2061. if (rdev->sb_loaded != 1)
  2062. continue; /* no noise on spare devices */
  2063. if (!test_bit(Faulty, &rdev->flags)) {
  2064. md_super_write(mddev,rdev,
  2065. rdev->sb_start, rdev->sb_size,
  2066. rdev->sb_page);
  2067. pr_debug("md: (write) %s's sb offset: %llu\n",
  2068. bdevname(rdev->bdev, b),
  2069. (unsigned long long)rdev->sb_start);
  2070. rdev->sb_events = mddev->events;
  2071. if (rdev->badblocks.size) {
  2072. md_super_write(mddev, rdev,
  2073. rdev->badblocks.sector,
  2074. rdev->badblocks.size << 9,
  2075. rdev->bb_page);
  2076. rdev->badblocks.size = 0;
  2077. }
  2078. } else
  2079. pr_debug("md: %s (skipping faulty)\n",
  2080. bdevname(rdev->bdev, b));
  2081. if (mddev->level == LEVEL_MULTIPATH)
  2082. /* only need to write one superblock... */
  2083. break;
  2084. }
  2085. md_super_wait(mddev);
  2086. /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
  2087. spin_lock(&mddev->lock);
  2088. if (mddev->in_sync != sync_req ||
  2089. test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
  2090. /* have to write it out again */
  2091. spin_unlock(&mddev->lock);
  2092. goto repeat;
  2093. }
  2094. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  2095. spin_unlock(&mddev->lock);
  2096. wake_up(&mddev->sb_wait);
  2097. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  2098. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  2099. rdev_for_each(rdev, mddev) {
  2100. if (test_and_clear_bit(FaultRecorded, &rdev->flags))
  2101. clear_bit(Blocked, &rdev->flags);
  2102. if (any_badblocks_changed)
  2103. md_ack_all_badblocks(&rdev->badblocks);
  2104. clear_bit(BlockedBadBlocks, &rdev->flags);
  2105. wake_up(&rdev->blocked_wait);
  2106. }
  2107. }
  2108. EXPORT_SYMBOL(md_update_sb);
  2109. static int add_bound_rdev(struct md_rdev *rdev)
  2110. {
  2111. struct mddev *mddev = rdev->mddev;
  2112. int err = 0;
  2113. if (!mddev->pers->hot_remove_disk) {
  2114. /* If there is hot_add_disk but no hot_remove_disk
  2115. * then added disks for geometry changes,
  2116. * and should be added immediately.
  2117. */
  2118. super_types[mddev->major_version].
  2119. validate_super(mddev, rdev);
  2120. err = mddev->pers->hot_add_disk(mddev, rdev);
  2121. if (err) {
  2122. unbind_rdev_from_array(rdev);
  2123. export_rdev(rdev);
  2124. return err;
  2125. }
  2126. }
  2127. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2128. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  2129. if (mddev->degraded)
  2130. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  2131. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2132. md_new_event(mddev);
  2133. md_wakeup_thread(mddev->thread);
  2134. return 0;
  2135. }
  2136. /* words written to sysfs files may, or may not, be \n terminated.
  2137. * We want to accept with case. For this we use cmd_match.
  2138. */
  2139. static int cmd_match(const char *cmd, const char *str)
  2140. {
  2141. /* See if cmd, written into a sysfs file, matches
  2142. * str. They must either be the same, or cmd can
  2143. * have a trailing newline
  2144. */
  2145. while (*cmd && *str && *cmd == *str) {
  2146. cmd++;
  2147. str++;
  2148. }
  2149. if (*cmd == '\n')
  2150. cmd++;
  2151. if (*str || *cmd)
  2152. return 0;
  2153. return 1;
  2154. }
  2155. struct rdev_sysfs_entry {
  2156. struct attribute attr;
  2157. ssize_t (*show)(struct md_rdev *, char *);
  2158. ssize_t (*store)(struct md_rdev *, const char *, size_t);
  2159. };
  2160. static ssize_t
  2161. state_show(struct md_rdev *rdev, char *page)
  2162. {
  2163. char *sep = "";
  2164. size_t len = 0;
  2165. unsigned long flags = ACCESS_ONCE(rdev->flags);
  2166. if (test_bit(Faulty, &flags) ||
  2167. rdev->badblocks.unacked_exist) {
  2168. len+= sprintf(page+len, "%sfaulty",sep);
  2169. sep = ",";
  2170. }
  2171. if (test_bit(In_sync, &flags)) {
  2172. len += sprintf(page+len, "%sin_sync",sep);
  2173. sep = ",";
  2174. }
  2175. if (test_bit(WriteMostly, &flags)) {
  2176. len += sprintf(page+len, "%swrite_mostly",sep);
  2177. sep = ",";
  2178. }
  2179. if (test_bit(Blocked, &flags) ||
  2180. (rdev->badblocks.unacked_exist
  2181. && !test_bit(Faulty, &flags))) {
  2182. len += sprintf(page+len, "%sblocked", sep);
  2183. sep = ",";
  2184. }
  2185. if (!test_bit(Faulty, &flags) &&
  2186. !test_bit(In_sync, &flags)) {
  2187. len += sprintf(page+len, "%sspare", sep);
  2188. sep = ",";
  2189. }
  2190. if (test_bit(WriteErrorSeen, &flags)) {
  2191. len += sprintf(page+len, "%swrite_error", sep);
  2192. sep = ",";
  2193. }
  2194. if (test_bit(WantReplacement, &flags)) {
  2195. len += sprintf(page+len, "%swant_replacement", sep);
  2196. sep = ",";
  2197. }
  2198. if (test_bit(Replacement, &flags)) {
  2199. len += sprintf(page+len, "%sreplacement", sep);
  2200. sep = ",";
  2201. }
  2202. return len+sprintf(page+len, "\n");
  2203. }
  2204. static ssize_t
  2205. state_store(struct md_rdev *rdev, const char *buf, size_t len)
  2206. {
  2207. /* can write
  2208. * faulty - simulates an error
  2209. * remove - disconnects the device
  2210. * writemostly - sets write_mostly
  2211. * -writemostly - clears write_mostly
  2212. * blocked - sets the Blocked flags
  2213. * -blocked - clears the Blocked and possibly simulates an error
  2214. * insync - sets Insync providing device isn't active
  2215. * -insync - clear Insync for a device with a slot assigned,
  2216. * so that it gets rebuilt based on bitmap
  2217. * write_error - sets WriteErrorSeen
  2218. * -write_error - clears WriteErrorSeen
  2219. */
  2220. int err = -EINVAL;
  2221. if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
  2222. md_error(rdev->mddev, rdev);
  2223. if (test_bit(Faulty, &rdev->flags))
  2224. err = 0;
  2225. else
  2226. err = -EBUSY;
  2227. } else if (cmd_match(buf, "remove")) {
  2228. if (rdev->raid_disk >= 0)
  2229. err = -EBUSY;
  2230. else {
  2231. struct mddev *mddev = rdev->mddev;
  2232. if (mddev_is_clustered(mddev))
  2233. md_cluster_ops->remove_disk(mddev, rdev);
  2234. md_kick_rdev_from_array(rdev);
  2235. if (mddev_is_clustered(mddev))
  2236. md_cluster_ops->metadata_update_start(mddev);
  2237. if (mddev->pers)
  2238. md_update_sb(mddev, 1);
  2239. md_new_event(mddev);
  2240. if (mddev_is_clustered(mddev))
  2241. md_cluster_ops->metadata_update_finish(mddev);
  2242. err = 0;
  2243. }
  2244. } else if (cmd_match(buf, "writemostly")) {
  2245. set_bit(WriteMostly, &rdev->flags);
  2246. err = 0;
  2247. } else if (cmd_match(buf, "-writemostly")) {
  2248. clear_bit(WriteMostly, &rdev->flags);
  2249. err = 0;
  2250. } else if (cmd_match(buf, "blocked")) {
  2251. set_bit(Blocked, &rdev->flags);
  2252. err = 0;
  2253. } else if (cmd_match(buf, "-blocked")) {
  2254. if (!test_bit(Faulty, &rdev->flags) &&
  2255. rdev->badblocks.unacked_exist) {
  2256. /* metadata handler doesn't understand badblocks,
  2257. * so we need to fail the device
  2258. */
  2259. md_error(rdev->mddev, rdev);
  2260. }
  2261. clear_bit(Blocked, &rdev->flags);
  2262. clear_bit(BlockedBadBlocks, &rdev->flags);
  2263. wake_up(&rdev->blocked_wait);
  2264. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  2265. md_wakeup_thread(rdev->mddev->thread);
  2266. err = 0;
  2267. } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
  2268. set_bit(In_sync, &rdev->flags);
  2269. err = 0;
  2270. } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0) {
  2271. if (rdev->mddev->pers == NULL) {
  2272. clear_bit(In_sync, &rdev->flags);
  2273. rdev->saved_raid_disk = rdev->raid_disk;
  2274. rdev->raid_disk = -1;
  2275. err = 0;
  2276. }
  2277. } else if (cmd_match(buf, "write_error")) {
  2278. set_bit(WriteErrorSeen, &rdev->flags);
  2279. err = 0;
  2280. } else if (cmd_match(buf, "-write_error")) {
  2281. clear_bit(WriteErrorSeen, &rdev->flags);
  2282. err = 0;
  2283. } else if (cmd_match(buf, "want_replacement")) {
  2284. /* Any non-spare device that is not a replacement can
  2285. * become want_replacement at any time, but we then need to
  2286. * check if recovery is needed.
  2287. */
  2288. if (rdev->raid_disk >= 0 &&
  2289. !test_bit(Replacement, &rdev->flags))
  2290. set_bit(WantReplacement, &rdev->flags);
  2291. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  2292. md_wakeup_thread(rdev->mddev->thread);
  2293. err = 0;
  2294. } else if (cmd_match(buf, "-want_replacement")) {
  2295. /* Clearing 'want_replacement' is always allowed.
  2296. * Once replacements starts it is too late though.
  2297. */
  2298. err = 0;
  2299. clear_bit(WantReplacement, &rdev->flags);
  2300. } else if (cmd_match(buf, "replacement")) {
  2301. /* Can only set a device as a replacement when array has not
  2302. * yet been started. Once running, replacement is automatic
  2303. * from spares, or by assigning 'slot'.
  2304. */
  2305. if (rdev->mddev->pers)
  2306. err = -EBUSY;
  2307. else {
  2308. set_bit(Replacement, &rdev->flags);
  2309. err = 0;
  2310. }
  2311. } else if (cmd_match(buf, "-replacement")) {
  2312. /* Similarly, can only clear Replacement before start */
  2313. if (rdev->mddev->pers)
  2314. err = -EBUSY;
  2315. else {
  2316. clear_bit(Replacement, &rdev->flags);
  2317. err = 0;
  2318. }
  2319. } else if (cmd_match(buf, "re-add")) {
  2320. if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1)) {
  2321. /* clear_bit is performed _after_ all the devices
  2322. * have their local Faulty bit cleared. If any writes
  2323. * happen in the meantime in the local node, they
  2324. * will land in the local bitmap, which will be synced
  2325. * by this node eventually
  2326. */
  2327. if (!mddev_is_clustered(rdev->mddev) ||
  2328. (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) {
  2329. clear_bit(Faulty, &rdev->flags);
  2330. err = add_bound_rdev(rdev);
  2331. }
  2332. } else
  2333. err = -EBUSY;
  2334. }
  2335. if (!err)
  2336. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2337. return err ? err : len;
  2338. }
  2339. static struct rdev_sysfs_entry rdev_state =
  2340. __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store);
  2341. static ssize_t
  2342. errors_show(struct md_rdev *rdev, char *page)
  2343. {
  2344. return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
  2345. }
  2346. static ssize_t
  2347. errors_store(struct md_rdev *rdev, const char *buf, size_t len)
  2348. {
  2349. unsigned int n;
  2350. int rv;
  2351. rv = kstrtouint(buf, 10, &n);
  2352. if (rv < 0)
  2353. return rv;
  2354. atomic_set(&rdev->corrected_errors, n);
  2355. return len;
  2356. }
  2357. static struct rdev_sysfs_entry rdev_errors =
  2358. __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
  2359. static ssize_t
  2360. slot_show(struct md_rdev *rdev, char *page)
  2361. {
  2362. if (rdev->raid_disk < 0)
  2363. return sprintf(page, "none\n");
  2364. else
  2365. return sprintf(page, "%d\n", rdev->raid_disk);
  2366. }
  2367. static ssize_t
  2368. slot_store(struct md_rdev *rdev, const char *buf, size_t len)
  2369. {
  2370. int slot;
  2371. int err;
  2372. if (strncmp(buf, "none", 4)==0)
  2373. slot = -1;
  2374. else {
  2375. err = kstrtouint(buf, 10, (unsigned int *)&slot);
  2376. if (err < 0)
  2377. return err;
  2378. }
  2379. if (rdev->mddev->pers && slot == -1) {
  2380. /* Setting 'slot' on an active array requires also
  2381. * updating the 'rd%d' link, and communicating
  2382. * with the personality with ->hot_*_disk.
  2383. * For now we only support removing
  2384. * failed/spare devices. This normally happens automatically,
  2385. * but not when the metadata is externally managed.
  2386. */
  2387. if (rdev->raid_disk == -1)
  2388. return -EEXIST;
  2389. /* personality does all needed checks */
  2390. if (rdev->mddev->pers->hot_remove_disk == NULL)
  2391. return -EINVAL;
  2392. clear_bit(Blocked, &rdev->flags);
  2393. remove_and_add_spares(rdev->mddev, rdev);
  2394. if (rdev->raid_disk >= 0)
  2395. return -EBUSY;
  2396. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  2397. md_wakeup_thread(rdev->mddev->thread);
  2398. } else if (rdev->mddev->pers) {
  2399. /* Activating a spare .. or possibly reactivating
  2400. * if we ever get bitmaps working here.
  2401. */
  2402. if (rdev->raid_disk != -1)
  2403. return -EBUSY;
  2404. if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
  2405. return -EBUSY;
  2406. if (rdev->mddev->pers->hot_add_disk == NULL)
  2407. return -EINVAL;
  2408. if (slot >= rdev->mddev->raid_disks &&
  2409. slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
  2410. return -ENOSPC;
  2411. rdev->raid_disk = slot;
  2412. if (test_bit(In_sync, &rdev->flags))
  2413. rdev->saved_raid_disk = slot;
  2414. else
  2415. rdev->saved_raid_disk = -1;
  2416. clear_bit(In_sync, &rdev->flags);
  2417. clear_bit(Bitmap_sync, &rdev->flags);
  2418. err = rdev->mddev->pers->
  2419. hot_add_disk(rdev->mddev, rdev);
  2420. if (err) {
  2421. rdev->raid_disk = -1;
  2422. return err;
  2423. } else
  2424. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2425. if (sysfs_link_rdev(rdev->mddev, rdev))
  2426. /* failure here is OK */;
  2427. /* don't wakeup anyone, leave that to userspace. */
  2428. } else {
  2429. if (slot >= rdev->mddev->raid_disks &&
  2430. slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
  2431. return -ENOSPC;
  2432. rdev->raid_disk = slot;
  2433. /* assume it is working */
  2434. clear_bit(Faulty, &rdev->flags);
  2435. clear_bit(WriteMostly, &rdev->flags);
  2436. set_bit(In_sync, &rdev->flags);
  2437. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2438. }
  2439. return len;
  2440. }
  2441. static struct rdev_sysfs_entry rdev_slot =
  2442. __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
  2443. static ssize_t
  2444. offset_show(struct md_rdev *rdev, char *page)
  2445. {
  2446. return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
  2447. }
  2448. static ssize_t
  2449. offset_store(struct md_rdev *rdev, const char *buf, size_t len)
  2450. {
  2451. unsigned long long offset;
  2452. if (kstrtoull(buf, 10, &offset) < 0)
  2453. return -EINVAL;
  2454. if (rdev->mddev->pers && rdev->raid_disk >= 0)
  2455. return -EBUSY;
  2456. if (rdev->sectors && rdev->mddev->external)
  2457. /* Must set offset before size, so overlap checks
  2458. * can be sane */
  2459. return -EBUSY;
  2460. rdev->data_offset = offset;
  2461. rdev->new_data_offset = offset;
  2462. return len;
  2463. }
  2464. static struct rdev_sysfs_entry rdev_offset =
  2465. __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
  2466. static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
  2467. {
  2468. return sprintf(page, "%llu\n",
  2469. (unsigned long long)rdev->new_data_offset);
  2470. }
  2471. static ssize_t new_offset_store(struct md_rdev *rdev,
  2472. const char *buf, size_t len)
  2473. {
  2474. unsigned long long new_offset;
  2475. struct mddev *mddev = rdev->mddev;
  2476. if (kstrtoull(buf, 10, &new_offset) < 0)
  2477. return -EINVAL;
  2478. if (mddev->sync_thread ||
  2479. test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
  2480. return -EBUSY;
  2481. if (new_offset == rdev->data_offset)
  2482. /* reset is always permitted */
  2483. ;
  2484. else if (new_offset > rdev->data_offset) {
  2485. /* must not push array size beyond rdev_sectors */
  2486. if (new_offset - rdev->data_offset
  2487. + mddev->dev_sectors > rdev->sectors)
  2488. return -E2BIG;
  2489. }
  2490. /* Metadata worries about other space details. */
  2491. /* decreasing the offset is inconsistent with a backwards
  2492. * reshape.
  2493. */
  2494. if (new_offset < rdev->data_offset &&
  2495. mddev->reshape_backwards)
  2496. return -EINVAL;
  2497. /* Increasing offset is inconsistent with forwards
  2498. * reshape. reshape_direction should be set to
  2499. * 'backwards' first.
  2500. */
  2501. if (new_offset > rdev->data_offset &&
  2502. !mddev->reshape_backwards)
  2503. return -EINVAL;
  2504. if (mddev->pers && mddev->persistent &&
  2505. !super_types[mddev->major_version]
  2506. .allow_new_offset(rdev, new_offset))
  2507. return -E2BIG;
  2508. rdev->new_data_offset = new_offset;
  2509. if (new_offset > rdev->data_offset)
  2510. mddev->reshape_backwards = 1;
  2511. else if (new_offset < rdev->data_offset)
  2512. mddev->reshape_backwards = 0;
  2513. return len;
  2514. }
  2515. static struct rdev_sysfs_entry rdev_new_offset =
  2516. __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
  2517. static ssize_t
  2518. rdev_size_show(struct md_rdev *rdev, char *page)
  2519. {
  2520. return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
  2521. }
  2522. static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
  2523. {
  2524. /* check if two start/length pairs overlap */
  2525. if (s1+l1 <= s2)
  2526. return 0;
  2527. if (s2+l2 <= s1)
  2528. return 0;
  2529. return 1;
  2530. }
  2531. static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
  2532. {
  2533. unsigned long long blocks;
  2534. sector_t new;
  2535. if (kstrtoull(buf, 10, &blocks) < 0)
  2536. return -EINVAL;
  2537. if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
  2538. return -EINVAL; /* sector conversion overflow */
  2539. new = blocks * 2;
  2540. if (new != blocks * 2)
  2541. return -EINVAL; /* unsigned long long to sector_t overflow */
  2542. *sectors = new;
  2543. return 0;
  2544. }
  2545. static ssize_t
  2546. rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
  2547. {
  2548. struct mddev *my_mddev = rdev->mddev;
  2549. sector_t oldsectors = rdev->sectors;
  2550. sector_t sectors;
  2551. if (strict_blocks_to_sectors(buf, &sectors) < 0)
  2552. return -EINVAL;
  2553. if (rdev->data_offset != rdev->new_data_offset)
  2554. return -EINVAL; /* too confusing */
  2555. if (my_mddev->pers && rdev->raid_disk >= 0) {
  2556. if (my_mddev->persistent) {
  2557. sectors = super_types[my_mddev->major_version].
  2558. rdev_size_change(rdev, sectors);
  2559. if (!sectors)
  2560. return -EBUSY;
  2561. } else if (!sectors)
  2562. sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
  2563. rdev->data_offset;
  2564. if (!my_mddev->pers->resize)
  2565. /* Cannot change size for RAID0 or Linear etc */
  2566. return -EINVAL;
  2567. }
  2568. if (sectors < my_mddev->dev_sectors)
  2569. return -EINVAL; /* component must fit device */
  2570. rdev->sectors = sectors;
  2571. if (sectors > oldsectors && my_mddev->external) {
  2572. /* Need to check that all other rdevs with the same
  2573. * ->bdev do not overlap. 'rcu' is sufficient to walk
  2574. * the rdev lists safely.
  2575. * This check does not provide a hard guarantee, it
  2576. * just helps avoid dangerous mistakes.
  2577. */
  2578. struct mddev *mddev;
  2579. int overlap = 0;
  2580. struct list_head *tmp;
  2581. rcu_read_lock();
  2582. for_each_mddev(mddev, tmp) {
  2583. struct md_rdev *rdev2;
  2584. rdev_for_each(rdev2, mddev)
  2585. if (rdev->bdev == rdev2->bdev &&
  2586. rdev != rdev2 &&
  2587. overlaps(rdev->data_offset, rdev->sectors,
  2588. rdev2->data_offset,
  2589. rdev2->sectors)) {
  2590. overlap = 1;
  2591. break;
  2592. }
  2593. if (overlap) {
  2594. mddev_put(mddev);
  2595. break;
  2596. }
  2597. }
  2598. rcu_read_unlock();
  2599. if (overlap) {
  2600. /* Someone else could have slipped in a size
  2601. * change here, but doing so is just silly.
  2602. * We put oldsectors back because we *know* it is
  2603. * safe, and trust userspace not to race with
  2604. * itself
  2605. */
  2606. rdev->sectors = oldsectors;
  2607. return -EBUSY;
  2608. }
  2609. }
  2610. return len;
  2611. }
  2612. static struct rdev_sysfs_entry rdev_size =
  2613. __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
  2614. static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
  2615. {
  2616. unsigned long long recovery_start = rdev->recovery_offset;
  2617. if (test_bit(In_sync, &rdev->flags) ||
  2618. recovery_start == MaxSector)
  2619. return sprintf(page, "none\n");
  2620. return sprintf(page, "%llu\n", recovery_start);
  2621. }
  2622. static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
  2623. {
  2624. unsigned long long recovery_start;
  2625. if (cmd_match(buf, "none"))
  2626. recovery_start = MaxSector;
  2627. else if (kstrtoull(buf, 10, &recovery_start))
  2628. return -EINVAL;
  2629. if (rdev->mddev->pers &&
  2630. rdev->raid_disk >= 0)
  2631. return -EBUSY;
  2632. rdev->recovery_offset = recovery_start;
  2633. if (recovery_start == MaxSector)
  2634. set_bit(In_sync, &rdev->flags);
  2635. else
  2636. clear_bit(In_sync, &rdev->flags);
  2637. return len;
  2638. }
  2639. static struct rdev_sysfs_entry rdev_recovery_start =
  2640. __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
  2641. static ssize_t
  2642. badblocks_show(struct badblocks *bb, char *page, int unack);
  2643. static ssize_t
  2644. badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
  2645. static ssize_t bb_show(struct md_rdev *rdev, char *page)
  2646. {
  2647. return badblocks_show(&rdev->badblocks, page, 0);
  2648. }
  2649. static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
  2650. {
  2651. int rv = badblocks_store(&rdev->badblocks, page, len, 0);
  2652. /* Maybe that ack was all we needed */
  2653. if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
  2654. wake_up(&rdev->blocked_wait);
  2655. return rv;
  2656. }
  2657. static struct rdev_sysfs_entry rdev_bad_blocks =
  2658. __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
  2659. static ssize_t ubb_show(struct md_rdev *rdev, char *page)
  2660. {
  2661. return badblocks_show(&rdev->badblocks, page, 1);
  2662. }
  2663. static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
  2664. {
  2665. return badblocks_store(&rdev->badblocks, page, len, 1);
  2666. }
  2667. static struct rdev_sysfs_entry rdev_unack_bad_blocks =
  2668. __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
  2669. static struct attribute *rdev_default_attrs[] = {
  2670. &rdev_state.attr,
  2671. &rdev_errors.attr,
  2672. &rdev_slot.attr,
  2673. &rdev_offset.attr,
  2674. &rdev_new_offset.attr,
  2675. &rdev_size.attr,
  2676. &rdev_recovery_start.attr,
  2677. &rdev_bad_blocks.attr,
  2678. &rdev_unack_bad_blocks.attr,
  2679. NULL,
  2680. };
  2681. static ssize_t
  2682. rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  2683. {
  2684. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  2685. struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
  2686. if (!entry->show)
  2687. return -EIO;
  2688. if (!rdev->mddev)
  2689. return -EBUSY;
  2690. return entry->show(rdev, page);
  2691. }
  2692. static ssize_t
  2693. rdev_attr_store(struct kobject *kobj, struct attribute *attr,
  2694. const char *page, size_t length)
  2695. {
  2696. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  2697. struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
  2698. ssize_t rv;
  2699. struct mddev *mddev = rdev->mddev;
  2700. if (!entry->store)
  2701. return -EIO;
  2702. if (!capable(CAP_SYS_ADMIN))
  2703. return -EACCES;
  2704. rv = mddev ? mddev_lock(mddev): -EBUSY;
  2705. if (!rv) {
  2706. if (rdev->mddev == NULL)
  2707. rv = -EBUSY;
  2708. else
  2709. rv = entry->store(rdev, page, length);
  2710. mddev_unlock(mddev);
  2711. }
  2712. return rv;
  2713. }
  2714. static void rdev_free(struct kobject *ko)
  2715. {
  2716. struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
  2717. kfree(rdev);
  2718. }
  2719. static const struct sysfs_ops rdev_sysfs_ops = {
  2720. .show = rdev_attr_show,
  2721. .store = rdev_attr_store,
  2722. };
  2723. static struct kobj_type rdev_ktype = {
  2724. .release = rdev_free,
  2725. .sysfs_ops = &rdev_sysfs_ops,
  2726. .default_attrs = rdev_default_attrs,
  2727. };
  2728. int md_rdev_init(struct md_rdev *rdev)
  2729. {
  2730. rdev->desc_nr = -1;
  2731. rdev->saved_raid_disk = -1;
  2732. rdev->raid_disk = -1;
  2733. rdev->flags = 0;
  2734. rdev->data_offset = 0;
  2735. rdev->new_data_offset = 0;
  2736. rdev->sb_events = 0;
  2737. rdev->last_read_error.tv_sec = 0;
  2738. rdev->last_read_error.tv_nsec = 0;
  2739. rdev->sb_loaded = 0;
  2740. rdev->bb_page = NULL;
  2741. atomic_set(&rdev->nr_pending, 0);
  2742. atomic_set(&rdev->read_errors, 0);
  2743. atomic_set(&rdev->corrected_errors, 0);
  2744. INIT_LIST_HEAD(&rdev->same_set);
  2745. init_waitqueue_head(&rdev->blocked_wait);
  2746. /* Add space to store bad block list.
  2747. * This reserves the space even on arrays where it cannot
  2748. * be used - I wonder if that matters
  2749. */
  2750. rdev->badblocks.count = 0;
  2751. rdev->badblocks.shift = -1; /* disabled until explicitly enabled */
  2752. rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2753. seqlock_init(&rdev->badblocks.lock);
  2754. if (rdev->badblocks.page == NULL)
  2755. return -ENOMEM;
  2756. return 0;
  2757. }
  2758. EXPORT_SYMBOL_GPL(md_rdev_init);
  2759. /*
  2760. * Import a device. If 'super_format' >= 0, then sanity check the superblock
  2761. *
  2762. * mark the device faulty if:
  2763. *
  2764. * - the device is nonexistent (zero size)
  2765. * - the device has no valid superblock
  2766. *
  2767. * a faulty rdev _never_ has rdev->sb set.
  2768. */
  2769. static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
  2770. {
  2771. char b[BDEVNAME_SIZE];
  2772. int err;
  2773. struct md_rdev *rdev;
  2774. sector_t size;
  2775. rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
  2776. if (!rdev) {
  2777. printk(KERN_ERR "md: could not alloc mem for new device!\n");
  2778. return ERR_PTR(-ENOMEM);
  2779. }
  2780. err = md_rdev_init(rdev);
  2781. if (err)
  2782. goto abort_free;
  2783. err = alloc_disk_sb(rdev);
  2784. if (err)
  2785. goto abort_free;
  2786. err = lock_rdev(rdev, newdev, super_format == -2);
  2787. if (err)
  2788. goto abort_free;
  2789. kobject_init(&rdev->kobj, &rdev_ktype);
  2790. size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
  2791. if (!size) {
  2792. printk(KERN_WARNING
  2793. "md: %s has zero or unknown size, marking faulty!\n",
  2794. bdevname(rdev->bdev,b));
  2795. err = -EINVAL;
  2796. goto abort_free;
  2797. }
  2798. if (super_format >= 0) {
  2799. err = super_types[super_format].
