huge_memory.c 61 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249
  1. /*
  2. * Copyright (C) 2009 Red Hat, Inc.
  3. *
  4. * This work is licensed under the terms of the GNU GPL, version 2. See
  5. * the COPYING file in the top-level directory.
  6. */
  7. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  8. #include <linux/mm.h>
  9. #include <linux/sched.h>
  10. #include <linux/highmem.h>
  11. #include <linux/hugetlb.h>
  12. #include <linux/mmu_notifier.h>
  13. #include <linux/rmap.h>
  14. #include <linux/swap.h>
  15. #include <linux/shrinker.h>
  16. #include <linux/mm_inline.h>
  17. #include <linux/swapops.h>
  18. #include <linux/dax.h>
  19. #include <linux/khugepaged.h>
  20. #include <linux/freezer.h>
  21. #include <linux/pfn_t.h>
  22. #include <linux/mman.h>
  23. #include <linux/memremap.h>
  24. #include <linux/pagemap.h>
  25. #include <linux/debugfs.h>
  26. #include <linux/migrate.h>
  27. #include <linux/hashtable.h>
  28. #include <linux/userfaultfd_k.h>
  29. #include <linux/page_idle.h>
  30. #include <linux/shmem_fs.h>
  31. #include <asm/tlb.h>
  32. #include <asm/pgalloc.h>
  33. #include "internal.h"
  34. /*
  35. * By default transparent hugepage support is disabled in order that avoid
  36. * to risk increase the memory footprint of applications without a guaranteed
  37. * benefit. When transparent hugepage support is enabled, is for all mappings,
  38. * and khugepaged scans all mappings.
  39. * Defrag is invoked by khugepaged hugepage allocations and by page faults
  40. * for all hugepage allocations.
  41. */
  42. unsigned long transparent_hugepage_flags __read_mostly =
  43. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  44. (1<<TRANSPARENT_HUGEPAGE_FLAG)|
  45. #endif
  46. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  47. (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  48. #endif
  49. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
  50. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
  51. (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  52. static struct shrinker deferred_split_shrinker;
  53. static atomic_t huge_zero_refcount;
  54. struct page *huge_zero_page __read_mostly;
  55. struct page *get_huge_zero_page(void)
  56. {
  57. struct page *zero_page;
  58. retry:
  59. if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
  60. return READ_ONCE(huge_zero_page);
  61. zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
  62. HPAGE_PMD_ORDER);
  63. if (!zero_page) {
  64. count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
  65. return NULL;
  66. }
  67. count_vm_event(THP_ZERO_PAGE_ALLOC);
  68. preempt_disable();
  69. if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
  70. preempt_enable();
  71. __free_pages(zero_page, compound_order(zero_page));
  72. goto retry;
  73. }
  74. /* We take additional reference here. It will be put back by shrinker */
  75. atomic_set(&huge_zero_refcount, 2);
  76. preempt_enable();
  77. return READ_ONCE(huge_zero_page);
  78. }
  79. void put_huge_zero_page(void)
  80. {
  81. /*
  82. * Counter should never go to zero here. Only shrinker can put
  83. * last reference.
  84. */
  85. BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
  86. }
  87. static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
  88. struct shrink_control *sc)
  89. {
  90. /* we can free zero page only if last reference remains */
  91. return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
  92. }
  93. static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
  94. struct shrink_control *sc)
  95. {
  96. if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
  97. struct page *zero_page = xchg(&huge_zero_page, NULL);
  98. BUG_ON(zero_page == NULL);
  99. __free_pages(zero_page, compound_order(zero_page));
  100. return HPAGE_PMD_NR;
  101. }
  102. return 0;
  103. }
  104. static struct shrinker huge_zero_page_shrinker = {
  105. .count_objects = shrink_huge_zero_page_count,
  106. .scan_objects = shrink_huge_zero_page_scan,
  107. .seeks = DEFAULT_SEEKS,
  108. };
  109. #ifdef CONFIG_SYSFS
  110. static ssize_t triple_flag_store(struct kobject *kobj,
  111. struct kobj_attribute *attr,
  112. const char *buf, size_t count,
  113. enum transparent_hugepage_flag enabled,
  114. enum transparent_hugepage_flag deferred,
  115. enum transparent_hugepage_flag req_madv)
  116. {
  117. if (!memcmp("defer", buf,
  118. min(sizeof("defer")-1, count))) {
  119. if (enabled == deferred)
  120. return -EINVAL;
  121. clear_bit(enabled, &transparent_hugepage_flags);
  122. clear_bit(req_madv, &transparent_hugepage_flags);
  123. set_bit(deferred, &transparent_hugepage_flags);
  124. } else if (!memcmp("always", buf,
  125. min(sizeof("always")-1, count))) {
  126. clear_bit(deferred, &transparent_hugepage_flags);
  127. clear_bit(req_madv, &transparent_hugepage_flags);
  128. set_bit(enabled, &transparent_hugepage_flags);
