workqueue.c 156 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673
  1. /*
  2. * kernel/workqueue.c - generic async execution with shared worker pool
  3. *
  4. * Copyright (C) 2002 Ingo Molnar
  5. *
  6. * Derived from the taskqueue/keventd code by:
  7. * David Woodhouse <dwmw2@infradead.org>
  8. * Andrew Morton
  9. * Kai Petzke <wpp@marie.physik.tu-berlin.de>
  10. * Theodore Ts'o <tytso@mit.edu>
  11. *
  12. * Made to use alloc_percpu by Christoph Lameter.
  13. *
  14. * Copyright (C) 2010 SUSE Linux Products GmbH
  15. * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
  16. *
  17. * This is the generic async execution mechanism. Work items as are
  18. * executed in process context. The worker pool is shared and
  19. * automatically managed. There are two worker pools for each CPU (one for
  20. * normal work items and the other for high priority ones) and some extra
  21. * pools for workqueues which are not bound to any specific CPU - the
  22. * number of these backing pools is dynamic.
  23. *
  24. * Please read Documentation/core-api/workqueue.rst for details.
  25. */
  26. #include <linux/export.h>
  27. #include <linux/kernel.h>
  28. #include <linux/sched.h>
  29. #include <linux/init.h>
  30. #include <linux/signal.h>
  31. #include <linux/completion.h>
  32. #include <linux/workqueue.h>
  33. #include <linux/slab.h>
  34. #include <linux/cpu.h>
  35. #include <linux/notifier.h>
  36. #include <linux/kthread.h>
  37. #include <linux/hardirq.h>
  38. #include <linux/mempolicy.h>
  39. #include <linux/freezer.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/lockdep.h>
  42. #include <linux/idr.h>
  43. #include <linux/jhash.h>
  44. #include <linux/hashtable.h>
  45. #include <linux/rculist.h>
  46. #include <linux/nodemask.h>
  47. #include <linux/moduleparam.h>
  48. #include <linux/uaccess.h>
  49. #include <linux/sched/isolation.h>
  50. #include "workqueue_internal.h"
  51. enum {
  52. /*
  53. * worker_pool flags
  54. *
  55. * A bound pool is either associated or disassociated with its CPU.
  56. * While associated (!DISASSOCIATED), all workers are bound to the
  57. * CPU and none has %WORKER_UNBOUND set and concurrency management
  58. * is in effect.
  59. *
  60. * While DISASSOCIATED, the cpu may be offline and all workers have
  61. * %WORKER_UNBOUND set and concurrency management disabled, and may
  62. * be executing on any CPU. The pool behaves as an unbound one.
  63. *
  64. * Note that DISASSOCIATED should be flipped only while holding
  65. * attach_mutex to avoid changing binding state while
  66. * worker_attach_to_pool() is in progress.
  67. */
  68. POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */
  69. POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
  70. /* worker flags */
  71. WORKER_DIE = 1 << 1, /* die die die */
  72. WORKER_IDLE = 1 << 2, /* is idle */
  73. WORKER_PREP = 1 << 3, /* preparing to run works */
  74. WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
  75. WORKER_UNBOUND = 1 << 7, /* worker is unbound */
  76. WORKER_REBOUND = 1 << 8, /* worker was rebound */
  77. WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
  78. WORKER_UNBOUND | WORKER_REBOUND,
  79. NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
  80. UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
  81. BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
  82. MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
  83. IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
  84. MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
  85. /* call for help after 10ms
  86. (min two ticks) */
  87. MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
  88. CREATE_COOLDOWN = HZ, /* time to breath after fail */
  89. /*
  90. * Rescue workers are used only on emergencies and shared by
  91. * all cpus. Give MIN_NICE.
  92. */
  93. RESCUER_NICE_LEVEL = MIN_NICE,
  94. HIGHPRI_NICE_LEVEL = MIN_NICE,
  95. WQ_NAME_LEN = 24,
  96. };
  97. /*
  98. * Structure fields follow one of the following exclusion rules.
  99. *
  100. * I: Modifiable by initialization/destruction paths and read-only for
  101. * everyone else.
  102. *
  103. * P: Preemption protected. Disabling preemption is enough and should
  104. * only be modified and accessed from the local cpu.
  105. *
  106. * L: pool->lock protected. Access with pool->lock held.
  107. *
  108. * X: During normal operation, modification requires pool->lock and should
  109. * be done only from local cpu. Either disabling preemption on local
  110. * cpu or grabbing pool->lock is enough for read access. If
  111. * POOL_DISASSOCIATED is set, it's identical to L.
  112. *
  113. * A: pool->attach_mutex protected.
  114. *
  115. * PL: wq_pool_mutex protected.
  116. *
  117. * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads.
  118. *
  119. * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads.
  120. *
  121. * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or
  122. * sched-RCU for reads.
  123. *
  124. * WQ: wq->mutex protected.
  125. *
  126. * WR: wq->mutex protected for writes. Sched-RCU protected for reads.
  127. *
  128. * MD: wq_mayday_lock protected.
  129. */
  130. /* struct worker is defined in workqueue_internal.h */
  131. struct worker_pool {
  132. spinlock_t lock; /* the pool lock */
  133. int cpu; /* I: the associated cpu */
  134. int node; /* I: the associated node ID */
  135. int id; /* I: pool ID */
  136. unsigned int flags; /* X: flags */
  137. unsigned long watchdog_ts; /* L: watchdog timestamp */
  138. struct list_head worklist; /* L: list of pending works */
  139. int nr_workers; /* L: total number of workers */
  140. /* nr_idle includes the ones off idle_list for rebinding */
  141. int nr_idle; /* L: currently idle ones */
  142. struct list_head idle_list; /* X: list of idle workers */
  143. struct timer_list idle_timer; /* L: worker idle timeout */
  144. struct timer_list mayday_timer; /* L: SOS timer for workers */
  145. /* a workers is either on busy_hash or idle_list, or the manager */
  146. DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
  147. /* L: hash of busy workers */
  148. /* see manage_workers() for details on the two manager mutexes */
  149. struct worker *manager; /* L: purely informational */
  150. struct mutex attach_mutex; /* attach/detach exclusion */
  151. struct list_head workers; /* A: attached workers */
  152. struct completion *detach_completion; /* all workers detached */
  153. struct ida worker_ida; /* worker IDs for task name */
  154. struct workqueue_attrs *attrs; /* I: worker attributes */
  155. struct hlist_node hash_node; /* PL: unbound_pool_hash node */
  156. int refcnt; /* PL: refcnt for unbound pools */
  157. /*
  158. * The current concurrency level. As it's likely to be accessed
  159. * from other CPUs during try_to_wake_up(), put it in a separate
  160. * cacheline.
  161. */
  162. atomic_t nr_running ____cacheline_aligned_in_smp;
  163. /*
  164. * Destruction of pool is sched-RCU protected to allow dereferences
  165. * from get_work_pool().
  166. */
  167. struct rcu_head rcu;
  168. } ____cacheline_aligned_in_smp;
  169. /*
  170. * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
  171. * of work_struct->data are used for flags and the remaining high bits
  172. * point to the pwq; thus, pwqs need to be aligned at two's power of the
  173. * number of flag bits.
  174. */
  175. struct pool_workqueue {
  176. struct worker_pool *pool; /* I: the associated pool */
  177. struct workqueue_struct *wq; /* I: the owning workqueue */
  178. int work_color; /* L: current color */
  179. int flush_color; /* L: flushing color */
  180. int refcnt; /* L: reference count */
  181. int nr_in_flight[WORK_NR_COLORS];
  182. /* L: nr of in_flight works */
  183. int nr_active; /* L: nr of active works */
  184. int max_active; /* L: max active works */
  185. struct list_head delayed_works; /* L: delayed works */
  186. struct list_head pwqs_node; /* WR: node on wq->pwqs */
  187. struct list_head mayday_node; /* MD: node on wq->maydays */
  188. /*
  189. * Release of unbound pwq is punted to system_wq. See put_pwq()
  190. * and pwq_unbound_release_workfn() for details. pool_workqueue
  191. * itself is also sched-RCU protected so that the first pwq can be
  192. * determined without grabbing wq->mutex.
  193. */
  194. struct work_struct unbound_release_work;
  195. struct rcu_head rcu;
  196. } __aligned(1 << WORK_STRUCT_FLAG_BITS);
  197. /*
  198. * Structure used to wait for workqueue flush.
  199. */
  200. struct wq_flusher {
  201. struct list_head list; /* WQ: list of flushers */
  202. int flush_color; /* WQ: flush color waiting for */
  203. struct completion done; /* flush completion */
  204. };
  205. struct wq_device;
  206. /*
  207. * The externally visible workqueue. It relays the issued work items to
  208. * the appropriate worker_pool through its pool_workqueues.
  209. */
  210. struct workqueue_struct {
  211. struct list_head pwqs; /* WR: all pwqs of this wq */
  212. struct list_head list; /* PR: list of all workqueues */
  213. struct mutex mutex; /* protects this wq */
  214. int work_color; /* WQ: current work color */
  215. int flush_color; /* WQ: current flush color */
  216. atomic_t nr_pwqs_to_flush; /* flush in progress */
  217. struct wq_flusher *first_flusher; /* WQ: first flusher */
  218. struct list_head flusher_queue; /* WQ: flush waiters */
  219. struct list_head flusher_overflow; /* WQ: flush overflow list */
  220. struct list_head maydays; /* MD: pwqs requesting rescue */
  221. struct worker *rescuer; /* I: rescue worker */
  222. int nr_drainers; /* WQ: drain in progress */
  223. int saved_max_active; /* WQ: saved pwq max_active */
  224. struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */
  225. struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */
  226. #ifdef CONFIG_SYSFS
  227. struct wq_device *wq_dev; /* I: for sysfs interface */
  228. #endif
  229. #ifdef CONFIG_LOCKDEP
  230. struct lockdep_map lockdep_map;
  231. #endif
  232. char name[WQ_NAME_LEN]; /* I: workqueue name */
  233. /*
  234. * Destruction of workqueue_struct is sched-RCU protected to allow
  235. * walking the workqueues list without grabbing wq_pool_mutex.
  236. * This is used to dump all workqueues from sysrq.
  237. */
  238. struct rcu_head rcu;
  239. /* hot fields used during command issue, aligned to cacheline */
  240. unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
  241. struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
  242. struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
  243. };
  244. static struct kmem_cache *pwq_cache;
  245. static cpumask_var_t *wq_numa_possible_cpumask;
  246. /* possible CPUs of each node */
  247. static bool wq_disable_numa;
  248. module_param_named(disable_numa, wq_disable_numa, bool, 0444);
  249. /* see the comment above the definition of WQ_POWER_EFFICIENT */
  250. static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
  251. module_param_named(power_efficient, wq_power_efficient, bool, 0444);
  252. static bool wq_online; /* can kworkers be created yet? */
  253. static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
  254. /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
  255. static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
  256. static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
  257. static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
  258. static DECLARE_WAIT_QUEUE_HEAD(wq_manager_wait); /* wait for manager to go away */
  259. static LIST_HEAD(workqueues); /* PR: list of all workqueues */
  260. static bool workqueue_freezing; /* PL: have wqs started freezing? */
  261. /* PL: allowable cpus for unbound wqs and work items */
  262. static cpumask_var_t wq_unbound_cpumask;
  263. /* CPU where unbound work was last round robin scheduled from this CPU */
  264. static DEFINE_PER_CPU(int, wq_rr_cpu_last);
  265. /*
  266. * Local execution of unbound work items is no longer guaranteed. The
  267. * following always forces round-robin CPU selection on unbound work items
  268. * to uncover usages which depend on it.
  269. */
  270. #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
  271. static bool wq_debug_force_rr_cpu = true;
  272. #else
  273. static bool wq_debug_force_rr_cpu = false;
  274. #endif
  275. module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
  276. /* the per-cpu worker pools */
  277. static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
  278. static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
  279. /* PL: hash of all unbound pools keyed by pool->attrs */
  280. static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
  281. /* I: attributes used when instantiating standard unbound pools on demand */
  282. static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
  283. /* I: attributes used when instantiating ordered pools on demand */
  284. static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
  285. struct workqueue_struct *system_wq __read_mostly;
  286. EXPORT_SYMBOL(system_wq);
  287. struct workqueue_struct *system_highpri_wq __read_mostly;
  288. EXPORT_SYMBOL_GPL(system_highpri_wq);
  289. struct workqueue_struct *system_long_wq __read_mostly;
  290. EXPORT_SYMBOL_GPL(system_long_wq);
  291. struct workqueue_struct *system_unbound_wq __read_mostly;
  292. EXPORT_SYMBOL_GPL(system_unbound_wq);
  293. struct workqueue_struct *system_freezable_wq __read_mostly;
  294. EXPORT_SYMBOL_GPL(system_freezable_wq);
  295. struct workqueue_struct *system_power_efficient_wq __read_mostly;
  296. EXPORT_SYMBOL_GPL(system_power_efficient_wq);
  297. struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
  298. EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
  299. static int worker_thread(void *__worker);
  300. static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
  301. #define CREATE_TRACE_POINTS
  302. #include <trace/events/workqueue.h>
  303. #define assert_rcu_or_pool_mutex() \
  304. RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
  305. !lockdep_is_held(&wq_pool_mutex), \
  306. "sched RCU or wq_pool_mutex should be held")
  307. #define assert_rcu_or_wq_mutex(wq) \
  308. RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
  309. !lockdep_is_held(&wq->mutex), \
  310. "sched RCU or wq->mutex should be held")
  311. #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
  312. RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
  313. !lockdep_is_held(&wq->mutex) && \
  314. !lockdep_is_held(&wq_pool_mutex), \
  315. "sched RCU, wq->mutex or wq_pool_mutex should be held")
  316. #define for_each_cpu_worker_pool(pool, cpu) \
  317. for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
  318. (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
  319. (pool)++)
  320. /**
  321. * for_each_pool - iterate through all worker_pools in the system
  322. * @pool: iteration cursor
  323. * @pi: integer used for iteration
  324. *
  325. * This must be called either with wq_pool_mutex held or sched RCU read
  326. * locked. If the pool needs to be used beyond the locking in effect, the
  327. * caller is responsible for guaranteeing that the pool stays online.
  328. *
  329. * The if/else clause exists only for the lockdep assertion and can be
  330. * ignored.
  331. */
  332. #define for_each_pool(pool, pi) \
  333. idr_for_each_entry(&worker_pool_idr, pool, pi) \
  334. if (({ assert_rcu_or_pool_mutex(); false; })) { } \
  335. else
  336. /**
  337. * for_each_pool_worker - iterate through all workers of a worker_pool
  338. * @worker: iteration cursor
  339. * @pool: worker_pool to iterate workers of
  340. *
  341. * This must be called with @pool->attach_mutex.
  342. *
  343. * The if/else clause exists only for the lockdep assertion and can be
  344. * ignored.
  345. */
  346. #define for_each_pool_worker(worker, pool) \
  347. list_for_each_entry((worker), &(pool)->workers, node) \
  348. if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
  349. else
  350. /**
  351. * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
  352. * @pwq: iteration cursor
  353. * @wq: the target workqueue
  354. *
  355. * This must be called either with wq->mutex held or sched RCU read locked.
  356. * If the pwq needs to be used beyond the locking in effect, the caller is
  357. * responsible for guaranteeing that the pwq stays online.
  358. *
  359. * The if/else clause exists only for the lockdep assertion and can be
  360. * ignored.
  361. */
  362. #define for_each_pwq(pwq, wq) \
  363. list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
  364. if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
  365. else
  366. #ifdef CONFIG_DEBUG_OBJECTS_WORK
  367. static struct debug_obj_descr work_debug_descr;
  368. static void *work_debug_hint(void *addr)
  369. {
  370. return ((struct work_struct *) addr)->func;
  371. }
  372. static bool work_is_static_object(void *addr)
  373. {
  374. struct work_struct *work = addr;
  375. return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
  376. }
  377. /*
  378. * fixup_init is called when:
  379. * - an active object is initialized
  380. */
  381. static bool work_fixup_init(void *addr, enum debug_obj_state state)
  382. {
  383. struct work_struct *work = addr;
  384. switch (state) {
  385. case ODEBUG_STATE_ACTIVE:
  386. cancel_work_sync(work);
  387. debug_object_init(work, &work_debug_descr);
  388. return true;
  389. default:
  390. return false;
  391. }
  392. }
  393. /*
  394. * fixup_free is called when:
  395. * - an active object is freed
  396. */
  397. static bool work_fixup_free(void *addr, enum debug_obj_state state)
  398. {
  399. struct work_struct *work = addr;
  400. switch (state) {
  401. case ODEBUG_STATE_ACTIVE:
  402. cancel_work_sync(work);
  403. debug_object_free(work, &work_debug_descr);
  404. return true;
  405. default:
  406. return false;
  407. }
  408. }
  409. static struct debug_obj_descr work_debug_descr = {
  410. .name = "work_struct",
  411. .debug_hint = work_debug_hint,
  412. .is_static_object = work_is_static_object,
  413. .fixup_init = work_fixup_init,
  414. .fixup_free = work_fixup_free,
  415. };
  416. static inline void debug_work_activate(struct work_struct *work)
  417. {
  418. debug_object_activate(work, &work_debug_descr);
  419. }
  420. static inline void debug_work_deactivate(struct work_struct *work)
  421. {
  422. debug_object_deactivate(work, &work_debug_descr);
  423. }
  424. void __init_work(struct work_struct *work, int onstack)
  425. {
  426. if (onstack)
  427. debug_object_init_on_stack(work, &work_debug_descr);
  428. else
  429. debug_object_init(work, &work_debug_descr);
  430. }
  431. EXPORT_SYMBOL_GPL(__init_work);
  432. void destroy_work_on_stack(struct work_struct *work)
  433. {
  434. debug_object_free(work, &work_debug_descr);
  435. }
  436. EXPORT_SYMBOL_GPL(destroy_work_on_stack);
  437. void destroy_delayed_work_on_stack(struct delayed_work *work)
  438. {
  439. destroy_timer_on_stack(&work->timer);
  440. debug_object_free(&work->work, &work_debug_descr);
  441. }
  442. EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
  443. #else
  444. static inline void debug_work_activate(struct work_struct *work) { }
  445. static inline void debug_work_deactivate(struct work_struct *work) { }
  446. #endif
  447. /**
  448. * worker_pool_assign_id - allocate ID and assing it to @pool
  449. * @pool: the pool pointer of interest
  450. *
  451. * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
  452. * successfully, -errno on failure.
  453. */
  454. static int worker_pool_assign_id(struct worker_pool *pool)
  455. {
  456. int ret;
  457. lockdep_assert_held(&wq_pool_mutex);
  458. ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
  459. GFP_KERNEL);
  460. if (ret >= 0) {
  461. pool->id = ret;
  462. return 0;
  463. }
  464. return ret;
  465. }
  466. /**
  467. * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
  468. * @wq: the target workqueue
  469. * @node: the node ID
  470. *
  471. * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU
  472. * read locked.
  473. * If the pwq needs to be used beyond the locking in effect, the caller is
  474. * responsible for guaranteeing that the pwq stays online.
  475. *
  476. * Return: The unbound pool_workqueue for @node.
  477. */
  478. static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
  479. int node)
  480. {
  481. assert_rcu_or_wq_mutex_or_pool_mutex(wq);
  482. /*
  483. * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
  484. * delayed item is pending. The plan is to keep CPU -> NODE
  485. * mapping valid and stable across CPU on/offlines. Once that
  486. * happens, this workaround can be removed.
  487. */
  488. if (unlikely(node == NUMA_NO_NODE))
  489. return wq->dfl_pwq;
  490. return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
  491. }
  492. static unsigned int work_color_to_flags(int color)
  493. {
  494. return color << WORK_STRUCT_COLOR_SHIFT;
  495. }
  496. static int get_work_color(struct work_struct *work)
  497. {
  498. return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
  499. ((1 << WORK_STRUCT_COLOR_BITS) - 1);
  500. }
  501. static int work_next_color(int color)
  502. {
  503. return (color + 1) % WORK_NR_COLORS;
  504. }
  505. /*
  506. * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
  507. * contain the pointer to the queued pwq. Once execution starts, the flag
  508. * is cleared and the high bits contain OFFQ flags and pool ID.
  509. *
  510. * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
  511. * and clear_work_data() can be used to set the pwq, pool or clear
  512. * work->data. These functions should only be called while the work is
  513. * owned - ie. while the PENDING bit is set.
  514. *
  515. * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
  516. * corresponding to a work. Pool is available once the work has been
  517. * queued anywhere after initialization until it is sync canceled. pwq is
  518. * available only while the work item is queued.
  519. *
  520. * %WORK_OFFQ_CANCELING is used to mark a work item which is being
  521. * canceled. While being canceled, a work item may have its PENDING set
  522. * but stay off timer and worklist for arbitrarily long and nobody should
  523. * try to steal the PENDING bit.
  524. */
  525. static inline void set_work_data(struct work_struct *work, unsigned long data,
  526. unsigned long flags)
  527. {
  528. WARN_ON_ONCE(!work_pending(work));
  529. atomic_long_set(&work->data, data | flags | work_static(work));
  530. }
  531. static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
  532. unsigned long extra_flags)
  533. {
  534. set_work_data(work, (unsigned long)pwq,
  535. WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
  536. }
  537. static void set_work_pool_and_keep_pending(struct work_struct *work,
  538. int pool_id)
  539. {
  540. set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
  541. WORK_STRUCT_PENDING);
  542. }
  543. static void set_work_pool_and_clear_pending(struct work_struct *work,
  544. int pool_id)
  545. {
  546. /*
  547. * The following wmb is paired with the implied mb in
  548. * test_and_set_bit(PENDING) and ensures all updates to @work made
  549. * here are visible to and precede any updates by the next PENDING
  550. * owner.
  551. */
  552. smp_wmb();
  553. set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
  554. /*
  555. * The following mb guarantees that previous clear of a PENDING bit
  556. * will not be reordered with any speculative LOADS or STORES from
  557. * work->current_func, which is executed afterwards. This possible
  558. * reordering can lead to a missed execution on attempt to qeueue
  559. * the same @work. E.g. consider this case:
  560. *
  561. * CPU#0 CPU#1
  562. * ---------------------------- --------------------------------
  563. *
  564. * 1 STORE event_indicated
  565. * 2 queue_work_on() {
  566. * 3 test_and_set_bit(PENDING)
  567. * 4 } set_..._and_clear_pending() {
  568. * 5 set_work_data() # clear bit
  569. * 6 smp_mb()
  570. * 7 work->current_func() {
  571. * 8 LOAD event_indicated
  572. * }
  573. *
  574. * Without an explicit full barrier speculative LOAD on line 8 can
  575. * be executed before CPU#0 does STORE on line 1. If that happens,
  576. * CPU#0 observes the PENDING bit is still set and new execution of
  577. * a @work is not queued in a hope, that CPU#1 will eventually
  578. * finish the queued @work. Meanwhile CPU#1 does not see
  579. * event_indicated is set, because speculative LOAD was executed
  580. * before actual STORE.
  581. */
  582. smp_mb();
  583. }
  584. static void clear_work_data(struct work_struct *work)
  585. {
  586. smp_wmb(); /* see set_work_pool_and_clear_pending() */
  587. set_work_data(work, WORK_STRUCT_NO_POOL, 0);
  588. }
  589. static struct pool_workqueue *get_work_pwq(struct work_struct *work)
  590. {
  591. unsigned long data = atomic_long_read(&work->data);
  592. if (data & WORK_STRUCT_PWQ)
  593. return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
  594. else
  595. return NULL;
  596. }
  597. /**
  598. * get_work_pool - return the worker_pool a given work was associated with
  599. * @work: the work item of interest
  600. *
  601. * Pools are created and destroyed under wq_pool_mutex, and allows read
  602. * access under sched-RCU read lock. As such, this function should be
  603. * called under wq_pool_mutex or with preemption disabled.