  2800. load_super(rdev, NULL, super_minor);
  2801. if (err == -EINVAL) {
  2802. printk(KERN_WARNING
  2803. "md: %s does not have a valid v%d.%d "
  2804. "superblock, not importing!\n",
  2805. bdevname(rdev->bdev,b),
  2806. super_format, super_minor);
  2807. goto abort_free;
  2808. }
  2809. if (err < 0) {
  2810. printk(KERN_WARNING
  2811. "md: could not read %s's sb, not importing!\n",
  2812. bdevname(rdev->bdev,b));
  2813. goto abort_free;
  2814. }
  2815. }
  2816. return rdev;
  2817. abort_free:
  2818. if (rdev->bdev)
  2819. unlock_rdev(rdev);
  2820. md_rdev_clear(rdev);
  2821. kfree(rdev);
  2822. return ERR_PTR(err);
  2823. }
  2824. /*
  2825. * Check a full RAID array for plausibility
  2826. */
  2827. static void analyze_sbs(struct mddev *mddev)
  2828. {
  2829. int i;
  2830. struct md_rdev *rdev, *freshest, *tmp;
  2831. char b[BDEVNAME_SIZE];
  2832. freshest = NULL;
  2833. rdev_for_each_safe(rdev, tmp, mddev)
  2834. switch (super_types[mddev->major_version].
  2835. load_super(rdev, freshest, mddev->minor_version)) {
  2836. case 1:
  2837. freshest = rdev;
  2838. break;
  2839. case 0:
  2840. break;
  2841. default:
  2842. printk( KERN_ERR \
  2843. "md: fatal superblock inconsistency in %s"
  2844. " -- removing from array\n",
  2845. bdevname(rdev->bdev,b));
  2846. md_kick_rdev_from_array(rdev);
  2847. }
  2848. super_types[mddev->major_version].
  2849. validate_super(mddev, freshest);
  2850. i = 0;
  2851. rdev_for_each_safe(rdev, tmp, mddev) {
  2852. if (mddev->max_disks &&
  2853. (rdev->desc_nr >= mddev->max_disks ||
  2854. i > mddev->max_disks)) {
  2855. printk(KERN_WARNING
  2856. "md: %s: %s: only %d devices permitted\n",
  2857. mdname(mddev), bdevname(rdev->bdev, b),
  2858. mddev->max_disks);
  2859. md_kick_rdev_from_array(rdev);
  2860. continue;
  2861. }
  2862. if (rdev != freshest) {
  2863. if (super_types[mddev->major_version].
  2864. validate_super(mddev, rdev)) {
  2865. printk(KERN_WARNING "md: kicking non-fresh %s"
  2866. " from array!\n",
  2867. bdevname(rdev->bdev,b));
  2868. md_kick_rdev_from_array(rdev);
  2869. continue;
  2870. }
  2871. /* No device should have a Candidate flag
  2872. * when reading devices
  2873. */
  2874. if (test_bit(Candidate, &rdev->flags)) {
  2875. pr_info("md: kicking Cluster Candidate %s from array!\n",
  2876. bdevname(rdev->bdev, b));
  2877. md_kick_rdev_from_array(rdev);
  2878. }
  2879. }
  2880. if (mddev->level == LEVEL_MULTIPATH) {
  2881. rdev->desc_nr = i++;
  2882. rdev->raid_disk = rdev->desc_nr;
  2883. set_bit(In_sync, &rdev->flags);
  2884. } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
  2885. rdev->raid_disk = -1;
  2886. clear_bit(In_sync, &rdev->flags);
  2887. }
  2888. }
  2889. }
  2890. /* Read a fixed-point number.
  2891. * Numbers in sysfs attributes should be in "standard" units where
  2892. * possible, so time should be in seconds.
  2893. * However we internally use a a much smaller unit such as
  2894. * milliseconds or jiffies.
  2895. * This function takes a decimal number with a possible fractional
  2896. * component, and produces an integer which is the result of
  2897. * multiplying that number by 10^'scale'.
  2898. * all without any floating-point arithmetic.
  2899. */
  2900. int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
  2901. {
  2902. unsigned long result = 0;
  2903. long decimals = -1;
  2904. while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
  2905. if (*cp == '.')
  2906. decimals = 0;
  2907. else if (decimals < scale) {
  2908. unsigned int value;
  2909. value = *cp - '0';
  2910. result = result * 10 + value;
  2911. if (decimals >= 0)
  2912. decimals++;
  2913. }
  2914. cp++;
  2915. }
  2916. if (*cp == '\n')
  2917. cp++;
  2918. if (*cp)
  2919. return -EINVAL;
  2920. if (decimals < 0)
  2921. decimals = 0;
  2922. while (decimals < scale) {
  2923. result *= 10;
  2924. decimals ++;
  2925. }
  2926. *res = result;
  2927. return 0;
  2928. }
  2929. static void md_safemode_timeout(unsigned long data);
  2930. static ssize_t
  2931. safe_delay_show(struct mddev *mddev, char *page)
  2932. {
  2933. int msec = (mddev->safemode_delay*1000)/HZ;
  2934. return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
  2935. }
  2936. static ssize_t
  2937. safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
  2938. {
  2939. unsigned long msec;
  2940. if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
  2941. return -EINVAL;
  2942. if (msec == 0)
  2943. mddev->safemode_delay = 0;
  2944. else {
  2945. unsigned long old_delay = mddev->safemode_delay;
  2946. unsigned long new_delay = (msec*HZ)/1000;
  2947. if (new_delay == 0)
  2948. new_delay = 1;
  2949. mddev->safemode_delay = new_delay;
  2950. if (new_delay < old_delay || old_delay == 0)
  2951. mod_timer(&mddev->safemode_timer, jiffies+1);
  2952. }
  2953. return len;
  2954. }
  2955. static struct md_sysfs_entry md_safe_delay =
  2956. __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
  2957. static ssize_t
  2958. level_show(struct mddev *mddev, char *page)
  2959. {
  2960. struct md_personality *p;
  2961. int ret;
  2962. spin_lock(&mddev->lock);
  2963. p = mddev->pers;
  2964. if (p)
  2965. ret = sprintf(page, "%s\n", p->name);
  2966. else if (mddev->clevel[0])
  2967. ret = sprintf(page, "%s\n", mddev->clevel);
  2968. else if (mddev->level != LEVEL_NONE)
  2969. ret = sprintf(page, "%d\n", mddev->level);
  2970. else
  2971. ret = 0;
  2972. spin_unlock(&mddev->lock);
  2973. return ret;
  2974. }
  2975. static ssize_t
  2976. level_store(struct mddev *mddev, const char *buf, size_t len)
  2977. {
  2978. char clevel[16];
  2979. ssize_t rv;
  2980. size_t slen = len;
  2981. struct md_personality *pers, *oldpers;
  2982. long level;
  2983. void *priv, *oldpriv;
  2984. struct md_rdev *rdev;
  2985. if (slen == 0 || slen >= sizeof(clevel))
  2986. return -EINVAL;
  2987. rv = mddev_lock(mddev);
  2988. if (rv)
  2989. return rv;
  2990. if (mddev->pers == NULL) {
  2991. strncpy(mddev->clevel, buf, slen);
  2992. if (mddev->clevel[slen-1] == '\n')
  2993. slen--;
  2994. mddev->clevel[slen] = 0;
  2995. mddev->level = LEVEL_NONE;
  2996. rv = len;
  2997. goto out_unlock;
  2998. }
  2999. rv = -EROFS;
  3000. if (mddev->ro)
  3001. goto out_unlock;
  3002. /* request to change the personality. Need to ensure:
  3003. * - array is not engaged in resync/recovery/reshape
  3004. * - old personality can be suspended
  3005. * - new personality will access other array.
  3006. */
  3007. rv = -EBUSY;
  3008. if (mddev->sync_thread ||
  3009. test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  3010. mddev->reshape_position != MaxSector ||
  3011. mddev->sysfs_active)
  3012. goto out_unlock;
  3013. rv = -EINVAL;
  3014. if (!mddev->pers->quiesce) {
  3015. printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
  3016. mdname(mddev), mddev->pers->name);
  3017. goto out_unlock;
  3018. }
  3019. /* Now find the new personality */
  3020. strncpy(clevel, buf, slen);
  3021. if (clevel[slen-1] == '\n')
  3022. slen--;
  3023. clevel[slen] = 0;
  3024. if (kstrtol(clevel, 10, &level))
  3025. level = LEVEL_NONE;
  3026. if (request_module("md-%s", clevel) != 0)
  3027. request_module("md-level-%s", clevel);
  3028. spin_lock(&pers_lock);
  3029. pers = find_pers(level, clevel);
  3030. if (!pers || !try_module_get(pers->owner)) {
  3031. spin_unlock(&pers_lock);
  3032. printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
  3033. rv = -EINVAL;
  3034. goto out_unlock;
  3035. }
  3036. spin_unlock(&pers_lock);
  3037. if (pers == mddev->pers) {
  3038. /* Nothing to do! */
  3039. module_put(pers->owner);
  3040. rv = len;
  3041. goto out_unlock;
  3042. }
  3043. if (!pers->takeover) {
  3044. module_put(pers->owner);
  3045. printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
  3046. mdname(mddev), clevel);
  3047. rv = -EINVAL;
  3048. goto out_unlock;
  3049. }
  3050. rdev_for_each(rdev, mddev)
  3051. rdev->new_raid_disk = rdev->raid_disk;
  3052. /* ->takeover must set new_* and/or delta_disks
  3053. * if it succeeds, and may set them when it fails.
  3054. */
  3055. priv = pers->takeover(mddev);
  3056. if (IS_ERR(priv)) {
  3057. mddev->new_level = mddev->level;
  3058. mddev->new_layout = mddev->layout;
  3059. mddev->new_chunk_sectors = mddev->chunk_sectors;
  3060. mddev->raid_disks -= mddev->delta_disks;
  3061. mddev->delta_disks = 0;
  3062. mddev->reshape_backwards = 0;
  3063. module_put(pers->owner);
  3064. printk(KERN_WARNING "md: %s: %s would not accept array\n",
  3065. mdname(mddev), clevel);
  3066. rv = PTR_ERR(priv);
  3067. goto out_unlock;
  3068. }
  3069. /* Looks like we have a winner */
  3070. mddev_suspend(mddev);
  3071. mddev_detach(mddev);
  3072. spin_lock(&mddev->lock);
  3073. oldpers = mddev->pers;
  3074. oldpriv = mddev->private;
  3075. mddev->pers = pers;
  3076. mddev->private = priv;
  3077. strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
  3078. mddev->level = mddev->new_level;
  3079. mddev->layout = mddev->new_layout;
  3080. mddev->chunk_sectors = mddev->new_chunk_sectors;
  3081. mddev->delta_disks = 0;
  3082. mddev->reshape_backwards = 0;
  3083. mddev->degraded = 0;
  3084. spin_unlock(&mddev->lock);
  3085. if (oldpers->sync_request == NULL &&
  3086. mddev->external) {
  3087. /* We are converting from a no-redundancy array
  3088. * to a redundancy array and metadata is managed
  3089. * externally so we need to be sure that writes
  3090. * won't block due to a need to transition
  3091. * clean->dirty
  3092. * until external management is started.
  3093. */
  3094. mddev->in_sync = 0;
  3095. mddev->safemode_delay = 0;
  3096. mddev->safemode = 0;
  3097. }
  3098. oldpers->free(mddev, oldpriv);
  3099. if (oldpers->sync_request == NULL &&
  3100. pers->sync_request != NULL) {
  3101. /* need to add the md_redundancy_group */
  3102. if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
  3103. printk(KERN_WARNING
  3104. "md: cannot register extra attributes for %s\n",
  3105. mdname(mddev));
  3106. mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
  3107. }
  3108. if (oldpers->sync_request != NULL &&
  3109. pers->sync_request == NULL) {
  3110. /* need to remove the md_redundancy_group */
  3111. if (mddev->to_remove == NULL)
  3112. mddev->to_remove = &md_redundancy_group;
  3113. }
  3114. rdev_for_each(rdev, mddev) {
  3115. if (rdev->raid_disk < 0)
  3116. continue;
  3117. if (rdev->new_raid_disk >= mddev->raid_disks)
  3118. rdev->new_raid_disk = -1;
  3119. if (rdev->new_raid_disk == rdev->raid_disk)
  3120. continue;
  3121. sysfs_unlink_rdev(mddev, rdev);
  3122. }
  3123. rdev_for_each(rdev, mddev) {
  3124. if (rdev->raid_disk < 0)
  3125. continue;
  3126. if (rdev->new_raid_disk == rdev->raid_disk)
  3127. continue;
  3128. rdev->raid_disk = rdev->new_raid_disk;
  3129. if (rdev->raid_disk < 0)
  3130. clear_bit(In_sync, &rdev->flags);
  3131. else {
  3132. if (sysfs_link_rdev(mddev, rdev))
  3133. printk(KERN_WARNING "md: cannot register rd%d"
  3134. " for %s after level change\n",
  3135. rdev->raid_disk, mdname(mddev));
  3136. }
  3137. }
  3138. if (pers->sync_request == NULL) {
  3139. /* this is now an array without redundancy, so
  3140. * it must always be in_sync
  3141. */
  3142. mddev->in_sync = 1;
  3143. del_timer_sync(&mddev->safemode_timer);
  3144. }
  3145. blk_set_stacking_limits(&mddev->queue->limits);
  3146. pers->run(mddev);
  3147. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  3148. mddev_resume(mddev);
  3149. if (!mddev->thread)
  3150. md_update_sb(mddev, 1);
  3151. sysfs_notify(&mddev->kobj, NULL, "level");
  3152. md_new_event(mddev);
  3153. rv = len;
  3154. out_unlock:
  3155. mddev_unlock(mddev);
  3156. return rv;
  3157. }
  3158. static struct md_sysfs_entry md_level =
  3159. __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
  3160. static ssize_t
  3161. layout_show(struct mddev *mddev, char *page)
  3162. {
  3163. /* just a number, not meaningful for all levels */
  3164. if (mddev->reshape_position != MaxSector &&
  3165. mddev->layout != mddev->new_layout)
  3166. return sprintf(page, "%d (%d)\n",
  3167. mddev->new_layout, mddev->layout);
  3168. return sprintf(page, "%d\n", mddev->layout);
  3169. }
  3170. static ssize_t
  3171. layout_store(struct mddev *mddev, const char *buf, size_t len)
  3172. {
  3173. unsigned int n;
  3174. int err;
  3175. err = kstrtouint(buf, 10, &n);
  3176. if (err < 0)
  3177. return err;
  3178. err = mddev_lock(mddev);
  3179. if (err)
  3180. return err;
  3181. if (mddev->pers) {
  3182. if (mddev->pers->check_reshape == NULL)
  3183. err = -EBUSY;
  3184. else if (mddev->ro)
  3185. err = -EROFS;
  3186. else {
  3187. mddev->new_layout = n;
  3188. err = mddev->pers->check_reshape(mddev);
  3189. if (err)
  3190. mddev->new_layout = mddev->layout;
  3191. }
  3192. } else {
  3193. mddev->new_layout = n;
  3194. if (mddev->reshape_position == MaxSector)
  3195. mddev->layout = n;
  3196. }
  3197. mddev_unlock(mddev);
  3198. return err ?: len;
  3199. }
  3200. static struct md_sysfs_entry md_layout =
  3201. __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
  3202. static ssize_t
  3203. raid_disks_show(struct mddev *mddev, char *page)
  3204. {
  3205. if (mddev->raid_disks == 0)
  3206. return 0;
  3207. if (mddev->reshape_position != MaxSector &&
  3208. mddev->delta_disks != 0)
  3209. return sprintf(page, "%d (%d)\n", mddev->raid_disks,
  3210. mddev->raid_disks - mddev->delta_disks);
  3211. return sprintf(page, "%d\n", mddev->raid_disks);
  3212. }
  3213. static int update_raid_disks(struct mddev *mddev, int raid_disks);
  3214. static ssize_t
  3215. raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
  3216. {
  3217. unsigned int n;
  3218. int err;
  3219. err = kstrtouint(buf, 10, &n);
  3220. if (err < 0)
  3221. return err;
  3222. err = mddev_lock(mddev);
  3223. if (err)
  3224. return err;
  3225. if (mddev->pers)
  3226. err = update_raid_disks(mddev, n);
  3227. else if (mddev->reshape_position != MaxSector) {
  3228. struct md_rdev *rdev;
  3229. int olddisks = mddev->raid_disks - mddev->delta_disks;
  3230. err = -EINVAL;
  3231. rdev_for_each(rdev, mddev) {
  3232. if (olddisks < n &&
  3233. rdev->data_offset < rdev->new_data_offset)
  3234. goto out_unlock;
  3235. if (olddisks > n &&
  3236. rdev->data_offset > rdev->new_data_offset)
  3237. goto out_unlock;
  3238. }
  3239. err = 0;
  3240. mddev->delta_disks = n - olddisks;
  3241. mddev->raid_disks = n;
  3242. mddev->reshape_backwards = (mddev->delta_disks < 0);
  3243. } else
  3244. mddev->raid_disks = n;
  3245. out_unlock:
  3246. mddev_unlock(mddev);
  3247. return err ? err : len;
  3248. }
  3249. static struct md_sysfs_entry md_raid_disks =
  3250. __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
  3251. static ssize_t
  3252. chunk_size_show(struct mddev *mddev, char *page)
  3253. {
  3254. if (mddev->reshape_position != MaxSector &&
  3255. mddev->chunk_sectors != mddev->new_chunk_sectors)
  3256. return sprintf(page, "%d (%d)\n",
  3257. mddev->new_chunk_sectors << 9,
  3258. mddev->chunk_sectors << 9);
  3259. return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
  3260. }
  3261. static ssize_t
  3262. chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
  3263. {
  3264. unsigned long n;
  3265. int err;
  3266. err = kstrtoul(buf, 10, &n);
  3267. if (err < 0)
  3268. return err;
  3269. err = mddev_lock(mddev);
  3270. if (err)
  3271. return err;
  3272. if (mddev->pers) {
  3273. if (mddev->pers->check_reshape == NULL)
  3274. err = -EBUSY;
  3275. else if (mddev->ro)
  3276. err = -EROFS;
  3277. else {
  3278. mddev->new_chunk_sectors = n >> 9;
  3279. err = mddev->pers->check_reshape(mddev);
  3280. if (err)
  3281. mddev->new_chunk_sectors = mddev->chunk_sectors;
  3282. }
  3283. } else {
  3284. mddev->new_chunk_sectors = n >> 9;
  3285. if (mddev->reshape_position == MaxSector)
  3286. mddev->chunk_sectors = n >> 9;
  3287. }
  3288. mddev_unlock(mddev);
  3289. return err ?: len;
  3290. }
  3291. static struct md_sysfs_entry md_chunk_size =
  3292. __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
  3293. static ssize_t
  3294. resync_start_show(struct mddev *mddev, char *page)
  3295. {
  3296. if (mddev->recovery_cp == MaxSector)
  3297. return sprintf(page, "none\n");
  3298. return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
  3299. }
  3300. static ssize_t
  3301. resync_start_store(struct mddev *mddev, const char *buf, size_t len)
  3302. {
  3303. unsigned long long n;
  3304. int err;
  3305. if (cmd_match(buf, "none"))
  3306. n = MaxSector;
  3307. else {
  3308. err = kstrtoull(buf, 10, &n);
  3309. if (err < 0)
  3310. return err;
  3311. if (n != (sector_t)n)
  3312. return -EINVAL;
  3313. }
  3314. err = mddev_lock(mddev);
  3315. if (err)
  3316. return err;
  3317. if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  3318. err = -EBUSY;
  3319. if (!err) {
  3320. mddev->recovery_cp = n;
  3321. if (mddev->pers)
  3322. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  3323. }
  3324. mddev_unlock(mddev);
  3325. return err ?: len;
  3326. }
  3327. static struct md_sysfs_entry md_resync_start =
  3328. __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR,
  3329. resync_start_show, resync_start_store);
  3330. /*
  3331. * The array state can be:
  3332. *
  3333. * clear
  3334. * No devices, no size, no level
  3335. * Equivalent to STOP_ARRAY ioctl
  3336. * inactive
  3337. * May have some settings, but array is not active
  3338. * all IO results in error
  3339. * When written, doesn't tear down array, but just stops it
  3340. * suspended (not supported yet)
  3341. * All IO requests will block. The array can be reconfigured.
  3342. * Writing this, if accepted, will block until array is quiescent
  3343. * readonly
  3344. * no resync can happen. no superblocks get written.
  3345. * write requests fail
  3346. * read-auto
  3347. * like readonly, but behaves like 'clean' on a write request.
  3348. *
  3349. * clean - no pending writes, but otherwise active.
  3350. * When written to inactive array, starts without resync
  3351. * If a write request arrives then
  3352. * if metadata is known, mark 'dirty' and switch to 'active'.
  3353. * if not known, block and switch to write-pending
  3354. * If written to an active array that has pending writes, then fails.
  3355. * active
  3356. * fully active: IO and resync can be happening.
  3357. * When written to inactive array, starts with resync
  3358. *
  3359. * write-pending
  3360. * clean, but writes are blocked waiting for 'active' to be written.
  3361. *
  3362. * active-idle
  3363. * like active, but no writes have been seen for a while (100msec).
  3364. *
  3365. */
  3366. enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
  3367. write_pending, active_idle, bad_word};
  3368. static char *array_states[] = {
  3369. "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
  3370. "write-pending", "active-idle", NULL };
  3371. static int match_word(const char *word, char **list)
  3372. {
  3373. int n;
  3374. for (n=0; list[n]; n++)
  3375. if (cmd_match(word, list[n]))
  3376. break;
  3377. return n;
  3378. }
  3379. static ssize_t
  3380. array_state_show(struct mddev *mddev, char *page)
  3381. {
  3382. enum array_state st = inactive;
  3383. if (mddev->pers)
  3384. switch(mddev->ro) {
  3385. case 1:
  3386. st = readonly;
  3387. break;
  3388. case 2:
  3389. st = read_auto;
  3390. break;
  3391. case 0:
  3392. if (mddev->in_sync)
  3393. st = clean;
  3394. else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
  3395. st = write_pending;
  3396. else if (mddev->safemode)
  3397. st = active_idle;
  3398. else
  3399. st = active;
  3400. }
  3401. else {
  3402. if (list_empty(&mddev->disks) &&
  3403. mddev->raid_disks == 0 &&
  3404. mddev->dev_sectors == 0)
  3405. st = clear;
  3406. else
  3407. st = inactive;
  3408. }
  3409. return sprintf(page, "%s\n", array_states[st]);
  3410. }
  3411. static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
  3412. static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
  3413. static int do_md_run(struct mddev *mddev);
  3414. static int restart_array(struct mddev *mddev);
  3415. static ssize_t
  3416. array_state_store(struct mddev *mddev, const char *buf, size_t len)
  3417. {
  3418. int err;
  3419. enum array_state st = match_word(buf, array_states);
  3420. if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) {
  3421. /* don't take reconfig_mutex when toggling between
  3422. * clean and active
  3423. */
  3424. spin_lock(&mddev->lock);
  3425. if (st == active) {
  3426. restart_array(mddev);
  3427. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  3428. wake_up(&mddev->sb_wait);
  3429. err = 0;
  3430. } else /* st == clean */ {
  3431. restart_array(mddev);
  3432. if (atomic_read(&mddev->writes_pending) == 0) {
  3433. if (mddev->in_sync == 0) {
  3434. mddev->in_sync = 1;
  3435. if (mddev->safemode == 1)
  3436. mddev->safemode = 0;
  3437. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  3438. }
  3439. err = 0;
  3440. } else
  3441. err = -EBUSY;
  3442. }
  3443. spin_unlock(&mddev->lock);
  3444. return err ?: len;
  3445. }
  3446. err = mddev_lock(mddev);
  3447. if (err)
  3448. return err;
  3449. err = -EINVAL;
  3450. switch(st) {
  3451. case bad_word:
  3452. break;
  3453. case clear:
  3454. /* stopping an active array */
  3455. err = do_md_stop(mddev, 0, NULL);
  3456. break;
  3457. case inactive:
  3458. /* stopping an active array */
  3459. if (mddev->pers)
  3460. err = do_md_stop(mddev, 2, NULL);
  3461. else
  3462. err = 0; /* already inactive */
  3463. break;
  3464. case suspended:
  3465. break; /* not supported yet */
  3466. case readonly:
  3467. if (mddev->pers)
  3468. err = md_set_readonly(mddev, NULL);
  3469. else {
  3470. mddev->ro = 1;
  3471. set_disk_ro(mddev->gendisk, 1);
  3472. err = do_md_run(mddev);
  3473. }
  3474. break;
  3475. case read_auto:
  3476. if (mddev->pers) {
  3477. if (mddev->ro == 0)
  3478. err = md_set_readonly(mddev, NULL);
  3479. else if (mddev->ro == 1)
  3480. err = restart_array(mddev);
  3481. if (err == 0) {
  3482. mddev->ro = 2;
  3483. set_disk_ro(mddev->gendisk, 0);
  3484. }
  3485. } else {
  3486. mddev->ro = 2;
  3487. err = do_md_run(mddev);
  3488. }
  3489. break;
  3490. case clean:
  3491. if (mddev->pers) {
  3492. restart_array(mddev);
  3493. spin_lock(&mddev->lock);
  3494. if (atomic_read(&mddev->writes_pending) == 0) {
  3495. if (mddev->in_sync == 0) {
  3496. mddev->in_sync = 1;
  3497. if (mddev->safemode == 1)
  3498. mddev->safemode = 0;
  3499. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  3500. }
  3501. err = 0;
  3502. } else
  3503. err = -EBUSY;
  3504. spin_unlock(&mddev->lock);
  3505. } else
  3506. err = -EINVAL;
  3507. break;
  3508. case active:
  3509. if (mddev->pers) {
  3510. restart_array(mddev);
  3511. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  3512. wake_up(&mddev->sb_wait);
  3513. err = 0;
  3514. } else {
  3515. mddev->ro = 0;
  3516. set_disk_ro(mddev->gendisk, 0);
  3517. err = do_md_run(mddev);
  3518. }
  3519. break;
  3520. case write_pending:
  3521. case active_idle:
  3522. /* these cannot be set */
  3523. break;
  3524. }
  3525. if (!err) {
  3526. if (mddev->hold_active == UNTIL_IOCTL)
  3527. mddev->hold_active = 0;
  3528. sysfs_notify_dirent_safe(mddev->sysfs_state);
  3529. }
  3530. mddev_unlock(mddev);
  3531. return err ?: len;
  3532. }
  3533. static struct md_sysfs_entry md_array_state =
  3534. __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
  3535. static ssize_t
  3536. max_corrected_read_errors_show(struct mddev *mddev, char *page) {
  3537. return sprintf(page, "%d\n",
  3538. atomic_read(&mddev->max_corr_read_errors));
  3539. }
  3540. static ssize_t
  3541. max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
  3542. {
  3543. unsigned int n;
  3544. int rv;
  3545. rv = kstrtouint(buf, 10, &n);
  3546. if (rv < 0)
  3547. return rv;
  3548. atomic_set(&mddev->max_corr_read_errors, n);
  3549. return len;
  3550. }
  3551. static struct md_sysfs_entry max_corr_read_errors =
  3552. __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
  3553. max_corrected_read_errors_store);
  3554. static ssize_t
  3555. null_show(struct mddev *mddev, char *page)
  3556. {
  3557. return -EINVAL;
  3558. }
  3559. static ssize_t
  3560. new_dev_store(struct mddev *mddev, const char *buf, size_t len)
  3561. {
  3562. /* buf must be %d:%d\n? giving major and minor numbers */
  3563. /* The new device is added to the array.
  3564. * If the array has a persistent superblock, we read the
  3565. * superblock to initialise info and check validity.
  3566. * Otherwise, only checking done is that in bind_rdev_to_array,
  3567. * which mainly checks size.