  129. } else if (!memcmp("madvise", buf,
  130. min(sizeof("madvise")-1, count))) {
  131. clear_bit(enabled, &transparent_hugepage_flags);
  132. clear_bit(deferred, &transparent_hugepage_flags);
  133. set_bit(req_madv, &transparent_hugepage_flags);
  134. } else if (!memcmp("never", buf,
  135. min(sizeof("never")-1, count))) {
  136. clear_bit(enabled, &transparent_hugepage_flags);
  137. clear_bit(req_madv, &transparent_hugepage_flags);
  138. clear_bit(deferred, &transparent_hugepage_flags);
  139. } else
  140. return -EINVAL;
  141. return count;
  142. }
  143. static ssize_t enabled_show(struct kobject *kobj,
  144. struct kobj_attribute *attr, char *buf)
  145. {
  146. if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
  147. return sprintf(buf, "[always] madvise never\n");
  148. else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
  149. return sprintf(buf, "always [madvise] never\n");
  150. else
  151. return sprintf(buf, "always madvise [never]\n");
  152. }
  153. static ssize_t enabled_store(struct kobject *kobj,
  154. struct kobj_attribute *attr,
  155. const char *buf, size_t count)
  156. {
  157. ssize_t ret;
  158. ret = triple_flag_store(kobj, attr, buf, count,
  159. TRANSPARENT_HUGEPAGE_FLAG,
  160. TRANSPARENT_HUGEPAGE_FLAG,
  161. TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
  162. if (ret > 0) {
  163. int err = start_stop_khugepaged();
  164. if (err)
  165. ret = err;
  166. }
  167. return ret;
  168. }
  169. static struct kobj_attribute enabled_attr =
  170. __ATTR(enabled, 0644, enabled_show, enabled_store);
  171. ssize_t single_hugepage_flag_show(struct kobject *kobj,
  172. struct kobj_attribute *attr, char *buf,
  173. enum transparent_hugepage_flag flag)
  174. {
  175. return sprintf(buf, "%d\n",
  176. !!test_bit(flag, &transparent_hugepage_flags));
  177. }
  178. ssize_t single_hugepage_flag_store(struct kobject *kobj,
  179. struct kobj_attribute *attr,
  180. const char *buf, size_t count,
  181. enum transparent_hugepage_flag flag)
  182. {
  183. unsigned long value;
  184. int ret;
  185. ret = kstrtoul(buf, 10, &value);
  186. if (ret < 0)
  187. return ret;
  188. if (value > 1)
  189. return -EINVAL;
  190. if (value)
  191. set_bit(flag, &transparent_hugepage_flags);
  192. else
  193. clear_bit(flag, &transparent_hugepage_flags);
  194. return count;
  195. }
  196. /*
  197. * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
  198. * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
  199. * memory just to allocate one more hugepage.
  200. */
  201. static ssize_t defrag_show(struct kobject *kobj,
  202. struct kobj_attribute *attr, char *buf)
  203. {
  204. if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
  205. return sprintf(buf, "[always] defer madvise never\n");
  206. if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
  207. return sprintf(buf, "always [defer] madvise never\n");
  208. else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
  209. return sprintf(buf, "always defer [madvise] never\n");
  210. else
  211. return sprintf(buf, "always defer madvise [never]\n");
  212. }
  213. static ssize_t defrag_store(struct kobject *kobj,
  214. struct kobj_attribute *attr,
  215. const char *buf, size_t count)
  216. {
  217. return triple_flag_store(kobj, attr, buf, count,
  218. TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
  219. TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
  220. TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
  221. }
  222. static struct kobj_attribute defrag_attr =
  223. __ATTR(defrag, 0644, defrag_show, defrag_store);
  224. static ssize_t use_zero_page_show(struct kobject *kobj,
  225. struct kobj_attribute *attr, char *buf)
  226. {
  227. return single_hugepage_flag_show(kobj, attr, buf,
  228. TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  229. }
  230. static ssize_t use_zero_page_store(struct kobject *kobj,
  231. struct kobj_attribute *attr, const char *buf, size_t count)
  232. {
  233. return single_hugepage_flag_store(kobj, attr, buf, count,
  234. TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  235. }
  236. static struct kobj_attribute use_zero_page_attr =
  237. __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
  238. #ifdef CONFIG_DEBUG_VM
  239. static ssize_t debug_cow_show(struct kobject *kobj,
  240. struct kobj_attribute *attr, char *buf)
  241. {
  242. return single_hugepage_flag_show(kobj, attr, buf,
  243. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  244. }
  245. static ssize_t debug_cow_store(struct kobject *kobj,
  246. struct kobj_attribute *attr,
  247. const char *buf, size_t count)
  248. {
  249. return single_hugepage_flag_store(kobj, attr, buf, count,
  250. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  251. }
  252. static struct kobj_attribute debug_cow_attr =
  253. __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