  604. *
  605. * All fields of the returned pool are accessible as long as the above
  606. * mentioned locking is in effect. If the returned pool needs to be used
  607. * beyond the critical section, the caller is responsible for ensuring the
  608. * returned pool is and stays online.
  609. *
  610. * Return: The worker_pool @work was last associated with. %NULL if none.
  611. */
  612. static struct worker_pool *get_work_pool(struct work_struct *work)
  613. {
  614. unsigned long data = atomic_long_read(&work->data);
  615. int pool_id;
  616. assert_rcu_or_pool_mutex();
  617. if (data & WORK_STRUCT_PWQ)
  618. return ((struct pool_workqueue *)
  619. (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
  620. pool_id = data >> WORK_OFFQ_POOL_SHIFT;
  621. if (pool_id == WORK_OFFQ_POOL_NONE)
  622. return NULL;
  623. return idr_find(&worker_pool_idr, pool_id);
  624. }
  625. /**
  626. * get_work_pool_id - return the worker pool ID a given work is associated with
  627. * @work: the work item of interest
  628. *
  629. * Return: The worker_pool ID @work was last associated with.
  630. * %WORK_OFFQ_POOL_NONE if none.
  631. */
  632. static int get_work_pool_id(struct work_struct *work)
  633. {
  634. unsigned long data = atomic_long_read(&work->data);
  635. if (data & WORK_STRUCT_PWQ)
  636. return ((struct pool_workqueue *)
  637. (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
  638. return data >> WORK_OFFQ_POOL_SHIFT;
  639. }
  640. static void mark_work_canceling(struct work_struct *work)
  641. {
  642. unsigned long pool_id = get_work_pool_id(work);
  643. pool_id <<= WORK_OFFQ_POOL_SHIFT;
  644. set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
  645. }
  646. static bool work_is_canceling(struct work_struct *work)
  647. {
  648. unsigned long data = atomic_long_read(&work->data);
  649. return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
  650. }
  651. /*
  652. * Policy functions. These define the policies on how the global worker
  653. * pools are managed. Unless noted otherwise, these functions assume that
  654. * they're being called with pool->lock held.
  655. */
  656. static bool __need_more_worker(struct worker_pool *pool)
  657. {
  658. return !atomic_read(&pool->nr_running);
  659. }
  660. /*
  661. * Need to wake up a worker? Called from anything but currently
  662. * running workers.
  663. *
  664. * Note that, because unbound workers never contribute to nr_running, this
  665. * function will always return %true for unbound pools as long as the
  666. * worklist isn't empty.
  667. */
  668. static bool need_more_worker(struct worker_pool *pool)
  669. {
  670. return !list_empty(&pool->worklist) && __need_more_worker(pool);
  671. }
  672. /* Can I start working? Called from busy but !running workers. */
  673. static bool may_start_working(struct worker_pool *pool)
  674. {
  675. return pool->nr_idle;
  676. }
  677. /* Do I need to keep working? Called from currently running workers. */
  678. static bool keep_working(struct worker_pool *pool)
  679. {
  680. return !list_empty(&pool->worklist) &&
  681. atomic_read(&pool->nr_running) <= 1;
  682. }
  683. /* Do we need a new worker? Called from manager. */
  684. static bool need_to_create_worker(struct worker_pool *pool)
  685. {
  686. return need_more_worker(pool) && !may_start_working(pool);
  687. }
  688. /* Do we have too many workers and should some go away? */
  689. static bool too_many_workers(struct worker_pool *pool)
  690. {
  691. bool managing = pool->flags & POOL_MANAGER_ACTIVE;
  692. int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
  693. int nr_busy = pool->nr_workers - nr_idle;
  694. return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
  695. }
  696. /*
  697. * Wake up functions.
  698. */
  699. /* Return the first idle worker. Safe with preemption disabled */
  700. static struct worker *first_idle_worker(struct worker_pool *pool)
  701. {
  702. if (unlikely(list_empty(&pool->idle_list)))
  703. return NULL;
  704. return list_first_entry(&pool->idle_list, struct worker, entry);
  705. }
  706. /**
  707. * wake_up_worker - wake up an idle worker
  708. * @pool: worker pool to wake worker from
  709. *
  710. * Wake up the first idle worker of @pool.
  711. *
  712. * CONTEXT:
  713. * spin_lock_irq(pool->lock).
  714. */
  715. static void wake_up_worker(struct worker_pool *pool)
  716. {
  717. struct worker *worker = first_idle_worker(pool);
  718. if (likely(worker))
  719. wake_up_process(worker->task);
  720. }
  721. /**
  722. * wq_worker_waking_up - a worker is waking up
  723. * @task: task waking up
  724. * @cpu: CPU @task is waking up to
  725. *
  726. * This function is called during try_to_wake_up() when a worker is
  727. * being awoken.
  728. *
  729. * CONTEXT:
  730. * spin_lock_irq(rq->lock)
  731. */
  732. void wq_worker_waking_up(struct task_struct *task, int cpu)
  733. {
  734. struct worker *worker = kthread_data(task);
  735. if (!(worker->flags & WORKER_NOT_RUNNING)) {
  736. WARN_ON_ONCE(worker->pool->cpu != cpu);
  737. atomic_inc(&worker->pool->nr_running);
  738. }
  739. }
  740. /**
  741. * wq_worker_sleeping - a worker is going to sleep
  742. * @task: task going to sleep
  743. *
  744. * This function is called during schedule() when a busy worker is
  745. * going to sleep. Worker on the same cpu can be woken up by
  746. * returning pointer to its task.
  747. *
  748. * CONTEXT:
  749. * spin_lock_irq(rq->lock)
  750. *
  751. * Return:
  752. * Worker task on @cpu to wake up, %NULL if none.
  753. */
  754. struct task_struct *wq_worker_sleeping(struct task_struct *task)
  755. {
  756. struct worker *worker = kthread_data(task), *to_wakeup = NULL;
  757. struct worker_pool *pool;
  758. /*
  759. * Rescuers, which may not have all the fields set up like normal
  760. * workers, also reach here, let's not access anything before
  761. * checking NOT_RUNNING.
  762. */
  763. if (worker->flags & WORKER_NOT_RUNNING)
  764. return NULL;
  765. pool = worker->pool;
  766. /* this can only happen on the local cpu */
  767. if (WARN_ON_ONCE(pool->cpu != raw_smp_processor_id()))
  768. return NULL;
  769. /*
  770. * The counterpart of the following dec_and_test, implied mb,
  771. * worklist not empty test sequence is in insert_work().
  772. * Please read comment there.
  773. *
  774. * NOT_RUNNING is clear. This means that we're bound to and
  775. * running on the local cpu w/ rq lock held and preemption
  776. * disabled, which in turn means that none else could be
  777. * manipulating idle_list, so dereferencing idle_list without pool
  778. * lock is safe.
  779. */
  780. if (atomic_dec_and_test(&pool->nr_running) &&
  781. !list_empty(&pool->worklist))
  782. to_wakeup = first_idle_worker(pool);
  783. return to_wakeup ? to_wakeup->task : NULL;
  784. }
  785. /**
  786. * worker_set_flags - set worker flags and adjust nr_running accordingly
  787. * @worker: self
  788. * @flags: flags to set
  789. *
  790. * Set @flags in @worker->flags and adjust nr_running accordingly.
  791. *
  792. * CONTEXT:
  793. * spin_lock_irq(pool->lock)
  794. */
  795. static inline void worker_set_flags(struct worker *worker, unsigned int flags)
  796. {
  797. struct worker_pool *pool = worker->pool;
  798. WARN_ON_ONCE(worker->task != current);
  799. /* If transitioning into NOT_RUNNING, adjust nr_running. */
  800. if ((flags & WORKER_NOT_RUNNING) &&
  801. !(worker->flags & WORKER_NOT_RUNNING)) {
  802. atomic_dec(&pool->nr_running);
  803. }
  804. worker->flags |= flags;
  805. }
  806. /**
  807. * worker_clr_flags - clear worker flags and adjust nr_running accordingly
  808. * @worker: self
  809. * @flags: flags to clear
  810. *
  811. * Clear @flags in @worker->flags and adjust nr_running accordingly.
  812. *
  813. * CONTEXT:
  814. * spin_lock_irq(pool->lock)
  815. */
  816. static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
  817. {
  818. struct worker_pool *pool = worker->pool;
  819. unsigned int oflags = worker->flags;
  820. WARN_ON_ONCE(worker->task != current);
  821. worker->flags &= ~flags;
  822. /*
  823. * If transitioning out of NOT_RUNNING, increment nr_running. Note
  824. * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
  825. * of multiple flags, not a single flag.
  826. */
  827. if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
  828. if (!(worker->flags & WORKER_NOT_RUNNING))
  829. atomic_inc(&pool->nr_running);
  830. }
  831. /**
  832. * find_worker_executing_work - find worker which is executing a work
  833. * @pool: pool of interest
  834. * @work: work to find worker for
  835. *
  836. * Find a worker which is executing @work on @pool by searching
  837. * @pool->busy_hash which is keyed by the address of @work. For a worker
  838. * to match, its current execution should match the address of @work and
  839. * its work function. This is to avoid unwanted dependency between
  840. * unrelated work executions through a work item being recycled while still
  841. * being executed.
  842. *
  843. * This is a bit tricky. A work item may be freed once its execution
  844. * starts and nothing prevents the freed area from being recycled for
  845. * another work item. If the same work item address ends up being reused
  846. * before the original execution finishes, workqueue will identify the
  847. * recycled work item as currently executing and make it wait until the
  848. * current execution finishes, introducing an unwanted dependency.
  849. *
  850. * This function checks the work item address and work function to avoid
  851. * false positives. Note that this isn't complete as one may construct a
  852. * work function which can introduce dependency onto itself through a
  853. * recycled work item. Well, if somebody wants to shoot oneself in the
  854. * foot that badly, there's only so much we can do, and if such deadlock
  855. * actually occurs, it should be easy to locate the culprit work function.
  856. *
  857. * CONTEXT:
  858. * spin_lock_irq(pool->lock).
  859. *
  860. * Return:
  861. * Pointer to worker which is executing @work if found, %NULL
  862. * otherwise.
  863. */
  864. static struct worker *find_worker_executing_work(struct worker_pool *pool,
  865. struct work_struct *work)
  866. {
  867. struct worker *worker;
  868. hash_for_each_possible(pool->busy_hash, worker, hentry,
  869. (unsigned long)work)
  870. if (worker->current_work == work &&
  871. worker->current_func == work->func)
  872. return worker;
  873. return NULL;
  874. }
  875. /**
  876. * move_linked_works - move linked works to a list
  877. * @work: start of series of works to be scheduled
  878. * @head: target list to append @work to
  879. * @nextp: out parameter for nested worklist walking
  880. *
  881. * Schedule linked works starting from @work to @head. Work series to
  882. * be scheduled starts at @work and includes any consecutive work with
  883. * WORK_STRUCT_LINKED set in its predecessor.
  884. *
  885. * If @nextp is not NULL, it's updated to point to the next work of
  886. * the last scheduled work. This allows move_linked_works() to be
  887. * nested inside outer list_for_each_entry_safe().
  888. *
  889. * CONTEXT:
  890. * spin_lock_irq(pool->lock).
  891. */
  892. static void move_linked_works(struct work_struct *work, struct list_head *head,
  893. struct work_struct **nextp)
  894. {
  895. struct work_struct *n;
  896. /*
  897. * Linked worklist will always end before the end of the list,
  898. * use NULL for list head.
  899. */
  900. list_for_each_entry_safe_from(work, n, NULL, entry) {
  901. list_move_tail(&work->entry, head);
  902. if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
  903. break;
  904. }
  905. /*
  906. * If we're already inside safe list traversal and have moved
  907. * multiple works to the scheduled queue, the next position
  908. * needs to be updated.
  909. */
  910. if (nextp)
  911. *nextp = n;
  912. }
  913. /**
  914. * get_pwq - get an extra reference on the specified pool_workqueue
  915. * @pwq: pool_workqueue to get
  916. *
  917. * Obtain an extra reference on @pwq. The caller should guarantee that
  918. * @pwq has positive refcnt and be holding the matching pool->lock.
  919. */
  920. static void get_pwq(struct pool_workqueue *pwq)
  921. {
  922. lockdep_assert_held(&pwq->pool->lock);
  923. WARN_ON_ONCE(pwq->refcnt <= 0);
  924. pwq->refcnt++;
  925. }
  926. /**
  927. * put_pwq - put a pool_workqueue reference
  928. * @pwq: pool_workqueue to put
  929. *
  930. * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
  931. * destruction. The caller should be holding the matching pool->lock.
  932. */
  933. static void put_pwq(struct pool_workqueue *pwq)
  934. {
  935. lockdep_assert_held(&pwq->pool->lock);
  936. if (likely(--pwq->refcnt))
  937. return;
  938. if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
  939. return;
  940. /*
  941. * @pwq can't be released under pool->lock, bounce to
  942. * pwq_unbound_release_workfn(). This never recurses on the same
  943. * pool->lock as this path is taken only for unbound workqueues and
  944. * the release work item is scheduled on a per-cpu workqueue. To
  945. * avoid lockdep warning, unbound pool->locks are given lockdep
  946. * subclass of 1 in get_unbound_pool().
  947. */
  948. schedule_work(&pwq->unbound_release_work);
  949. }
  950. /**
  951. * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
  952. * @pwq: pool_workqueue to put (can be %NULL)
  953. *
  954. * put_pwq() with locking. This function also allows %NULL @pwq.
  955. */
  956. static void put_pwq_unlocked(struct pool_workqueue *pwq)
  957. {
  958. if (pwq) {
  959. /*
  960. * As both pwqs and pools are sched-RCU protected, the
  961. * following lock operations are safe.
  962. */
  963. spin_lock_irq(&pwq->pool->lock);
  964. put_pwq(pwq);
  965. spin_unlock_irq(&pwq->pool->lock);
  966. }
  967. }
  968. static void pwq_activate_delayed_work(struct work_struct *work)
  969. {
  970. struct pool_workqueue *pwq = get_work_pwq(work);
  971. trace_workqueue_activate_work(work);
  972. if (list_empty(&pwq->pool->worklist))
  973. pwq->pool->watchdog_ts = jiffies;
  974. move_linked_works(work, &pwq->pool->worklist, NULL);
  975. __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
  976. pwq->nr_active++;
  977. }
  978. static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
  979. {
  980. struct work_struct *work = list_first_entry(&pwq->delayed_works,
  981. struct work_struct, entry);
  982. pwq_activate_delayed_work(work);
  983. }
  984. /**
  985. * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
  986. * @pwq: pwq of interest
  987. * @color: color of work which left the queue
  988. *
  989. * A work either has completed or is removed from pending queue,
  990. * decrement nr_in_flight of its pwq and handle workqueue flushing.
  991. *
  992. * CONTEXT:
  993. * spin_lock_irq(pool->lock).
  994. */
  995. static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
  996. {
  997. /* uncolored work items don't participate in flushing or nr_active */
  998. if (color == WORK_NO_COLOR)
  999. goto out_put;
  1000. pwq->nr_in_flight[color]--;
  1001. pwq->nr_active--;
  1002. if (!list_empty(&pwq->delayed_works)) {
  1003. /* one down, submit a delayed one */
  1004. if (pwq->nr_active < pwq->max_active)
  1005. pwq_activate_first_delayed(pwq);
  1006. }
  1007. /* is flush in progress and are we at the flushing tip? */
  1008. if (likely(pwq->flush_color != color))
  1009. goto out_put;
  1010. /* are there still in-flight works? */
  1011. if (pwq->nr_in_flight[color])
  1012. goto out_put;
  1013. /* this pwq is done, clear flush_color */
  1014. pwq->flush_color = -1;
  1015. /*
  1016. * If this was the last pwq, wake up the first flusher. It
  1017. * will handle the rest.
  1018. */
  1019. if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
  1020. complete(&pwq->wq->first_flusher->done);
  1021. out_put:
  1022. put_pwq(pwq);
  1023. }
  1024. /**
  1025. * try_to_grab_pending - steal work item from worklist and disable irq
  1026. * @work: work item to steal
  1027. * @is_dwork: @work is a delayed_work
  1028. * @flags: place to store irq state
  1029. *
  1030. * Try to grab PENDING bit of @work. This function can handle @work in any
  1031. * stable state - idle, on timer or on worklist.
  1032. *
  1033. * Return:
  1034. * 1 if @work was pending and we successfully stole PENDING
  1035. * 0 if @work was idle and we claimed PENDING
  1036. * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
  1037. * -ENOENT if someone else is canceling @work, this state may persist
  1038. * for arbitrarily long
  1039. *
  1040. * Note:
  1041. * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
  1042. * interrupted while holding PENDING and @work off queue, irq must be
  1043. * disabled on entry. This, combined with delayed_work->timer being
  1044. * irqsafe, ensures that we return -EAGAIN for finite short period of time.
  1045. *
  1046. * On successful return, >= 0, irq is disabled and the caller is
  1047. * responsible for releasing it using local_irq_restore(*@flags).
  1048. *
  1049. * This function is safe to call from any context including IRQ handler.
  1050. */
  1051. static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
  1052. unsigned long *flags)
  1053. {
  1054. struct worker_pool *pool;
  1055. struct pool_workqueue *pwq;
  1056. local_irq_save(*flags);
  1057. /* try to steal the timer if it exists */
  1058. if (is_dwork) {
  1059. struct delayed_work *dwork = to_delayed_work(work);
  1060. /*
  1061. * dwork->timer is irqsafe. If del_timer() fails, it's
  1062. * guaranteed that the timer is not queued anywhere and not
  1063. * running on the local CPU.
  1064. */
  1065. if (likely(del_timer(&dwork->timer)))
  1066. return 1;
  1067. }
  1068. /* try to claim PENDING the normal way */
  1069. if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
  1070. return 0;
  1071. /*
  1072. * The queueing is in progress, or it is already queued. Try to
  1073. * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
  1074. */
  1075. pool = get_work_pool(work);
  1076. if (!pool)
  1077. goto fail;
  1078. spin_lock(&pool->lock);
  1079. /*
  1080. * work->data is guaranteed to point to pwq only while the work
  1081. * item is queued on pwq->wq, and both updating work->data to point
  1082. * to pwq on queueing and to pool on dequeueing are done under
  1083. * pwq->pool->lock. This in turn guarantees that, if work->data
  1084. * points to pwq which is associated with a locked pool, the work
  1085. * item is currently queued on that pool.
  1086. */
  1087. pwq = get_work_pwq(work);
  1088. if (pwq && pwq->pool == pool) {
  1089. debug_work_deactivate(work);
  1090. /*
  1091. * A delayed work item cannot be grabbed directly because
  1092. * it might have linked NO_COLOR work items which, if left
  1093. * on the delayed_list, will confuse pwq->nr_active
  1094. * management later on and cause stall. Make sure the work
  1095. * item is activated before grabbing.
  1096. */
  1097. if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
  1098. pwq_activate_delayed_work(work);
  1099. list_del_init(&work->entry);
  1100. pwq_dec_nr_in_flight(pwq, get_work_color(work));
  1101. /* work->data points to pwq iff queued, point to pool */
  1102. set_work_pool_and_keep_pending(work, pool->id);
  1103. spin_unlock(&pool->lock);
  1104. return 1;
  1105. }
  1106. spin_unlock(&pool->lock);
  1107. fail:
  1108. local_irq_restore(*flags);
  1109. if (work_is_canceling(work))
  1110. return -ENOENT;
  1111. cpu_relax();
  1112. return -EAGAIN;
  1113. }
  1114. /**
  1115. * insert_work - insert a work into a pool
  1116. * @pwq: pwq @work belongs to
  1117. * @work: work to insert
  1118. * @head: insertion point
  1119. * @extra_flags: extra WORK_STRUCT_* flags to set
  1120. *
  1121. * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
  1122. * work_struct flags.
  1123. *
  1124. * CONTEXT:
  1125. * spin_lock_irq(pool->lock).
  1126. */
  1127. static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
  1128. struct list_head *head, unsigned int extra_flags)
  1129. {
  1130. struct worker_pool *pool = pwq->pool;
  1131. /* we own @work, set data and link */
  1132. set_work_pwq(work, pwq, extra_flags);
  1133. list_add_tail(&work->entry, head);
  1134. get_pwq(pwq);
  1135. /*
  1136. * Ensure either wq_worker_sleeping() sees the above
  1137. * list_add_tail() or we see zero nr_running to avoid workers lying
  1138. * around lazily while there are works to be processed.
  1139. */
  1140. smp_mb();
  1141. if (__need_more_worker(pool))
  1142. wake_up_worker(pool);
  1143. }
  1144. /*
  1145. * Test whether @work is being queued from another work executing on the
  1146. * same workqueue.
  1147. */
  1148. static bool is_chained_work(struct workqueue_struct *wq)
  1149. {
  1150. struct worker *worker;
  1151. worker = current_wq_worker();
  1152. /*
  1153. * Return %true iff I'm a worker execuing a work item on @wq. If
  1154. * I'm @worker, it's safe to dereference it without locking.
  1155. */
  1156. return worker && worker->current_pwq->wq == wq;
  1157. }
  1158. /*
  1159. * When queueing an unbound work item to a wq, prefer local CPU if allowed
  1160. * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to
  1161. * avoid perturbing sensitive tasks.
  1162. */
  1163. static int wq_select_unbound_cpu(int cpu)
  1164. {
  1165. static bool printed_dbg_warning;
  1166. int new_cpu;
  1167. if (likely(!wq_debug_force_rr_cpu)) {
  1168. if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
  1169. return cpu;
  1170. } else if (!printed_dbg_warning) {
  1171. pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
  1172. printed_dbg_warning = true;
  1173. }
  1174. if (cpumask_empty(wq_unbound_cpumask))
  1175. return cpu;
  1176. new_cpu = __this_cpu_read(wq_rr_cpu_last);
  1177. new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
  1178. if (unlikely(new_cpu >= nr_cpu_ids)) {
  1179. new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
  1180. if (unlikely(new_cpu >= nr_cpu_ids))
  1181. return cpu;
  1182. }
  1183. __this_cpu_write(wq_rr_cpu_last, new_cpu);
  1184. return new_cpu;
  1185. }
  1186. static void __queue_work(int cpu, struct workqueue_struct *wq,
  1187. struct work_struct *work)
  1188. {
  1189. struct pool_workqueue *pwq;
  1190. struct worker_pool *last_pool;
  1191. struct list_head *worklist;
  1192. unsigned int work_flags;
  1193. unsigned int req_cpu = cpu;
  1194. /*
  1195. * While a work item is PENDING && off queue, a task trying to
  1196. * steal the PENDING will busy-loop waiting for it to either get
  1197. * queued or lose PENDING. Grabbing PENDING and queueing should
  1198. * happen with IRQ disabled.
  1199. */
  1200. lockdep_assert_irqs_disabled();
  1201. debug_work_activate(work);
  1202. /* if draining, only works from the same workqueue are allowed */
  1203. if (unlikely(wq->flags & __WQ_DRAINING) &&
  1204. WARN_ON_ONCE(!is_chained_work(wq)))
  1205. return;
  1206. retry:
  1207. if (req_cpu == WORK_CPU_UNBOUND)
  1208. cpu = wq_select_unbound_cpu(raw_smp_processor_id());
  1209. /* pwq which will be used unless @work is executing elsewhere */
  1210. if (!(wq->flags & WQ_UNBOUND))
  1211. pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
  1212. else
  1213. pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
  1214. /*
  1215. * If @work was previously on a different pool, it might still be
  1216. * running there, in which case the work needs to be queued on that
  1217. * pool to guarantee non-reentrancy.
