memcontrol.c 153 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047
  1. /* memcontrol.c - Memory Controller
  2. *
  3. * Copyright IBM Corporation, 2007
  4. * Author Balbir Singh <balbir@linux.vnet.ibm.com>
  5. *
  6. * Copyright 2007 OpenVZ SWsoft Inc
  7. * Author: Pavel Emelianov <xemul@openvz.org>
  8. *
  9. * Memory thresholds
  10. * Copyright (C) 2009 Nokia Corporation
  11. * Author: Kirill A. Shutemov
  12. *
  13. * Kernel Memory Controller
  14. * Copyright (C) 2012 Parallels Inc. and Google Inc.
  15. * Authors: Glauber Costa and Suleiman Souhlal
  16. *
  17. * Native page reclaim
  18. * Charge lifetime sanitation
  19. * Lockless page tracking & accounting
  20. * Unified hierarchy configuration model
  21. * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
  22. *
  23. * This program is free software; you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation; either version 2 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. */
  33. #include <linux/page_counter.h>
  34. #include <linux/memcontrol.h>
  35. #include <linux/cgroup.h>
  36. #include <linux/mm.h>
  37. #include <linux/hugetlb.h>
  38. #include <linux/pagemap.h>
  39. #include <linux/smp.h>
  40. #include <linux/page-flags.h>
  41. #include <linux/backing-dev.h>
  42. #include <linux/bit_spinlock.h>
  43. #include <linux/rcupdate.h>
  44. #include <linux/limits.h>
  45. #include <linux/export.h>
  46. #include <linux/mutex.h>
  47. #include <linux/rbtree.h>
  48. #include <linux/slab.h>
  49. #include <linux/swap.h>
  50. #include <linux/swapops.h>
  51. #include <linux/spinlock.h>
  52. #include <linux/eventfd.h>
  53. #include <linux/poll.h>
  54. #include <linux/sort.h>
  55. #include <linux/fs.h>
  56. #include <linux/seq_file.h>
  57. #include <linux/vmpressure.h>
  58. #include <linux/mm_inline.h>
  59. #include <linux/swap_cgroup.h>
  60. #include <linux/cpu.h>
  61. #include <linux/oom.h>
  62. #include <linux/lockdep.h>
  63. #include <linux/file.h>
  64. #include <linux/tracehook.h>
  65. #include "internal.h"
  66. #include <net/sock.h>
  67. #include <net/ip.h>
  68. #include "slab.h"
  69. #include <asm/uaccess.h>
  70. #include <trace/events/vmscan.h>
  71. struct cgroup_subsys memory_cgrp_subsys __read_mostly;
  72. EXPORT_SYMBOL(memory_cgrp_subsys);
  73. struct mem_cgroup *root_mem_cgroup __read_mostly;
  74. #define MEM_CGROUP_RECLAIM_RETRIES 5
  75. /* Socket memory accounting disabled? */
  76. static bool cgroup_memory_nosocket;
  77. /* Kernel memory accounting disabled? */
  78. static bool cgroup_memory_nokmem;
  79. /* Whether the swap controller is active */
  80. #ifdef CONFIG_MEMCG_SWAP
  81. int do_swap_account __read_mostly;
  82. #else
  83. #define do_swap_account 0
  84. #endif
  85. /* Whether legacy memory+swap accounting is active */
  86. static bool do_memsw_account(void)
  87. {
  88. return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
  89. }
  90. static const char * const mem_cgroup_stat_names[] = {
  91. "cache",
  92. "rss",
  93. "rss_huge",
  94. "mapped_file",
  95. "dirty",
  96. "writeback",
  97. "swap",
  98. };
  99. static const char * const mem_cgroup_events_names[] = {
  100. "pgpgin",
  101. "pgpgout",
  102. "pgfault",
  103. "pgmajfault",
  104. };
  105. static const char * const mem_cgroup_lru_names[] = {
  106. "inactive_anon",
  107. "active_anon",
  108. "inactive_file",
  109. "active_file",
  110. "unevictable",
  111. };
  112. #define THRESHOLDS_EVENTS_TARGET 128
  113. #define SOFTLIMIT_EVENTS_TARGET 1024
  114. #define NUMAINFO_EVENTS_TARGET 1024
  115. /*
  116. * Cgroups above their limits are maintained in a RB-Tree, independent of
  117. * their hierarchy representation
  118. */
  119. struct mem_cgroup_tree_per_node {
  120. struct rb_root rb_root;
  121. spinlock_t lock;
  122. };
  123. struct mem_cgroup_tree {
  124. struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
  125. };
  126. static struct mem_cgroup_tree soft_limit_tree __read_mostly;
  127. /* for OOM */
  128. struct mem_cgroup_eventfd_list {
  129. struct list_head list;
  130. struct eventfd_ctx *eventfd;
  131. };
  132. /*
  133. * cgroup_event represents events which userspace want to receive.
  134. */
  135. struct mem_cgroup_event {
  136. /*
  137. * memcg which the event belongs to.
  138. */
  139. struct mem_cgroup *memcg;
  140. /*
  141. * eventfd to signal userspace about the event.
  142. */
  143. struct eventfd_ctx *eventfd;
  144. /*
  145. * Each of these stored in a list by the cgroup.
  146. */
  147. struct list_head list;
  148. /*
  149. * register_event() callback will be used to add new userspace
  150. * waiter for changes related to this event. Use eventfd_signal()
  151. * on eventfd to send notification to userspace.
  152. */
  153. int (*register_event)(struct mem_cgroup *memcg,
  154. struct eventfd_ctx *eventfd, const char *args);
  155. /*
  156. * unregister_event() callback will be called when userspace closes
  157. * the eventfd or on cgroup removing. This callback must be set,
  158. * if you want provide notification functionality.
  159. */
  160. void (*unregister_event)(struct mem_cgroup *memcg,
  161. struct eventfd_ctx *eventfd);
  162. /*
  163. * All fields below needed to unregister event when
  164. * userspace closes eventfd.
  165. */
  166. poll_table pt;
  167. wait_queue_head_t *wqh;
  168. wait_queue_t wait;
  169. struct work_struct remove;
  170. };
  171. static void mem_cgroup_threshold(struct mem_cgroup *memcg);
  172. static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
  173. /* Stuffs for move charges at task migration. */
  174. /*
  175. * Types of charges to be moved.
  176. */
  177. #define MOVE_ANON 0x1U
  178. #define MOVE_FILE 0x2U
  179. #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
  180. /* "mc" and its members are protected by cgroup_mutex */
  181. static struct move_charge_struct {
  182. spinlock_t lock; /* for from, to */
  183. struct mm_struct *mm;
  184. struct mem_cgroup *from;
  185. struct mem_cgroup *to;
  186. unsigned long flags;
  187. unsigned long precharge;
  188. unsigned long moved_charge;
  189. unsigned long moved_swap;
  190. struct task_struct *moving_task; /* a task moving charges */
  191. wait_queue_head_t waitq; /* a waitq for other context */
  192. } mc = {
  193. .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
  194. .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
  195. };
  196. /*
  197. * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
  198. * limit reclaim to prevent infinite loops, if they ever occur.
  199. */
  200. #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
  201. #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
  202. enum charge_type {
  203. MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
  204. MEM_CGROUP_CHARGE_TYPE_ANON,
  205. MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
  206. MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
  207. NR_CHARGE_TYPE,
  208. };
  209. /* for encoding cft->private value on file */
  210. enum res_type {
  211. _MEM,
  212. _MEMSWAP,
  213. _OOM_TYPE,
  214. _KMEM,
  215. _TCP,
  216. };
  217. #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
  218. #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
  219. #define MEMFILE_ATTR(val) ((val) & 0xffff)
  220. /* Used for OOM nofiier */
  221. #define OOM_CONTROL (0)
  222. /* Some nice accessors for the vmpressure. */
  223. struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
  224. {
  225. if (!memcg)
  226. memcg = root_mem_cgroup;
  227. return &memcg->vmpressure;
  228. }
  229. struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
  230. {
  231. return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
  232. }
  233. static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
  234. {
  235. return (memcg == root_mem_cgroup);
  236. }
  237. #ifndef CONFIG_SLOB
  238. /*
  239. * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
  240. * The main reason for not using cgroup id for this:
  241. * this works better in sparse environments, where we have a lot of memcgs,
  242. * but only a few kmem-limited. Or also, if we have, for instance, 200
  243. * memcgs, and none but the 200th is kmem-limited, we'd have to have a
  244. * 200 entry array for that.
  245. *
  246. * The current size of the caches array is stored in memcg_nr_cache_ids. It
  247. * will double each time we have to increase it.
  248. */
  249. static DEFINE_IDA(memcg_cache_ida);
  250. int memcg_nr_cache_ids;
  251. /* Protects memcg_nr_cache_ids */
  252. static DECLARE_RWSEM(memcg_cache_ids_sem);
  253. void memcg_get_cache_ids(void)
  254. {
  255. down_read(&memcg_cache_ids_sem);
  256. }
  257. void memcg_put_cache_ids(void)
  258. {
  259. up_read(&memcg_cache_ids_sem);
  260. }
  261. /*
  262. * MIN_SIZE is different than 1, because we would like to avoid going through
  263. * the alloc/free process all the time. In a small machine, 4 kmem-limited
  264. * cgroups is a reasonable guess. In the future, it could be a parameter or
  265. * tunable, but that is strictly not necessary.
  266. *
  267. * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
  268. * this constant directly from cgroup, but it is understandable that this is
  269. * better kept as an internal representation in cgroup.c. In any case, the
  270. * cgrp_id space is not getting any smaller, and we don't have to necessarily
  271. * increase ours as well if it increases.
  272. */
  273. #define MEMCG_CACHES_MIN_SIZE 4
  274. #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
  275. /*
  276. * A lot of the calls to the cache allocation functions are expected to be
  277. * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
  278. * conditional to this static branch, we'll have to allow modules that does
  279. * kmem_cache_alloc and the such to see this symbol as well
  280. */
  281. DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
  282. EXPORT_SYMBOL(memcg_kmem_enabled_key);
  283. #endif /* !CONFIG_SLOB */
  284. /**
  285. * mem_cgroup_css_from_page - css of the memcg associated with a page
  286. * @page: page of interest
  287. *
  288. * If memcg is bound to the default hierarchy, css of the memcg associated
  289. * with @page is returned. The returned css remains associated with @page
  290. * until it is released.
  291. *
  292. * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
  293. * is returned.
  294. */
  295. struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
  296. {
  297. struct mem_cgroup *memcg;
  298. memcg = page->mem_cgroup;
  299. if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
  300. memcg = root_mem_cgroup;
  301. return &memcg->css;
  302. }
  303. /**
  304. * page_cgroup_ino - return inode number of the memcg a page is charged to
  305. * @page: the page
  306. *
  307. * Look up the closest online ancestor of the memory cgroup @page is charged to
  308. * and return its inode number or 0 if @page is not charged to any cgroup. It
  309. * is safe to call this function without holding a reference to @page.
  310. *
  311. * Note, this function is inherently racy, because there is nothing to prevent
  312. * the cgroup inode from getting torn down and potentially reallocated a moment
  313. * after page_cgroup_ino() returns, so it only should be used by callers that
  314. * do not care (such as procfs interfaces).
  315. */
  316. ino_t page_cgroup_ino(struct page *page)
  317. {
  318. struct mem_cgroup *memcg;
  319. unsigned long ino = 0;
  320. rcu_read_lock();
  321. memcg = READ_ONCE(page->mem_cgroup);
  322. while (memcg && !(memcg->css.flags & CSS_ONLINE))
  323. memcg = parent_mem_cgroup(memcg);
  324. if (memcg)
  325. ino = cgroup_ino(memcg->css.cgroup);
  326. rcu_read_unlock();
  327. return ino;
  328. }
  329. static struct mem_cgroup_per_node *
  330. mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
  331. {
  332. int nid = page_to_nid(page);
  333. return memcg->nodeinfo[nid];
  334. }
  335. static struct mem_cgroup_tree_per_node *
  336. soft_limit_tree_node(int nid)
  337. {
  338. return soft_limit_tree.rb_tree_per_node[nid];
  339. }
  340. static struct mem_cgroup_tree_per_node *
  341. soft_limit_tree_from_page(struct page *page)
  342. {
  343. int nid = page_to_nid(page);
  344. return soft_limit_tree.rb_tree_per_node[nid];
  345. }
  346. static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
  347. struct mem_cgroup_tree_per_node *mctz,
  348. unsigned long new_usage_in_excess)
  349. {
  350. struct rb_node **p = &mctz->rb_root.rb_node;
  351. struct rb_node *parent = NULL;
  352. struct mem_cgroup_per_node *mz_node;
  353. if (mz->on_tree)
  354. return;
  355. mz->usage_in_excess = new_usage_in_excess;
  356. if (!mz->usage_in_excess)
  357. return;
  358. while (*p) {
  359. parent = *p;
  360. mz_node = rb_entry(parent, struct mem_cgroup_per_node,
  361. tree_node);
  362. if (mz->usage_in_excess < mz_node->usage_in_excess)
  363. p = &(*p)->rb_left;
  364. /*
  365. * We can't avoid mem cgroups that are over their soft
  366. * limit by the same amount
  367. */
  368. else if (mz->usage_in_excess >= mz_node->usage_in_excess)
  369. p = &(*p)->rb_right;
  370. }
  371. rb_link_node(&mz->tree_node, parent, p);
  372. rb_insert_color(&mz->tree_node, &mctz->rb_root);
  373. mz->on_tree = true;
  374. }
  375. static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
  376. struct mem_cgroup_tree_per_node *mctz)
  377. {
  378. if (!mz->on_tree)
  379. return;
  380. rb_erase(&mz->tree_node, &mctz->rb_root);
  381. mz->on_tree = false;
  382. }
  383. static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
  384. struct mem_cgroup_tree_per_node *mctz)
  385. {
  386. unsigned long flags;
  387. spin_lock_irqsave(&mctz->lock, flags);
  388. __mem_cgroup_remove_exceeded(mz, mctz);
  389. spin_unlock_irqrestore(&mctz->lock, flags);
  390. }
  391. static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
  392. {
  393. unsigned long nr_pages = page_counter_read(&memcg->memory);
  394. unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
  395. unsigned long excess = 0;
  396. if (nr_pages > soft_limit)
  397. excess = nr_pages - soft_limit;
  398. return excess;
  399. }
  400. static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
  401. {
  402. unsigned long excess;
  403. struct mem_cgroup_per_node *mz;
  404. struct mem_cgroup_tree_per_node *mctz;
  405. mctz = soft_limit_tree_from_page(page);
  406. /*
  407. * Necessary to update all ancestors when hierarchy is used.
  408. * because their event counter is not touched.
  409. */
  410. for (; memcg; memcg = parent_mem_cgroup(memcg)) {
  411. mz = mem_cgroup_page_nodeinfo(memcg, page);
  412. excess = soft_limit_excess(memcg);
  413. /*
  414. * We have to update the tree if mz is on RB-tree or
  415. * mem is over its softlimit.
  416. */
  417. if (excess || mz->on_tree) {
  418. unsigned long flags;
  419. spin_lock_irqsave(&mctz->lock, flags);
  420. /* if on-tree, remove it */
  421. if (mz->on_tree)
  422. __mem_cgroup_remove_exceeded(mz, mctz);
  423. /*
  424. * Insert again. mz->usage_in_excess will be updated.
  425. * If excess is 0, no tree ops.
  426. */
  427. __mem_cgroup_insert_exceeded(mz, mctz, excess);
  428. spin_unlock_irqrestore(&mctz->lock, flags);
  429. }
  430. }
  431. }
  432. static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
  433. {
  434. struct mem_cgroup_tree_per_node *mctz;
  435. struct mem_cgroup_per_node *mz;
  436. int nid;
  437. for_each_node(nid) {
  438. mz = mem_cgroup_nodeinfo(memcg, nid);
  439. mctz = soft_limit_tree_node(nid);
  440. mem_cgroup_remove_exceeded(mz, mctz);
  441. }
  442. }
  443. static struct mem_cgroup_per_node *
  444. __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
  445. {
  446. struct rb_node *rightmost = NULL;
  447. struct mem_cgroup_per_node *mz;
  448. retry:
  449. mz = NULL;
  450. rightmost = rb_last(&mctz->rb_root);
  451. if (!rightmost)
  452. goto done; /* Nothing to reclaim from */
  453. mz = rb_entry(rightmost, struct mem_cgroup_per_node, tree_node);
  454. /*
  455. * Remove the node now but someone else can add it back,
  456. * we will to add it back at the end of reclaim to its correct
  457. * position in the tree.
  458. */
  459. __mem_cgroup_remove_exceeded(mz, mctz);
  460. if (!soft_limit_excess(mz->memcg) ||
  461. !css_tryget_online(&mz->memcg->css))
  462. goto retry;
  463. done:
  464. return mz;
  465. }
  466. static struct mem_cgroup_per_node *
  467. mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
  468. {
  469. struct mem_cgroup_per_node *mz;
  470. spin_lock_irq(&mctz->lock);
  471. mz = __mem_cgroup_largest_soft_limit_node(mctz);
  472. spin_unlock_irq(&mctz->lock);
  473. return mz;
  474. }
  475. /*
  476. * Return page count for single (non recursive) @memcg.
  477. *
  478. * Implementation Note: reading percpu statistics for memcg.
  479. *
  480. * Both of vmstat[] and percpu_counter has threshold and do periodic
  481. * synchronization to implement "quick" read. There are trade-off between
  482. * reading cost and precision of value. Then, we may have a chance to implement
  483. * a periodic synchronization of counter in memcg's counter.
  484. *
  485. * But this _read() function is used for user interface now. The user accounts
  486. * memory usage by memory cgroup and he _always_ requires exact value because
  487. * he accounts memory. Even if we provide quick-and-fuzzy read, we always
  488. * have to visit all online cpus and make sum. So, for now, unnecessary
  489. * synchronization is not implemented. (just implemented for cpu hotplug)
  490. *
  491. * If there are kernel internal actions which can make use of some not-exact
  492. * value, and reading all cpu value can be performance bottleneck in some
  493. * common workload, threshold and synchronization as vmstat[] should be
  494. * implemented.
  495. */
  496. static unsigned long
  497. mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
  498. {
  499. long val = 0;
  500. int cpu;
  501. /* Per-cpu values can be negative, use a signed accumulator */
  502. for_each_possible_cpu(cpu)
  503. val += per_cpu(memcg->stat->count[idx], cpu);
  504. /*
  505. * Summing races with updates, so val may be negative. Avoid exposing
  506. * transient negative values.
  507. */
  508. if (val < 0)
  509. val = 0;
  510. return val;
  511. }
  512. static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
  513. enum mem_cgroup_events_index idx)
  514. {
  515. unsigned long val = 0;
  516. int cpu;
  517. for_each_possible_cpu(cpu)
  518. val += per_cpu(memcg->stat->events[idx], cpu);
  519. return val;
  520. }
  521. static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
  522. struct page *page,
  523. bool compound, int nr_pages)
  524. {
  525. /*
  526. * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
  527. * counted as CACHE even if it's on ANON LRU.
  528. */
  529. if (PageAnon(page))
  530. __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
  531. nr_pages);
  532. else
  533. __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
  534. nr_pages);
  535. if (compound) {
  536. VM_BUG_ON_PAGE(!PageTransHuge(page), page);
  537. __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
  538. nr_pages);
  539. }
  540. /* pagein of a big page is an event. So, ignore page size */
  541. if (nr_pages > 0)
  542. __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
  543. else {
  544. __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
  545. nr_pages = -nr_pages; /* for event */
  546. }
  547. __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
  548. }
  549. unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
  550. int nid, unsigned int lru_mask)
  551. {
  552. unsigned long nr = 0;
  553. struct mem_cgroup_per_node *mz;
  554. enum lru_list lru;
  555. VM_BUG_ON((unsigned)nid >= nr_node_ids);
  556. for_each_lru(lru) {
  557. if (!(BIT(lru) & lru_mask))
  558. continue;
  559. mz = mem_cgroup_nodeinfo(memcg, nid);
  560. nr += mz->lru_size[lru];
  561. }
  562. return nr;
  563. }
  564. static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
  565. unsigned int lru_mask)
  566. {
  567. unsigned long nr = 0;
  568. int nid;
  569. for_each_node_state(nid, N_MEMORY)
  570. nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
  571. return nr;
  572. }
  573. static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
  574. enum mem_cgroup_events_target target)
  575. {
  576. unsigned long val, next;
  577. val = __this_cpu_read(memcg->stat->nr_page_events);
  578. next = __this_cpu_read(memcg->stat->targets[target]);
  579. /* from time_after() in jiffies.h */
  580. if ((long)next - (long)val < 0) {
  581. switch (target) {
  582. case MEM_CGROUP_TARGET_THRESH:
  583. next = val + THRESHOLDS_EVENTS_TARGET;
  584. break;
  585. case MEM_CGROUP_TARGET_SOFTLIMIT:
  586. next = val + SOFTLIMIT_EVENTS_TARGET;
  587. break;
  588. case MEM_CGROUP_TARGET_NUMAINFO:
  589. next = val + NUMAINFO_EVENTS_TARGET;
  590. break;
  591. default:
  592. break;
  593. }
  594. __this_cpu_write(memcg->stat->targets[target], next);
  595. return true;
  596. }
  597. return false;
  598. }
  599. /*
  600. * Check events in order.
  601. *
  602. */
  603. static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
  604. {
  605. /* threshold event is triggered in finer grain than soft limit */
  606. if (unlikely(mem_cgroup_event_ratelimit(memcg,
  607. MEM_CGROUP_TARGET_THRESH))) {
  608. bool do_softlimit;
  609. bool do_numainfo __maybe_unused;
  610. do_softlimit = mem_cgroup_event_ratelimit(memcg,
  611. MEM_CGROUP_TARGET_SOFTLIMIT);
  612. #if MAX_NUMNODES > 1
  613. do_numainfo = mem_cgroup_event_ratelimit(memcg,
  614. MEM_CGROUP_TARGET_NUMAINFO);
  615. #endif
  616. mem_cgroup_threshold(memcg);
  617. if (unlikely(do_softlimit))
  618. mem_cgroup_update_tree(memcg, page);
  619. #if MAX_NUMNODES > 1
  620. if (unlikely(do_numainfo))
  621. atomic_inc(&memcg->numainfo_events);
  622. #endif
  623. }
  624. }
  625. struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
  626. {
  627. /*
  628. * mm_update_next_owner() may clear mm->owner to NULL
  629. * if it races with swapoff, page migration, etc.
  630. * So this can be called with p == NULL.
  631. */
  632. if (unlikely(!p))
  633. return NULL;
  634. return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
  635. }
  636. EXPORT_SYMBOL(mem_cgroup_from_task);
  637. static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
  638. {
  639. struct mem_cgroup *memcg = NULL;
  640. rcu_read_lock();
  641. do {
  642. /*
  643. * Page cache insertions can happen withou an
  644. * actual mm context, e.g. during disk probing
  645. * on boot, loopback IO, acct() writes etc.
  646. */
  647. if (unlikely(!mm))
  648. memcg = root_mem_cgroup;
  649. else {
  650. memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
  651. if (unlikely(!memcg))
  652. memcg = root_mem_cgroup;
  653. }
  654. } while (!css_tryget_online(&memcg->css));
  655. rcu_read_unlock();
  656. return memcg;
  657. }
  658. /**
  659. * mem_cgroup_iter - iterate over memory cgroup hierarchy
  660. * @root: hierarchy root
  661. * @prev: previously returned memcg, NULL on first invocation
  662. * @reclaim: cookie for shared reclaim walks, NULL for full walks
  663. *
  664. * Returns references to children of the hierarchy below @root, or
  665. * @root itself, or %NULL after a full round-trip.
  666. *
  667. * Caller must pass the return value in @prev on subsequent
  668. * invocations for reference counting, or use mem_cgroup_iter_break()
  669. * to cancel a hierarchy walk before the round-trip is complete.
  670. *
  671. * Reclaimers can specify a zone and a priority level in @reclaim to
  672. * divide up the memcgs in the hierarchy among all concurrent
  673. * reclaimers operating on the same zone and priority.