  254. #endif /* CONFIG_DEBUG_VM */
  255. static struct attribute *hugepage_attr[] = {
  256. &enabled_attr.attr,
  257. &defrag_attr.attr,
  258. &use_zero_page_attr.attr,
  259. #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
  260. &shmem_enabled_attr.attr,
  261. #endif
  262. #ifdef CONFIG_DEBUG_VM
  263. &debug_cow_attr.attr,
  264. #endif
  265. NULL,
  266. };
  267. static struct attribute_group hugepage_attr_group = {
  268. .attrs = hugepage_attr,
  269. };
  270. static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
  271. {
  272. int err;
  273. *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
  274. if (unlikely(!*hugepage_kobj)) {
  275. pr_err("failed to create transparent hugepage kobject\n");
  276. return -ENOMEM;
  277. }
  278. err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
  279. if (err) {
  280. pr_err("failed to register transparent hugepage group\n");
  281. goto delete_obj;
  282. }
  283. err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
  284. if (err) {
  285. pr_err("failed to register transparent hugepage group\n");
  286. goto remove_hp_group;
  287. }
  288. return 0;
  289. remove_hp_group:
  290. sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
  291. delete_obj:
  292. kobject_put(*hugepage_kobj);
  293. return err;
  294. }
  295. static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
  296. {
  297. sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
  298. sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
  299. kobject_put(hugepage_kobj);
  300. }
  301. #else
  302. static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
  303. {
  304. return 0;
  305. }
  306. static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
  307. {
  308. }
  309. #endif /* CONFIG_SYSFS */
  310. static int __init hugepage_init(void)
  311. {
  312. int err;
  313. struct kobject *hugepage_kobj;
  314. if (!has_transparent_hugepage()) {
  315. transparent_hugepage_flags = 0;
  316. return -EINVAL;
  317. }
  318. /*
  319. * hugepages can't be allocated by the buddy allocator
  320. */
  321. MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
  322. /*
  323. * we use page->mapping and page->index in second tail page
  324. * as list_head: assuming THP order >= 2
  325. */
  326. MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
  327. err = hugepage_init_sysfs(&hugepage_kobj);
  328. if (err)
  329. goto err_sysfs;
  330. err = khugepaged_init();
  331. if (err)
  332. goto err_slab;
  333. err = register_shrinker(&huge_zero_page_shrinker);
  334. if (err)
  335. goto err_hzp_shrinker;
  336. err = register_shrinker(&deferred_split_shrinker);
  337. if (err)
  338. goto err_split_shrinker;
  339. /*
  340. * By default disable transparent hugepages on smaller systems,
  341. * where the extra memory used could hurt more than TLB overhead
  342. * is likely to save. The admin can still enable it through /sys.
  343. */
  344. if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
  345. transparent_hugepage_flags = 0;
  346. return 0;
  347. }
  348. err = start_stop_khugepaged();
  349. if (err)
  350. goto err_khugepaged;
  351. return 0;
  352. err_khugepaged:
  353. unregister_shrinker(&deferred_split_shrinker);
  354. err_split_shrinker:
  355. unregister_shrinker(&huge_zero_page_shrinker);
  356. err_hzp_shrinker:
  357. khugepaged_destroy();
  358. err_slab:
  359. hugepage_exit_sysfs(hugepage_kobj);
  360. err_sysfs:
  361. return err;
  362. }
  363. subsys_initcall(hugepage_init);
  364. static int __init setup_transparent_hugepage(char *str)
  365. {
  366. int ret = 0;
  367. if (!str)
  368. goto out;
  369. if (!strcmp(str, "always")) {
  370. set_bit(TRANSPARENT_HUGEPAGE_FLAG,
  371. &transparent_hugepage_flags);
  372. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  373. &transparent_hugepage_flags);
  374. ret = 1;
  375. } else if (!strcmp(str, "madvise")) {
  376. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  377. &transparent_hugepage_flags);
  378. set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  379. &transparent_hugepage_flags);
  380. ret = 1;
  381. } else if (!strcmp(str, "never")) {
  382. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  383. &transparent_hugepage_flags);
  384. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  385. &transparent_hugepage_flags);
  386. ret = 1;
  387. }
  388. out:
  389. if (!ret)
  390. pr_warn("transparent_hugepage= cannot parse, ignored\n");
  391. return ret;
  392. }
  393. __setup("transparent_hugepage=", setup_transparent_hugepage);
  394. pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
  395. {
  396. if (likely(vma->vm_flags & VM_WRITE))
  397. pmd = pmd_mkwrite(pmd);
  398. return pmd;
  399. }
  400. static inline struct list_head *page_deferred_list(struct page *page)
  401. {
  402. /*
  403. * ->lru in the tail pages is occupied by compound_head.