  1218. */
  1219. last_pool = get_work_pool(work);
  1220. if (last_pool && last_pool != pwq->pool) {
  1221. struct worker *worker;
  1222. spin_lock(&last_pool->lock);
  1223. worker = find_worker_executing_work(last_pool, work);
  1224. if (worker && worker->current_pwq->wq == wq) {
  1225. pwq = worker->current_pwq;
  1226. } else {
  1227. /* meh... not running there, queue here */
  1228. spin_unlock(&last_pool->lock);
  1229. spin_lock(&pwq->pool->lock);
  1230. }
  1231. } else {
  1232. spin_lock(&pwq->pool->lock);
  1233. }
  1234. /*
  1235. * pwq is determined and locked. For unbound pools, we could have
  1236. * raced with pwq release and it could already be dead. If its
  1237. * refcnt is zero, repeat pwq selection. Note that pwqs never die
  1238. * without another pwq replacing it in the numa_pwq_tbl or while
  1239. * work items are executing on it, so the retrying is guaranteed to
  1240. * make forward-progress.
  1241. */
  1242. if (unlikely(!pwq->refcnt)) {
  1243. if (wq->flags & WQ_UNBOUND) {
  1244. spin_unlock(&pwq->pool->lock);
  1245. cpu_relax();
  1246. goto retry;
  1247. }
  1248. /* oops */
  1249. WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
  1250. wq->name, cpu);
  1251. }
  1252. /* pwq determined, queue */
  1253. trace_workqueue_queue_work(req_cpu, pwq, work);
  1254. if (WARN_ON(!list_empty(&work->entry))) {
  1255. spin_unlock(&pwq->pool->lock);
  1256. return;
  1257. }
  1258. pwq->nr_in_flight[pwq->work_color]++;
  1259. work_flags = work_color_to_flags(pwq->work_color);
  1260. if (likely(pwq->nr_active < pwq->max_active)) {
  1261. trace_workqueue_activate_work(work);
  1262. pwq->nr_active++;
  1263. worklist = &pwq->pool->worklist;
  1264. if (list_empty(worklist))
  1265. pwq->pool->watchdog_ts = jiffies;
  1266. } else {
  1267. work_flags |= WORK_STRUCT_DELAYED;
  1268. worklist = &pwq->delayed_works;
  1269. }
  1270. insert_work(pwq, work, worklist, work_flags);
  1271. spin_unlock(&pwq->pool->lock);
  1272. }
  1273. /**
  1274. * queue_work_on - queue work on specific cpu
  1275. * @cpu: CPU number to execute work on
  1276. * @wq: workqueue to use
  1277. * @work: work to queue
  1278. *
  1279. * We queue the work to a specific CPU, the caller must ensure it
  1280. * can't go away.
  1281. *
  1282. * Return: %false if @work was already on a queue, %true otherwise.
  1283. */
  1284. bool queue_work_on(int cpu, struct workqueue_struct *wq,
  1285. struct work_struct *work)
  1286. {
  1287. bool ret = false;
  1288. unsigned long flags;
  1289. local_irq_save(flags);
  1290. if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
  1291. __queue_work(cpu, wq, work);
  1292. ret = true;
  1293. }
  1294. local_irq_restore(flags);
  1295. return ret;
  1296. }
  1297. EXPORT_SYMBOL(queue_work_on);
  1298. void delayed_work_timer_fn(struct timer_list *t)
  1299. {
  1300. struct delayed_work *dwork = from_timer(dwork, t, timer);
  1301. /* should have been called from irqsafe timer with irq already off */
  1302. __queue_work(dwork->cpu, dwork->wq, &dwork->work);
  1303. }
  1304. EXPORT_SYMBOL(delayed_work_timer_fn);
  1305. static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
  1306. struct delayed_work *dwork, unsigned long delay)
  1307. {
  1308. struct timer_list *timer = &dwork->timer;
  1309. struct work_struct *work = &dwork->work;
  1310. WARN_ON_ONCE(!wq);
  1311. WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
  1312. WARN_ON_ONCE(timer_pending(timer));
  1313. WARN_ON_ONCE(!list_empty(&work->entry));
  1314. /*
  1315. * If @delay is 0, queue @dwork->work immediately. This is for
  1316. * both optimization and correctness. The earliest @timer can
  1317. * expire is on the closest next tick and delayed_work users depend
  1318. * on that there's no such delay when @delay is 0.
  1319. */
  1320. if (!delay) {
  1321. __queue_work(cpu, wq, &dwork->work);
  1322. return;
  1323. }
  1324. dwork->wq = wq;
  1325. dwork->cpu = cpu;
  1326. timer->expires = jiffies + delay;
  1327. if (unlikely(cpu != WORK_CPU_UNBOUND))
  1328. add_timer_on(timer, cpu);
  1329. else
  1330. add_timer(timer);
  1331. }
  1332. /**
  1333. * queue_delayed_work_on - queue work on specific CPU after delay
  1334. * @cpu: CPU number to execute work on
  1335. * @wq: workqueue to use
  1336. * @dwork: work to queue
  1337. * @delay: number of jiffies to wait before queueing
  1338. *
  1339. * Return: %false if @work was already on a queue, %true otherwise. If
  1340. * @delay is zero and @dwork is idle, it will be scheduled for immediate
  1341. * execution.
  1342. */
  1343. bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
  1344. struct delayed_work *dwork, unsigned long delay)
  1345. {
  1346. struct work_struct *work = &dwork->work;
  1347. bool ret = false;
  1348. unsigned long flags;
  1349. /* read the comment in __queue_work() */
  1350. local_irq_save(flags);
  1351. if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
  1352. __queue_delayed_work(cpu, wq, dwork, delay);
  1353. ret = true;
  1354. }
  1355. local_irq_restore(flags);
  1356. return ret;
  1357. }
  1358. EXPORT_SYMBOL(queue_delayed_work_on);
  1359. /**
  1360. * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
  1361. * @cpu: CPU number to execute work on
  1362. * @wq: workqueue to use
  1363. * @dwork: work to queue
  1364. * @delay: number of jiffies to wait before queueing
  1365. *
  1366. * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
  1367. * modify @dwork's timer so that it expires after @delay. If @delay is
  1368. * zero, @work is guaranteed to be scheduled immediately regardless of its
  1369. * current state.
  1370. *
  1371. * Return: %false if @dwork was idle and queued, %true if @dwork was
  1372. * pending and its timer was modified.
  1373. *
  1374. * This function is safe to call from any context including IRQ handler.
  1375. * See try_to_grab_pending() for details.
  1376. */
  1377. bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
  1378. struct delayed_work *dwork, unsigned long delay)
  1379. {
  1380. unsigned long flags;
  1381. int ret;
  1382. do {
  1383. ret = try_to_grab_pending(&dwork->work, true, &flags);
  1384. } while (unlikely(ret == -EAGAIN));
  1385. if (likely(ret >= 0)) {
  1386. __queue_delayed_work(cpu, wq, dwork, delay);
  1387. local_irq_restore(flags);
  1388. }
  1389. /* -ENOENT from try_to_grab_pending() becomes %true */
  1390. return ret;
  1391. }
  1392. EXPORT_SYMBOL_GPL(mod_delayed_work_on);
  1393. /**
  1394. * worker_enter_idle - enter idle state
  1395. * @worker: worker which is entering idle state
  1396. *
  1397. * @worker is entering idle state. Update stats and idle timer if
  1398. * necessary.
  1399. *
  1400. * LOCKING:
  1401. * spin_lock_irq(pool->lock).
  1402. */
  1403. static void worker_enter_idle(struct worker *worker)
  1404. {
  1405. struct worker_pool *pool = worker->pool;
  1406. if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
  1407. WARN_ON_ONCE(!list_empty(&worker->entry) &&
  1408. (worker->hentry.next || worker->hentry.pprev)))
  1409. return;
  1410. /* can't use worker_set_flags(), also called from create_worker() */
  1411. worker->flags |= WORKER_IDLE;
  1412. pool->nr_idle++;
  1413. worker->last_active = jiffies;
  1414. /* idle_list is LIFO */
  1415. list_add(&worker->entry, &pool->idle_list);
  1416. if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
  1417. mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
  1418. /*
  1419. * Sanity check nr_running. Because unbind_workers() releases
  1420. * pool->lock between setting %WORKER_UNBOUND and zapping
  1421. * nr_running, the warning may trigger spuriously. Check iff
  1422. * unbind is not in progress.
  1423. */
  1424. WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
  1425. pool->nr_workers == pool->nr_idle &&
  1426. atomic_read(&pool->nr_running));
  1427. }
  1428. /**
  1429. * worker_leave_idle - leave idle state
  1430. * @worker: worker which is leaving idle state
  1431. *
  1432. * @worker is leaving idle state. Update stats.
  1433. *
  1434. * LOCKING:
  1435. * spin_lock_irq(pool->lock).
  1436. */
  1437. static void worker_leave_idle(struct worker *worker)
  1438. {
  1439. struct worker_pool *pool = worker->pool;
  1440. if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
  1441. return;
  1442. worker_clr_flags(worker, WORKER_IDLE);
  1443. pool->nr_idle--;
  1444. list_del_init(&worker->entry);
  1445. }
  1446. static struct worker *alloc_worker(int node)
  1447. {
  1448. struct worker *worker;
  1449. worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
  1450. if (worker) {
  1451. INIT_LIST_HEAD(&worker->entry);
  1452. INIT_LIST_HEAD(&worker->scheduled);
  1453. INIT_LIST_HEAD(&worker->node);
  1454. /* on creation a worker is in !idle && prep state */
  1455. worker->flags = WORKER_PREP;
  1456. }
  1457. return worker;
  1458. }
  1459. /**
  1460. * worker_attach_to_pool() - attach a worker to a pool
  1461. * @worker: worker to be attached
  1462. * @pool: the target pool
  1463. *
  1464. * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
  1465. * cpu-binding of @worker are kept coordinated with the pool across
  1466. * cpu-[un]hotplugs.
  1467. */
  1468. static void worker_attach_to_pool(struct worker *worker,
  1469. struct worker_pool *pool)
  1470. {
  1471. mutex_lock(&pool->attach_mutex);
  1472. /*
  1473. * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
  1474. * online CPUs. It'll be re-applied when any of the CPUs come up.
  1475. */
  1476. set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
  1477. /*
  1478. * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
  1479. * stable across this function. See the comments above the
  1480. * flag definition for details.
  1481. */
  1482. if (pool->flags & POOL_DISASSOCIATED)
  1483. worker->flags |= WORKER_UNBOUND;
  1484. list_add_tail(&worker->node, &pool->workers);
  1485. mutex_unlock(&pool->attach_mutex);
  1486. }
  1487. /**
  1488. * worker_detach_from_pool() - detach a worker from its pool
  1489. * @worker: worker which is attached to its pool
  1490. * @pool: the pool @worker is attached to
  1491. *
  1492. * Undo the attaching which had been done in worker_attach_to_pool(). The
  1493. * caller worker shouldn't access to the pool after detached except it has
  1494. * other reference to the pool.
  1495. */
  1496. static void worker_detach_from_pool(struct worker *worker,
  1497. struct worker_pool *pool)
  1498. {
  1499. struct completion *detach_completion = NULL;
  1500. mutex_lock(&pool->attach_mutex);
  1501. list_del(&worker->node);
  1502. if (list_empty(&pool->workers))
  1503. detach_completion = pool->detach_completion;
  1504. mutex_unlock(&pool->attach_mutex);
  1505. /* clear leftover flags without pool->lock after it is detached */
  1506. worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
  1507. if (detach_completion)
  1508. complete(detach_completion);
  1509. }
  1510. /**
  1511. * create_worker - create a new workqueue worker
  1512. * @pool: pool the new worker will belong to
  1513. *
  1514. * Create and start a new worker which is attached to @pool.
  1515. *
  1516. * CONTEXT:
  1517. * Might sleep. Does GFP_KERNEL allocations.
  1518. *
  1519. * Return:
  1520. * Pointer to the newly created worker.
  1521. */
  1522. static struct worker *create_worker(struct worker_pool *pool)
  1523. {
  1524. struct worker *worker = NULL;
  1525. int id = -1;
  1526. char id_buf[16];
  1527. /* ID is needed to determine kthread name */
  1528. id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
  1529. if (id < 0)
  1530. goto fail;
  1531. worker = alloc_worker(pool->node);
  1532. if (!worker)
  1533. goto fail;
  1534. worker->pool = pool;
  1535. worker->id = id;
  1536. if (pool->cpu >= 0)
  1537. snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
  1538. pool->attrs->nice < 0 ? "H" : "");
  1539. else
  1540. snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
  1541. worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
  1542. "kworker/%s", id_buf);
  1543. if (IS_ERR(worker->task))
  1544. goto fail;
  1545. set_user_nice(worker->task, pool->attrs->nice);
  1546. kthread_bind_mask(worker->task, pool->attrs->cpumask);
  1547. /* successful, attach the worker to the pool */
  1548. worker_attach_to_pool(worker, pool);
  1549. /* start the newly created worker */
  1550. spin_lock_irq(&pool->lock);
  1551. worker->pool->nr_workers++;
  1552. worker_enter_idle(worker);
  1553. wake_up_process(worker->task);
  1554. spin_unlock_irq(&pool->lock);
  1555. return worker;
  1556. fail:
  1557. if (id >= 0)
  1558. ida_simple_remove(&pool->worker_ida, id);
  1559. kfree(worker);
  1560. return NULL;
  1561. }
  1562. /**
  1563. * destroy_worker - destroy a workqueue worker
  1564. * @worker: worker to be destroyed
  1565. *
  1566. * Destroy @worker and adjust @pool stats accordingly. The worker should
  1567. * be idle.
  1568. *
  1569. * CONTEXT:
  1570. * spin_lock_irq(pool->lock).
  1571. */
  1572. static void destroy_worker(struct worker *worker)
  1573. {
  1574. struct worker_pool *pool = worker->pool;
  1575. lockdep_assert_held(&pool->lock);
  1576. /* sanity check frenzy */
  1577. if (WARN_ON(worker->current_work) ||
  1578. WARN_ON(!list_empty(&worker->scheduled)) ||
  1579. WARN_ON(!(worker->flags & WORKER_IDLE)))
  1580. return;
  1581. pool->nr_workers--;
  1582. pool->nr_idle--;
  1583. list_del_init(&worker->entry);
  1584. worker->flags |= WORKER_DIE;
  1585. wake_up_process(worker->task);
  1586. }
  1587. static void idle_worker_timeout(struct timer_list *t)
  1588. {
  1589. struct worker_pool *pool = from_timer(pool, t, idle_timer);
  1590. spin_lock_irq(&pool->lock);
  1591. while (too_many_workers(pool)) {
  1592. struct worker *worker;
  1593. unsigned long expires;
  1594. /* idle_list is kept in LIFO order, check the last one */
  1595. worker = list_entry(pool->idle_list.prev, struct worker, entry);
  1596. expires = worker->last_active + IDLE_WORKER_TIMEOUT;
  1597. if (time_before(jiffies, expires)) {
  1598. mod_timer(&pool->idle_timer, expires);
  1599. break;
  1600. }
  1601. destroy_worker(worker);
  1602. }
  1603. spin_unlock_irq(&pool->lock);
  1604. }
  1605. static void send_mayday(struct work_struct *work)
  1606. {
  1607. struct pool_workqueue *pwq = get_work_pwq(work);
  1608. struct workqueue_struct *wq = pwq->wq;
  1609. lockdep_assert_held(&wq_mayday_lock);
  1610. if (!wq->rescuer)
  1611. return;
  1612. /* mayday mayday mayday */
  1613. if (list_empty(&pwq->mayday_node)) {
  1614. /*
  1615. * If @pwq is for an unbound wq, its base ref may be put at
  1616. * any time due to an attribute change. Pin @pwq until the
  1617. * rescuer is done with it.
  1618. */
  1619. get_pwq(pwq);
  1620. list_add_tail(&pwq->mayday_node, &wq->maydays);
  1621. wake_up_process(wq->rescuer->task);
  1622. }
  1623. }
  1624. static void pool_mayday_timeout(struct timer_list *t)
  1625. {
  1626. struct worker_pool *pool = from_timer(pool, t, mayday_timer);
  1627. struct work_struct *work;
  1628. spin_lock_irq(&pool->lock);
  1629. spin_lock(&wq_mayday_lock); /* for wq->maydays */
  1630. if (need_to_create_worker(pool)) {
  1631. /*
  1632. * We've been trying to create a new worker but
  1633. * haven't been successful. We might be hitting an
  1634. * allocation deadlock. Send distress signals to
  1635. * rescuers.
  1636. */
  1637. list_for_each_entry(work, &pool->worklist, entry)
  1638. send_mayday(work);
  1639. }
  1640. spin_unlock(&wq_mayday_lock);
  1641. spin_unlock_irq(&pool->lock);
  1642. mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
  1643. }
  1644. /**
  1645. * maybe_create_worker - create a new worker if necessary
  1646. * @pool: pool to create a new worker for
  1647. *
  1648. * Create a new worker for @pool if necessary. @pool is guaranteed to
  1649. * have at least one idle worker on return from this function. If
  1650. * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
  1651. * sent to all rescuers with works scheduled on @pool to resolve
  1652. * possible allocation deadlock.
  1653. *
  1654. * On return, need_to_create_worker() is guaranteed to be %false and
  1655. * may_start_working() %true.
  1656. *
  1657. * LOCKING:
  1658. * spin_lock_irq(pool->lock) which may be released and regrabbed
  1659. * multiple times. Does GFP_KERNEL allocations. Called only from
  1660. * manager.
  1661. */
  1662. static void maybe_create_worker(struct worker_pool *pool)
  1663. __releases(&pool->lock)
  1664. __acquires(&pool->lock)
  1665. {
  1666. restart:
  1667. spin_unlock_irq(&pool->lock);
  1668. /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
  1669. mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
  1670. while (true) {
  1671. if (create_worker(pool) || !need_to_create_worker(pool))
  1672. break;
  1673. schedule_timeout_interruptible(CREATE_COOLDOWN);
  1674. if (!need_to_create_worker(pool))
  1675. break;
  1676. }
  1677. del_timer_sync(&pool->mayday_timer);
  1678. spin_lock_irq(&pool->lock);
  1679. /*
  1680. * This is necessary even after a new worker was just successfully
  1681. * created as @pool->lock was dropped and the new worker might have
  1682. * already become busy.
  1683. */
  1684. if (need_to_create_worker(pool))
  1685. goto restart;
  1686. }
  1687. /**
  1688. * manage_workers - manage worker pool
  1689. * @worker: self
  1690. *
  1691. * Assume the manager role and manage the worker pool @worker belongs
  1692. * to. At any given time, there can be only zero or one manager per
  1693. * pool. The exclusion is handled automatically by this function.
  1694. *
  1695. * The caller can safely start processing works on false return. On
  1696. * true return, it's guaranteed that need_to_create_worker() is false
  1697. * and may_start_working() is true.
  1698. *
  1699. * CONTEXT:
  1700. * spin_lock_irq(pool->lock) which may be released and regrabbed
  1701. * multiple times. Does GFP_KERNEL allocations.
  1702. *
  1703. * Return:
  1704. * %false if the pool doesn't need management and the caller can safely
  1705. * start processing works, %true if management function was performed and
  1706. * the conditions that the caller verified before calling the function may
  1707. * no longer be true.
  1708. */
  1709. static bool manage_workers(struct worker *worker)
  1710. {
  1711. struct worker_pool *pool = worker->pool;
  1712. if (pool->flags & POOL_MANAGER_ACTIVE)
  1713. return false;
  1714. pool->flags |= POOL_MANAGER_ACTIVE;
  1715. pool->manager = worker;
  1716. maybe_create_worker(pool);
  1717. pool->manager = NULL;
  1718. pool->flags &= ~POOL_MANAGER_ACTIVE;
  1719. wake_up(&wq_manager_wait);
  1720. return true;
  1721. }
  1722. /**
  1723. * process_one_work - process single work
  1724. * @worker: self
  1725. * @work: work to process
  1726. *
  1727. * Process @work. This function contains all the logics necessary to
  1728. * process a single work including synchronization against and
  1729. * interaction with other workers on the same cpu, queueing and
  1730. * flushing. As long as context requirement is met, any worker can
  1731. * call this function to process a work.
  1732. *
  1733. * CONTEXT:
  1734. * spin_lock_irq(pool->lock) which is released and regrabbed.
  1735. */
  1736. static void process_one_work(struct worker *worker, struct work_struct *work)
  1737. __releases(&pool->lock)
  1738. __acquires(&pool->lock)
  1739. {
  1740. struct pool_workqueue *pwq = get_work_pwq(work);
  1741. struct worker_pool *pool = worker->pool;
  1742. bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
  1743. int work_color;
  1744. struct worker *collision;
  1745. #ifdef CONFIG_LOCKDEP
  1746. /*
  1747. * It is permissible to free the struct work_struct from
  1748. * inside the function that is called from it, this we need to
  1749. * take into account for lockdep too. To avoid bogus "held
  1750. * lock freed" warnings as well as problems when looking into
  1751. * work->lockdep_map, make a copy and use that here.
  1752. */
  1753. struct lockdep_map lockdep_map;
  1754. lockdep_copy_map(&lockdep_map, &work->lockdep_map);
  1755. #endif
  1756. /* ensure we're on the correct CPU */
  1757. WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
  1758. raw_smp_processor_id() != pool->cpu);
  1759. /*
  1760. * A single work shouldn't be executed concurrently by
  1761. * multiple workers on a single cpu. Check whether anyone is
  1762. * already processing the work. If so, defer the work to the
  1763. * currently executing one.
  1764. */
  1765. collision = find_worker_executing_work(pool, work);
  1766. if (unlikely(collision)) {
  1767. move_linked_works(work, &collision->scheduled, NULL);
  1768. return;
  1769. }
  1770. /* claim and dequeue */
  1771. debug_work_deactivate(work);
  1772. hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
  1773. worker->current_work = work;
  1774. worker->current_func = work->func;
  1775. worker->current_pwq = pwq;
  1776. work_color = get_work_color(work);
  1777. list_del_init(&work->entry);
  1778. /*
  1779. * CPU intensive works don't participate in concurrency management.
  1780. * They're the scheduler's responsibility. This takes @worker out
  1781. * of concurrency management and the next code block will chain
  1782. * execution of the pending work items.
  1783. */
  1784. if (unlikely(cpu_intensive))
  1785. worker_set_flags(worker, WORKER_CPU_INTENSIVE);
  1786. /*
  1787. * Wake up another worker if necessary. The condition is always
  1788. * false for normal per-cpu workers since nr_running would always
  1789. * be >= 1 at this point. This is used to chain execution of the
  1790. * pending work items for WORKER_NOT_RUNNING workers such as the
  1791. * UNBOUND and CPU_INTENSIVE ones.
  1792. */
  1793. if (need_more_worker(pool))
  1794. wake_up_worker(pool);
  1795. /*
  1796. * Record the last pool and clear PENDING which should be the last
  1797. * update to @work. Also, do this inside @pool->lock so that
  1798. * PENDING and queued state changes happen together while IRQ is
  1799. * disabled.
  1800. */
  1801. set_work_pool_and_clear_pending(work, pool->id);
  1802. spin_unlock_irq(&pool->lock);
  1803. lock_map_acquire(&pwq->wq->lockdep_map);
  1804. lock_map_acquire(&lockdep_map);
  1805. /*
  1806. * Strictly speaking we should mark the invariant state without holding
  1807. * any locks, that is, before these two lock_map_acquire()'s.
  1808. *
  1809. * However, that would result in:
  1810. *
  1811. * A(W1)
  1812. * WFC(C)
  1813. * A(W1)
  1814. * C(C)
  1815. *
  1816. * Which would create W1->C->W1 dependencies, even though there is no
  1817. * actual deadlock possible. There are two solutions, using a
  1818. * read-recursive acquire on the work(queue) 'locks', but this will then
  1819. * hit the lockdep limitation on recursive locks, or simply discard
  1820. * these locks.
