oom_kill.c 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092
  1. /*
  2. * linux/mm/oom_kill.c
  3. *
  4. * Copyright (C) 1998,2000 Rik van Riel
  5. * Thanks go out to Claus Fischer for some serious inspiration and
  6. * for goading me into coding this file...
  7. * Copyright (C) 2010 Google, Inc.
  8. * Rewritten by David Rientjes
  9. *
  10. * The routines in this file are used to kill a process when
  11. * we're seriously out of memory. This gets called from __alloc_pages()
  12. * in mm/page_alloc.c when we really run out of memory.
  13. *
  14. * Since we won't call these routines often (on a well-configured
  15. * machine) this file will double as a 'coding guide' and a signpost
  16. * for newbie kernel hackers. It features several pointers to major
  17. * kernel subsystems and hints as to where to find out what things do.
  18. */
  19. #include <linux/oom.h>
  20. #include <linux/mm.h>
  21. #include <linux/err.h>
  22. #include <linux/gfp.h>
  23. #include <linux/sched.h>
  24. #include <linux/swap.h>
  25. #include <linux/timex.h>
  26. #include <linux/jiffies.h>
  27. #include <linux/cpuset.h>
  28. #include <linux/export.h>
  29. #include <linux/notifier.h>
  30. #include <linux/memcontrol.h>
  31. #include <linux/mempolicy.h>
  32. #include <linux/security.h>
  33. #include <linux/ptrace.h>
  34. #include <linux/freezer.h>
  35. #include <linux/ftrace.h>
  36. #include <linux/ratelimit.h>
  37. #include <linux/kthread.h>
  38. #include <linux/init.h>
  39. #include <asm/tlb.h>
  40. #include "internal.h"
  41. #define CREATE_TRACE_POINTS
  42. #include <trace/events/oom.h>
  43. int sysctl_panic_on_oom;
  44. int sysctl_oom_kill_allocating_task;
  45. int sysctl_oom_dump_tasks = 1;
  46. DEFINE_MUTEX(oom_lock);
  47. #ifdef CONFIG_NUMA
  48. /**
  49. * has_intersects_mems_allowed() - check task eligiblity for kill
  50. * @start: task struct of which task to consider
  51. * @mask: nodemask passed to page allocator for mempolicy ooms
  52. *
  53. * Task eligibility is determined by whether or not a candidate task, @tsk,
  54. * shares the same mempolicy nodes as current if it is bound by such a policy
  55. * and whether or not it has the same set of allowed cpuset nodes.
  56. */
  57. static bool has_intersects_mems_allowed(struct task_struct *start,
  58. const nodemask_t *mask)
  59. {
  60. struct task_struct *tsk;
  61. bool ret = false;
  62. rcu_read_lock();
  63. for_each_thread(start, tsk) {
  64. if (mask) {
  65. /*
  66. * If this is a mempolicy constrained oom, tsk's
  67. * cpuset is irrelevant. Only return true if its
  68. * mempolicy intersects current, otherwise it may be
  69. * needlessly killed.
  70. */
  71. ret = mempolicy_nodemask_intersects(tsk, mask);
  72. } else {
  73. /*
  74. * This is not a mempolicy constrained oom, so only
  75. * check the mems of tsk's cpuset.
  76. */
  77. ret = cpuset_mems_allowed_intersects(current, tsk);
  78. }
  79. if (ret)
  80. break;
  81. }
  82. rcu_read_unlock();
  83. return ret;
  84. }
  85. #else
  86. static bool has_intersects_mems_allowed(struct task_struct *tsk,
  87. const nodemask_t *mask)
  88. {
  89. return true;
  90. }
  91. #endif /* CONFIG_NUMA */
  92. /*
  93. * The process p may have detached its own ->mm while exiting or through
  94. * use_mm(), but one or more of its subthreads may still have a valid
  95. * pointer. Return p, or any of its subthreads with a valid ->mm, with
  96. * task_lock() held.
  97. */
  98. struct task_struct *find_lock_task_mm(struct task_struct *p)
  99. {
  100. struct task_struct *t;
  101. rcu_read_lock();
  102. for_each_thread(p, t) {
  103. task_lock(t);
  104. if (likely(t->mm))
  105. goto found;
  106. task_unlock(t);
  107. }
  108. t = NULL;
  109. found:
  110. rcu_read_unlock();
  111. return t;
  112. }
  113. /*
  114. * order == -1 means the oom kill is required by sysrq, otherwise only
  115. * for display purposes.