  3568. */
  3569. char *e;
  3570. int major = simple_strtoul(buf, &e, 10);
  3571. int minor;
  3572. dev_t dev;
  3573. struct md_rdev *rdev;
  3574. int err;
  3575. if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
  3576. return -EINVAL;
  3577. minor = simple_strtoul(e+1, &e, 10);
  3578. if (*e && *e != '\n')
  3579. return -EINVAL;
  3580. dev = MKDEV(major, minor);
  3581. if (major != MAJOR(dev) ||
  3582. minor != MINOR(dev))
  3583. return -EOVERFLOW;
  3584. flush_workqueue(md_misc_wq);
  3585. err = mddev_lock(mddev);
  3586. if (err)
  3587. return err;
  3588. if (mddev->persistent) {
  3589. rdev = md_import_device(dev, mddev->major_version,
  3590. mddev->minor_version);
  3591. if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
  3592. struct md_rdev *rdev0
  3593. = list_entry(mddev->disks.next,
  3594. struct md_rdev, same_set);
  3595. err = super_types[mddev->major_version]
  3596. .load_super(rdev, rdev0, mddev->minor_version);
  3597. if (err < 0)
  3598. goto out;
  3599. }
  3600. } else if (mddev->external)
  3601. rdev = md_import_device(dev, -2, -1);
  3602. else
  3603. rdev = md_import_device(dev, -1, -1);
  3604. if (IS_ERR(rdev)) {
  3605. mddev_unlock(mddev);
  3606. return PTR_ERR(rdev);
  3607. }
  3608. err = bind_rdev_to_array(rdev, mddev);
  3609. out:
  3610. if (err)
  3611. export_rdev(rdev);
  3612. mddev_unlock(mddev);
  3613. return err ? err : len;
  3614. }
  3615. static struct md_sysfs_entry md_new_device =
  3616. __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
  3617. static ssize_t
  3618. bitmap_store(struct mddev *mddev, const char *buf, size_t len)
  3619. {
  3620. char *end;
  3621. unsigned long chunk, end_chunk;
  3622. int err;
  3623. err = mddev_lock(mddev);
  3624. if (err)
  3625. return err;
  3626. if (!mddev->bitmap)
  3627. goto out;
  3628. /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
  3629. while (*buf) {
  3630. chunk = end_chunk = simple_strtoul(buf, &end, 0);
  3631. if (buf == end) break;
  3632. if (*end == '-') { /* range */
  3633. buf = end + 1;
  3634. end_chunk = simple_strtoul(buf, &end, 0);
  3635. if (buf == end) break;
  3636. }
  3637. if (*end && !isspace(*end)) break;
  3638. bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
  3639. buf = skip_spaces(end);
  3640. }
  3641. bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
  3642. out:
  3643. mddev_unlock(mddev);
  3644. return len;
  3645. }
  3646. static struct md_sysfs_entry md_bitmap =
  3647. __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
  3648. static ssize_t
  3649. size_show(struct mddev *mddev, char *page)
  3650. {
  3651. return sprintf(page, "%llu\n",
  3652. (unsigned long long)mddev->dev_sectors / 2);
  3653. }
  3654. static int update_size(struct mddev *mddev, sector_t num_sectors);
  3655. static ssize_t
  3656. size_store(struct mddev *mddev, const char *buf, size_t len)
  3657. {
  3658. /* If array is inactive, we can reduce the component size, but
  3659. * not increase it (except from 0).
  3660. * If array is active, we can try an on-line resize
  3661. */
  3662. sector_t sectors;
  3663. int err = strict_blocks_to_sectors(buf, &sectors);
  3664. if (err < 0)
  3665. return err;
  3666. err = mddev_lock(mddev);
  3667. if (err)
  3668. return err;
  3669. if (mddev->pers) {
  3670. if (mddev_is_clustered(mddev))
  3671. md_cluster_ops->metadata_update_start(mddev);
  3672. err = update_size(mddev, sectors);
  3673. md_update_sb(mddev, 1);
  3674. if (mddev_is_clustered(mddev))
  3675. md_cluster_ops->metadata_update_finish(mddev);
  3676. } else {
  3677. if (mddev->dev_sectors == 0 ||
  3678. mddev->dev_sectors > sectors)
  3679. mddev->dev_sectors = sectors;
  3680. else
  3681. err = -ENOSPC;
  3682. }
  3683. mddev_unlock(mddev);
  3684. return err ? err : len;
  3685. }
  3686. static struct md_sysfs_entry md_size =
  3687. __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
  3688. /* Metadata version.
  3689. * This is one of
  3690. * 'none' for arrays with no metadata (good luck...)
  3691. * 'external' for arrays with externally managed metadata,
  3692. * or N.M for internally known formats
  3693. */
  3694. static ssize_t
  3695. metadata_show(struct mddev *mddev, char *page)
  3696. {
  3697. if (mddev->persistent)
  3698. return sprintf(page, "%d.%d\n",
  3699. mddev->major_version, mddev->minor_version);
  3700. else if (mddev->external)
  3701. return sprintf(page, "external:%s\n", mddev->metadata_type);
  3702. else
  3703. return sprintf(page, "none\n");
  3704. }
  3705. static ssize_t
  3706. metadata_store(struct mddev *mddev, const char *buf, size_t len)
  3707. {
  3708. int major, minor;
  3709. char *e;
  3710. int err;
  3711. /* Changing the details of 'external' metadata is
  3712. * always permitted. Otherwise there must be
  3713. * no devices attached to the array.
  3714. */
  3715. err = mddev_lock(mddev);
  3716. if (err)
  3717. return err;
  3718. err = -EBUSY;
  3719. if (mddev->external && strncmp(buf, "external:", 9) == 0)
  3720. ;
  3721. else if (!list_empty(&mddev->disks))
  3722. goto out_unlock;
  3723. err = 0;
  3724. if (cmd_match(buf, "none")) {
  3725. mddev->persistent = 0;
  3726. mddev->external = 0;
  3727. mddev->major_version = 0;
  3728. mddev->minor_version = 90;
  3729. goto out_unlock;
  3730. }
  3731. if (strncmp(buf, "external:", 9) == 0) {
  3732. size_t namelen = len-9;
  3733. if (namelen >= sizeof(mddev->metadata_type))
  3734. namelen = sizeof(mddev->metadata_type)-1;
  3735. strncpy(mddev->metadata_type, buf+9, namelen);
  3736. mddev->metadata_type[namelen] = 0;
  3737. if (namelen && mddev->metadata_type[namelen-1] == '\n')
  3738. mddev->metadata_type[--namelen] = 0;
  3739. mddev->persistent = 0;
  3740. mddev->external = 1;
  3741. mddev->major_version = 0;
  3742. mddev->minor_version = 90;
  3743. goto out_unlock;
  3744. }
  3745. major = simple_strtoul(buf, &e, 10);
  3746. err = -EINVAL;
  3747. if (e==buf || *e != '.')
  3748. goto out_unlock;
  3749. buf = e+1;
  3750. minor = simple_strtoul(buf, &e, 10);
  3751. if (e==buf || (*e && *e != '\n') )
  3752. goto out_unlock;
  3753. err = -ENOENT;
  3754. if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
  3755. goto out_unlock;
  3756. mddev->major_version = major;
  3757. mddev->minor_version = minor;
  3758. mddev->persistent = 1;
  3759. mddev->external = 0;
  3760. err = 0;
  3761. out_unlock:
  3762. mddev_unlock(mddev);
  3763. return err ?: len;
  3764. }
  3765. static struct md_sysfs_entry md_metadata =
  3766. __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
  3767. static ssize_t
  3768. action_show(struct mddev *mddev, char *page)
  3769. {
  3770. char *type = "idle";
  3771. unsigned long recovery = mddev->recovery;
  3772. if (test_bit(MD_RECOVERY_FROZEN, &recovery))
  3773. type = "frozen";
  3774. else if (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
  3775. (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) {
  3776. if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
  3777. type = "reshape";
  3778. else if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
  3779. if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
  3780. type = "resync";
  3781. else if (test_bit(MD_RECOVERY_CHECK, &recovery))
  3782. type = "check";
  3783. else
  3784. type = "repair";
  3785. } else if (test_bit(MD_RECOVERY_RECOVER, &recovery))
  3786. type = "recover";
  3787. else if (mddev->reshape_position != MaxSector)
  3788. type = "reshape";
  3789. }
  3790. return sprintf(page, "%s\n", type);
  3791. }
  3792. static ssize_t
  3793. action_store(struct mddev *mddev, const char *page, size_t len)
  3794. {
  3795. if (!mddev->pers || !mddev->pers->sync_request)
  3796. return -EINVAL;
  3797. if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
  3798. if (cmd_match(page, "frozen"))
  3799. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3800. else
  3801. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3802. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
  3803. mddev_lock(mddev) == 0) {
  3804. flush_workqueue(md_misc_wq);
  3805. if (mddev->sync_thread) {
  3806. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  3807. md_reap_sync_thread(mddev);
  3808. }
  3809. mddev_unlock(mddev);
  3810. }
  3811. } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  3812. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
  3813. return -EBUSY;
  3814. else if (cmd_match(page, "resync"))
  3815. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3816. else if (cmd_match(page, "recover")) {
  3817. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3818. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  3819. } else if (cmd_match(page, "reshape")) {
  3820. int err;
  3821. if (mddev->pers->start_reshape == NULL)
  3822. return -EINVAL;
  3823. err = mddev_lock(mddev);
  3824. if (!err) {
  3825. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3826. err = mddev->pers->start_reshape(mddev);
  3827. mddev_unlock(mddev);
  3828. }
  3829. if (err)
  3830. return err;
  3831. sysfs_notify(&mddev->kobj, NULL, "degraded");
  3832. } else {
  3833. if (cmd_match(page, "check"))
  3834. set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  3835. else if (!cmd_match(page, "repair"))
  3836. return -EINVAL;
  3837. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3838. set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  3839. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  3840. }
  3841. if (mddev->ro == 2) {
  3842. /* A write to sync_action is enough to justify
  3843. * canceling read-auto mode
  3844. */
  3845. mddev->ro = 0;
  3846. md_wakeup_thread(mddev->sync_thread);
  3847. }
  3848. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3849. md_wakeup_thread(mddev->thread);
  3850. sysfs_notify_dirent_safe(mddev->sysfs_action);
  3851. return len;
  3852. }
  3853. static struct md_sysfs_entry md_scan_mode =
  3854. __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
  3855. static ssize_t
  3856. last_sync_action_show(struct mddev *mddev, char *page)
  3857. {
  3858. return sprintf(page, "%s\n", mddev->last_sync_action);
  3859. }
  3860. static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
  3861. static ssize_t
  3862. mismatch_cnt_show(struct mddev *mddev, char *page)
  3863. {
  3864. return sprintf(page, "%llu\n",
  3865. (unsigned long long)
  3866. atomic64_read(&mddev->resync_mismatches));
  3867. }
  3868. static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
  3869. static ssize_t
  3870. sync_min_show(struct mddev *mddev, char *page)
  3871. {
  3872. return sprintf(page, "%d (%s)\n", speed_min(mddev),
  3873. mddev->sync_speed_min ? "local": "system");
  3874. }
  3875. static ssize_t
  3876. sync_min_store(struct mddev *mddev, const char *buf, size_t len)
  3877. {
  3878. unsigned int min;
  3879. int rv;
  3880. if (strncmp(buf, "system", 6)==0) {
  3881. min = 0;
  3882. } else {
  3883. rv = kstrtouint(buf, 10, &min);
  3884. if (rv < 0)
  3885. return rv;
  3886. if (min == 0)
  3887. return -EINVAL;
  3888. }
  3889. mddev->sync_speed_min = min;
  3890. return len;
  3891. }
  3892. static struct md_sysfs_entry md_sync_min =
  3893. __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
  3894. static ssize_t
  3895. sync_max_show(struct mddev *mddev, char *page)
  3896. {
  3897. return sprintf(page, "%d (%s)\n", speed_max(mddev),
  3898. mddev->sync_speed_max ? "local": "system");
  3899. }
  3900. static ssize_t
  3901. sync_max_store(struct mddev *mddev, const char *buf, size_t len)
  3902. {
  3903. unsigned int max;
  3904. int rv;
  3905. if (strncmp(buf, "system", 6)==0) {
  3906. max = 0;
  3907. } else {
  3908. rv = kstrtouint(buf, 10, &max);
  3909. if (rv < 0)
  3910. return rv;
  3911. if (max == 0)
  3912. return -EINVAL;
  3913. }
  3914. mddev->sync_speed_max = max;
  3915. return len;
  3916. }
  3917. static struct md_sysfs_entry md_sync_max =
  3918. __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
  3919. static ssize_t
  3920. degraded_show(struct mddev *mddev, char *page)
  3921. {
  3922. return sprintf(page, "%d\n", mddev->degraded);
  3923. }
  3924. static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
  3925. static ssize_t
  3926. sync_force_parallel_show(struct mddev *mddev, char *page)
  3927. {
  3928. return sprintf(page, "%d\n", mddev->parallel_resync);
  3929. }
  3930. static ssize_t
  3931. sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
  3932. {
  3933. long n;
  3934. if (kstrtol(buf, 10, &n))
  3935. return -EINVAL;
  3936. if (n != 0 && n != 1)
  3937. return -EINVAL;
  3938. mddev->parallel_resync = n;
  3939. if (mddev->sync_thread)
  3940. wake_up(&resync_wait);
  3941. return len;
  3942. }
  3943. /* force parallel resync, even with shared block devices */
  3944. static struct md_sysfs_entry md_sync_force_parallel =
  3945. __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
  3946. sync_force_parallel_show, sync_force_parallel_store);
  3947. static ssize_t
  3948. sync_speed_show(struct mddev *mddev, char *page)
  3949. {
  3950. unsigned long resync, dt, db;
  3951. if (mddev->curr_resync == 0)
  3952. return sprintf(page, "none\n");
  3953. resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
  3954. dt = (jiffies - mddev->resync_mark) / HZ;
  3955. if (!dt) dt++;
  3956. db = resync - mddev->resync_mark_cnt;
  3957. return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
  3958. }
  3959. static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
  3960. static ssize_t
  3961. sync_completed_show(struct mddev *mddev, char *page)
  3962. {
  3963. unsigned long long max_sectors, resync;
  3964. if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3965. return sprintf(page, "none\n");
  3966. if (mddev->curr_resync == 1 ||
  3967. mddev->curr_resync == 2)
  3968. return sprintf(page, "delayed\n");
  3969. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
  3970. test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  3971. max_sectors = mddev->resync_max_sectors;
  3972. else
  3973. max_sectors = mddev->dev_sectors;
  3974. resync = mddev->curr_resync_completed;
  3975. return sprintf(page, "%llu / %llu\n", resync, max_sectors);
  3976. }
  3977. static struct md_sysfs_entry md_sync_completed =
  3978. __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL);
  3979. static ssize_t
  3980. min_sync_show(struct mddev *mddev, char *page)
  3981. {
  3982. return sprintf(page, "%llu\n",
  3983. (unsigned long long)mddev->resync_min);
  3984. }
  3985. static ssize_t
  3986. min_sync_store(struct mddev *mddev, const char *buf, size_t len)
  3987. {
  3988. unsigned long long min;
  3989. int err;
  3990. if (kstrtoull(buf, 10, &min))
  3991. return -EINVAL;
  3992. spin_lock(&mddev->lock);
  3993. err = -EINVAL;
  3994. if (min > mddev->resync_max)
  3995. goto out_unlock;
  3996. err = -EBUSY;
  3997. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3998. goto out_unlock;
  3999. /* Round down to multiple of 4K for safety */
  4000. mddev->resync_min = round_down(min, 8);
  4001. err = 0;
  4002. out_unlock:
  4003. spin_unlock(&mddev->lock);
  4004. return err ?: len;
  4005. }
  4006. static struct md_sysfs_entry md_min_sync =
  4007. __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
  4008. static ssize_t
  4009. max_sync_show(struct mddev *mddev, char *page)
  4010. {
  4011. if (mddev->resync_max == MaxSector)
  4012. return sprintf(page, "max\n");
  4013. else
  4014. return sprintf(page, "%llu\n",
  4015. (unsigned long long)mddev->resync_max);
  4016. }
  4017. static ssize_t
  4018. max_sync_store(struct mddev *mddev, const char *buf, size_t len)
  4019. {
  4020. int err;
  4021. spin_lock(&mddev->lock);
  4022. if (strncmp(buf, "max", 3) == 0)
  4023. mddev->resync_max = MaxSector;
  4024. else {
  4025. unsigned long long max;
  4026. int chunk;
  4027. err = -EINVAL;
  4028. if (kstrtoull(buf, 10, &max))
  4029. goto out_unlock;
  4030. if (max < mddev->resync_min)
  4031. goto out_unlock;
  4032. err = -EBUSY;
  4033. if (max < mddev->resync_max &&
  4034. mddev->ro == 0 &&
  4035. test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  4036. goto out_unlock;
  4037. /* Must be a multiple of chunk_size */
  4038. chunk = mddev->chunk_sectors;
  4039. if (chunk) {
  4040. sector_t temp = max;
  4041. err = -EINVAL;
  4042. if (sector_div(temp, chunk))
  4043. goto out_unlock;
  4044. }
  4045. mddev->resync_max = max;
  4046. }
  4047. wake_up(&mddev->recovery_wait);
  4048. err = 0;
  4049. out_unlock:
  4050. spin_unlock(&mddev->lock);
  4051. return err ?: len;
  4052. }
  4053. static struct md_sysfs_entry md_max_sync =
  4054. __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
  4055. static ssize_t
  4056. suspend_lo_show(struct mddev *mddev, char *page)
  4057. {
  4058. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
  4059. }
  4060. static ssize_t
  4061. suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
  4062. {
  4063. unsigned long long old, new;
  4064. int err;
  4065. err = kstrtoull(buf, 10, &new);
  4066. if (err < 0)
  4067. return err;
  4068. if (new != (sector_t)new)
  4069. return -EINVAL;
  4070. err = mddev_lock(mddev);
  4071. if (err)
  4072. return err;
  4073. err = -EINVAL;
  4074. if (mddev->pers == NULL ||
  4075. mddev->pers->quiesce == NULL)
  4076. goto unlock;
  4077. old = mddev->suspend_lo;
  4078. mddev->suspend_lo = new;
  4079. if (new >= old)
  4080. /* Shrinking suspended region */
  4081. mddev->pers->quiesce(mddev, 2);
  4082. else {
  4083. /* Expanding suspended region - need to wait */
  4084. mddev->pers->quiesce(mddev, 1);
  4085. mddev->pers->quiesce(mddev, 0);
  4086. }
  4087. err = 0;
  4088. unlock:
  4089. mddev_unlock(mddev);
  4090. return err ?: len;
  4091. }
  4092. static struct md_sysfs_entry md_suspend_lo =
  4093. __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
  4094. static ssize_t
  4095. suspend_hi_show(struct mddev *mddev, char *page)
  4096. {
  4097. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
  4098. }
  4099. static ssize_t
  4100. suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
  4101. {
  4102. unsigned long long old, new;
  4103. int err;
  4104. err = kstrtoull(buf, 10, &new);
  4105. if (err < 0)
  4106. return err;
  4107. if (new != (sector_t)new)
  4108. return -EINVAL;
  4109. err = mddev_lock(mddev);
  4110. if (err)
  4111. return err;
  4112. err = -EINVAL;
  4113. if (mddev->pers == NULL ||
  4114. mddev->pers->quiesce == NULL)
  4115. goto unlock;
  4116. old = mddev->suspend_hi;
  4117. mddev->suspend_hi = new;
  4118. if (new <= old)
  4119. /* Shrinking suspended region */
  4120. mddev->pers->quiesce(mddev, 2);
  4121. else {
  4122. /* Expanding suspended region - need to wait */
  4123. mddev->pers->quiesce(mddev, 1);
  4124. mddev->pers->quiesce(mddev, 0);
  4125. }
  4126. err = 0;
  4127. unlock:
  4128. mddev_unlock(mddev);
  4129. return err ?: len;
  4130. }
  4131. static struct md_sysfs_entry md_suspend_hi =
  4132. __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
  4133. static ssize_t
  4134. reshape_position_show(struct mddev *mddev, char *page)
  4135. {
  4136. if (mddev->reshape_position != MaxSector)
  4137. return sprintf(page, "%llu\n",
  4138. (unsigned long long)mddev->reshape_position);
  4139. strcpy(page, "none\n");
  4140. return 5;
  4141. }
  4142. static ssize_t
  4143. reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
  4144. {
  4145. struct md_rdev *rdev;
  4146. unsigned long long new;
  4147. int err;
  4148. err = kstrtoull(buf, 10, &new);
  4149. if (err < 0)
  4150. return err;
  4151. if (new != (sector_t)new)
  4152. return -EINVAL;
  4153. err = mddev_lock(mddev);
  4154. if (err)
  4155. return err;
  4156. err = -EBUSY;
  4157. if (mddev->pers)
  4158. goto unlock;
  4159. mddev->reshape_position = new;
  4160. mddev->delta_disks = 0;
  4161. mddev->reshape_backwards = 0;
  4162. mddev->new_level = mddev->level;
  4163. mddev->new_layout = mddev->layout;
  4164. mddev->new_chunk_sectors = mddev->chunk_sectors;
  4165. rdev_for_each(rdev, mddev)
  4166. rdev->new_data_offset = rdev->data_offset;
  4167. err = 0;
  4168. unlock:
  4169. mddev_unlock(mddev);
  4170. return err ?: len;
  4171. }
  4172. static struct md_sysfs_entry md_reshape_position =
  4173. __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
  4174. reshape_position_store);
  4175. static ssize_t
  4176. reshape_direction_show(struct mddev *mddev, char *page)
  4177. {
  4178. return sprintf(page, "%s\n",
  4179. mddev->reshape_backwards ? "backwards" : "forwards");
  4180. }
  4181. static ssize_t
  4182. reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
  4183. {
  4184. int backwards = 0;
  4185. int err;
  4186. if (cmd_match(buf, "forwards"))
  4187. backwards = 0;
  4188. else if (cmd_match(buf, "backwards"))
  4189. backwards = 1;
  4190. else
  4191. return -EINVAL;
  4192. if (mddev->reshape_backwards == backwards)
  4193. return len;
  4194. err = mddev_lock(mddev);
  4195. if (err)
  4196. return err;
  4197. /* check if we are allowed to change */
  4198. if (mddev->delta_disks)
  4199. err = -EBUSY;
  4200. else if (mddev->persistent &&
  4201. mddev->major_version == 0)
  4202. err = -EINVAL;
  4203. else
  4204. mddev->reshape_backwards = backwards;
  4205. mddev_unlock(mddev);
  4206. return err ?: len;
  4207. }
  4208. static struct md_sysfs_entry md_reshape_direction =
  4209. __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
  4210. reshape_direction_store);
  4211. static ssize_t
  4212. array_size_show(struct mddev *mddev, char *page)
  4213. {
  4214. if (mddev->external_size)
  4215. return sprintf(page, "%llu\n",
  4216. (unsigned long long)mddev->array_sectors/2);
  4217. else
  4218. return sprintf(page, "default\n");
  4219. }
  4220. static ssize_t
  4221. array_size_store(struct mddev *mddev, const char *buf, size_t len)
  4222. {
  4223. sector_t sectors;
  4224. int err;
  4225. err = mddev_lock(mddev);
  4226. if (err)
  4227. return err;
  4228. if (strncmp(buf, "default", 7) == 0) {
  4229. if (mddev->pers)
  4230. sectors = mddev->pers->size(mddev, 0, 0);
  4231. else
  4232. sectors = mddev->array_sectors;
  4233. mddev->external_size = 0;
  4234. } else {
  4235. if (strict_blocks_to_sectors(buf, &sectors) < 0)
  4236. err = -EINVAL;
  4237. else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
  4238. err = -E2BIG;
  4239. else
  4240. mddev->external_size = 1;
  4241. }
  4242. if (!err) {
  4243. mddev->array_sectors = sectors;
  4244. if (mddev->pers) {
  4245. set_capacity(mddev->gendisk, mddev->array_sectors);
  4246. revalidate_disk(mddev->gendisk);
  4247. }
  4248. }
  4249. mddev_unlock(mddev);
  4250. return err ?: len;
  4251. }
  4252. static struct md_sysfs_entry md_array_size =
  4253. __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
  4254. array_size_store);
  4255. static struct attribute *md_default_attrs[] = {
  4256. &md_level.attr,
  4257. &md_layout.attr,
  4258. &md_raid_disks.attr,
  4259. &md_chunk_size.attr,
  4260. &md_size.attr,
  4261. &md_resync_start.attr,
  4262. &md_metadata.attr,
  4263. &md_new_device.attr,
  4264. &md_safe_delay.attr,
  4265. &md_array_state.attr,
  4266. &md_reshape_position.attr,
  4267. &md_reshape_direction.attr,
  4268. &md_array_size.attr,
  4269. &max_corr_read_errors.attr,
  4270. NULL,
  4271. };
  4272. static struct attribute *md_redundancy_attrs[] = {
  4273. &md_scan_mode.attr,
  4274. &md_last_scan_mode.attr,
  4275. &md_mismatches.attr,
  4276. &md_sync_min.attr,
  4277. &md_sync_max.attr,
  4278. &md_sync_speed.attr,
  4279. &md_sync_force_parallel.attr,
  4280. &md_sync_completed.attr,
  4281. &md_min_sync.attr,
  4282. &md_max_sync.attr,
  4283. &md_suspend_lo.attr,
  4284. &md_suspend_hi.attr,
  4285. &md_bitmap.attr,
  4286. &md_degraded.attr,
  4287. NULL,
  4288. };
  4289. static struct attribute_group md_redundancy_group = {
  4290. .name = NULL,
  4291. .attrs = md_redundancy_attrs,
  4292. };
  4293. static ssize_t
  4294. md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  4295. {
  4296. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  4297. struct mddev *mddev = container_of(kobj, struct mddev, kobj);
  4298. ssize_t rv;
  4299. if (!entry->show)
  4300. return -EIO;
  4301. spin_lock(&all_mddevs_lock);
  4302. if (list_empty(&mddev->all_mddevs)) {
  4303. spin_unlock(&all_mddevs_lock);
  4304. return -EBUSY;
  4305. }
  4306. mddev_get(mddev);
  4307. spin_unlock(&all_mddevs_lock);
  4308. rv = entry->show(mddev, page);
  4309. mddev_put(mddev);
  4310. return rv;
  4311. }
  4312. static ssize_t
  4313. md_attr_store(struct kobject *kobj, struct attribute *attr,
  4314. const char *page, size_t length)
  4315. {
  4316. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  4317. struct mddev *mddev = container_of(kobj, struct mddev, kobj);
  4318. ssize_t rv;
  4319. if (!entry->store)
  4320. return -EIO;
  4321. if (!capable(CAP_SYS_ADMIN))
  4322. return -EACCES;
  4323. spin_lock(&all_mddevs_lock);
  4324. if (list_empty(&mddev->all_mddevs)) {
  4325. spin_unlock(&all_mddevs_lock);
  4326. return -EBUSY;
  4327. }
  4328. mddev_get(mddev);
  4329. spin_unlock(&all_mddevs_lock);
  4330. rv = entry->store(mddev, page, length);
  4331. mddev_put(mddev);
  4332. return rv;
  4333. }
  4334. static void md_free(struct kobject *ko)
  4335. {
  4336. struct mddev *mddev = container_of(ko, struct mddev, kobj);
  4337. if (mddev->sysfs_state)
  4338. sysfs_put(mddev->sysfs_state);
  4339. if (mddev->queue)
  4340. blk_cleanup_queue(mddev->queue);
  4341. if (mddev->gendisk) {
  4342. del_gendisk(mddev->gendisk);
  4343. put_disk(mddev->gendisk);
  4344. }
  4345. kfree(mddev);
  4346. }
  4347. static const struct sysfs_ops md_sysfs_ops = {
  4348. .show = md_attr_show,
  4349. .store = md_attr_store,
  4350. };
  4351. static struct kobj_type md_ktype = {
  4352. .release = md_free,
  4353. .sysfs_ops = &md_sysfs_ops,
  4354. .default_attrs = md_default_attrs,
  4355. };
  4356. int mdp_major = 0;
  4357. static void mddev_delayed_delete(struct work_struct *ws)
  4358. {
  4359. struct mddev *mddev = container_of(ws, struct mddev, del_work);
  4360. sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
  4361. kobject_del(&mddev->kobj);
  4362. kobject_put(&mddev->kobj);
  4363. }
  4364. static int md_alloc(dev_t dev, char *name)
  4365. {
  4366. static DEFINE_MUTEX(disks_mutex);
  4367. struct mddev *mddev = mddev_find(dev);
  4368. struct gendisk *disk;
  4369. int partitioned;
  4370. int shift;
  4371. int unit;
  4372. int error;
  4373. if (!mddev)
  4374. return -ENODEV;
  4375. partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
  4376. shift = partitioned ? MdpMinorShift : 0;
  4377. unit = MINOR(mddev->unit) >> shift;
  4378. /* wait for any previous instance of this device to be
  4379. * completely removed (mddev_delayed_delete).
  4380. */
  4381. flush_workqueue(md_misc_wq);
  4382. mutex_lock(&disks_mutex);
  4383. error = -EEXIST;
  4384. if (mddev->gendisk)
  4385. goto abort;
  4386. if (name) {
  4387. /* Need to ensure that 'name' is not a duplicate.