  674. */
  675. struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
  676. struct mem_cgroup *prev,
  677. struct mem_cgroup_reclaim_cookie *reclaim)
  678. {
  679. struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
  680. struct cgroup_subsys_state *css = NULL;
  681. struct mem_cgroup *memcg = NULL;
  682. struct mem_cgroup *pos = NULL;
  683. if (mem_cgroup_disabled())
  684. return NULL;
  685. if (!root)
  686. root = root_mem_cgroup;
  687. if (prev && !reclaim)
  688. pos = prev;
  689. if (!root->use_hierarchy && root != root_mem_cgroup) {
  690. if (prev)
  691. goto out;
  692. return root;
  693. }
  694. rcu_read_lock();
  695. if (reclaim) {
  696. struct mem_cgroup_per_node *mz;
  697. mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
  698. iter = &mz->iter[reclaim->priority];
  699. if (prev && reclaim->generation != iter->generation)
  700. goto out_unlock;
  701. while (1) {
  702. pos = READ_ONCE(iter->position);
  703. if (!pos || css_tryget(&pos->css))
  704. break;
  705. /*
  706. * css reference reached zero, so iter->position will
  707. * be cleared by ->css_released. However, we should not
  708. * rely on this happening soon, because ->css_released
  709. * is called from a work queue, and by busy-waiting we
  710. * might block it. So we clear iter->position right
  711. * away.
  712. */
  713. (void)cmpxchg(&iter->position, pos, NULL);
  714. }
  715. }
  716. if (pos)
  717. css = &pos->css;
  718. for (;;) {
  719. css = css_next_descendant_pre(css, &root->css);
  720. if (!css) {
  721. /*
  722. * Reclaimers share the hierarchy walk, and a
  723. * new one might jump in right at the end of
  724. * the hierarchy - make sure they see at least
  725. * one group and restart from the beginning.
  726. */
  727. if (!prev)
  728. continue;
  729. break;
  730. }
  731. /*
  732. * Verify the css and acquire a reference. The root
  733. * is provided by the caller, so we know it's alive
  734. * and kicking, and don't take an extra reference.
  735. */
  736. memcg = mem_cgroup_from_css(css);
  737. if (css == &root->css)
  738. break;
  739. if (css_tryget(css))
  740. break;
  741. memcg = NULL;
  742. }
  743. if (reclaim) {
  744. /*
  745. * The position could have already been updated by a competing
  746. * thread, so check that the value hasn't changed since we read
  747. * it to avoid reclaiming from the same cgroup twice.
  748. */
  749. (void)cmpxchg(&iter->position, pos, memcg);
  750. if (pos)
  751. css_put(&pos->css);
  752. if (!memcg)
  753. iter->generation++;
  754. else if (!prev)
  755. reclaim->generation = iter->generation;
  756. }
  757. out_unlock:
  758. rcu_read_unlock();
  759. out:
  760. if (prev && prev != root)
  761. css_put(&prev->css);
  762. return memcg;
  763. }
  764. /**
  765. * mem_cgroup_iter_break - abort a hierarchy walk prematurely
  766. * @root: hierarchy root
  767. * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
  768. */
  769. void mem_cgroup_iter_break(struct mem_cgroup *root,
  770. struct mem_cgroup *prev)
  771. {
  772. if (!root)
  773. root = root_mem_cgroup;
  774. if (prev && prev != root)
  775. css_put(&prev->css);
  776. }
  777. static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
  778. {
  779. struct mem_cgroup *memcg = dead_memcg;
  780. struct mem_cgroup_reclaim_iter *iter;
  781. struct mem_cgroup_per_node *mz;
  782. int nid;
  783. int i;
  784. while ((memcg = parent_mem_cgroup(memcg))) {
  785. for_each_node(nid) {
  786. mz = mem_cgroup_nodeinfo(memcg, nid);
  787. for (i = 0; i <= DEF_PRIORITY; i++) {
  788. iter = &mz->iter[i];
  789. cmpxchg(&iter->position,
  790. dead_memcg, NULL);
  791. }
  792. }
  793. }
  794. }
  795. /*
  796. * Iteration constructs for visiting all cgroups (under a tree). If
  797. * loops are exited prematurely (break), mem_cgroup_iter_break() must
  798. * be used for reference counting.
  799. */
  800. #define for_each_mem_cgroup_tree(iter, root) \
  801. for (iter = mem_cgroup_iter(root, NULL, NULL); \
  802. iter != NULL; \
  803. iter = mem_cgroup_iter(root, iter, NULL))
  804. #define for_each_mem_cgroup(iter) \
  805. for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
  806. iter != NULL; \
  807. iter = mem_cgroup_iter(NULL, iter, NULL))
  808. /**
  809. * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
  810. * @page: the page
  811. * @zone: zone of the page
  812. *
  813. * This function is only safe when following the LRU page isolation
  814. * and putback protocol: the LRU lock must be held, and the page must
  815. * either be PageLRU() or the caller must have isolated/allocated it.
  816. */
  817. struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
  818. {
  819. struct mem_cgroup_per_node *mz;
  820. struct mem_cgroup *memcg;
  821. struct lruvec *lruvec;
  822. if (mem_cgroup_disabled()) {
  823. lruvec = &pgdat->lruvec;
  824. goto out;
  825. }
  826. memcg = page->mem_cgroup;
  827. /*
  828. * Swapcache readahead pages are added to the LRU - and
  829. * possibly migrated - before they are charged.
  830. */
  831. if (!memcg)
  832. memcg = root_mem_cgroup;
  833. mz = mem_cgroup_page_nodeinfo(memcg, page);
  834. lruvec = &mz->lruvec;
  835. out:
  836. /*
  837. * Since a node can be onlined after the mem_cgroup was created,
  838. * we have to be prepared to initialize lruvec->zone here;
  839. * and if offlined then reonlined, we need to reinitialize it.
  840. */
  841. if (unlikely(lruvec->pgdat != pgdat))
  842. lruvec->pgdat = pgdat;
  843. return lruvec;
  844. }
  845. /**
  846. * mem_cgroup_update_lru_size - account for adding or removing an lru page
  847. * @lruvec: mem_cgroup per zone lru vector
  848. * @lru: index of lru list the page is sitting on
  849. * @nr_pages: positive when adding or negative when removing
  850. *
  851. * This function must be called under lru_lock, just before a page is added
  852. * to or just after a page is removed from an lru list (that ordering being
  853. * so as to allow it to check that lru_size 0 is consistent with list_empty).
  854. */
  855. void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
  856. int nr_pages)
  857. {
  858. struct mem_cgroup_per_node *mz;
  859. unsigned long *lru_size;
  860. long size;
  861. bool empty;
  862. if (mem_cgroup_disabled())
  863. return;
  864. mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
  865. lru_size = mz->lru_size + lru;
  866. empty = list_empty(lruvec->lists + lru);
  867. if (nr_pages < 0)
  868. *lru_size += nr_pages;
  869. size = *lru_size;
  870. if (WARN_ONCE(size < 0 || empty != !size,
  871. "%s(%p, %d, %d): lru_size %ld but %sempty\n",
  872. __func__, lruvec, lru, nr_pages, size, empty ? "" : "not ")) {
  873. VM_BUG_ON(1);
  874. *lru_size = 0;
  875. }
  876. if (nr_pages > 0)
  877. *lru_size += nr_pages;
  878. }
  879. bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
  880. {
  881. struct mem_cgroup *task_memcg;
  882. struct task_struct *p;
  883. bool ret;
  884. p = find_lock_task_mm(task);
  885. if (p) {
  886. task_memcg = get_mem_cgroup_from_mm(p->mm);
  887. task_unlock(p);
  888. } else {
  889. /*
  890. * All threads may have already detached their mm's, but the oom
  891. * killer still needs to detect if they have already been oom
  892. * killed to prevent needlessly killing additional tasks.
  893. */
  894. rcu_read_lock();
  895. task_memcg = mem_cgroup_from_task(task);
  896. css_get(&task_memcg->css);
  897. rcu_read_unlock();
  898. }
  899. ret = mem_cgroup_is_descendant(task_memcg, memcg);
  900. css_put(&task_memcg->css);
  901. return ret;
  902. }
  903. /**
  904. * mem_cgroup_margin - calculate chargeable space of a memory cgroup
  905. * @memcg: the memory cgroup
  906. *
  907. * Returns the maximum amount of memory @mem can be charged with, in
  908. * pages.
  909. */
  910. static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
  911. {
  912. unsigned long margin = 0;
  913. unsigned long count;
  914. unsigned long limit;
  915. count = page_counter_read(&memcg->memory);
  916. limit = READ_ONCE(memcg->memory.limit);
  917. if (count < limit)
  918. margin = limit - count;
  919. if (do_memsw_account()) {
  920. count = page_counter_read(&memcg->memsw);
  921. limit = READ_ONCE(memcg->memsw.limit);
  922. if (count <= limit)
  923. margin = min(margin, limit - count);
  924. else
  925. margin = 0;
  926. }
  927. return margin;
  928. }
  929. /*
  930. * A routine for checking "mem" is under move_account() or not.
  931. *
  932. * Checking a cgroup is mc.from or mc.to or under hierarchy of
  933. * moving cgroups. This is for waiting at high-memory pressure
  934. * caused by "move".
  935. */
  936. static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
  937. {
  938. struct mem_cgroup *from;
  939. struct mem_cgroup *to;
  940. bool ret = false;
  941. /*
  942. * Unlike task_move routines, we access mc.to, mc.from not under
  943. * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
  944. */
  945. spin_lock(&mc.lock);
  946. from = mc.from;
  947. to = mc.to;
  948. if (!from)
  949. goto unlock;
  950. ret = mem_cgroup_is_descendant(from, memcg) ||
  951. mem_cgroup_is_descendant(to, memcg);
  952. unlock:
  953. spin_unlock(&mc.lock);
  954. return ret;
  955. }
  956. static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
  957. {
  958. if (mc.moving_task && current != mc.moving_task) {
  959. if (mem_cgroup_under_move(memcg)) {
  960. DEFINE_WAIT(wait);
  961. prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
  962. /* moving charge context might have finished. */
  963. if (mc.moving_task)
  964. schedule();
  965. finish_wait(&mc.waitq, &wait);
  966. return true;
  967. }
  968. }
  969. return false;
  970. }
  971. #define K(x) ((x) << (PAGE_SHIFT-10))
  972. /**
  973. * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
  974. * @memcg: The memory cgroup that went over limit
  975. * @p: Task that is going to be killed
  976. *
  977. * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
  978. * enabled
  979. */
  980. void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
  981. {
  982. struct mem_cgroup *iter;
  983. unsigned int i;
  984. rcu_read_lock();
  985. if (p) {
  986. pr_info("Task in ");
  987. pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
  988. pr_cont(" killed as a result of limit of ");
  989. } else {
  990. pr_info("Memory limit reached of cgroup ");
  991. }
  992. pr_cont_cgroup_path(memcg->css.cgroup);
  993. pr_cont("\n");
  994. rcu_read_unlock();
  995. pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
  996. K((u64)page_counter_read(&memcg->memory)),
  997. K((u64)memcg->memory.limit), memcg->memory.failcnt);
  998. pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
  999. K((u64)page_counter_read(&memcg->memsw)),
  1000. K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
  1001. pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
  1002. K((u64)page_counter_read(&memcg->kmem)),
  1003. K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
  1004. for_each_mem_cgroup_tree(iter, memcg) {
  1005. pr_info("Memory cgroup stats for ");
  1006. pr_cont_cgroup_path(iter->css.cgroup);
  1007. pr_cont(":");
  1008. for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
  1009. if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
  1010. continue;
  1011. pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
  1012. K(mem_cgroup_read_stat(iter, i)));
  1013. }
  1014. for (i = 0; i < NR_LRU_LISTS; i++)
  1015. pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
  1016. K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
  1017. pr_cont("\n");
  1018. }
  1019. }
  1020. /*
  1021. * This function returns the number of memcg under hierarchy tree. Returns
  1022. * 1(self count) if no children.
  1023. */
  1024. static int mem_cgroup_count_children(struct mem_cgroup *memcg)
  1025. {
  1026. int num = 0;
  1027. struct mem_cgroup *iter;
  1028. for_each_mem_cgroup_tree(iter, memcg)
  1029. num++;
  1030. return num;
  1031. }
  1032. /*
  1033. * Return the memory (and swap, if configured) limit for a memcg.
  1034. */
  1035. static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
  1036. {
  1037. unsigned long limit;
  1038. limit = memcg->memory.limit;
  1039. if (mem_cgroup_swappiness(memcg)) {
  1040. unsigned long memsw_limit;
  1041. unsigned long swap_limit;
  1042. memsw_limit = memcg->memsw.limit;
  1043. swap_limit = memcg->swap.limit;
  1044. swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
  1045. limit = min(limit + swap_limit, memsw_limit);
  1046. }
  1047. return limit;
  1048. }
  1049. static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
  1050. int order)
  1051. {
  1052. struct oom_control oc = {
  1053. .zonelist = NULL,
  1054. .nodemask = NULL,
  1055. .memcg = memcg,
  1056. .gfp_mask = gfp_mask,
  1057. .order = order,
  1058. };
  1059. struct mem_cgroup *iter;
  1060. unsigned long chosen_points = 0;
  1061. unsigned long totalpages;
  1062. unsigned int points = 0;
  1063. struct task_struct *chosen = NULL;
  1064. mutex_lock(&oom_lock);
  1065. /*
  1066. * If current has a pending SIGKILL or is exiting, then automatically
  1067. * select it. The goal is to allow it to allocate so that it may
  1068. * quickly exit and free its memory.
  1069. */
  1070. if (task_will_free_mem(current)) {
  1071. mark_oom_victim(current);
  1072. wake_oom_reaper(current);
  1073. goto unlock;
  1074. }
  1075. check_panic_on_oom(&oc, CONSTRAINT_MEMCG);
  1076. totalpages = mem_cgroup_get_limit(memcg) ? : 1;
  1077. for_each_mem_cgroup_tree(iter, memcg) {
  1078. struct css_task_iter it;
  1079. struct task_struct *task;
  1080. css_task_iter_start(&iter->css, &it);
  1081. while ((task = css_task_iter_next(&it))) {
  1082. switch (oom_scan_process_thread(&oc, task)) {
  1083. case OOM_SCAN_SELECT:
  1084. if (chosen)
  1085. put_task_struct(chosen);
  1086. chosen = task;
  1087. chosen_points = ULONG_MAX;
  1088. get_task_struct(chosen);
  1089. /* fall through */
  1090. case OOM_SCAN_CONTINUE:
  1091. continue;
  1092. case OOM_SCAN_ABORT:
  1093. css_task_iter_end(&it);
  1094. mem_cgroup_iter_break(memcg, iter);
  1095. if (chosen)
  1096. put_task_struct(chosen);
  1097. /* Set a dummy value to return "true". */
  1098. chosen = (void *) 1;
  1099. goto unlock;
  1100. case OOM_SCAN_OK:
  1101. break;
  1102. };
  1103. points = oom_badness(task, memcg, NULL, totalpages);
  1104. if (!points || points < chosen_points)
  1105. continue;
  1106. /* Prefer thread group leaders for display purposes */
  1107. if (points == chosen_points &&
  1108. thread_group_leader(chosen))
  1109. continue;
  1110. if (chosen)
  1111. put_task_struct(chosen);
  1112. chosen = task;
  1113. chosen_points = points;
  1114. get_task_struct(chosen);
  1115. }
  1116. css_task_iter_end(&it);
  1117. }
  1118. if (chosen) {
  1119. points = chosen_points * 1000 / totalpages;
  1120. oom_kill_process(&oc, chosen, points, totalpages,
  1121. "Memory cgroup out of memory");
  1122. }
  1123. unlock:
  1124. mutex_unlock(&oom_lock);
  1125. return chosen;
  1126. }
  1127. #if MAX_NUMNODES > 1
  1128. /**
  1129. * test_mem_cgroup_node_reclaimable
  1130. * @memcg: the target memcg
  1131. * @nid: the node ID to be checked.
  1132. * @noswap : specify true here if the user wants flle only information.
  1133. *
  1134. * This function returns whether the specified memcg contains any
  1135. * reclaimable pages on a node. Returns true if there are any reclaimable
  1136. * pages in the node.
  1137. */
  1138. static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
  1139. int nid, bool noswap)
  1140. {
  1141. if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
  1142. return true;
  1143. if (noswap || !total_swap_pages)
  1144. return false;
  1145. if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
  1146. return true;
  1147. return false;
  1148. }
  1149. /*
  1150. * Always updating the nodemask is not very good - even if we have an empty
  1151. * list or the wrong list here, we can start from some node and traverse all
  1152. * nodes based on the zonelist. So update the list loosely once per 10 secs.
  1153. *
  1154. */
  1155. static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
  1156. {
  1157. int nid;
  1158. /*
  1159. * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
  1160. * pagein/pageout changes since the last update.
  1161. */
  1162. if (!atomic_read(&memcg->numainfo_events))
  1163. return;
  1164. if (atomic_inc_return(&memcg->numainfo_updating) > 1)
  1165. return;
  1166. /* make a nodemask where this memcg uses memory from */
  1167. memcg->scan_nodes = node_states[N_MEMORY];
  1168. for_each_node_mask(nid, node_states[N_MEMORY]) {
  1169. if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
  1170. node_clear(nid, memcg->scan_nodes);
  1171. }
  1172. atomic_set(&memcg->numainfo_events, 0);
  1173. atomic_set(&memcg->numainfo_updating, 0);
  1174. }
  1175. /*
  1176. * Selecting a node where we start reclaim from. Because what we need is just
  1177. * reducing usage counter, start from anywhere is O,K. Considering
  1178. * memory reclaim from current node, there are pros. and cons.
  1179. *
  1180. * Freeing memory from current node means freeing memory from a node which
  1181. * we'll use or we've used. So, it may make LRU bad. And if several threads
  1182. * hit limits, it will see a contention on a node. But freeing from remote
  1183. * node means more costs for memory reclaim because of memory latency.
  1184. *
  1185. * Now, we use round-robin. Better algorithm is welcomed.
  1186. */
  1187. int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
  1188. {
  1189. int node;
  1190. mem_cgroup_may_update_nodemask(memcg);
  1191. node = memcg->last_scanned_node;
  1192. node = next_node_in(node, memcg->scan_nodes);
  1193. /*
  1194. * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
  1195. * last time it really checked all the LRUs due to rate limiting.
  1196. * Fallback to the current node in that case for simplicity.
  1197. */
  1198. if (unlikely(node == MAX_NUMNODES))
  1199. node = numa_node_id();
  1200. memcg->last_scanned_node = node;
  1201. return node;
  1202. }
  1203. #else
  1204. int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
  1205. {
  1206. return 0;
  1207. }
  1208. #endif
  1209. static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
  1210. pg_data_t *pgdat,
  1211. gfp_t gfp_mask,
  1212. unsigned long *total_scanned)
  1213. {
  1214. struct mem_cgroup *victim = NULL;
  1215. int total = 0;
  1216. int loop = 0;
  1217. unsigned long excess;
  1218. unsigned long nr_scanned;
  1219. struct mem_cgroup_reclaim_cookie reclaim = {
  1220. .pgdat = pgdat,
  1221. .priority = 0,
  1222. };
  1223. excess = soft_limit_excess(root_memcg);
  1224. while (1) {
  1225. victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
  1226. if (!victim) {
  1227. loop++;
  1228. if (loop >= 2) {
  1229. /*
  1230. * If we have not been able to reclaim
  1231. * anything, it might because there are
  1232. * no reclaimable pages under this hierarchy
  1233. */
  1234. if (!total)
  1235. break;
  1236. /*
  1237. * We want to do more targeted reclaim.
  1238. * excess >> 2 is not to excessive so as to
  1239. * reclaim too much, nor too less that we keep
  1240. * coming back to reclaim from this cgroup
  1241. */
  1242. if (total >= (excess >> 2) ||
  1243. (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
  1244. break;
  1245. }
  1246. continue;
  1247. }
  1248. total += mem_cgroup_shrink_node(victim, gfp_mask, false,
  1249. pgdat, &nr_scanned);
  1250. *total_scanned += nr_scanned;
  1251. if (!soft_limit_excess(root_memcg))
  1252. break;
  1253. }
  1254. mem_cgroup_iter_break(root_memcg, victim);
  1255. return total;
  1256. }
  1257. #ifdef CONFIG_LOCKDEP
  1258. static struct lockdep_map memcg_oom_lock_dep_map = {
  1259. .name = "memcg_oom_lock",
  1260. };
  1261. #endif
  1262. static DEFINE_SPINLOCK(memcg_oom_lock);
  1263. /*
  1264. * Check OOM-Killer is already running under our hierarchy.
  1265. * If someone is running, return false.
  1266. */
  1267. static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
  1268. {
  1269. struct mem_cgroup *iter, *failed = NULL;
  1270. spin_lock(&memcg_oom_lock);
  1271. for_each_mem_cgroup_tree(iter, memcg) {
  1272. if (iter->oom_lock) {
  1273. /*
  1274. * this subtree of our hierarchy is already locked
  1275. * so we cannot give a lock.
  1276. */
  1277. failed = iter;
  1278. mem_cgroup_iter_break(memcg, iter);
  1279. break;
  1280. } else
  1281. iter->oom_lock = true;
  1282. }
  1283. if (failed) {
  1284. /*
  1285. * OK, we failed to lock the whole subtree so we have
  1286. * to clean up what we set up to the failing subtree
  1287. */
  1288. for_each_mem_cgroup_tree(iter, memcg) {
  1289. if (iter == failed) {
  1290. mem_cgroup_iter_break(memcg, iter);
  1291. break;
  1292. }
  1293. iter->oom_lock = false;
  1294. }
  1295. } else
  1296. mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
  1297. spin_unlock(&memcg_oom_lock);
  1298. return !failed;
  1299. }
  1300. static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
  1301. {
  1302. struct mem_cgroup *iter;
  1303. spin_lock(&memcg_oom_lock);
  1304. mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
  1305. for_each_mem_cgroup_tree(iter, memcg)
  1306. iter->oom_lock = false;
  1307. spin_unlock(&memcg_oom_lock);
  1308. }
  1309. static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
  1310. {
  1311. struct mem_cgroup *iter;
  1312. spin_lock(&memcg_oom_lock);
  1313. for_each_mem_cgroup_tree(iter, memcg)
  1314. iter->under_oom++;
  1315. spin_unlock(&memcg_oom_lock);
  1316. }
  1317. static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
  1318. {
  1319. struct mem_cgroup *iter;
  1320. /*
  1321. * When a new child is created while the hierarchy is under oom,
  1322. * mem_cgroup_oom_lock() may not be called. Watch for underflow.
  1323. */
  1324. spin_lock(&memcg_oom_lock);
  1325. for_each_mem_cgroup_tree(iter, memcg)
  1326. if (iter->under_oom > 0)
  1327. iter->under_oom--;
  1328. spin_unlock(&memcg_oom_lock);
  1329. }
  1330. static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
  1331. struct oom_wait_info {
  1332. struct mem_cgroup *memcg;
  1333. wait_queue_t wait;
  1334. };
  1335. static int memcg_oom_wake_function(wait_queue_t *wait,
  1336. unsigned mode, int sync, void *arg)
  1337. {
  1338. struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
  1339. struct mem_cgroup *oom_wait_memcg;
  1340. struct oom_wait_info *oom_wait_info;
  1341. oom_wait_info = container_of(wait, struct oom_wait_info, wait);
  1342. oom_wait_memcg = oom_wait_info->memcg;
  1343. if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
  1344. !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
  1345. return 0;
  1346. return autoremove_wake_function(wait, mode, sync, arg);
  1347. }
  1348. static void memcg_oom_recover(struct mem_cgroup *memcg)
  1349. {
  1350. /*
  1351. * For the following lockless ->under_oom test, the only required
  1352. * guarantee is that it must see the state asserted by an OOM when
  1353. * this function is called as a result of userland actions
  1354. * triggered by the notification of the OOM. This is trivially
  1355. * achieved by invoking mem_cgroup_mark_under_oom() before
  1356. * triggering notification.