  116. */
  117. static inline bool is_sysrq_oom(struct oom_control *oc)
  118. {
  119. return oc->order == -1;
  120. }
  121. /* return true if the task is not adequate as candidate victim task. */
  122. static bool oom_unkillable_task(struct task_struct *p,
  123. struct mem_cgroup *memcg, const nodemask_t *nodemask)
  124. {
  125. if (is_global_init(p))
  126. return true;
  127. if (p->flags & PF_KTHREAD)
  128. return true;
  129. /* When mem_cgroup_out_of_memory() and p is not member of the group */
  130. if (memcg && !task_in_mem_cgroup(p, memcg))
  131. return true;
  132. /* p may not have freeable memory in nodemask */
  133. if (!has_intersects_mems_allowed(p, nodemask))
  134. return true;
  135. return false;
  136. }
  137. /**
  138. * oom_badness - heuristic function to determine which candidate task to kill
  139. * @p: task struct of which task we should calculate
  140. * @totalpages: total present RAM allowed for page allocation
  141. *
  142. * The heuristic for determining which task to kill is made to be as simple and
  143. * predictable as possible. The goal is to return the highest value for the
  144. * task consuming the most memory to avoid subsequent oom failures.
  145. */
  146. unsigned long oom_badness(struct task_struct *p, struct mem_cgroup *memcg,
  147. const nodemask_t *nodemask, unsigned long totalpages)
  148. {
  149. long points;
  150. long adj;
  151. if (oom_unkillable_task(p, memcg, nodemask))
  152. return 0;
  153. p = find_lock_task_mm(p);
  154. if (!p)
  155. return 0;
  156. /*
  157. * Do not even consider tasks which are explicitly marked oom
  158. * unkillable or have been already oom reaped or the are in
  159. * the middle of vfork
  160. */
  161. adj = (long)p->signal->oom_score_adj;
  162. if (adj == OOM_SCORE_ADJ_MIN ||
  163. test_bit(MMF_OOM_REAPED, &p->mm->flags) ||
  164. in_vfork(p)) {
  165. task_unlock(p);
  166. return 0;
  167. }
  168. /*
  169. * The baseline for the badness score is the proportion of RAM that each
  170. * task's rss, pagetable and swap space use.
  171. */
  172. points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) +
  173. atomic_long_read(&p->mm->nr_ptes) + mm_nr_pmds(p->mm);
  174. task_unlock(p);
  175. /*
  176. * Root processes get 3% bonus, just like the __vm_enough_memory()
  177. * implementation used by LSMs.
  178. */
  179. if (has_capability_noaudit(p, CAP_SYS_ADMIN))
  180. points -= (points * 3) / 100;
  181. /* Normalize to oom_score_adj units */
  182. adj *= totalpages / 1000;
  183. points += adj;
  184. /*
  185. * Never return 0 for an eligible task regardless of the root bonus and
  186. * oom_score_adj (oom_score_adj can't be OOM_SCORE_ADJ_MIN here).
  187. */
  188. return points > 0 ? points : 1;
  189. }
  190. /*
  191. * Determine the type of allocation constraint.
  192. */
  193. #ifdef CONFIG_NUMA
  194. static enum oom_constraint constrained_alloc(struct oom_control *oc,
  195. unsigned long *totalpages)
  196. {
  197. struct zone *zone;
  198. struct zoneref *z;
  199. enum zone_type high_zoneidx = gfp_zone(oc->gfp_mask);
  200. bool cpuset_limited = false;
  201. int nid;
  202. /* Default to all available memory */
  203. *totalpages = totalram_pages + total_swap_pages;
  204. if (!oc->zonelist)
  205. return CONSTRAINT_NONE;
  206. /*
  207. * Reach here only when __GFP_NOFAIL is used. So, we should avoid
  208. * to kill current.We have to random task kill in this case.
  209. * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
  210. */
  211. if (oc->gfp_mask & __GFP_THISNODE)
  212. return CONSTRAINT_NONE;
  213. /*
  214. * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
  215. * the page allocator means a mempolicy is in effect. Cpuset policy
  216. * is enforced in get_page_from_freelist().
  217. */
  218. if (oc->nodemask &&
  219. !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) {
  220. *totalpages = total_swap_pages;
  221. for_each_node_mask(nid, *oc->nodemask)
  222. *totalpages += node_spanned_pages(nid);
  223. return CONSTRAINT_MEMORY_POLICY;
  224. }
  225. /* Check this allocation failure is caused by cpuset's wall function */
  226. for_each_zone_zonelist_nodemask(zone, z, oc->zonelist,
  227. high_zoneidx, oc->nodemask)
  228. if (!cpuset_zone_allowed(zone, oc->gfp_mask))
  229. cpuset_limited = true;
  230. if (cpuset_limited) {
  231. *totalpages = total_swap_pages;
  232. for_each_node_mask(nid, cpuset_current_mems_allowed)
  233. *totalpages += node_spanned_pages(nid);
  234. return CONSTRAINT_CPUSET;
  235. }
  236. return CONSTRAINT_NONE;
  237. }
  238. #else
  239. static enum oom_constraint constrained_alloc(struct oom_control *oc,
  240. unsigned long *totalpages)
  241. {
  242. *totalpages = totalram_pages + total_swap_pages;
  243. return CONSTRAINT_NONE;
  244. }
  245. #endif
  246. enum oom_scan_t oom_scan_process_thread(struct oom_control *oc,
  247. struct task_struct *task)
  248. {
  249. if (oom_unkillable_task(task, NULL, oc->nodemask))
  250. return OOM_SCAN_CONTINUE;
  251. /*
  252. * This task already has access to memory reserves and is being killed.