  4388. */
  4389. struct mddev *mddev2;
  4390. spin_lock(&all_mddevs_lock);
  4391. list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
  4392. if (mddev2->gendisk &&
  4393. strcmp(mddev2->gendisk->disk_name, name) == 0) {
  4394. spin_unlock(&all_mddevs_lock);
  4395. goto abort;
  4396. }
  4397. spin_unlock(&all_mddevs_lock);
  4398. }
  4399. error = -ENOMEM;
  4400. mddev->queue = blk_alloc_queue(GFP_KERNEL);
  4401. if (!mddev->queue)
  4402. goto abort;
  4403. mddev->queue->queuedata = mddev;
  4404. blk_queue_make_request(mddev->queue, md_make_request);
  4405. blk_set_stacking_limits(&mddev->queue->limits);
  4406. disk = alloc_disk(1 << shift);
  4407. if (!disk) {
  4408. blk_cleanup_queue(mddev->queue);
  4409. mddev->queue = NULL;
  4410. goto abort;
  4411. }
  4412. disk->major = MAJOR(mddev->unit);
  4413. disk->first_minor = unit << shift;
  4414. if (name)
  4415. strcpy(disk->disk_name, name);
  4416. else if (partitioned)
  4417. sprintf(disk->disk_name, "md_d%d", unit);
  4418. else
  4419. sprintf(disk->disk_name, "md%d", unit);
  4420. disk->fops = &md_fops;
  4421. disk->private_data = mddev;
  4422. disk->queue = mddev->queue;
  4423. blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
  4424. /* Allow extended partitions. This makes the
  4425. * 'mdp' device redundant, but we can't really
  4426. * remove it now.
  4427. */
  4428. disk->flags |= GENHD_FL_EXT_DEVT;
  4429. mddev->gendisk = disk;
  4430. /* As soon as we call add_disk(), another thread could get
  4431. * through to md_open, so make sure it doesn't get too far
  4432. */
  4433. mutex_lock(&mddev->open_mutex);
  4434. add_disk(disk);
  4435. error = kobject_init_and_add(&mddev->kobj, &md_ktype,
  4436. &disk_to_dev(disk)->kobj, "%s", "md");
  4437. if (error) {
  4438. /* This isn't possible, but as kobject_init_and_add is marked
  4439. * __must_check, we must do something with the result
  4440. */
  4441. printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
  4442. disk->disk_name);
  4443. error = 0;
  4444. }
  4445. if (mddev->kobj.sd &&
  4446. sysfs_create_group(&mddev->kobj, &md_bitmap_group))
  4447. printk(KERN_DEBUG "pointless warning\n");
  4448. mutex_unlock(&mddev->open_mutex);
  4449. abort:
  4450. mutex_unlock(&disks_mutex);
  4451. if (!error && mddev->kobj.sd) {
  4452. kobject_uevent(&mddev->kobj, KOBJ_ADD);
  4453. mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
  4454. }
  4455. mddev_put(mddev);
  4456. return error;
  4457. }
  4458. static struct kobject *md_probe(dev_t dev, int *part, void *data)
  4459. {
  4460. md_alloc(dev, NULL);
  4461. return NULL;
  4462. }
  4463. static int add_named_array(const char *val, struct kernel_param *kp)
  4464. {
  4465. /* val must be "md_*" where * is not all digits.
  4466. * We allocate an array with a large free minor number, and
  4467. * set the name to val. val must not already be an active name.
  4468. */
  4469. int len = strlen(val);
  4470. char buf[DISK_NAME_LEN];
  4471. while (len && val[len-1] == '\n')
  4472. len--;
  4473. if (len >= DISK_NAME_LEN)
  4474. return -E2BIG;
  4475. strlcpy(buf, val, len+1);
  4476. if (strncmp(buf, "md_", 3) != 0)
  4477. return -EINVAL;
  4478. return md_alloc(0, buf);
  4479. }
  4480. static void md_safemode_timeout(unsigned long data)
  4481. {
  4482. struct mddev *mddev = (struct mddev *) data;
  4483. if (!atomic_read(&mddev->writes_pending)) {
  4484. mddev->safemode = 1;
  4485. if (mddev->external)
  4486. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4487. }
  4488. md_wakeup_thread(mddev->thread);
  4489. }
  4490. static int start_dirty_degraded;
  4491. int md_run(struct mddev *mddev)
  4492. {
  4493. int err;
  4494. struct md_rdev *rdev;
  4495. struct md_personality *pers;
  4496. if (list_empty(&mddev->disks))
  4497. /* cannot run an array with no devices.. */
  4498. return -EINVAL;
  4499. if (mddev->pers)
  4500. return -EBUSY;
  4501. /* Cannot run until previous stop completes properly */
  4502. if (mddev->sysfs_active)
  4503. return -EBUSY;
  4504. /*
  4505. * Analyze all RAID superblock(s)
  4506. */
  4507. if (!mddev->raid_disks) {
  4508. if (!mddev->persistent)
  4509. return -EINVAL;
  4510. analyze_sbs(mddev);
  4511. }
  4512. if (mddev->level != LEVEL_NONE)
  4513. request_module("md-level-%d", mddev->level);
  4514. else if (mddev->clevel[0])
  4515. request_module("md-%s", mddev->clevel);
  4516. /*
  4517. * Drop all container device buffers, from now on
  4518. * the only valid external interface is through the md
  4519. * device.
  4520. */
  4521. rdev_for_each(rdev, mddev) {
  4522. if (test_bit(Faulty, &rdev->flags))
  4523. continue;
  4524. sync_blockdev(rdev->bdev);
  4525. invalidate_bdev(rdev->bdev);
  4526. /* perform some consistency tests on the device.
  4527. * We don't want the data to overlap the metadata,
  4528. * Internal Bitmap issues have been handled elsewhere.
  4529. */
  4530. if (rdev->meta_bdev) {
  4531. /* Nothing to check */;
  4532. } else if (rdev->data_offset < rdev->sb_start) {
  4533. if (mddev->dev_sectors &&
  4534. rdev->data_offset + mddev->dev_sectors
  4535. > rdev->sb_start) {
  4536. printk("md: %s: data overlaps metadata\n",
  4537. mdname(mddev));
  4538. return -EINVAL;
  4539. }
  4540. } else {
  4541. if (rdev->sb_start + rdev->sb_size/512
  4542. > rdev->data_offset) {
  4543. printk("md: %s: metadata overlaps data\n",
  4544. mdname(mddev));
  4545. return -EINVAL;
  4546. }
  4547. }
  4548. sysfs_notify_dirent_safe(rdev->sysfs_state);
  4549. }
  4550. if (mddev->bio_set == NULL)
  4551. mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
  4552. spin_lock(&pers_lock);
  4553. pers = find_pers(mddev->level, mddev->clevel);
  4554. if (!pers || !try_module_get(pers->owner)) {
  4555. spin_unlock(&pers_lock);
  4556. if (mddev->level != LEVEL_NONE)
  4557. printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
  4558. mddev->level);
  4559. else
  4560. printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
  4561. mddev->clevel);
  4562. return -EINVAL;
  4563. }
  4564. spin_unlock(&pers_lock);
  4565. if (mddev->level != pers->level) {
  4566. mddev->level = pers->level;
  4567. mddev->new_level = pers->level;
  4568. }
  4569. strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
  4570. if (mddev->reshape_position != MaxSector &&
  4571. pers->start_reshape == NULL) {
  4572. /* This personality cannot handle reshaping... */
  4573. module_put(pers->owner);
  4574. return -EINVAL;
  4575. }
  4576. if (pers->sync_request) {
  4577. /* Warn if this is a potentially silly
  4578. * configuration.
  4579. */
  4580. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  4581. struct md_rdev *rdev2;
  4582. int warned = 0;
  4583. rdev_for_each(rdev, mddev)
  4584. rdev_for_each(rdev2, mddev) {
  4585. if (rdev < rdev2 &&
  4586. rdev->bdev->bd_contains ==
  4587. rdev2->bdev->bd_contains) {
  4588. printk(KERN_WARNING
  4589. "%s: WARNING: %s appears to be"
  4590. " on the same physical disk as"
  4591. " %s.\n",
  4592. mdname(mddev),
  4593. bdevname(rdev->bdev,b),
  4594. bdevname(rdev2->bdev,b2));
  4595. warned = 1;
  4596. }
  4597. }
  4598. if (warned)
  4599. printk(KERN_WARNING
  4600. "True protection against single-disk"
  4601. " failure might be compromised.\n");
  4602. }
  4603. mddev->recovery = 0;
  4604. /* may be over-ridden by personality */
  4605. mddev->resync_max_sectors = mddev->dev_sectors;
  4606. mddev->ok_start_degraded = start_dirty_degraded;
  4607. if (start_readonly && mddev->ro == 0)
  4608. mddev->ro = 2; /* read-only, but switch on first write */
  4609. err = pers->run(mddev);
  4610. if (err)
  4611. printk(KERN_ERR "md: pers->run() failed ...\n");
  4612. else if (pers->size(mddev, 0, 0) < mddev->array_sectors) {
  4613. WARN_ONCE(!mddev->external_size, "%s: default size too small,"
  4614. " but 'external_size' not in effect?\n", __func__);
  4615. printk(KERN_ERR
  4616. "md: invalid array_size %llu > default size %llu\n",
  4617. (unsigned long long)mddev->array_sectors / 2,
  4618. (unsigned long long)pers->size(mddev, 0, 0) / 2);
  4619. err = -EINVAL;
  4620. }
  4621. if (err == 0 && pers->sync_request &&
  4622. (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
  4623. struct bitmap *bitmap;
  4624. bitmap = bitmap_create(mddev, -1);
  4625. if (IS_ERR(bitmap)) {
  4626. err = PTR_ERR(bitmap);
  4627. printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
  4628. mdname(mddev), err);
  4629. } else
  4630. mddev->bitmap = bitmap;
  4631. }
  4632. if (err) {
  4633. mddev_detach(mddev);
  4634. if (mddev->private)
  4635. pers->free(mddev, mddev->private);
  4636. mddev->private = NULL;
  4637. module_put(pers->owner);
  4638. bitmap_destroy(mddev);
  4639. return err;
  4640. }
  4641. if (mddev->queue) {
  4642. mddev->queue->backing_dev_info.congested_data = mddev;
  4643. mddev->queue->backing_dev_info.congested_fn = md_congested;
  4644. blk_queue_merge_bvec(mddev->queue, md_mergeable_bvec);
  4645. }
  4646. if (pers->sync_request) {
  4647. if (mddev->kobj.sd &&
  4648. sysfs_create_group(&mddev->kobj, &md_redundancy_group))
  4649. printk(KERN_WARNING
  4650. "md: cannot register extra attributes for %s\n",
  4651. mdname(mddev));
  4652. mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
  4653. } else if (mddev->ro == 2) /* auto-readonly not meaningful */
  4654. mddev->ro = 0;
  4655. atomic_set(&mddev->writes_pending,0);
  4656. atomic_set(&mddev->max_corr_read_errors,
  4657. MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
  4658. mddev->safemode = 0;
  4659. mddev->safemode_timer.function = md_safemode_timeout;
  4660. mddev->safemode_timer.data = (unsigned long) mddev;
  4661. mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
  4662. mddev->in_sync = 1;
  4663. smp_wmb();
  4664. spin_lock(&mddev->lock);
  4665. mddev->pers = pers;
  4666. mddev->ready = 1;
  4667. spin_unlock(&mddev->lock);
  4668. rdev_for_each(rdev, mddev)
  4669. if (rdev->raid_disk >= 0)
  4670. if (sysfs_link_rdev(mddev, rdev))
  4671. /* failure here is OK */;
  4672. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4673. if (mddev->flags & MD_UPDATE_SB_FLAGS)
  4674. md_update_sb(mddev, 0);
  4675. md_new_event(mddev);
  4676. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4677. sysfs_notify_dirent_safe(mddev->sysfs_action);
  4678. sysfs_notify(&mddev->kobj, NULL, "degraded");
  4679. return 0;
  4680. }
  4681. EXPORT_SYMBOL_GPL(md_run);
  4682. static int do_md_run(struct mddev *mddev)
  4683. {
  4684. int err;
  4685. err = md_run(mddev);
  4686. if (err)
  4687. goto out;
  4688. err = bitmap_load(mddev);
  4689. if (err) {
  4690. bitmap_destroy(mddev);
  4691. goto out;
  4692. }
  4693. md_wakeup_thread(mddev->thread);
  4694. md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
  4695. set_capacity(mddev->gendisk, mddev->array_sectors);
  4696. revalidate_disk(mddev->gendisk);
  4697. mddev->changed = 1;
  4698. kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
  4699. out:
  4700. return err;
  4701. }
  4702. static int restart_array(struct mddev *mddev)
  4703. {
  4704. struct gendisk *disk = mddev->gendisk;
  4705. /* Complain if it has no devices */
  4706. if (list_empty(&mddev->disks))
  4707. return -ENXIO;
  4708. if (!mddev->pers)
  4709. return -EINVAL;
  4710. if (!mddev->ro)
  4711. return -EBUSY;
  4712. mddev->safemode = 0;
  4713. mddev->ro = 0;
  4714. set_disk_ro(disk, 0);
  4715. printk(KERN_INFO "md: %s switched to read-write mode.\n",
  4716. mdname(mddev));
  4717. /* Kick recovery or resync if necessary */
  4718. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4719. md_wakeup_thread(mddev->thread);
  4720. md_wakeup_thread(mddev->sync_thread);
  4721. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4722. return 0;
  4723. }
  4724. static void md_clean(struct mddev *mddev)
  4725. {
  4726. mddev->array_sectors = 0;
  4727. mddev->external_size = 0;
  4728. mddev->dev_sectors = 0;
  4729. mddev->raid_disks = 0;
  4730. mddev->recovery_cp = 0;
  4731. mddev->resync_min = 0;
  4732. mddev->resync_max = MaxSector;
  4733. mddev->reshape_position = MaxSector;
  4734. mddev->external = 0;
  4735. mddev->persistent = 0;
  4736. mddev->level = LEVEL_NONE;
  4737. mddev->clevel[0] = 0;
  4738. mddev->flags = 0;
  4739. mddev->ro = 0;
  4740. mddev->metadata_type[0] = 0;
  4741. mddev->chunk_sectors = 0;
  4742. mddev->ctime = mddev->utime = 0;
  4743. mddev->layout = 0;
  4744. mddev->max_disks = 0;
  4745. mddev->events = 0;
  4746. mddev->can_decrease_events = 0;
  4747. mddev->delta_disks = 0;
  4748. mddev->reshape_backwards = 0;
  4749. mddev->new_level = LEVEL_NONE;
  4750. mddev->new_layout = 0;
  4751. mddev->new_chunk_sectors = 0;
  4752. mddev->curr_resync = 0;
  4753. atomic64_set(&mddev->resync_mismatches, 0);
  4754. mddev->suspend_lo = mddev->suspend_hi = 0;
  4755. mddev->sync_speed_min = mddev->sync_speed_max = 0;
  4756. mddev->recovery = 0;
  4757. mddev->in_sync = 0;
  4758. mddev->changed = 0;
  4759. mddev->degraded = 0;
  4760. mddev->safemode = 0;
  4761. mddev->private = NULL;
  4762. mddev->merge_check_needed = 0;
  4763. mddev->bitmap_info.offset = 0;
  4764. mddev->bitmap_info.default_offset = 0;
  4765. mddev->bitmap_info.default_space = 0;
  4766. mddev->bitmap_info.chunksize = 0;
  4767. mddev->bitmap_info.daemon_sleep = 0;
  4768. mddev->bitmap_info.max_write_behind = 0;
  4769. }
  4770. static void __md_stop_writes(struct mddev *mddev)
  4771. {
  4772. if (mddev_is_clustered(mddev))
  4773. md_cluster_ops->metadata_update_start(mddev);
  4774. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4775. flush_workqueue(md_misc_wq);
  4776. if (mddev->sync_thread) {
  4777. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4778. md_reap_sync_thread(mddev);
  4779. }
  4780. del_timer_sync(&mddev->safemode_timer);
  4781. bitmap_flush(mddev);
  4782. md_super_wait(mddev);
  4783. if (mddev->ro == 0 &&
  4784. (!mddev->in_sync || (mddev->flags & MD_UPDATE_SB_FLAGS))) {
  4785. /* mark array as shutdown cleanly */
  4786. mddev->in_sync = 1;
  4787. md_update_sb(mddev, 1);
  4788. }
  4789. if (mddev_is_clustered(mddev))
  4790. md_cluster_ops->metadata_update_finish(mddev);
  4791. }
  4792. void md_stop_writes(struct mddev *mddev)
  4793. {
  4794. mddev_lock_nointr(mddev);
  4795. __md_stop_writes(mddev);
  4796. mddev_unlock(mddev);
  4797. }
  4798. EXPORT_SYMBOL_GPL(md_stop_writes);
  4799. static void mddev_detach(struct mddev *mddev)
  4800. {
  4801. struct bitmap *bitmap = mddev->bitmap;
  4802. /* wait for behind writes to complete */
  4803. if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
  4804. printk(KERN_INFO "md:%s: behind writes in progress - waiting to stop.\n",
  4805. mdname(mddev));
  4806. /* need to kick something here to make sure I/O goes? */
  4807. wait_event(bitmap->behind_wait,
  4808. atomic_read(&bitmap->behind_writes) == 0);
  4809. }
  4810. if (mddev->pers && mddev->pers->quiesce) {
  4811. mddev->pers->quiesce(mddev, 1);
  4812. mddev->pers->quiesce(mddev, 0);
  4813. }
  4814. md_unregister_thread(&mddev->thread);
  4815. if (mddev->queue)
  4816. blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
  4817. }
  4818. static void __md_stop(struct mddev *mddev)
  4819. {
  4820. struct md_personality *pers = mddev->pers;
  4821. mddev_detach(mddev);
  4822. /* Ensure ->event_work is done */
  4823. flush_workqueue(md_misc_wq);
  4824. spin_lock(&mddev->lock);
  4825. mddev->ready = 0;
  4826. mddev->pers = NULL;
  4827. spin_unlock(&mddev->lock);
  4828. pers->free(mddev, mddev->private);
  4829. mddev->private = NULL;
  4830. if (pers->sync_request && mddev->to_remove == NULL)
  4831. mddev->to_remove = &md_redundancy_group;
  4832. module_put(pers->owner);
  4833. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4834. }
  4835. void md_stop(struct mddev *mddev)
  4836. {
  4837. /* stop the array and free an attached data structures.
  4838. * This is called from dm-raid
  4839. */
  4840. __md_stop(mddev);
  4841. bitmap_destroy(mddev);
  4842. if (mddev->bio_set)
  4843. bioset_free(mddev->bio_set);
  4844. }
  4845. EXPORT_SYMBOL_GPL(md_stop);
  4846. static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
  4847. {
  4848. int err = 0;
  4849. int did_freeze = 0;
  4850. if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
  4851. did_freeze = 1;
  4852. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4853. md_wakeup_thread(mddev->thread);
  4854. }
  4855. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  4856. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4857. if (mddev->sync_thread)
  4858. /* Thread might be blocked waiting for metadata update
  4859. * which will now never happen */
  4860. wake_up_process(mddev->sync_thread->tsk);
  4861. mddev_unlock(mddev);
  4862. wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
  4863. &mddev->recovery));
  4864. mddev_lock_nointr(mddev);
  4865. mutex_lock(&mddev->open_mutex);
  4866. if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
  4867. mddev->sync_thread ||
  4868. test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  4869. (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
  4870. printk("md: %s still in use.\n",mdname(mddev));
  4871. if (did_freeze) {
  4872. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4873. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4874. md_wakeup_thread(mddev->thread);
  4875. }
  4876. err = -EBUSY;
  4877. goto out;
  4878. }
  4879. if (mddev->pers) {
  4880. __md_stop_writes(mddev);
  4881. err = -ENXIO;
  4882. if (mddev->ro==1)
  4883. goto out;
  4884. mddev->ro = 1;
  4885. set_disk_ro(mddev->gendisk, 1);
  4886. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4887. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4888. md_wakeup_thread(mddev->thread);
  4889. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4890. err = 0;
  4891. }
  4892. out:
  4893. mutex_unlock(&mddev->open_mutex);
  4894. return err;
  4895. }
  4896. /* mode:
  4897. * 0 - completely stop and dis-assemble array
  4898. * 2 - stop but do not disassemble array
  4899. */
  4900. static int do_md_stop(struct mddev *mddev, int mode,
  4901. struct block_device *bdev)
  4902. {
  4903. struct gendisk *disk = mddev->gendisk;
  4904. struct md_rdev *rdev;
  4905. int did_freeze = 0;
  4906. if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
  4907. did_freeze = 1;
  4908. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4909. md_wakeup_thread(mddev->thread);
  4910. }
  4911. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  4912. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4913. if (mddev->sync_thread)
  4914. /* Thread might be blocked waiting for metadata update
  4915. * which will now never happen */
  4916. wake_up_process(mddev->sync_thread->tsk);
  4917. mddev_unlock(mddev);
  4918. wait_event(resync_wait, (mddev->sync_thread == NULL &&
  4919. !test_bit(MD_RECOVERY_RUNNING,
  4920. &mddev->recovery)));
  4921. mddev_lock_nointr(mddev);
  4922. mutex_lock(&mddev->open_mutex);
  4923. if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
  4924. mddev->sysfs_active ||
  4925. mddev->sync_thread ||
  4926. test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  4927. (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
  4928. printk("md: %s still in use.\n",mdname(mddev));
  4929. mutex_unlock(&mddev->open_mutex);
  4930. if (did_freeze) {
  4931. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4932. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4933. md_wakeup_thread(mddev->thread);
  4934. }
  4935. return -EBUSY;
  4936. }
  4937. if (mddev->pers) {
  4938. if (mddev->ro)
  4939. set_disk_ro(disk, 0);
  4940. __md_stop_writes(mddev);
  4941. __md_stop(mddev);
  4942. mddev->queue->merge_bvec_fn = NULL;
  4943. mddev->queue->backing_dev_info.congested_fn = NULL;
  4944. /* tell userspace to handle 'inactive' */
  4945. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4946. rdev_for_each(rdev, mddev)
  4947. if (rdev->raid_disk >= 0)
  4948. sysfs_unlink_rdev(mddev, rdev);
  4949. set_capacity(disk, 0);
  4950. mutex_unlock(&mddev->open_mutex);
  4951. mddev->changed = 1;
  4952. revalidate_disk(disk);
  4953. if (mddev->ro)
  4954. mddev->ro = 0;
  4955. } else
  4956. mutex_unlock(&mddev->open_mutex);
  4957. /*
  4958. * Free resources if final stop
  4959. */
  4960. if (mode == 0) {
  4961. printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
  4962. bitmap_destroy(mddev);
  4963. if (mddev->bitmap_info.file) {
  4964. struct file *f = mddev->bitmap_info.file;
  4965. spin_lock(&mddev->lock);
  4966. mddev->bitmap_info.file = NULL;
  4967. spin_unlock(&mddev->lock);
  4968. fput(f);
  4969. }
  4970. mddev->bitmap_info.offset = 0;
  4971. export_array(mddev);
  4972. md_clean(mddev);
  4973. kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
  4974. if (mddev->hold_active == UNTIL_STOP)
  4975. mddev->hold_active = 0;
  4976. }
  4977. blk_integrity_unregister(disk);
  4978. md_new_event(mddev);
  4979. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4980. return 0;
  4981. }
  4982. #ifndef MODULE
  4983. static void autorun_array(struct mddev *mddev)
  4984. {
  4985. struct md_rdev *rdev;
  4986. int err;
  4987. if (list_empty(&mddev->disks))
  4988. return;
  4989. printk(KERN_INFO "md: running: ");
  4990. rdev_for_each(rdev, mddev) {
  4991. char b[BDEVNAME_SIZE];
  4992. printk("<%s>", bdevname(rdev->bdev,b));
  4993. }
  4994. printk("\n");
  4995. err = do_md_run(mddev);
  4996. if (err) {
  4997. printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
  4998. do_md_stop(mddev, 0, NULL);
  4999. }
  5000. }
  5001. /*
  5002. * lets try to run arrays based on all disks that have arrived
  5003. * until now. (those are in pending_raid_disks)
  5004. *
  5005. * the method: pick the first pending disk, collect all disks with
  5006. * the same UUID, remove all from the pending list and put them into
  5007. * the 'same_array' list. Then order this list based on superblock
  5008. * update time (freshest comes first), kick out 'old' disks and
  5009. * compare superblocks. If everything's fine then run it.
  5010. *
  5011. * If "unit" is allocated, then bump its reference count
  5012. */
  5013. static void autorun_devices(int part)
  5014. {
  5015. struct md_rdev *rdev0, *rdev, *tmp;
  5016. struct mddev *mddev;
  5017. char b[BDEVNAME_SIZE];
  5018. printk(KERN_INFO "md: autorun ...\n");
  5019. while (!list_empty(&pending_raid_disks)) {
  5020. int unit;
  5021. dev_t dev;
  5022. LIST_HEAD(candidates);
  5023. rdev0 = list_entry(pending_raid_disks.next,
  5024. struct md_rdev, same_set);
  5025. printk(KERN_INFO "md: considering %s ...\n",
  5026. bdevname(rdev0->bdev,b));
  5027. INIT_LIST_HEAD(&candidates);
  5028. rdev_for_each_list(rdev, tmp, &pending_raid_disks)
  5029. if (super_90_load(rdev, rdev0, 0) >= 0) {
  5030. printk(KERN_INFO "md: adding %s ...\n",
  5031. bdevname(rdev->bdev,b));
  5032. list_move(&rdev->same_set, &candidates);
  5033. }
  5034. /*
  5035. * now we have a set of devices, with all of them having
  5036. * mostly sane superblocks. It's time to allocate the
  5037. * mddev.
  5038. */
  5039. if (part) {
  5040. dev = MKDEV(mdp_major,
  5041. rdev0->preferred_minor << MdpMinorShift);
  5042. unit = MINOR(dev) >> MdpMinorShift;
  5043. } else {
  5044. dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
  5045. unit = MINOR(dev);
  5046. }
  5047. if (rdev0->preferred_minor != unit) {
  5048. printk(KERN_INFO "md: unit number in %s is bad: %d\n",
  5049. bdevname(rdev0->bdev, b), rdev0->preferred_minor);
  5050. break;
  5051. }
  5052. md_probe(dev, NULL, NULL);
  5053. mddev = mddev_find(dev);
  5054. if (!mddev || !mddev->gendisk) {
  5055. if (mddev)
  5056. mddev_put(mddev);
  5057. printk(KERN_ERR
  5058. "md: cannot allocate memory for md drive.\n");
  5059. break;
  5060. }
  5061. if (mddev_lock(mddev))
  5062. printk(KERN_WARNING "md: %s locked, cannot run\n",
  5063. mdname(mddev));
  5064. else if (mddev->raid_disks || mddev->major_version
  5065. || !list_empty(&mddev->disks)) {
  5066. printk(KERN_WARNING
  5067. "md: %s already running, cannot run %s\n",
  5068. mdname(mddev), bdevname(rdev0->bdev,b));
  5069. mddev_unlock(mddev);
  5070. } else {
  5071. printk(KERN_INFO "md: created %s\n", mdname(mddev));
  5072. mddev->persistent = 1;
  5073. rdev_for_each_list(rdev, tmp, &candidates) {
  5074. list_del_init(&rdev->same_set);
  5075. if (bind_rdev_to_array(rdev, mddev))
  5076. export_rdev(rdev);
  5077. }
  5078. autorun_array(mddev);
  5079. mddev_unlock(mddev);
  5080. }
  5081. /* on success, candidates will be empty, on error
  5082. * it won't...