  1357. */
  1358. if (memcg && memcg->under_oom)
  1359. __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
  1360. }
  1361. static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
  1362. {
  1363. if (!current->memcg_may_oom)
  1364. return;
  1365. /*
  1366. * We are in the middle of the charge context here, so we
  1367. * don't want to block when potentially sitting on a callstack
  1368. * that holds all kinds of filesystem and mm locks.
  1369. *
  1370. * Also, the caller may handle a failed allocation gracefully
  1371. * (like optional page cache readahead) and so an OOM killer
  1372. * invocation might not even be necessary.
  1373. *
  1374. * That's why we don't do anything here except remember the
  1375. * OOM context and then deal with it at the end of the page
  1376. * fault when the stack is unwound, the locks are released,
  1377. * and when we know whether the fault was overall successful.
  1378. */
  1379. css_get(&memcg->css);
  1380. current->memcg_in_oom = memcg;
  1381. current->memcg_oom_gfp_mask = mask;
  1382. current->memcg_oom_order = order;
  1383. }
  1384. /**
  1385. * mem_cgroup_oom_synchronize - complete memcg OOM handling
  1386. * @handle: actually kill/wait or just clean up the OOM state
  1387. *
  1388. * This has to be called at the end of a page fault if the memcg OOM
  1389. * handler was enabled.
  1390. *
  1391. * Memcg supports userspace OOM handling where failed allocations must
  1392. * sleep on a waitqueue until the userspace task resolves the
  1393. * situation. Sleeping directly in the charge context with all kinds
  1394. * of locks held is not a good idea, instead we remember an OOM state
  1395. * in the task and mem_cgroup_oom_synchronize() has to be called at
  1396. * the end of the page fault to complete the OOM handling.
  1397. *
  1398. * Returns %true if an ongoing memcg OOM situation was detected and
  1399. * completed, %false otherwise.
  1400. */
  1401. bool mem_cgroup_oom_synchronize(bool handle)
  1402. {
  1403. struct mem_cgroup *memcg = current->memcg_in_oom;
  1404. struct oom_wait_info owait;
  1405. bool locked;
  1406. /* OOM is global, do not handle */
  1407. if (!memcg)
  1408. return false;
  1409. if (!handle || oom_killer_disabled)
  1410. goto cleanup;
  1411. owait.memcg = memcg;
  1412. owait.wait.flags = 0;
  1413. owait.wait.func = memcg_oom_wake_function;
  1414. owait.wait.private = current;
  1415. INIT_LIST_HEAD(&owait.wait.task_list);
  1416. prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
  1417. mem_cgroup_mark_under_oom(memcg);
  1418. locked = mem_cgroup_oom_trylock(memcg);
  1419. if (locked)
  1420. mem_cgroup_oom_notify(memcg);
  1421. if (locked && !memcg->oom_kill_disable) {
  1422. mem_cgroup_unmark_under_oom(memcg);
  1423. finish_wait(&memcg_oom_waitq, &owait.wait);
  1424. mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
  1425. current->memcg_oom_order);
  1426. } else {
  1427. schedule();
  1428. mem_cgroup_unmark_under_oom(memcg);
  1429. finish_wait(&memcg_oom_waitq, &owait.wait);
  1430. }
  1431. if (locked) {
  1432. mem_cgroup_oom_unlock(memcg);
  1433. /*
  1434. * There is no guarantee that an OOM-lock contender
  1435. * sees the wakeups triggered by the OOM kill
  1436. * uncharges. Wake any sleepers explicitely.
  1437. */
  1438. memcg_oom_recover(memcg);
  1439. }
  1440. cleanup:
  1441. current->memcg_in_oom = NULL;
  1442. css_put(&memcg->css);
  1443. return true;
  1444. }
  1445. /**
  1446. * lock_page_memcg - lock a page->mem_cgroup binding
  1447. * @page: the page
  1448. *
  1449. * This function protects unlocked LRU pages from being moved to
  1450. * another cgroup and stabilizes their page->mem_cgroup binding.
  1451. */
  1452. void lock_page_memcg(struct page *page)
  1453. {
  1454. struct mem_cgroup *memcg;
  1455. unsigned long flags;
  1456. /*
  1457. * The RCU lock is held throughout the transaction. The fast
  1458. * path can get away without acquiring the memcg->move_lock
  1459. * because page moving starts with an RCU grace period.
  1460. */
  1461. rcu_read_lock();
  1462. if (mem_cgroup_disabled())
  1463. return;
  1464. again:
  1465. memcg = page->mem_cgroup;
  1466. if (unlikely(!memcg))
  1467. return;
  1468. if (atomic_read(&memcg->moving_account) <= 0)
  1469. return;
  1470. spin_lock_irqsave(&memcg->move_lock, flags);
  1471. if (memcg != page->mem_cgroup) {
  1472. spin_unlock_irqrestore(&memcg->move_lock, flags);
  1473. goto again;
  1474. }
  1475. /*
  1476. * When charge migration first begins, we can have locked and
  1477. * unlocked page stat updates happening concurrently. Track
  1478. * the task who has the lock for unlock_page_memcg().
  1479. */
  1480. memcg->move_lock_task = current;
  1481. memcg->move_lock_flags = flags;
  1482. return;
  1483. }
  1484. EXPORT_SYMBOL(lock_page_memcg);
  1485. /**
  1486. * unlock_page_memcg - unlock a page->mem_cgroup binding
  1487. * @page: the page
  1488. */
  1489. void unlock_page_memcg(struct page *page)
  1490. {
  1491. struct mem_cgroup *memcg = page->mem_cgroup;
  1492. if (memcg && memcg->move_lock_task == current) {
  1493. unsigned long flags = memcg->move_lock_flags;
  1494. memcg->move_lock_task = NULL;
  1495. memcg->move_lock_flags = 0;
  1496. spin_unlock_irqrestore(&memcg->move_lock, flags);
  1497. }
  1498. rcu_read_unlock();
  1499. }
  1500. EXPORT_SYMBOL(unlock_page_memcg);
  1501. /*
  1502. * size of first charge trial. "32" comes from vmscan.c's magic value.
  1503. * TODO: maybe necessary to use big numbers in big irons.
  1504. */
  1505. #define CHARGE_BATCH 32U
  1506. struct memcg_stock_pcp {
  1507. struct mem_cgroup *cached; /* this never be root cgroup */
  1508. unsigned int nr_pages;
  1509. struct work_struct work;
  1510. unsigned long flags;
  1511. #define FLUSHING_CACHED_CHARGE 0
  1512. };
  1513. static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
  1514. static DEFINE_MUTEX(percpu_charge_mutex);
  1515. /**
  1516. * consume_stock: Try to consume stocked charge on this cpu.
  1517. * @memcg: memcg to consume from.
  1518. * @nr_pages: how many pages to charge.
  1519. *
  1520. * The charges will only happen if @memcg matches the current cpu's memcg
  1521. * stock, and at least @nr_pages are available in that stock. Failure to
  1522. * service an allocation will refill the stock.
  1523. *
  1524. * returns true if successful, false otherwise.
  1525. */
  1526. static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
  1527. {
  1528. struct memcg_stock_pcp *stock;
  1529. bool ret = false;
  1530. if (nr_pages > CHARGE_BATCH)
  1531. return ret;
  1532. stock = &get_cpu_var(memcg_stock);
  1533. if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
  1534. stock->nr_pages -= nr_pages;
  1535. ret = true;
  1536. }
  1537. put_cpu_var(memcg_stock);
  1538. return ret;
  1539. }
  1540. /*
  1541. * Returns stocks cached in percpu and reset cached information.
  1542. */
  1543. static void drain_stock(struct memcg_stock_pcp *stock)
  1544. {
  1545. struct mem_cgroup *old = stock->cached;
  1546. if (stock->nr_pages) {
  1547. page_counter_uncharge(&old->memory, stock->nr_pages);
  1548. if (do_memsw_account())
  1549. page_counter_uncharge(&old->memsw, stock->nr_pages);
  1550. css_put_many(&old->css, stock->nr_pages);
  1551. stock->nr_pages = 0;
  1552. }
  1553. stock->cached = NULL;
  1554. }
  1555. /*
  1556. * This must be called under preempt disabled or must be called by
  1557. * a thread which is pinned to local cpu.
  1558. */
  1559. static void drain_local_stock(struct work_struct *dummy)
  1560. {
  1561. struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
  1562. drain_stock(stock);
  1563. clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
  1564. }
  1565. /*
  1566. * Cache charges(val) to local per_cpu area.
  1567. * This will be consumed by consume_stock() function, later.
  1568. */
  1569. static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
  1570. {
  1571. struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
  1572. if (stock->cached != memcg) { /* reset if necessary */
  1573. drain_stock(stock);
  1574. stock->cached = memcg;
  1575. }
  1576. stock->nr_pages += nr_pages;
  1577. put_cpu_var(memcg_stock);
  1578. }
  1579. /*
  1580. * Drains all per-CPU charge caches for given root_memcg resp. subtree
  1581. * of the hierarchy under it.
  1582. */
  1583. static void drain_all_stock(struct mem_cgroup *root_memcg)
  1584. {
  1585. int cpu, curcpu;
  1586. /* If someone's already draining, avoid adding running more workers. */
  1587. if (!mutex_trylock(&percpu_charge_mutex))
  1588. return;
  1589. /* Notify other cpus that system-wide "drain" is running */
  1590. get_online_cpus();
  1591. curcpu = get_cpu();
  1592. for_each_online_cpu(cpu) {
  1593. struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
  1594. struct mem_cgroup *memcg;
  1595. memcg = stock->cached;
  1596. if (!memcg || !stock->nr_pages)
  1597. continue;
  1598. if (!mem_cgroup_is_descendant(memcg, root_memcg))
  1599. continue;
  1600. if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
  1601. if (cpu == curcpu)
  1602. drain_local_stock(&stock->work);
  1603. else
  1604. schedule_work_on(cpu, &stock->work);
  1605. }
  1606. }
  1607. put_cpu();
  1608. put_online_cpus();
  1609. mutex_unlock(&percpu_charge_mutex);
  1610. }
  1611. static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
  1612. unsigned long action,
  1613. void *hcpu)
  1614. {
  1615. int cpu = (unsigned long)hcpu;
  1616. struct memcg_stock_pcp *stock;
  1617. if (action == CPU_ONLINE)
  1618. return NOTIFY_OK;
  1619. if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
  1620. return NOTIFY_OK;
  1621. stock = &per_cpu(memcg_stock, cpu);
  1622. drain_stock(stock);
  1623. return NOTIFY_OK;
  1624. }
  1625. static void reclaim_high(struct mem_cgroup *memcg,
  1626. unsigned int nr_pages,
  1627. gfp_t gfp_mask)
  1628. {
  1629. do {
  1630. if (page_counter_read(&memcg->memory) <= memcg->high)
  1631. continue;
  1632. mem_cgroup_events(memcg, MEMCG_HIGH, 1);
  1633. try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
  1634. } while ((memcg = parent_mem_cgroup(memcg)));
  1635. }
  1636. static void high_work_func(struct work_struct *work)
  1637. {
  1638. struct mem_cgroup *memcg;
  1639. memcg = container_of(work, struct mem_cgroup, high_work);
  1640. reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
  1641. }
  1642. /*
  1643. * Scheduled by try_charge() to be executed from the userland return path
  1644. * and reclaims memory over the high limit.
  1645. */
  1646. void mem_cgroup_handle_over_high(void)
  1647. {
  1648. unsigned int nr_pages = current->memcg_nr_pages_over_high;
  1649. struct mem_cgroup *memcg;
  1650. if (likely(!nr_pages))
  1651. return;
  1652. memcg = get_mem_cgroup_from_mm(current->mm);
  1653. reclaim_high(memcg, nr_pages, GFP_KERNEL);
  1654. css_put(&memcg->css);
  1655. current->memcg_nr_pages_over_high = 0;
  1656. }
  1657. static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
  1658. unsigned int nr_pages)
  1659. {
  1660. unsigned int batch = max(CHARGE_BATCH, nr_pages);
  1661. int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
  1662. struct mem_cgroup *mem_over_limit;
  1663. struct page_counter *counter;
  1664. unsigned long nr_reclaimed;
  1665. bool may_swap = true;
  1666. bool drained = false;
  1667. if (mem_cgroup_is_root(memcg))
  1668. return 0;
  1669. retry:
  1670. if (consume_stock(memcg, nr_pages))
  1671. return 0;
  1672. if (!do_memsw_account() ||
  1673. page_counter_try_charge(&memcg->memsw, batch, &counter)) {
  1674. if (page_counter_try_charge(&memcg->memory, batch, &counter))
  1675. goto done_restock;
  1676. if (do_memsw_account())
  1677. page_counter_uncharge(&memcg->memsw, batch);
  1678. mem_over_limit = mem_cgroup_from_counter(counter, memory);
  1679. } else {
  1680. mem_over_limit = mem_cgroup_from_counter(counter, memsw);
  1681. may_swap = false;
  1682. }
  1683. if (batch > nr_pages) {
  1684. batch = nr_pages;
  1685. goto retry;
  1686. }
  1687. /*
  1688. * Unlike in global OOM situations, memcg is not in a physical
  1689. * memory shortage. Allow dying and OOM-killed tasks to
  1690. * bypass the last charges so that they can exit quickly and
  1691. * free their memory.
  1692. */
  1693. if (unlikely(test_thread_flag(TIF_MEMDIE) ||
  1694. fatal_signal_pending(current) ||
  1695. current->flags & PF_EXITING))
  1696. goto force;
  1697. if (unlikely(task_in_memcg_oom(current)))
  1698. goto nomem;
  1699. if (!gfpflags_allow_blocking(gfp_mask))
  1700. goto nomem;
  1701. mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
  1702. nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
  1703. gfp_mask, may_swap);
  1704. if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
  1705. goto retry;
  1706. if (!drained) {
  1707. drain_all_stock(mem_over_limit);
  1708. drained = true;
  1709. goto retry;
  1710. }
  1711. if (gfp_mask & __GFP_NORETRY)
  1712. goto nomem;
  1713. /*
  1714. * Even though the limit is exceeded at this point, reclaim
  1715. * may have been able to free some pages. Retry the charge
  1716. * before killing the task.
  1717. *
  1718. * Only for regular pages, though: huge pages are rather
  1719. * unlikely to succeed so close to the limit, and we fall back
  1720. * to regular pages anyway in case of failure.
  1721. */
  1722. if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
  1723. goto retry;
  1724. /*
  1725. * At task move, charge accounts can be doubly counted. So, it's
  1726. * better to wait until the end of task_move if something is going on.
  1727. */
  1728. if (mem_cgroup_wait_acct_move(mem_over_limit))
  1729. goto retry;
  1730. if (nr_retries--)
  1731. goto retry;
  1732. if (gfp_mask & __GFP_NOFAIL)
  1733. goto force;
  1734. if (fatal_signal_pending(current))
  1735. goto force;
  1736. mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
  1737. mem_cgroup_oom(mem_over_limit, gfp_mask,
  1738. get_order(nr_pages * PAGE_SIZE));
  1739. nomem:
  1740. if (!(gfp_mask & __GFP_NOFAIL))
  1741. return -ENOMEM;
  1742. force:
  1743. /*
  1744. * The allocation either can't fail or will lead to more memory
  1745. * being freed very soon. Allow memory usage go over the limit
  1746. * temporarily by force charging it.
  1747. */
  1748. page_counter_charge(&memcg->memory, nr_pages);
  1749. if (do_memsw_account())
  1750. page_counter_charge(&memcg->memsw, nr_pages);
  1751. css_get_many(&memcg->css, nr_pages);
  1752. return 0;
  1753. done_restock:
  1754. css_get_many(&memcg->css, batch);
  1755. if (batch > nr_pages)
  1756. refill_stock(memcg, batch - nr_pages);
  1757. /*
  1758. * If the hierarchy is above the normal consumption range, schedule
  1759. * reclaim on returning to userland. We can perform reclaim here
  1760. * if __GFP_RECLAIM but let's always punt for simplicity and so that
  1761. * GFP_KERNEL can consistently be used during reclaim. @memcg is
  1762. * not recorded as it most likely matches current's and won't
  1763. * change in the meantime. As high limit is checked again before
  1764. * reclaim, the cost of mismatch is negligible.
  1765. */
  1766. do {
  1767. if (page_counter_read(&memcg->memory) > memcg->high) {
  1768. /* Don't bother a random interrupted task */
  1769. if (in_interrupt()) {
  1770. schedule_work(&memcg->high_work);
  1771. break;
  1772. }
  1773. current->memcg_nr_pages_over_high += batch;
  1774. set_notify_resume(current);
  1775. break;
  1776. }
  1777. } while ((memcg = parent_mem_cgroup(memcg)));
  1778. return 0;
  1779. }
  1780. static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
  1781. {
  1782. if (mem_cgroup_is_root(memcg))
  1783. return;
  1784. page_counter_uncharge(&memcg->memory, nr_pages);
  1785. if (do_memsw_account())
  1786. page_counter_uncharge(&memcg->memsw, nr_pages);
  1787. css_put_many(&memcg->css, nr_pages);
  1788. }
  1789. static void lock_page_lru(struct page *page, int *isolated)
  1790. {
  1791. struct zone *zone = page_zone(page);
  1792. spin_lock_irq(zone_lru_lock(zone));
  1793. if (PageLRU(page)) {
  1794. struct lruvec *lruvec;
  1795. lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
  1796. ClearPageLRU(page);
  1797. del_page_from_lru_list(page, lruvec, page_lru(page));
  1798. *isolated = 1;
  1799. } else
  1800. *isolated = 0;
  1801. }
  1802. static void unlock_page_lru(struct page *page, int isolated)
  1803. {
  1804. struct zone *zone = page_zone(page);
  1805. if (isolated) {
  1806. struct lruvec *lruvec;
  1807. lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
  1808. VM_BUG_ON_PAGE(PageLRU(page), page);
  1809. SetPageLRU(page);
  1810. add_page_to_lru_list(page, lruvec, page_lru(page));
  1811. }
  1812. spin_unlock_irq(zone_lru_lock(zone));
  1813. }
  1814. static void commit_charge(struct page *page, struct mem_cgroup *memcg,
  1815. bool lrucare)
  1816. {
  1817. int isolated;
  1818. VM_BUG_ON_PAGE(page->mem_cgroup, page);
  1819. /*
  1820. * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
  1821. * may already be on some other mem_cgroup's LRU. Take care of it.
  1822. */
  1823. if (lrucare)
  1824. lock_page_lru(page, &isolated);
  1825. /*
  1826. * Nobody should be changing or seriously looking at
  1827. * page->mem_cgroup at this point:
  1828. *
  1829. * - the page is uncharged
  1830. *
  1831. * - the page is off-LRU
  1832. *
  1833. * - an anonymous fault has exclusive page access, except for
  1834. * a locked page table
  1835. *
  1836. * - a page cache insertion, a swapin fault, or a migration
  1837. * have the page locked
  1838. */
  1839. page->mem_cgroup = memcg;
  1840. if (lrucare)
  1841. unlock_page_lru(page, isolated);
  1842. }
  1843. #ifndef CONFIG_SLOB
  1844. static int memcg_alloc_cache_id(void)
  1845. {
  1846. int id, size;
  1847. int err;
  1848. id = ida_simple_get(&memcg_cache_ida,
  1849. 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
  1850. if (id < 0)
  1851. return id;
  1852. if (id < memcg_nr_cache_ids)
  1853. return id;
  1854. /*
  1855. * There's no space for the new id in memcg_caches arrays,
  1856. * so we have to grow them.
  1857. */
  1858. down_write(&memcg_cache_ids_sem);
  1859. size = 2 * (id + 1);
  1860. if (size < MEMCG_CACHES_MIN_SIZE)
  1861. size = MEMCG_CACHES_MIN_SIZE;
  1862. else if (size > MEMCG_CACHES_MAX_SIZE)
  1863. size = MEMCG_CACHES_MAX_SIZE;
  1864. err = memcg_update_all_caches(size);
  1865. if (!err)
  1866. err = memcg_update_all_list_lrus(size);
  1867. if (!err)
  1868. memcg_nr_cache_ids = size;
  1869. up_write(&memcg_cache_ids_sem);
  1870. if (err) {
  1871. ida_simple_remove(&memcg_cache_ida, id);
  1872. return err;
  1873. }
  1874. return id;
  1875. }
  1876. static void memcg_free_cache_id(int id)
  1877. {
  1878. ida_simple_remove(&memcg_cache_ida, id);
  1879. }
  1880. struct memcg_kmem_cache_create_work {
  1881. struct mem_cgroup *memcg;
  1882. struct kmem_cache *cachep;
  1883. struct work_struct work;
  1884. };
  1885. static void memcg_kmem_cache_create_func(struct work_struct *w)
  1886. {
  1887. struct memcg_kmem_cache_create_work *cw =
  1888. container_of(w, struct memcg_kmem_cache_create_work, work);
  1889. struct mem_cgroup *memcg = cw->memcg;
  1890. struct kmem_cache *cachep = cw->cachep;
  1891. memcg_create_kmem_cache(memcg, cachep);
  1892. css_put(&memcg->css);
  1893. kfree(cw);
  1894. }
  1895. /*
  1896. * Enqueue the creation of a per-memcg kmem_cache.
  1897. */
  1898. static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
  1899. struct kmem_cache *cachep)
  1900. {
  1901. struct memcg_kmem_cache_create_work *cw;
  1902. cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
  1903. if (!cw)
  1904. return;
  1905. css_get(&memcg->css);
  1906. cw->memcg = memcg;
  1907. cw->cachep = cachep;
  1908. INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
  1909. schedule_work(&cw->work);
  1910. }
  1911. static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
  1912. struct kmem_cache *cachep)
  1913. {
  1914. /*
  1915. * We need to stop accounting when we kmalloc, because if the
  1916. * corresponding kmalloc cache is not yet created, the first allocation
  1917. * in __memcg_schedule_kmem_cache_create will recurse.
  1918. *
  1919. * However, it is better to enclose the whole function. Depending on
  1920. * the debugging options enabled, INIT_WORK(), for instance, can
  1921. * trigger an allocation. This too, will make us recurse. Because at
  1922. * this point we can't allow ourselves back into memcg_kmem_get_cache,
  1923. * the safest choice is to do it like this, wrapping the whole function.
  1924. */
  1925. current->memcg_kmem_skip_account = 1;
  1926. __memcg_schedule_kmem_cache_create(memcg, cachep);
  1927. current->memcg_kmem_skip_account = 0;
  1928. }
  1929. static inline bool memcg_kmem_bypass(void)
  1930. {
  1931. if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
  1932. return true;
  1933. return false;
  1934. }
  1935. /**
  1936. * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
  1937. * @cachep: the original global kmem cache
  1938. *
  1939. * Return the kmem_cache we're supposed to use for a slab allocation.
  1940. * We try to use the current memcg's version of the cache.
  1941. *
  1942. * If the cache does not exist yet, if we are the first user of it, we
  1943. * create it asynchronously in a workqueue and let the current allocation
  1944. * go through with the original cache.
  1945. *
  1946. * This function takes a reference to the cache it returns to assure it
  1947. * won't get destroyed while we are working with it. Once the caller is
  1948. * done with it, memcg_kmem_put_cache() must be called to release the
  1949. * reference.
  1950. */
  1951. struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
  1952. {
  1953. struct mem_cgroup *memcg;
  1954. struct kmem_cache *memcg_cachep;
  1955. int kmemcg_id;
  1956. VM_BUG_ON(!is_root_cache(cachep));
  1957. if (memcg_kmem_bypass())
  1958. return cachep;
  1959. if (current->memcg_kmem_skip_account)
  1960. return cachep;
  1961. memcg = get_mem_cgroup_from_mm(current->mm);
  1962. kmemcg_id = READ_ONCE(memcg->kmemcg_id);
  1963. if (kmemcg_id < 0)
  1964. goto out;
  1965. memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
  1966. if (likely(memcg_cachep))
  1967. return memcg_cachep;
  1968. /*
  1969. * If we are in a safe context (can wait, and not in interrupt
  1970. * context), we could be be predictable and return right away.
  1971. * This would guarantee that the allocation being performed
  1972. * already belongs in the new cache.