  404. * Let's use ->mapping + ->index in the second tail page as list_head.
  405. */
  406. return (struct list_head *)&page[2].mapping;
  407. }
  408. void prep_transhuge_page(struct page *page)
  409. {
  410. /*
  411. * we use page->mapping and page->indexlru in second tail page
  412. * as list_head: assuming THP order >= 2
  413. */
  414. INIT_LIST_HEAD(page_deferred_list(page));
  415. set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
  416. }
  417. static int __do_huge_pmd_anonymous_page(struct fault_env *fe, struct page *page,
  418. gfp_t gfp)
  419. {
  420. struct vm_area_struct *vma = fe->vma;
  421. struct mem_cgroup *memcg;
  422. pgtable_t pgtable;
  423. unsigned long haddr = fe->address & HPAGE_PMD_MASK;
  424. VM_BUG_ON_PAGE(!PageCompound(page), page);
  425. if (mem_cgroup_try_charge(page, vma->vm_mm, gfp, &memcg, true)) {
  426. put_page(page);
  427. count_vm_event(THP_FAULT_FALLBACK);
  428. return VM_FAULT_FALLBACK;
  429. }
  430. pgtable = pte_alloc_one(vma->vm_mm, haddr);
  431. if (unlikely(!pgtable)) {
  432. mem_cgroup_cancel_charge(page, memcg, true);
  433. put_page(page);
  434. return VM_FAULT_OOM;
  435. }
  436. clear_huge_page(page, haddr, HPAGE_PMD_NR);
  437. /*
  438. * The memory barrier inside __SetPageUptodate makes sure that
  439. * clear_huge_page writes become visible before the set_pmd_at()
  440. * write.
  441. */
  442. __SetPageUptodate(page);
  443. fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
  444. if (unlikely(!pmd_none(*fe->pmd))) {
  445. spin_unlock(fe->ptl);
  446. mem_cgroup_cancel_charge(page, memcg, true);
  447. put_page(page);
  448. pte_free(vma->vm_mm, pgtable);
  449. } else {
  450. pmd_t entry;
  451. /* Deliver the page fault to userland */
  452. if (userfaultfd_missing(vma)) {
  453. int ret;
  454. spin_unlock(fe->ptl);
  455. mem_cgroup_cancel_charge(page, memcg, true);
  456. put_page(page);
  457. pte_free(vma->vm_mm, pgtable);
  458. ret = handle_userfault(fe, VM_UFFD_MISSING);
  459. VM_BUG_ON(ret & VM_FAULT_FALLBACK);
  460. return ret;
  461. }
  462. entry = mk_huge_pmd(page, vma->vm_page_prot);
  463. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  464. page_add_new_anon_rmap(page, vma, haddr, true);
  465. mem_cgroup_commit_charge(page, memcg, false, true);
  466. lru_cache_add_active_or_unevictable(page, vma);
  467. pgtable_trans_huge_deposit(vma->vm_mm, fe->pmd, pgtable);
  468. set_pmd_at(vma->vm_mm, haddr, fe->pmd, entry);
  469. add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
  470. atomic_long_inc(&vma->vm_mm->nr_ptes);
  471. spin_unlock(fe->ptl);
  472. count_vm_event(THP_FAULT_ALLOC);
  473. }
  474. return 0;
  475. }
  476. /*
  477. * If THP defrag is set to always then directly reclaim/compact as necessary
  478. * If set to defer then do only background reclaim/compact and defer to khugepaged
  479. * If set to madvise and the VMA is flagged then directly reclaim/compact
  480. * When direct reclaim/compact is allowed, don't retry except for flagged VMA's
  481. */
  482. static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
  483. {
  484. bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
  485. if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
  486. &transparent_hugepage_flags) && vma_madvised)
  487. return GFP_TRANSHUGE;
  488. else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
  489. &transparent_hugepage_flags))
  490. return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
  491. else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
  492. &transparent_hugepage_flags))
  493. return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
  494. return GFP_TRANSHUGE_LIGHT;
  495. }
  496. /* Caller must hold page table lock. */
  497. static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
  498. struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
  499. struct page *zero_page)
  500. {
  501. pmd_t entry;
  502. if (!pmd_none(*pmd))
  503. return false;
  504. entry = mk_pmd(zero_page, vma->vm_page_prot);
  505. entry = pmd_mkhuge(entry);
  506. if (pgtable)