  1821. *
  1822. * AFAICT there is no possible deadlock scenario between the
  1823. * flush_work() and complete() primitives (except for single-threaded
  1824. * workqueues), so hiding them isn't a problem.
  1825. */
  1826. lockdep_invariant_state(true);
  1827. trace_workqueue_execute_start(work);
  1828. worker->current_func(work);
  1829. /*
  1830. * While we must be careful to not use "work" after this, the trace
  1831. * point will only record its address.
  1832. */
  1833. trace_workqueue_execute_end(work);
  1834. lock_map_release(&lockdep_map);
  1835. lock_map_release(&pwq->wq->lockdep_map);
  1836. if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
  1837. pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
  1838. " last function: %pf\n",
  1839. current->comm, preempt_count(), task_pid_nr(current),
  1840. worker->current_func);
  1841. debug_show_held_locks(current);
  1842. dump_stack();
  1843. }
  1844. /*
  1845. * The following prevents a kworker from hogging CPU on !PREEMPT
  1846. * kernels, where a requeueing work item waiting for something to
  1847. * happen could deadlock with stop_machine as such work item could
  1848. * indefinitely requeue itself while all other CPUs are trapped in
  1849. * stop_machine. At the same time, report a quiescent RCU state so
  1850. * the same condition doesn't freeze RCU.
  1851. */
  1852. cond_resched_rcu_qs();
  1853. spin_lock_irq(&pool->lock);
  1854. /* clear cpu intensive status */
  1855. if (unlikely(cpu_intensive))
  1856. worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
  1857. /* we're done with it, release */
  1858. hash_del(&worker->hentry);
  1859. worker->current_work = NULL;
  1860. worker->current_func = NULL;
  1861. worker->current_pwq = NULL;
  1862. worker->desc_valid = false;
  1863. pwq_dec_nr_in_flight(pwq, work_color);
  1864. }
  1865. /**
  1866. * process_scheduled_works - process scheduled works
  1867. * @worker: self
  1868. *
  1869. * Process all scheduled works. Please note that the scheduled list
  1870. * may change while processing a work, so this function repeatedly
  1871. * fetches a work from the top and executes it.
  1872. *
  1873. * CONTEXT:
  1874. * spin_lock_irq(pool->lock) which may be released and regrabbed
  1875. * multiple times.
  1876. */
  1877. static void process_scheduled_works(struct worker *worker)
  1878. {
  1879. while (!list_empty(&worker->scheduled)) {
  1880. struct work_struct *work = list_first_entry(&worker->scheduled,
  1881. struct work_struct, entry);
  1882. process_one_work(worker, work);
  1883. }
  1884. }
  1885. /**
  1886. * worker_thread - the worker thread function
  1887. * @__worker: self
  1888. *
  1889. * The worker thread function. All workers belong to a worker_pool -
  1890. * either a per-cpu one or dynamic unbound one. These workers process all
  1891. * work items regardless of their specific target workqueue. The only
  1892. * exception is work items which belong to workqueues with a rescuer which
  1893. * will be explained in rescuer_thread().
  1894. *
  1895. * Return: 0
  1896. */
  1897. static int worker_thread(void *__worker)
  1898. {
  1899. struct worker *worker = __worker;
  1900. struct worker_pool *pool = worker->pool;
  1901. /* tell the scheduler that this is a workqueue worker */
  1902. worker->task->flags |= PF_WQ_WORKER;
  1903. woke_up:
  1904. spin_lock_irq(&pool->lock);
  1905. /* am I supposed to die? */
  1906. if (unlikely(worker->flags & WORKER_DIE)) {
  1907. spin_unlock_irq(&pool->lock);
  1908. WARN_ON_ONCE(!list_empty(&worker->entry));
  1909. worker->task->flags &= ~PF_WQ_WORKER;
  1910. set_task_comm(worker->task, "kworker/dying");
  1911. ida_simple_remove(&pool->worker_ida, worker->id);
  1912. worker_detach_from_pool(worker, pool);
  1913. kfree(worker);
  1914. return 0;
  1915. }
  1916. worker_leave_idle(worker);
  1917. recheck:
  1918. /* no more worker necessary? */
  1919. if (!need_more_worker(pool))
  1920. goto sleep;
  1921. /* do we need to manage? */
  1922. if (unlikely(!may_start_working(pool)) && manage_workers(worker))
  1923. goto recheck;
  1924. /*
  1925. * ->scheduled list can only be filled while a worker is
  1926. * preparing to process a work or actually processing it.
  1927. * Make sure nobody diddled with it while I was sleeping.
  1928. */
  1929. WARN_ON_ONCE(!list_empty(&worker->scheduled));
  1930. /*
  1931. * Finish PREP stage. We're guaranteed to have at least one idle
  1932. * worker or that someone else has already assumed the manager
  1933. * role. This is where @worker starts participating in concurrency
  1934. * management if applicable and concurrency management is restored
  1935. * after being rebound. See rebind_workers() for details.
  1936. */
  1937. worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
  1938. do {
  1939. struct work_struct *work =
  1940. list_first_entry(&pool->worklist,
  1941. struct work_struct, entry);
  1942. pool->watchdog_ts = jiffies;
  1943. if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
  1944. /* optimization path, not strictly necessary */
  1945. process_one_work(worker, work);
  1946. if (unlikely(!list_empty(&worker->scheduled)))
  1947. process_scheduled_works(worker);
  1948. } else {
  1949. move_linked_works(work, &worker->scheduled, NULL);
  1950. process_scheduled_works(worker);
  1951. }
  1952. } while (keep_working(pool));
  1953. worker_set_flags(worker, WORKER_PREP);
  1954. sleep:
  1955. /*
  1956. * pool->lock is held and there's no work to process and no need to
  1957. * manage, sleep. Workers are woken up only while holding
  1958. * pool->lock or from local cpu, so setting the current state
  1959. * before releasing pool->lock is enough to prevent losing any
  1960. * event.
  1961. */
  1962. worker_enter_idle(worker);
  1963. __set_current_state(TASK_IDLE);
  1964. spin_unlock_irq(&pool->lock);
  1965. schedule();
  1966. goto woke_up;
  1967. }
  1968. /**
  1969. * rescuer_thread - the rescuer thread function
  1970. * @__rescuer: self
  1971. *
  1972. * Workqueue rescuer thread function. There's one rescuer for each
  1973. * workqueue which has WQ_MEM_RECLAIM set.
  1974. *
  1975. * Regular work processing on a pool may block trying to create a new
  1976. * worker which uses GFP_KERNEL allocation which has slight chance of
  1977. * developing into deadlock if some works currently on the same queue
  1978. * need to be processed to satisfy the GFP_KERNEL allocation. This is
  1979. * the problem rescuer solves.
  1980. *
  1981. * When such condition is possible, the pool summons rescuers of all
  1982. * workqueues which have works queued on the pool and let them process
  1983. * those works so that forward progress can be guaranteed.
  1984. *
  1985. * This should happen rarely.
  1986. *
  1987. * Return: 0
  1988. */
  1989. static int rescuer_thread(void *__rescuer)
  1990. {
  1991. struct worker *rescuer = __rescuer;
  1992. struct workqueue_struct *wq = rescuer->rescue_wq;
  1993. struct list_head *scheduled = &rescuer->scheduled;
  1994. bool should_stop;
  1995. set_user_nice(current, RESCUER_NICE_LEVEL);
  1996. /*
  1997. * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
  1998. * doesn't participate in concurrency management.
  1999. */
  2000. rescuer->task->flags |= PF_WQ_WORKER;
  2001. repeat:
  2002. set_current_state(TASK_IDLE);
  2003. /*
  2004. * By the time the rescuer is requested to stop, the workqueue
  2005. * shouldn't have any work pending, but @wq->maydays may still have
  2006. * pwq(s) queued. This can happen by non-rescuer workers consuming
  2007. * all the work items before the rescuer got to them. Go through
  2008. * @wq->maydays processing before acting on should_stop so that the
  2009. * list is always empty on exit.
  2010. */
  2011. should_stop = kthread_should_stop();
  2012. /* see whether any pwq is asking for help */
  2013. spin_lock_irq(&wq_mayday_lock);
  2014. while (!list_empty(&wq->maydays)) {
  2015. struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
  2016. struct pool_workqueue, mayday_node);
  2017. struct worker_pool *pool = pwq->pool;
  2018. struct work_struct *work, *n;
  2019. bool first = true;
  2020. __set_current_state(TASK_RUNNING);
  2021. list_del_init(&pwq->mayday_node);
  2022. spin_unlock_irq(&wq_mayday_lock);
  2023. worker_attach_to_pool(rescuer, pool);
  2024. spin_lock_irq(&pool->lock);
  2025. rescuer->pool = pool;
  2026. /*
  2027. * Slurp in all works issued via this workqueue and
  2028. * process'em.
  2029. */
  2030. WARN_ON_ONCE(!list_empty(scheduled));
  2031. list_for_each_entry_safe(work, n, &pool->worklist, entry) {
  2032. if (get_work_pwq(work) == pwq) {
  2033. if (first)
  2034. pool->watchdog_ts = jiffies;
  2035. move_linked_works(work, scheduled, &n);
  2036. }
  2037. first = false;
  2038. }
  2039. if (!list_empty(scheduled)) {
  2040. process_scheduled_works(rescuer);
  2041. /*
  2042. * The above execution of rescued work items could
  2043. * have created more to rescue through
  2044. * pwq_activate_first_delayed() or chained
  2045. * queueing. Let's put @pwq back on mayday list so
  2046. * that such back-to-back work items, which may be
  2047. * being used to relieve memory pressure, don't
  2048. * incur MAYDAY_INTERVAL delay inbetween.
  2049. */
  2050. if (need_to_create_worker(pool)) {
  2051. spin_lock(&wq_mayday_lock);
  2052. get_pwq(pwq);
  2053. list_move_tail(&pwq->mayday_node, &wq->maydays);
  2054. spin_unlock(&wq_mayday_lock);
  2055. }
  2056. }
  2057. /*
  2058. * Put the reference grabbed by send_mayday(). @pool won't
  2059. * go away while we're still attached to it.
  2060. */
  2061. put_pwq(pwq);
  2062. /*
  2063. * Leave this pool. If need_more_worker() is %true, notify a
  2064. * regular worker; otherwise, we end up with 0 concurrency
  2065. * and stalling the execution.
  2066. */
  2067. if (need_more_worker(pool))
  2068. wake_up_worker(pool);
  2069. rescuer->pool = NULL;
  2070. spin_unlock_irq(&pool->lock);
  2071. worker_detach_from_pool(rescuer, pool);
  2072. spin_lock_irq(&wq_mayday_lock);
  2073. }
  2074. spin_unlock_irq(&wq_mayday_lock);
  2075. if (should_stop) {
  2076. __set_current_state(TASK_RUNNING);
  2077. rescuer->task->flags &= ~PF_WQ_WORKER;
  2078. return 0;
  2079. }
  2080. /* rescuers should never participate in concurrency management */
  2081. WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
  2082. schedule();
  2083. goto repeat;
  2084. }
  2085. /**
  2086. * check_flush_dependency - check for flush dependency sanity
  2087. * @target_wq: workqueue being flushed
  2088. * @target_work: work item being flushed (NULL for workqueue flushes)
  2089. *
  2090. * %current is trying to flush the whole @target_wq or @target_work on it.
  2091. * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
  2092. * reclaiming memory or running on a workqueue which doesn't have
  2093. * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
  2094. * a deadlock.
  2095. */
  2096. static void check_flush_dependency(struct workqueue_struct *target_wq,
  2097. struct work_struct *target_work)
  2098. {
  2099. work_func_t target_func = target_work ? target_work->func : NULL;
  2100. struct worker *worker;
  2101. if (target_wq->flags & WQ_MEM_RECLAIM)
  2102. return;
  2103. worker = current_wq_worker();
  2104. WARN_ONCE(current->flags & PF_MEMALLOC,
  2105. "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%pf",
  2106. current->pid, current->comm, target_wq->name, target_func);
  2107. WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
  2108. (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
  2109. "workqueue: WQ_MEM_RECLAIM %s:%pf is flushing !WQ_MEM_RECLAIM %s:%pf",
  2110. worker->current_pwq->wq->name, worker->current_func,
  2111. target_wq->name, target_func);
  2112. }
  2113. struct wq_barrier {
  2114. struct work_struct work;
  2115. struct completion done;
  2116. struct task_struct *task; /* purely informational */
  2117. };
  2118. static void wq_barrier_func(struct work_struct *work)
  2119. {
  2120. struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
  2121. complete(&barr->done);
  2122. }
  2123. /**
  2124. * insert_wq_barrier - insert a barrier work
  2125. * @pwq: pwq to insert barrier into
  2126. * @barr: wq_barrier to insert
  2127. * @target: target work to attach @barr to
  2128. * @worker: worker currently executing @target, NULL if @target is not executing
  2129. *
  2130. * @barr is linked to @target such that @barr is completed only after
  2131. * @target finishes execution. Please note that the ordering
  2132. * guarantee is observed only with respect to @target and on the local
  2133. * cpu.
  2134. *
  2135. * Currently, a queued barrier can't be canceled. This is because
  2136. * try_to_grab_pending() can't determine whether the work to be
  2137. * grabbed is at the head of the queue and thus can't clear LINKED
  2138. * flag of the previous work while there must be a valid next work
  2139. * after a work with LINKED flag set.
  2140. *
  2141. * Note that when @worker is non-NULL, @target may be modified
  2142. * underneath us, so we can't reliably determine pwq from @target.
  2143. *
  2144. * CONTEXT:
  2145. * spin_lock_irq(pool->lock).
  2146. */
  2147. static void insert_wq_barrier(struct pool_workqueue *pwq,
  2148. struct wq_barrier *barr,
  2149. struct work_struct *target, struct worker *worker)
  2150. {
  2151. struct list_head *head;
  2152. unsigned int linked = 0;
  2153. /*
  2154. * debugobject calls are safe here even with pool->lock locked
  2155. * as we know for sure that this will not trigger any of the
  2156. * checks and call back into the fixup functions where we
  2157. * might deadlock.
  2158. */
  2159. INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
  2160. __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
  2161. init_completion_map(&barr->done, &target->lockdep_map);
  2162. barr->task = current;
  2163. /*
  2164. * If @target is currently being executed, schedule the
  2165. * barrier to the worker; otherwise, put it after @target.
  2166. */
  2167. if (worker)
  2168. head = worker->scheduled.next;
  2169. else {
  2170. unsigned long *bits = work_data_bits(target);
  2171. head = target->entry.next;
  2172. /* there can already be other linked works, inherit and set */
  2173. linked = *bits & WORK_STRUCT_LINKED;
  2174. __set_bit(WORK_STRUCT_LINKED_BIT, bits);
  2175. }
  2176. debug_work_activate(&barr->work);
  2177. insert_work(pwq, &barr->work, head,
  2178. work_color_to_flags(WORK_NO_COLOR) | linked);
  2179. }
  2180. /**
  2181. * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
  2182. * @wq: workqueue being flushed
  2183. * @flush_color: new flush color, < 0 for no-op
  2184. * @work_color: new work color, < 0 for no-op
  2185. *
  2186. * Prepare pwqs for workqueue flushing.
  2187. *
  2188. * If @flush_color is non-negative, flush_color on all pwqs should be
  2189. * -1. If no pwq has in-flight commands at the specified color, all
  2190. * pwq->flush_color's stay at -1 and %false is returned. If any pwq
  2191. * has in flight commands, its pwq->flush_color is set to
  2192. * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
  2193. * wakeup logic is armed and %true is returned.
  2194. *
  2195. * The caller should have initialized @wq->first_flusher prior to
  2196. * calling this function with non-negative @flush_color. If
  2197. * @flush_color is negative, no flush color update is done and %false
  2198. * is returned.
  2199. *
  2200. * If @work_color is non-negative, all pwqs should have the same
  2201. * work_color which is previous to @work_color and all will be
  2202. * advanced to @work_color.
  2203. *
  2204. * CONTEXT:
  2205. * mutex_lock(wq->mutex).
  2206. *
  2207. * Return:
  2208. * %true if @flush_color >= 0 and there's something to flush. %false
  2209. * otherwise.
  2210. */
  2211. static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
  2212. int flush_color, int work_color)
  2213. {
  2214. bool wait = false;
  2215. struct pool_workqueue *pwq;
  2216. if (flush_color >= 0) {
  2217. WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
  2218. atomic_set(&wq->nr_pwqs_to_flush, 1);
  2219. }
  2220. for_each_pwq(pwq, wq) {
  2221. struct worker_pool *pool = pwq->pool;
  2222. spin_lock_irq(&pool->lock);
  2223. if (flush_color >= 0) {
  2224. WARN_ON_ONCE(pwq->flush_color != -1);
  2225. if (pwq->nr_in_flight[flush_color]) {
  2226. pwq->flush_color = flush_color;
  2227. atomic_inc(&wq->nr_pwqs_to_flush);
  2228. wait = true;
  2229. }
  2230. }
  2231. if (work_color >= 0) {
  2232. WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
  2233. pwq->work_color = work_color;
  2234. }
  2235. spin_unlock_irq(&pool->lock);
  2236. }
  2237. if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
  2238. complete(&wq->first_flusher->done);
  2239. return wait;
  2240. }
  2241. /**
  2242. * flush_workqueue - ensure that any scheduled work has run to completion.
  2243. * @wq: workqueue to flush
  2244. *
  2245. * This function sleeps until all work items which were queued on entry
  2246. * have finished execution, but it is not livelocked by new incoming ones.
  2247. */
  2248. void flush_workqueue(struct workqueue_struct *wq)
  2249. {
  2250. struct wq_flusher this_flusher = {
  2251. .list = LIST_HEAD_INIT(this_flusher.list),
  2252. .flush_color = -1,
  2253. .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
  2254. };
  2255. int next_color;
  2256. if (WARN_ON(!wq_online))
  2257. return;
  2258. mutex_lock(&wq->mutex);
  2259. /*
  2260. * Start-to-wait phase
  2261. */
  2262. next_color = work_next_color(wq->work_color);
  2263. if (next_color != wq->flush_color) {
  2264. /*
  2265. * Color space is not full. The current work_color
  2266. * becomes our flush_color and work_color is advanced
  2267. * by one.
  2268. */
  2269. WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
  2270. this_flusher.flush_color = wq->work_color;
  2271. wq->work_color = next_color;
  2272. if (!wq->first_flusher) {
  2273. /* no flush in progress, become the first flusher */
  2274. WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
  2275. wq->first_flusher = &this_flusher;
  2276. if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
  2277. wq->work_color)) {
  2278. /* nothing to flush, done */
  2279. wq->flush_color = next_color;
  2280. wq->first_flusher = NULL;
  2281. goto out_unlock;
  2282. }
  2283. } else {
  2284. /* wait in queue */
  2285. WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
  2286. list_add_tail(&this_flusher.list, &wq->flusher_queue);
  2287. flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
  2288. }
  2289. } else {
  2290. /*
  2291. * Oops, color space is full, wait on overflow queue.
  2292. * The next flush completion will assign us
  2293. * flush_color and transfer to flusher_queue.
  2294. */
  2295. list_add_tail(&this_flusher.list, &wq->flusher_overflow);
  2296. }
  2297. check_flush_dependency(wq, NULL);
  2298. mutex_unlock(&wq->mutex);
  2299. wait_for_completion(&this_flusher.done);
  2300. /*
  2301. * Wake-up-and-cascade phase
  2302. *
  2303. * First flushers are responsible for cascading flushes and
  2304. * handling overflow. Non-first flushers can simply return.
  2305. */
  2306. if (wq->first_flusher != &this_flusher)
  2307. return;
  2308. mutex_lock(&wq->mutex);
  2309. /* we might have raced, check again with mutex held */
  2310. if (wq->first_flusher != &this_flusher)
  2311. goto out_unlock;
  2312. wq->first_flusher = NULL;
  2313. WARN_ON_ONCE(!list_empty(&this_flusher.list));
  2314. WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
  2315. while (true) {
  2316. struct wq_flusher *next, *tmp;
  2317. /* complete all the flushers sharing the current flush color */
  2318. list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
  2319. if (next->flush_color != wq->flush_color)
  2320. break;
  2321. list_del_init(&next->list);
  2322. complete(&next->done);
  2323. }
  2324. WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
  2325. wq->flush_color != work_next_color(wq->work_color));
  2326. /* this flush_color is finished, advance by one */
  2327. wq->flush_color = work_next_color(wq->flush_color);
  2328. /* one color has been freed, handle overflow queue */
  2329. if (!list_empty(&wq->flusher_overflow)) {
  2330. /*
  2331. * Assign the same color to all overflowed
  2332. * flushers, advance work_color and append to
  2333. * flusher_queue. This is the start-to-wait
  2334. * phase for these overflowed flushers.
  2335. */
  2336. list_for_each_entry(tmp, &wq->flusher_overflow, list)
  2337. tmp->flush_color = wq->work_color;
  2338. wq->work_color = work_next_color(wq->work_color);
  2339. list_splice_tail_init(&wq->flusher_overflow,
  2340. &wq->flusher_queue);
  2341. flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
  2342. }
  2343. if (list_empty(&wq->flusher_queue)) {
  2344. WARN_ON_ONCE(wq->flush_color != wq->work_color);
  2345. break;
  2346. }
  2347. /*
  2348. * Need to flush more colors. Make the next flusher
  2349. * the new first flusher and arm pwqs.
  2350. */
  2351. WARN_ON_ONCE(wq->flush_color == wq->work_color);
  2352. WARN_ON_ONCE(wq->flush_color != next->flush_color);
  2353. list_del_init(&next->list);
  2354. wq->first_flusher = next;
  2355. if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
  2356. break;
  2357. /*
  2358. * Meh... this color is already done, clear first
  2359. * flusher and repeat cascading.
  2360. */
  2361. wq->first_flusher = NULL;
  2362. }
  2363. out_unlock:
  2364. mutex_unlock(&wq->mutex);
  2365. }
  2366. EXPORT_SYMBOL(flush_workqueue);
  2367. /**
  2368. * drain_workqueue - drain a workqueue
  2369. * @wq: workqueue to drain
  2370. *
  2371. * Wait until the workqueue becomes empty. While draining is in progress,
  2372. * only chain queueing is allowed. IOW, only currently pending or running
  2373. * work items on @wq can queue further work items on it. @wq is flushed
  2374. * repeatedly until it becomes empty. The number of flushing is determined
  2375. * by the depth of chaining and should be relatively short. Whine if it
  2376. * takes too long.
  2377. */
  2378. void drain_workqueue(struct workqueue_struct *wq)
  2379. {
  2380. unsigned int flush_cnt = 0;
  2381. struct pool_workqueue *pwq;
  2382. /*
  2383. * __queue_work() needs to test whether there are drainers, is much
  2384. * hotter than drain_workqueue() and already looks at @wq->flags.