  5083. */
  5084. rdev_for_each_list(rdev, tmp, &candidates) {
  5085. list_del_init(&rdev->same_set);
  5086. export_rdev(rdev);
  5087. }
  5088. mddev_put(mddev);
  5089. }
  5090. printk(KERN_INFO "md: ... autorun DONE.\n");
  5091. }
  5092. #endif /* !MODULE */
  5093. static int get_version(void __user *arg)
  5094. {
  5095. mdu_version_t ver;
  5096. ver.major = MD_MAJOR_VERSION;
  5097. ver.minor = MD_MINOR_VERSION;
  5098. ver.patchlevel = MD_PATCHLEVEL_VERSION;
  5099. if (copy_to_user(arg, &ver, sizeof(ver)))
  5100. return -EFAULT;
  5101. return 0;
  5102. }
  5103. static int get_array_info(struct mddev *mddev, void __user *arg)
  5104. {
  5105. mdu_array_info_t info;
  5106. int nr,working,insync,failed,spare;
  5107. struct md_rdev *rdev;
  5108. nr = working = insync = failed = spare = 0;
  5109. rcu_read_lock();
  5110. rdev_for_each_rcu(rdev, mddev) {
  5111. nr++;
  5112. if (test_bit(Faulty, &rdev->flags))
  5113. failed++;
  5114. else {
  5115. working++;
  5116. if (test_bit(In_sync, &rdev->flags))
  5117. insync++;
  5118. else
  5119. spare++;
  5120. }
  5121. }
  5122. rcu_read_unlock();
  5123. info.major_version = mddev->major_version;
  5124. info.minor_version = mddev->minor_version;
  5125. info.patch_version = MD_PATCHLEVEL_VERSION;
  5126. info.ctime = mddev->ctime;
  5127. info.level = mddev->level;
  5128. info.size = mddev->dev_sectors / 2;
  5129. if (info.size != mddev->dev_sectors / 2) /* overflow */
  5130. info.size = -1;
  5131. info.nr_disks = nr;
  5132. info.raid_disks = mddev->raid_disks;
  5133. info.md_minor = mddev->md_minor;
  5134. info.not_persistent= !mddev->persistent;
  5135. info.utime = mddev->utime;
  5136. info.state = 0;
  5137. if (mddev->in_sync)
  5138. info.state = (1<<MD_SB_CLEAN);
  5139. if (mddev->bitmap && mddev->bitmap_info.offset)
  5140. info.state |= (1<<MD_SB_BITMAP_PRESENT);
  5141. if (mddev_is_clustered(mddev))
  5142. info.state |= (1<<MD_SB_CLUSTERED);
  5143. info.active_disks = insync;
  5144. info.working_disks = working;
  5145. info.failed_disks = failed;
  5146. info.spare_disks = spare;
  5147. info.layout = mddev->layout;
  5148. info.chunk_size = mddev->chunk_sectors << 9;
  5149. if (copy_to_user(arg, &info, sizeof(info)))
  5150. return -EFAULT;
  5151. return 0;
  5152. }
  5153. static int get_bitmap_file(struct mddev *mddev, void __user * arg)
  5154. {
  5155. mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
  5156. char *ptr;
  5157. int err;
  5158. file = kzalloc(sizeof(*file), GFP_NOIO);
  5159. if (!file)
  5160. return -ENOMEM;
  5161. err = 0;
  5162. spin_lock(&mddev->lock);
  5163. /* bitmap enabled */
  5164. if (mddev->bitmap_info.file) {
  5165. ptr = file_path(mddev->bitmap_info.file, file->pathname,
  5166. sizeof(file->pathname));
  5167. if (IS_ERR(ptr))
  5168. err = PTR_ERR(ptr);
  5169. else
  5170. memmove(file->pathname, ptr,
  5171. sizeof(file->pathname)-(ptr-file->pathname));
  5172. }
  5173. spin_unlock(&mddev->lock);
  5174. if (err == 0 &&
  5175. copy_to_user(arg, file, sizeof(*file)))
  5176. err = -EFAULT;
  5177. kfree(file);
  5178. return err;
  5179. }
  5180. static int get_disk_info(struct mddev *mddev, void __user * arg)
  5181. {
  5182. mdu_disk_info_t info;
  5183. struct md_rdev *rdev;
  5184. if (copy_from_user(&info, arg, sizeof(info)))
  5185. return -EFAULT;
  5186. rcu_read_lock();
  5187. rdev = md_find_rdev_nr_rcu(mddev, info.number);
  5188. if (rdev) {
  5189. info.major = MAJOR(rdev->bdev->bd_dev);
  5190. info.minor = MINOR(rdev->bdev->bd_dev);
  5191. info.raid_disk = rdev->raid_disk;
  5192. info.state = 0;
  5193. if (test_bit(Faulty, &rdev->flags))
  5194. info.state |= (1<<MD_DISK_FAULTY);
  5195. else if (test_bit(In_sync, &rdev->flags)) {
  5196. info.state |= (1<<MD_DISK_ACTIVE);
  5197. info.state |= (1<<MD_DISK_SYNC);
  5198. }
  5199. if (test_bit(WriteMostly, &rdev->flags))
  5200. info.state |= (1<<MD_DISK_WRITEMOSTLY);
  5201. } else {
  5202. info.major = info.minor = 0;
  5203. info.raid_disk = -1;
  5204. info.state = (1<<MD_DISK_REMOVED);
  5205. }
  5206. rcu_read_unlock();
  5207. if (copy_to_user(arg, &info, sizeof(info)))
  5208. return -EFAULT;
  5209. return 0;
  5210. }
  5211. static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info)
  5212. {
  5213. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  5214. struct md_rdev *rdev;
  5215. dev_t dev = MKDEV(info->major,info->minor);
  5216. if (mddev_is_clustered(mddev) &&
  5217. !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) {
  5218. pr_err("%s: Cannot add to clustered mddev.\n",
  5219. mdname(mddev));
  5220. return -EINVAL;
  5221. }
  5222. if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
  5223. return -EOVERFLOW;
  5224. if (!mddev->raid_disks) {
  5225. int err;
  5226. /* expecting a device which has a superblock */
  5227. rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
  5228. if (IS_ERR(rdev)) {
  5229. printk(KERN_WARNING
  5230. "md: md_import_device returned %ld\n",
  5231. PTR_ERR(rdev));
  5232. return PTR_ERR(rdev);
  5233. }
  5234. if (!list_empty(&mddev->disks)) {
  5235. struct md_rdev *rdev0
  5236. = list_entry(mddev->disks.next,
  5237. struct md_rdev, same_set);
  5238. err = super_types[mddev->major_version]
  5239. .load_super(rdev, rdev0, mddev->minor_version);
  5240. if (err < 0) {
  5241. printk(KERN_WARNING
  5242. "md: %s has different UUID to %s\n",
  5243. bdevname(rdev->bdev,b),
  5244. bdevname(rdev0->bdev,b2));
  5245. export_rdev(rdev);
  5246. return -EINVAL;
  5247. }
  5248. }
  5249. err = bind_rdev_to_array(rdev, mddev);
  5250. if (err)
  5251. export_rdev(rdev);
  5252. return err;
  5253. }
  5254. /*
  5255. * add_new_disk can be used once the array is assembled
  5256. * to add "hot spares". They must already have a superblock
  5257. * written
  5258. */
  5259. if (mddev->pers) {
  5260. int err;
  5261. if (!mddev->pers->hot_add_disk) {
  5262. printk(KERN_WARNING
  5263. "%s: personality does not support diskops!\n",
  5264. mdname(mddev));
  5265. return -EINVAL;
  5266. }
  5267. if (mddev->persistent)
  5268. rdev = md_import_device(dev, mddev->major_version,
  5269. mddev->minor_version);
  5270. else
  5271. rdev = md_import_device(dev, -1, -1);
  5272. if (IS_ERR(rdev)) {
  5273. printk(KERN_WARNING
  5274. "md: md_import_device returned %ld\n",
  5275. PTR_ERR(rdev));
  5276. return PTR_ERR(rdev);
  5277. }
  5278. /* set saved_raid_disk if appropriate */
  5279. if (!mddev->persistent) {
  5280. if (info->state & (1<<MD_DISK_SYNC) &&
  5281. info->raid_disk < mddev->raid_disks) {
  5282. rdev->raid_disk = info->raid_disk;
  5283. set_bit(In_sync, &rdev->flags);
  5284. clear_bit(Bitmap_sync, &rdev->flags);
  5285. } else
  5286. rdev->raid_disk = -1;
  5287. rdev->saved_raid_disk = rdev->raid_disk;
  5288. } else
  5289. super_types[mddev->major_version].
  5290. validate_super(mddev, rdev);
  5291. if ((info->state & (1<<MD_DISK_SYNC)) &&
  5292. rdev->raid_disk != info->raid_disk) {
  5293. /* This was a hot-add request, but events doesn't
  5294. * match, so reject it.
  5295. */
  5296. export_rdev(rdev);
  5297. return -EINVAL;
  5298. }
  5299. clear_bit(In_sync, &rdev->flags); /* just to be sure */
  5300. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  5301. set_bit(WriteMostly, &rdev->flags);
  5302. else
  5303. clear_bit(WriteMostly, &rdev->flags);
  5304. /*
  5305. * check whether the device shows up in other nodes
  5306. */
  5307. if (mddev_is_clustered(mddev)) {
  5308. if (info->state & (1 << MD_DISK_CANDIDATE)) {
  5309. /* Through --cluster-confirm */
  5310. set_bit(Candidate, &rdev->flags);
  5311. err = md_cluster_ops->new_disk_ack(mddev, true);
  5312. if (err) {
  5313. export_rdev(rdev);
  5314. return err;
  5315. }
  5316. } else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) {
  5317. /* --add initiated by this node */
  5318. err = md_cluster_ops->add_new_disk_start(mddev, rdev);
  5319. if (err) {
  5320. md_cluster_ops->add_new_disk_finish(mddev);
  5321. export_rdev(rdev);
  5322. return err;
  5323. }
  5324. }
  5325. }
  5326. rdev->raid_disk = -1;
  5327. err = bind_rdev_to_array(rdev, mddev);
  5328. if (err)
  5329. export_rdev(rdev);
  5330. else
  5331. err = add_bound_rdev(rdev);
  5332. if (mddev_is_clustered(mddev) &&
  5333. (info->state & (1 << MD_DISK_CLUSTER_ADD)))
  5334. md_cluster_ops->add_new_disk_finish(mddev);
  5335. return err;
  5336. }
  5337. /* otherwise, add_new_disk is only allowed
  5338. * for major_version==0 superblocks
  5339. */
  5340. if (mddev->major_version != 0) {
  5341. printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
  5342. mdname(mddev));
  5343. return -EINVAL;
  5344. }
  5345. if (!(info->state & (1<<MD_DISK_FAULTY))) {
  5346. int err;
  5347. rdev = md_import_device(dev, -1, 0);
  5348. if (IS_ERR(rdev)) {
  5349. printk(KERN_WARNING
  5350. "md: error, md_import_device() returned %ld\n",
  5351. PTR_ERR(rdev));
  5352. return PTR_ERR(rdev);
  5353. }
  5354. rdev->desc_nr = info->number;
  5355. if (info->raid_disk < mddev->raid_disks)
  5356. rdev->raid_disk = info->raid_disk;
  5357. else
  5358. rdev->raid_disk = -1;
  5359. if (rdev->raid_disk < mddev->raid_disks)
  5360. if (info->state & (1<<MD_DISK_SYNC))
  5361. set_bit(In_sync, &rdev->flags);
  5362. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  5363. set_bit(WriteMostly, &rdev->flags);
  5364. if (!mddev->persistent) {
  5365. printk(KERN_INFO "md: nonpersistent superblock ...\n");
  5366. rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
  5367. } else
  5368. rdev->sb_start = calc_dev_sboffset(rdev);
  5369. rdev->sectors = rdev->sb_start;
  5370. err = bind_rdev_to_array(rdev, mddev);
  5371. if (err) {
  5372. export_rdev(rdev);
  5373. return err;
  5374. }
  5375. }
  5376. return 0;
  5377. }
  5378. static int hot_remove_disk(struct mddev *mddev, dev_t dev)
  5379. {
  5380. char b[BDEVNAME_SIZE];
  5381. struct md_rdev *rdev;
  5382. rdev = find_rdev(mddev, dev);
  5383. if (!rdev)
  5384. return -ENXIO;
  5385. if (mddev_is_clustered(mddev))
  5386. md_cluster_ops->metadata_update_start(mddev);
  5387. clear_bit(Blocked, &rdev->flags);
  5388. remove_and_add_spares(mddev, rdev);
  5389. if (rdev->raid_disk >= 0)
  5390. goto busy;
  5391. if (mddev_is_clustered(mddev))
  5392. md_cluster_ops->remove_disk(mddev, rdev);
  5393. md_kick_rdev_from_array(rdev);
  5394. md_update_sb(mddev, 1);
  5395. md_new_event(mddev);
  5396. if (mddev_is_clustered(mddev))
  5397. md_cluster_ops->metadata_update_finish(mddev);
  5398. return 0;
  5399. busy:
  5400. if (mddev_is_clustered(mddev))
  5401. md_cluster_ops->metadata_update_cancel(mddev);
  5402. printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
  5403. bdevname(rdev->bdev,b), mdname(mddev));
  5404. return -EBUSY;
  5405. }
  5406. static int hot_add_disk(struct mddev *mddev, dev_t dev)
  5407. {
  5408. char b[BDEVNAME_SIZE];
  5409. int err;
  5410. struct md_rdev *rdev;
  5411. if (!mddev->pers)
  5412. return -ENODEV;
  5413. if (mddev->major_version != 0) {
  5414. printk(KERN_WARNING "%s: HOT_ADD may only be used with"
  5415. " version-0 superblocks.\n",
  5416. mdname(mddev));
  5417. return -EINVAL;
  5418. }
  5419. if (!mddev->pers->hot_add_disk) {
  5420. printk(KERN_WARNING
  5421. "%s: personality does not support diskops!\n",
  5422. mdname(mddev));
  5423. return -EINVAL;
  5424. }
  5425. rdev = md_import_device(dev, -1, 0);
  5426. if (IS_ERR(rdev)) {
  5427. printk(KERN_WARNING
  5428. "md: error, md_import_device() returned %ld\n",
  5429. PTR_ERR(rdev));
  5430. return -EINVAL;
  5431. }
  5432. if (mddev->persistent)
  5433. rdev->sb_start = calc_dev_sboffset(rdev);
  5434. else
  5435. rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
  5436. rdev->sectors = rdev->sb_start;
  5437. if (test_bit(Faulty, &rdev->flags)) {
  5438. printk(KERN_WARNING
  5439. "md: can not hot-add faulty %s disk to %s!\n",
  5440. bdevname(rdev->bdev,b), mdname(mddev));
  5441. err = -EINVAL;
  5442. goto abort_export;
  5443. }
  5444. if (mddev_is_clustered(mddev))
  5445. md_cluster_ops->metadata_update_start(mddev);
  5446. clear_bit(In_sync, &rdev->flags);
  5447. rdev->desc_nr = -1;
  5448. rdev->saved_raid_disk = -1;
  5449. err = bind_rdev_to_array(rdev, mddev);
  5450. if (err)
  5451. goto abort_clustered;
  5452. /*
  5453. * The rest should better be atomic, we can have disk failures
  5454. * noticed in interrupt contexts ...
  5455. */
  5456. rdev->raid_disk = -1;
  5457. md_update_sb(mddev, 1);
  5458. if (mddev_is_clustered(mddev))
  5459. md_cluster_ops->metadata_update_finish(mddev);
  5460. /*
  5461. * Kick recovery, maybe this spare has to be added to the
  5462. * array immediately.
  5463. */
  5464. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5465. md_wakeup_thread(mddev->thread);
  5466. md_new_event(mddev);
  5467. return 0;
  5468. abort_clustered:
  5469. if (mddev_is_clustered(mddev))
  5470. md_cluster_ops->metadata_update_cancel(mddev);
  5471. abort_export:
  5472. export_rdev(rdev);
  5473. return err;
  5474. }
  5475. static int set_bitmap_file(struct mddev *mddev, int fd)
  5476. {
  5477. int err = 0;
  5478. if (mddev->pers) {
  5479. if (!mddev->pers->quiesce || !mddev->thread)
  5480. return -EBUSY;
  5481. if (mddev->recovery || mddev->sync_thread)
  5482. return -EBUSY;
  5483. /* we should be able to change the bitmap.. */
  5484. }
  5485. if (fd >= 0) {
  5486. struct inode *inode;
  5487. struct file *f;
  5488. if (mddev->bitmap || mddev->bitmap_info.file)
  5489. return -EEXIST; /* cannot add when bitmap is present */
  5490. f = fget(fd);
  5491. if (f == NULL) {
  5492. printk(KERN_ERR "%s: error: failed to get bitmap file\n",
  5493. mdname(mddev));
  5494. return -EBADF;
  5495. }
  5496. inode = f->f_mapping->host;
  5497. if (!S_ISREG(inode->i_mode)) {
  5498. printk(KERN_ERR "%s: error: bitmap file must be a regular file\n",
  5499. mdname(mddev));
  5500. err = -EBADF;
  5501. } else if (!(f->f_mode & FMODE_WRITE)) {
  5502. printk(KERN_ERR "%s: error: bitmap file must open for write\n",
  5503. mdname(mddev));
  5504. err = -EBADF;
  5505. } else if (atomic_read(&inode->i_writecount) != 1) {
  5506. printk(KERN_ERR "%s: error: bitmap file is already in use\n",
  5507. mdname(mddev));
  5508. err = -EBUSY;
  5509. }
  5510. if (err) {
  5511. fput(f);
  5512. return err;
  5513. }
  5514. mddev->bitmap_info.file = f;
  5515. mddev->bitmap_info.offset = 0; /* file overrides offset */
  5516. } else if (mddev->bitmap == NULL)
  5517. return -ENOENT; /* cannot remove what isn't there */
  5518. err = 0;
  5519. if (mddev->pers) {
  5520. mddev->pers->quiesce(mddev, 1);
  5521. if (fd >= 0) {
  5522. struct bitmap *bitmap;
  5523. bitmap = bitmap_create(mddev, -1);
  5524. if (!IS_ERR(bitmap)) {
  5525. mddev->bitmap = bitmap;
  5526. err = bitmap_load(mddev);
  5527. } else
  5528. err = PTR_ERR(bitmap);
  5529. }
  5530. if (fd < 0 || err) {
  5531. bitmap_destroy(mddev);
  5532. fd = -1; /* make sure to put the file */
  5533. }
  5534. mddev->pers->quiesce(mddev, 0);
  5535. }
  5536. if (fd < 0) {
  5537. struct file *f = mddev->bitmap_info.file;
  5538. if (f) {
  5539. spin_lock(&mddev->lock);
  5540. mddev->bitmap_info.file = NULL;
  5541. spin_unlock(&mddev->lock);
  5542. fput(f);
  5543. }
  5544. }
  5545. return err;
  5546. }
  5547. /*
  5548. * set_array_info is used two different ways
  5549. * The original usage is when creating a new array.
  5550. * In this usage, raid_disks is > 0 and it together with
  5551. * level, size, not_persistent,layout,chunksize determine the
  5552. * shape of the array.
  5553. * This will always create an array with a type-0.90.0 superblock.
  5554. * The newer usage is when assembling an array.
  5555. * In this case raid_disks will be 0, and the major_version field is
  5556. * use to determine which style super-blocks are to be found on the devices.
  5557. * The minor and patch _version numbers are also kept incase the
  5558. * super_block handler wishes to interpret them.
  5559. */
  5560. static int set_array_info(struct mddev *mddev, mdu_array_info_t *info)
  5561. {
  5562. if (info->raid_disks == 0) {
  5563. /* just setting version number for superblock loading */
  5564. if (info->major_version < 0 ||
  5565. info->major_version >= ARRAY_SIZE(super_types) ||
  5566. super_types[info->major_version].name == NULL) {
  5567. /* maybe try to auto-load a module? */
  5568. printk(KERN_INFO
  5569. "md: superblock version %d not known\n",
  5570. info->major_version);
  5571. return -EINVAL;
  5572. }
  5573. mddev->major_version = info->major_version;
  5574. mddev->minor_version = info->minor_version;
  5575. mddev->patch_version = info->patch_version;
  5576. mddev->persistent = !info->not_persistent;
  5577. /* ensure mddev_put doesn't delete this now that there
  5578. * is some minimal configuration.
  5579. */
  5580. mddev->ctime = get_seconds();
  5581. return 0;
  5582. }
  5583. mddev->major_version = MD_MAJOR_VERSION;
  5584. mddev->minor_version = MD_MINOR_VERSION;
  5585. mddev->patch_version = MD_PATCHLEVEL_VERSION;
  5586. mddev->ctime = get_seconds();
  5587. mddev->level = info->level;
  5588. mddev->clevel[0] = 0;
  5589. mddev->dev_sectors = 2 * (sector_t)info->size;
  5590. mddev->raid_disks = info->raid_disks;
  5591. /* don't set md_minor, it is determined by which /dev/md* was
  5592. * openned
  5593. */
  5594. if (info->state & (1<<MD_SB_CLEAN))
  5595. mddev->recovery_cp = MaxSector;
  5596. else
  5597. mddev->recovery_cp = 0;
  5598. mddev->persistent = ! info->not_persistent;
  5599. mddev->external = 0;
  5600. mddev->layout = info->layout;
  5601. mddev->chunk_sectors = info->chunk_size >> 9;
  5602. mddev->max_disks = MD_SB_DISKS;
  5603. if (mddev->persistent)
  5604. mddev->flags = 0;
  5605. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  5606. mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
  5607. mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
  5608. mddev->bitmap_info.offset = 0;
  5609. mddev->reshape_position = MaxSector;
  5610. /*
  5611. * Generate a 128 bit UUID
  5612. */
  5613. get_random_bytes(mddev->uuid, 16);
  5614. mddev->new_level = mddev->level;
  5615. mddev->new_chunk_sectors = mddev->chunk_sectors;
  5616. mddev->new_layout = mddev->layout;
  5617. mddev->delta_disks = 0;
  5618. mddev->reshape_backwards = 0;
  5619. return 0;
  5620. }
  5621. void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
  5622. {
  5623. WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
  5624. if (mddev->external_size)
  5625. return;
  5626. mddev->array_sectors = array_sectors;
  5627. }
  5628. EXPORT_SYMBOL(md_set_array_sectors);
  5629. static int update_size(struct mddev *mddev, sector_t num_sectors)
  5630. {
  5631. struct md_rdev *rdev;
  5632. int rv;
  5633. int fit = (num_sectors == 0);
  5634. if (mddev->pers->resize == NULL)
  5635. return -EINVAL;
  5636. /* The "num_sectors" is the number of sectors of each device that
  5637. * is used. This can only make sense for arrays with redundancy.
  5638. * linear and raid0 always use whatever space is available. We can only
  5639. * consider changing this number if no resync or reconstruction is
  5640. * happening, and if the new size is acceptable. It must fit before the
  5641. * sb_start or, if that is <data_offset, it must fit before the size
  5642. * of each device. If num_sectors is zero, we find the largest size
  5643. * that fits.
  5644. */
  5645. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  5646. mddev->sync_thread)
  5647. return -EBUSY;
  5648. if (mddev->ro)
  5649. return -EROFS;
  5650. rdev_for_each(rdev, mddev) {
  5651. sector_t avail = rdev->sectors;
  5652. if (fit && (num_sectors == 0 || num_sectors > avail))
  5653. num_sectors = avail;
  5654. if (avail < num_sectors)
  5655. return -ENOSPC;
  5656. }
  5657. rv = mddev->pers->resize(mddev, num_sectors);
  5658. if (!rv)
  5659. revalidate_disk(mddev->gendisk);
  5660. return rv;
  5661. }
  5662. static int update_raid_disks(struct mddev *mddev, int raid_disks)
  5663. {
  5664. int rv;
  5665. struct md_rdev *rdev;
  5666. /* change the number of raid disks */
  5667. if (mddev->pers->check_reshape == NULL)
  5668. return -EINVAL;
  5669. if (mddev->ro)
  5670. return -EROFS;
  5671. if (raid_disks <= 0 ||
  5672. (mddev->max_disks && raid_disks >= mddev->max_disks))
  5673. return -EINVAL;
  5674. if (mddev->sync_thread ||
  5675. test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  5676. mddev->reshape_position != MaxSector)
  5677. return -EBUSY;
  5678. rdev_for_each(rdev, mddev) {
  5679. if (mddev->raid_disks < raid_disks &&
  5680. rdev->data_offset < rdev->new_data_offset)
  5681. return -EINVAL;
  5682. if (mddev->raid_disks > raid_disks &&
  5683. rdev->data_offset > rdev->new_data_offset)
  5684. return -EINVAL;
  5685. }
  5686. mddev->delta_disks = raid_disks - mddev->raid_disks;
  5687. if (mddev->delta_disks < 0)
  5688. mddev->reshape_backwards = 1;
  5689. else if (mddev->delta_disks > 0)
  5690. mddev->reshape_backwards = 0;
  5691. rv = mddev->pers->check_reshape(mddev);
  5692. if (rv < 0) {
  5693. mddev->delta_disks = 0;
  5694. mddev->reshape_backwards = 0;
  5695. }
  5696. return rv;
  5697. }
  5698. /*
  5699. * update_array_info is used to change the configuration of an
  5700. * on-line array.
  5701. * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
  5702. * fields in the info are checked against the array.
  5703. * Any differences that cannot be handled will cause an error.
  5704. * Normally, only one change can be managed at a time.
  5705. */
  5706. static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
  5707. {
  5708. int rv = 0;
  5709. int cnt = 0;
  5710. int state = 0;
  5711. /* calculate expected state,ignoring low bits */
  5712. if (mddev->bitmap && mddev->bitmap_info.offset)
  5713. state |= (1 << MD_SB_BITMAP_PRESENT);
  5714. if (mddev->major_version != info->major_version ||
  5715. mddev->minor_version != info->minor_version ||
  5716. /* mddev->patch_version != info->patch_version || */
  5717. mddev->ctime != info->ctime ||
  5718. mddev->level != info->level ||
  5719. /* mddev->layout != info->layout || */
  5720. mddev->persistent != !info->not_persistent ||
  5721. mddev->chunk_sectors != info->chunk_size >> 9 ||
  5722. /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
  5723. ((state^info->state) & 0xfffffe00)
  5724. )
  5725. return -EINVAL;
  5726. /* Check there is only one change */
  5727. if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
  5728. cnt++;
  5729. if (mddev->raid_disks != info->raid_disks)
  5730. cnt++;
  5731. if (mddev->layout != info->layout)
  5732. cnt++;
  5733. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
  5734. cnt++;
  5735. if (cnt == 0)
  5736. return 0;
  5737. if (cnt > 1)
  5738. return -EINVAL;
  5739. if (mddev->layout != info->layout) {
  5740. /* Change layout
  5741. * we don't need to do anything at the md level, the
  5742. * personality will take care of it all.