  507. pgtable_trans_huge_deposit(mm, pmd, pgtable);
  508. set_pmd_at(mm, haddr, pmd, entry);
  509. atomic_long_inc(&mm->nr_ptes);
  510. return true;
  511. }
  512. int do_huge_pmd_anonymous_page(struct fault_env *fe)
  513. {
  514. struct vm_area_struct *vma = fe->vma;
  515. gfp_t gfp;
  516. struct page *page;
  517. unsigned long haddr = fe->address & HPAGE_PMD_MASK;
  518. if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
  519. return VM_FAULT_FALLBACK;
  520. if (unlikely(anon_vma_prepare(vma)))
  521. return VM_FAULT_OOM;
  522. if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
  523. return VM_FAULT_OOM;
  524. if (!(fe->flags & FAULT_FLAG_WRITE) &&
  525. !mm_forbids_zeropage(vma->vm_mm) &&
  526. transparent_hugepage_use_zero_page()) {
  527. pgtable_t pgtable;
  528. struct page *zero_page;
  529. bool set;
  530. int ret;
  531. pgtable = pte_alloc_one(vma->vm_mm, haddr);
  532. if (unlikely(!pgtable))
  533. return VM_FAULT_OOM;
  534. zero_page = get_huge_zero_page();
  535. if (unlikely(!zero_page)) {
  536. pte_free(vma->vm_mm, pgtable);
  537. count_vm_event(THP_FAULT_FALLBACK);
  538. return VM_FAULT_FALLBACK;
  539. }
  540. fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
  541. ret = 0;
  542. set = false;
  543. if (pmd_none(*fe->pmd)) {
  544. if (userfaultfd_missing(vma)) {
  545. spin_unlock(fe->ptl);
  546. ret = handle_userfault(fe, VM_UFFD_MISSING);
  547. VM_BUG_ON(ret & VM_FAULT_FALLBACK);
  548. } else {
  549. set_huge_zero_page(pgtable, vma->vm_mm, vma,
  550. haddr, fe->pmd, zero_page);
  551. spin_unlock(fe->ptl);
  552. set = true;
  553. }
  554. } else
  555. spin_unlock(fe->ptl);
  556. if (!set) {
  557. pte_free(vma->vm_mm, pgtable);
  558. put_huge_zero_page();
  559. }
  560. return ret;
  561. }
  562. gfp = alloc_hugepage_direct_gfpmask(vma);
  563. page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
  564. if (unlikely(!page)) {
  565. count_vm_event(THP_FAULT_FALLBACK);
  566. return VM_FAULT_FALLBACK;
  567. }
  568. prep_transhuge_page(page);
  569. return __do_huge_pmd_anonymous_page(fe, page, gfp);
  570. }
  571. static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
  572. pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write)
  573. {
  574. struct mm_struct *mm = vma->vm_mm;
  575. pmd_t entry;
  576. spinlock_t *ptl;
  577. ptl = pmd_lock(mm, pmd);
  578. entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
  579. if (pfn_t_devmap(pfn))
  580. entry = pmd_mkdevmap(entry);
  581. if (write) {
  582. entry = pmd_mkyoung(pmd_mkdirty(entry));
  583. entry = maybe_pmd_mkwrite(entry, vma);
  584. }
  585. set_pmd_at(mm, addr, pmd, entry);
  586. update_mmu_cache_pmd(vma, addr, pmd);
  587. spin_unlock(ptl);
  588. }
  589. int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
  590. pmd_t *pmd, pfn_t pfn, bool write)
  591. {
  592. pgprot_t pgprot = vma->vm_page_prot;
  593. /*
  594. * If we had pmd_special, we could avoid all these restrictions,
  595. * but we need to be consistent with PTEs and architectures that
  596. * can't support a 'special' bit.
  597. */
  598. BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
  599. BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
  600. (VM_PFNMAP|VM_MIXEDMAP));
  601. BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
  602. BUG_ON(!pfn_t_devmap(pfn));
  603. if (addr < vma->vm_start || addr >= vma->vm_end)
  604. return VM_FAULT_SIGBUS;
  605. if (track_pfn_insert(vma, &pgprot, pfn))
  606. return VM_FAULT_SIGBUS;
  607. insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
  608. return VM_FAULT_NOPAGE;
  609. }
  610. EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
  611. static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
  612. pmd_t *pmd)
  613. {
  614. pmd_t _pmd;
  615. /*
  616. * We should set the dirty bit only for FOLL_WRITE but for now
  617. * the dirty bit in the pmd is meaningless. And if the dirty
  618. * bit will become meaningful and we'll only set it with
  619. * FOLL_WRITE, an atomic set_bit will be required on the pmd to
  620. * set the young bit, instead of the current set_pmd_at.