  253. * Don't allow any other task to have access to the reserves unless
  254. * the task has MMF_OOM_REAPED because chances that it would release
  255. * any memory is quite low.
  256. */
  257. if (!is_sysrq_oom(oc) && atomic_read(&task->signal->oom_victims)) {
  258. struct task_struct *p = find_lock_task_mm(task);
  259. enum oom_scan_t ret = OOM_SCAN_ABORT;
  260. if (p) {
  261. if (test_bit(MMF_OOM_REAPED, &p->mm->flags))
  262. ret = OOM_SCAN_CONTINUE;
  263. task_unlock(p);
  264. }
  265. return ret;
  266. }
  267. /*
  268. * If task is allocating a lot of memory and has been marked to be
  269. * killed first if it triggers an oom, then select it.
  270. */
  271. if (oom_task_origin(task))
  272. return OOM_SCAN_SELECT;
  273. return OOM_SCAN_OK;
  274. }
  275. /*
  276. * Simple selection loop. We chose the process with the highest
  277. * number of 'points'. Returns -1 on scan abort.
  278. */
  279. static struct task_struct *select_bad_process(struct oom_control *oc,
  280. unsigned int *ppoints, unsigned long totalpages)
  281. {
  282. struct task_struct *p;
  283. struct task_struct *chosen = NULL;
  284. unsigned long chosen_points = 0;
  285. rcu_read_lock();
  286. for_each_process(p) {
  287. unsigned int points;
  288. switch (oom_scan_process_thread(oc, p)) {
  289. case OOM_SCAN_SELECT:
  290. chosen = p;
  291. chosen_points = ULONG_MAX;
  292. /* fall through */
  293. case OOM_SCAN_CONTINUE:
  294. continue;
  295. case OOM_SCAN_ABORT:
  296. rcu_read_unlock();
  297. return (struct task_struct *)(-1UL);
  298. case OOM_SCAN_OK:
  299. break;
  300. };
  301. points = oom_badness(p, NULL, oc->nodemask, totalpages);
  302. if (!points || points < chosen_points)
  303. continue;
  304. chosen = p;
  305. chosen_points = points;
  306. }
  307. if (chosen)
  308. get_task_struct(chosen);
  309. rcu_read_unlock();
  310. *ppoints = chosen_points * 1000 / totalpages;
  311. return chosen;
  312. }
  313. /**
  314. * dump_tasks - dump current memory state of all system tasks
  315. * @memcg: current's memory controller, if constrained
  316. * @nodemask: nodemask passed to page allocator for mempolicy ooms
  317. *
  318. * Dumps the current memory state of all eligible tasks. Tasks not in the same
  319. * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
  320. * are not shown.
  321. * State information includes task's pid, uid, tgid, vm size, rss, nr_ptes,
  322. * swapents, oom_score_adj value, and name.
  323. */
  324. static void dump_tasks(struct mem_cgroup *memcg, const nodemask_t *nodemask)
  325. {
  326. struct task_struct *p;
  327. struct task_struct *task;
  328. pr_info("[ pid ] uid tgid total_vm rss nr_ptes nr_pmds swapents oom_score_adj name\n");
  329. rcu_read_lock();
  330. for_each_process(p) {
  331. if (oom_unkillable_task(p, memcg, nodemask))
  332. continue;
  333. task = find_lock_task_mm(p);
  334. if (!task) {
  335. /*
  336. * This is a kthread or all of p's threads have already
  337. * detached their mm's. There's no need to report
  338. * them; they can't be oom killed anyway.