  2385. * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
  2386. */
  2387. mutex_lock(&wq->mutex);
  2388. if (!wq->nr_drainers++)
  2389. wq->flags |= __WQ_DRAINING;
  2390. mutex_unlock(&wq->mutex);
  2391. reflush:
  2392. flush_workqueue(wq);
  2393. mutex_lock(&wq->mutex);
  2394. for_each_pwq(pwq, wq) {
  2395. bool drained;
  2396. spin_lock_irq(&pwq->pool->lock);
  2397. drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
  2398. spin_unlock_irq(&pwq->pool->lock);
  2399. if (drained)
  2400. continue;
  2401. if (++flush_cnt == 10 ||
  2402. (flush_cnt % 100 == 0 && flush_cnt <= 1000))
  2403. pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
  2404. wq->name, flush_cnt);
  2405. mutex_unlock(&wq->mutex);
  2406. goto reflush;
  2407. }
  2408. if (!--wq->nr_drainers)
  2409. wq->flags &= ~__WQ_DRAINING;
  2410. mutex_unlock(&wq->mutex);
  2411. }
  2412. EXPORT_SYMBOL_GPL(drain_workqueue);
  2413. static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
  2414. {
  2415. struct worker *worker = NULL;
  2416. struct worker_pool *pool;
  2417. struct pool_workqueue *pwq;
  2418. might_sleep();
  2419. local_irq_disable();
  2420. pool = get_work_pool(work);
  2421. if (!pool) {
  2422. local_irq_enable();
  2423. return false;
  2424. }
  2425. spin_lock(&pool->lock);
  2426. /* see the comment in try_to_grab_pending() with the same code */
  2427. pwq = get_work_pwq(work);
  2428. if (pwq) {
  2429. if (unlikely(pwq->pool != pool))
  2430. goto already_gone;
  2431. } else {
  2432. worker = find_worker_executing_work(pool, work);
  2433. if (!worker)
  2434. goto already_gone;
  2435. pwq = worker->current_pwq;
  2436. }
  2437. check_flush_dependency(pwq->wq, work);
  2438. insert_wq_barrier(pwq, barr, work, worker);
  2439. spin_unlock_irq(&pool->lock);
  2440. /*
  2441. * Force a lock recursion deadlock when using flush_work() inside a
  2442. * single-threaded or rescuer equipped workqueue.
  2443. *
  2444. * For single threaded workqueues the deadlock happens when the work
  2445. * is after the work issuing the flush_work(). For rescuer equipped
  2446. * workqueues the deadlock happens when the rescuer stalls, blocking
  2447. * forward progress.
  2448. */
  2449. if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer) {
  2450. lock_map_acquire(&pwq->wq->lockdep_map);
  2451. lock_map_release(&pwq->wq->lockdep_map);
  2452. }
  2453. return true;
  2454. already_gone:
  2455. spin_unlock_irq(&pool->lock);
  2456. return false;
  2457. }
  2458. /**
  2459. * flush_work - wait for a work to finish executing the last queueing instance
  2460. * @work: the work to flush
  2461. *
  2462. * Wait until @work has finished execution. @work is guaranteed to be idle
  2463. * on return if it hasn't been requeued since flush started.
  2464. *
  2465. * Return:
  2466. * %true if flush_work() waited for the work to finish execution,
  2467. * %false if it was already idle.
  2468. */
  2469. bool flush_work(struct work_struct *work)
  2470. {
  2471. struct wq_barrier barr;
  2472. if (WARN_ON(!wq_online))
  2473. return false;
  2474. if (start_flush_work(work, &barr)) {
  2475. wait_for_completion(&barr.done);
  2476. destroy_work_on_stack(&barr.work);
  2477. return true;
  2478. } else {
  2479. return false;
  2480. }
  2481. }
  2482. EXPORT_SYMBOL_GPL(flush_work);
  2483. struct cwt_wait {
  2484. wait_queue_entry_t wait;
  2485. struct work_struct *work;
  2486. };
  2487. static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
  2488. {
  2489. struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
  2490. if (cwait->work != key)
  2491. return 0;
  2492. return autoremove_wake_function(wait, mode, sync, key);
  2493. }
  2494. static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
  2495. {
  2496. static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
  2497. unsigned long flags;
  2498. int ret;
  2499. do {
  2500. ret = try_to_grab_pending(work, is_dwork, &flags);
  2501. /*
  2502. * If someone else is already canceling, wait for it to
  2503. * finish. flush_work() doesn't work for PREEMPT_NONE
  2504. * because we may get scheduled between @work's completion
  2505. * and the other canceling task resuming and clearing
  2506. * CANCELING - flush_work() will return false immediately
  2507. * as @work is no longer busy, try_to_grab_pending() will
  2508. * return -ENOENT as @work is still being canceled and the
  2509. * other canceling task won't be able to clear CANCELING as
  2510. * we're hogging the CPU.
  2511. *
  2512. * Let's wait for completion using a waitqueue. As this
  2513. * may lead to the thundering herd problem, use a custom
  2514. * wake function which matches @work along with exclusive
  2515. * wait and wakeup.
  2516. */
  2517. if (unlikely(ret == -ENOENT)) {
  2518. struct cwt_wait cwait;
  2519. init_wait(&cwait.wait);
  2520. cwait.wait.func = cwt_wakefn;
  2521. cwait.work = work;
  2522. prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
  2523. TASK_UNINTERRUPTIBLE);
  2524. if (work_is_canceling(work))
  2525. schedule();
  2526. finish_wait(&cancel_waitq, &cwait.wait);
  2527. }
  2528. } while (unlikely(ret < 0));
  2529. /* tell other tasks trying to grab @work to back off */
  2530. mark_work_canceling(work);
  2531. local_irq_restore(flags);
  2532. /*
  2533. * This allows canceling during early boot. We know that @work
  2534. * isn't executing.
  2535. */
  2536. if (wq_online)
  2537. flush_work(work);
  2538. clear_work_data(work);
  2539. /*
  2540. * Paired with prepare_to_wait() above so that either
  2541. * waitqueue_active() is visible here or !work_is_canceling() is
  2542. * visible there.
  2543. */
  2544. smp_mb();
  2545. if (waitqueue_active(&cancel_waitq))
  2546. __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
  2547. return ret;
  2548. }
  2549. /**
  2550. * cancel_work_sync - cancel a work and wait for it to finish
  2551. * @work: the work to cancel
  2552. *
  2553. * Cancel @work and wait for its execution to finish. This function
  2554. * can be used even if the work re-queues itself or migrates to
  2555. * another workqueue. On return from this function, @work is
  2556. * guaranteed to be not pending or executing on any CPU.
  2557. *
  2558. * cancel_work_sync(&delayed_work->work) must not be used for
  2559. * delayed_work's. Use cancel_delayed_work_sync() instead.
  2560. *
  2561. * The caller must ensure that the workqueue on which @work was last
  2562. * queued can't be destroyed before this function returns.
  2563. *
  2564. * Return:
  2565. * %true if @work was pending, %false otherwise.
  2566. */
  2567. bool cancel_work_sync(struct work_struct *work)
  2568. {
  2569. return __cancel_work_timer(work, false);
  2570. }
  2571. EXPORT_SYMBOL_GPL(cancel_work_sync);
  2572. /**
  2573. * flush_delayed_work - wait for a dwork to finish executing the last queueing
  2574. * @dwork: the delayed work to flush
  2575. *
  2576. * Delayed timer is cancelled and the pending work is queued for
  2577. * immediate execution. Like flush_work(), this function only
  2578. * considers the last queueing instance of @dwork.
  2579. *
  2580. * Return:
  2581. * %true if flush_work() waited for the work to finish execution,
  2582. * %false if it was already idle.
  2583. */
  2584. bool flush_delayed_work(struct delayed_work *dwork)
  2585. {
  2586. local_irq_disable();
  2587. if (del_timer_sync(&dwork->timer))
  2588. __queue_work(dwork->cpu, dwork->wq, &dwork->work);
  2589. local_irq_enable();
  2590. return flush_work(&dwork->work);
  2591. }
  2592. EXPORT_SYMBOL(flush_delayed_work);
  2593. static bool __cancel_work(struct work_struct *work, bool is_dwork)
  2594. {
  2595. unsigned long flags;
  2596. int ret;
  2597. do {
  2598. ret = try_to_grab_pending(work, is_dwork, &flags);
  2599. } while (unlikely(ret == -EAGAIN));
  2600. if (unlikely(ret < 0))
  2601. return false;
  2602. set_work_pool_and_clear_pending(work, get_work_pool_id(work));
  2603. local_irq_restore(flags);
  2604. return ret;
  2605. }
  2606. /*
  2607. * See cancel_delayed_work()
  2608. */
  2609. bool cancel_work(struct work_struct *work)
  2610. {
  2611. return __cancel_work(work, false);
  2612. }
  2613. /**
  2614. * cancel_delayed_work - cancel a delayed work
  2615. * @dwork: delayed_work to cancel
  2616. *
  2617. * Kill off a pending delayed_work.
  2618. *
  2619. * Return: %true if @dwork was pending and canceled; %false if it wasn't
  2620. * pending.
  2621. *
  2622. * Note:
  2623. * The work callback function may still be running on return, unless
  2624. * it returns %true and the work doesn't re-arm itself. Explicitly flush or
  2625. * use cancel_delayed_work_sync() to wait on it.
  2626. *
  2627. * This function is safe to call from any context including IRQ handler.
  2628. */
  2629. bool cancel_delayed_work(struct delayed_work *dwork)
  2630. {
  2631. return __cancel_work(&dwork->work, true);
  2632. }
  2633. EXPORT_SYMBOL(cancel_delayed_work);
  2634. /**
  2635. * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
  2636. * @dwork: the delayed work cancel
  2637. *
  2638. * This is cancel_work_sync() for delayed works.
  2639. *
  2640. * Return:
  2641. * %true if @dwork was pending, %false otherwise.
  2642. */
  2643. bool cancel_delayed_work_sync(struct delayed_work *dwork)
  2644. {
  2645. return __cancel_work_timer(&dwork->work, true);
  2646. }
  2647. EXPORT_SYMBOL(cancel_delayed_work_sync);
  2648. /**
  2649. * schedule_on_each_cpu - execute a function synchronously on each online CPU
  2650. * @func: the function to call
  2651. *
  2652. * schedule_on_each_cpu() executes @func on each online CPU using the
  2653. * system workqueue and blocks until all CPUs have completed.
  2654. * schedule_on_each_cpu() is very slow.
  2655. *
  2656. * Return:
  2657. * 0 on success, -errno on failure.
  2658. */
  2659. int schedule_on_each_cpu(work_func_t func)
  2660. {
  2661. int cpu;
  2662. struct work_struct __percpu *works;
  2663. works = alloc_percpu(struct work_struct);
  2664. if (!works)
  2665. return -ENOMEM;
  2666. get_online_cpus();
  2667. for_each_online_cpu(cpu) {
  2668. struct work_struct *work = per_cpu_ptr(works, cpu);
  2669. INIT_WORK(work, func);
  2670. schedule_work_on(cpu, work);
  2671. }
  2672. for_each_online_cpu(cpu)
  2673. flush_work(per_cpu_ptr(works, cpu));
  2674. put_online_cpus();
  2675. free_percpu(works);
  2676. return 0;
  2677. }
  2678. /**
  2679. * execute_in_process_context - reliably execute the routine with user context
  2680. * @fn: the function to execute
  2681. * @ew: guaranteed storage for the execute work structure (must
  2682. * be available when the work executes)
  2683. *
  2684. * Executes the function immediately if process context is available,
  2685. * otherwise schedules the function for delayed execution.
  2686. *
  2687. * Return: 0 - function was executed
  2688. * 1 - function was scheduled for execution
  2689. */
  2690. int execute_in_process_context(work_func_t fn, struct execute_work *ew)
  2691. {
  2692. if (!in_interrupt()) {
  2693. fn(&ew->work);
  2694. return 0;
  2695. }
  2696. INIT_WORK(&ew->work, fn);
  2697. schedule_work(&ew->work);
  2698. return 1;
  2699. }
  2700. EXPORT_SYMBOL_GPL(execute_in_process_context);
  2701. /**
  2702. * free_workqueue_attrs - free a workqueue_attrs
  2703. * @attrs: workqueue_attrs to free
  2704. *
  2705. * Undo alloc_workqueue_attrs().
  2706. */
  2707. void free_workqueue_attrs(struct workqueue_attrs *attrs)
  2708. {
  2709. if (attrs) {
  2710. free_cpumask_var(attrs->cpumask);
  2711. kfree(attrs);
  2712. }
  2713. }
  2714. /**
  2715. * alloc_workqueue_attrs - allocate a workqueue_attrs
  2716. * @gfp_mask: allocation mask to use
  2717. *
  2718. * Allocate a new workqueue_attrs, initialize with default settings and
  2719. * return it.
  2720. *
  2721. * Return: The allocated new workqueue_attr on success. %NULL on failure.
  2722. */
  2723. struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
  2724. {
  2725. struct workqueue_attrs *attrs;
  2726. attrs = kzalloc(sizeof(*attrs), gfp_mask);
  2727. if (!attrs)
  2728. goto fail;
  2729. if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
  2730. goto fail;
  2731. cpumask_copy(attrs->cpumask, cpu_possible_mask);
  2732. return attrs;
  2733. fail:
  2734. free_workqueue_attrs(attrs);
  2735. return NULL;
  2736. }
  2737. static void copy_workqueue_attrs(struct workqueue_attrs *to,
  2738. const struct workqueue_attrs *from)
  2739. {
  2740. to->nice = from->nice;
  2741. cpumask_copy(to->cpumask, from->cpumask);
  2742. /*
  2743. * Unlike hash and equality test, this function doesn't ignore
  2744. * ->no_numa as it is used for both pool and wq attrs. Instead,
  2745. * get_unbound_pool() explicitly clears ->no_numa after copying.
  2746. */
  2747. to->no_numa = from->no_numa;
  2748. }
  2749. /* hash value of the content of @attr */
  2750. static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
  2751. {
  2752. u32 hash = 0;
  2753. hash = jhash_1word(attrs->nice, hash);
  2754. hash = jhash(cpumask_bits(attrs->cpumask),
  2755. BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
  2756. return hash;
  2757. }
  2758. /* content equality test */
  2759. static bool wqattrs_equal(const struct workqueue_attrs *a,
  2760. const struct workqueue_attrs *b)
  2761. {
  2762. if (a->nice != b->nice)
  2763. return false;
  2764. if (!cpumask_equal(a->cpumask, b->cpumask))
  2765. return false;
  2766. return true;
  2767. }
  2768. /**
  2769. * init_worker_pool - initialize a newly zalloc'd worker_pool
  2770. * @pool: worker_pool to initialize
  2771. *
  2772. * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs.
  2773. *
  2774. * Return: 0 on success, -errno on failure. Even on failure, all fields
  2775. * inside @pool proper are initialized and put_unbound_pool() can be called
  2776. * on @pool safely to release it.
  2777. */
  2778. static int init_worker_pool(struct worker_pool *pool)
  2779. {
  2780. spin_lock_init(&pool->lock);
  2781. pool->id = -1;
  2782. pool->cpu = -1;
  2783. pool->node = NUMA_NO_NODE;
  2784. pool->flags |= POOL_DISASSOCIATED;
  2785. pool->watchdog_ts = jiffies;
  2786. INIT_LIST_HEAD(&pool->worklist);
  2787. INIT_LIST_HEAD(&pool->idle_list);
  2788. hash_init(pool->busy_hash);
  2789. timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
  2790. timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
  2791. mutex_init(&pool->attach_mutex);
  2792. INIT_LIST_HEAD(&pool->workers);
  2793. ida_init(&pool->worker_ida);
  2794. INIT_HLIST_NODE(&pool->hash_node);
  2795. pool->refcnt = 1;
  2796. /* shouldn't fail above this point */
  2797. pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
  2798. if (!pool->attrs)
  2799. return -ENOMEM;
  2800. return 0;
  2801. }
  2802. static void rcu_free_wq(struct rcu_head *rcu)
  2803. {
  2804. struct workqueue_struct *wq =
  2805. container_of(rcu, struct workqueue_struct, rcu);
  2806. if (!(wq->flags & WQ_UNBOUND))
  2807. free_percpu(wq->cpu_pwqs);
  2808. else
  2809. free_workqueue_attrs(wq->unbound_attrs);
  2810. kfree(wq->rescuer);
  2811. kfree(wq);
  2812. }
  2813. static void rcu_free_pool(struct rcu_head *rcu)
  2814. {
  2815. struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
  2816. ida_destroy(&pool->worker_ida);
  2817. free_workqueue_attrs(pool->attrs);
  2818. kfree(pool);
  2819. }
  2820. /**
  2821. * put_unbound_pool - put a worker_pool
  2822. * @pool: worker_pool to put
  2823. *
  2824. * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
  2825. * safe manner. get_unbound_pool() calls this function on its failure path
  2826. * and this function should be able to release pools which went through,
  2827. * successfully or not, init_worker_pool().
  2828. *
  2829. * Should be called with wq_pool_mutex held.
  2830. */
  2831. static void put_unbound_pool(struct worker_pool *pool)
  2832. {
  2833. DECLARE_COMPLETION_ONSTACK(detach_completion);
  2834. struct worker *worker;
  2835. lockdep_assert_held(&wq_pool_mutex);
  2836. if (--pool->refcnt)
  2837. return;
  2838. /* sanity checks */
  2839. if (WARN_ON(!(pool->cpu < 0)) ||
  2840. WARN_ON(!list_empty(&pool->worklist)))
  2841. return;
  2842. /* release id and unhash */
  2843. if (pool->id >= 0)
  2844. idr_remove(&worker_pool_idr, pool->id);
  2845. hash_del(&pool->hash_node);
  2846. /*
  2847. * Become the manager and destroy all workers. This prevents
  2848. * @pool's workers from blocking on attach_mutex. We're the last
  2849. * manager and @pool gets freed with the flag set.
  2850. */
  2851. spin_lock_irq(&pool->lock);
  2852. wait_event_lock_irq(wq_manager_wait,
  2853. !(pool->flags & POOL_MANAGER_ACTIVE), pool->lock);
  2854. pool->flags |= POOL_MANAGER_ACTIVE;
  2855. while ((worker = first_idle_worker(pool)))
  2856. destroy_worker(worker);
  2857. WARN_ON(pool->nr_workers || pool->nr_idle);
  2858. spin_unlock_irq(&pool->lock);
  2859. mutex_lock(&pool->attach_mutex);
  2860. if (!list_empty(&pool->workers))
  2861. pool->detach_completion = &detach_completion;
  2862. mutex_unlock(&pool->attach_mutex);
  2863. if (pool->detach_completion)
  2864. wait_for_completion(pool->detach_completion);
  2865. /* shut down the timers */
  2866. del_timer_sync(&pool->idle_timer);
  2867. del_timer_sync(&pool->mayday_timer);
  2868. /* sched-RCU protected to allow dereferences from get_work_pool() */
  2869. call_rcu_sched(&pool->rcu, rcu_free_pool);
  2870. }
  2871. /**
  2872. * get_unbound_pool - get a worker_pool with the specified attributes
  2873. * @attrs: the attributes of the worker_pool to get
  2874. *
  2875. * Obtain a worker_pool which has the same attributes as @attrs, bump the
  2876. * reference count and return it. If there already is a matching
  2877. * worker_pool, it will be used; otherwise, this function attempts to
  2878. * create a new one.
  2879. *
  2880. * Should be called with wq_pool_mutex held.
  2881. *
  2882. * Return: On success, a worker_pool with the same attributes as @attrs.
  2883. * On failure, %NULL.
  2884. */
  2885. static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
  2886. {
  2887. u32 hash = wqattrs_hash(attrs);
  2888. struct worker_pool *pool;
  2889. int node;
  2890. int target_node = NUMA_NO_NODE;
  2891. lockdep_assert_held(&wq_pool_mutex);
  2892. /* do we already have a matching pool? */
  2893. hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
  2894. if (wqattrs_equal(pool->attrs, attrs)) {
  2895. pool->refcnt++;
  2896. return pool;
  2897. }
  2898. }
  2899. /* if cpumask is contained inside a NUMA node, we belong to that node */
  2900. if (wq_numa_enabled) {
  2901. for_each_node(node) {
  2902. if (cpumask_subset(attrs->cpumask,
  2903. wq_numa_possible_cpumask[node])) {
  2904. target_node = node;
  2905. break;
  2906. }
  2907. }
  2908. }
  2909. /* nope, create a new one */
  2910. pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
  2911. if (!pool || init_worker_pool(pool) < 0)
  2912. goto fail;
  2913. lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
  2914. copy_workqueue_attrs(pool->attrs, attrs);
  2915. pool->node = target_node;
  2916. /*
  2917. * no_numa isn't a worker_pool attribute, always clear it. See
  2918. * 'struct workqueue_attrs' comments for detail.
  2919. */
  2920. pool->attrs->no_numa = false;
  2921. if (worker_pool_assign_id(pool) < 0)
  2922. goto fail;
  2923. /* create and start the initial worker */
  2924. if (wq_online && !create_worker(pool))
  2925. goto fail;
  2926. /* install */
  2927. hash_add(unbound_pool_hash, &pool->hash_node, hash);
  2928. return pool;
  2929. fail:
  2930. if (pool)
  2931. put_unbound_pool(pool);
  2932. return NULL;
  2933. }
  2934. static void rcu_free_pwq(struct rcu_head *rcu)
  2935. {
  2936. kmem_cache_free(pwq_cache,
  2937. container_of(rcu, struct pool_workqueue, rcu));
  2938. }
  2939. /*
  2940. * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
  2941. * and needs to be destroyed.
  2942. */
  2943. static void pwq_unbound_release_workfn(struct work_struct *work)
  2944. {
  2945. struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
  2946. unbound_release_work);
  2947. struct workqueue_struct *wq = pwq->wq;
  2948. struct worker_pool *pool = pwq->pool;
  2949. bool is_last;
  2950. if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
  2951. return;
  2952. mutex_lock(&wq->mutex);
  2953. list_del_rcu(&pwq->pwqs_node);
  2954. is_last = list_empty(&wq->pwqs);
  2955. mutex_unlock(&wq->mutex);
  2956. mutex_lock(&wq_pool_mutex);
  2957. put_unbound_pool(pool);
  2958. mutex_unlock(&wq_pool_mutex);
  2959. call_rcu_sched(&pwq->rcu, rcu_free_pwq);
  2960. /*
  2961. * If we're the last pwq going away, @wq is already dead and no one
  2962. * is gonna access it anymore. Schedule RCU free.
  2963. */
  2964. if (is_last)
  2965. call_rcu_sched(&wq->rcu, rcu_free_wq);
  2966. }
  2967. /**
  2968. * pwq_adjust_max_active - update a pwq's max_active to the current setting
  2969. * @pwq: target pool_workqueue
  2970. *
  2971. * If @pwq isn't freezing, set @pwq->max_active to the associated
  2972. * workqueue's saved_max_active and activate delayed work items
  2973. * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
  2974. */
  2975. static void pwq_adjust_max_active(struct pool_workqueue *pwq)
  2976. {
  2977. struct workqueue_struct *wq = pwq->wq;
  2978. bool freezable = wq->flags & WQ_FREEZABLE;
  2979. unsigned long flags;
  2980. /* for @wq->saved_max_active */
  2981. lockdep_assert_held(&wq->mutex);
  2982. /* fast exit for non-freezable wqs */
  2983. if (!freezable && pwq->max_active == wq->saved_max_active)
  2984. return;
  2985. /* this function can be called during early boot w/ irq disabled */
  2986. spin_lock_irqsave(&pwq->pool->lock, flags);
  2987. /*
  2988. * During [un]freezing, the caller is responsible for ensuring that
  2989. * this function is called at least once after @workqueue_freezing
  2990. * is updated and visible.
  2991. */
  2992. if (!freezable || !workqueue_freezing) {
  2993. pwq->max_active = wq->saved_max_active;
  2994. while (!list_empty(&pwq->delayed_works) &&
  2995. pwq->nr_active < pwq->max_active)
  2996. pwq_activate_first_delayed(pwq);
  2997. /*
  2998. * Need to kick a worker after thawed or an unbound wq's
  2999. * max_active is bumped. It's a slow path. Do it always.