  621. */
  622. _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
  623. if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
  624. pmd, _pmd, 1))
  625. update_mmu_cache_pmd(vma, addr, pmd);
  626. }
  627. struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
  628. pmd_t *pmd, int flags)
  629. {
  630. unsigned long pfn = pmd_pfn(*pmd);
  631. struct mm_struct *mm = vma->vm_mm;
  632. struct dev_pagemap *pgmap;
  633. struct page *page;
  634. assert_spin_locked(pmd_lockptr(mm, pmd));
  635. if (flags & FOLL_WRITE && !pmd_write(*pmd))
  636. return NULL;
  637. if (pmd_present(*pmd) && pmd_devmap(*pmd))
  638. /* pass */;
  639. else
  640. return NULL;
  641. if (flags & FOLL_TOUCH)
  642. touch_pmd(vma, addr, pmd);
  643. /*
  644. * device mapped pages can only be returned if the
  645. * caller will manage the page reference count.
  646. */
  647. if (!(flags & FOLL_GET))
  648. return ERR_PTR(-EEXIST);
  649. pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
  650. pgmap = get_dev_pagemap(pfn, NULL);
  651. if (!pgmap)
  652. return ERR_PTR(-EFAULT);
  653. page = pfn_to_page(pfn);
  654. get_page(page);
  655. put_dev_pagemap(pgmap);
  656. return page;
  657. }
  658. int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  659. pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
  660. struct vm_area_struct *vma)
  661. {
  662. spinlock_t *dst_ptl, *src_ptl;
  663. struct page *src_page;
  664. pmd_t pmd;
  665. pgtable_t pgtable = NULL;
  666. int ret = -ENOMEM;
  667. /* Skip if can be re-fill on fault */
  668. if (!vma_is_anonymous(vma))
  669. return 0;
  670. pgtable = pte_alloc_one(dst_mm, addr);
  671. if (unlikely(!pgtable))
  672. goto out;
  673. dst_ptl = pmd_lock(dst_mm, dst_pmd);
  674. src_ptl = pmd_lockptr(src_mm, src_pmd);
  675. spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
  676. ret = -EAGAIN;
  677. pmd = *src_pmd;
  678. if (unlikely(!pmd_trans_huge(pmd))) {
  679. pte_free(dst_mm, pgtable);
  680. goto out_unlock;
  681. }
  682. /*
  683. * When page table lock is held, the huge zero pmd should not be
  684. * under splitting since we don't split the page itself, only pmd to
  685. * a page table.
  686. */
  687. if (is_huge_zero_pmd(pmd)) {
  688. struct page *zero_page;
  689. /*
  690. * get_huge_zero_page() will never allocate a new page here,
  691. * since we already have a zero page to copy. It just takes a
  692. * reference.
  693. */
  694. zero_page = get_huge_zero_page();
  695. set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
  696. zero_page);
  697. ret = 0;
  698. goto out_unlock;
  699. }
  700. src_page = pmd_page(pmd);
  701. VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
  702. get_page(src_page);
  703. page_dup_rmap(src_page, true);
  704. add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
  705. atomic_long_inc(&dst_mm->nr_ptes);
  706. pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
  707. pmdp_set_wrprotect(src_mm, addr, src_pmd);
  708. pmd = pmd_mkold(pmd_wrprotect(pmd));
  709. set_pmd_at(dst_mm, addr, dst_pmd, pmd);
  710. ret = 0;
  711. out_unlock:
  712. spin_unlock(src_ptl);
  713. spin_unlock(dst_ptl);
  714. out:
  715. return ret;
  716. }
  717. void huge_pmd_set_accessed(struct fault_env *fe, pmd_t orig_pmd)
  718. {
  719. pmd_t entry;
  720. unsigned long haddr;
  721. fe->ptl = pmd_lock(fe->vma->vm_mm, fe->pmd);
  722. if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
  723. goto unlock;
  724. entry = pmd_mkyoung(orig_pmd);
  725. haddr = fe->address & HPAGE_PMD_MASK;
  726. if (pmdp_set_access_flags(fe->vma, haddr, fe->pmd, entry,
  727. fe->flags & FAULT_FLAG_WRITE))
  728. update_mmu_cache_pmd(fe->vma, fe->address, fe->pmd);
  729. unlock:
  730. spin_unlock(fe->ptl);
  731. }
  732. static int do_huge_pmd_wp_page_fallback(struct fault_env *fe, pmd_t orig_pmd,
  733. struct page *page)
  734. {
  735. struct vm_area_struct *vma = fe->vma;
  736. unsigned long haddr = fe->address & HPAGE_PMD_MASK;
  737. struct mem_cgroup *memcg;
  738. pgtable_t pgtable;