  339. */
  340. continue;
  341. }
  342. pr_info("[%5d] %5d %5d %8lu %8lu %7ld %7ld %8lu %5hd %s\n",
  343. task->pid, from_kuid(&init_user_ns, task_uid(task)),
  344. task->tgid, task->mm->total_vm, get_mm_rss(task->mm),
  345. atomic_long_read(&task->mm->nr_ptes),
  346. mm_nr_pmds(task->mm),
  347. get_mm_counter(task->mm, MM_SWAPENTS),
  348. task->signal->oom_score_adj, task->comm);
  349. task_unlock(task);
  350. }
  351. rcu_read_unlock();
  352. }
  353. static void dump_header(struct oom_control *oc, struct task_struct *p)
  354. {
  355. pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), order=%d, oom_score_adj=%hd\n",
  356. current->comm, oc->gfp_mask, &oc->gfp_mask, oc->order,
  357. current->signal->oom_score_adj);
  358. cpuset_print_current_mems_allowed();
  359. dump_stack();
  360. if (oc->memcg)
  361. mem_cgroup_print_oom_info(oc->memcg, p);
  362. else
  363. show_mem(SHOW_MEM_FILTER_NODES);
  364. if (sysctl_oom_dump_tasks)
  365. dump_tasks(oc->memcg, oc->nodemask);
  366. }
  367. /*
  368. * Number of OOM victims in flight
  369. */
  370. static atomic_t oom_victims = ATOMIC_INIT(0);
  371. static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait);
  372. bool oom_killer_disabled __read_mostly;
  373. #define K(x) ((x) << (PAGE_SHIFT-10))
  374. /*
  375. * task->mm can be NULL if the task is the exited group leader. So to
  376. * determine whether the task is using a particular mm, we examine all the
  377. * task's threads: if one of those is using this mm then this task was also
  378. * using it.
  379. */
  380. bool process_shares_mm(struct task_struct *p, struct mm_struct *mm)
  381. {
  382. struct task_struct *t;
  383. for_each_thread(p, t) {
  384. struct mm_struct *t_mm = READ_ONCE(t->mm);
  385. if (t_mm)
  386. return t_mm == mm;
  387. }
  388. return false;
  389. }
  390. #ifdef CONFIG_MMU
  391. /*
  392. * OOM Reaper kernel thread which tries to reap the memory used by the OOM
  393. * victim (if that is possible) to help the OOM killer to move on.
  394. */
  395. static struct task_struct *oom_reaper_th;
  396. static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait);
  397. static struct task_struct *oom_reaper_list;
  398. static DEFINE_SPINLOCK(oom_reaper_lock);
  399. static bool __oom_reap_task(struct task_struct *tsk)
  400. {
  401. struct mmu_gather tlb;
  402. struct vm_area_struct *vma;
  403. struct mm_struct *mm = NULL;
  404. struct task_struct *p;
  405. struct zap_details details = {.check_swap_entries = true,
  406. .ignore_dirty = true};
  407. bool ret = true;
  408. /*
  409. * We have to make sure to not race with the victim exit path
  410. * and cause premature new oom victim selection:
  411. * __oom_reap_task exit_mm
  412. * mmget_not_zero
  413. * mmput
  414. * atomic_dec_and_test
  415. * exit_oom_victim
  416. * [...]
  417. * out_of_memory
  418. * select_bad_process
  419. * # no TIF_MEMDIE task selects new victim
  420. * unmap_page_range # frees some memory
  421. */
  422. mutex_lock(&oom_lock);
  423. /*
  424. * Make sure we find the associated mm_struct even when the particular
  425. * thread has already terminated and cleared its mm.
  426. * We might have race with exit path so consider our work done if there
  427. * is no mm.
  428. */
  429. p = find_lock_task_mm(tsk);
  430. if (!p)
  431. goto unlock_oom;
  432. mm = p->mm;
  433. atomic_inc(&mm->mm_count);
  434. task_unlock(p);
  435. if (!down_read_trylock(&mm->mmap_sem)) {
  436. ret = false;
  437. goto mm_drop;
  438. }
  439. /*
  440. * increase mm_users only after we know we will reap something so
  441. * that the mmput_async is called only when we have reaped something
  442. * and delayed __mmput doesn't matter that much
  443. */
  444. if (!mmget_not_zero(mm)) {
  445. up_read(&mm->mmap_sem);
  446. goto mm_drop;
  447. }
  448. tlb_gather_mmu(&tlb, mm, 0, -1);
  449. for (vma = mm->mmap ; vma; vma = vma->vm_next) {
  450. if (is_vm_hugetlb_page(vma))
  451. continue;
  452. /*
  453. * mlocked VMAs require explicit munlocking before unmap.
  454. * Let's keep it simple here and skip such VMAs.
  455. */
  456. if (vma->vm_flags & VM_LOCKED)
  457. continue;
  458. /*
  459. * Only anonymous pages have a good chance to be dropped
  460. * without additional steps which we cannot afford as we
  461. * are OOM already.
  462. *
  463. * We do not even care about fs backed pages because all
  464. * which are reclaimable have already been reclaimed and
  465. * we do not want to block exit_mmap by keeping mm ref
  466. * count elevated without a good reason.
  467. */
  468. if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED))
  469. unmap_page_range(&tlb, vma, vma->vm_start, vma->vm_end,
  470. &details);
  471. }
  472. tlb_finish_mmu(&tlb, 0, -1);
  473. pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
  474. task_pid_nr(tsk), tsk->comm,
  475. K(get_mm_counter(mm, MM_ANONPAGES)),
  476. K(get_mm_counter(mm, MM_FILEPAGES)),
  477. K(get_mm_counter(mm, MM_SHMEMPAGES)));
  478. up_read(&mm->mmap_sem);
  479. /*
  480. * This task can be safely ignored because we cannot do much more
  481. * to release its memory.