  1973. *
  1974. * However, there are some clashes that can arrive from locking.
  1975. * For instance, because we acquire the slab_mutex while doing
  1976. * memcg_create_kmem_cache, this means no further allocation
  1977. * could happen with the slab_mutex held. So it's better to
  1978. * defer everything.
  1979. */
  1980. memcg_schedule_kmem_cache_create(memcg, cachep);
  1981. out:
  1982. css_put(&memcg->css);
  1983. return cachep;
  1984. }
  1985. /**
  1986. * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
  1987. * @cachep: the cache returned by memcg_kmem_get_cache
  1988. */
  1989. void memcg_kmem_put_cache(struct kmem_cache *cachep)
  1990. {
  1991. if (!is_root_cache(cachep))
  1992. css_put(&cachep->memcg_params.memcg->css);
  1993. }
  1994. /**
  1995. * memcg_kmem_charge: charge a kmem page
  1996. * @page: page to charge
  1997. * @gfp: reclaim mode
  1998. * @order: allocation order
  1999. * @memcg: memory cgroup to charge
  2000. *
  2001. * Returns 0 on success, an error code on failure.
  2002. */
  2003. int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
  2004. struct mem_cgroup *memcg)
  2005. {
  2006. unsigned int nr_pages = 1 << order;
  2007. struct page_counter *counter;
  2008. int ret;
  2009. ret = try_charge(memcg, gfp, nr_pages);
  2010. if (ret)
  2011. return ret;
  2012. if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
  2013. !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
  2014. cancel_charge(memcg, nr_pages);
  2015. return -ENOMEM;
  2016. }
  2017. page->mem_cgroup = memcg;
  2018. return 0;
  2019. }
  2020. /**
  2021. * memcg_kmem_charge: charge a kmem page to the current memory cgroup
  2022. * @page: page to charge
  2023. * @gfp: reclaim mode
  2024. * @order: allocation order
  2025. *
  2026. * Returns 0 on success, an error code on failure.
  2027. */
  2028. int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
  2029. {
  2030. struct mem_cgroup *memcg;
  2031. int ret = 0;
  2032. if (memcg_kmem_bypass())
  2033. return 0;
  2034. memcg = get_mem_cgroup_from_mm(current->mm);
  2035. if (!mem_cgroup_is_root(memcg))
  2036. ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
  2037. css_put(&memcg->css);
  2038. return ret;
  2039. }
  2040. /**
  2041. * memcg_kmem_uncharge: uncharge a kmem page
  2042. * @page: page to uncharge
  2043. * @order: allocation order
  2044. */
  2045. void memcg_kmem_uncharge(struct page *page, int order)
  2046. {
  2047. struct mem_cgroup *memcg = page->mem_cgroup;
  2048. unsigned int nr_pages = 1 << order;
  2049. if (!memcg)
  2050. return;
  2051. VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
  2052. if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
  2053. page_counter_uncharge(&memcg->kmem, nr_pages);
  2054. page_counter_uncharge(&memcg->memory, nr_pages);
  2055. if (do_memsw_account())
  2056. page_counter_uncharge(&memcg->memsw, nr_pages);
  2057. page->mem_cgroup = NULL;
  2058. css_put_many(&memcg->css, nr_pages);
  2059. }
  2060. #endif /* !CONFIG_SLOB */
  2061. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  2062. /*
  2063. * Because tail pages are not marked as "used", set it. We're under
  2064. * zone_lru_lock and migration entries setup in all page mappings.
  2065. */
  2066. void mem_cgroup_split_huge_fixup(struct page *head)
  2067. {
  2068. int i;
  2069. if (mem_cgroup_disabled())
  2070. return;
  2071. for (i = 1; i < HPAGE_PMD_NR; i++)
  2072. head[i].mem_cgroup = head->mem_cgroup;
  2073. __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
  2074. HPAGE_PMD_NR);
  2075. }
  2076. #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
  2077. #ifdef CONFIG_MEMCG_SWAP
  2078. static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
  2079. bool charge)
  2080. {
  2081. int val = (charge) ? 1 : -1;
  2082. this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
  2083. }
  2084. /**
  2085. * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
  2086. * @entry: swap entry to be moved
  2087. * @from: mem_cgroup which the entry is moved from
  2088. * @to: mem_cgroup which the entry is moved to
  2089. *
  2090. * It succeeds only when the swap_cgroup's record for this entry is the same
  2091. * as the mem_cgroup's id of @from.
  2092. *
  2093. * Returns 0 on success, -EINVAL on failure.
  2094. *
  2095. * The caller must have charged to @to, IOW, called page_counter_charge() about
  2096. * both res and memsw, and called css_get().
  2097. */
  2098. static int mem_cgroup_move_swap_account(swp_entry_t entry,
  2099. struct mem_cgroup *from, struct mem_cgroup *to)
  2100. {
  2101. unsigned short old_id, new_id;
  2102. old_id = mem_cgroup_id(from);
  2103. new_id = mem_cgroup_id(to);
  2104. if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
  2105. mem_cgroup_swap_statistics(from, false);
  2106. mem_cgroup_swap_statistics(to, true);
  2107. return 0;
  2108. }
  2109. return -EINVAL;
  2110. }
  2111. #else
  2112. static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
  2113. struct mem_cgroup *from, struct mem_cgroup *to)
  2114. {
  2115. return -EINVAL;
  2116. }
  2117. #endif
  2118. static DEFINE_MUTEX(memcg_limit_mutex);
  2119. static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
  2120. unsigned long limit)
  2121. {
  2122. unsigned long curusage;
  2123. unsigned long oldusage;
  2124. bool enlarge = false;
  2125. int retry_count;
  2126. int ret;
  2127. /*
  2128. * For keeping hierarchical_reclaim simple, how long we should retry
  2129. * is depends on callers. We set our retry-count to be function
  2130. * of # of children which we should visit in this loop.
  2131. */
  2132. retry_count = MEM_CGROUP_RECLAIM_RETRIES *
  2133. mem_cgroup_count_children(memcg);
  2134. oldusage = page_counter_read(&memcg->memory);
  2135. do {
  2136. if (signal_pending(current)) {
  2137. ret = -EINTR;
  2138. break;
  2139. }
  2140. mutex_lock(&memcg_limit_mutex);
  2141. if (limit > memcg->memsw.limit) {
  2142. mutex_unlock(&memcg_limit_mutex);
  2143. ret = -EINVAL;
  2144. break;
  2145. }
  2146. if (limit > memcg->memory.limit)
  2147. enlarge = true;
  2148. ret = page_counter_limit(&memcg->memory, limit);
  2149. mutex_unlock(&memcg_limit_mutex);
  2150. if (!ret)
  2151. break;
  2152. try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
  2153. curusage = page_counter_read(&memcg->memory);
  2154. /* Usage is reduced ? */
  2155. if (curusage >= oldusage)
  2156. retry_count--;
  2157. else
  2158. oldusage = curusage;
  2159. } while (retry_count);
  2160. if (!ret && enlarge)
  2161. memcg_oom_recover(memcg);
  2162. return ret;
  2163. }
  2164. static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
  2165. unsigned long limit)
  2166. {
  2167. unsigned long curusage;
  2168. unsigned long oldusage;
  2169. bool enlarge = false;
  2170. int retry_count;
  2171. int ret;
  2172. /* see mem_cgroup_resize_res_limit */
  2173. retry_count = MEM_CGROUP_RECLAIM_RETRIES *
  2174. mem_cgroup_count_children(memcg);
  2175. oldusage = page_counter_read(&memcg->memsw);
  2176. do {
  2177. if (signal_pending(current)) {
  2178. ret = -EINTR;
  2179. break;
  2180. }
  2181. mutex_lock(&memcg_limit_mutex);
  2182. if (limit < memcg->memory.limit) {
  2183. mutex_unlock(&memcg_limit_mutex);
  2184. ret = -EINVAL;
  2185. break;
  2186. }
  2187. if (limit > memcg->memsw.limit)
  2188. enlarge = true;
  2189. ret = page_counter_limit(&memcg->memsw, limit);
  2190. mutex_unlock(&memcg_limit_mutex);
  2191. if (!ret)
  2192. break;
  2193. try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
  2194. curusage = page_counter_read(&memcg->memsw);
  2195. /* Usage is reduced ? */
  2196. if (curusage >= oldusage)
  2197. retry_count--;
  2198. else
  2199. oldusage = curusage;
  2200. } while (retry_count);
  2201. if (!ret && enlarge)
  2202. memcg_oom_recover(memcg);
  2203. return ret;
  2204. }
  2205. unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
  2206. gfp_t gfp_mask,
  2207. unsigned long *total_scanned)
  2208. {
  2209. unsigned long nr_reclaimed = 0;
  2210. struct mem_cgroup_per_node *mz, *next_mz = NULL;
  2211. unsigned long reclaimed;
  2212. int loop = 0;
  2213. struct mem_cgroup_tree_per_node *mctz;
  2214. unsigned long excess;
  2215. unsigned long nr_scanned;
  2216. if (order > 0)
  2217. return 0;
  2218. mctz = soft_limit_tree_node(pgdat->node_id);
  2219. /*
  2220. * Do not even bother to check the largest node if the root
  2221. * is empty. Do it lockless to prevent lock bouncing. Races
  2222. * are acceptable as soft limit is best effort anyway.
  2223. */
  2224. if (RB_EMPTY_ROOT(&mctz->rb_root))
  2225. return 0;
  2226. /*
  2227. * This loop can run a while, specially if mem_cgroup's continuously
  2228. * keep exceeding their soft limit and putting the system under
  2229. * pressure
  2230. */
  2231. do {
  2232. if (next_mz)
  2233. mz = next_mz;
  2234. else
  2235. mz = mem_cgroup_largest_soft_limit_node(mctz);
  2236. if (!mz)
  2237. break;
  2238. nr_scanned = 0;
  2239. reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
  2240. gfp_mask, &nr_scanned);
  2241. nr_reclaimed += reclaimed;
  2242. *total_scanned += nr_scanned;
  2243. spin_lock_irq(&mctz->lock);
  2244. __mem_cgroup_remove_exceeded(mz, mctz);
  2245. /*
  2246. * If we failed to reclaim anything from this memory cgroup
  2247. * it is time to move on to the next cgroup
  2248. */
  2249. next_mz = NULL;
  2250. if (!reclaimed)
  2251. next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
  2252. excess = soft_limit_excess(mz->memcg);
  2253. /*
  2254. * One school of thought says that we should not add
  2255. * back the node to the tree if reclaim returns 0.
  2256. * But our reclaim could return 0, simply because due
  2257. * to priority we are exposing a smaller subset of
  2258. * memory to reclaim from. Consider this as a longer
  2259. * term TODO.
  2260. */
  2261. /* If excess == 0, no tree ops */
  2262. __mem_cgroup_insert_exceeded(mz, mctz, excess);
  2263. spin_unlock_irq(&mctz->lock);
  2264. css_put(&mz->memcg->css);
  2265. loop++;
  2266. /*
  2267. * Could not reclaim anything and there are no more
  2268. * mem cgroups to try or we seem to be looping without
  2269. * reclaiming anything.
  2270. */
  2271. if (!nr_reclaimed &&
  2272. (next_mz == NULL ||
  2273. loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
  2274. break;
  2275. } while (!nr_reclaimed);
  2276. if (next_mz)
  2277. css_put(&next_mz->memcg->css);
  2278. return nr_reclaimed;
  2279. }
  2280. /*
  2281. * Test whether @memcg has children, dead or alive. Note that this
  2282. * function doesn't care whether @memcg has use_hierarchy enabled and
  2283. * returns %true if there are child csses according to the cgroup
  2284. * hierarchy. Testing use_hierarchy is the caller's responsiblity.
  2285. */
  2286. static inline bool memcg_has_children(struct mem_cgroup *memcg)
  2287. {
  2288. bool ret;
  2289. rcu_read_lock();
  2290. ret = css_next_child(NULL, &memcg->css);
  2291. rcu_read_unlock();
  2292. return ret;
  2293. }
  2294. /*
  2295. * Reclaims as many pages from the given memcg as possible.
  2296. *
  2297. * Caller is responsible for holding css reference for memcg.
  2298. */
  2299. static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
  2300. {
  2301. int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
  2302. /* we call try-to-free pages for make this cgroup empty */
  2303. lru_add_drain_all();
  2304. /* try to free all pages in this cgroup */
  2305. while (nr_retries && page_counter_read(&memcg->memory)) {
  2306. int progress;
  2307. if (signal_pending(current))
  2308. return -EINTR;
  2309. progress = try_to_free_mem_cgroup_pages(memcg, 1,
  2310. GFP_KERNEL, true);
  2311. if (!progress) {
  2312. nr_retries--;
  2313. /* maybe some writeback is necessary */
  2314. congestion_wait(BLK_RW_ASYNC, HZ/10);
  2315. }
  2316. }
  2317. return 0;
  2318. }
  2319. static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
  2320. char *buf, size_t nbytes,
  2321. loff_t off)
  2322. {
  2323. struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
  2324. if (mem_cgroup_is_root(memcg))
  2325. return -EINVAL;
  2326. return mem_cgroup_force_empty(memcg) ?: nbytes;
  2327. }
  2328. static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
  2329. struct cftype *cft)
  2330. {
  2331. return mem_cgroup_from_css(css)->use_hierarchy;
  2332. }
  2333. static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
  2334. struct cftype *cft, u64 val)
  2335. {
  2336. int retval = 0;
  2337. struct mem_cgroup *memcg = mem_cgroup_from_css(css);
  2338. struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
  2339. if (memcg->use_hierarchy == val)
  2340. return 0;
  2341. /*
  2342. * If parent's use_hierarchy is set, we can't make any modifications
  2343. * in the child subtrees. If it is unset, then the change can
  2344. * occur, provided the current cgroup has no children.
  2345. *
  2346. * For the root cgroup, parent_mem is NULL, we allow value to be
  2347. * set if there are no children.
  2348. */
  2349. if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
  2350. (val == 1 || val == 0)) {
  2351. if (!memcg_has_children(memcg))
  2352. memcg->use_hierarchy = val;
  2353. else
  2354. retval = -EBUSY;
  2355. } else
  2356. retval = -EINVAL;
  2357. return retval;
  2358. }
  2359. static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
  2360. {
  2361. struct mem_cgroup *iter;
  2362. int i;
  2363. memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
  2364. for_each_mem_cgroup_tree(iter, memcg) {
  2365. for (i = 0; i < MEMCG_NR_STAT; i++)
  2366. stat[i] += mem_cgroup_read_stat(iter, i);
  2367. }
  2368. }
  2369. static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
  2370. {
  2371. struct mem_cgroup *iter;
  2372. int i;
  2373. memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
  2374. for_each_mem_cgroup_tree(iter, memcg) {
  2375. for (i = 0; i < MEMCG_NR_EVENTS; i++)
  2376. events[i] += mem_cgroup_read_events(iter, i);
  2377. }
  2378. }
  2379. static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
  2380. {
  2381. unsigned long val = 0;
  2382. if (mem_cgroup_is_root(memcg)) {
  2383. struct mem_cgroup *iter;
  2384. for_each_mem_cgroup_tree(iter, memcg) {
  2385. val += mem_cgroup_read_stat(iter,
  2386. MEM_CGROUP_STAT_CACHE);
  2387. val += mem_cgroup_read_stat(iter,
  2388. MEM_CGROUP_STAT_RSS);
  2389. if (swap)
  2390. val += mem_cgroup_read_stat(iter,
  2391. MEM_CGROUP_STAT_SWAP);
  2392. }
  2393. } else {
  2394. if (!swap)
  2395. val = page_counter_read(&memcg->memory);
  2396. else
  2397. val = page_counter_read(&memcg->memsw);
  2398. }
  2399. return val;
  2400. }
  2401. enum {
  2402. RES_USAGE,
  2403. RES_LIMIT,
  2404. RES_MAX_USAGE,
  2405. RES_FAILCNT,
  2406. RES_SOFT_LIMIT,
  2407. };
  2408. static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
  2409. struct cftype *cft)
  2410. {
  2411. struct mem_cgroup *memcg = mem_cgroup_from_css(css);
  2412. struct page_counter *counter;
  2413. switch (MEMFILE_TYPE(cft->private)) {
  2414. case _MEM:
  2415. counter = &memcg->memory;
  2416. break;
  2417. case _MEMSWAP:
  2418. counter = &memcg->memsw;
  2419. break;
  2420. case _KMEM:
  2421. counter = &memcg->kmem;
  2422. break;
  2423. case _TCP:
  2424. counter = &memcg->tcpmem;
  2425. break;
  2426. default:
  2427. BUG();
  2428. }
  2429. switch (MEMFILE_ATTR(cft->private)) {
  2430. case RES_USAGE:
  2431. if (counter == &memcg->memory)
  2432. return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
  2433. if (counter == &memcg->memsw)
  2434. return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
  2435. return (u64)page_counter_read(counter) * PAGE_SIZE;
  2436. case RES_LIMIT:
  2437. return (u64)counter->limit * PAGE_SIZE;
  2438. case RES_MAX_USAGE:
  2439. return (u64)counter->watermark * PAGE_SIZE;
  2440. case RES_FAILCNT:
  2441. return counter->failcnt;
  2442. case RES_SOFT_LIMIT:
  2443. return (u64)memcg->soft_limit * PAGE_SIZE;
  2444. default:
  2445. BUG();
  2446. }
  2447. }
  2448. #ifndef CONFIG_SLOB
  2449. static int memcg_online_kmem(struct mem_cgroup *memcg)
  2450. {
  2451. int memcg_id;
  2452. if (cgroup_memory_nokmem)
  2453. return 0;
  2454. BUG_ON(memcg->kmemcg_id >= 0);
  2455. BUG_ON(memcg->kmem_state);
  2456. memcg_id = memcg_alloc_cache_id();
  2457. if (memcg_id < 0)
  2458. return memcg_id;
  2459. static_branch_inc(&memcg_kmem_enabled_key);
  2460. /*
  2461. * A memory cgroup is considered kmem-online as soon as it gets
  2462. * kmemcg_id. Setting the id after enabling static branching will
  2463. * guarantee no one starts accounting before all call sites are
  2464. * patched.
  2465. */
  2466. memcg->kmemcg_id = memcg_id;
  2467. memcg->kmem_state = KMEM_ONLINE;
  2468. return 0;
  2469. }
  2470. static void memcg_offline_kmem(struct mem_cgroup *memcg)
  2471. {
  2472. struct cgroup_subsys_state *css;
  2473. struct mem_cgroup *parent, *child;
  2474. int kmemcg_id;
  2475. if (memcg->kmem_state != KMEM_ONLINE)
  2476. return;
  2477. /*
  2478. * Clear the online state before clearing memcg_caches array
  2479. * entries. The slab_mutex in memcg_deactivate_kmem_caches()
  2480. * guarantees that no cache will be created for this cgroup
  2481. * after we are done (see memcg_create_kmem_cache()).
  2482. */
  2483. memcg->kmem_state = KMEM_ALLOCATED;
  2484. memcg_deactivate_kmem_caches(memcg);
  2485. kmemcg_id = memcg->kmemcg_id;
  2486. BUG_ON(kmemcg_id < 0);
  2487. parent = parent_mem_cgroup(memcg);
  2488. if (!parent)
  2489. parent = root_mem_cgroup;
  2490. /*
  2491. * Change kmemcg_id of this cgroup and all its descendants to the
  2492. * parent's id, and then move all entries from this cgroup's list_lrus
  2493. * to ones of the parent. After we have finished, all list_lrus
  2494. * corresponding to this cgroup are guaranteed to remain empty. The
  2495. * ordering is imposed by list_lru_node->lock taken by
  2496. * memcg_drain_all_list_lrus().
  2497. */
  2498. rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
  2499. css_for_each_descendant_pre(css, &memcg->css) {
  2500. child = mem_cgroup_from_css(css);
  2501. BUG_ON(child->kmemcg_id != kmemcg_id);
  2502. child->kmemcg_id = parent->kmemcg_id;
  2503. if (!memcg->use_hierarchy)
  2504. break;
  2505. }
  2506. rcu_read_unlock();
  2507. memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
  2508. memcg_free_cache_id(kmemcg_id);
  2509. }
  2510. static void memcg_free_kmem(struct mem_cgroup *memcg)
  2511. {
  2512. /* css_alloc() failed, offlining didn't happen */
  2513. if (unlikely(memcg->kmem_state == KMEM_ONLINE))
  2514. memcg_offline_kmem(memcg);
  2515. if (memcg->kmem_state == KMEM_ALLOCATED) {
  2516. memcg_destroy_kmem_caches(memcg);
  2517. static_branch_dec(&memcg_kmem_enabled_key);
  2518. WARN_ON(page_counter_read(&memcg->kmem));
  2519. }
  2520. }
  2521. #else
  2522. static int memcg_online_kmem(struct mem_cgroup *memcg)
  2523. {
  2524. return 0;
  2525. }
  2526. static void memcg_offline_kmem(struct mem_cgroup *memcg)
  2527. {
  2528. }
  2529. static void memcg_free_kmem(struct mem_cgroup *memcg)
  2530. {
  2531. }
  2532. #endif /* !CONFIG_SLOB */
  2533. static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
  2534. unsigned long limit)
  2535. {
  2536. int ret;
  2537. mutex_lock(&memcg_limit_mutex);
  2538. ret = page_counter_limit(&memcg->kmem, limit);
  2539. mutex_unlock(&memcg_limit_mutex);
  2540. return ret;
  2541. }
  2542. static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
  2543. {
  2544. int ret;
  2545. mutex_lock(&memcg_limit_mutex);
  2546. ret = page_counter_limit(&memcg->tcpmem, limit);
  2547. if (ret)
  2548. goto out;
  2549. if (!memcg->tcpmem_active) {
  2550. /*
  2551. * The active flag needs to be written after the static_key
  2552. * update. This is what guarantees that the socket activation
  2553. * function is the last one to run. See sock_update_memcg() for
  2554. * details, and note that we don't mark any socket as belonging
  2555. * to this memcg until that flag is up.
  2556. *
  2557. * We need to do this, because static_keys will span multiple
  2558. * sites, but we can't control their order. If we mark a socket
  2559. * as accounted, but the accounting functions are not patched in
  2560. * yet, we'll lose accounting.
  2561. *
  2562. * We never race with the readers in sock_update_memcg(),
  2563. * because when this value change, the code to process it is not
  2564. * patched in yet.
  2565. */
  2566. static_branch_inc(&memcg_sockets_enabled_key);
  2567. memcg->tcpmem_active = true;
  2568. }
  2569. out:
  2570. mutex_unlock(&memcg_limit_mutex);
  2571. return ret;
  2572. }
  2573. /*
  2574. * The user of this function is...
  2575. * RES_LIMIT.