  739. pmd_t _pmd;
  740. int ret = 0, i;
  741. struct page **pages;
  742. unsigned long mmun_start; /* For mmu_notifiers */
  743. unsigned long mmun_end; /* For mmu_notifiers */
  744. pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
  745. GFP_KERNEL);
  746. if (unlikely(!pages)) {
  747. ret |= VM_FAULT_OOM;
  748. goto out;
  749. }
  750. for (i = 0; i < HPAGE_PMD_NR; i++) {
  751. pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
  752. __GFP_OTHER_NODE, vma,
  753. fe->address, page_to_nid(page));
  754. if (unlikely(!pages[i] ||
  755. mem_cgroup_try_charge(pages[i], vma->vm_mm,
  756. GFP_KERNEL, &memcg, false))) {
  757. if (pages[i])
  758. put_page(pages[i]);
  759. while (--i >= 0) {
  760. memcg = (void *)page_private(pages[i]);
  761. set_page_private(pages[i], 0);
  762. mem_cgroup_cancel_charge(pages[i], memcg,
  763. false);
  764. put_page(pages[i]);
  765. }
  766. kfree(pages);
  767. ret |= VM_FAULT_OOM;
  768. goto out;
  769. }
  770. set_page_private(pages[i], (unsigned long)memcg);
  771. }
  772. for (i = 0; i < HPAGE_PMD_NR; i++) {
  773. copy_user_highpage(pages[i], page + i,
  774. haddr + PAGE_SIZE * i, vma);
  775. __SetPageUptodate(pages[i]);
  776. cond_resched();
  777. }
  778. mmun_start = haddr;
  779. mmun_end = haddr + HPAGE_PMD_SIZE;
  780. mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
  781. fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
  782. if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
  783. goto out_free_pages;
  784. VM_BUG_ON_PAGE(!PageHead(page), page);
  785. pmdp_huge_clear_flush_notify(vma, haddr, fe->pmd);
  786. /* leave pmd empty until pte is filled */
  787. pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, fe->pmd);
  788. pmd_populate(vma->vm_mm, &_pmd, pgtable);
  789. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  790. pte_t entry;
  791. entry = mk_pte(pages[i], vma->vm_page_prot);
  792. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  793. memcg = (void *)page_private(pages[i]);
  794. set_page_private(pages[i], 0);
  795. page_add_new_anon_rmap(pages[i], fe->vma, haddr, false);
  796. mem_cgroup_commit_charge(pages[i], memcg, false, false);
  797. lru_cache_add_active_or_unevictable(pages[i], vma);
  798. fe->pte = pte_offset_map(&_pmd, haddr);
  799. VM_BUG_ON(!pte_none(*fe->pte));
  800. set_pte_at(vma->vm_mm, haddr, fe->pte, entry);
  801. pte_unmap(fe->pte);
  802. }
  803. kfree(pages);
  804. smp_wmb(); /* make pte visible before pmd */
  805. pmd_populate(vma->vm_mm, fe->pmd, pgtable);
  806. page_remove_rmap(page, true);
  807. spin_unlock(fe->ptl);
  808. mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
  809. ret |= VM_FAULT_WRITE;
  810. put_page(page);
  811. out:
  812. return ret;
  813. out_free_pages:
  814. spin_unlock(fe->ptl);
  815. mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
  816. for (i = 0; i < HPAGE_PMD_NR; i++) {
  817. memcg = (void *)page_private(pages[i]);
  818. set_page_private(pages[i], 0);
  819. mem_cgroup_cancel_charge(pages[i], memcg, false);
  820. put_page(pages[i]);
  821. }
  822. kfree(pages);
  823. goto out;
  824. }
  825. int do_huge_pmd_wp_page(struct fault_env *fe, pmd_t orig_pmd)
  826. {
  827. struct vm_area_struct *vma = fe->vma;
  828. struct page *page = NULL, *new_page;
  829. struct mem_cgroup *memcg;
  830. unsigned long haddr = fe->address & HPAGE_PMD_MASK;
  831. unsigned long mmun_start; /* For mmu_notifiers */
  832. unsigned long mmun_end; /* For mmu_notifiers */
  833. gfp_t huge_gfp; /* for allocation and charge */
  834. int ret = 0;
  835. fe->ptl = pmd_lockptr(vma->vm_mm, fe->pmd);
  836. VM_BUG_ON_VMA(!vma->anon_vma, vma);
  837. if (is_huge_zero_pmd(orig_pmd))
  838. goto alloc;
  839. spin_lock(fe->ptl);
  840. if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
  841. goto out_unlock;
  842. page = pmd_page(orig_pmd);
  843. VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
  844. /*
  845. * We can only reuse the page if nobody else maps the huge page or it's
  846. * part.