  482. */
  483. set_bit(MMF_OOM_REAPED, &mm->flags);
  484. /*
  485. * Drop our reference but make sure the mmput slow path is called from a
  486. * different context because we shouldn't risk we get stuck there and
  487. * put the oom_reaper out of the way.
  488. */
  489. mmput_async(mm);
  490. mm_drop:
  491. mmdrop(mm);
  492. unlock_oom:
  493. mutex_unlock(&oom_lock);
  494. return ret;
  495. }
  496. #define MAX_OOM_REAP_RETRIES 10
  497. static void oom_reap_task(struct task_struct *tsk)
  498. {
  499. int attempts = 0;
  500. /* Retry the down_read_trylock(mmap_sem) a few times */
  501. while (attempts++ < MAX_OOM_REAP_RETRIES && !__oom_reap_task(tsk))
  502. schedule_timeout_idle(HZ/10);
  503. if (attempts > MAX_OOM_REAP_RETRIES) {
  504. struct task_struct *p;
  505. pr_info("oom_reaper: unable to reap pid:%d (%s)\n",
  506. task_pid_nr(tsk), tsk->comm);
  507. /*
  508. * If we've already tried to reap this task in the past and
  509. * failed it probably doesn't make much sense to try yet again
  510. * so hide the mm from the oom killer so that it can move on
  511. * to another task with a different mm struct.
  512. */
  513. p = find_lock_task_mm(tsk);
  514. if (p) {
  515. if (test_and_set_bit(MMF_OOM_NOT_REAPABLE, &p->mm->flags)) {
  516. pr_info("oom_reaper: giving up pid:%d (%s)\n",
  517. task_pid_nr(tsk), tsk->comm);
  518. set_bit(MMF_OOM_REAPED, &p->mm->flags);
  519. }
  520. task_unlock(p);
  521. }
  522. debug_show_all_locks();
  523. }
  524. /*
  525. * Clear TIF_MEMDIE because the task shouldn't be sitting on a
  526. * reasonably reclaimable memory anymore or it is not a good candidate
  527. * for the oom victim right now because it cannot release its memory
  528. * itself nor by the oom reaper.
  529. */
  530. tsk->oom_reaper_list = NULL;
  531. exit_oom_victim(tsk);
  532. /* Drop a reference taken by wake_oom_reaper */
  533. put_task_struct(tsk);
  534. }
  535. static int oom_reaper(void *unused)
  536. {
  537. set_freezable();
  538. while (true) {
  539. struct task_struct *tsk = NULL;
  540. wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL);
  541. spin_lock(&oom_reaper_lock);
  542. if (oom_reaper_list != NULL) {
  543. tsk = oom_reaper_list;
  544. oom_reaper_list = tsk->oom_reaper_list;
  545. }
  546. spin_unlock(&oom_reaper_lock);
  547. if (tsk)
  548. oom_reap_task(tsk);
  549. }
  550. return 0;
  551. }
  552. void wake_oom_reaper(struct task_struct *tsk)
  553. {
  554. if (!oom_reaper_th)
  555. return;
  556. /* tsk is already queued? */
  557. if (tsk == oom_reaper_list || tsk->oom_reaper_list)
  558. return;
  559. get_task_struct(tsk);
  560. spin_lock(&oom_reaper_lock);
  561. tsk->oom_reaper_list = oom_reaper_list;
  562. oom_reaper_list = tsk;
  563. spin_unlock(&oom_reaper_lock);
  564. wake_up(&oom_reaper_wait);
  565. }
  566. static int __init oom_init(void)
  567. {
  568. oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper");
  569. if (IS_ERR(oom_reaper_th)) {
  570. pr_err("Unable to start OOM reaper %ld. Continuing regardless\n",
  571. PTR_ERR(oom_reaper_th));
  572. oom_reaper_th = NULL;
  573. }
  574. return 0;
  575. }
  576. subsys_initcall(oom_init)
  577. #endif
  578. /**
  579. * mark_oom_victim - mark the given task as OOM victim
  580. * @tsk: task to mark
  581. *
  582. * Has to be called with oom_lock held and never after
  583. * oom has been disabled already.
  584. */
  585. void mark_oom_victim(struct task_struct *tsk)
  586. {
  587. WARN_ON(oom_killer_disabled);
  588. /* OOM killer might race with memcg OOM */
  589. if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE))
  590. return;
  591. atomic_inc(&tsk->signal->oom_victims);
  592. /*
  593. * Make sure that the task is woken up from uninterruptible sleep
  594. * if it is frozen because OOM killer wouldn't be able to free
  595. * any memory and livelock. freezing_slow_path will tell the freezer
  596. * that TIF_MEMDIE tasks should be ignored.