  3000. */
  3001. wake_up_worker(pwq->pool);
  3002. } else {
  3003. pwq->max_active = 0;
  3004. }
  3005. spin_unlock_irqrestore(&pwq->pool->lock, flags);
  3006. }
  3007. /* initialize newly alloced @pwq which is associated with @wq and @pool */
  3008. static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
  3009. struct worker_pool *pool)
  3010. {
  3011. BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
  3012. memset(pwq, 0, sizeof(*pwq));
  3013. pwq->pool = pool;
  3014. pwq->wq = wq;
  3015. pwq->flush_color = -1;
  3016. pwq->refcnt = 1;
  3017. INIT_LIST_HEAD(&pwq->delayed_works);
  3018. INIT_LIST_HEAD(&pwq->pwqs_node);
  3019. INIT_LIST_HEAD(&pwq->mayday_node);
  3020. INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
  3021. }
  3022. /* sync @pwq with the current state of its associated wq and link it */
  3023. static void link_pwq(struct pool_workqueue *pwq)
  3024. {
  3025. struct workqueue_struct *wq = pwq->wq;
  3026. lockdep_assert_held(&wq->mutex);
  3027. /* may be called multiple times, ignore if already linked */
  3028. if (!list_empty(&pwq->pwqs_node))
  3029. return;
  3030. /* set the matching work_color */
  3031. pwq->work_color = wq->work_color;
  3032. /* sync max_active to the current setting */
  3033. pwq_adjust_max_active(pwq);
  3034. /* link in @pwq */
  3035. list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
  3036. }
  3037. /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
  3038. static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
  3039. const struct workqueue_attrs *attrs)
  3040. {
  3041. struct worker_pool *pool;
  3042. struct pool_workqueue *pwq;
  3043. lockdep_assert_held(&wq_pool_mutex);
  3044. pool = get_unbound_pool(attrs);
  3045. if (!pool)
  3046. return NULL;
  3047. pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
  3048. if (!pwq) {
  3049. put_unbound_pool(pool);
  3050. return NULL;
  3051. }
  3052. init_pwq(pwq, wq, pool);
  3053. return pwq;
  3054. }
  3055. /**
  3056. * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
  3057. * @attrs: the wq_attrs of the default pwq of the target workqueue
  3058. * @node: the target NUMA node
  3059. * @cpu_going_down: if >= 0, the CPU to consider as offline
  3060. * @cpumask: outarg, the resulting cpumask
  3061. *
  3062. * Calculate the cpumask a workqueue with @attrs should use on @node. If
  3063. * @cpu_going_down is >= 0, that cpu is considered offline during
  3064. * calculation. The result is stored in @cpumask.
  3065. *
  3066. * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
  3067. * enabled and @node has online CPUs requested by @attrs, the returned
  3068. * cpumask is the intersection of the possible CPUs of @node and
  3069. * @attrs->cpumask.
  3070. *
  3071. * The caller is responsible for ensuring that the cpumask of @node stays
  3072. * stable.
  3073. *
  3074. * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
  3075. * %false if equal.
  3076. */
  3077. static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
  3078. int cpu_going_down, cpumask_t *cpumask)
  3079. {
  3080. if (!wq_numa_enabled || attrs->no_numa)
  3081. goto use_dfl;
  3082. /* does @node have any online CPUs @attrs wants? */
  3083. cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
  3084. if (cpu_going_down >= 0)
  3085. cpumask_clear_cpu(cpu_going_down, cpumask);
  3086. if (cpumask_empty(cpumask))
  3087. goto use_dfl;
  3088. /* yeap, return possible CPUs in @node that @attrs wants */
  3089. cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
  3090. if (cpumask_empty(cpumask)) {
  3091. pr_warn_once("WARNING: workqueue cpumask: online intersect > "
  3092. "possible intersect\n");
  3093. return false;
  3094. }
  3095. return !cpumask_equal(cpumask, attrs->cpumask);
  3096. use_dfl:
  3097. cpumask_copy(cpumask, attrs->cpumask);
  3098. return false;
  3099. }
  3100. /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
  3101. static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
  3102. int node,
  3103. struct pool_workqueue *pwq)
  3104. {
  3105. struct pool_workqueue *old_pwq;
  3106. lockdep_assert_held(&wq_pool_mutex);
  3107. lockdep_assert_held(&wq->mutex);
  3108. /* link_pwq() can handle duplicate calls */
  3109. link_pwq(pwq);
  3110. old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
  3111. rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
  3112. return old_pwq;
  3113. }
  3114. /* context to store the prepared attrs & pwqs before applying */
  3115. struct apply_wqattrs_ctx {
  3116. struct workqueue_struct *wq; /* target workqueue */
  3117. struct workqueue_attrs *attrs; /* attrs to apply */
  3118. struct list_head list; /* queued for batching commit */
  3119. struct pool_workqueue *dfl_pwq;
  3120. struct pool_workqueue *pwq_tbl[];
  3121. };
  3122. /* free the resources after success or abort */
  3123. static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
  3124. {
  3125. if (ctx) {
  3126. int node;
  3127. for_each_node(node)
  3128. put_pwq_unlocked(ctx->pwq_tbl[node]);
  3129. put_pwq_unlocked(ctx->dfl_pwq);
  3130. free_workqueue_attrs(ctx->attrs);
  3131. kfree(ctx);
  3132. }
  3133. }
  3134. /* allocate the attrs and pwqs for later installation */
  3135. static struct apply_wqattrs_ctx *
  3136. apply_wqattrs_prepare(struct workqueue_struct *wq,
  3137. const struct workqueue_attrs *attrs)
  3138. {
  3139. struct apply_wqattrs_ctx *ctx;
  3140. struct workqueue_attrs *new_attrs, *tmp_attrs;
  3141. int node;
  3142. lockdep_assert_held(&wq_pool_mutex);
  3143. ctx = kzalloc(sizeof(*ctx) + nr_node_ids * sizeof(ctx->pwq_tbl[0]),
  3144. GFP_KERNEL);
  3145. new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
  3146. tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
  3147. if (!ctx || !new_attrs || !tmp_attrs)
  3148. goto out_free;
  3149. /*
  3150. * Calculate the attrs of the default pwq.
  3151. * If the user configured cpumask doesn't overlap with the
  3152. * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
  3153. */
  3154. copy_workqueue_attrs(new_attrs, attrs);
  3155. cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
  3156. if (unlikely(cpumask_empty(new_attrs->cpumask)))
  3157. cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
  3158. /*
  3159. * We may create multiple pwqs with differing cpumasks. Make a
  3160. * copy of @new_attrs which will be modified and used to obtain
  3161. * pools.
  3162. */
  3163. copy_workqueue_attrs(tmp_attrs, new_attrs);
  3164. /*
  3165. * If something goes wrong during CPU up/down, we'll fall back to
  3166. * the default pwq covering whole @attrs->cpumask. Always create
  3167. * it even if we don't use it immediately.
  3168. */
  3169. ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
  3170. if (!ctx->dfl_pwq)
  3171. goto out_free;
  3172. for_each_node(node) {
  3173. if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
  3174. ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
  3175. if (!ctx->pwq_tbl[node])
  3176. goto out_free;
  3177. } else {
  3178. ctx->dfl_pwq->refcnt++;
  3179. ctx->pwq_tbl[node] = ctx->dfl_pwq;
  3180. }
  3181. }
  3182. /* save the user configured attrs and sanitize it. */
  3183. copy_workqueue_attrs(new_attrs, attrs);
  3184. cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
  3185. ctx->attrs = new_attrs;
  3186. ctx->wq = wq;
  3187. free_workqueue_attrs(tmp_attrs);
  3188. return ctx;
  3189. out_free:
  3190. free_workqueue_attrs(tmp_attrs);
  3191. free_workqueue_attrs(new_attrs);
  3192. apply_wqattrs_cleanup(ctx);
  3193. return NULL;
  3194. }
  3195. /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
  3196. static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
  3197. {
  3198. int node;
  3199. /* all pwqs have been created successfully, let's install'em */
  3200. mutex_lock(&ctx->wq->mutex);
  3201. copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
  3202. /* save the previous pwq and install the new one */
  3203. for_each_node(node)
  3204. ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
  3205. ctx->pwq_tbl[node]);
  3206. /* @dfl_pwq might not have been used, ensure it's linked */
  3207. link_pwq(ctx->dfl_pwq);
  3208. swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
  3209. mutex_unlock(&ctx->wq->mutex);
  3210. }
  3211. static void apply_wqattrs_lock(void)
  3212. {
  3213. /* CPUs should stay stable across pwq creations and installations */
  3214. get_online_cpus();
  3215. mutex_lock(&wq_pool_mutex);
  3216. }
  3217. static void apply_wqattrs_unlock(void)
  3218. {
  3219. mutex_unlock(&wq_pool_mutex);
  3220. put_online_cpus();
  3221. }
  3222. static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
  3223. const struct workqueue_attrs *attrs)
  3224. {
  3225. struct apply_wqattrs_ctx *ctx;
  3226. /* only unbound workqueues can change attributes */
  3227. if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
  3228. return -EINVAL;
  3229. /* creating multiple pwqs breaks ordering guarantee */
  3230. if (!list_empty(&wq->pwqs)) {
  3231. if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
  3232. return -EINVAL;
  3233. wq->flags &= ~__WQ_ORDERED;
  3234. }
  3235. ctx = apply_wqattrs_prepare(wq, attrs);
  3236. if (!ctx)
  3237. return -ENOMEM;
  3238. /* the ctx has been prepared successfully, let's commit it */
  3239. apply_wqattrs_commit(ctx);
  3240. apply_wqattrs_cleanup(ctx);
  3241. return 0;
  3242. }
  3243. /**
  3244. * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
  3245. * @wq: the target workqueue
  3246. * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
  3247. *
  3248. * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
  3249. * machines, this function maps a separate pwq to each NUMA node with
  3250. * possibles CPUs in @attrs->cpumask so that work items are affine to the
  3251. * NUMA node it was issued on. Older pwqs are released as in-flight work
  3252. * items finish. Note that a work item which repeatedly requeues itself
  3253. * back-to-back will stay on its current pwq.
  3254. *
  3255. * Performs GFP_KERNEL allocations.
  3256. *
  3257. * Return: 0 on success and -errno on failure.
  3258. */
  3259. int apply_workqueue_attrs(struct workqueue_struct *wq,
  3260. const struct workqueue_attrs *attrs)
  3261. {
  3262. int ret;
  3263. apply_wqattrs_lock();
  3264. ret = apply_workqueue_attrs_locked(wq, attrs);
  3265. apply_wqattrs_unlock();
  3266. return ret;
  3267. }
  3268. /**
  3269. * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
  3270. * @wq: the target workqueue
  3271. * @cpu: the CPU coming up or going down
  3272. * @online: whether @cpu is coming up or going down
  3273. *
  3274. * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
  3275. * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
  3276. * @wq accordingly.
  3277. *
  3278. * If NUMA affinity can't be adjusted due to memory allocation failure, it
  3279. * falls back to @wq->dfl_pwq which may not be optimal but is always
  3280. * correct.
  3281. *
  3282. * Note that when the last allowed CPU of a NUMA node goes offline for a
  3283. * workqueue with a cpumask spanning multiple nodes, the workers which were
  3284. * already executing the work items for the workqueue will lose their CPU
  3285. * affinity and may execute on any CPU. This is similar to how per-cpu
  3286. * workqueues behave on CPU_DOWN. If a workqueue user wants strict
  3287. * affinity, it's the user's responsibility to flush the work item from
  3288. * CPU_DOWN_PREPARE.
  3289. */
  3290. static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
  3291. bool online)
  3292. {
  3293. int node = cpu_to_node(cpu);
  3294. int cpu_off = online ? -1 : cpu;
  3295. struct pool_workqueue *old_pwq = NULL, *pwq;
  3296. struct workqueue_attrs *target_attrs;
  3297. cpumask_t *cpumask;
  3298. lockdep_assert_held(&wq_pool_mutex);
  3299. if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
  3300. wq->unbound_attrs->no_numa)
  3301. return;
  3302. /*
  3303. * We don't wanna alloc/free wq_attrs for each wq for each CPU.
  3304. * Let's use a preallocated one. The following buf is protected by
  3305. * CPU hotplug exclusion.
  3306. */
  3307. target_attrs = wq_update_unbound_numa_attrs_buf;
  3308. cpumask = target_attrs->cpumask;
  3309. copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
  3310. pwq = unbound_pwq_by_node(wq, node);
  3311. /*
  3312. * Let's determine what needs to be done. If the target cpumask is
  3313. * different from the default pwq's, we need to compare it to @pwq's
  3314. * and create a new one if they don't match. If the target cpumask
  3315. * equals the default pwq's, the default pwq should be used.
  3316. */
  3317. if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
  3318. if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
  3319. return;
  3320. } else {
  3321. goto use_dfl_pwq;
  3322. }
  3323. /* create a new pwq */
  3324. pwq = alloc_unbound_pwq(wq, target_attrs);
  3325. if (!pwq) {
  3326. pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
  3327. wq->name);
  3328. goto use_dfl_pwq;
  3329. }
  3330. /* Install the new pwq. */
  3331. mutex_lock(&wq->mutex);
  3332. old_pwq = numa_pwq_tbl_install(wq, node, pwq);
  3333. goto out_unlock;
  3334. use_dfl_pwq:
  3335. mutex_lock(&wq->mutex);
  3336. spin_lock_irq(&wq->dfl_pwq->pool->lock);
  3337. get_pwq(wq->dfl_pwq);
  3338. spin_unlock_irq(&wq->dfl_pwq->pool->lock);
  3339. old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
  3340. out_unlock:
  3341. mutex_unlock(&wq->mutex);
  3342. put_pwq_unlocked(old_pwq);
  3343. }
  3344. static int alloc_and_link_pwqs(struct workqueue_struct *wq)
  3345. {
  3346. bool highpri = wq->flags & WQ_HIGHPRI;
  3347. int cpu, ret;
  3348. if (!(wq->flags & WQ_UNBOUND)) {
  3349. wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
  3350. if (!wq->cpu_pwqs)
  3351. return -ENOMEM;
  3352. for_each_possible_cpu(cpu) {
  3353. struct pool_workqueue *pwq =
  3354. per_cpu_ptr(wq->cpu_pwqs, cpu);
  3355. struct worker_pool *cpu_pools =
  3356. per_cpu(cpu_worker_pools, cpu);
  3357. init_pwq(pwq, wq, &cpu_pools[highpri]);
  3358. mutex_lock(&wq->mutex);
  3359. link_pwq(pwq);
  3360. mutex_unlock(&wq->mutex);
  3361. }
  3362. return 0;
  3363. } else if (wq->flags & __WQ_ORDERED) {
  3364. ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
  3365. /* there should only be single pwq for ordering guarantee */
  3366. WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
  3367. wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
  3368. "ordering guarantee broken for workqueue %s\n", wq->name);
  3369. return ret;
  3370. } else {
  3371. return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
  3372. }
  3373. }
  3374. static int wq_clamp_max_active(int max_active, unsigned int flags,
  3375. const char *name)
  3376. {
  3377. int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
  3378. if (max_active < 1 || max_active > lim)
  3379. pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
  3380. max_active, name, 1, lim);
  3381. return clamp_val(max_active, 1, lim);
  3382. }
  3383. /*
  3384. * Workqueues which may be used during memory reclaim should have a rescuer
  3385. * to guarantee forward progress.
  3386. */
  3387. static int init_rescuer(struct workqueue_struct *wq)
  3388. {
  3389. struct worker *rescuer;
  3390. int ret;
  3391. if (!(wq->flags & WQ_MEM_RECLAIM))
  3392. return 0;
  3393. rescuer = alloc_worker(NUMA_NO_NODE);
  3394. if (!rescuer)
  3395. return -ENOMEM;
  3396. rescuer->rescue_wq = wq;
  3397. rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name);
  3398. ret = PTR_ERR_OR_ZERO(rescuer->task);
  3399. if (ret) {
  3400. kfree(rescuer);
  3401. return ret;
  3402. }
  3403. wq->rescuer = rescuer;
  3404. kthread_bind_mask(rescuer->task, cpu_possible_mask);
  3405. wake_up_process(rescuer->task);
  3406. return 0;
  3407. }
  3408. struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
  3409. unsigned int flags,
  3410. int max_active,
  3411. struct lock_class_key *key,
  3412. const char *lock_name, ...)
  3413. {
  3414. size_t tbl_size = 0;
  3415. va_list args;
  3416. struct workqueue_struct *wq;
  3417. struct pool_workqueue *pwq;
  3418. /*
  3419. * Unbound && max_active == 1 used to imply ordered, which is no
  3420. * longer the case on NUMA machines due to per-node pools. While
  3421. * alloc_ordered_workqueue() is the right way to create an ordered
  3422. * workqueue, keep the previous behavior to avoid subtle breakages
  3423. * on NUMA.
  3424. */
  3425. if ((flags & WQ_UNBOUND) && max_active == 1)
  3426. flags |= __WQ_ORDERED;
  3427. /* see the comment above the definition of WQ_POWER_EFFICIENT */
  3428. if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
  3429. flags |= WQ_UNBOUND;
  3430. /* allocate wq and format name */
  3431. if (flags & WQ_UNBOUND)
  3432. tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
  3433. wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
  3434. if (!wq)
  3435. return NULL;
  3436. if (flags & WQ_UNBOUND) {
  3437. wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
  3438. if (!wq->unbound_attrs)
  3439. goto err_free_wq;
  3440. }
  3441. va_start(args, lock_name);
  3442. vsnprintf(wq->name, sizeof(wq->name), fmt, args);
  3443. va_end(args);
  3444. max_active = max_active ?: WQ_DFL_ACTIVE;
  3445. max_active = wq_clamp_max_active(max_active, flags, wq->name);
  3446. /* init wq */
  3447. wq->flags = flags;
  3448. wq->saved_max_active = max_active;
  3449. mutex_init(&wq->mutex);
  3450. atomic_set(&wq->nr_pwqs_to_flush, 0);
  3451. INIT_LIST_HEAD(&wq->pwqs);
  3452. INIT_LIST_HEAD(&wq->flusher_queue);
  3453. INIT_LIST_HEAD(&wq->flusher_overflow);
  3454. INIT_LIST_HEAD(&wq->maydays);
  3455. lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
  3456. INIT_LIST_HEAD(&wq->list);
  3457. if (alloc_and_link_pwqs(wq) < 0)
  3458. goto err_free_wq;
  3459. if (init_rescuer(wq) < 0)
  3460. goto err_destroy;
  3461. if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
  3462. goto err_destroy;
  3463. /*
  3464. * wq_pool_mutex protects global freeze state and workqueues list.
  3465. * Grab it, adjust max_active and add the new @wq to workqueues
  3466. * list.
  3467. */
  3468. mutex_lock(&wq_pool_mutex);
  3469. mutex_lock(&wq->mutex);
  3470. for_each_pwq(pwq, wq)
  3471. pwq_adjust_max_active(pwq);
  3472. mutex_unlock(&wq->mutex);
  3473. list_add_tail_rcu(&wq->list, &workqueues);
  3474. mutex_unlock(&wq_pool_mutex);
  3475. return wq;
  3476. err_free_wq:
  3477. free_workqueue_attrs(wq->unbound_attrs);
  3478. kfree(wq);
  3479. return NULL;
  3480. err_destroy:
  3481. destroy_workqueue(wq);
  3482. return NULL;
  3483. }
  3484. EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
  3485. /**
  3486. * destroy_workqueue - safely terminate a workqueue
  3487. * @wq: target workqueue
  3488. *
  3489. * Safely destroy a workqueue. All work currently pending will be done first.
  3490. */
  3491. void destroy_workqueue(struct workqueue_struct *wq)
  3492. {
  3493. struct pool_workqueue *pwq;
  3494. int node;
  3495. /* drain it before proceeding with destruction */
  3496. drain_workqueue(wq);
  3497. /* sanity checks */
  3498. mutex_lock(&wq->mutex);
  3499. for_each_pwq(pwq, wq) {
  3500. int i;
  3501. for (i = 0; i < WORK_NR_COLORS; i++) {
  3502. if (WARN_ON(pwq->nr_in_flight[i])) {
  3503. mutex_unlock(&wq->mutex);
  3504. show_workqueue_state();
  3505. return;
  3506. }
  3507. }
  3508. if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
  3509. WARN_ON(pwq->nr_active) ||
  3510. WARN_ON(!list_empty(&pwq->delayed_works))) {
  3511. mutex_unlock(&wq->mutex);
  3512. show_workqueue_state();
  3513. return;
  3514. }
  3515. }
  3516. mutex_unlock(&wq->mutex);
  3517. /*
  3518. * wq list is used to freeze wq, remove from list after
  3519. * flushing is complete in case freeze races us.
  3520. */
  3521. mutex_lock(&wq_pool_mutex);
  3522. list_del_rcu(&wq->list);
  3523. mutex_unlock(&wq_pool_mutex);
  3524. workqueue_sysfs_unregister(wq);
  3525. if (wq->rescuer)
  3526. kthread_stop(wq->rescuer->task);
  3527. if (!(wq->flags & WQ_UNBOUND)) {
  3528. /*
  3529. * The base ref is never dropped on per-cpu pwqs. Directly
  3530. * schedule RCU free.
  3531. */
  3532. call_rcu_sched(&wq->rcu, rcu_free_wq);
  3533. } else {
  3534. /*
  3535. * We're the sole accessor of @wq at this point. Directly
  3536. * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
  3537. * @wq will be freed when the last pwq is released.
  3538. */
  3539. for_each_node(node) {
  3540. pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
  3541. RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
  3542. put_pwq_unlocked(pwq);
  3543. }
  3544. /*
  3545. * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
  3546. * put. Don't access it afterwards.
  3547. */
  3548. pwq = wq->dfl_pwq;
  3549. wq->dfl_pwq = NULL;
  3550. put_pwq_unlocked(pwq);
  3551. }
  3552. }
  3553. EXPORT_SYMBOL_GPL(destroy_workqueue);
  3554. /**
  3555. * workqueue_set_max_active - adjust max_active of a workqueue
  3556. * @wq: target workqueue
  3557. * @max_active: new max_active value.
  3558. *
  3559. * Set max_active of @wq to @max_active.
  3560. *
  3561. * CONTEXT:
  3562. * Don't call from IRQ context.
  3563. */
  3564. void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
  3565. {
  3566. struct pool_workqueue *pwq;
  3567. /* disallow meddling with max_active for ordered workqueues */
  3568. if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
  3569. return;
  3570. max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
  3571. mutex_lock(&wq->mutex);
  3572. wq->flags &= ~__WQ_ORDERED;
  3573. wq->saved_max_active = max_active;
  3574. for_each_pwq(pwq, wq)
  3575. pwq_adjust_max_active(pwq);
  3576. mutex_unlock(&wq->mutex);
  3577. }
  3578. EXPORT_SYMBOL_GPL(workqueue_set_max_active);
  3579. /**
  3580. * current_is_workqueue_rescuer - is %current workqueue rescuer?
  3581. *
  3582. * Determine whether %current is a workqueue rescuer. Can be used from
  3583. * work functions to determine whether it's being run off the rescuer task.
  3584. *
  3585. * Return: %true if %current is a workqueue rescuer. %false otherwise.
  3586. */
  3587. bool current_is_workqueue_rescuer(void)
  3588. {
  3589. struct worker *worker = current_wq_worker();
  3590. return worker && worker->rescue_wq;
  3591. }
  3592. /**
  3593. * workqueue_congested - test whether a workqueue is congested
  3594. * @cpu: CPU in question
  3595. * @wq: target workqueue
  3596. *
  3597. * Test whether @wq's cpu workqueue for @cpu is congested. There is
  3598. * no synchronization around this function and the test result is
  3599. * unreliable and only useful as advisory hints or for debugging.
  3600. *
  3601. * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
  3602. * Note that both per-cpu and unbound workqueues may be associated with
  3603. * multiple pool_workqueues which have separate congested states. A
  3604. * workqueue being congested on one CPU doesn't mean the workqueue is also
  3605. * contested on other CPUs / NUMA nodes.
  3606. *
  3607. * Return:
  3608. * %true if congested, %false otherwise.