  5743. */
  5744. if (mddev->pers->check_reshape == NULL)
  5745. return -EINVAL;
  5746. else {
  5747. mddev->new_layout = info->layout;
  5748. rv = mddev->pers->check_reshape(mddev);
  5749. if (rv)
  5750. mddev->new_layout = mddev->layout;
  5751. return rv;
  5752. }
  5753. }
  5754. if (mddev_is_clustered(mddev))
  5755. md_cluster_ops->metadata_update_start(mddev);
  5756. if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
  5757. rv = update_size(mddev, (sector_t)info->size * 2);
  5758. if (mddev->raid_disks != info->raid_disks)
  5759. rv = update_raid_disks(mddev, info->raid_disks);
  5760. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
  5761. if (mddev->pers->quiesce == NULL || mddev->thread == NULL) {
  5762. rv = -EINVAL;
  5763. goto err;
  5764. }
  5765. if (mddev->recovery || mddev->sync_thread) {
  5766. rv = -EBUSY;
  5767. goto err;
  5768. }
  5769. if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
  5770. struct bitmap *bitmap;
  5771. /* add the bitmap */
  5772. if (mddev->bitmap) {
  5773. rv = -EEXIST;
  5774. goto err;
  5775. }
  5776. if (mddev->bitmap_info.default_offset == 0) {
  5777. rv = -EINVAL;
  5778. goto err;
  5779. }
  5780. mddev->bitmap_info.offset =
  5781. mddev->bitmap_info.default_offset;
  5782. mddev->bitmap_info.space =
  5783. mddev->bitmap_info.default_space;
  5784. mddev->pers->quiesce(mddev, 1);
  5785. bitmap = bitmap_create(mddev, -1);
  5786. if (!IS_ERR(bitmap)) {
  5787. mddev->bitmap = bitmap;
  5788. rv = bitmap_load(mddev);
  5789. } else
  5790. rv = PTR_ERR(bitmap);
  5791. if (rv)
  5792. bitmap_destroy(mddev);
  5793. mddev->pers->quiesce(mddev, 0);
  5794. } else {
  5795. /* remove the bitmap */
  5796. if (!mddev->bitmap) {
  5797. rv = -ENOENT;
  5798. goto err;
  5799. }
  5800. if (mddev->bitmap->storage.file) {
  5801. rv = -EINVAL;
  5802. goto err;
  5803. }
  5804. mddev->pers->quiesce(mddev, 1);
  5805. bitmap_destroy(mddev);
  5806. mddev->pers->quiesce(mddev, 0);
  5807. mddev->bitmap_info.offset = 0;
  5808. }
  5809. }
  5810. md_update_sb(mddev, 1);
  5811. if (mddev_is_clustered(mddev))
  5812. md_cluster_ops->metadata_update_finish(mddev);
  5813. return rv;
  5814. err:
  5815. if (mddev_is_clustered(mddev))
  5816. md_cluster_ops->metadata_update_cancel(mddev);
  5817. return rv;
  5818. }
  5819. static int set_disk_faulty(struct mddev *mddev, dev_t dev)
  5820. {
  5821. struct md_rdev *rdev;
  5822. int err = 0;
  5823. if (mddev->pers == NULL)
  5824. return -ENODEV;
  5825. rcu_read_lock();
  5826. rdev = find_rdev_rcu(mddev, dev);
  5827. if (!rdev)
  5828. err = -ENODEV;
  5829. else {
  5830. md_error(mddev, rdev);
  5831. if (!test_bit(Faulty, &rdev->flags))
  5832. err = -EBUSY;
  5833. }
  5834. rcu_read_unlock();
  5835. return err;
  5836. }
  5837. /*
  5838. * We have a problem here : there is no easy way to give a CHS
  5839. * virtual geometry. We currently pretend that we have a 2 heads
  5840. * 4 sectors (with a BIG number of cylinders...). This drives
  5841. * dosfs just mad... ;-)
  5842. */
  5843. static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
  5844. {
  5845. struct mddev *mddev = bdev->bd_disk->private_data;
  5846. geo->heads = 2;
  5847. geo->sectors = 4;
  5848. geo->cylinders = mddev->array_sectors / 8;
  5849. return 0;
  5850. }
  5851. static inline bool md_ioctl_valid(unsigned int cmd)
  5852. {
  5853. switch (cmd) {
  5854. case ADD_NEW_DISK:
  5855. case BLKROSET:
  5856. case GET_ARRAY_INFO:
  5857. case GET_BITMAP_FILE:
  5858. case GET_DISK_INFO:
  5859. case HOT_ADD_DISK:
  5860. case HOT_REMOVE_DISK:
  5861. case RAID_AUTORUN:
  5862. case RAID_VERSION:
  5863. case RESTART_ARRAY_RW:
  5864. case RUN_ARRAY:
  5865. case SET_ARRAY_INFO:
  5866. case SET_BITMAP_FILE:
  5867. case SET_DISK_FAULTY:
  5868. case STOP_ARRAY:
  5869. case STOP_ARRAY_RO:
  5870. case CLUSTERED_DISK_NACK:
  5871. return true;
  5872. default:
  5873. return false;
  5874. }
  5875. }
  5876. static int md_ioctl(struct block_device *bdev, fmode_t mode,
  5877. unsigned int cmd, unsigned long arg)
  5878. {
  5879. int err = 0;
  5880. void __user *argp = (void __user *)arg;
  5881. struct mddev *mddev = NULL;
  5882. int ro;
  5883. if (!md_ioctl_valid(cmd))
  5884. return -ENOTTY;
  5885. switch (cmd) {
  5886. case RAID_VERSION:
  5887. case GET_ARRAY_INFO:
  5888. case GET_DISK_INFO:
  5889. break;
  5890. default:
  5891. if (!capable(CAP_SYS_ADMIN))
  5892. return -EACCES;
  5893. }
  5894. /*
  5895. * Commands dealing with the RAID driver but not any
  5896. * particular array:
  5897. */
  5898. switch (cmd) {
  5899. case RAID_VERSION:
  5900. err = get_version(argp);
  5901. goto out;
  5902. #ifndef MODULE
  5903. case RAID_AUTORUN:
  5904. err = 0;
  5905. autostart_arrays(arg);
  5906. goto out;
  5907. #endif
  5908. default:;
  5909. }
  5910. /*
  5911. * Commands creating/starting a new array:
  5912. */
  5913. mddev = bdev->bd_disk->private_data;
  5914. if (!mddev) {
  5915. BUG();
  5916. goto out;
  5917. }
  5918. /* Some actions do not requires the mutex */
  5919. switch (cmd) {
  5920. case GET_ARRAY_INFO:
  5921. if (!mddev->raid_disks && !mddev->external)
  5922. err = -ENODEV;
  5923. else
  5924. err = get_array_info(mddev, argp);
  5925. goto out;
  5926. case GET_DISK_INFO:
  5927. if (!mddev->raid_disks && !mddev->external)
  5928. err = -ENODEV;
  5929. else
  5930. err = get_disk_info(mddev, argp);
  5931. goto out;
  5932. case SET_DISK_FAULTY:
  5933. err = set_disk_faulty(mddev, new_decode_dev(arg));
  5934. goto out;
  5935. case GET_BITMAP_FILE:
  5936. err = get_bitmap_file(mddev, argp);
  5937. goto out;
  5938. }
  5939. if (cmd == ADD_NEW_DISK)
  5940. /* need to ensure md_delayed_delete() has completed */
  5941. flush_workqueue(md_misc_wq);
  5942. if (cmd == HOT_REMOVE_DISK)
  5943. /* need to ensure recovery thread has run */
  5944. wait_event_interruptible_timeout(mddev->sb_wait,
  5945. !test_bit(MD_RECOVERY_NEEDED,
  5946. &mddev->flags),
  5947. msecs_to_jiffies(5000));
  5948. if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
  5949. /* Need to flush page cache, and ensure no-one else opens
  5950. * and writes
  5951. */
  5952. mutex_lock(&mddev->open_mutex);
  5953. if (mddev->pers && atomic_read(&mddev->openers) > 1) {
  5954. mutex_unlock(&mddev->open_mutex);
  5955. err = -EBUSY;
  5956. goto out;
  5957. }
  5958. set_bit(MD_STILL_CLOSED, &mddev->flags);
  5959. mutex_unlock(&mddev->open_mutex);
  5960. sync_blockdev(bdev);
  5961. }
  5962. err = mddev_lock(mddev);
  5963. if (err) {
  5964. printk(KERN_INFO
  5965. "md: ioctl lock interrupted, reason %d, cmd %d\n",
  5966. err, cmd);
  5967. goto out;
  5968. }
  5969. if (cmd == SET_ARRAY_INFO) {
  5970. mdu_array_info_t info;
  5971. if (!arg)
  5972. memset(&info, 0, sizeof(info));
  5973. else if (copy_from_user(&info, argp, sizeof(info))) {
  5974. err = -EFAULT;
  5975. goto unlock;
  5976. }
  5977. if (mddev->pers) {
  5978. err = update_array_info(mddev, &info);
  5979. if (err) {
  5980. printk(KERN_WARNING "md: couldn't update"
  5981. " array info. %d\n", err);
  5982. goto unlock;
  5983. }
  5984. goto unlock;
  5985. }
  5986. if (!list_empty(&mddev->disks)) {
  5987. printk(KERN_WARNING
  5988. "md: array %s already has disks!\n",
  5989. mdname(mddev));
  5990. err = -EBUSY;
  5991. goto unlock;
  5992. }
  5993. if (mddev->raid_disks) {
  5994. printk(KERN_WARNING
  5995. "md: array %s already initialised!\n",
  5996. mdname(mddev));
  5997. err = -EBUSY;
  5998. goto unlock;
  5999. }
  6000. err = set_array_info(mddev, &info);
  6001. if (err) {
  6002. printk(KERN_WARNING "md: couldn't set"
  6003. " array info. %d\n", err);
  6004. goto unlock;
  6005. }
  6006. goto unlock;
  6007. }
  6008. /*
  6009. * Commands querying/configuring an existing array:
  6010. */
  6011. /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
  6012. * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
  6013. if ((!mddev->raid_disks && !mddev->external)
  6014. && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
  6015. && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
  6016. && cmd != GET_BITMAP_FILE) {
  6017. err = -ENODEV;
  6018. goto unlock;
  6019. }
  6020. /*
  6021. * Commands even a read-only array can execute:
  6022. */
  6023. switch (cmd) {
  6024. case RESTART_ARRAY_RW:
  6025. err = restart_array(mddev);
  6026. goto unlock;
  6027. case STOP_ARRAY:
  6028. err = do_md_stop(mddev, 0, bdev);
  6029. goto unlock;
  6030. case STOP_ARRAY_RO:
  6031. err = md_set_readonly(mddev, bdev);
  6032. goto unlock;
  6033. case HOT_REMOVE_DISK:
  6034. err = hot_remove_disk(mddev, new_decode_dev(arg));
  6035. goto unlock;
  6036. case ADD_NEW_DISK:
  6037. /* We can support ADD_NEW_DISK on read-only arrays
  6038. * on if we are re-adding a preexisting device.
  6039. * So require mddev->pers and MD_DISK_SYNC.
  6040. */
  6041. if (mddev->pers) {
  6042. mdu_disk_info_t info;
  6043. if (copy_from_user(&info, argp, sizeof(info)))
  6044. err = -EFAULT;
  6045. else if (!(info.state & (1<<MD_DISK_SYNC)))
  6046. /* Need to clear read-only for this */
  6047. break;
  6048. else
  6049. err = add_new_disk(mddev, &info);
  6050. goto unlock;
  6051. }
  6052. break;
  6053. case BLKROSET:
  6054. if (get_user(ro, (int __user *)(arg))) {
  6055. err = -EFAULT;
  6056. goto unlock;
  6057. }
  6058. err = -EINVAL;
  6059. /* if the bdev is going readonly the value of mddev->ro
  6060. * does not matter, no writes are coming
  6061. */
  6062. if (ro)
  6063. goto unlock;
  6064. /* are we are already prepared for writes? */
  6065. if (mddev->ro != 1)
  6066. goto unlock;
  6067. /* transitioning to readauto need only happen for
  6068. * arrays that call md_write_start
  6069. */
  6070. if (mddev->pers) {
  6071. err = restart_array(mddev);
  6072. if (err == 0) {
  6073. mddev->ro = 2;
  6074. set_disk_ro(mddev->gendisk, 0);
  6075. }
  6076. }
  6077. goto unlock;
  6078. }
  6079. /*
  6080. * The remaining ioctls are changing the state of the
  6081. * superblock, so we do not allow them on read-only arrays.
  6082. */
  6083. if (mddev->ro && mddev->pers) {
  6084. if (mddev->ro == 2) {
  6085. mddev->ro = 0;
  6086. sysfs_notify_dirent_safe(mddev->sysfs_state);
  6087. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6088. /* mddev_unlock will wake thread */
  6089. /* If a device failed while we were read-only, we
  6090. * need to make sure the metadata is updated now.
  6091. */
  6092. if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
  6093. mddev_unlock(mddev);
  6094. wait_event(mddev->sb_wait,
  6095. !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
  6096. !test_bit(MD_CHANGE_PENDING, &mddev->flags));
  6097. mddev_lock_nointr(mddev);
  6098. }
  6099. } else {
  6100. err = -EROFS;
  6101. goto unlock;
  6102. }
  6103. }
  6104. switch (cmd) {
  6105. case ADD_NEW_DISK:
  6106. {
  6107. mdu_disk_info_t info;
  6108. if (copy_from_user(&info, argp, sizeof(info)))
  6109. err = -EFAULT;
  6110. else
  6111. err = add_new_disk(mddev, &info);
  6112. goto unlock;
  6113. }
  6114. case CLUSTERED_DISK_NACK:
  6115. if (mddev_is_clustered(mddev))
  6116. md_cluster_ops->new_disk_ack(mddev, false);
  6117. else
  6118. err = -EINVAL;
  6119. goto unlock;
  6120. case HOT_ADD_DISK:
  6121. err = hot_add_disk(mddev, new_decode_dev(arg));
  6122. goto unlock;
  6123. case RUN_ARRAY:
  6124. err = do_md_run(mddev);
  6125. goto unlock;
  6126. case SET_BITMAP_FILE:
  6127. err = set_bitmap_file(mddev, (int)arg);
  6128. goto unlock;
  6129. default:
  6130. err = -EINVAL;
  6131. goto unlock;
  6132. }
  6133. unlock:
  6134. if (mddev->hold_active == UNTIL_IOCTL &&
  6135. err != -EINVAL)
  6136. mddev->hold_active = 0;
  6137. mddev_unlock(mddev);
  6138. out:
  6139. return err;
  6140. }
  6141. #ifdef CONFIG_COMPAT
  6142. static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
  6143. unsigned int cmd, unsigned long arg)
  6144. {
  6145. switch (cmd) {
  6146. case HOT_REMOVE_DISK:
  6147. case HOT_ADD_DISK:
  6148. case SET_DISK_FAULTY:
  6149. case SET_BITMAP_FILE:
  6150. /* These take in integer arg, do not convert */
  6151. break;
  6152. default:
  6153. arg = (unsigned long)compat_ptr(arg);
  6154. break;
  6155. }
  6156. return md_ioctl(bdev, mode, cmd, arg);
  6157. }
  6158. #endif /* CONFIG_COMPAT */
  6159. static int md_open(struct block_device *bdev, fmode_t mode)
  6160. {
  6161. /*
  6162. * Succeed if we can lock the mddev, which confirms that
  6163. * it isn't being stopped right now.
  6164. */
  6165. struct mddev *mddev = mddev_find(bdev->bd_dev);
  6166. int err;
  6167. if (!mddev)
  6168. return -ENODEV;
  6169. if (mddev->gendisk != bdev->bd_disk) {
  6170. /* we are racing with mddev_put which is discarding this
  6171. * bd_disk.
  6172. */
  6173. mddev_put(mddev);
  6174. /* Wait until bdev->bd_disk is definitely gone */
  6175. flush_workqueue(md_misc_wq);
  6176. /* Then retry the open from the top */
  6177. return -ERESTARTSYS;
  6178. }
  6179. BUG_ON(mddev != bdev->bd_disk->private_data);
  6180. if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
  6181. goto out;
  6182. err = 0;
  6183. atomic_inc(&mddev->openers);
  6184. clear_bit(MD_STILL_CLOSED, &mddev->flags);
  6185. mutex_unlock(&mddev->open_mutex);
  6186. check_disk_change(bdev);
  6187. out:
  6188. return err;
  6189. }
  6190. static void md_release(struct gendisk *disk, fmode_t mode)
  6191. {
  6192. struct mddev *mddev = disk->private_data;
  6193. BUG_ON(!mddev);
  6194. atomic_dec(&mddev->openers);
  6195. mddev_put(mddev);
  6196. }
  6197. static int md_media_changed(struct gendisk *disk)
  6198. {
  6199. struct mddev *mddev = disk->private_data;
  6200. return mddev->changed;
  6201. }
  6202. static int md_revalidate(struct gendisk *disk)
  6203. {
  6204. struct mddev *mddev = disk->private_data;
  6205. mddev->changed = 0;
  6206. return 0;
  6207. }
  6208. static const struct block_device_operations md_fops =
  6209. {
  6210. .owner = THIS_MODULE,
  6211. .open = md_open,
  6212. .release = md_release,
  6213. .ioctl = md_ioctl,
  6214. #ifdef CONFIG_COMPAT
  6215. .compat_ioctl = md_compat_ioctl,
  6216. #endif
  6217. .getgeo = md_getgeo,
  6218. .media_changed = md_media_changed,
  6219. .revalidate_disk= md_revalidate,
  6220. };
  6221. static int md_thread(void *arg)
  6222. {
  6223. struct md_thread *thread = arg;
  6224. /*
  6225. * md_thread is a 'system-thread', it's priority should be very
  6226. * high. We avoid resource deadlocks individually in each
  6227. * raid personality. (RAID5 does preallocation) We also use RR and
  6228. * the very same RT priority as kswapd, thus we will never get
  6229. * into a priority inversion deadlock.
  6230. *
  6231. * we definitely have to have equal or higher priority than
  6232. * bdflush, otherwise bdflush will deadlock if there are too
  6233. * many dirty RAID5 blocks.
  6234. */
  6235. allow_signal(SIGKILL);
  6236. while (!kthread_should_stop()) {
  6237. /* We need to wait INTERRUPTIBLE so that
  6238. * we don't add to the load-average.
  6239. * That means we need to be sure no signals are
  6240. * pending
  6241. */
  6242. if (signal_pending(current))
  6243. flush_signals(current);
  6244. wait_event_interruptible_timeout
  6245. (thread->wqueue,
  6246. test_bit(THREAD_WAKEUP, &thread->flags)
  6247. || kthread_should_stop(),
  6248. thread->timeout);
  6249. clear_bit(THREAD_WAKEUP, &thread->flags);
  6250. if (!kthread_should_stop())
  6251. thread->run(thread);
  6252. }
  6253. return 0;
  6254. }
  6255. void md_wakeup_thread(struct md_thread *thread)
  6256. {
  6257. if (thread) {
  6258. pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
  6259. set_bit(THREAD_WAKEUP, &thread->flags);
  6260. wake_up(&thread->wqueue);
  6261. }
  6262. }
  6263. EXPORT_SYMBOL(md_wakeup_thread);
  6264. struct md_thread *md_register_thread(void (*run) (struct md_thread *),
  6265. struct mddev *mddev, const char *name)
  6266. {
  6267. struct md_thread *thread;
  6268. thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
  6269. if (!thread)
  6270. return NULL;
  6271. init_waitqueue_head(&thread->wqueue);
  6272. thread->run = run;
  6273. thread->mddev = mddev;
  6274. thread->timeout = MAX_SCHEDULE_TIMEOUT;
  6275. thread->tsk = kthread_run(md_thread, thread,
  6276. "%s_%s",
  6277. mdname(thread->mddev),
  6278. name);
  6279. if (IS_ERR(thread->tsk)) {
  6280. kfree(thread);
  6281. return NULL;
  6282. }
  6283. return thread;
  6284. }
  6285. EXPORT_SYMBOL(md_register_thread);
  6286. void md_unregister_thread(struct md_thread **threadp)
  6287. {
  6288. struct md_thread *thread = *threadp;
  6289. if (!thread)
  6290. return;
  6291. pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
  6292. /* Locking ensures that mddev_unlock does not wake_up a
  6293. * non-existent thread
  6294. */
  6295. spin_lock(&pers_lock);
  6296. *threadp = NULL;
  6297. spin_unlock(&pers_lock);
  6298. kthread_stop(thread->tsk);
  6299. kfree(thread);
  6300. }
  6301. EXPORT_SYMBOL(md_unregister_thread);
  6302. void md_error(struct mddev *mddev, struct md_rdev *rdev)
  6303. {
  6304. if (!rdev || test_bit(Faulty, &rdev->flags))
  6305. return;
  6306. if (!mddev->pers || !mddev->pers->error_handler)
  6307. return;
  6308. mddev->pers->error_handler(mddev,rdev);
  6309. if (mddev->degraded)
  6310. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  6311. sysfs_notify_dirent_safe(rdev->sysfs_state);
  6312. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6313. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6314. md_wakeup_thread(mddev->thread);
  6315. if (mddev->event_work.func)
  6316. queue_work(md_misc_wq, &mddev->event_work);
  6317. md_new_event_inintr(mddev);
  6318. }
  6319. EXPORT_SYMBOL(md_error);
  6320. /* seq_file implementation /proc/mdstat */
  6321. static void status_unused(struct seq_file *seq)
  6322. {
  6323. int i = 0;
  6324. struct md_rdev *rdev;
  6325. seq_printf(seq, "unused devices: ");
  6326. list_for_each_entry(rdev, &pending_raid_disks, same_set) {
  6327. char b[BDEVNAME_SIZE];
  6328. i++;
  6329. seq_printf(seq, "%s ",
  6330. bdevname(rdev->bdev,b));
  6331. }
  6332. if (!i)
  6333. seq_printf(seq, "<none>");
  6334. seq_printf(seq, "\n");
  6335. }
  6336. static int status_resync(struct seq_file *seq, struct mddev *mddev)
  6337. {
  6338. sector_t max_sectors, resync, res;
  6339. unsigned long dt, db;
  6340. sector_t rt;
  6341. int scale;
  6342. unsigned int per_milli;
  6343. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
  6344. test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  6345. max_sectors = mddev->resync_max_sectors;
  6346. else
  6347. max_sectors = mddev->dev_sectors;
  6348. resync = mddev->curr_resync;
  6349. if (resync <= 3) {
  6350. if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
  6351. /* Still cleaning up */
  6352. resync = max_sectors;
  6353. } else
  6354. resync -= atomic_read(&mddev->recovery_active);
  6355. if (resync == 0) {
  6356. if (mddev->recovery_cp < MaxSector) {
  6357. seq_printf(seq, "\tresync=PENDING");
  6358. return 1;
  6359. }
  6360. return 0;
  6361. }
  6362. if (resync < 3) {
  6363. seq_printf(seq, "\tresync=DELAYED");
  6364. return 1;
  6365. }
  6366. WARN_ON(max_sectors == 0);
  6367. /* Pick 'scale' such that (resync>>scale)*1000 will fit
  6368. * in a sector_t, and (max_sectors>>scale) will fit in a
  6369. * u32, as those are the requirements for sector_div.
  6370. * Thus 'scale' must be at least 10
  6371. */
  6372. scale = 10;
  6373. if (sizeof(sector_t) > sizeof(unsigned long)) {
  6374. while ( max_sectors/2 > (1ULL<<(scale+32)))
  6375. scale++;
  6376. }
  6377. res = (resync>>scale)*1000;
  6378. sector_div(res, (u32)((max_sectors>>scale)+1));
  6379. per_milli = res;
  6380. {
  6381. int i, x = per_milli/50, y = 20-x;
  6382. seq_printf(seq, "[");
  6383. for (i = 0; i < x; i++)
  6384. seq_printf(seq, "=");
  6385. seq_printf(seq, ">");
  6386. for (i = 0; i < y; i++)
  6387. seq_printf(seq, ".");
  6388. seq_printf(seq, "] ");
  6389. }
  6390. seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
  6391. (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
  6392. "reshape" :
  6393. (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
  6394. "check" :
  6395. (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
  6396. "resync" : "recovery"))),
  6397. per_milli/10, per_milli % 10,
  6398. (unsigned long long) resync/2,
  6399. (unsigned long long) max_sectors/2);
  6400. /*
  6401. * dt: time from mark until now
  6402. * db: blocks written from mark until now
  6403. * rt: remaining time
  6404. *
  6405. * rt is a sector_t, so could be 32bit or 64bit.
  6406. * So we divide before multiply in case it is 32bit and close
  6407. * to the limit.
  6408. * We scale the divisor (db) by 32 to avoid losing precision
  6409. * near the end of resync when the number of remaining sectors
  6410. * is close to 'db'.
  6411. * We then divide rt by 32 after multiplying by db to compensate.
  6412. * The '+1' avoids division by zero if db is very small.
  6413. */
  6414. dt = ((jiffies - mddev->resync_mark) / HZ);
  6415. if (!dt) dt++;
  6416. db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
  6417. - mddev->resync_mark_cnt;
  6418. rt = max_sectors - resync; /* number of remaining sectors */
  6419. sector_div(rt, db/32+1);
  6420. rt *= dt;
  6421. rt >>= 5;
  6422. seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
  6423. ((unsigned long)rt % 60)/6);
  6424. seq_printf(seq, " speed=%ldK/sec", db/2/dt);
  6425. return 1;
  6426. }
  6427. static void *md_seq_start(struct seq_file *seq, loff_t *pos)
  6428. {
  6429. struct list_head *tmp;
  6430. loff_t l = *pos;
  6431. struct mddev *mddev;
  6432. if (l >= 0x10000)
  6433. return NULL;
  6434. if (!l--)
  6435. /* header */
  6436. return (void*)1;
  6437. spin_lock(&all_mddevs_lock);
  6438. list_for_each(tmp,&all_mddevs)
  6439. if (!l--) {
  6440. mddev = list_entry(tmp, struct mddev, all_mddevs);
  6441. mddev_get(mddev);
  6442. spin_unlock(&all_mddevs_lock);
  6443. return mddev;
  6444. }
  6445. spin_unlock(&all_mddevs_lock);
  6446. if (!l--)
  6447. return (void*)2;/* tail */
  6448. return NULL;
  6449. }
  6450. static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  6451. {
  6452. struct list_head *tmp;
  6453. struct mddev *next_mddev, *mddev = v;
  6454. ++*pos;
  6455. if (v == (void*)2)
  6456. return NULL;
  6457. spin_lock(&all_mddevs_lock);
  6458. if (v == (void*)1)
  6459. tmp = all_mddevs.next;
  6460. else
  6461. tmp = mddev->all_mddevs.next;
  6462. if (tmp != &all_mddevs)
  6463. next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
  6464. else {
  6465. next_mddev = (void*)2;
  6466. *pos = 0x10000;
  6467. }
  6468. spin_unlock(&all_mddevs_lock);
  6469. if (v != (void*)1)
  6470. mddev_put(mddev);
  6471. return next_mddev;
  6472. }
  6473. static void md_seq_stop(struct seq_file *seq, void *v)
  6474. {
  6475. struct mddev *mddev = v;
  6476. if (mddev && v != (void*)1 && v != (void*)2)
  6477. mddev_put(mddev);
  6478. }
  6479. static int md_seq_show(struct seq_file *seq, void *v)
  6480. {
  6481. struct mddev *mddev = v;
  6482. sector_t sectors;
  6483. struct md_rdev *rdev;
  6484. if (v == (void*)1) {
  6485. struct md_personality *pers;
  6486. seq_printf(seq, "Personalities : ");
  6487. spin_lock(&pers_lock);
  6488. list_for_each_entry(pers, &pers_list, list)
  6489. seq_printf(seq, "[%s] ", pers->name);
  6490. spin_unlock(&pers_lock);
  6491. seq_printf(seq, "\n");
  6492. seq->poll_event = atomic_read(&md_event_count);
  6493. return 0;
  6494. }
  6495. if (v == (void*)2) {
  6496. status_unused(seq);
  6497. return 0;
  6498. }
  6499. spin_lock(&mddev->lock);
  6500. if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
  6501. seq_printf(seq, "%s : %sactive", mdname(mddev),
  6502. mddev->pers ? "" : "in");
  6503. if (mddev->pers) {
  6504. if (mddev->ro==1)
  6505. seq_printf(seq, " (read-only)");
  6506. if (mddev->ro==2)
  6507. seq_printf(seq, " (auto-read-only)");
  6508. seq_printf(seq, " %s", mddev->pers->name);
  6509. }
  6510. sectors = 0;
  6511. rcu_read_lock();
  6512. rdev_for_each_rcu(rdev, mddev) {
  6513. char b[BDEVNAME_SIZE];
  6514. seq_printf(seq, " %s[%d]",
  6515. bdevname(rdev->bdev,b), rdev->desc_nr);
  6516. if (test_bit(WriteMostly, &rdev->flags))
  6517. seq_printf(seq, "(W)");
  6518. if (test_bit(Faulty, &rdev->flags)) {
  6519. seq_printf(seq, "(F)");
  6520. continue;
  6521. }
  6522. if (rdev->raid_disk < 0)
  6523. seq_printf(seq, "(S)"); /* spare */
  6524. if (test_bit(Replacement, &rdev->flags))
  6525. seq_printf(seq, "(R)");
  6526. sectors += rdev->sectors;
  6527. }
  6528. rcu_read_unlock();
  6529. if (!list_empty(&mddev->disks)) {
  6530. if (mddev->pers)
  6531. seq_printf(seq, "\n %llu blocks",
  6532. (unsigned long long)
  6533. mddev->array_sectors / 2);
  6534. else
  6535. seq_printf(seq, "\n %llu blocks",
  6536. (unsigned long long)sectors / 2);
  6537. }
  6538. if (mddev->persistent) {
  6539. if (mddev->major_version != 0 ||
  6540. mddev->minor_version != 90) {
  6541. seq_printf(seq," super %d.%d",
  6542. mddev->major_version,
  6543. mddev->minor_version);
  6544. }
  6545. } else if (mddev->external)
  6546. seq_printf(seq, " super external:%s",
  6547. mddev->metadata_type);
  6548. else
  6549. seq_printf(seq, " super non-persistent");
  6550. if (mddev->pers) {
  6551. mddev->pers->status(seq, mddev);
  6552. seq_printf(seq, "\n ");
  6553. if (mddev->pers->sync_request) {
  6554. if (status_resync(seq, mddev))
  6555. seq_printf(seq, "\n ");
  6556. }
  6557. } else
  6558. seq_printf(seq, "\n ");
  6559. bitmap_status(seq, mddev->bitmap);
  6560. seq_printf(seq, "\n");
  6561. }
  6562. spin_unlock(&mddev->lock);
  6563. return 0;
  6564. }
  6565. static const struct seq_operations md_seq_ops = {
  6566. .start = md_seq_start,
  6567. .next = md_seq_next,
  6568. .stop = md_seq_stop,
  6569. .show = md_seq_show,
  6570. };
  6571. static int md_seq_open(struct inode *inode, struct file *file)
  6572. {
  6573. struct seq_file *seq;
  6574. int error;
  6575. error = seq_open(file, &md_seq_ops);
  6576. if (error)
  6577. return error;
  6578. seq = file->private_data;
  6579. seq->poll_event = atomic_read(&md_event_count);
  6580. return error;
  6581. }
  6582. static int md_unloading;
  6583. static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
  6584. {
  6585. struct seq_file *seq = filp->private_data;
  6586. int mask;
  6587. if (md_unloading)
  6588. return POLLIN|POLLRDNORM|POLLERR|POLLPRI;
  6589. poll_wait(filp, &md_event_waiters, wait);
  6590. /* always allow read */
  6591. mask = POLLIN | POLLRDNORM;
  6592. if (seq->poll_event != atomic_read(&md_event_count))
  6593. mask |= POLLERR | POLLPRI;
  6594. return mask;
  6595. }
  6596. static const struct file_operations md_seq_fops = {
  6597. .owner = THIS_MODULE,
  6598. .open = md_seq_open,
  6599. .read = seq_read,
  6600. .llseek = seq_lseek,
  6601. .release = seq_release_private,
  6602. .poll = mdstat_poll,
  6603. };
  6604. int register_md_personality(struct md_personality *p)
  6605. {
  6606. printk(KERN_INFO "md: %s personality registered for level %d\n",
  6607. p->name, p->level);
  6608. spin_lock(&pers_lock);
  6609. list_add_tail(&p->list, &pers_list);
  6610. spin_unlock(&pers_lock);
  6611. return 0;
  6612. }
  6613. EXPORT_SYMBOL(register_md_personality);
  6614. int unregister_md_personality(struct md_personality *p)
  6615. {
  6616. printk(KERN_INFO "md: %s personality unregistered\n", p->name);
  6617. spin_lock(&pers_lock);
  6618. list_del_init(&p->list);
  6619. spin_unlock(&pers_lock);
  6620. return 0;
  6621. }
  6622. EXPORT_SYMBOL(unregister_md_personality);
  6623. int register_md_cluster_operations(struct md_cluster_operations *ops, struct module *module)
  6624. {
  6625. if (md_cluster_ops != NULL)
  6626. return -EALREADY;
  6627. spin_lock(&pers_lock);
  6628. md_cluster_ops = ops;
  6629. md_cluster_mod = module;
  6630. spin_unlock(&pers_lock);
  6631. return 0;
  6632. }
  6633. EXPORT_SYMBOL(register_md_cluster_operations);
  6634. int unregister_md_cluster_operations(void)
  6635. {
  6636. spin_lock(&pers_lock);
  6637. md_cluster_ops = NULL;
  6638. spin_unlock(&pers_lock);
  6639. return 0;
  6640. }
  6641. EXPORT_SYMBOL(unregister_md_cluster_operations);
  6642. int md_setup_cluster(struct mddev *mddev, int nodes)
  6643. {
  6644. int err;
  6645. err = request_module("md-cluster");
  6646. if (err) {
  6647. pr_err("md-cluster module not found.\n");
  6648. return -ENOENT;
  6649. }
  6650. spin_lock(&pers_lock);
  6651. if (!md_cluster_ops || !try_module_get(md_cluster_mod)) {
  6652. spin_unlock(&pers_lock);
  6653. return -ENOENT;
  6654. }
  6655. spin_unlock(&pers_lock);
  6656. return md_cluster_ops->join(mddev, nodes);
  6657. }
  6658. void md_cluster_stop(struct mddev *mddev)
  6659. {
  6660. if (!md_cluster_ops)
  6661. return;
  6662. md_cluster_ops->leave(mddev);
  6663. module_put(md_cluster_mod);
  6664. }
  6665. static int is_mddev_idle(struct mddev *mddev, int init)
  6666. {
  6667. struct md_rdev *rdev;
  6668. int idle;
  6669. int curr_events;
  6670. idle = 1;
  6671. rcu_read_lock();
  6672. rdev_for_each_rcu(rdev, mddev) {
  6673. struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
  6674. curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
  6675. (int)part_stat_read(&disk->part0, sectors[1]) -
  6676. atomic_read(&disk->sync_io);
  6677. /* sync IO will cause sync_io to increase before the disk_stats
  6678. * as sync_io is counted when a request starts, and
  6679. * disk_stats is counted when it completes.