  597. */
  598. __thaw_task(tsk);
  599. atomic_inc(&oom_victims);
  600. }
  601. /**
  602. * exit_oom_victim - note the exit of an OOM victim
  603. */
  604. void exit_oom_victim(struct task_struct *tsk)
  605. {
  606. if (!test_and_clear_tsk_thread_flag(tsk, TIF_MEMDIE))
  607. return;
  608. atomic_dec(&tsk->signal->oom_victims);
  609. if (!atomic_dec_return(&oom_victims))
  610. wake_up_all(&oom_victims_wait);
  611. }
  612. /**
  613. * oom_killer_disable - disable OOM killer
  614. *
  615. * Forces all page allocations to fail rather than trigger OOM killer.
  616. * Will block and wait until all OOM victims are killed.
  617. *
  618. * The function cannot be called when there are runnable user tasks because
  619. * the userspace would see unexpected allocation failures as a result. Any
  620. * new usage of this function should be consulted with MM people.
  621. *
  622. * Returns true if successful and false if the OOM killer cannot be
  623. * disabled.
  624. */
  625. bool oom_killer_disable(void)
  626. {
  627. /*
  628. * Make sure to not race with an ongoing OOM killer. Check that the
  629. * current is not killed (possibly due to sharing the victim's memory).
  630. */
  631. if (mutex_lock_killable(&oom_lock))
  632. return false;
  633. oom_killer_disabled = true;
  634. mutex_unlock(&oom_lock);
  635. wait_event(oom_victims_wait, !atomic_read(&oom_victims));
  636. return true;
  637. }
  638. /**
  639. * oom_killer_enable - enable OOM killer
  640. */
  641. void oom_killer_enable(void)
  642. {
  643. oom_killer_disabled = false;
  644. }
  645. static inline bool __task_will_free_mem(struct task_struct *task)
  646. {
  647. struct signal_struct *sig = task->signal;
  648. /*
  649. * A coredumping process may sleep for an extended period in exit_mm(),
  650. * so the oom killer cannot assume that the process will promptly exit
  651. * and release memory.
  652. */
  653. if (sig->flags & SIGNAL_GROUP_COREDUMP)
  654. return false;
  655. if (sig->flags & SIGNAL_GROUP_EXIT)
  656. return true;
  657. if (thread_group_empty(task) && (task->flags & PF_EXITING))
  658. return true;
  659. return false;
  660. }
  661. /*
  662. * Checks whether the given task is dying or exiting and likely to
  663. * release its address space. This means that all threads and processes
  664. * sharing the same mm have to be killed or exiting.
  665. * Caller has to make sure that task->mm is stable (hold task_lock or
  666. * it operates on the current).
  667. */
  668. bool task_will_free_mem(struct task_struct *task)
  669. {
  670. struct mm_struct *mm = task->mm;
  671. struct task_struct *p;
  672. bool ret;
  673. /*
  674. * Skip tasks without mm because it might have passed its exit_mm and
  675. * exit_oom_victim. oom_reaper could have rescued that but do not rely
  676. * on that for now. We can consider find_lock_task_mm in future.
  677. */
  678. if (!mm)
  679. return false;
  680. if (!__task_will_free_mem(task))
  681. return false;
  682. /*
  683. * This task has already been drained by the oom reaper so there are
  684. * only small chances it will free some more
  685. */
  686. if (test_bit(MMF_OOM_REAPED, &mm->flags))
  687. return false;
  688. if (atomic_read(&mm->mm_users) <= 1)
  689. return true;
  690. /*
  691. * This is really pessimistic but we do not have any reliable way
  692. * to check that external processes share with our mm
  693. */
  694. rcu_read_lock();
  695. for_each_process(p) {
  696. if (!process_shares_mm(p, mm))
  697. continue;
  698. if (same_thread_group(task, p))
  699. continue;
  700. ret = __task_will_free_mem(p);
  701. if (!ret)
  702. break;
  703. }
  704. rcu_read_unlock();
  705. return ret;
  706. }
  707. /*
  708. * Must be called while holding a reference to p, which will be released upon
  709. * returning.