  3609. */
  3610. bool workqueue_congested(int cpu, struct workqueue_struct *wq)
  3611. {
  3612. struct pool_workqueue *pwq;
  3613. bool ret;
  3614. rcu_read_lock_sched();
  3615. if (cpu == WORK_CPU_UNBOUND)
  3616. cpu = smp_processor_id();
  3617. if (!(wq->flags & WQ_UNBOUND))
  3618. pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
  3619. else
  3620. pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
  3621. ret = !list_empty(&pwq->delayed_works);
  3622. rcu_read_unlock_sched();
  3623. return ret;
  3624. }
  3625. EXPORT_SYMBOL_GPL(workqueue_congested);
  3626. /**
  3627. * work_busy - test whether a work is currently pending or running
  3628. * @work: the work to be tested
  3629. *
  3630. * Test whether @work is currently pending or running. There is no
  3631. * synchronization around this function and the test result is
  3632. * unreliable and only useful as advisory hints or for debugging.
  3633. *
  3634. * Return:
  3635. * OR'd bitmask of WORK_BUSY_* bits.
  3636. */
  3637. unsigned int work_busy(struct work_struct *work)
  3638. {
  3639. struct worker_pool *pool;
  3640. unsigned long flags;
  3641. unsigned int ret = 0;
  3642. if (work_pending(work))
  3643. ret |= WORK_BUSY_PENDING;
  3644. local_irq_save(flags);
  3645. pool = get_work_pool(work);
  3646. if (pool) {
  3647. spin_lock(&pool->lock);
  3648. if (find_worker_executing_work(pool, work))
  3649. ret |= WORK_BUSY_RUNNING;
  3650. spin_unlock(&pool->lock);
  3651. }
  3652. local_irq_restore(flags);
  3653. return ret;
  3654. }
  3655. EXPORT_SYMBOL_GPL(work_busy);
  3656. /**
  3657. * set_worker_desc - set description for the current work item
  3658. * @fmt: printf-style format string
  3659. * @...: arguments for the format string
  3660. *
  3661. * This function can be called by a running work function to describe what
  3662. * the work item is about. If the worker task gets dumped, this
  3663. * information will be printed out together to help debugging. The
  3664. * description can be at most WORKER_DESC_LEN including the trailing '\0'.
  3665. */
  3666. void set_worker_desc(const char *fmt, ...)
  3667. {
  3668. struct worker *worker = current_wq_worker();
  3669. va_list args;
  3670. if (worker) {
  3671. va_start(args, fmt);
  3672. vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
  3673. va_end(args);
  3674. worker->desc_valid = true;
  3675. }
  3676. }
  3677. /**
  3678. * print_worker_info - print out worker information and description
  3679. * @log_lvl: the log level to use when printing
  3680. * @task: target task
  3681. *
  3682. * If @task is a worker and currently executing a work item, print out the
  3683. * name of the workqueue being serviced and worker description set with
  3684. * set_worker_desc() by the currently executing work item.
  3685. *
  3686. * This function can be safely called on any task as long as the
  3687. * task_struct itself is accessible. While safe, this function isn't
  3688. * synchronized and may print out mixups or garbages of limited length.
  3689. */
  3690. void print_worker_info(const char *log_lvl, struct task_struct *task)
  3691. {
  3692. work_func_t *fn = NULL;
  3693. char name[WQ_NAME_LEN] = { };
  3694. char desc[WORKER_DESC_LEN] = { };
  3695. struct pool_workqueue *pwq = NULL;
  3696. struct workqueue_struct *wq = NULL;
  3697. bool desc_valid = false;
  3698. struct worker *worker;
  3699. if (!(task->flags & PF_WQ_WORKER))
  3700. return;
  3701. /*
  3702. * This function is called without any synchronization and @task
  3703. * could be in any state. Be careful with dereferences.
  3704. */
  3705. worker = kthread_probe_data(task);
  3706. /*
  3707. * Carefully copy the associated workqueue's workfn and name. Keep
  3708. * the original last '\0' in case the original contains garbage.
  3709. */
  3710. probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
  3711. probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
  3712. probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
  3713. probe_kernel_read(name, wq->name, sizeof(name) - 1);
  3714. /* copy worker description */
  3715. probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
  3716. if (desc_valid)
  3717. probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
  3718. if (fn || name[0] || desc[0]) {
  3719. printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
  3720. if (desc[0])
  3721. pr_cont(" (%s)", desc);
  3722. pr_cont("\n");
  3723. }
  3724. }
  3725. static void pr_cont_pool_info(struct worker_pool *pool)
  3726. {
  3727. pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
  3728. if (pool->node != NUMA_NO_NODE)
  3729. pr_cont(" node=%d", pool->node);
  3730. pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
  3731. }
  3732. static void pr_cont_work(bool comma, struct work_struct *work)
  3733. {
  3734. if (work->func == wq_barrier_func) {
  3735. struct wq_barrier *barr;
  3736. barr = container_of(work, struct wq_barrier, work);
  3737. pr_cont("%s BAR(%d)", comma ? "," : "",
  3738. task_pid_nr(barr->task));
  3739. } else {
  3740. pr_cont("%s %pf", comma ? "," : "", work->func);
  3741. }
  3742. }
  3743. static void show_pwq(struct pool_workqueue *pwq)
  3744. {
  3745. struct worker_pool *pool = pwq->pool;
  3746. struct work_struct *work;
  3747. struct worker *worker;
  3748. bool has_in_flight = false, has_pending = false;
  3749. int bkt;
  3750. pr_info(" pwq %d:", pool->id);
  3751. pr_cont_pool_info(pool);
  3752. pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active,
  3753. !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
  3754. hash_for_each(pool->busy_hash, bkt, worker, hentry) {
  3755. if (worker->current_pwq == pwq) {
  3756. has_in_flight = true;
  3757. break;
  3758. }
  3759. }
  3760. if (has_in_flight) {
  3761. bool comma = false;
  3762. pr_info(" in-flight:");
  3763. hash_for_each(pool->busy_hash, bkt, worker, hentry) {
  3764. if (worker->current_pwq != pwq)
  3765. continue;
  3766. pr_cont("%s %d%s:%pf", comma ? "," : "",
  3767. task_pid_nr(worker->task),
  3768. worker == pwq->wq->rescuer ? "(RESCUER)" : "",
  3769. worker->current_func);
  3770. list_for_each_entry(work, &worker->scheduled, entry)
  3771. pr_cont_work(false, work);
  3772. comma = true;
  3773. }
  3774. pr_cont("\n");
  3775. }
  3776. list_for_each_entry(work, &pool->worklist, entry) {
  3777. if (get_work_pwq(work) == pwq) {
  3778. has_pending = true;
  3779. break;
  3780. }
  3781. }
  3782. if (has_pending) {
  3783. bool comma = false;
  3784. pr_info(" pending:");
  3785. list_for_each_entry(work, &pool->worklist, entry) {
  3786. if (get_work_pwq(work) != pwq)
  3787. continue;
  3788. pr_cont_work(comma, work);
  3789. comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
  3790. }
  3791. pr_cont("\n");
  3792. }
  3793. if (!list_empty(&pwq->delayed_works)) {
  3794. bool comma = false;
  3795. pr_info(" delayed:");
  3796. list_for_each_entry(work, &pwq->delayed_works, entry) {
  3797. pr_cont_work(comma, work);
  3798. comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
  3799. }
  3800. pr_cont("\n");
  3801. }
  3802. }
  3803. /**
  3804. * show_workqueue_state - dump workqueue state
  3805. *
  3806. * Called from a sysrq handler or try_to_freeze_tasks() and prints out
  3807. * all busy workqueues and pools.
  3808. */
  3809. void show_workqueue_state(void)
  3810. {
  3811. struct workqueue_struct *wq;
  3812. struct worker_pool *pool;
  3813. unsigned long flags;
  3814. int pi;
  3815. rcu_read_lock_sched();
  3816. pr_info("Showing busy workqueues and worker pools:\n");
  3817. list_for_each_entry_rcu(wq, &workqueues, list) {
  3818. struct pool_workqueue *pwq;
  3819. bool idle = true;
  3820. for_each_pwq(pwq, wq) {
  3821. if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
  3822. idle = false;
  3823. break;
  3824. }
  3825. }
  3826. if (idle)
  3827. continue;
  3828. pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
  3829. for_each_pwq(pwq, wq) {
  3830. spin_lock_irqsave(&pwq->pool->lock, flags);
  3831. if (pwq->nr_active || !list_empty(&pwq->delayed_works))
  3832. show_pwq(pwq);
  3833. spin_unlock_irqrestore(&pwq->pool->lock, flags);
  3834. }
  3835. }
  3836. for_each_pool(pool, pi) {
  3837. struct worker *worker;
  3838. bool first = true;
  3839. spin_lock_irqsave(&pool->lock, flags);
  3840. if (pool->nr_workers == pool->nr_idle)
  3841. goto next_pool;
  3842. pr_info("pool %d:", pool->id);
  3843. pr_cont_pool_info(pool);
  3844. pr_cont(" hung=%us workers=%d",
  3845. jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
  3846. pool->nr_workers);
  3847. if (pool->manager)
  3848. pr_cont(" manager: %d",
  3849. task_pid_nr(pool->manager->task));
  3850. list_for_each_entry(worker, &pool->idle_list, entry) {
  3851. pr_cont(" %s%d", first ? "idle: " : "",
  3852. task_pid_nr(worker->task));
  3853. first = false;
  3854. }
  3855. pr_cont("\n");
  3856. next_pool:
  3857. spin_unlock_irqrestore(&pool->lock, flags);
  3858. }
  3859. rcu_read_unlock_sched();
  3860. }
  3861. /*
  3862. * CPU hotplug.
  3863. *
  3864. * There are two challenges in supporting CPU hotplug. Firstly, there
  3865. * are a lot of assumptions on strong associations among work, pwq and
  3866. * pool which make migrating pending and scheduled works very
  3867. * difficult to implement without impacting hot paths. Secondly,
  3868. * worker pools serve mix of short, long and very long running works making
  3869. * blocked draining impractical.
  3870. *
  3871. * This is solved by allowing the pools to be disassociated from the CPU
  3872. * running as an unbound one and allowing it to be reattached later if the
  3873. * cpu comes back online.
  3874. */
  3875. static void unbind_workers(int cpu)
  3876. {
  3877. struct worker_pool *pool;
  3878. struct worker *worker;
  3879. for_each_cpu_worker_pool(pool, cpu) {
  3880. mutex_lock(&pool->attach_mutex);
  3881. spin_lock_irq(&pool->lock);
  3882. /*
  3883. * We've blocked all attach/detach operations. Make all workers
  3884. * unbound and set DISASSOCIATED. Before this, all workers
  3885. * except for the ones which are still executing works from
  3886. * before the last CPU down must be on the cpu. After
  3887. * this, they may become diasporas.
  3888. */
  3889. for_each_pool_worker(worker, pool)
  3890. worker->flags |= WORKER_UNBOUND;
  3891. pool->flags |= POOL_DISASSOCIATED;
  3892. spin_unlock_irq(&pool->lock);
  3893. mutex_unlock(&pool->attach_mutex);
  3894. /*
  3895. * Call schedule() so that we cross rq->lock and thus can
  3896. * guarantee sched callbacks see the %WORKER_UNBOUND flag.
  3897. * This is necessary as scheduler callbacks may be invoked
  3898. * from other cpus.
  3899. */
  3900. schedule();
  3901. /*
  3902. * Sched callbacks are disabled now. Zap nr_running.
  3903. * After this, nr_running stays zero and need_more_worker()
  3904. * and keep_working() are always true as long as the
  3905. * worklist is not empty. This pool now behaves as an
  3906. * unbound (in terms of concurrency management) pool which
  3907. * are served by workers tied to the pool.
  3908. */
  3909. atomic_set(&pool->nr_running, 0);
  3910. /*
  3911. * With concurrency management just turned off, a busy
  3912. * worker blocking could lead to lengthy stalls. Kick off
  3913. * unbound chain execution of currently pending work items.
  3914. */
  3915. spin_lock_irq(&pool->lock);
  3916. wake_up_worker(pool);
  3917. spin_unlock_irq(&pool->lock);
  3918. }
  3919. }
  3920. /**
  3921. * rebind_workers - rebind all workers of a pool to the associated CPU
  3922. * @pool: pool of interest
  3923. *
  3924. * @pool->cpu is coming online. Rebind all workers to the CPU.
  3925. */
  3926. static void rebind_workers(struct worker_pool *pool)
  3927. {
  3928. struct worker *worker;
  3929. lockdep_assert_held(&pool->attach_mutex);
  3930. /*
  3931. * Restore CPU affinity of all workers. As all idle workers should
  3932. * be on the run-queue of the associated CPU before any local
  3933. * wake-ups for concurrency management happen, restore CPU affinity
  3934. * of all workers first and then clear UNBOUND. As we're called
  3935. * from CPU_ONLINE, the following shouldn't fail.
  3936. */
  3937. for_each_pool_worker(worker, pool)
  3938. WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
  3939. pool->attrs->cpumask) < 0);
  3940. spin_lock_irq(&pool->lock);
  3941. pool->flags &= ~POOL_DISASSOCIATED;
  3942. for_each_pool_worker(worker, pool) {
  3943. unsigned int worker_flags = worker->flags;
  3944. /*
  3945. * A bound idle worker should actually be on the runqueue
  3946. * of the associated CPU for local wake-ups targeting it to
  3947. * work. Kick all idle workers so that they migrate to the
  3948. * associated CPU. Doing this in the same loop as
  3949. * replacing UNBOUND with REBOUND is safe as no worker will
  3950. * be bound before @pool->lock is released.
  3951. */
  3952. if (worker_flags & WORKER_IDLE)
  3953. wake_up_process(worker->task);
  3954. /*
  3955. * We want to clear UNBOUND but can't directly call
  3956. * worker_clr_flags() or adjust nr_running. Atomically
  3957. * replace UNBOUND with another NOT_RUNNING flag REBOUND.
  3958. * @worker will clear REBOUND using worker_clr_flags() when
  3959. * it initiates the next execution cycle thus restoring
  3960. * concurrency management. Note that when or whether
  3961. * @worker clears REBOUND doesn't affect correctness.
  3962. *
  3963. * WRITE_ONCE() is necessary because @worker->flags may be
  3964. * tested without holding any lock in
  3965. * wq_worker_waking_up(). Without it, NOT_RUNNING test may
  3966. * fail incorrectly leading to premature concurrency
  3967. * management operations.
  3968. */
  3969. WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
  3970. worker_flags |= WORKER_REBOUND;
  3971. worker_flags &= ~WORKER_UNBOUND;
  3972. WRITE_ONCE(worker->flags, worker_flags);
  3973. }
  3974. spin_unlock_irq(&pool->lock);
  3975. }
  3976. /**
  3977. * restore_unbound_workers_cpumask - restore cpumask of unbound workers
  3978. * @pool: unbound pool of interest
  3979. * @cpu: the CPU which is coming up
  3980. *
  3981. * An unbound pool may end up with a cpumask which doesn't have any online
  3982. * CPUs. When a worker of such pool get scheduled, the scheduler resets
  3983. * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
  3984. * online CPU before, cpus_allowed of all its workers should be restored.
  3985. */
  3986. static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
  3987. {
  3988. static cpumask_t cpumask;
  3989. struct worker *worker;
  3990. lockdep_assert_held(&pool->attach_mutex);
  3991. /* is @cpu allowed for @pool? */
  3992. if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
  3993. return;
  3994. cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
  3995. /* as we're called from CPU_ONLINE, the following shouldn't fail */
  3996. for_each_pool_worker(worker, pool)
  3997. WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
  3998. }
  3999. int workqueue_prepare_cpu(unsigned int cpu)
  4000. {
  4001. struct worker_pool *pool;
  4002. for_each_cpu_worker_pool(pool, cpu) {
  4003. if (pool->nr_workers)
  4004. continue;
  4005. if (!create_worker(pool))
  4006. return -ENOMEM;
  4007. }
  4008. return 0;
  4009. }
  4010. int workqueue_online_cpu(unsigned int cpu)
  4011. {
  4012. struct worker_pool *pool;
  4013. struct workqueue_struct *wq;
  4014. int pi;
  4015. mutex_lock(&wq_pool_mutex);
  4016. for_each_pool(pool, pi) {
  4017. mutex_lock(&pool->attach_mutex);
  4018. if (pool->cpu == cpu)
  4019. rebind_workers(pool);
  4020. else if (pool->cpu < 0)
  4021. restore_unbound_workers_cpumask(pool, cpu);
  4022. mutex_unlock(&pool->attach_mutex);
  4023. }
  4024. /* update NUMA affinity of unbound workqueues */
  4025. list_for_each_entry(wq, &workqueues, list)
  4026. wq_update_unbound_numa(wq, cpu, true);
  4027. mutex_unlock(&wq_pool_mutex);
  4028. return 0;
  4029. }
  4030. int workqueue_offline_cpu(unsigned int cpu)
  4031. {
  4032. struct workqueue_struct *wq;
  4033. /* unbinding per-cpu workers should happen on the local CPU */
  4034. if (WARN_ON(cpu != smp_processor_id()))
  4035. return -1;
  4036. unbind_workers(cpu);
  4037. /* update NUMA affinity of unbound workqueues */
  4038. mutex_lock(&wq_pool_mutex);
  4039. list_for_each_entry(wq, &workqueues, list)
  4040. wq_update_unbound_numa(wq, cpu, false);
  4041. mutex_unlock(&wq_pool_mutex);
  4042. return 0;
  4043. }
  4044. #ifdef CONFIG_SMP
  4045. struct work_for_cpu {
  4046. struct work_struct work;
  4047. long (*fn)(void *);
  4048. void *arg;
  4049. long ret;
  4050. };
  4051. static void work_for_cpu_fn(struct work_struct *work)
  4052. {
  4053. struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
  4054. wfc->ret = wfc->fn(wfc->arg);
  4055. }
  4056. /**
  4057. * work_on_cpu - run a function in thread context on a particular cpu
  4058. * @cpu: the cpu to run on
  4059. * @fn: the function to run
  4060. * @arg: the function arg
  4061. *
  4062. * It is up to the caller to ensure that the cpu doesn't go offline.
  4063. * The caller must not hold any locks which would prevent @fn from completing.
  4064. *
  4065. * Return: The value @fn returns.
  4066. */
  4067. long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
  4068. {
  4069. struct work_for_cpu wfc = { .fn = fn, .arg = arg };
  4070. INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
  4071. schedule_work_on(cpu, &wfc.work);
  4072. flush_work(&wfc.work);
  4073. destroy_work_on_stack(&wfc.work);
  4074. return wfc.ret;
  4075. }
  4076. EXPORT_SYMBOL_GPL(work_on_cpu);
  4077. /**
  4078. * work_on_cpu_safe - run a function in thread context on a particular cpu
  4079. * @cpu: the cpu to run on
  4080. * @fn: the function to run
  4081. * @arg: the function argument
  4082. *
  4083. * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
  4084. * any locks which would prevent @fn from completing.
  4085. *
  4086. * Return: The value @fn returns.
  4087. */
  4088. long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
  4089. {
  4090. long ret = -ENODEV;
  4091. get_online_cpus();
  4092. if (cpu_online(cpu))
  4093. ret = work_on_cpu(cpu, fn, arg);
  4094. put_online_cpus();
  4095. return ret;
  4096. }
  4097. EXPORT_SYMBOL_GPL(work_on_cpu_safe);
  4098. #endif /* CONFIG_SMP */
  4099. #ifdef CONFIG_FREEZER
  4100. /**
  4101. * freeze_workqueues_begin - begin freezing workqueues
  4102. *
  4103. * Start freezing workqueues. After this function returns, all freezable
  4104. * workqueues will queue new works to their delayed_works list instead of
  4105. * pool->worklist.
  4106. *
  4107. * CONTEXT:
  4108. * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
  4109. */
  4110. void freeze_workqueues_begin(void)
  4111. {
  4112. struct workqueue_struct *wq;
  4113. struct pool_workqueue *pwq;
  4114. mutex_lock(&wq_pool_mutex);
  4115. WARN_ON_ONCE(workqueue_freezing);
  4116. workqueue_freezing = true;
  4117. list_for_each_entry(wq, &workqueues, list) {
  4118. mutex_lock(&wq->mutex);
  4119. for_each_pwq(pwq, wq)
  4120. pwq_adjust_max_active(pwq);
  4121. mutex_unlock(&wq->mutex);
  4122. }
  4123. mutex_unlock(&wq_pool_mutex);
  4124. }
  4125. /**
  4126. * freeze_workqueues_busy - are freezable workqueues still busy?
  4127. *
  4128. * Check whether freezing is complete. This function must be called
  4129. * between freeze_workqueues_begin() and thaw_workqueues().
  4130. *
  4131. * CONTEXT:
  4132. * Grabs and releases wq_pool_mutex.
  4133. *
  4134. * Return:
  4135. * %true if some freezable workqueues are still busy. %false if freezing
  4136. * is complete.
  4137. */
  4138. bool freeze_workqueues_busy(void)
  4139. {
  4140. bool busy = false;
  4141. struct workqueue_struct *wq;
  4142. struct pool_workqueue *pwq;
  4143. mutex_lock(&wq_pool_mutex);
  4144. WARN_ON_ONCE(!workqueue_freezing);
  4145. list_for_each_entry(wq, &workqueues, list) {
  4146. if (!(wq->flags & WQ_FREEZABLE))
  4147. continue;
  4148. /*
  4149. * nr_active is monotonically decreasing. It's safe
  4150. * to peek without lock.
  4151. */
  4152. rcu_read_lock_sched();
  4153. for_each_pwq(pwq, wq) {
  4154. WARN_ON_ONCE(pwq->nr_active < 0);
  4155. if (pwq->nr_active) {
  4156. busy = true;
  4157. rcu_read_unlock_sched();
  4158. goto out_unlock;
  4159. }
  4160. }
  4161. rcu_read_unlock_sched();
  4162. }
  4163. out_unlock:
  4164. mutex_unlock(&wq_pool_mutex);
  4165. return busy;
  4166. }
  4167. /**
  4168. * thaw_workqueues - thaw workqueues
  4169. *
  4170. * Thaw workqueues. Normal queueing is restored and all collected
  4171. * frozen works are transferred to their respective pool worklists.
  4172. *
  4173. * CONTEXT:
  4174. * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
  4175. */
  4176. void thaw_workqueues(void)
  4177. {
  4178. struct workqueue_struct *wq;
  4179. struct pool_workqueue *pwq;
  4180. mutex_lock(&wq_pool_mutex);
  4181. if (!workqueue_freezing)
  4182. goto out_unlock;
  4183. workqueue_freezing = false;
  4184. /* restore max_active and repopulate worklist */
  4185. list_for_each_entry(wq, &workqueues, list) {
  4186. mutex_lock(&wq->mutex);
  4187. for_each_pwq(pwq, wq)
  4188. pwq_adjust_max_active(pwq);
  4189. mutex_unlock(&wq->mutex);
  4190. }
  4191. out_unlock:
  4192. mutex_unlock(&wq_pool_mutex);
  4193. }
  4194. #endif /* CONFIG_FREEZER */
  4195. static int workqueue_apply_unbound_cpumask(void)
  4196. {
  4197. LIST_HEAD(ctxs);
  4198. int ret = 0;
  4199. struct workqueue_struct *wq;
  4200. struct apply_wqattrs_ctx *ctx, *n;
  4201. lockdep_assert_held(&wq_pool_mutex);
  4202. list_for_each_entry(wq, &workqueues, list) {
  4203. if (!(wq->flags & WQ_UNBOUND))
  4204. continue;
  4205. /* creating multiple pwqs breaks ordering guarantee */
  4206. if (wq->flags & __WQ_ORDERED)
  4207. continue;
  4208. ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
  4209. if (!ctx) {
  4210. ret = -ENOMEM;
  4211. break;
  4212. }
  4213. list_add_tail(&ctx->list, &ctxs);
  4214. }
  4215. list_for_each_entry_safe(ctx, n, &ctxs, list) {
  4216. if (!ret)
  4217. apply_wqattrs_commit(ctx);
  4218. apply_wqattrs_cleanup(ctx);
  4219. }
  4220. return ret;
  4221. }
  4222. /**
  4223. * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
  4224. * @cpumask: the cpumask to set
  4225. *
  4226. * The low-level workqueues cpumask is a global cpumask that limits
  4227. * the affinity of all unbound workqueues. This function check the @cpumask
  4228. * and apply it to all unbound workqueues and updates all pwqs of them.