  2576. */
  2577. static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
  2578. char *buf, size_t nbytes, loff_t off)
  2579. {
  2580. struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
  2581. unsigned long nr_pages;
  2582. int ret;
  2583. buf = strstrip(buf);
  2584. ret = page_counter_memparse(buf, "-1", &nr_pages);
  2585. if (ret)
  2586. return ret;
  2587. switch (MEMFILE_ATTR(of_cft(of)->private)) {
  2588. case RES_LIMIT:
  2589. if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
  2590. ret = -EINVAL;
  2591. break;
  2592. }
  2593. switch (MEMFILE_TYPE(of_cft(of)->private)) {
  2594. case _MEM:
  2595. ret = mem_cgroup_resize_limit(memcg, nr_pages);
  2596. break;
  2597. case _MEMSWAP:
  2598. ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
  2599. break;
  2600. case _KMEM:
  2601. ret = memcg_update_kmem_limit(memcg, nr_pages);
  2602. break;
  2603. case _TCP:
  2604. ret = memcg_update_tcp_limit(memcg, nr_pages);
  2605. break;
  2606. }
  2607. break;
  2608. case RES_SOFT_LIMIT:
  2609. memcg->soft_limit = nr_pages;
  2610. ret = 0;
  2611. break;
  2612. }
  2613. return ret ?: nbytes;
  2614. }
  2615. static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
  2616. size_t nbytes, loff_t off)
  2617. {
  2618. struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
  2619. struct page_counter *counter;
  2620. switch (MEMFILE_TYPE(of_cft(of)->private)) {
  2621. case _MEM:
  2622. counter = &memcg->memory;
  2623. break;
  2624. case _MEMSWAP:
  2625. counter = &memcg->memsw;
  2626. break;
  2627. case _KMEM:
  2628. counter = &memcg->kmem;
  2629. break;
  2630. case _TCP:
  2631. counter = &memcg->tcpmem;
  2632. break;
  2633. default:
  2634. BUG();
  2635. }
  2636. switch (MEMFILE_ATTR(of_cft(of)->private)) {
  2637. case RES_MAX_USAGE:
  2638. page_counter_reset_watermark(counter);
  2639. break;
  2640. case RES_FAILCNT:
  2641. counter->failcnt = 0;
  2642. break;
  2643. default:
  2644. BUG();
  2645. }
  2646. return nbytes;
  2647. }
  2648. static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
  2649. struct cftype *cft)
  2650. {
  2651. return mem_cgroup_from_css(css)->move_charge_at_immigrate;
  2652. }
  2653. #ifdef CONFIG_MMU
  2654. static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
  2655. struct cftype *cft, u64 val)
  2656. {
  2657. struct mem_cgroup *memcg = mem_cgroup_from_css(css);
  2658. if (val & ~MOVE_MASK)
  2659. return -EINVAL;
  2660. /*
  2661. * No kind of locking is needed in here, because ->can_attach() will
  2662. * check this value once in the beginning of the process, and then carry
  2663. * on with stale data. This means that changes to this value will only
  2664. * affect task migrations starting after the change.
  2665. */
  2666. memcg->move_charge_at_immigrate = val;
  2667. return 0;
  2668. }
  2669. #else
  2670. static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
  2671. struct cftype *cft, u64 val)
  2672. {
  2673. return -ENOSYS;
  2674. }
  2675. #endif
  2676. #ifdef CONFIG_NUMA
  2677. static int memcg_numa_stat_show(struct seq_file *m, void *v)
  2678. {
  2679. struct numa_stat {
  2680. const char *name;
  2681. unsigned int lru_mask;
  2682. };
  2683. static const struct numa_stat stats[] = {
  2684. { "total", LRU_ALL },
  2685. { "file", LRU_ALL_FILE },
  2686. { "anon", LRU_ALL_ANON },
  2687. { "unevictable", BIT(LRU_UNEVICTABLE) },
  2688. };
  2689. const struct numa_stat *stat;
  2690. int nid;
  2691. unsigned long nr;
  2692. struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
  2693. for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
  2694. nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
  2695. seq_printf(m, "%s=%lu", stat->name, nr);
  2696. for_each_node_state(nid, N_MEMORY) {
  2697. nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
  2698. stat->lru_mask);
  2699. seq_printf(m, " N%d=%lu", nid, nr);
  2700. }
  2701. seq_putc(m, '\n');
  2702. }
  2703. for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
  2704. struct mem_cgroup *iter;
  2705. nr = 0;
  2706. for_each_mem_cgroup_tree(iter, memcg)
  2707. nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
  2708. seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
  2709. for_each_node_state(nid, N_MEMORY) {
  2710. nr = 0;
  2711. for_each_mem_cgroup_tree(iter, memcg)
  2712. nr += mem_cgroup_node_nr_lru_pages(
  2713. iter, nid, stat->lru_mask);
  2714. seq_printf(m, " N%d=%lu", nid, nr);
  2715. }
  2716. seq_putc(m, '\n');
  2717. }
  2718. return 0;
  2719. }
  2720. #endif /* CONFIG_NUMA */
  2721. static int memcg_stat_show(struct seq_file *m, void *v)
  2722. {
  2723. struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
  2724. unsigned long memory, memsw;
  2725. struct mem_cgroup *mi;
  2726. unsigned int i;
  2727. BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
  2728. MEM_CGROUP_STAT_NSTATS);
  2729. BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
  2730. MEM_CGROUP_EVENTS_NSTATS);
  2731. BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
  2732. for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
  2733. if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
  2734. continue;
  2735. seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
  2736. mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
  2737. }
  2738. for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
  2739. seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
  2740. mem_cgroup_read_events(memcg, i));
  2741. for (i = 0; i < NR_LRU_LISTS; i++)
  2742. seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
  2743. mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
  2744. /* Hierarchical information */
  2745. memory = memsw = PAGE_COUNTER_MAX;
  2746. for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
  2747. memory = min(memory, mi->memory.limit);
  2748. memsw = min(memsw, mi->memsw.limit);
  2749. }
  2750. seq_printf(m, "hierarchical_memory_limit %llu\n",
  2751. (u64)memory * PAGE_SIZE);
  2752. if (do_memsw_account())
  2753. seq_printf(m, "hierarchical_memsw_limit %llu\n",
  2754. (u64)memsw * PAGE_SIZE);
  2755. for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
  2756. unsigned long long val = 0;
  2757. if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
  2758. continue;
  2759. for_each_mem_cgroup_tree(mi, memcg)
  2760. val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
  2761. seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
  2762. }
  2763. for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
  2764. unsigned long long val = 0;
  2765. for_each_mem_cgroup_tree(mi, memcg)
  2766. val += mem_cgroup_read_events(mi, i);
  2767. seq_printf(m, "total_%s %llu\n",
  2768. mem_cgroup_events_names[i], val);
  2769. }
  2770. for (i = 0; i < NR_LRU_LISTS; i++) {
  2771. unsigned long long val = 0;
  2772. for_each_mem_cgroup_tree(mi, memcg)
  2773. val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
  2774. seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
  2775. }
  2776. #ifdef CONFIG_DEBUG_VM
  2777. {
  2778. pg_data_t *pgdat;
  2779. struct mem_cgroup_per_node *mz;
  2780. struct zone_reclaim_stat *rstat;
  2781. unsigned long recent_rotated[2] = {0, 0};
  2782. unsigned long recent_scanned[2] = {0, 0};
  2783. for_each_online_pgdat(pgdat) {
  2784. mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
  2785. rstat = &mz->lruvec.reclaim_stat;
  2786. recent_rotated[0] += rstat->recent_rotated[0];
  2787. recent_rotated[1] += rstat->recent_rotated[1];
  2788. recent_scanned[0] += rstat->recent_scanned[0];
  2789. recent_scanned[1] += rstat->recent_scanned[1];
  2790. }
  2791. seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
  2792. seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
  2793. seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
  2794. seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
  2795. }
  2796. #endif
  2797. return 0;
  2798. }
  2799. static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
  2800. struct cftype *cft)
  2801. {
  2802. struct mem_cgroup *memcg = mem_cgroup_from_css(css);
  2803. return mem_cgroup_swappiness(memcg);
  2804. }
  2805. static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
  2806. struct cftype *cft, u64 val)
  2807. {
  2808. struct mem_cgroup *memcg = mem_cgroup_from_css(css);
  2809. if (val > 100)
  2810. return -EINVAL;
  2811. if (css->parent)
  2812. memcg->swappiness = val;
  2813. else
  2814. vm_swappiness = val;
  2815. return 0;
  2816. }
  2817. static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
  2818. {
  2819. struct mem_cgroup_threshold_ary *t;
  2820. unsigned long usage;
  2821. int i;
  2822. rcu_read_lock();
  2823. if (!swap)
  2824. t = rcu_dereference(memcg->thresholds.primary);
  2825. else
  2826. t = rcu_dereference(memcg->memsw_thresholds.primary);
  2827. if (!t)
  2828. goto unlock;
  2829. usage = mem_cgroup_usage(memcg, swap);
  2830. /*
  2831. * current_threshold points to threshold just below or equal to usage.
  2832. * If it's not true, a threshold was crossed after last
  2833. * call of __mem_cgroup_threshold().
  2834. */
  2835. i = t->current_threshold;
  2836. /*
  2837. * Iterate backward over array of thresholds starting from
  2838. * current_threshold and check if a threshold is crossed.
  2839. * If none of thresholds below usage is crossed, we read
  2840. * only one element of the array here.
  2841. */
  2842. for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
  2843. eventfd_signal(t->entries[i].eventfd, 1);
  2844. /* i = current_threshold + 1 */
  2845. i++;
  2846. /*
  2847. * Iterate forward over array of thresholds starting from
  2848. * current_threshold+1 and check if a threshold is crossed.
  2849. * If none of thresholds above usage is crossed, we read
  2850. * only one element of the array here.
  2851. */
  2852. for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
  2853. eventfd_signal(t->entries[i].eventfd, 1);
  2854. /* Update current_threshold */
  2855. t->current_threshold = i - 1;
  2856. unlock:
  2857. rcu_read_unlock();
  2858. }
  2859. static void mem_cgroup_threshold(struct mem_cgroup *memcg)
  2860. {
  2861. while (memcg) {
  2862. __mem_cgroup_threshold(memcg, false);
  2863. if (do_memsw_account())
  2864. __mem_cgroup_threshold(memcg, true);
  2865. memcg = parent_mem_cgroup(memcg);
  2866. }
  2867. }
  2868. static int compare_thresholds(const void *a, const void *b)
  2869. {
  2870. const struct mem_cgroup_threshold *_a = a;
  2871. const struct mem_cgroup_threshold *_b = b;
  2872. if (_a->threshold > _b->threshold)
  2873. return 1;
  2874. if (_a->threshold < _b->threshold)
  2875. return -1;
  2876. return 0;
  2877. }
  2878. static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
  2879. {
  2880. struct mem_cgroup_eventfd_list *ev;
  2881. spin_lock(&memcg_oom_lock);
  2882. list_for_each_entry(ev, &memcg->oom_notify, list)
  2883. eventfd_signal(ev->eventfd, 1);
  2884. spin_unlock(&memcg_oom_lock);
  2885. return 0;
  2886. }
  2887. static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
  2888. {
  2889. struct mem_cgroup *iter;
  2890. for_each_mem_cgroup_tree(iter, memcg)
  2891. mem_cgroup_oom_notify_cb(iter);
  2892. }
  2893. static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
  2894. struct eventfd_ctx *eventfd, const char *args, enum res_type type)
  2895. {
  2896. struct mem_cgroup_thresholds *thresholds;
  2897. struct mem_cgroup_threshold_ary *new;
  2898. unsigned long threshold;
  2899. unsigned long usage;
  2900. int i, size, ret;
  2901. ret = page_counter_memparse(args, "-1", &threshold);
  2902. if (ret)
  2903. return ret;
  2904. mutex_lock(&memcg->thresholds_lock);
  2905. if (type == _MEM) {
  2906. thresholds = &memcg->thresholds;
  2907. usage = mem_cgroup_usage(memcg, false);
  2908. } else if (type == _MEMSWAP) {
  2909. thresholds = &memcg->memsw_thresholds;
  2910. usage = mem_cgroup_usage(memcg, true);
  2911. } else
  2912. BUG();
  2913. /* Check if a threshold crossed before adding a new one */
  2914. if (thresholds->primary)
  2915. __mem_cgroup_threshold(memcg, type == _MEMSWAP);
  2916. size = thresholds->primary ? thresholds->primary->size + 1 : 1;
  2917. /* Allocate memory for new array of thresholds */
  2918. new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
  2919. GFP_KERNEL);
  2920. if (!new) {
  2921. ret = -ENOMEM;
  2922. goto unlock;
  2923. }
  2924. new->size = size;
  2925. /* Copy thresholds (if any) to new array */
  2926. if (thresholds->primary) {
  2927. memcpy(new->entries, thresholds->primary->entries, (size - 1) *
  2928. sizeof(struct mem_cgroup_threshold));
  2929. }
  2930. /* Add new threshold */
  2931. new->entries[size - 1].eventfd = eventfd;
  2932. new->entries[size - 1].threshold = threshold;
  2933. /* Sort thresholds. Registering of new threshold isn't time-critical */
  2934. sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
  2935. compare_thresholds, NULL);
  2936. /* Find current threshold */
  2937. new->current_threshold = -1;
  2938. for (i = 0; i < size; i++) {
  2939. if (new->entries[i].threshold <= usage) {
  2940. /*
  2941. * new->current_threshold will not be used until
  2942. * rcu_assign_pointer(), so it's safe to increment
  2943. * it here.
  2944. */
  2945. ++new->current_threshold;
  2946. } else
  2947. break;
  2948. }
  2949. /* Free old spare buffer and save old primary buffer as spare */
  2950. kfree(thresholds->spare);
  2951. thresholds->spare = thresholds->primary;
  2952. rcu_assign_pointer(thresholds->primary, new);
  2953. /* To be sure that nobody uses thresholds */
  2954. synchronize_rcu();
  2955. unlock:
  2956. mutex_unlock(&memcg->thresholds_lock);
  2957. return ret;
  2958. }
  2959. static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
  2960. struct eventfd_ctx *eventfd, const char *args)
  2961. {
  2962. return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
  2963. }
  2964. static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
  2965. struct eventfd_ctx *eventfd, const char *args)
  2966. {
  2967. return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
  2968. }
  2969. static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
  2970. struct eventfd_ctx *eventfd, enum res_type type)
  2971. {
  2972. struct mem_cgroup_thresholds *thresholds;
  2973. struct mem_cgroup_threshold_ary *new;
  2974. unsigned long usage;
  2975. int i, j, size;
  2976. mutex_lock(&memcg->thresholds_lock);
  2977. if (type == _MEM) {
  2978. thresholds = &memcg->thresholds;
  2979. usage = mem_cgroup_usage(memcg, false);
  2980. } else if (type == _MEMSWAP) {
  2981. thresholds = &memcg->memsw_thresholds;
  2982. usage = mem_cgroup_usage(memcg, true);
  2983. } else
  2984. BUG();
  2985. if (!thresholds->primary)
  2986. goto unlock;
  2987. /* Check if a threshold crossed before removing */
  2988. __mem_cgroup_threshold(memcg, type == _MEMSWAP);
  2989. /* Calculate new number of threshold */
  2990. size = 0;
  2991. for (i = 0; i < thresholds->primary->size; i++) {
  2992. if (thresholds->primary->entries[i].eventfd != eventfd)
  2993. size++;
  2994. }
  2995. new = thresholds->spare;
  2996. /* Set thresholds array to NULL if we don't have thresholds */
  2997. if (!size) {
  2998. kfree(new);
  2999. new = NULL;
  3000. goto swap_buffers;
  3001. }
  3002. new->size = size;
  3003. /* Copy thresholds and find current threshold */
  3004. new->current_threshold = -1;
  3005. for (i = 0, j = 0; i < thresholds->primary->size; i++) {
  3006. if (thresholds->primary->entries[i].eventfd == eventfd)
  3007. continue;
  3008. new->entries[j] = thresholds->primary->entries[i];
  3009. if (new->entries[j].threshold <= usage) {
  3010. /*
  3011. * new->current_threshold will not be used
  3012. * until rcu_assign_pointer(), so it's safe to increment
  3013. * it here.
  3014. */
  3015. ++new->current_threshold;
  3016. }
  3017. j++;
  3018. }
  3019. swap_buffers:
  3020. /* Swap primary and spare array */
  3021. thresholds->spare = thresholds->primary;
  3022. rcu_assign_pointer(thresholds->primary, new);
  3023. /* To be sure that nobody uses thresholds */
  3024. synchronize_rcu();
  3025. /* If all events are unregistered, free the spare array */
  3026. if (!new) {
  3027. kfree(thresholds->spare);
  3028. thresholds->spare = NULL;
  3029. }
  3030. unlock:
  3031. mutex_unlock(&memcg->thresholds_lock);
  3032. }
  3033. static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
  3034. struct eventfd_ctx *eventfd)
  3035. {
  3036. return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
  3037. }
  3038. static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
  3039. struct eventfd_ctx *eventfd)
  3040. {
  3041. return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
  3042. }
  3043. static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
  3044. struct eventfd_ctx *eventfd, const char *args)
  3045. {
  3046. struct mem_cgroup_eventfd_list *event;
  3047. event = kmalloc(sizeof(*event), GFP_KERNEL);
  3048. if (!event)
  3049. return -ENOMEM;
  3050. spin_lock(&memcg_oom_lock);
  3051. event->eventfd = eventfd;
  3052. list_add(&event->list, &memcg->oom_notify);
  3053. /* already in OOM ? */
  3054. if (memcg->under_oom)
  3055. eventfd_signal(eventfd, 1);
  3056. spin_unlock(&memcg_oom_lock);
  3057. return 0;
  3058. }
  3059. static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
  3060. struct eventfd_ctx *eventfd)
  3061. {
  3062. struct mem_cgroup_eventfd_list *ev, *tmp;
  3063. spin_lock(&memcg_oom_lock);
  3064. list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
  3065. if (ev->eventfd == eventfd) {
  3066. list_del(&ev->list);
  3067. kfree(ev);
  3068. }
  3069. }
  3070. spin_unlock(&memcg_oom_lock);
  3071. }
  3072. static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
  3073. {
  3074. struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
  3075. seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
  3076. seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
  3077. return 0;
  3078. }
  3079. static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
  3080. struct cftype *cft, u64 val)
  3081. {
  3082. struct mem_cgroup *memcg = mem_cgroup_from_css(css);
  3083. /* cannot set to root cgroup and only 0 and 1 are allowed */
  3084. if (!css->parent || !((val == 0) || (val == 1)))
  3085. return -EINVAL;
  3086. memcg->oom_kill_disable = val;
  3087. if (!val)
  3088. memcg_oom_recover(memcg);
  3089. return 0;
  3090. }
  3091. #ifdef CONFIG_CGROUP_WRITEBACK
  3092. struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
  3093. {
  3094. return &memcg->cgwb_list;
  3095. }
  3096. static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
  3097. {
  3098. return wb_domain_init(&memcg->cgwb_domain, gfp);
  3099. }
  3100. static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
  3101. {
  3102. wb_domain_exit(&memcg->cgwb_domain);
  3103. }
  3104. static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
  3105. {
  3106. wb_domain_size_changed(&memcg->cgwb_domain);
  3107. }
  3108. struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
  3109. {
  3110. struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
  3111. if (!memcg->css.parent)
  3112. return NULL;
  3113. return &memcg->cgwb_domain;
  3114. }
  3115. /**
  3116. * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
  3117. * @wb: bdi_writeback in question
  3118. * @pfilepages: out parameter for number of file pages
  3119. * @pheadroom: out parameter for number of allocatable pages according to memcg
  3120. * @pdirty: out parameter for number of dirty pages
  3121. * @pwriteback: out parameter for number of pages under writeback
  3122. *
  3123. * Determine the numbers of file, headroom, dirty, and writeback pages in
  3124. * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
  3125. * is a bit more involved.
  3126. *
  3127. * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
  3128. * headroom is calculated as the lowest headroom of itself and the
  3129. * ancestors. Note that this doesn't consider the actual amount of
  3130. * available memory in the system. The caller should further cap
  3131. * *@pheadroom accordingly.
  3132. */
  3133. void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
  3134. unsigned long *pheadroom, unsigned long *pdirty,
  3135. unsigned long *pwriteback)
  3136. {
  3137. struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
  3138. struct mem_cgroup *parent;
  3139. *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
  3140. /* this should eventually include NR_UNSTABLE_NFS */
  3141. *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
  3142. *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
  3143. (1 << LRU_ACTIVE_FILE));
  3144. *pheadroom = PAGE_COUNTER_MAX;
  3145. while ((parent = parent_mem_cgroup(memcg))) {
  3146. unsigned long ceiling = min(memcg->memory.limit, memcg->high);
  3147. unsigned long used = page_counter_read(&memcg->memory);
  3148. *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
  3149. memcg = parent;
  3150. }
  3151. }
  3152. #else /* CONFIG_CGROUP_WRITEBACK */
  3153. static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
  3154. {
  3155. return 0;
  3156. }
  3157. static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
  3158. {
  3159. }
  3160. static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
  3161. {
  3162. }
  3163. #endif /* CONFIG_CGROUP_WRITEBACK */
  3164. /*
  3165. * DO NOT USE IN NEW FILES.
  3166. *
  3167. * "cgroup.event_control" implementation.
  3168. *
  3169. * This is way over-engineered. It tries to support fully configurable
  3170. * events for each user. Such level of flexibility is completely
  3171. * unnecessary especially in the light of the planned unified hierarchy.
  3172. *
  3173. * Please deprecate this and replace with something simpler if at all
  3174. * possible.
  3175. */
  3176. /*
  3177. * Unregister event and free resources.
  3178. *
  3179. * Gets called from workqueue.
  3180. */
  3181. static void memcg_event_remove(struct work_struct *work)
  3182. {
  3183. struct mem_cgroup_event *event =
  3184. container_of(work, struct mem_cgroup_event, remove);
  3185. struct mem_cgroup *memcg = event->memcg;
  3186. remove_wait_queue(event->wqh, &event->wait);
  3187. event->unregister_event(memcg, event->eventfd);
  3188. /* Notify userspace the event is going away. */
  3189. eventfd_signal(event->eventfd, 1);
  3190. eventfd_ctx_put(event->eventfd);
  3191. kfree(event);
  3192. css_put(&memcg->css);
  3193. }
  3194. /*
  3195. * Gets called on POLLHUP on eventfd when user closes it.
  3196. *
  3197. * Called with wqh->lock held and interrupts disabled.
  3198. */
  3199. static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
  3200. int sync, void *key)
  3201. {
  3202. struct mem_cgroup_event *event =
  3203. container_of(wait, struct mem_cgroup_event, wait);
  3204. struct mem_cgroup *memcg = event->memcg;
  3205. unsigned long flags = (unsigned long)key;
  3206. if (flags & POLLHUP) {
  3207. /*
  3208. * If the event has been detached at cgroup removal, we
  3209. * can simply return knowing the other side will cleanup
  3210. * for us.
  3211. *
  3212. * We can't race against event freeing since the other
  3213. * side will require wqh->lock via remove_wait_queue(),
  3214. * which we hold.
  3215. */
  3216. spin_lock(&memcg->event_list_lock);
  3217. if (!list_empty(&event->list)) {
  3218. list_del_init(&event->list);
  3219. /*
  3220. * We are in atomic context, but cgroup_event_remove()
  3221. * may sleep, so we have to call it in workqueue.
  3222. */
  3223. schedule_work(&event->remove);
  3224. }
  3225. spin_unlock(&memcg->event_list_lock);
  3226. }
  3227. return 0;
  3228. }
  3229. static void memcg_event_ptable_queue_proc(struct file *file,
  3230. wait_queue_head_t *wqh, poll_table *pt)
  3231. {
  3232. struct mem_cgroup_event *event =
  3233. container_of(pt, struct mem_cgroup_event, pt);
  3234. event->wqh = wqh;
  3235. add_wait_queue(wqh, &event->wait);
  3236. }
  3237. /*
  3238. * DO NOT USE IN NEW FILES.
  3239. *
  3240. * Parse input and register new cgroup event handler.
  3241. *
  3242. * Input must be in format '<event_fd> <control_fd> <args>'.
  3243. * Interpretation of args is defined by control file implementation.
  3244. */
  3245. static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
  3246. char *buf, size_t nbytes, loff_t off)
  3247. {
  3248. struct cgroup_subsys_state *css = of_css(of);
  3249. struct mem_cgroup *memcg = mem_cgroup_from_css(css);
  3250. struct mem_cgroup_event *event;
  3251. struct cgroup_subsys_state *cfile_css;
  3252. unsigned int efd, cfd;
  3253. struct fd efile;
  3254. struct fd cfile;
  3255. const char *name;
  3256. char *endp;
  3257. int ret;
  3258. buf = strstrip(buf);
  3259. efd = simple_strtoul(buf, &endp, 10);
  3260. if (*endp != ' ')
  3261. return -EINVAL;
  3262. buf = endp + 1;
  3263. cfd = simple_strtoul(buf, &endp, 10);
  3264. if ((*endp != ' ') && (*endp != '\0'))
  3265. return -EINVAL;
  3266. buf = endp + 1;
  3267. event = kzalloc(sizeof(*event), GFP_KERNEL);
  3268. if (!event)
  3269. return -ENOMEM;
  3270. event->memcg = memcg;
  3271. INIT_LIST_HEAD(&event->list);
  3272. init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
  3273. init_waitqueue_func_entry(&event->wait, memcg_event_wake);
  3274. INIT_WORK(&event->remove, memcg_event_remove);
  3275. efile = fdget(efd);
  3276. if (!efile.file) {
  3277. ret = -EBADF;
  3278. goto out_kfree;
  3279. }
  3280. event->eventfd = eventfd_ctx_fileget(efile.file);
  3281. if (IS_ERR(event->eventfd)) {
  3282. ret = PTR_ERR(event->eventfd);
  3283. goto out_put_efile;
  3284. }
  3285. cfile = fdget(cfd);
  3286. if (!cfile.file) {
  3287. ret = -EBADF;
  3288. goto out_put_eventfd;
  3289. }
  3290. /* the process need read permission on control file */
  3291. /* AV: shouldn't we check that it's been opened for read instead? */
  3292. ret = inode_permission(file_inode(cfile.file), MAY_READ);
  3293. if (ret < 0)
  3294. goto out_put_cfile;
  3295. /*
  3296. * Determine the event callbacks and set them in @event. This used
  3297. * to be done via struct cftype but cgroup core no longer knows
  3298. * about these events. The following is crude but the whole thing
  3299. * is for compatibility anyway.