  710. */
  711. void oom_kill_process(struct oom_control *oc, struct task_struct *p,
  712. unsigned int points, unsigned long totalpages,
  713. const char *message)
  714. {
  715. struct task_struct *victim = p;
  716. struct task_struct *child;
  717. struct task_struct *t;
  718. struct mm_struct *mm;
  719. unsigned int victim_points = 0;
  720. static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL,
  721. DEFAULT_RATELIMIT_BURST);
  722. bool can_oom_reap = true;
  723. /*
  724. * If the task is already exiting, don't alarm the sysadmin or kill
  725. * its children or threads, just set TIF_MEMDIE so it can die quickly
  726. */
  727. task_lock(p);
  728. if (task_will_free_mem(p)) {
  729. mark_oom_victim(p);
  730. wake_oom_reaper(p);
  731. task_unlock(p);
  732. put_task_struct(p);
  733. return;
  734. }
  735. task_unlock(p);
  736. if (__ratelimit(&oom_rs))
  737. dump_header(oc, p);
  738. pr_err("%s: Kill process %d (%s) score %u or sacrifice child\n",
  739. message, task_pid_nr(p), p->comm, points);
  740. /*
  741. * If any of p's children has a different mm and is eligible for kill,
  742. * the one with the highest oom_badness() score is sacrificed for its
  743. * parent. This attempts to lose the minimal amount of work done while
  744. * still freeing memory.
  745. */
  746. read_lock(&tasklist_lock);
  747. for_each_thread(p, t) {
  748. list_for_each_entry(child, &t->children, sibling) {
  749. unsigned int child_points;
  750. if (process_shares_mm(child, p->mm))
  751. continue;
  752. /*
  753. * oom_badness() returns 0 if the thread is unkillable
  754. */
  755. child_points = oom_badness(child,
  756. oc->memcg, oc->nodemask, totalpages);
  757. if (child_points > victim_points) {
  758. put_task_struct(victim);
  759. victim = child;
  760. victim_points = child_points;
  761. get_task_struct(victim);
  762. }
  763. }
  764. }
  765. read_unlock(&tasklist_lock);
  766. p = find_lock_task_mm(victim);
  767. if (!p) {
  768. put_task_struct(victim);
  769. return;
  770. } else if (victim != p) {
  771. get_task_struct(p);
  772. put_task_struct(victim);
  773. victim = p;
  774. }
  775. /* Get a reference to safely compare mm after task_unlock(victim) */
  776. mm = victim->mm;
  777. atomic_inc(&mm->mm_count);
  778. /*
  779. * We should send SIGKILL before setting TIF_MEMDIE in order to prevent
  780. * the OOM victim from depleting the memory reserves from the user
  781. * space under its control.
  782. */
  783. do_send_sig_info(SIGKILL, SEND_SIG_FORCED, victim, true);
  784. mark_oom_victim(victim);
  785. pr_err("Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
  786. task_pid_nr(victim), victim->comm, K(victim->mm->total_vm),
  787. K(get_mm_counter(victim->mm, MM_ANONPAGES)),
  788. K(get_mm_counter(victim->mm, MM_FILEPAGES)),
  789. K(get_mm_counter(victim->mm, MM_SHMEMPAGES)));
  790. task_unlock(victim);
  791. /*
  792. * Kill all user processes sharing victim->mm in other thread groups, if
  793. * any. They don't get access to memory reserves, though, to avoid
  794. * depletion of all memory. This prevents mm->mmap_sem livelock when an
  795. * oom killed thread cannot exit because it requires the semaphore and
  796. * its contended by another thread trying to allocate memory itself.
  797. * That thread will now get access to memory reserves since it has a
  798. * pending fatal signal.
  799. */
  800. rcu_read_lock();
  801. for_each_process(p) {
  802. if (!process_shares_mm(p, mm))
  803. continue;
  804. if (same_thread_group(p, victim))
  805. continue;
  806. if (unlikely(p->flags & PF_KTHREAD) || is_global_init(p)) {
  807. /*
  808. * We cannot use oom_reaper for the mm shared by this
  809. * process because it wouldn't get killed and so the
  810. * memory might be still used. Hide the mm from the oom
  811. * killer to guarantee OOM forward progress.
  812. */
  813. can_oom_reap = false;
  814. set_bit(MMF_OOM_REAPED, &mm->flags);
  815. pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n",
  816. task_pid_nr(victim), victim->comm,
  817. task_pid_nr(p), p->comm);
  818. continue;
  819. }
  820. do_send_sig_info(SIGKILL, SEND_SIG_FORCED, p, true);
  821. }
  822. rcu_read_unlock();
  823. if (can_oom_reap)
  824. wake_oom_reaper(victim);
  825. mmdrop(mm);
  826. put_task_struct(victim);
  827. }
  828. #undef K
  829. /*
  830. * Determines whether the kernel must panic because of the panic_on_oom sysctl.
  831. */
  832. void check_panic_on_oom(struct oom_control *oc, enum oom_constraint constraint)
  833. {
  834. if (likely(!sysctl_panic_on_oom))
  835. return;
  836. if (sysctl_panic_on_oom != 2) {
  837. /*
  838. * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
  839. * does not panic for cpuset, mempolicy, or memcg allocation
  840. * failures.