  4229. *
  4230. * Retun: 0 - Success
  4231. * -EINVAL - Invalid @cpumask
  4232. * -ENOMEM - Failed to allocate memory for attrs or pwqs.
  4233. */
  4234. int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
  4235. {
  4236. int ret = -EINVAL;
  4237. cpumask_var_t saved_cpumask;
  4238. if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
  4239. return -ENOMEM;
  4240. /*
  4241. * Not excluding isolated cpus on purpose.
  4242. * If the user wishes to include them, we allow that.
  4243. */
  4244. cpumask_and(cpumask, cpumask, cpu_possible_mask);
  4245. if (!cpumask_empty(cpumask)) {
  4246. apply_wqattrs_lock();
  4247. /* save the old wq_unbound_cpumask. */
  4248. cpumask_copy(saved_cpumask, wq_unbound_cpumask);
  4249. /* update wq_unbound_cpumask at first and apply it to wqs. */
  4250. cpumask_copy(wq_unbound_cpumask, cpumask);
  4251. ret = workqueue_apply_unbound_cpumask();
  4252. /* restore the wq_unbound_cpumask when failed. */
  4253. if (ret < 0)
  4254. cpumask_copy(wq_unbound_cpumask, saved_cpumask);
  4255. apply_wqattrs_unlock();
  4256. }
  4257. free_cpumask_var(saved_cpumask);
  4258. return ret;
  4259. }
  4260. #ifdef CONFIG_SYSFS
  4261. /*
  4262. * Workqueues with WQ_SYSFS flag set is visible to userland via
  4263. * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
  4264. * following attributes.
  4265. *
  4266. * per_cpu RO bool : whether the workqueue is per-cpu or unbound
  4267. * max_active RW int : maximum number of in-flight work items
  4268. *
  4269. * Unbound workqueues have the following extra attributes.
  4270. *
  4271. * pool_ids RO int : the associated pool IDs for each node
  4272. * nice RW int : nice value of the workers
  4273. * cpumask RW mask : bitmask of allowed CPUs for the workers
  4274. * numa RW bool : whether enable NUMA affinity
  4275. */
  4276. struct wq_device {
  4277. struct workqueue_struct *wq;
  4278. struct device dev;
  4279. };
  4280. static struct workqueue_struct *dev_to_wq(struct device *dev)
  4281. {
  4282. struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
  4283. return wq_dev->wq;
  4284. }
  4285. static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
  4286. char *buf)
  4287. {
  4288. struct workqueue_struct *wq = dev_to_wq(dev);
  4289. return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
  4290. }
  4291. static DEVICE_ATTR_RO(per_cpu);
  4292. static ssize_t max_active_show(struct device *dev,
  4293. struct device_attribute *attr, char *buf)
  4294. {
  4295. struct workqueue_struct *wq = dev_to_wq(dev);
  4296. return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
  4297. }
  4298. static ssize_t max_active_store(struct device *dev,
  4299. struct device_attribute *attr, const char *buf,
  4300. size_t count)
  4301. {
  4302. struct workqueue_struct *wq = dev_to_wq(dev);
  4303. int val;
  4304. if (sscanf(buf, "%d", &val) != 1 || val <= 0)
  4305. return -EINVAL;
  4306. workqueue_set_max_active(wq, val);
  4307. return count;
  4308. }
  4309. static DEVICE_ATTR_RW(max_active);
  4310. static struct attribute *wq_sysfs_attrs[] = {
  4311. &dev_attr_per_cpu.attr,
  4312. &dev_attr_max_active.attr,
  4313. NULL,
  4314. };
  4315. ATTRIBUTE_GROUPS(wq_sysfs);
  4316. static ssize_t wq_pool_ids_show(struct device *dev,
  4317. struct device_attribute *attr, char *buf)
  4318. {
  4319. struct workqueue_struct *wq = dev_to_wq(dev);
  4320. const char *delim = "";
  4321. int node, written = 0;
  4322. rcu_read_lock_sched();
  4323. for_each_node(node) {
  4324. written += scnprintf(buf + written, PAGE_SIZE - written,
  4325. "%s%d:%d", delim, node,
  4326. unbound_pwq_by_node(wq, node)->pool->id);
  4327. delim = " ";
  4328. }
  4329. written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
  4330. rcu_read_unlock_sched();
  4331. return written;
  4332. }
  4333. static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
  4334. char *buf)
  4335. {
  4336. struct workqueue_struct *wq = dev_to_wq(dev);
  4337. int written;
  4338. mutex_lock(&wq->mutex);
  4339. written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
  4340. mutex_unlock(&wq->mutex);
  4341. return written;
  4342. }
  4343. /* prepare workqueue_attrs for sysfs store operations */
  4344. static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
  4345. {
  4346. struct workqueue_attrs *attrs;
  4347. lockdep_assert_held(&wq_pool_mutex);
  4348. attrs = alloc_workqueue_attrs(GFP_KERNEL);
  4349. if (!attrs)
  4350. return NULL;
  4351. copy_workqueue_attrs(attrs, wq->unbound_attrs);
  4352. return attrs;
  4353. }
  4354. static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
  4355. const char *buf, size_t count)
  4356. {
  4357. struct workqueue_struct *wq = dev_to_wq(dev);
  4358. struct workqueue_attrs *attrs;
  4359. int ret = -ENOMEM;
  4360. apply_wqattrs_lock();
  4361. attrs = wq_sysfs_prep_attrs(wq);
  4362. if (!attrs)
  4363. goto out_unlock;
  4364. if (sscanf(buf, "%d", &attrs->nice) == 1 &&
  4365. attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
  4366. ret = apply_workqueue_attrs_locked(wq, attrs);
  4367. else
  4368. ret = -EINVAL;
  4369. out_unlock:
  4370. apply_wqattrs_unlock();
  4371. free_workqueue_attrs(attrs);
  4372. return ret ?: count;
  4373. }
  4374. static ssize_t wq_cpumask_show(struct device *dev,
  4375. struct device_attribute *attr, char *buf)
  4376. {
  4377. struct workqueue_struct *wq = dev_to_wq(dev);
  4378. int written;
  4379. mutex_lock(&wq->mutex);
  4380. written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
  4381. cpumask_pr_args(wq->unbound_attrs->cpumask));
  4382. mutex_unlock(&wq->mutex);
  4383. return written;
  4384. }
  4385. static ssize_t wq_cpumask_store(struct device *dev,
  4386. struct device_attribute *attr,
  4387. const char *buf, size_t count)
  4388. {
  4389. struct workqueue_struct *wq = dev_to_wq(dev);
  4390. struct workqueue_attrs *attrs;
  4391. int ret = -ENOMEM;
  4392. apply_wqattrs_lock();
  4393. attrs = wq_sysfs_prep_attrs(wq);
  4394. if (!attrs)
  4395. goto out_unlock;
  4396. ret = cpumask_parse(buf, attrs->cpumask);
  4397. if (!ret)
  4398. ret = apply_workqueue_attrs_locked(wq, attrs);
  4399. out_unlock:
  4400. apply_wqattrs_unlock();
  4401. free_workqueue_attrs(attrs);
  4402. return ret ?: count;
  4403. }
  4404. static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
  4405. char *buf)
  4406. {
  4407. struct workqueue_struct *wq = dev_to_wq(dev);
  4408. int written;
  4409. mutex_lock(&wq->mutex);
  4410. written = scnprintf(buf, PAGE_SIZE, "%d\n",
  4411. !wq->unbound_attrs->no_numa);
  4412. mutex_unlock(&wq->mutex);
  4413. return written;
  4414. }
  4415. static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
  4416. const char *buf, size_t count)
  4417. {
  4418. struct workqueue_struct *wq = dev_to_wq(dev);
  4419. struct workqueue_attrs *attrs;
  4420. int v, ret = -ENOMEM;
  4421. apply_wqattrs_lock();
  4422. attrs = wq_sysfs_prep_attrs(wq);
  4423. if (!attrs)
  4424. goto out_unlock;
  4425. ret = -EINVAL;
  4426. if (sscanf(buf, "%d", &v) == 1) {
  4427. attrs->no_numa = !v;
  4428. ret = apply_workqueue_attrs_locked(wq, attrs);
  4429. }
  4430. out_unlock:
  4431. apply_wqattrs_unlock();
  4432. free_workqueue_attrs(attrs);
  4433. return ret ?: count;
  4434. }
  4435. static struct device_attribute wq_sysfs_unbound_attrs[] = {
  4436. __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
  4437. __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
  4438. __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
  4439. __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
  4440. __ATTR_NULL,
  4441. };
  4442. static struct bus_type wq_subsys = {
  4443. .name = "workqueue",
  4444. .dev_groups = wq_sysfs_groups,
  4445. };
  4446. static ssize_t wq_unbound_cpumask_show(struct device *dev,
  4447. struct device_attribute *attr, char *buf)
  4448. {
  4449. int written;
  4450. mutex_lock(&wq_pool_mutex);
  4451. written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
  4452. cpumask_pr_args(wq_unbound_cpumask));
  4453. mutex_unlock(&wq_pool_mutex);
  4454. return written;
  4455. }
  4456. static ssize_t wq_unbound_cpumask_store(struct device *dev,
  4457. struct device_attribute *attr, const char *buf, size_t count)
  4458. {
  4459. cpumask_var_t cpumask;
  4460. int ret;
  4461. if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
  4462. return -ENOMEM;
  4463. ret = cpumask_parse(buf, cpumask);
  4464. if (!ret)
  4465. ret = workqueue_set_unbound_cpumask(cpumask);
  4466. free_cpumask_var(cpumask);
  4467. return ret ? ret : count;
  4468. }
  4469. static struct device_attribute wq_sysfs_cpumask_attr =
  4470. __ATTR(cpumask, 0644, wq_unbound_cpumask_show,
  4471. wq_unbound_cpumask_store);
  4472. static int __init wq_sysfs_init(void)
  4473. {
  4474. int err;
  4475. err = subsys_virtual_register(&wq_subsys, NULL);
  4476. if (err)
  4477. return err;
  4478. return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
  4479. }
  4480. core_initcall(wq_sysfs_init);
  4481. static void wq_device_release(struct device *dev)
  4482. {
  4483. struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
  4484. kfree(wq_dev);
  4485. }
  4486. /**
  4487. * workqueue_sysfs_register - make a workqueue visible in sysfs
  4488. * @wq: the workqueue to register
  4489. *
  4490. * Expose @wq in sysfs under /sys/bus/workqueue/devices.
  4491. * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
  4492. * which is the preferred method.
  4493. *
  4494. * Workqueue user should use this function directly iff it wants to apply
  4495. * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
  4496. * apply_workqueue_attrs() may race against userland updating the
  4497. * attributes.
  4498. *
  4499. * Return: 0 on success, -errno on failure.
  4500. */
  4501. int workqueue_sysfs_register(struct workqueue_struct *wq)
  4502. {
  4503. struct wq_device *wq_dev;
  4504. int ret;
  4505. /*
  4506. * Adjusting max_active or creating new pwqs by applying
  4507. * attributes breaks ordering guarantee. Disallow exposing ordered
  4508. * workqueues.
  4509. */
  4510. if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
  4511. return -EINVAL;
  4512. wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
  4513. if (!wq_dev)
  4514. return -ENOMEM;
  4515. wq_dev->wq = wq;
  4516. wq_dev->dev.bus = &wq_subsys;
  4517. wq_dev->dev.release = wq_device_release;
  4518. dev_set_name(&wq_dev->dev, "%s", wq->name);
  4519. /*
  4520. * unbound_attrs are created separately. Suppress uevent until
  4521. * everything is ready.
  4522. */
  4523. dev_set_uevent_suppress(&wq_dev->dev, true);
  4524. ret = device_register(&wq_dev->dev);
  4525. if (ret) {
  4526. kfree(wq_dev);
  4527. wq->wq_dev = NULL;
  4528. return ret;
  4529. }
  4530. if (wq->flags & WQ_UNBOUND) {
  4531. struct device_attribute *attr;
  4532. for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
  4533. ret = device_create_file(&wq_dev->dev, attr);
  4534. if (ret) {
  4535. device_unregister(&wq_dev->dev);
  4536. wq->wq_dev = NULL;
  4537. return ret;
  4538. }
  4539. }
  4540. }
  4541. dev_set_uevent_suppress(&wq_dev->dev, false);
  4542. kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
  4543. return 0;
  4544. }
  4545. /**
  4546. * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
  4547. * @wq: the workqueue to unregister
  4548. *
  4549. * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
  4550. */
  4551. static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
  4552. {
  4553. struct wq_device *wq_dev = wq->wq_dev;
  4554. if (!wq->wq_dev)
  4555. return;
  4556. wq->wq_dev = NULL;
  4557. device_unregister(&wq_dev->dev);
  4558. }
  4559. #else /* CONFIG_SYSFS */
  4560. static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
  4561. #endif /* CONFIG_SYSFS */
  4562. /*
  4563. * Workqueue watchdog.
  4564. *
  4565. * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
  4566. * flush dependency, a concurrency managed work item which stays RUNNING
  4567. * indefinitely. Workqueue stalls can be very difficult to debug as the
  4568. * usual warning mechanisms don't trigger and internal workqueue state is
  4569. * largely opaque.
  4570. *
  4571. * Workqueue watchdog monitors all worker pools periodically and dumps
  4572. * state if some pools failed to make forward progress for a while where
  4573. * forward progress is defined as the first item on ->worklist changing.
  4574. *
  4575. * This mechanism is controlled through the kernel parameter
  4576. * "workqueue.watchdog_thresh" which can be updated at runtime through the
  4577. * corresponding sysfs parameter file.
  4578. */
  4579. #ifdef CONFIG_WQ_WATCHDOG
  4580. static unsigned long wq_watchdog_thresh = 30;
  4581. static struct timer_list wq_watchdog_timer;
  4582. static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
  4583. static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
  4584. static void wq_watchdog_reset_touched(void)
  4585. {
  4586. int cpu;
  4587. wq_watchdog_touched = jiffies;
  4588. for_each_possible_cpu(cpu)
  4589. per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
  4590. }
  4591. static void wq_watchdog_timer_fn(struct timer_list *unused)
  4592. {
  4593. unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
  4594. bool lockup_detected = false;
  4595. struct worker_pool *pool;
  4596. int pi;
  4597. if (!thresh)
  4598. return;
  4599. rcu_read_lock();
  4600. for_each_pool(pool, pi) {
  4601. unsigned long pool_ts, touched, ts;
  4602. if (list_empty(&pool->worklist))
  4603. continue;
  4604. /* get the latest of pool and touched timestamps */
  4605. pool_ts = READ_ONCE(pool->watchdog_ts);
  4606. touched = READ_ONCE(wq_watchdog_touched);
  4607. if (time_after(pool_ts, touched))
  4608. ts = pool_ts;
  4609. else
  4610. ts = touched;
  4611. if (pool->cpu >= 0) {
  4612. unsigned long cpu_touched =
  4613. READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
  4614. pool->cpu));
  4615. if (time_after(cpu_touched, ts))
  4616. ts = cpu_touched;
  4617. }
  4618. /* did we stall? */
  4619. if (time_after(jiffies, ts + thresh)) {
  4620. lockup_detected = true;
  4621. pr_emerg("BUG: workqueue lockup - pool");
  4622. pr_cont_pool_info(pool);
  4623. pr_cont(" stuck for %us!\n",
  4624. jiffies_to_msecs(jiffies - pool_ts) / 1000);
  4625. }
  4626. }
  4627. rcu_read_unlock();
  4628. if (lockup_detected)
  4629. show_workqueue_state();
  4630. wq_watchdog_reset_touched();
  4631. mod_timer(&wq_watchdog_timer, jiffies + thresh);
  4632. }
  4633. void wq_watchdog_touch(int cpu)
  4634. {
  4635. if (cpu >= 0)
  4636. per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
  4637. else
  4638. wq_watchdog_touched = jiffies;
  4639. }
  4640. static void wq_watchdog_set_thresh(unsigned long thresh)
  4641. {
  4642. wq_watchdog_thresh = 0;
  4643. del_timer_sync(&wq_watchdog_timer);
  4644. if (thresh) {
  4645. wq_watchdog_thresh = thresh;
  4646. wq_watchdog_reset_touched();
  4647. mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
  4648. }
  4649. }
  4650. static int wq_watchdog_param_set_thresh(const char *val,
  4651. const struct kernel_param *kp)
  4652. {
  4653. unsigned long thresh;
  4654. int ret;
  4655. ret = kstrtoul(val, 0, &thresh);
  4656. if (ret)
  4657. return ret;
  4658. if (system_wq)
  4659. wq_watchdog_set_thresh(thresh);
  4660. else
  4661. wq_watchdog_thresh = thresh;
  4662. return 0;
  4663. }
  4664. static const struct kernel_param_ops wq_watchdog_thresh_ops = {
  4665. .set = wq_watchdog_param_set_thresh,
  4666. .get = param_get_ulong,
  4667. };
  4668. module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
  4669. 0644);
  4670. static void wq_watchdog_init(void)
  4671. {
  4672. timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
  4673. wq_watchdog_set_thresh(wq_watchdog_thresh);
  4674. }
  4675. #else /* CONFIG_WQ_WATCHDOG */
  4676. static inline void wq_watchdog_init(void) { }
  4677. #endif /* CONFIG_WQ_WATCHDOG */
  4678. static void __init wq_numa_init(void)
  4679. {
  4680. cpumask_var_t *tbl;
  4681. int node, cpu;
  4682. if (num_possible_nodes() <= 1)
  4683. return;
  4684. if (wq_disable_numa) {
  4685. pr_info("workqueue: NUMA affinity support disabled\n");
  4686. return;
  4687. }
  4688. wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
  4689. BUG_ON(!wq_update_unbound_numa_attrs_buf);
  4690. /*
  4691. * We want masks of possible CPUs of each node which isn't readily
  4692. * available. Build one from cpu_to_node() which should have been
  4693. * fully initialized by now.
  4694. */
  4695. tbl = kzalloc(nr_node_ids * sizeof(tbl[0]), GFP_KERNEL);
  4696. BUG_ON(!tbl);
  4697. for_each_node(node)
  4698. BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
  4699. node_online(node) ? node : NUMA_NO_NODE));
  4700. for_each_possible_cpu(cpu) {
  4701. node = cpu_to_node(cpu);
  4702. if (WARN_ON(node == NUMA_NO_NODE)) {
  4703. pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
  4704. /* happens iff arch is bonkers, let's just proceed */
  4705. return;
  4706. }
  4707. cpumask_set_cpu(cpu, tbl[node]);
  4708. }
  4709. wq_numa_possible_cpumask = tbl;
  4710. wq_numa_enabled = true;
  4711. }
  4712. /**
  4713. * workqueue_init_early - early init for workqueue subsystem
  4714. *
  4715. * This is the first half of two-staged workqueue subsystem initialization
  4716. * and invoked as soon as the bare basics - memory allocation, cpumasks and
  4717. * idr are up. It sets up all the data structures and system workqueues
  4718. * and allows early boot code to create workqueues and queue/cancel work
  4719. * items. Actual work item execution starts only after kthreads can be
  4720. * created and scheduled right before early initcalls.
  4721. */
  4722. int __init workqueue_init_early(void)
  4723. {
  4724. int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
  4725. int i, cpu;
  4726. WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
  4727. BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
  4728. cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(HK_FLAG_DOMAIN));
  4729. pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
  4730. /* initialize CPU pools */
  4731. for_each_possible_cpu(cpu) {
  4732. struct worker_pool *pool;
  4733. i = 0;
  4734. for_each_cpu_worker_pool(pool, cpu) {
  4735. BUG_ON(init_worker_pool(pool));
  4736. pool->cpu = cpu;
  4737. cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
  4738. pool->attrs->nice = std_nice[i++];
  4739. pool->node = cpu_to_node(cpu);
  4740. /* alloc pool ID */
  4741. mutex_lock(&wq_pool_mutex);
  4742. BUG_ON(worker_pool_assign_id(pool));
  4743. mutex_unlock(&wq_pool_mutex);
  4744. }
  4745. }
  4746. /* create default unbound and ordered wq attrs */
  4747. for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
  4748. struct workqueue_attrs *attrs;
  4749. BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
  4750. attrs->nice = std_nice[i];
  4751. unbound_std_wq_attrs[i] = attrs;
  4752. /*
  4753. * An ordered wq should have only one pwq as ordering is
  4754. * guaranteed by max_active which is enforced by pwqs.
  4755. * Turn off NUMA so that dfl_pwq is used for all nodes.
  4756. */
  4757. BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
  4758. attrs->nice = std_nice[i];
  4759. attrs->no_numa = true;
  4760. ordered_wq_attrs[i] = attrs;
  4761. }
  4762. system_wq = alloc_workqueue("events", 0, 0);
  4763. system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
  4764. system_long_wq = alloc_workqueue("events_long", 0, 0);
  4765. system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
  4766. WQ_UNBOUND_MAX_ACTIVE);
  4767. system_freezable_wq = alloc_workqueue("events_freezable",
  4768. WQ_FREEZABLE, 0);
  4769. system_power_efficient_wq = alloc_workqueue("events_power_efficient",
  4770. WQ_POWER_EFFICIENT, 0);
  4771. system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
  4772. WQ_FREEZABLE | WQ_POWER_EFFICIENT,
  4773. 0);
  4774. BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
  4775. !system_unbound_wq || !system_freezable_wq ||
  4776. !system_power_efficient_wq ||
  4777. !system_freezable_power_efficient_wq);
  4778. return 0;
  4779. }
  4780. /**
  4781. * workqueue_init - bring workqueue subsystem fully online
  4782. *
  4783. * This is the latter half of two-staged workqueue subsystem initialization
  4784. * and invoked as soon as kthreads can be created and scheduled.
  4785. * Workqueues have been created and work items queued on them, but there
  4786. * are no kworkers executing the work items yet. Populate the worker pools
  4787. * with the initial workers and enable future kworker creations.
  4788. */
  4789. int __init workqueue_init(void)
  4790. {
  4791. struct workqueue_struct *wq;
  4792. struct worker_pool *pool;
  4793. int cpu, bkt;
  4794. /*
  4795. * It'd be simpler to initialize NUMA in workqueue_init_early() but
  4796. * CPU to node mapping may not be available that early on some
  4797. * archs such as power and arm64. As per-cpu pools created
  4798. * previously could be missing node hint and unbound pools NUMA
  4799. * affinity, fix them up.
  4800. */
  4801. wq_numa_init();
  4802. mutex_lock(&wq_pool_mutex);
  4803. for_each_possible_cpu(cpu) {
  4804. for_each_cpu_worker_pool(pool, cpu) {
  4805. pool->node = cpu_to_node(cpu);
  4806. }
  4807. }
  4808. list_for_each_entry(wq, &workqueues, list)
  4809. wq_update_unbound_numa(wq, smp_processor_id(), true);
  4810. mutex_unlock(&wq_pool_mutex);
  4811. /* create the initial workers */
  4812. for_each_online_cpu(cpu) {
  4813. for_each_cpu_worker_pool(pool, cpu) {
  4814. pool->flags &= ~POOL_DISASSOCIATED;
  4815. BUG_ON(!create_worker(pool));
  4816. }
  4817. }
  4818. hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
  4819. BUG_ON(!create_worker(pool));
  4820. wq_online = true;
  4821. wq_watchdog_init();
  4822. return 0;
  4823. }