  6680. * So resync activity will cause curr_events to be smaller than
  6681. * when there was no such activity.
  6682. * non-sync IO will cause disk_stat to increase without
  6683. * increasing sync_io so curr_events will (eventually)
  6684. * be larger than it was before. Once it becomes
  6685. * substantially larger, the test below will cause
  6686. * the array to appear non-idle, and resync will slow
  6687. * down.
  6688. * If there is a lot of outstanding resync activity when
  6689. * we set last_event to curr_events, then all that activity
  6690. * completing might cause the array to appear non-idle
  6691. * and resync will be slowed down even though there might
  6692. * not have been non-resync activity. This will only
  6693. * happen once though. 'last_events' will soon reflect
  6694. * the state where there is little or no outstanding
  6695. * resync requests, and further resync activity will
  6696. * always make curr_events less than last_events.
  6697. *
  6698. */
  6699. if (init || curr_events - rdev->last_events > 64) {
  6700. rdev->last_events = curr_events;
  6701. idle = 0;
  6702. }
  6703. }
  6704. rcu_read_unlock();
  6705. return idle;
  6706. }
  6707. void md_done_sync(struct mddev *mddev, int blocks, int ok)
  6708. {
  6709. /* another "blocks" (512byte) blocks have been synced */
  6710. atomic_sub(blocks, &mddev->recovery_active);
  6711. wake_up(&mddev->recovery_wait);
  6712. if (!ok) {
  6713. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6714. set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
  6715. md_wakeup_thread(mddev->thread);
  6716. // stop recovery, signal do_sync ....
  6717. }
  6718. }
  6719. EXPORT_SYMBOL(md_done_sync);
  6720. /* md_write_start(mddev, bi)
  6721. * If we need to update some array metadata (e.g. 'active' flag
  6722. * in superblock) before writing, schedule a superblock update
  6723. * and wait for it to complete.
  6724. */
  6725. void md_write_start(struct mddev *mddev, struct bio *bi)
  6726. {
  6727. int did_change = 0;
  6728. if (bio_data_dir(bi) != WRITE)
  6729. return;
  6730. BUG_ON(mddev->ro == 1);
  6731. if (mddev->ro == 2) {
  6732. /* need to switch to read/write */
  6733. mddev->ro = 0;
  6734. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6735. md_wakeup_thread(mddev->thread);
  6736. md_wakeup_thread(mddev->sync_thread);
  6737. did_change = 1;
  6738. }
  6739. atomic_inc(&mddev->writes_pending);
  6740. if (mddev->safemode == 1)
  6741. mddev->safemode = 0;
  6742. if (mddev->in_sync) {
  6743. spin_lock(&mddev->lock);
  6744. if (mddev->in_sync) {
  6745. mddev->in_sync = 0;
  6746. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6747. set_bit(MD_CHANGE_PENDING, &mddev->flags);
  6748. md_wakeup_thread(mddev->thread);
  6749. did_change = 1;
  6750. }
  6751. spin_unlock(&mddev->lock);
  6752. }
  6753. if (did_change)
  6754. sysfs_notify_dirent_safe(mddev->sysfs_state);
  6755. wait_event(mddev->sb_wait,
  6756. !test_bit(MD_CHANGE_PENDING, &mddev->flags));
  6757. }
  6758. EXPORT_SYMBOL(md_write_start);
  6759. void md_write_end(struct mddev *mddev)
  6760. {
  6761. if (atomic_dec_and_test(&mddev->writes_pending)) {
  6762. if (mddev->safemode == 2)
  6763. md_wakeup_thread(mddev->thread);
  6764. else if (mddev->safemode_delay)
  6765. mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
  6766. }
  6767. }
  6768. EXPORT_SYMBOL(md_write_end);
  6769. /* md_allow_write(mddev)
  6770. * Calling this ensures that the array is marked 'active' so that writes
  6771. * may proceed without blocking. It is important to call this before
  6772. * attempting a GFP_KERNEL allocation while holding the mddev lock.
  6773. * Must be called with mddev_lock held.
  6774. *
  6775. * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
  6776. * is dropped, so return -EAGAIN after notifying userspace.
  6777. */
  6778. int md_allow_write(struct mddev *mddev)
  6779. {
  6780. if (!mddev->pers)
  6781. return 0;
  6782. if (mddev->ro)
  6783. return 0;
  6784. if (!mddev->pers->sync_request)
  6785. return 0;
  6786. spin_lock(&mddev->lock);
  6787. if (mddev->in_sync) {
  6788. mddev->in_sync = 0;
  6789. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6790. set_bit(MD_CHANGE_PENDING, &mddev->flags);
  6791. if (mddev->safemode_delay &&
  6792. mddev->safemode == 0)
  6793. mddev->safemode = 1;
  6794. spin_unlock(&mddev->lock);
  6795. if (mddev_is_clustered(mddev))
  6796. md_cluster_ops->metadata_update_start(mddev);
  6797. md_update_sb(mddev, 0);
  6798. if (mddev_is_clustered(mddev))
  6799. md_cluster_ops->metadata_update_finish(mddev);
  6800. sysfs_notify_dirent_safe(mddev->sysfs_state);
  6801. } else
  6802. spin_unlock(&mddev->lock);
  6803. if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
  6804. return -EAGAIN;
  6805. else
  6806. return 0;
  6807. }
  6808. EXPORT_SYMBOL_GPL(md_allow_write);
  6809. #define SYNC_MARKS 10
  6810. #define SYNC_MARK_STEP (3*HZ)
  6811. #define UPDATE_FREQUENCY (5*60*HZ)
  6812. void md_do_sync(struct md_thread *thread)
  6813. {
  6814. struct mddev *mddev = thread->mddev;
  6815. struct mddev *mddev2;
  6816. unsigned int currspeed = 0,
  6817. window;
  6818. sector_t max_sectors,j, io_sectors, recovery_done;
  6819. unsigned long mark[SYNC_MARKS];
  6820. unsigned long update_time;
  6821. sector_t mark_cnt[SYNC_MARKS];
  6822. int last_mark,m;
  6823. struct list_head *tmp;
  6824. sector_t last_check;
  6825. int skipped = 0;
  6826. struct md_rdev *rdev;
  6827. char *desc, *action = NULL;
  6828. struct blk_plug plug;
  6829. /* just incase thread restarts... */
  6830. if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
  6831. return;
  6832. if (mddev->ro) {/* never try to sync a read-only array */
  6833. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6834. return;
  6835. }
  6836. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  6837. if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
  6838. desc = "data-check";
  6839. action = "check";
  6840. } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
  6841. desc = "requested-resync";
  6842. action = "repair";
  6843. } else
  6844. desc = "resync";
  6845. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  6846. desc = "reshape";
  6847. else
  6848. desc = "recovery";
  6849. mddev->last_sync_action = action ?: desc;
  6850. /* we overload curr_resync somewhat here.
  6851. * 0 == not engaged in resync at all
  6852. * 2 == checking that there is no conflict with another sync
  6853. * 1 == like 2, but have yielded to allow conflicting resync to
  6854. * commense
  6855. * other == active in resync - this many blocks
  6856. *
  6857. * Before starting a resync we must have set curr_resync to
  6858. * 2, and then checked that every "conflicting" array has curr_resync
  6859. * less than ours. When we find one that is the same or higher
  6860. * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
  6861. * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
  6862. * This will mean we have to start checking from the beginning again.
  6863. *
  6864. */
  6865. do {
  6866. mddev->curr_resync = 2;
  6867. try_again:
  6868. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6869. goto skip;
  6870. for_each_mddev(mddev2, tmp) {
  6871. if (mddev2 == mddev)
  6872. continue;
  6873. if (!mddev->parallel_resync
  6874. && mddev2->curr_resync
  6875. && match_mddev_units(mddev, mddev2)) {
  6876. DEFINE_WAIT(wq);
  6877. if (mddev < mddev2 && mddev->curr_resync == 2) {
  6878. /* arbitrarily yield */
  6879. mddev->curr_resync = 1;
  6880. wake_up(&resync_wait);
  6881. }
  6882. if (mddev > mddev2 && mddev->curr_resync == 1)
  6883. /* no need to wait here, we can wait the next
  6884. * time 'round when curr_resync == 2
  6885. */
  6886. continue;
  6887. /* We need to wait 'interruptible' so as not to
  6888. * contribute to the load average, and not to
  6889. * be caught by 'softlockup'
  6890. */
  6891. prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
  6892. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
  6893. mddev2->curr_resync >= mddev->curr_resync) {
  6894. printk(KERN_INFO "md: delaying %s of %s"
  6895. " until %s has finished (they"
  6896. " share one or more physical units)\n",
  6897. desc, mdname(mddev), mdname(mddev2));
  6898. mddev_put(mddev2);
  6899. if (signal_pending(current))
  6900. flush_signals(current);
  6901. schedule();
  6902. finish_wait(&resync_wait, &wq);
  6903. goto try_again;
  6904. }
  6905. finish_wait(&resync_wait, &wq);
  6906. }
  6907. }
  6908. } while (mddev->curr_resync < 2);
  6909. j = 0;
  6910. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  6911. /* resync follows the size requested by the personality,
  6912. * which defaults to physical size, but can be virtual size
  6913. */
  6914. max_sectors = mddev->resync_max_sectors;
  6915. atomic64_set(&mddev->resync_mismatches, 0);
  6916. /* we don't use the checkpoint if there's a bitmap */
  6917. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6918. j = mddev->resync_min;
  6919. else if (!mddev->bitmap)
  6920. j = mddev->recovery_cp;
  6921. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  6922. max_sectors = mddev->resync_max_sectors;
  6923. else {
  6924. /* recovery follows the physical size of devices */
  6925. max_sectors = mddev->dev_sectors;
  6926. j = MaxSector;
  6927. rcu_read_lock();
  6928. rdev_for_each_rcu(rdev, mddev)
  6929. if (rdev->raid_disk >= 0 &&
  6930. !test_bit(Faulty, &rdev->flags) &&
  6931. !test_bit(In_sync, &rdev->flags) &&
  6932. rdev->recovery_offset < j)
  6933. j = rdev->recovery_offset;
  6934. rcu_read_unlock();
  6935. /* If there is a bitmap, we need to make sure all
  6936. * writes that started before we added a spare
  6937. * complete before we start doing a recovery.
  6938. * Otherwise the write might complete and (via
  6939. * bitmap_endwrite) set a bit in the bitmap after the
  6940. * recovery has checked that bit and skipped that
  6941. * region.
  6942. */
  6943. if (mddev->bitmap) {
  6944. mddev->pers->quiesce(mddev, 1);
  6945. mddev->pers->quiesce(mddev, 0);
  6946. }
  6947. }
  6948. printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
  6949. printk(KERN_INFO "md: minimum _guaranteed_ speed:"
  6950. " %d KB/sec/disk.\n", speed_min(mddev));
  6951. printk(KERN_INFO "md: using maximum available idle IO bandwidth "
  6952. "(but not more than %d KB/sec) for %s.\n",
  6953. speed_max(mddev), desc);
  6954. is_mddev_idle(mddev, 1); /* this initializes IO event counters */
  6955. io_sectors = 0;
  6956. for (m = 0; m < SYNC_MARKS; m++) {
  6957. mark[m] = jiffies;
  6958. mark_cnt[m] = io_sectors;
  6959. }
  6960. last_mark = 0;
  6961. mddev->resync_mark = mark[last_mark];
  6962. mddev->resync_mark_cnt = mark_cnt[last_mark];
  6963. /*
  6964. * Tune reconstruction:
  6965. */
  6966. window = 32*(PAGE_SIZE/512);
  6967. printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
  6968. window/2, (unsigned long long)max_sectors/2);
  6969. atomic_set(&mddev->recovery_active, 0);
  6970. last_check = 0;
  6971. if (j>2) {
  6972. printk(KERN_INFO
  6973. "md: resuming %s of %s from checkpoint.\n",
  6974. desc, mdname(mddev));
  6975. mddev->curr_resync = j;
  6976. } else
  6977. mddev->curr_resync = 3; /* no longer delayed */
  6978. mddev->curr_resync_completed = j;
  6979. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  6980. md_new_event(mddev);
  6981. update_time = jiffies;
  6982. if (mddev_is_clustered(mddev))
  6983. md_cluster_ops->resync_start(mddev, j, max_sectors);
  6984. blk_start_plug(&plug);
  6985. while (j < max_sectors) {
  6986. sector_t sectors;
  6987. skipped = 0;
  6988. if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
  6989. ((mddev->curr_resync > mddev->curr_resync_completed &&
  6990. (mddev->curr_resync - mddev->curr_resync_completed)
  6991. > (max_sectors >> 4)) ||
  6992. time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
  6993. (j - mddev->curr_resync_completed)*2
  6994. >= mddev->resync_max - mddev->curr_resync_completed
  6995. )) {
  6996. /* time to update curr_resync_completed */
  6997. wait_event(mddev->recovery_wait,
  6998. atomic_read(&mddev->recovery_active) == 0);
  6999. mddev->curr_resync_completed = j;
  7000. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
  7001. j > mddev->recovery_cp)
  7002. mddev->recovery_cp = j;
  7003. update_time = jiffies;
  7004. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  7005. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  7006. }
  7007. while (j >= mddev->resync_max &&
  7008. !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  7009. /* As this condition is controlled by user-space,
  7010. * we can block indefinitely, so use '_interruptible'
  7011. * to avoid triggering warnings.
  7012. */
  7013. flush_signals(current); /* just in case */
  7014. wait_event_interruptible(mddev->recovery_wait,
  7015. mddev->resync_max > j
  7016. || test_bit(MD_RECOVERY_INTR,
  7017. &mddev->recovery));
  7018. }
  7019. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  7020. break;
  7021. sectors = mddev->pers->sync_request(mddev, j, &skipped);
  7022. if (sectors == 0) {
  7023. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  7024. break;
  7025. }
  7026. if (!skipped) { /* actual IO requested */
  7027. io_sectors += sectors;
  7028. atomic_add(sectors, &mddev->recovery_active);
  7029. }
  7030. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  7031. break;
  7032. j += sectors;
  7033. if (j > 2)
  7034. mddev->curr_resync = j;
  7035. if (mddev_is_clustered(mddev))
  7036. md_cluster_ops->resync_info_update(mddev, j, max_sectors);
  7037. mddev->curr_mark_cnt = io_sectors;
  7038. if (last_check == 0)
  7039. /* this is the earliest that rebuild will be
  7040. * visible in /proc/mdstat
  7041. */
  7042. md_new_event(mddev);
  7043. if (last_check + window > io_sectors || j == max_sectors)
  7044. continue;
  7045. last_check = io_sectors;
  7046. repeat:
  7047. if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
  7048. /* step marks */
  7049. int next = (last_mark+1) % SYNC_MARKS;
  7050. mddev->resync_mark = mark[next];
  7051. mddev->resync_mark_cnt = mark_cnt[next];
  7052. mark[next] = jiffies;
  7053. mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
  7054. last_mark = next;
  7055. }
  7056. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  7057. break;
  7058. /*
  7059. * this loop exits only if either when we are slower than
  7060. * the 'hard' speed limit, or the system was IO-idle for
  7061. * a jiffy.
  7062. * the system might be non-idle CPU-wise, but we only care
  7063. * about not overloading the IO subsystem. (things like an
  7064. * e2fsck being done on the RAID array should execute fast)
  7065. */
  7066. cond_resched();
  7067. recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
  7068. currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
  7069. /((jiffies-mddev->resync_mark)/HZ +1) +1;
  7070. if (currspeed > speed_min(mddev)) {
  7071. if (currspeed > speed_max(mddev)) {
  7072. msleep(500);
  7073. goto repeat;
  7074. }
  7075. if (!is_mddev_idle(mddev, 0)) {
  7076. /*
  7077. * Give other IO more of a chance.
  7078. * The faster the devices, the less we wait.
  7079. */
  7080. wait_event(mddev->recovery_wait,
  7081. !atomic_read(&mddev->recovery_active));
  7082. }
  7083. }
  7084. }
  7085. printk(KERN_INFO "md: %s: %s %s.\n",mdname(mddev), desc,
  7086. test_bit(MD_RECOVERY_INTR, &mddev->recovery)
  7087. ? "interrupted" : "done");
  7088. /*
  7089. * this also signals 'finished resyncing' to md_stop
  7090. */
  7091. blk_finish_plug(&plug);
  7092. wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
  7093. /* tell personality that we are finished */
  7094. mddev->pers->sync_request(mddev, max_sectors, &skipped);
  7095. if (mddev_is_clustered(mddev))
  7096. md_cluster_ops->resync_finish(mddev);
  7097. if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
  7098. mddev->curr_resync > 2) {
  7099. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  7100. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  7101. if (mddev->curr_resync >= mddev->recovery_cp) {
  7102. printk(KERN_INFO
  7103. "md: checkpointing %s of %s.\n",
  7104. desc, mdname(mddev));
  7105. if (test_bit(MD_RECOVERY_ERROR,
  7106. &mddev->recovery))
  7107. mddev->recovery_cp =
  7108. mddev->curr_resync_completed;
  7109. else
  7110. mddev->recovery_cp =
  7111. mddev->curr_resync;
  7112. }
  7113. } else
  7114. mddev->recovery_cp = MaxSector;
  7115. } else {
  7116. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  7117. mddev->curr_resync = MaxSector;
  7118. rcu_read_lock();
  7119. rdev_for_each_rcu(rdev, mddev)
  7120. if (rdev->raid_disk >= 0 &&
  7121. mddev->delta_disks >= 0 &&
  7122. !test_bit(Faulty, &rdev->flags) &&
  7123. !test_bit(In_sync, &rdev->flags) &&
  7124. rdev->recovery_offset < mddev->curr_resync)
  7125. rdev->recovery_offset = mddev->curr_resync;
  7126. rcu_read_unlock();
  7127. }
  7128. }
  7129. skip:
  7130. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  7131. spin_lock(&mddev->lock);
  7132. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  7133. /* We completed so min/max setting can be forgotten if used. */
  7134. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  7135. mddev->resync_min = 0;
  7136. mddev->resync_max = MaxSector;
  7137. } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  7138. mddev->resync_min = mddev->curr_resync_completed;
  7139. set_bit(MD_RECOVERY_DONE, &mddev->recovery);
  7140. mddev->curr_resync = 0;
  7141. spin_unlock(&mddev->lock);
  7142. wake_up(&resync_wait);
  7143. md_wakeup_thread(mddev->thread);
  7144. return;
  7145. }
  7146. EXPORT_SYMBOL_GPL(md_do_sync);
  7147. static int remove_and_add_spares(struct mddev *mddev,
  7148. struct md_rdev *this)
  7149. {
  7150. struct md_rdev *rdev;
  7151. int spares = 0;
  7152. int removed = 0;
  7153. rdev_for_each(rdev, mddev)
  7154. if ((this == NULL || rdev == this) &&
  7155. rdev->raid_disk >= 0 &&
  7156. !test_bit(Blocked, &rdev->flags) &&
  7157. (test_bit(Faulty, &rdev->flags) ||
  7158. ! test_bit(In_sync, &rdev->flags)) &&
  7159. atomic_read(&rdev->nr_pending)==0) {
  7160. if (mddev->pers->hot_remove_disk(
  7161. mddev, rdev) == 0) {
  7162. sysfs_unlink_rdev(mddev, rdev);
  7163. rdev->raid_disk = -1;
  7164. removed++;
  7165. }
  7166. }
  7167. if (removed && mddev->kobj.sd)
  7168. sysfs_notify(&mddev->kobj, NULL, "degraded");
  7169. if (this)
  7170. goto no_add;
  7171. rdev_for_each(rdev, mddev) {
  7172. if (rdev->raid_disk >= 0 &&
  7173. !test_bit(In_sync, &rdev->flags) &&
  7174. !test_bit(Faulty, &rdev->flags))
  7175. spares++;
  7176. if (rdev->raid_disk >= 0)
  7177. continue;
  7178. if (test_bit(Faulty, &rdev->flags))
  7179. continue;
  7180. if (mddev->ro &&
  7181. ! (rdev->saved_raid_disk >= 0 &&
  7182. !test_bit(Bitmap_sync, &rdev->flags)))
  7183. continue;
  7184. if (rdev->saved_raid_disk < 0)
  7185. rdev->recovery_offset = 0;
  7186. if (mddev->pers->
  7187. hot_add_disk(mddev, rdev) == 0) {
  7188. if (sysfs_link_rdev(mddev, rdev))
  7189. /* failure here is OK */;
  7190. spares++;
  7191. md_new_event(mddev);
  7192. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  7193. }
  7194. }
  7195. no_add:
  7196. if (removed)
  7197. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  7198. return spares;
  7199. }
  7200. static void md_start_sync(struct work_struct *ws)
  7201. {
  7202. struct mddev *mddev = container_of(ws, struct mddev, del_work);
  7203. mddev->sync_thread = md_register_thread(md_do_sync,
  7204. mddev,
  7205. "resync");
  7206. if (!mddev->sync_thread) {
  7207. printk(KERN_ERR "%s: could not start resync"
  7208. " thread...\n",
  7209. mdname(mddev));
  7210. /* leave the spares where they are, it shouldn't hurt */
  7211. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  7212. clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  7213. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  7214. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  7215. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  7216. wake_up(&resync_wait);
  7217. if (test_and_clear_bit(MD_RECOVERY_RECOVER,
  7218. &mddev->recovery))
  7219. if (mddev->sysfs_action)
  7220. sysfs_notify_dirent_safe(mddev->sysfs_action);
  7221. } else
  7222. md_wakeup_thread(mddev->sync_thread);
  7223. sysfs_notify_dirent_safe(mddev->sysfs_action);
  7224. md_new_event(mddev);
  7225. }
  7226. /*
  7227. * This routine is regularly called by all per-raid-array threads to
  7228. * deal with generic issues like resync and super-block update.
  7229. * Raid personalities that don't have a thread (linear/raid0) do not
  7230. * need this as they never do any recovery or update the superblock.
  7231. *
  7232. * It does not do any resync itself, but rather "forks" off other threads
  7233. * to do that as needed.
  7234. * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
  7235. * "->recovery" and create a thread at ->sync_thread.
  7236. * When the thread finishes it sets MD_RECOVERY_DONE
  7237. * and wakeups up this thread which will reap the thread and finish up.
  7238. * This thread also removes any faulty devices (with nr_pending == 0).
  7239. *
  7240. * The overall approach is:
  7241. * 1/ if the superblock needs updating, update it.
  7242. * 2/ If a recovery thread is running, don't do anything else.
  7243. * 3/ If recovery has finished, clean up, possibly marking spares active.
  7244. * 4/ If there are any faulty devices, remove them.
  7245. * 5/ If array is degraded, try to add spares devices
  7246. * 6/ If array has spares or is not in-sync, start a resync thread.
  7247. */
  7248. void md_check_recovery(struct mddev *mddev)
  7249. {
  7250. if (mddev->suspended)
  7251. return;
  7252. if (mddev->bitmap)
  7253. bitmap_daemon_work(mddev);
  7254. if (signal_pending(current)) {
  7255. if (mddev->pers->sync_request && !mddev->external) {
  7256. printk(KERN_INFO "md: %s in immediate safe mode\n",
  7257. mdname(mddev));
  7258. mddev->safemode = 2;
  7259. }
  7260. flush_signals(current);
  7261. }
  7262. if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
  7263. return;
  7264. if ( ! (
  7265. (mddev->flags & MD_UPDATE_SB_FLAGS & ~ (1<<MD_CHANGE_PENDING)) ||
  7266. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
  7267. test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
  7268. (mddev->external == 0 && mddev->safemode == 1) ||
  7269. (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
  7270. && !mddev->in_sync && mddev->recovery_cp == MaxSector)
  7271. ))
  7272. return;
  7273. if (mddev_trylock(mddev)) {
  7274. int spares = 0;
  7275. if (mddev->ro) {
  7276. struct md_rdev *rdev;
  7277. if (!mddev->external && mddev->in_sync)
  7278. /* 'Blocked' flag not needed as failed devices
  7279. * will be recorded if array switched to read/write.
  7280. * Leaving it set will prevent the device
  7281. * from being removed.
  7282. */
  7283. rdev_for_each(rdev, mddev)
  7284. clear_bit(Blocked, &rdev->flags);
  7285. /* On a read-only array we can:
  7286. * - remove failed devices
  7287. * - add already-in_sync devices if the array itself
  7288. * is in-sync.
  7289. * As we only add devices that are already in-sync,
  7290. * we can activate the spares immediately.
  7291. */
  7292. remove_and_add_spares(mddev, NULL);
  7293. /* There is no thread, but we need to call
  7294. * ->spare_active and clear saved_raid_disk
  7295. */
  7296. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  7297. md_reap_sync_thread(mddev);
  7298. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  7299. goto unlock;
  7300. }
  7301. if (!mddev->external) {
  7302. int did_change = 0;
  7303. spin_lock(&mddev->lock);
  7304. if (mddev->safemode &&
  7305. !atomic_read(&mddev->writes_pending) &&
  7306. !mddev->in_sync &&
  7307. mddev->recovery_cp == MaxSector) {
  7308. mddev->in_sync = 1;
  7309. did_change = 1;
  7310. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  7311. }
  7312. if (mddev->safemode == 1)
  7313. mddev->safemode = 0;
  7314. spin_unlock(&mddev->lock);
  7315. if (did_change)
  7316. sysfs_notify_dirent_safe(mddev->sysfs_state);
  7317. }
  7318. if (mddev->flags & MD_UPDATE_SB_FLAGS) {
  7319. if (mddev_is_clustered(mddev))
  7320. md_cluster_ops->metadata_update_start(mddev);
  7321. md_update_sb(mddev, 0);
  7322. if (mddev_is_clustered(mddev))
  7323. md_cluster_ops->metadata_update_finish(mddev);
  7324. }
  7325. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
  7326. !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
  7327. /* resync/recovery still happening */
  7328. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  7329. goto unlock;
  7330. }
  7331. if (mddev->sync_thread) {
  7332. md_reap_sync_thread(mddev);
  7333. goto unlock;
  7334. }
  7335. /* Set RUNNING before clearing NEEDED to avoid
  7336. * any transients in the value of "sync_action".