  3300. *
  3301. * DO NOT ADD NEW FILES.
  3302. */
  3303. name = cfile.file->f_path.dentry->d_name.name;
  3304. if (!strcmp(name, "memory.usage_in_bytes")) {
  3305. event->register_event = mem_cgroup_usage_register_event;
  3306. event->unregister_event = mem_cgroup_usage_unregister_event;
  3307. } else if (!strcmp(name, "memory.oom_control")) {
  3308. event->register_event = mem_cgroup_oom_register_event;
  3309. event->unregister_event = mem_cgroup_oom_unregister_event;
  3310. } else if (!strcmp(name, "memory.pressure_level")) {
  3311. event->register_event = vmpressure_register_event;
  3312. event->unregister_event = vmpressure_unregister_event;
  3313. } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
  3314. event->register_event = memsw_cgroup_usage_register_event;
  3315. event->unregister_event = memsw_cgroup_usage_unregister_event;
  3316. } else {
  3317. ret = -EINVAL;
  3318. goto out_put_cfile;
  3319. }
  3320. /*
  3321. * Verify @cfile should belong to @css. Also, remaining events are
  3322. * automatically removed on cgroup destruction but the removal is
  3323. * asynchronous, so take an extra ref on @css.
  3324. */
  3325. cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
  3326. &memory_cgrp_subsys);
  3327. ret = -EINVAL;
  3328. if (IS_ERR(cfile_css))
  3329. goto out_put_cfile;
  3330. if (cfile_css != css) {
  3331. css_put(cfile_css);
  3332. goto out_put_cfile;
  3333. }
  3334. ret = event->register_event(memcg, event->eventfd, buf);
  3335. if (ret)
  3336. goto out_put_css;
  3337. efile.file->f_op->poll(efile.file, &event->pt);
  3338. spin_lock(&memcg->event_list_lock);
  3339. list_add(&event->list, &memcg->event_list);
  3340. spin_unlock(&memcg->event_list_lock);
  3341. fdput(cfile);
  3342. fdput(efile);
  3343. return nbytes;
  3344. out_put_css:
  3345. css_put(css);
  3346. out_put_cfile:
  3347. fdput(cfile);
  3348. out_put_eventfd:
  3349. eventfd_ctx_put(event->eventfd);
  3350. out_put_efile:
  3351. fdput(efile);
  3352. out_kfree:
  3353. kfree(event);
  3354. return ret;
  3355. }
  3356. static struct cftype mem_cgroup_legacy_files[] = {
  3357. {
  3358. .name = "usage_in_bytes",
  3359. .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
  3360. .read_u64 = mem_cgroup_read_u64,
  3361. },
  3362. {
  3363. .name = "max_usage_in_bytes",
  3364. .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
  3365. .write = mem_cgroup_reset,
  3366. .read_u64 = mem_cgroup_read_u64,
  3367. },
  3368. {
  3369. .name = "limit_in_bytes",
  3370. .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
  3371. .write = mem_cgroup_write,
  3372. .read_u64 = mem_cgroup_read_u64,
  3373. },
  3374. {
  3375. .name = "soft_limit_in_bytes",
  3376. .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
  3377. .write = mem_cgroup_write,
  3378. .read_u64 = mem_cgroup_read_u64,
  3379. },
  3380. {
  3381. .name = "failcnt",
  3382. .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
  3383. .write = mem_cgroup_reset,
  3384. .read_u64 = mem_cgroup_read_u64,
  3385. },
  3386. {
  3387. .name = "stat",
  3388. .seq_show = memcg_stat_show,
  3389. },
  3390. {
  3391. .name = "force_empty",
  3392. .write = mem_cgroup_force_empty_write,
  3393. },
  3394. {
  3395. .name = "use_hierarchy",
  3396. .write_u64 = mem_cgroup_hierarchy_write,
  3397. .read_u64 = mem_cgroup_hierarchy_read,
  3398. },
  3399. {
  3400. .name = "cgroup.event_control", /* XXX: for compat */
  3401. .write = memcg_write_event_control,
  3402. .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
  3403. },
  3404. {
  3405. .name = "swappiness",
  3406. .read_u64 = mem_cgroup_swappiness_read,
  3407. .write_u64 = mem_cgroup_swappiness_write,
  3408. },
  3409. {
  3410. .name = "move_charge_at_immigrate",
  3411. .read_u64 = mem_cgroup_move_charge_read,
  3412. .write_u64 = mem_cgroup_move_charge_write,
  3413. },
  3414. {
  3415. .name = "oom_control",
  3416. .seq_show = mem_cgroup_oom_control_read,
  3417. .write_u64 = mem_cgroup_oom_control_write,
  3418. .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
  3419. },
  3420. {
  3421. .name = "pressure_level",
  3422. },
  3423. #ifdef CONFIG_NUMA
  3424. {
  3425. .name = "numa_stat",
  3426. .seq_show = memcg_numa_stat_show,
  3427. },
  3428. #endif
  3429. {
  3430. .name = "kmem.limit_in_bytes",
  3431. .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
  3432. .write = mem_cgroup_write,
  3433. .read_u64 = mem_cgroup_read_u64,
  3434. },
  3435. {
  3436. .name = "kmem.usage_in_bytes",
  3437. .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
  3438. .read_u64 = mem_cgroup_read_u64,
  3439. },
  3440. {
  3441. .name = "kmem.failcnt",
  3442. .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
  3443. .write = mem_cgroup_reset,
  3444. .read_u64 = mem_cgroup_read_u64,
  3445. },
  3446. {
  3447. .name = "kmem.max_usage_in_bytes",
  3448. .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
  3449. .write = mem_cgroup_reset,
  3450. .read_u64 = mem_cgroup_read_u64,
  3451. },
  3452. #ifdef CONFIG_SLABINFO
  3453. {
  3454. .name = "kmem.slabinfo",
  3455. .seq_start = slab_start,
  3456. .seq_next = slab_next,
  3457. .seq_stop = slab_stop,
  3458. .seq_show = memcg_slab_show,
  3459. },
  3460. #endif
  3461. {
  3462. .name = "kmem.tcp.limit_in_bytes",
  3463. .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
  3464. .write = mem_cgroup_write,
  3465. .read_u64 = mem_cgroup_read_u64,
  3466. },
  3467. {
  3468. .name = "kmem.tcp.usage_in_bytes",
  3469. .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
  3470. .read_u64 = mem_cgroup_read_u64,
  3471. },
  3472. {
  3473. .name = "kmem.tcp.failcnt",
  3474. .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
  3475. .write = mem_cgroup_reset,
  3476. .read_u64 = mem_cgroup_read_u64,
  3477. },
  3478. {
  3479. .name = "kmem.tcp.max_usage_in_bytes",
  3480. .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
  3481. .write = mem_cgroup_reset,
  3482. .read_u64 = mem_cgroup_read_u64,
  3483. },
  3484. { }, /* terminate */
  3485. };
  3486. /*
  3487. * Private memory cgroup IDR
  3488. *
  3489. * Swap-out records and page cache shadow entries need to store memcg
  3490. * references in constrained space, so we maintain an ID space that is
  3491. * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
  3492. * memory-controlled cgroups to 64k.
  3493. *
  3494. * However, there usually are many references to the oflline CSS after
  3495. * the cgroup has been destroyed, such as page cache or reclaimable
  3496. * slab objects, that don't need to hang on to the ID. We want to keep
  3497. * those dead CSS from occupying IDs, or we might quickly exhaust the
  3498. * relatively small ID space and prevent the creation of new cgroups
  3499. * even when there are much fewer than 64k cgroups - possibly none.
  3500. *
  3501. * Maintain a private 16-bit ID space for memcg, and allow the ID to
  3502. * be freed and recycled when it's no longer needed, which is usually
  3503. * when the CSS is offlined.
  3504. *
  3505. * The only exception to that are records of swapped out tmpfs/shmem
  3506. * pages that need to be attributed to live ancestors on swapin. But
  3507. * those references are manageable from userspace.
  3508. */
  3509. static DEFINE_IDR(mem_cgroup_idr);
  3510. static void mem_cgroup_id_get(struct mem_cgroup *memcg)
  3511. {
  3512. atomic_inc(&memcg->id.ref);
  3513. }
  3514. static void mem_cgroup_id_put(struct mem_cgroup *memcg)
  3515. {
  3516. if (atomic_dec_and_test(&memcg->id.ref)) {
  3517. idr_remove(&mem_cgroup_idr, memcg->id.id);
  3518. memcg->id.id = 0;
  3519. /* Memcg ID pins CSS */
  3520. css_put(&memcg->css);
  3521. }
  3522. }
  3523. /**
  3524. * mem_cgroup_from_id - look up a memcg from a memcg id
  3525. * @id: the memcg id to look up
  3526. *
  3527. * Caller must hold rcu_read_lock().
  3528. */
  3529. struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
  3530. {
  3531. WARN_ON_ONCE(!rcu_read_lock_held());
  3532. return idr_find(&mem_cgroup_idr, id);
  3533. }
  3534. static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
  3535. {
  3536. struct mem_cgroup_per_node *pn;
  3537. int tmp = node;
  3538. /*
  3539. * This routine is called against possible nodes.
  3540. * But it's BUG to call kmalloc() against offline node.
  3541. *
  3542. * TODO: this routine can waste much memory for nodes which will
  3543. * never be onlined. It's better to use memory hotplug callback
  3544. * function.
  3545. */
  3546. if (!node_state(node, N_NORMAL_MEMORY))
  3547. tmp = -1;
  3548. pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
  3549. if (!pn)
  3550. return 1;
  3551. lruvec_init(&pn->lruvec);
  3552. pn->usage_in_excess = 0;
  3553. pn->on_tree = false;
  3554. pn->memcg = memcg;
  3555. memcg->nodeinfo[node] = pn;
  3556. return 0;
  3557. }
  3558. static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
  3559. {
  3560. kfree(memcg->nodeinfo[node]);
  3561. }
  3562. static void mem_cgroup_free(struct mem_cgroup *memcg)
  3563. {
  3564. int node;
  3565. memcg_wb_domain_exit(memcg);
  3566. for_each_node(node)
  3567. free_mem_cgroup_per_node_info(memcg, node);
  3568. free_percpu(memcg->stat);
  3569. kfree(memcg);
  3570. }
  3571. static struct mem_cgroup *mem_cgroup_alloc(void)
  3572. {
  3573. struct mem_cgroup *memcg;
  3574. size_t size;
  3575. int node;
  3576. size = sizeof(struct mem_cgroup);
  3577. size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
  3578. memcg = kzalloc(size, GFP_KERNEL);
  3579. if (!memcg)
  3580. return NULL;
  3581. memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
  3582. 1, MEM_CGROUP_ID_MAX,
  3583. GFP_KERNEL);
  3584. if (memcg->id.id < 0)
  3585. goto fail;
  3586. memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
  3587. if (!memcg->stat)
  3588. goto fail;
  3589. for_each_node(node)
  3590. if (alloc_mem_cgroup_per_node_info(memcg, node))
  3591. goto fail;
  3592. if (memcg_wb_domain_init(memcg, GFP_KERNEL))
  3593. goto fail;
  3594. INIT_WORK(&memcg->high_work, high_work_func);
  3595. memcg->last_scanned_node = MAX_NUMNODES;
  3596. INIT_LIST_HEAD(&memcg->oom_notify);
  3597. mutex_init(&memcg->thresholds_lock);
  3598. spin_lock_init(&memcg->move_lock);
  3599. vmpressure_init(&memcg->vmpressure);
  3600. INIT_LIST_HEAD(&memcg->event_list);
  3601. spin_lock_init(&memcg->event_list_lock);
  3602. memcg->socket_pressure = jiffies;
  3603. #ifndef CONFIG_SLOB
  3604. memcg->kmemcg_id = -1;
  3605. #endif
  3606. #ifdef CONFIG_CGROUP_WRITEBACK
  3607. INIT_LIST_HEAD(&memcg->cgwb_list);
  3608. #endif
  3609. idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
  3610. return memcg;
  3611. fail:
  3612. if (memcg->id.id > 0)
  3613. idr_remove(&mem_cgroup_idr, memcg->id.id);
  3614. mem_cgroup_free(memcg);
  3615. return NULL;
  3616. }
  3617. static struct cgroup_subsys_state * __ref
  3618. mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
  3619. {
  3620. struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
  3621. struct mem_cgroup *memcg;
  3622. long error = -ENOMEM;
  3623. memcg = mem_cgroup_alloc();
  3624. if (!memcg)
  3625. return ERR_PTR(error);
  3626. memcg->high = PAGE_COUNTER_MAX;
  3627. memcg->soft_limit = PAGE_COUNTER_MAX;
  3628. if (parent) {
  3629. memcg->swappiness = mem_cgroup_swappiness(parent);
  3630. memcg->oom_kill_disable = parent->oom_kill_disable;
  3631. }
  3632. if (parent && parent->use_hierarchy) {
  3633. memcg->use_hierarchy = true;
  3634. page_counter_init(&memcg->memory, &parent->memory);
  3635. page_counter_init(&memcg->swap, &parent->swap);
  3636. page_counter_init(&memcg->memsw, &parent->memsw);
  3637. page_counter_init(&memcg->kmem, &parent->kmem);
  3638. page_counter_init(&memcg->tcpmem, &parent->tcpmem);
  3639. } else {
  3640. page_counter_init(&memcg->memory, NULL);
  3641. page_counter_init(&memcg->swap, NULL);
  3642. page_counter_init(&memcg->memsw, NULL);
  3643. page_counter_init(&memcg->kmem, NULL);
  3644. page_counter_init(&memcg->tcpmem, NULL);
  3645. /*
  3646. * Deeper hierachy with use_hierarchy == false doesn't make
  3647. * much sense so let cgroup subsystem know about this
  3648. * unfortunate state in our controller.
  3649. */
  3650. if (parent != root_mem_cgroup)
  3651. memory_cgrp_subsys.broken_hierarchy = true;
  3652. }
  3653. /* The following stuff does not apply to the root */
  3654. if (!parent) {
  3655. root_mem_cgroup = memcg;
  3656. return &memcg->css;
  3657. }
  3658. error = memcg_online_kmem(memcg);
  3659. if (error)
  3660. goto fail;
  3661. if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
  3662. static_branch_inc(&memcg_sockets_enabled_key);
  3663. return &memcg->css;
  3664. fail:
  3665. mem_cgroup_free(memcg);
  3666. return ERR_PTR(-ENOMEM);
  3667. }
  3668. static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
  3669. {
  3670. /* Online state pins memcg ID, memcg ID pins CSS */
  3671. mem_cgroup_id_get(mem_cgroup_from_css(css));
  3672. css_get(css);
  3673. return 0;
  3674. }
  3675. static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
  3676. {
  3677. struct mem_cgroup *memcg = mem_cgroup_from_css(css);
  3678. struct mem_cgroup_event *event, *tmp;
  3679. /*
  3680. * Unregister events and notify userspace.
  3681. * Notify userspace about cgroup removing only after rmdir of cgroup
  3682. * directory to avoid race between userspace and kernelspace.
  3683. */
  3684. spin_lock(&memcg->event_list_lock);
  3685. list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
  3686. list_del_init(&event->list);
  3687. schedule_work(&event->remove);
  3688. }
  3689. spin_unlock(&memcg->event_list_lock);
  3690. memcg_offline_kmem(memcg);
  3691. wb_memcg_offline(memcg);
  3692. mem_cgroup_id_put(memcg);
  3693. }
  3694. static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
  3695. {
  3696. struct mem_cgroup *memcg = mem_cgroup_from_css(css);
  3697. invalidate_reclaim_iterators(memcg);
  3698. }
  3699. static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
  3700. {
  3701. struct mem_cgroup *memcg = mem_cgroup_from_css(css);
  3702. if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
  3703. static_branch_dec(&memcg_sockets_enabled_key);
  3704. if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
  3705. static_branch_dec(&memcg_sockets_enabled_key);
  3706. vmpressure_cleanup(&memcg->vmpressure);
  3707. cancel_work_sync(&memcg->high_work);
  3708. mem_cgroup_remove_from_trees(memcg);
  3709. memcg_free_kmem(memcg);
  3710. mem_cgroup_free(memcg);
  3711. }
  3712. /**
  3713. * mem_cgroup_css_reset - reset the states of a mem_cgroup
  3714. * @css: the target css
  3715. *
  3716. * Reset the states of the mem_cgroup associated with @css. This is
  3717. * invoked when the userland requests disabling on the default hierarchy
  3718. * but the memcg is pinned through dependency. The memcg should stop
  3719. * applying policies and should revert to the vanilla state as it may be
  3720. * made visible again.
  3721. *
  3722. * The current implementation only resets the essential configurations.
  3723. * This needs to be expanded to cover all the visible parts.
  3724. */
  3725. static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
  3726. {
  3727. struct mem_cgroup *memcg = mem_cgroup_from_css(css);
  3728. page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
  3729. page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
  3730. page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
  3731. page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
  3732. page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
  3733. memcg->low = 0;
  3734. memcg->high = PAGE_COUNTER_MAX;
  3735. memcg->soft_limit = PAGE_COUNTER_MAX;
  3736. memcg_wb_domain_size_changed(memcg);
  3737. }
  3738. #ifdef CONFIG_MMU
  3739. /* Handlers for move charge at task migration. */
  3740. static int mem_cgroup_do_precharge(unsigned long count)
  3741. {
  3742. int ret;
  3743. /* Try a single bulk charge without reclaim first, kswapd may wake */
  3744. ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
  3745. if (!ret) {
  3746. mc.precharge += count;
  3747. return ret;
  3748. }
  3749. /* Try charges one by one with reclaim */
  3750. while (count--) {
  3751. ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
  3752. if (ret)
  3753. return ret;
  3754. mc.precharge++;
  3755. cond_resched();
  3756. }
  3757. return 0;
  3758. }
  3759. union mc_target {
  3760. struct page *page;
  3761. swp_entry_t ent;
  3762. };
  3763. enum mc_target_type {
  3764. MC_TARGET_NONE = 0,
  3765. MC_TARGET_PAGE,
  3766. MC_TARGET_SWAP,
  3767. };
  3768. static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
  3769. unsigned long addr, pte_t ptent)
  3770. {
  3771. struct page *page = vm_normal_page(vma, addr, ptent);
  3772. if (!page || !page_mapped(page))
  3773. return NULL;
  3774. if (PageAnon(page)) {
  3775. if (!(mc.flags & MOVE_ANON))
  3776. return NULL;
  3777. } else {
  3778. if (!(mc.flags & MOVE_FILE))
  3779. return NULL;
  3780. }
  3781. if (!get_page_unless_zero(page))
  3782. return NULL;
  3783. return page;
  3784. }
  3785. #ifdef CONFIG_SWAP
  3786. static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
  3787. pte_t ptent, swp_entry_t *entry)
  3788. {
  3789. struct page *page = NULL;
  3790. swp_entry_t ent = pte_to_swp_entry(ptent);
  3791. if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
  3792. return NULL;
  3793. /*
  3794. * Because lookup_swap_cache() updates some statistics counter,
  3795. * we call find_get_page() with swapper_space directly.
  3796. */
  3797. page = find_get_page(swap_address_space(ent), ent.val);
  3798. if (do_memsw_account())
  3799. entry->val = ent.val;
  3800. return page;
  3801. }
  3802. #else
  3803. static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
  3804. pte_t ptent, swp_entry_t *entry)
  3805. {
  3806. return NULL;
  3807. }
  3808. #endif
  3809. static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
  3810. unsigned long addr, pte_t ptent, swp_entry_t *entry)
  3811. {
  3812. struct page *page = NULL;
  3813. struct address_space *mapping;
  3814. pgoff_t pgoff;
  3815. if (!vma->vm_file) /* anonymous vma */
  3816. return NULL;
  3817. if (!(mc.flags & MOVE_FILE))
  3818. return NULL;
  3819. mapping = vma->vm_file->f_mapping;
  3820. pgoff = linear_page_index(vma, addr);
  3821. /* page is moved even if it's not RSS of this task(page-faulted). */
  3822. #ifdef CONFIG_SWAP
  3823. /* shmem/tmpfs may report page out on swap: account for that too. */
  3824. if (shmem_mapping(mapping)) {
  3825. page = find_get_entry(mapping, pgoff);
  3826. if (radix_tree_exceptional_entry(page)) {
  3827. swp_entry_t swp = radix_to_swp_entry(page);
  3828. if (do_memsw_account())
  3829. *entry = swp;
  3830. page = find_get_page(swap_address_space(swp), swp.val);
  3831. }
  3832. } else
  3833. page = find_get_page(mapping, pgoff);
  3834. #else
  3835. page = find_get_page(mapping, pgoff);
  3836. #endif
  3837. return page;
  3838. }
  3839. /**
  3840. * mem_cgroup_move_account - move account of the page
  3841. * @page: the page
  3842. * @compound: charge the page as compound or small page
  3843. * @from: mem_cgroup which the page is moved from.
  3844. * @to: mem_cgroup which the page is moved to. @from != @to.
  3845. *
  3846. * The caller must make sure the page is not on LRU (isolate_page() is useful.)
  3847. *
  3848. * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
  3849. * from old cgroup.
  3850. */
  3851. static int mem_cgroup_move_account(struct page *page,
  3852. bool compound,
  3853. struct mem_cgroup *from,
  3854. struct mem_cgroup *to)
  3855. {
  3856. unsigned long flags;
  3857. unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
  3858. int ret;
  3859. bool anon;
  3860. VM_BUG_ON(from == to);
  3861. VM_BUG_ON_PAGE(PageLRU(page), page);
  3862. VM_BUG_ON(compound && !PageTransHuge(page));
  3863. /*
  3864. * Prevent mem_cgroup_migrate() from looking at
  3865. * page->mem_cgroup of its source page while we change it.
  3866. */
  3867. ret = -EBUSY;
  3868. if (!trylock_page(page))
  3869. goto out;
  3870. ret = -EINVAL;
  3871. if (page->mem_cgroup != from)
  3872. goto out_unlock;
  3873. anon = PageAnon(page);
  3874. spin_lock_irqsave(&from->move_lock, flags);
  3875. if (!anon && page_mapped(page)) {
  3876. __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
  3877. nr_pages);
  3878. __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
  3879. nr_pages);
  3880. }
  3881. /*
  3882. * move_lock grabbed above and caller set from->moving_account, so
  3883. * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
  3884. * So mapping should be stable for dirty pages.
  3885. */
  3886. if (!anon && PageDirty(page)) {
  3887. struct address_space *mapping = page_mapping(page);
  3888. if (mapping_cap_account_dirty(mapping)) {
  3889. __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
  3890. nr_pages);
  3891. __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
  3892. nr_pages);
  3893. }
  3894. }
  3895. if (PageWriteback(page)) {
  3896. __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
  3897. nr_pages);
  3898. __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
  3899. nr_pages);
  3900. }
  3901. /*
  3902. * It is safe to change page->mem_cgroup here because the page
  3903. * is referenced, charged, and isolated - we can't race with
  3904. * uncharging, charging, migration, or LRU putback.