  841. */
  842. if (constraint != CONSTRAINT_NONE)
  843. return;
  844. }
  845. /* Do not panic for oom kills triggered by sysrq */
  846. if (is_sysrq_oom(oc))
  847. return;
  848. dump_header(oc, NULL);
  849. panic("Out of memory: %s panic_on_oom is enabled\n",
  850. sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
  851. }
  852. static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
  853. int register_oom_notifier(struct notifier_block *nb)
  854. {
  855. return blocking_notifier_chain_register(&oom_notify_list, nb);
  856. }
  857. EXPORT_SYMBOL_GPL(register_oom_notifier);
  858. int unregister_oom_notifier(struct notifier_block *nb)
  859. {
  860. return blocking_notifier_chain_unregister(&oom_notify_list, nb);
  861. }
  862. EXPORT_SYMBOL_GPL(unregister_oom_notifier);
  863. /**
  864. * out_of_memory - kill the "best" process when we run out of memory
  865. * @oc: pointer to struct oom_control
  866. *
  867. * If we run out of memory, we have the choice between either
  868. * killing a random task (bad), letting the system crash (worse)
  869. * OR try to be smart about which process to kill. Note that we
  870. * don't have to be perfect here, we just have to be good.
  871. */
  872. bool out_of_memory(struct oom_control *oc)
  873. {
  874. struct task_struct *p;
  875. unsigned long totalpages;
  876. unsigned long freed = 0;
  877. unsigned int uninitialized_var(points);
  878. enum oom_constraint constraint = CONSTRAINT_NONE;
  879. if (oom_killer_disabled)
  880. return false;
  881. blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
  882. if (freed > 0)
  883. /* Got some memory back in the last second. */
  884. return true;
  885. /*
  886. * If current has a pending SIGKILL or is exiting, then automatically
  887. * select it. The goal is to allow it to allocate so that it may
  888. * quickly exit and free its memory.
  889. */
  890. if (task_will_free_mem(current)) {
  891. mark_oom_victim(current);
  892. wake_oom_reaper(current);
  893. return true;
  894. }
  895. /*
  896. * The OOM killer does not compensate for IO-less reclaim.
  897. * pagefault_out_of_memory lost its gfp context so we have to
  898. * make sure exclude 0 mask - all other users should have at least
  899. * ___GFP_DIRECT_RECLAIM to get here.
  900. */
  901. if (oc->gfp_mask && !(oc->gfp_mask & (__GFP_FS|__GFP_NOFAIL)))
  902. return true;
  903. /*
  904. * Check if there were limitations on the allocation (only relevant for
  905. * NUMA) that may require different handling.
  906. */
  907. constraint = constrained_alloc(oc, &totalpages);
  908. if (constraint != CONSTRAINT_MEMORY_POLICY)
  909. oc->nodemask = NULL;
  910. check_panic_on_oom(oc, constraint);
  911. if (sysctl_oom_kill_allocating_task && current->mm &&
  912. !oom_unkillable_task(current, NULL, oc->nodemask) &&
  913. current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
  914. get_task_struct(current);
  915. oom_kill_process(oc, current, 0, totalpages,
  916. "Out of memory (oom_kill_allocating_task)");
  917. return true;
  918. }
  919. p = select_bad_process(oc, &points, totalpages);
  920. /* Found nothing?!?! Either we hang forever, or we panic. */
  921. if (!p && !is_sysrq_oom(oc)) {
  922. dump_header(oc, NULL);
  923. panic("Out of memory and no killable processes...\n");
  924. }
  925. if (p && p != (void *)-1UL) {
  926. oom_kill_process(oc, p, points, totalpages, "Out of memory");
  927. /*
  928. * Give the killed process a good chance to exit before trying
  929. * to allocate memory again.
  930. */
  931. schedule_timeout_killable(1);
  932. }
  933. return true;
  934. }
  935. /*
  936. * The pagefault handler calls here because it is out of memory, so kill a
  937. * memory-hogging task. If oom_lock is held by somebody else, a parallel oom
  938. * killing is already in progress so do nothing.
  939. */
  940. void pagefault_out_of_memory(void)
  941. {
  942. struct oom_control oc = {
  943. .zonelist = NULL,
  944. .nodemask = NULL,
  945. .memcg = NULL,
  946. .gfp_mask = 0,
  947. .order = 0,
  948. };
  949. if (mem_cgroup_oom_synchronize(true))
  950. return;
  951. if (!mutex_trylock(&oom_lock))
  952. return;
  953. if (!out_of_memory(&oc)) {
  954. /*
  955. * There shouldn't be any user tasks runnable while the
  956. * OOM killer is disabled, so the current task has to
  957. * be a racing OOM victim for which oom_killer_disable()
  958. * is waiting for.
  959. */
  960. WARN_ON(test_thread_flag(TIF_MEMDIE));
  961. }
  962. mutex_unlock(&oom_lock);
  963. }