  7337. */
  7338. mddev->curr_resync_completed = 0;
  7339. spin_lock(&mddev->lock);
  7340. set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  7341. spin_unlock(&mddev->lock);
  7342. /* Clear some bits that don't mean anything, but
  7343. * might be left set
  7344. */
  7345. clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
  7346. clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
  7347. if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
  7348. test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  7349. goto not_running;
  7350. /* no recovery is running.
  7351. * remove any failed drives, then
  7352. * add spares if possible.
  7353. * Spares are also removed and re-added, to allow
  7354. * the personality to fail the re-add.
  7355. */
  7356. if (mddev->reshape_position != MaxSector) {
  7357. if (mddev->pers->check_reshape == NULL ||
  7358. mddev->pers->check_reshape(mddev) != 0)
  7359. /* Cannot proceed */
  7360. goto not_running;
  7361. set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  7362. clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  7363. } else if ((spares = remove_and_add_spares(mddev, NULL))) {
  7364. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  7365. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  7366. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  7367. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  7368. } else if (mddev->recovery_cp < MaxSector) {
  7369. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  7370. clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  7371. } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  7372. /* nothing to be done ... */
  7373. goto not_running;
  7374. if (mddev->pers->sync_request) {
  7375. if (spares) {
  7376. /* We are adding a device or devices to an array
  7377. * which has the bitmap stored on all devices.
  7378. * So make sure all bitmap pages get written
  7379. */
  7380. bitmap_write_all(mddev->bitmap);
  7381. }
  7382. INIT_WORK(&mddev->del_work, md_start_sync);
  7383. queue_work(md_misc_wq, &mddev->del_work);
  7384. goto unlock;
  7385. }
  7386. not_running:
  7387. if (!mddev->sync_thread) {
  7388. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  7389. wake_up(&resync_wait);
  7390. if (test_and_clear_bit(MD_RECOVERY_RECOVER,
  7391. &mddev->recovery))
  7392. if (mddev->sysfs_action)
  7393. sysfs_notify_dirent_safe(mddev->sysfs_action);
  7394. }
  7395. unlock:
  7396. wake_up(&mddev->sb_wait);
  7397. mddev_unlock(mddev);
  7398. }
  7399. }
  7400. EXPORT_SYMBOL(md_check_recovery);
  7401. void md_reap_sync_thread(struct mddev *mddev)
  7402. {
  7403. struct md_rdev *rdev;
  7404. /* resync has finished, collect result */
  7405. md_unregister_thread(&mddev->sync_thread);
  7406. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
  7407. !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
  7408. /* success...*/
  7409. /* activate any spares */
  7410. if (mddev->pers->spare_active(mddev)) {
  7411. sysfs_notify(&mddev->kobj, NULL,
  7412. "degraded");
  7413. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  7414. }
  7415. }
  7416. if (mddev_is_clustered(mddev))
  7417. md_cluster_ops->metadata_update_start(mddev);
  7418. if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
  7419. mddev->pers->finish_reshape)
  7420. mddev->pers->finish_reshape(mddev);
  7421. /* If array is no-longer degraded, then any saved_raid_disk
  7422. * information must be scrapped.
  7423. */
  7424. if (!mddev->degraded)
  7425. rdev_for_each(rdev, mddev)
  7426. rdev->saved_raid_disk = -1;
  7427. md_update_sb(mddev, 1);
  7428. if (mddev_is_clustered(mddev))
  7429. md_cluster_ops->metadata_update_finish(mddev);
  7430. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  7431. clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
  7432. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  7433. clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  7434. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  7435. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  7436. wake_up(&resync_wait);
  7437. /* flag recovery needed just to double check */
  7438. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  7439. sysfs_notify_dirent_safe(mddev->sysfs_action);
  7440. md_new_event(mddev);
  7441. if (mddev->event_work.func)
  7442. queue_work(md_misc_wq, &mddev->event_work);
  7443. }
  7444. EXPORT_SYMBOL(md_reap_sync_thread);
  7445. void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
  7446. {
  7447. sysfs_notify_dirent_safe(rdev->sysfs_state);
  7448. wait_event_timeout(rdev->blocked_wait,
  7449. !test_bit(Blocked, &rdev->flags) &&
  7450. !test_bit(BlockedBadBlocks, &rdev->flags),
  7451. msecs_to_jiffies(5000));
  7452. rdev_dec_pending(rdev, mddev);
  7453. }
  7454. EXPORT_SYMBOL(md_wait_for_blocked_rdev);
  7455. void md_finish_reshape(struct mddev *mddev)
  7456. {
  7457. /* called be personality module when reshape completes. */
  7458. struct md_rdev *rdev;
  7459. rdev_for_each(rdev, mddev) {
  7460. if (rdev->data_offset > rdev->new_data_offset)
  7461. rdev->sectors += rdev->data_offset - rdev->new_data_offset;
  7462. else
  7463. rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
  7464. rdev->data_offset = rdev->new_data_offset;
  7465. }
  7466. }
  7467. EXPORT_SYMBOL(md_finish_reshape);
  7468. /* Bad block management.
  7469. * We can record which blocks on each device are 'bad' and so just
  7470. * fail those blocks, or that stripe, rather than the whole device.
  7471. * Entries in the bad-block table are 64bits wide. This comprises:
  7472. * Length of bad-range, in sectors: 0-511 for lengths 1-512
  7473. * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
  7474. * A 'shift' can be set so that larger blocks are tracked and
  7475. * consequently larger devices can be covered.
  7476. * 'Acknowledged' flag - 1 bit. - the most significant bit.
  7477. *
  7478. * Locking of the bad-block table uses a seqlock so md_is_badblock
  7479. * might need to retry if it is very unlucky.
  7480. * We will sometimes want to check for bad blocks in a bi_end_io function,
  7481. * so we use the write_seqlock_irq variant.
  7482. *
  7483. * When looking for a bad block we specify a range and want to
  7484. * know if any block in the range is bad. So we binary-search
  7485. * to the last range that starts at-or-before the given endpoint,
  7486. * (or "before the sector after the target range")
  7487. * then see if it ends after the given start.
  7488. * We return
  7489. * 0 if there are no known bad blocks in the range
  7490. * 1 if there are known bad block which are all acknowledged
  7491. * -1 if there are bad blocks which have not yet been acknowledged in metadata.
  7492. * plus the start/length of the first bad section we overlap.
  7493. */
  7494. int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
  7495. sector_t *first_bad, int *bad_sectors)
  7496. {
  7497. int hi;
  7498. int lo;
  7499. u64 *p = bb->page;
  7500. int rv;
  7501. sector_t target = s + sectors;
  7502. unsigned seq;
  7503. if (bb->shift > 0) {
  7504. /* round the start down, and the end up */
  7505. s >>= bb->shift;
  7506. target += (1<<bb->shift) - 1;
  7507. target >>= bb->shift;
  7508. sectors = target - s;
  7509. }
  7510. /* 'target' is now the first block after the bad range */
  7511. retry:
  7512. seq = read_seqbegin(&bb->lock);
  7513. lo = 0;
  7514. rv = 0;
  7515. hi = bb->count;
  7516. /* Binary search between lo and hi for 'target'
  7517. * i.e. for the last range that starts before 'target'
  7518. */
  7519. /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
  7520. * are known not to be the last range before target.
  7521. * VARIANT: hi-lo is the number of possible
  7522. * ranges, and decreases until it reaches 1
  7523. */
  7524. while (hi - lo > 1) {
  7525. int mid = (lo + hi) / 2;
  7526. sector_t a = BB_OFFSET(p[mid]);
  7527. if (a < target)
  7528. /* This could still be the one, earlier ranges
  7529. * could not. */
  7530. lo = mid;
  7531. else
  7532. /* This and later ranges are definitely out. */
  7533. hi = mid;
  7534. }
  7535. /* 'lo' might be the last that started before target, but 'hi' isn't */
  7536. if (hi > lo) {
  7537. /* need to check all range that end after 's' to see if
  7538. * any are unacknowledged.
  7539. */
  7540. while (lo >= 0 &&
  7541. BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
  7542. if (BB_OFFSET(p[lo]) < target) {
  7543. /* starts before the end, and finishes after
  7544. * the start, so they must overlap
  7545. */
  7546. if (rv != -1 && BB_ACK(p[lo]))
  7547. rv = 1;
  7548. else
  7549. rv = -1;
  7550. *first_bad = BB_OFFSET(p[lo]);
  7551. *bad_sectors = BB_LEN(p[lo]);
  7552. }
  7553. lo--;
  7554. }
  7555. }
  7556. if (read_seqretry(&bb->lock, seq))
  7557. goto retry;
  7558. return rv;
  7559. }
  7560. EXPORT_SYMBOL_GPL(md_is_badblock);
  7561. /*
  7562. * Add a range of bad blocks to the table.
  7563. * This might extend the table, or might contract it
  7564. * if two adjacent ranges can be merged.
  7565. * We binary-search to find the 'insertion' point, then
  7566. * decide how best to handle it.
  7567. */
  7568. static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
  7569. int acknowledged)
  7570. {
  7571. u64 *p;
  7572. int lo, hi;
  7573. int rv = 1;
  7574. unsigned long flags;
  7575. if (bb->shift < 0)
  7576. /* badblocks are disabled */
  7577. return 0;
  7578. if (bb->shift) {
  7579. /* round the start down, and the end up */
  7580. sector_t next = s + sectors;
  7581. s >>= bb->shift;
  7582. next += (1<<bb->shift) - 1;
  7583. next >>= bb->shift;
  7584. sectors = next - s;
  7585. }
  7586. write_seqlock_irqsave(&bb->lock, flags);
  7587. p = bb->page;
  7588. lo = 0;
  7589. hi = bb->count;
  7590. /* Find the last range that starts at-or-before 's' */
  7591. while (hi - lo > 1) {
  7592. int mid = (lo + hi) / 2;
  7593. sector_t a = BB_OFFSET(p[mid]);
  7594. if (a <= s)
  7595. lo = mid;
  7596. else
  7597. hi = mid;
  7598. }
  7599. if (hi > lo && BB_OFFSET(p[lo]) > s)
  7600. hi = lo;
  7601. if (hi > lo) {
  7602. /* we found a range that might merge with the start
  7603. * of our new range
  7604. */
  7605. sector_t a = BB_OFFSET(p[lo]);
  7606. sector_t e = a + BB_LEN(p[lo]);
  7607. int ack = BB_ACK(p[lo]);
  7608. if (e >= s) {
  7609. /* Yes, we can merge with a previous range */
  7610. if (s == a && s + sectors >= e)
  7611. /* new range covers old */
  7612. ack = acknowledged;
  7613. else
  7614. ack = ack && acknowledged;
  7615. if (e < s + sectors)
  7616. e = s + sectors;
  7617. if (e - a <= BB_MAX_LEN) {
  7618. p[lo] = BB_MAKE(a, e-a, ack);
  7619. s = e;
  7620. } else {
  7621. /* does not all fit in one range,
  7622. * make p[lo] maximal
  7623. */
  7624. if (BB_LEN(p[lo]) != BB_MAX_LEN)
  7625. p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
  7626. s = a + BB_MAX_LEN;
  7627. }
  7628. sectors = e - s;
  7629. }
  7630. }
  7631. if (sectors && hi < bb->count) {
  7632. /* 'hi' points to the first range that starts after 's'.
  7633. * Maybe we can merge with the start of that range */
  7634. sector_t a = BB_OFFSET(p[hi]);
  7635. sector_t e = a + BB_LEN(p[hi]);
  7636. int ack = BB_ACK(p[hi]);
  7637. if (a <= s + sectors) {
  7638. /* merging is possible */
  7639. if (e <= s + sectors) {
  7640. /* full overlap */
  7641. e = s + sectors;
  7642. ack = acknowledged;
  7643. } else
  7644. ack = ack && acknowledged;
  7645. a = s;
  7646. if (e - a <= BB_MAX_LEN) {
  7647. p[hi] = BB_MAKE(a, e-a, ack);
  7648. s = e;
  7649. } else {
  7650. p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
  7651. s = a + BB_MAX_LEN;
  7652. }
  7653. sectors = e - s;
  7654. lo = hi;
  7655. hi++;
  7656. }
  7657. }
  7658. if (sectors == 0 && hi < bb->count) {
  7659. /* we might be able to combine lo and hi */
  7660. /* Note: 's' is at the end of 'lo' */
  7661. sector_t a = BB_OFFSET(p[hi]);
  7662. int lolen = BB_LEN(p[lo]);
  7663. int hilen = BB_LEN(p[hi]);
  7664. int newlen = lolen + hilen - (s - a);
  7665. if (s >= a && newlen < BB_MAX_LEN) {
  7666. /* yes, we can combine them */
  7667. int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
  7668. p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
  7669. memmove(p + hi, p + hi + 1,
  7670. (bb->count - hi - 1) * 8);
  7671. bb->count--;
  7672. }
  7673. }
  7674. while (sectors) {
  7675. /* didn't merge (it all).
  7676. * Need to add a range just before 'hi' */
  7677. if (bb->count >= MD_MAX_BADBLOCKS) {
  7678. /* No room for more */
  7679. rv = 0;
  7680. break;
  7681. } else {
  7682. int this_sectors = sectors;
  7683. memmove(p + hi + 1, p + hi,
  7684. (bb->count - hi) * 8);
  7685. bb->count++;
  7686. if (this_sectors > BB_MAX_LEN)
  7687. this_sectors = BB_MAX_LEN;
  7688. p[hi] = BB_MAKE(s, this_sectors, acknowledged);
  7689. sectors -= this_sectors;
  7690. s += this_sectors;
  7691. }
  7692. }
  7693. bb->changed = 1;
  7694. if (!acknowledged)
  7695. bb->unacked_exist = 1;
  7696. write_sequnlock_irqrestore(&bb->lock, flags);
  7697. return rv;
  7698. }
  7699. int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
  7700. int is_new)
  7701. {
  7702. int rv;
  7703. if (is_new)
  7704. s += rdev->new_data_offset;
  7705. else
  7706. s += rdev->data_offset;
  7707. rv = md_set_badblocks(&rdev->badblocks,
  7708. s, sectors, 0);
  7709. if (rv) {
  7710. /* Make sure they get written out promptly */
  7711. sysfs_notify_dirent_safe(rdev->sysfs_state);
  7712. set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
  7713. md_wakeup_thread(rdev->mddev->thread);
  7714. }
  7715. return rv;
  7716. }
  7717. EXPORT_SYMBOL_GPL(rdev_set_badblocks);
  7718. /*
  7719. * Remove a range of bad blocks from the table.
  7720. * This may involve extending the table if we spilt a region,
  7721. * but it must not fail. So if the table becomes full, we just
  7722. * drop the remove request.
  7723. */
  7724. static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
  7725. {
  7726. u64 *p;
  7727. int lo, hi;
  7728. sector_t target = s + sectors;
  7729. int rv = 0;
  7730. if (bb->shift > 0) {
  7731. /* When clearing we round the start up and the end down.
  7732. * This should not matter as the shift should align with
  7733. * the block size and no rounding should ever be needed.
  7734. * However it is better the think a block is bad when it
  7735. * isn't than to think a block is not bad when it is.
  7736. */
  7737. s += (1<<bb->shift) - 1;
  7738. s >>= bb->shift;
  7739. target >>= bb->shift;
  7740. sectors = target - s;
  7741. }
  7742. write_seqlock_irq(&bb->lock);
  7743. p = bb->page;
  7744. lo = 0;
  7745. hi = bb->count;
  7746. /* Find the last range that starts before 'target' */
  7747. while (hi - lo > 1) {
  7748. int mid = (lo + hi) / 2;
  7749. sector_t a = BB_OFFSET(p[mid]);
  7750. if (a < target)
  7751. lo = mid;
  7752. else
  7753. hi = mid;
  7754. }
  7755. if (hi > lo) {
  7756. /* p[lo] is the last range that could overlap the
  7757. * current range. Earlier ranges could also overlap,
  7758. * but only this one can overlap the end of the range.
  7759. */
  7760. if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
  7761. /* Partial overlap, leave the tail of this range */
  7762. int ack = BB_ACK(p[lo]);
  7763. sector_t a = BB_OFFSET(p[lo]);
  7764. sector_t end = a + BB_LEN(p[lo]);
  7765. if (a < s) {
  7766. /* we need to split this range */
  7767. if (bb->count >= MD_MAX_BADBLOCKS) {
  7768. rv = -ENOSPC;
  7769. goto out;
  7770. }
  7771. memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
  7772. bb->count++;
  7773. p[lo] = BB_MAKE(a, s-a, ack);
  7774. lo++;
  7775. }
  7776. p[lo] = BB_MAKE(target, end - target, ack);
  7777. /* there is no longer an overlap */
  7778. hi = lo;
  7779. lo--;
  7780. }
  7781. while (lo >= 0 &&
  7782. BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
  7783. /* This range does overlap */
  7784. if (BB_OFFSET(p[lo]) < s) {
  7785. /* Keep the early parts of this range. */
  7786. int ack = BB_ACK(p[lo]);
  7787. sector_t start = BB_OFFSET(p[lo]);
  7788. p[lo] = BB_MAKE(start, s - start, ack);
  7789. /* now low doesn't overlap, so.. */
  7790. break;
  7791. }
  7792. lo--;
  7793. }
  7794. /* 'lo' is strictly before, 'hi' is strictly after,
  7795. * anything between needs to be discarded
  7796. */
  7797. if (hi - lo > 1) {
  7798. memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
  7799. bb->count -= (hi - lo - 1);
  7800. }
  7801. }
  7802. bb->changed = 1;
  7803. out:
  7804. write_sequnlock_irq(&bb->lock);
  7805. return rv;
  7806. }
  7807. int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
  7808. int is_new)
  7809. {
  7810. if (is_new)
  7811. s += rdev->new_data_offset;
  7812. else
  7813. s += rdev->data_offset;
  7814. return md_clear_badblocks(&rdev->badblocks,
  7815. s, sectors);
  7816. }
  7817. EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
  7818. /*
  7819. * Acknowledge all bad blocks in a list.
  7820. * This only succeeds if ->changed is clear. It is used by
  7821. * in-kernel metadata updates
  7822. */
  7823. void md_ack_all_badblocks(struct badblocks *bb)
  7824. {
  7825. if (bb->page == NULL || bb->changed)
  7826. /* no point even trying */
  7827. return;
  7828. write_seqlock_irq(&bb->lock);
  7829. if (bb->changed == 0 && bb->unacked_exist) {
  7830. u64 *p = bb->page;
  7831. int i;
  7832. for (i = 0; i < bb->count ; i++) {
  7833. if (!BB_ACK(p[i])) {
  7834. sector_t start = BB_OFFSET(p[i]);
  7835. int len = BB_LEN(p[i]);
  7836. p[i] = BB_MAKE(start, len, 1);
  7837. }
  7838. }
  7839. bb->unacked_exist = 0;
  7840. }
  7841. write_sequnlock_irq(&bb->lock);
  7842. }
  7843. EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
  7844. /* sysfs access to bad-blocks list.
  7845. * We present two files.
  7846. * 'bad-blocks' lists sector numbers and lengths of ranges that
  7847. * are recorded as bad. The list is truncated to fit within
  7848. * the one-page limit of sysfs.
  7849. * Writing "sector length" to this file adds an acknowledged
  7850. * bad block list.
  7851. * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
  7852. * been acknowledged. Writing to this file adds bad blocks
  7853. * without acknowledging them. This is largely for testing.
  7854. */
  7855. static ssize_t
  7856. badblocks_show(struct badblocks *bb, char *page, int unack)
  7857. {
  7858. size_t len;
  7859. int i;
  7860. u64 *p = bb->page;
  7861. unsigned seq;
  7862. if (bb->shift < 0)
  7863. return 0;
  7864. retry:
  7865. seq = read_seqbegin(&bb->lock);
  7866. len = 0;
  7867. i = 0;
  7868. while (len < PAGE_SIZE && i < bb->count) {
  7869. sector_t s = BB_OFFSET(p[i]);
  7870. unsigned int length = BB_LEN(p[i]);
  7871. int ack = BB_ACK(p[i]);
  7872. i++;
  7873. if (unack && ack)
  7874. continue;
  7875. len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
  7876. (unsigned long long)s << bb->shift,
  7877. length << bb->shift);
  7878. }
  7879. if (unack && len == 0)
  7880. bb->unacked_exist = 0;
  7881. if (read_seqretry(&bb->lock, seq))
  7882. goto retry;
  7883. return len;
  7884. }
  7885. #define DO_DEBUG 1
  7886. static ssize_t
  7887. badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
  7888. {
  7889. unsigned long long sector;
  7890. int length;
  7891. char newline;
  7892. #ifdef DO_DEBUG
  7893. /* Allow clearing via sysfs *only* for testing/debugging.
  7894. * Normally only a successful write may clear a badblock
  7895. */
  7896. int clear = 0;
  7897. if (page[0] == '-') {
  7898. clear = 1;
  7899. page++;
  7900. }
  7901. #endif /* DO_DEBUG */
  7902. switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
  7903. case 3:
  7904. if (newline != '\n')
  7905. return -EINVAL;
  7906. case 2:
  7907. if (length <= 0)
  7908. return -EINVAL;
  7909. break;
  7910. default:
  7911. return -EINVAL;
  7912. }
  7913. #ifdef DO_DEBUG
  7914. if (clear) {
  7915. md_clear_badblocks(bb, sector, length);
  7916. return len;
  7917. }
  7918. #endif /* DO_DEBUG */
  7919. if (md_set_badblocks(bb, sector, length, !unack))
  7920. return len;
  7921. else
  7922. return -ENOSPC;
  7923. }
  7924. static int md_notify_reboot(struct notifier_block *this,
  7925. unsigned long code, void *x)
  7926. {
  7927. struct list_head *tmp;
  7928. struct mddev *mddev;
  7929. int need_delay = 0;
  7930. for_each_mddev(mddev, tmp) {
  7931. if (mddev_trylock(mddev)) {
  7932. if (mddev->pers)
  7933. __md_stop_writes(mddev);
  7934. if (mddev->persistent)
  7935. mddev->safemode = 2;
  7936. mddev_unlock(mddev);
  7937. }
  7938. need_delay = 1;
  7939. }
  7940. /*
  7941. * certain more exotic SCSI devices are known to be
  7942. * volatile wrt too early system reboots. While the
  7943. * right place to handle this issue is the given
  7944. * driver, we do want to have a safe RAID driver ...
  7945. */
  7946. if (need_delay)
  7947. mdelay(1000*1);
  7948. return NOTIFY_DONE;
  7949. }
  7950. static struct notifier_block md_notifier = {
  7951. .notifier_call = md_notify_reboot,
  7952. .next = NULL,
  7953. .priority = INT_MAX, /* before any real devices */
  7954. };
  7955. static void md_geninit(void)
  7956. {
  7957. pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
  7958. proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
  7959. }
  7960. static int __init md_init(void)
  7961. {
  7962. int ret = -ENOMEM;
  7963. md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
  7964. if (!md_wq)
  7965. goto err_wq;
  7966. md_misc_wq = alloc_workqueue("md_misc", 0, 0);
  7967. if (!md_misc_wq)
  7968. goto err_misc_wq;
  7969. if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
  7970. goto err_md;
  7971. if ((ret = register_blkdev(0, "mdp")) < 0)
  7972. goto err_mdp;
  7973. mdp_major = ret;
  7974. blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE,
  7975. md_probe, NULL, NULL);
  7976. blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
  7977. md_probe, NULL, NULL);
  7978. register_reboot_notifier(&md_notifier);
  7979. raid_table_header = register_sysctl_table(raid_root_table);
  7980. md_geninit();
  7981. return 0;
  7982. err_mdp:
  7983. unregister_blkdev(MD_MAJOR, "md");
  7984. err_md:
  7985. destroy_workqueue(md_misc_wq);
  7986. err_misc_wq:
  7987. destroy_workqueue(md_wq);
  7988. err_wq:
  7989. return ret;
  7990. }
  7991. void md_reload_sb(struct mddev *mddev)
  7992. {
  7993. struct md_rdev *rdev, *tmp;
  7994. rdev_for_each_safe(rdev, tmp, mddev) {
  7995. rdev->sb_loaded = 0;
  7996. ClearPageUptodate(rdev->sb_page);
  7997. }
  7998. mddev->raid_disks = 0;
  7999. analyze_sbs(mddev);
  8000. rdev_for_each_safe(rdev, tmp, mddev) {
  8001. struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
  8002. /* since we don't write to faulty devices, we figure out if the
  8003. * disk is faulty by comparing events
  8004. */
  8005. if (mddev->events > sb->events)
  8006. set_bit(Faulty, &rdev->flags);
  8007. }
  8008. }
  8009. EXPORT_SYMBOL(md_reload_sb);
  8010. #ifndef MODULE
  8011. /*
  8012. * Searches all registered partitions for autorun RAID arrays
  8013. * at boot time.
  8014. */
  8015. static LIST_HEAD(all_detected_devices);
  8016. struct detected_devices_node {
  8017. struct list_head list;
  8018. dev_t dev;
  8019. };
  8020. void md_autodetect_dev(dev_t dev)
  8021. {
  8022. struct detected_devices_node *node_detected_dev;
  8023. node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
  8024. if (node_detected_dev) {
  8025. node_detected_dev->dev = dev;
  8026. list_add_tail(&node_detected_dev->list, &all_detected_devices);
  8027. } else {
  8028. printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
  8029. ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
  8030. }
  8031. }
  8032. static void autostart_arrays(int part)
  8033. {
  8034. struct md_rdev *rdev;
  8035. struct detected_devices_node *node_detected_dev;
  8036. dev_t dev;
  8037. int i_scanned, i_passed;
  8038. i_scanned = 0;
  8039. i_passed = 0;
  8040. printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
  8041. while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
  8042. i_scanned++;
  8043. node_detected_dev = list_entry(all_detected_devices.next,
  8044. struct detected_devices_node, list);
  8045. list_del(&node_detected_dev->list);
  8046. dev = node_detected_dev->dev;
  8047. kfree(node_detected_dev);
  8048. rdev = md_import_device(dev,0, 90);
  8049. if (IS_ERR(rdev))
  8050. continue;
  8051. if (test_bit(Faulty, &rdev->flags))
  8052. continue;
  8053. set_bit(AutoDetected, &rdev->flags);
  8054. list_add(&rdev->same_set, &pending_raid_disks);
  8055. i_passed++;
  8056. }
  8057. printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
  8058. i_scanned, i_passed);
  8059. autorun_devices(part);
  8060. }
  8061. #endif /* !MODULE */
  8062. static __exit void md_exit(void)
  8063. {
  8064. struct mddev *mddev;
  8065. struct list_head *tmp;
  8066. int delay = 1;
  8067. blk_unregister_region(MKDEV(MD_MAJOR,0), 512);
  8068. blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
  8069. unregister_blkdev(MD_MAJOR,"md");
  8070. unregister_blkdev(mdp_major, "mdp");
  8071. unregister_reboot_notifier(&md_notifier);
  8072. unregister_sysctl_table(raid_table_header);
  8073. /* We cannot unload the modules while some process is
  8074. * waiting for us in select() or poll() - wake them up
  8075. */
  8076. md_unloading = 1;
  8077. while (waitqueue_active(&md_event_waiters)) {
  8078. /* not safe to leave yet */
  8079. wake_up(&md_event_waiters);
  8080. msleep(delay);
  8081. delay += delay;
  8082. }
  8083. remove_proc_entry("mdstat", NULL);
  8084. for_each_mddev(mddev, tmp) {
  8085. export_array(mddev);
  8086. mddev->hold_active = 0;
  8087. }
  8088. destroy_workqueue(md_misc_wq);
  8089. destroy_workqueue(md_wq);
  8090. }
  8091. subsys_initcall(md_init);
  8092. module_exit(md_exit)
  8093. static int get_ro(char *buffer, struct kernel_param *kp)
  8094. {
  8095. return sprintf(buffer, "%d", start_readonly);
  8096. }
  8097. static int set_ro(const char *val, struct kernel_param *kp)
  8098. {
  8099. return kstrtouint(val, 10, (unsigned int *)&start_readonly);
  8100. }
  8101. module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
  8102. module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
  8103. module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
  8104. MODULE_LICENSE("GPL");
  8105. MODULE_DESCRIPTION("MD RAID framework");
  8106. MODULE_ALIAS("md");
  8107. MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);