  3905. */
  3906. /* caller should have done css_get */
  3907. page->mem_cgroup = to;
  3908. spin_unlock_irqrestore(&from->move_lock, flags);
  3909. ret = 0;
  3910. local_irq_disable();
  3911. mem_cgroup_charge_statistics(to, page, compound, nr_pages);
  3912. memcg_check_events(to, page);
  3913. mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
  3914. memcg_check_events(from, page);
  3915. local_irq_enable();
  3916. out_unlock:
  3917. unlock_page(page);
  3918. out:
  3919. return ret;
  3920. }
  3921. /**
  3922. * get_mctgt_type - get target type of moving charge
  3923. * @vma: the vma the pte to be checked belongs
  3924. * @addr: the address corresponding to the pte to be checked
  3925. * @ptent: the pte to be checked
  3926. * @target: the pointer the target page or swap ent will be stored(can be NULL)
  3927. *
  3928. * Returns
  3929. * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
  3930. * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
  3931. * move charge. if @target is not NULL, the page is stored in target->page
  3932. * with extra refcnt got(Callers should handle it).
  3933. * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
  3934. * target for charge migration. if @target is not NULL, the entry is stored
  3935. * in target->ent.
  3936. *
  3937. * Called with pte lock held.
  3938. */
  3939. static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
  3940. unsigned long addr, pte_t ptent, union mc_target *target)
  3941. {
  3942. struct page *page = NULL;
  3943. enum mc_target_type ret = MC_TARGET_NONE;
  3944. swp_entry_t ent = { .val = 0 };
  3945. if (pte_present(ptent))
  3946. page = mc_handle_present_pte(vma, addr, ptent);
  3947. else if (is_swap_pte(ptent))
  3948. page = mc_handle_swap_pte(vma, ptent, &ent);
  3949. else if (pte_none(ptent))
  3950. page = mc_handle_file_pte(vma, addr, ptent, &ent);
  3951. if (!page && !ent.val)
  3952. return ret;
  3953. if (page) {
  3954. /*
  3955. * Do only loose check w/o serialization.
  3956. * mem_cgroup_move_account() checks the page is valid or
  3957. * not under LRU exclusion.
  3958. */
  3959. if (page->mem_cgroup == mc.from) {
  3960. ret = MC_TARGET_PAGE;
  3961. if (target)
  3962. target->page = page;
  3963. }
  3964. if (!ret || !target)
  3965. put_page(page);
  3966. }
  3967. /* There is a swap entry and a page doesn't exist or isn't charged */
  3968. if (ent.val && !ret &&
  3969. mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
  3970. ret = MC_TARGET_SWAP;
  3971. if (target)
  3972. target->ent = ent;
  3973. }
  3974. return ret;
  3975. }
  3976. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  3977. /*
  3978. * We don't consider swapping or file mapped pages because THP does not
  3979. * support them for now.
  3980. * Caller should make sure that pmd_trans_huge(pmd) is true.
  3981. */
  3982. static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
  3983. unsigned long addr, pmd_t pmd, union mc_target *target)
  3984. {
  3985. struct page *page = NULL;
  3986. enum mc_target_type ret = MC_TARGET_NONE;
  3987. page = pmd_page(pmd);
  3988. VM_BUG_ON_PAGE(!page || !PageHead(page), page);
  3989. if (!(mc.flags & MOVE_ANON))
  3990. return ret;
  3991. if (page->mem_cgroup == mc.from) {
  3992. ret = MC_TARGET_PAGE;
  3993. if (target) {
  3994. get_page(page);
  3995. target->page = page;
  3996. }
  3997. }
  3998. return ret;
  3999. }
  4000. #else
  4001. static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
  4002. unsigned long addr, pmd_t pmd, union mc_target *target)
  4003. {
  4004. return MC_TARGET_NONE;
  4005. }
  4006. #endif
  4007. static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
  4008. unsigned long addr, unsigned long end,
  4009. struct mm_walk *walk)
  4010. {
  4011. struct vm_area_struct *vma = walk->vma;
  4012. pte_t *pte;
  4013. spinlock_t *ptl;
  4014. ptl = pmd_trans_huge_lock(pmd, vma);
  4015. if (ptl) {
  4016. if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
  4017. mc.precharge += HPAGE_PMD_NR;
  4018. spin_unlock(ptl);
  4019. return 0;
  4020. }
  4021. if (pmd_trans_unstable(pmd))
  4022. return 0;
  4023. pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
  4024. for (; addr != end; pte++, addr += PAGE_SIZE)
  4025. if (get_mctgt_type(vma, addr, *pte, NULL))
  4026. mc.precharge++; /* increment precharge temporarily */
  4027. pte_unmap_unlock(pte - 1, ptl);
  4028. cond_resched();
  4029. return 0;
  4030. }
  4031. static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
  4032. {
  4033. unsigned long precharge;
  4034. struct mm_walk mem_cgroup_count_precharge_walk = {
  4035. .pmd_entry = mem_cgroup_count_precharge_pte_range,
  4036. .mm = mm,
  4037. };
  4038. down_read(&mm->mmap_sem);
  4039. walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
  4040. up_read(&mm->mmap_sem);
  4041. precharge = mc.precharge;
  4042. mc.precharge = 0;
  4043. return precharge;
  4044. }
  4045. static int mem_cgroup_precharge_mc(struct mm_struct *mm)
  4046. {
  4047. unsigned long precharge = mem_cgroup_count_precharge(mm);
  4048. VM_BUG_ON(mc.moving_task);
  4049. mc.moving_task = current;
  4050. return mem_cgroup_do_precharge(precharge);
  4051. }
  4052. /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
  4053. static void __mem_cgroup_clear_mc(void)
  4054. {
  4055. struct mem_cgroup *from = mc.from;
  4056. struct mem_cgroup *to = mc.to;
  4057. /* we must uncharge all the leftover precharges from mc.to */
  4058. if (mc.precharge) {
  4059. cancel_charge(mc.to, mc.precharge);
  4060. mc.precharge = 0;
  4061. }
  4062. /*
  4063. * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
  4064. * we must uncharge here.
  4065. */
  4066. if (mc.moved_charge) {
  4067. cancel_charge(mc.from, mc.moved_charge);
  4068. mc.moved_charge = 0;
  4069. }
  4070. /* we must fixup refcnts and charges */
  4071. if (mc.moved_swap) {
  4072. /* uncharge swap account from the old cgroup */
  4073. if (!mem_cgroup_is_root(mc.from))
  4074. page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
  4075. /*
  4076. * we charged both to->memory and to->memsw, so we
  4077. * should uncharge to->memory.
  4078. */
  4079. if (!mem_cgroup_is_root(mc.to))
  4080. page_counter_uncharge(&mc.to->memory, mc.moved_swap);
  4081. css_put_many(&mc.from->css, mc.moved_swap);
  4082. /* we've already done css_get(mc.to) */
  4083. mc.moved_swap = 0;
  4084. }
  4085. memcg_oom_recover(from);
  4086. memcg_oom_recover(to);
  4087. wake_up_all(&mc.waitq);
  4088. }
  4089. static void mem_cgroup_clear_mc(void)
  4090. {
  4091. struct mm_struct *mm = mc.mm;
  4092. /*
  4093. * we must clear moving_task before waking up waiters at the end of
  4094. * task migration.
  4095. */
  4096. mc.moving_task = NULL;
  4097. __mem_cgroup_clear_mc();
  4098. spin_lock(&mc.lock);
  4099. mc.from = NULL;
  4100. mc.to = NULL;
  4101. mc.mm = NULL;
  4102. spin_unlock(&mc.lock);
  4103. mmput(mm);
  4104. }
  4105. static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
  4106. {
  4107. struct cgroup_subsys_state *css;
  4108. struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
  4109. struct mem_cgroup *from;
  4110. struct task_struct *leader, *p;
  4111. struct mm_struct *mm;
  4112. unsigned long move_flags;
  4113. int ret = 0;
  4114. /* charge immigration isn't supported on the default hierarchy */
  4115. if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
  4116. return 0;
  4117. /*
  4118. * Multi-process migrations only happen on the default hierarchy
  4119. * where charge immigration is not used. Perform charge
  4120. * immigration if @tset contains a leader and whine if there are
  4121. * multiple.
  4122. */
  4123. p = NULL;
  4124. cgroup_taskset_for_each_leader(leader, css, tset) {
  4125. WARN_ON_ONCE(p);
  4126. p = leader;
  4127. memcg = mem_cgroup_from_css(css);
  4128. }
  4129. if (!p)
  4130. return 0;
  4131. /*
  4132. * We are now commited to this value whatever it is. Changes in this
  4133. * tunable will only affect upcoming migrations, not the current one.
  4134. * So we need to save it, and keep it going.
  4135. */
  4136. move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
  4137. if (!move_flags)
  4138. return 0;
  4139. from = mem_cgroup_from_task(p);
  4140. VM_BUG_ON(from == memcg);
  4141. mm = get_task_mm(p);
  4142. if (!mm)
  4143. return 0;
  4144. /* We move charges only when we move a owner of the mm */
  4145. if (mm->owner == p) {
  4146. VM_BUG_ON(mc.from);
  4147. VM_BUG_ON(mc.to);
  4148. VM_BUG_ON(mc.precharge);
  4149. VM_BUG_ON(mc.moved_charge);
  4150. VM_BUG_ON(mc.moved_swap);
  4151. spin_lock(&mc.lock);
  4152. mc.mm = mm;
  4153. mc.from = from;
  4154. mc.to = memcg;
  4155. mc.flags = move_flags;
  4156. spin_unlock(&mc.lock);
  4157. /* We set mc.moving_task later */
  4158. ret = mem_cgroup_precharge_mc(mm);
  4159. if (ret)
  4160. mem_cgroup_clear_mc();
  4161. } else {
  4162. mmput(mm);
  4163. }
  4164. return ret;
  4165. }
  4166. static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
  4167. {
  4168. if (mc.to)
  4169. mem_cgroup_clear_mc();
  4170. }
  4171. static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
  4172. unsigned long addr, unsigned long end,
  4173. struct mm_walk *walk)
  4174. {
  4175. int ret = 0;
  4176. struct vm_area_struct *vma = walk->vma;
  4177. pte_t *pte;
  4178. spinlock_t *ptl;
  4179. enum mc_target_type target_type;
  4180. union mc_target target;
  4181. struct page *page;
  4182. ptl = pmd_trans_huge_lock(pmd, vma);
  4183. if (ptl) {
  4184. if (mc.precharge < HPAGE_PMD_NR) {
  4185. spin_unlock(ptl);
  4186. return 0;
  4187. }
  4188. target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
  4189. if (target_type == MC_TARGET_PAGE) {
  4190. page = target.page;
  4191. if (!isolate_lru_page(page)) {
  4192. if (!mem_cgroup_move_account(page, true,
  4193. mc.from, mc.to)) {
  4194. mc.precharge -= HPAGE_PMD_NR;
  4195. mc.moved_charge += HPAGE_PMD_NR;
  4196. }
  4197. putback_lru_page(page);
  4198. }
  4199. put_page(page);
  4200. }
  4201. spin_unlock(ptl);
  4202. return 0;
  4203. }
  4204. if (pmd_trans_unstable(pmd))
  4205. return 0;
  4206. retry:
  4207. pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
  4208. for (; addr != end; addr += PAGE_SIZE) {
  4209. pte_t ptent = *(pte++);
  4210. swp_entry_t ent;
  4211. if (!mc.precharge)
  4212. break;
  4213. switch (get_mctgt_type(vma, addr, ptent, &target)) {
  4214. case MC_TARGET_PAGE:
  4215. page = target.page;
  4216. /*
  4217. * We can have a part of the split pmd here. Moving it
  4218. * can be done but it would be too convoluted so simply
  4219. * ignore such a partial THP and keep it in original
  4220. * memcg. There should be somebody mapping the head.
  4221. */
  4222. if (PageTransCompound(page))
  4223. goto put;
  4224. if (isolate_lru_page(page))
  4225. goto put;
  4226. if (!mem_cgroup_move_account(page, false,
  4227. mc.from, mc.to)) {
  4228. mc.precharge--;
  4229. /* we uncharge from mc.from later. */
  4230. mc.moved_charge++;
  4231. }
  4232. putback_lru_page(page);
  4233. put: /* get_mctgt_type() gets the page */
  4234. put_page(page);
  4235. break;
  4236. case MC_TARGET_SWAP:
  4237. ent = target.ent;
  4238. if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
  4239. mc.precharge--;
  4240. /* we fixup refcnts and charges later. */
  4241. mc.moved_swap++;
  4242. }
  4243. break;
  4244. default:
  4245. break;
  4246. }
  4247. }
  4248. pte_unmap_unlock(pte - 1, ptl);
  4249. cond_resched();
  4250. if (addr != end) {
  4251. /*
  4252. * We have consumed all precharges we got in can_attach().
  4253. * We try charge one by one, but don't do any additional
  4254. * charges to mc.to if we have failed in charge once in attach()
  4255. * phase.
  4256. */
  4257. ret = mem_cgroup_do_precharge(1);
  4258. if (!ret)
  4259. goto retry;
  4260. }
  4261. return ret;
  4262. }
  4263. static void mem_cgroup_move_charge(void)
  4264. {
  4265. struct mm_walk mem_cgroup_move_charge_walk = {
  4266. .pmd_entry = mem_cgroup_move_charge_pte_range,
  4267. .mm = mc.mm,
  4268. };
  4269. lru_add_drain_all();
  4270. /*
  4271. * Signal lock_page_memcg() to take the memcg's move_lock
  4272. * while we're moving its pages to another memcg. Then wait
  4273. * for already started RCU-only updates to finish.
  4274. */
  4275. atomic_inc(&mc.from->moving_account);
  4276. synchronize_rcu();
  4277. retry:
  4278. if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
  4279. /*
  4280. * Someone who are holding the mmap_sem might be waiting in
  4281. * waitq. So we cancel all extra charges, wake up all waiters,
  4282. * and retry. Because we cancel precharges, we might not be able
  4283. * to move enough charges, but moving charge is a best-effort
  4284. * feature anyway, so it wouldn't be a big problem.
  4285. */
  4286. __mem_cgroup_clear_mc();
  4287. cond_resched();
  4288. goto retry;
  4289. }
  4290. /*
  4291. * When we have consumed all precharges and failed in doing
  4292. * additional charge, the page walk just aborts.
  4293. */
  4294. walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
  4295. up_read(&mc.mm->mmap_sem);
  4296. atomic_dec(&mc.from->moving_account);
  4297. }
  4298. static void mem_cgroup_move_task(void)
  4299. {
  4300. if (mc.to) {
  4301. mem_cgroup_move_charge();
  4302. mem_cgroup_clear_mc();
  4303. }
  4304. }
  4305. #else /* !CONFIG_MMU */
  4306. static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
  4307. {
  4308. return 0;
  4309. }
  4310. static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
  4311. {
  4312. }
  4313. static void mem_cgroup_move_task(void)
  4314. {
  4315. }
  4316. #endif
  4317. /*
  4318. * Cgroup retains root cgroups across [un]mount cycles making it necessary
  4319. * to verify whether we're attached to the default hierarchy on each mount
  4320. * attempt.
  4321. */
  4322. static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
  4323. {
  4324. /*
  4325. * use_hierarchy is forced on the default hierarchy. cgroup core
  4326. * guarantees that @root doesn't have any children, so turning it
  4327. * on for the root memcg is enough.
  4328. */
  4329. if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
  4330. root_mem_cgroup->use_hierarchy = true;
  4331. else
  4332. root_mem_cgroup->use_hierarchy = false;
  4333. }
  4334. static u64 memory_current_read(struct cgroup_subsys_state *css,
  4335. struct cftype *cft)
  4336. {
  4337. struct mem_cgroup *memcg = mem_cgroup_from_css(css);
  4338. return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
  4339. }
  4340. static int memory_low_show(struct seq_file *m, void *v)
  4341. {
  4342. struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
  4343. unsigned long low = READ_ONCE(memcg->low);
  4344. if (low == PAGE_COUNTER_MAX)
  4345. seq_puts(m, "max\n");
  4346. else
  4347. seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
  4348. return 0;
  4349. }
  4350. static ssize_t memory_low_write(struct kernfs_open_file *of,
  4351. char *buf, size_t nbytes, loff_t off)
  4352. {
  4353. struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
  4354. unsigned long low;
  4355. int err;
  4356. buf = strstrip(buf);
  4357. err = page_counter_memparse(buf, "max", &low);
  4358. if (err)
  4359. return err;
  4360. memcg->low = low;
  4361. return nbytes;
  4362. }
  4363. static int memory_high_show(struct seq_file *m, void *v)
  4364. {
  4365. struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
  4366. unsigned long high = READ_ONCE(memcg->high);
  4367. if (high == PAGE_COUNTER_MAX)
  4368. seq_puts(m, "max\n");
  4369. else
  4370. seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
  4371. return 0;
  4372. }
  4373. static ssize_t memory_high_write(struct kernfs_open_file *of,
  4374. char *buf, size_t nbytes, loff_t off)
  4375. {
  4376. struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
  4377. unsigned long nr_pages;
  4378. unsigned long high;
  4379. int err;
  4380. buf = strstrip(buf);
  4381. err = page_counter_memparse(buf, "max", &high);
  4382. if (err)
  4383. return err;
  4384. memcg->high = high;
  4385. nr_pages = page_counter_read(&memcg->memory);
  4386. if (nr_pages > high)
  4387. try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
  4388. GFP_KERNEL, true);
  4389. memcg_wb_domain_size_changed(memcg);
  4390. return nbytes;
  4391. }
  4392. static int memory_max_show(struct seq_file *m, void *v)
  4393. {
  4394. struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
  4395. unsigned long max = READ_ONCE(memcg->memory.limit);
  4396. if (max == PAGE_COUNTER_MAX)
  4397. seq_puts(m, "max\n");
  4398. else
  4399. seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
  4400. return 0;
  4401. }
  4402. static ssize_t memory_max_write(struct kernfs_open_file *of,
  4403. char *buf, size_t nbytes, loff_t off)
  4404. {
  4405. struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
  4406. unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
  4407. bool drained = false;
  4408. unsigned long max;
  4409. int err;
  4410. buf = strstrip(buf);
  4411. err = page_counter_memparse(buf, "max", &max);
  4412. if (err)
  4413. return err;
  4414. xchg(&memcg->memory.limit, max);
  4415. for (;;) {
  4416. unsigned long nr_pages = page_counter_read(&memcg->memory);
  4417. if (nr_pages <= max)
  4418. break;
  4419. if (signal_pending(current)) {
  4420. err = -EINTR;
  4421. break;
  4422. }
  4423. if (!drained) {
  4424. drain_all_stock(memcg);
  4425. drained = true;
  4426. continue;
  4427. }
  4428. if (nr_reclaims) {
  4429. if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
  4430. GFP_KERNEL, true))
  4431. nr_reclaims--;
  4432. continue;
  4433. }
  4434. mem_cgroup_events(memcg, MEMCG_OOM, 1);
  4435. if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
  4436. break;
  4437. }
  4438. memcg_wb_domain_size_changed(memcg);
  4439. return nbytes;
  4440. }
  4441. static int memory_events_show(struct seq_file *m, void *v)
  4442. {
  4443. struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
  4444. seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
  4445. seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
  4446. seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
  4447. seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
  4448. return 0;
  4449. }
  4450. static int memory_stat_show(struct seq_file *m, void *v)
  4451. {
  4452. struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
  4453. unsigned long stat[MEMCG_NR_STAT];
  4454. unsigned long events[MEMCG_NR_EVENTS];
  4455. int i;
  4456. /*
  4457. * Provide statistics on the state of the memory subsystem as
  4458. * well as cumulative event counters that show past behavior.
  4459. *
  4460. * This list is ordered following a combination of these gradients:
  4461. * 1) generic big picture -> specifics and details
  4462. * 2) reflecting userspace activity -> reflecting kernel heuristics
  4463. *
  4464. * Current memory state:
  4465. */
  4466. tree_stat(memcg, stat);
  4467. tree_events(memcg, events);
  4468. seq_printf(m, "anon %llu\n",
  4469. (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
  4470. seq_printf(m, "file %llu\n",
  4471. (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
  4472. seq_printf(m, "kernel_stack %llu\n",
  4473. (u64)stat[MEMCG_KERNEL_STACK_KB] * 1024);
  4474. seq_printf(m, "slab %llu\n",
  4475. (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
  4476. stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
  4477. seq_printf(m, "sock %llu\n",
  4478. (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
  4479. seq_printf(m, "file_mapped %llu\n",
  4480. (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
  4481. seq_printf(m, "file_dirty %llu\n",
  4482. (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
  4483. seq_printf(m, "file_writeback %llu\n",
  4484. (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
  4485. for (i = 0; i < NR_LRU_LISTS; i++) {
  4486. struct mem_cgroup *mi;
  4487. unsigned long val = 0;
  4488. for_each_mem_cgroup_tree(mi, memcg)
  4489. val += mem_cgroup_nr_lru_pages(mi, BIT(i));
  4490. seq_printf(m, "%s %llu\n",
  4491. mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
  4492. }
  4493. seq_printf(m, "slab_reclaimable %llu\n",
  4494. (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
  4495. seq_printf(m, "slab_unreclaimable %llu\n",
  4496. (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
  4497. /* Accumulated memory events */
  4498. seq_printf(m, "pgfault %lu\n",
  4499. events[MEM_CGROUP_EVENTS_PGFAULT]);
  4500. seq_printf(m, "pgmajfault %lu\n",
  4501. events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
  4502. return 0;
  4503. }
  4504. static struct cftype memory_files[] = {
  4505. {
  4506. .name = "current",
  4507. .flags = CFTYPE_NOT_ON_ROOT,
  4508. .read_u64 = memory_current_read,
  4509. },
  4510. {
  4511. .name = "low",
  4512. .flags = CFTYPE_NOT_ON_ROOT,
  4513. .seq_show = memory_low_show,
  4514. .write = memory_low_write,
  4515. },
  4516. {
  4517. .name = "high",
  4518. .flags = CFTYPE_NOT_ON_ROOT,
  4519. .seq_show = memory_high_show,
  4520. .write = memory_high_write,
  4521. },
  4522. {
  4523. .name = "max",
  4524. .flags = CFTYPE_NOT_ON_ROOT,
  4525. .seq_show = memory_max_show,
  4526. .write = memory_max_write,
  4527. },
  4528. {
  4529. .name = "events",
  4530. .flags = CFTYPE_NOT_ON_ROOT,
  4531. .file_offset = offsetof(struct mem_cgroup, events_file),
  4532. .seq_show = memory_events_show,
  4533. },
  4534. {
  4535. .name = "stat",
  4536. .flags = CFTYPE_NOT_ON_ROOT,
  4537. .seq_show = memory_stat_show,
  4538. },
  4539. { } /* terminate */
  4540. };
  4541. struct cgroup_subsys memory_cgrp_subsys = {
  4542. .css_alloc = mem_cgroup_css_alloc,
  4543. .css_online = mem_cgroup_css_online,
  4544. .css_offline = mem_cgroup_css_offline,
  4545. .css_released = mem_cgroup_css_released,
  4546. .css_free = mem_cgroup_css_free,
  4547. .css_reset = mem_cgroup_css_reset,
  4548. .can_attach = mem_cgroup_can_attach,
  4549. .cancel_attach = mem_cgroup_cancel_attach,
  4550. .post_attach = mem_cgroup_move_task,
  4551. .bind = mem_cgroup_bind,
  4552. .dfl_cftypes = memory_files,
  4553. .legacy_cftypes = mem_cgroup_legacy_files,
  4554. .early_init = 0,
  4555. };
  4556. /**
  4557. * mem_cgroup_low - check if memory consumption is below the normal range
  4558. * @root: the highest ancestor to consider
  4559. * @memcg: the memory cgroup to check
  4560. *
  4561. * Returns %true if memory consumption of @memcg, and that of all
  4562. * configurable ancestors up to @root, is below the normal range.
  4563. */
  4564. bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
  4565. {
  4566. if (mem_cgroup_disabled())
  4567. return false;
  4568. /*
  4569. * The toplevel group doesn't have a configurable range, so
  4570. * it's never low when looked at directly, and it is not
  4571. * considered an ancestor when assessing the hierarchy.
  4572. */
  4573. if (memcg == root_mem_cgroup)
  4574. return false;
  4575. if (page_counter_read(&memcg->memory) >= memcg->low)
  4576. return false;
  4577. while (memcg != root) {
  4578. memcg = parent_mem_cgroup(memcg);
  4579. if (memcg == root_mem_cgroup)
  4580. break;
  4581. if (page_counter_read(&memcg->memory) >= memcg->low)
  4582. return false;
  4583. }
  4584. return true;
  4585. }
  4586. /**
  4587. * mem_cgroup_try_charge - try charging a page
  4588. * @page: page to charge
  4589. * @mm: mm context of the victim
  4590. * @gfp_mask: reclaim mode
  4591. * @memcgp: charged memcg return
  4592. * @compound: charge the page as compound or small page
  4593. *
  4594. * Try to charge @page to the memcg that @mm belongs to, reclaiming
  4595. * pages according to @gfp_mask if necessary.
  4596. *
  4597. * Returns 0 on success, with *@memcgp pointing to the charged memcg.
  4598. * Otherwise, an error code is returned.
  4599. *
  4600. * After page->mapping has been set up, the caller must finalize the
  4601. * charge with mem_cgroup_commit_charge(). Or abort the transaction
  4602. * with mem_cgroup_cancel_charge() in case page instantiation fails.
  4603. */
  4604. int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
  4605. gfp_t gfp_mask, struct mem_cgroup **memcgp,
  4606. bool compound)
  4607. {
  4608. struct mem_cgroup *memcg = NULL;
  4609. unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
  4610. int ret = 0;
  4611. if (mem_cgroup_disabled())
  4612. goto out;
  4613. if (PageSwapCache(page)) {
  4614. /*
  4615. * Every swap fault against a single page tries to charge the
  4616. * page, bail as early as possible. shmem_unuse() encounters
  4617. * already charged pages, too. The USED bit is protected by
  4618. * the page lock, which serializes swap cache removal, which
  4619. * in turn serializes uncharging.
  4620. */
  4621. VM_BUG_ON_PAGE(!PageLocked(page), page);
  4622. if (page->mem_cgroup)
  4623. goto out;
  4624. if (do_swap_account) {
  4625. swp_entry_t ent = { .val = page_private(page), };
  4626. unsigned short id = lookup_swap_cgroup_id(ent);
  4627. rcu_read_lock();
  4628. memcg = mem_cgroup_from_id(id);
  4629. if (memcg && !css_tryget_online(&memcg->css))
  4630. memcg = NULL;
  4631. rcu_read_unlock();
  4632. }
  4633. }
  4634. if (!memcg)
  4635. memcg = get_mem_cgroup_from_mm(mm);
  4636. ret = try_charge(memcg, gfp_mask, nr_pages);
  4637. css_put(&memcg->css);
  4638. out:
  4639. *memcgp = memcg;
  4640. return ret;
  4641. }
  4642. /**
  4643. * mem_cgroup_commit_charge - commit a page charge
  4644. * @page: page to charge
  4645. * @memcg: memcg to charge the page to
  4646. * @lrucare: page might be on LRU already
  4647. * @compound: charge the page as compound or small page
  4648. *
  4649. * Finalize a charge transaction started by mem_cgroup_try_charge(),
  4650. * after page->mapping has been set up. This must happen atomically
  4651. * as part of the page instantiation, i.e. under the page table lock
  4652. * for anonymous pages, under the page lock for page and swap cache.
  4653. *
  4654. * In addition, the page must not be on the LRU during the commit, to
  4655. * prevent racing with task migration. If it might be, use @lrucare.
  4656. *
  4657. * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
  4658. */
  4659. void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
  4660. bool lrucare, bool compound)
  4661. {
  4662. unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
  4663. VM_BUG_ON_PAGE(!page->mapping, page);
  4664. VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
  4665. if (mem_cgroup_disabled())
  4666. return;
  4667. /*
  4668. * Swap faults will attempt to charge the same page multiple
  4669. * times. But reuse_swap_page() might have removed the page
  4670. * from swapcache already, so we can't check PageSwapCache().
  4671. */
  4672. if (!memcg)
  4673. return;
  4674. commit_charge(page, memcg, lrucare);
  4675. local_irq_disable();
  4676. mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
  4677. memcg_check_events(memcg, page);
  4678. local_irq_enable();
  4679. if (do_memsw_account() && PageSwapCache(page)) {
  4680. swp_entry_t entry = { .val = page_private(page) };
  4681. /*
  4682. * The swap entry might not get freed for a long time,
  4683. * let's not wait for it. The page already received a
  4684. * memory+swap charge, drop the swap entry duplicate.
  4685. */
  4686. mem_cgroup_uncharge_swap(entry);
  4687. }
  4688. }
  4689. /**
  4690. * mem_cgroup_cancel_charge - cancel a page charge
  4691. * @page: page to charge
  4692. * @memcg: memcg to charge the page to
  4693. * @compound: charge the page as compound or small page
  4694. *
  4695. * Cancel a charge transaction started by mem_cgroup_try_charge().
  4696. */
  4697. void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
  4698. bool compound)
  4699. {
  4700. unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
  4701. if (mem_cgroup_disabled())
  4702. return;
  4703. /*
  4704. * Swap faults will attempt to charge the same page multiple
  4705. * times. But reuse_swap_page() might have removed the page
  4706. * from swapcache already, so we can't check PageSwapCache().
  4707. */
  4708. if (!memcg)
  4709. return;
  4710. cancel_charge(memcg, nr_pages);
  4711. }
  4712. static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
  4713. unsigned long nr_anon, unsigned long nr_file,
  4714. unsigned long nr_huge, unsigned long nr_kmem,
  4715. struct page *dummy_page)
  4716. {
  4717. unsigned long nr_pages = nr_anon + nr_file + nr_kmem;
  4718. unsigned long flags;
  4719. if (!mem_cgroup_is_root(memcg)) {
  4720. page_counter_uncharge(&memcg->memory, nr_pages);
  4721. if (do_memsw_account())
  4722. page_counter_uncharge(&memcg->memsw, nr_pages);
  4723. if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && nr_kmem)
  4724. page_counter_uncharge(&memcg->kmem, nr_kmem);
  4725. memcg_oom_recover(memcg);
  4726. }
  4727. local_irq_save(flags);
  4728. __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
  4729. __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
  4730. __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
  4731. __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
  4732. __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
  4733. memcg_check_events(memcg, dummy_page);
  4734. local_irq_restore(flags);
  4735. if (!mem_cgroup_is_root(memcg))
  4736. css_put_many(&memcg->css, nr_pages);
  4737. }
  4738. static void uncharge_list(struct list_head *page_list)
  4739. {
  4740. struct mem_cgroup *memcg = NULL;
  4741. unsigned long nr_anon = 0;
  4742. unsigned long nr_file = 0;
  4743. unsigned long nr_huge = 0;
  4744. unsigned long nr_kmem = 0;
  4745. unsigned long pgpgout = 0;
  4746. struct list_head *next;
  4747. struct page *page;
  4748. /*
  4749. * Note that the list can be a single page->lru; hence the
  4750. * do-while loop instead of a simple list_for_each_entry().
  4751. */
  4752. next = page_list->next;
  4753. do {
  4754. page = list_entry(next, struct page, lru);
  4755. next = page->lru.next;
  4756. VM_BUG_ON_PAGE(PageLRU(page), page);
  4757. VM_BUG_ON_PAGE(page_count(page), page);
  4758. if (!page->mem_cgroup)
  4759. continue;
  4760. /*
  4761. * Nobody should be changing or seriously looking at
  4762. * page->mem_cgroup at this point, we have fully
  4763. * exclusive access to the page.
  4764. */
  4765. if (memcg != page->mem_cgroup) {
  4766. if (memcg) {
  4767. uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
  4768. nr_huge, nr_kmem, page);
  4769. pgpgout = nr_anon = nr_file =
  4770. nr_huge = nr_kmem = 0;
  4771. }
  4772. memcg = page->mem_cgroup;
  4773. }
  4774. if (!PageKmemcg(page)) {
  4775. unsigned int nr_pages = 1;
  4776. if (PageTransHuge(page)) {
  4777. nr_pages <<= compound_order(page);
  4778. nr_huge += nr_pages;
  4779. }
  4780. if (PageAnon(page))
  4781. nr_anon += nr_pages;
  4782. else
  4783. nr_file += nr_pages;
  4784. pgpgout++;
  4785. } else
  4786. nr_kmem += 1 << compound_order(page);
  4787. page->mem_cgroup = NULL;
  4788. } while (next != page_list);
  4789. if (memcg)
  4790. uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
  4791. nr_huge, nr_kmem, page);
  4792. }
  4793. /**
  4794. * mem_cgroup_uncharge - uncharge a page
  4795. * @page: page to uncharge
  4796. *
  4797. * Uncharge a page previously charged with mem_cgroup_try_charge() and
  4798. * mem_cgroup_commit_charge().
  4799. */
  4800. void mem_cgroup_uncharge(struct page *page)
  4801. {
  4802. if (mem_cgroup_disabled())
  4803. return;
  4804. /* Don't touch page->lru of any random page, pre-check: */
  4805. if (!page->mem_cgroup)
  4806. return;
  4807. INIT_LIST_HEAD(&page->lru);
  4808. uncharge_list(&page->lru);
  4809. }
  4810. /**
  4811. * mem_cgroup_uncharge_list - uncharge a list of page
  4812. * @page_list: list of pages to uncharge
  4813. *
  4814. * Uncharge a list of pages previously charged with
  4815. * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
  4816. */
  4817. void mem_cgroup_uncharge_list(struct list_head *page_list)
  4818. {
  4819. if (mem_cgroup_disabled())
  4820. return;
  4821. if (!list_empty(page_list))
  4822. uncharge_list(page_list);
  4823. }
  4824. /**
  4825. * mem_cgroup_migrate - charge a page's replacement
  4826. * @oldpage: currently circulating page
  4827. * @newpage: replacement page
  4828. *
  4829. * Charge @newpage as a replacement page for @oldpage. @oldpage will
  4830. * be uncharged upon free.
  4831. *
  4832. * Both pages must be locked, @newpage->mapping must be set up.
  4833. */
  4834. void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
  4835. {
  4836. struct mem_cgroup *memcg;
  4837. unsigned int nr_pages;
  4838. bool compound;
  4839. unsigned long flags;
  4840. VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
  4841. VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
  4842. VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
  4843. VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
  4844. newpage);
  4845. if (mem_cgroup_disabled())
  4846. return;
  4847. /* Page cache replacement: new page already charged? */
  4848. if (newpage->mem_cgroup)
  4849. return;
  4850. /* Swapcache readahead pages can get replaced before being charged */
  4851. memcg = oldpage->mem_cgroup;
  4852. if (!memcg)
  4853. return;
  4854. /* Force-charge the new page. The old one will be freed soon */
  4855. compound = PageTransHuge(newpage);
  4856. nr_pages = compound ? hpage_nr_pages(newpage) : 1;
  4857. page_counter_charge(&memcg->memory, nr_pages);
  4858. if (do_memsw_account())
  4859. page_counter_charge(&memcg->memsw, nr_pages);
  4860. css_get_many(&memcg->css, nr_pages);
  4861. commit_charge(newpage, memcg, false);
  4862. local_irq_save(flags);
  4863. mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
  4864. memcg_check_events(memcg, newpage);
  4865. local_irq_restore(flags);
  4866. }
  4867. DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
  4868. EXPORT_SYMBOL(memcg_sockets_enabled_key);
  4869. void sock_update_memcg(struct sock *sk)
  4870. {
  4871. struct mem_cgroup *memcg;
  4872. /* Socket cloning can throw us here with sk_cgrp already
  4873. * filled. It won't however, necessarily happen from
  4874. * process context. So the test for root memcg given
  4875. * the current task's memcg won't help us in this case.
  4876. *
  4877. * Respecting the original socket's memcg is a better
  4878. * decision in this case.
  4879. */
  4880. if (sk->sk_memcg) {
  4881. BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
  4882. css_get(&sk->sk_memcg->css);
  4883. return;
  4884. }
  4885. rcu_read_lock();
  4886. memcg = mem_cgroup_from_task(current);
  4887. if (memcg == root_mem_cgroup)
  4888. goto out;
  4889. if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
  4890. goto out;
  4891. if (css_tryget_online(&memcg->css))
  4892. sk->sk_memcg = memcg;
  4893. out:
  4894. rcu_read_unlock();
  4895. }
  4896. EXPORT_SYMBOL(sock_update_memcg);
  4897. void sock_release_memcg(struct sock *sk)
  4898. {
  4899. WARN_ON(!sk->sk_memcg);
  4900. css_put(&sk->sk_memcg->css);
  4901. }
  4902. /**
  4903. * mem_cgroup_charge_skmem - charge socket memory
  4904. * @memcg: memcg to charge
  4905. * @nr_pages: number of pages to charge
  4906. *
  4907. * Charges @nr_pages to @memcg. Returns %true if the charge fit within
  4908. * @memcg's configured limit, %false if the charge had to be forced.
  4909. */
  4910. bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
  4911. {
  4912. gfp_t gfp_mask = GFP_KERNEL;
  4913. if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
  4914. struct page_counter *fail;
  4915. if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
  4916. memcg->tcpmem_pressure = 0;
  4917. return true;
  4918. }
  4919. page_counter_charge(&memcg->tcpmem, nr_pages);
  4920. memcg->tcpmem_pressure = 1;
  4921. return false;
  4922. }
  4923. /* Don't block in the packet receive path */
  4924. if (in_softirq())
  4925. gfp_mask = GFP_NOWAIT;
  4926. this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
  4927. if (try_charge(memcg, gfp_mask, nr_pages) == 0)
  4928. return true;
  4929. try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
  4930. return false;
  4931. }
  4932. /**
  4933. * mem_cgroup_uncharge_skmem - uncharge socket memory
  4934. * @memcg - memcg to uncharge
  4935. * @nr_pages - number of pages to uncharge
  4936. */
  4937. void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
  4938. {
  4939. if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
  4940. page_counter_uncharge(&memcg->tcpmem, nr_pages);
  4941. return;
  4942. }
  4943. this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
  4944. page_counter_uncharge(&memcg->memory, nr_pages);
  4945. css_put_many(&memcg->css, nr_pages);
  4946. }
  4947. static int __init cgroup_memory(char *s)
  4948. {
  4949. char *token;
  4950. while ((token = strsep(&s, ",")) != NULL) {
  4951. if (!*token)
  4952. continue;
  4953. if (!strcmp(token, "nosocket"))
  4954. cgroup_memory_nosocket = true;
  4955. if (!strcmp(token, "nokmem"))
  4956. cgroup_memory_nokmem = true;
  4957. }
  4958. return 0;
  4959. }
  4960. __setup("cgroup.memory=", cgroup_memory);
  4961. /*
  4962. * subsys_initcall() for memory controller.
  4963. *
  4964. * Some parts like hotcpu_notifier() have to be initialized from this context
  4965. * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
  4966. * everything that doesn't depend on a specific mem_cgroup structure should
  4967. * be initialized from here.
  4968. */
  4969. static int __init mem_cgroup_init(void)
  4970. {
  4971. int cpu, node;
  4972. hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
  4973. for_each_possible_cpu(cpu)
  4974. INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
  4975. drain_local_stock);
  4976. for_each_node(node) {
  4977. struct mem_cgroup_tree_per_node *rtpn;
  4978. rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
  4979. node_online(node) ? node : NUMA_NO_NODE);
  4980. rtpn->rb_root = RB_ROOT;
  4981. spin_lock_init(&rtpn->lock);
  4982. soft_limit_tree.rb_tree_per_node[node] = rtpn;
  4983. }
  4984. return 0;
  4985. }
  4986. subsys_initcall(mem_cgroup_init);
  4987. #ifdef CONFIG_MEMCG_SWAP
  4988. /**
  4989. * mem_cgroup_swapout - transfer a memsw charge to swap
  4990. * @page: page whose memsw charge to transfer
  4991. * @entry: swap entry to move the charge to
  4992. *
  4993. * Transfer the memsw charge of @page to @entry.
  4994. */
  4995. void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
  4996. {
  4997. struct mem_cgroup *memcg;
  4998. unsigned short oldid;
  4999. VM_BUG_ON_PAGE(PageLRU(page), page);
  5000. VM_BUG_ON_PAGE(page_count(page), page);
  5001. if (!do_memsw_account())
  5002. return;
  5003. memcg = page->mem_cgroup;
  5004. /* Readahead page, never charged */
  5005. if (!memcg)
  5006. return;
  5007. mem_cgroup_id_get(memcg);
  5008. oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
  5009. VM_BUG_ON_PAGE(oldid, page);
  5010. mem_cgroup_swap_statistics(memcg, true);
  5011. page->mem_cgroup = NULL;
  5012. if (!mem_cgroup_is_root(memcg))
  5013. page_counter_uncharge(&memcg->memory, 1);
  5014. /*
  5015. * Interrupts should be disabled here because the caller holds the
  5016. * mapping->tree_lock lock which is taken with interrupts-off. It is
  5017. * important here to have the interrupts disabled because it is the
  5018. * only synchronisation we have for udpating the per-CPU variables.
  5019. */
  5020. VM_BUG_ON(!irqs_disabled());
  5021. mem_cgroup_charge_statistics(memcg, page, false, -1);
  5022. memcg_check_events(memcg, page);
  5023. if (!mem_cgroup_is_root(memcg))
  5024. css_put(&memcg->css);
  5025. }
  5026. /*
  5027. * mem_cgroup_try_charge_swap - try charging a swap entry
  5028. * @page: page being added to swap
  5029. * @entry: swap entry to charge
  5030. *
  5031. * Try to charge @entry to the memcg that @page belongs to.
  5032. *
  5033. * Returns 0 on success, -ENOMEM on failure.
  5034. */
  5035. int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
  5036. {
  5037. struct mem_cgroup *memcg;
  5038. struct page_counter *counter;
  5039. unsigned short oldid;
  5040. if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
  5041. return 0;
  5042. memcg = page->mem_cgroup;
  5043. /* Readahead page, never charged */
  5044. if (!memcg)
  5045. return 0;
  5046. if (!mem_cgroup_is_root(memcg) &&
  5047. !page_counter_try_charge(&memcg->swap, 1, &counter))
  5048. return -ENOMEM;
  5049. mem_cgroup_id_get(memcg);
  5050. oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
  5051. VM_BUG_ON_PAGE(oldid, page);
  5052. mem_cgroup_swap_statistics(memcg, true);
  5053. return 0;
  5054. }
  5055. /**
  5056. * mem_cgroup_uncharge_swap - uncharge a swap entry
  5057. * @entry: swap entry to uncharge
  5058. *
  5059. * Drop the swap charge associated with @entry.
  5060. */
  5061. void mem_cgroup_uncharge_swap(swp_entry_t entry)
  5062. {
  5063. struct mem_cgroup *memcg;
  5064. unsigned short id;
  5065. if (!do_swap_account)
  5066. return;
  5067. id = swap_cgroup_record(entry, 0);
  5068. rcu_read_lock();
  5069. memcg = mem_cgroup_from_id(id);
  5070. if (memcg) {
  5071. if (!mem_cgroup_is_root(memcg)) {
  5072. if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
  5073. page_counter_uncharge(&memcg->swap, 1);
  5074. else
  5075. page_counter_uncharge(&memcg->memsw, 1);
  5076. }
  5077. mem_cgroup_swap_statistics(memcg, false);
  5078. mem_cgroup_id_put(memcg);
  5079. }
  5080. rcu_read_unlock();
  5081. }
  5082. long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
  5083. {
  5084. long nr_swap_pages = get_nr_swap_pages();
  5085. if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
  5086. return nr_swap_pages;
  5087. for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
  5088. nr_swap_pages = min_t(long, nr_swap_pages,
  5089. READ_ONCE(memcg->swap.limit) -
  5090. page_counter_read(&memcg->swap));
  5091. return nr_swap_pages;
  5092. }
  5093. bool mem_cgroup_swap_full(struct page *page)
  5094. {
  5095. struct mem_cgroup *memcg;
  5096. VM_BUG_ON_PAGE(!PageLocked(page), page);
  5097. if (vm_swap_full())
  5098. return true;
  5099. if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
  5100. return false;
  5101. memcg = page->mem_cgroup;
  5102. if (!memcg)
  5103. return false;
  5104. for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
  5105. if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
  5106. return true;
  5107. return false;
  5108. }
  5109. /* for remember boot option*/
  5110. #ifdef CONFIG_MEMCG_SWAP_ENABLED
  5111. static int really_do_swap_account __initdata = 1;
  5112. #else
  5113. static int really_do_swap_account __initdata;
  5114. #endif
  5115. static int __init enable_swap_account(char *s)
  5116. {
  5117. if (!strcmp(s, "1"))
  5118. really_do_swap_account = 1;
  5119. else if (!strcmp(s, "0"))
  5120. really_do_swap_account = 0;
  5121. return 1;
  5122. }
  5123. __setup("swapaccount=", enable_swap_account);
  5124. static u64 swap_current_read(struct cgroup_subsys_state *css,
  5125. struct cftype *cft)
  5126. {
  5127. struct mem_cgroup *memcg = mem_cgroup_from_css(css);
  5128. return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
  5129. }
  5130. static int swap_max_show(struct seq_file *m, void *v)
  5131. {
  5132. struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
  5133. unsigned long max = READ_ONCE(memcg->swap.limit);
  5134. if (max == PAGE_COUNTER_MAX)
  5135. seq_puts(m, "max\n");
  5136. else
  5137. seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
  5138. return 0;
  5139. }
  5140. static ssize_t swap_max_write(struct kernfs_open_file *of,
  5141. char *buf, size_t nbytes, loff_t off)
  5142. {
  5143. struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
  5144. unsigned long max;
  5145. int err;
  5146. buf = strstrip(buf);
  5147. err = page_counter_memparse(buf, "max", &max);
  5148. if (err)
  5149. return err;
  5150. mutex_lock(&memcg_limit_mutex);
  5151. err = page_counter_limit(&memcg->swap, max);
  5152. mutex_unlock(&memcg_limit_mutex);
  5153. if (err)
  5154. return err;
  5155. return nbytes;
  5156. }
  5157. static struct cftype swap_files[] = {
  5158. {
  5159. .name = "swap.current",
  5160. .flags = CFTYPE_NOT_ON_ROOT,
  5161. .read_u64 = swap_current_read,
  5162. },
  5163. {
  5164. .name = "swap.max",
  5165. .flags = CFTYPE_NOT_ON_ROOT,
  5166. .seq_show = swap_max_show,
  5167. .write = swap_max_write,
  5168. },
  5169. { } /* terminate */
  5170. };
  5171. static struct cftype memsw_cgroup_files[] = {
  5172. {
  5173. .name = "memsw.usage_in_bytes",
  5174. .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
  5175. .read_u64 = mem_cgroup_read_u64,
  5176. },
  5177. {
  5178. .name = "memsw.max_usage_in_bytes",
  5179. .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
  5180. .write = mem_cgroup_reset,
  5181. .read_u64 = mem_cgroup_read_u64,
  5182. },
  5183. {
  5184. .name = "memsw.limit_in_bytes",
  5185. .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
  5186. .write = mem_cgroup_write,
  5187. .read_u64 = mem_cgroup_read_u64,
  5188. },
  5189. {
  5190. .name = "memsw.failcnt",
  5191. .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
  5192. .write = mem_cgroup_reset,
  5193. .read_u64 = mem_cgroup_read_u64,
  5194. },
  5195. { }, /* terminate */
  5196. };
  5197. static int __init mem_cgroup_swap_init(void)
  5198. {
  5199. if (!mem_cgroup_disabled() && really_do_swap_account) {
  5200. do_swap_account = 1;
  5201. WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
  5202. swap_files));
  5203. WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
  5204. memsw_cgroup_files));
  5205. }
  5206. return 0;
  5207. }
  5208. subsys_initcall(mem_cgroup_swap_init);
  5209. #endif /* CONFIG_MEMCG_SWAP */