  847. */
  848. if (page_trans_huge_mapcount(page, NULL) == 1) {
  849. pmd_t entry;
  850. entry = pmd_mkyoung(orig_pmd);
  851. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  852. if (pmdp_set_access_flags(vma, haddr, fe->pmd, entry, 1))
  853. update_mmu_cache_pmd(vma, fe->address, fe->pmd);
  854. ret |= VM_FAULT_WRITE;
  855. goto out_unlock;
  856. }
  857. get_page(page);
  858. spin_unlock(fe->ptl);
  859. alloc:
  860. if (transparent_hugepage_enabled(vma) &&
  861. !transparent_hugepage_debug_cow()) {
  862. huge_gfp = alloc_hugepage_direct_gfpmask(vma);
  863. new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
  864. } else
  865. new_page = NULL;
  866. if (likely(new_page)) {
  867. prep_transhuge_page(new_page);
  868. } else {
  869. if (!page) {
  870. split_huge_pmd(vma, fe->pmd, fe->address);
  871. ret |= VM_FAULT_FALLBACK;
  872. } else {
  873. ret = do_huge_pmd_wp_page_fallback(fe, orig_pmd, page);
  874. if (ret & VM_FAULT_OOM) {
  875. split_huge_pmd(vma, fe->pmd, fe->address);
  876. ret |= VM_FAULT_FALLBACK;
  877. }
  878. put_page(page);
  879. }
  880. count_vm_event(THP_FAULT_FALLBACK);
  881. goto out;
  882. }
  883. if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm,
  884. huge_gfp, &memcg, true))) {
  885. put_page(new_page);
  886. split_huge_pmd(vma, fe->pmd, fe->address);
  887. if (page)
  888. put_page(page);
  889. ret |= VM_FAULT_FALLBACK;
  890. count_vm_event(THP_FAULT_FALLBACK);
  891. goto out;
  892. }
  893. count_vm_event(THP_FAULT_ALLOC);
  894. if (!page)
  895. clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
  896. else
  897. copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
  898. __SetPageUptodate(new_page);
  899. mmun_start = haddr;
  900. mmun_end = haddr + HPAGE_PMD_SIZE;
  901. mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
  902. spin_lock(fe->ptl);
  903. if (page)
  904. put_page(page);
  905. if (unlikely(!pmd_same(*fe->pmd, orig_pmd))) {
  906. spin_unlock(fe->ptl);
  907. mem_cgroup_cancel_charge(new_page, memcg, true);
  908. put_page(new_page);
  909. goto out_mn;
  910. } else {
  911. pmd_t entry;
  912. entry = mk_huge_pmd(new_page, vma->vm_page_prot);
  913. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  914. pmdp_huge_clear_flush_notify(vma, haddr, fe->pmd);
  915. page_add_new_anon_rmap(new_page, vma, haddr, true);
  916. mem_cgroup_commit_charge(new_page, memcg, false, true);
  917. lru_cache_add_active_or_unevictable(new_page, vma);
  918. set_pmd_at(vma->vm_mm, haddr, fe->pmd, entry);
  919. update_mmu_cache_pmd(vma, fe->address, fe->pmd);
  920. if (!page) {
  921. add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
  922. put_huge_zero_page();
  923. } else {
  924. VM_BUG_ON_PAGE(!PageHead(page), page);
  925. page_remove_rmap(page, true);
  926. put_page(page);
  927. }
  928. ret |= VM_FAULT_WRITE;
  929. }
  930. spin_unlock(fe->ptl);
  931. out_mn:
  932. mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
  933. out:
  934. return ret;
  935. out_unlock:
  936. spin_unlock(fe->ptl);
  937. return ret;
  938. }
  939. struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
  940. unsigned long addr,
  941. pmd_t *pmd,
  942. unsigned int flags)
  943. {
  944. struct mm_struct *mm = vma->vm_mm;
  945. struct page *page = NULL;
  946. assert_spin_locked(pmd_lockptr(mm, pmd));
  947. if (flags & FOLL_WRITE && !pmd_write(*pmd))
  948. goto out;
  949. /* Avoid dumping huge zero page */
  950. if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
  951. return ERR_PTR(-EFAULT);
  952. /* Full NUMA hinting faults to serialise migration in fault paths */
  953. if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
  954. goto out;
  955. page = pmd_page(*pmd);
  956. VM_BUG_ON_PAGE(!PageHead(page), page);
  957. if (flags & FOLL_TOUCH)
  958. touch_pmd(vma, addr, pmd);
  959. if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
  960. /*
  961. * We don't mlock() pte-mapped THPs. This way we can avoid
  962. * leaking mlocked pages into non-VM_LOCKED VMAs.
  963. *
  964. * For anon THP:
  965. *
  966. * In most cases the pmd is the only mapping of the page as we
  967. * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
  968. * writable private mappings in populate_vma_page_range().
  969. *
  970. * The only scenario when we have the page shared here is if we
  971. * mlocking read-only mapping shared over fork(). We skip
  972. * mlocking such pages.
  973. *
  974. * For file THP:
  975. *
  976. * We can expect PageDoubleMap() to be stable under page lock:
  977. * for file pages we set it in page_add_file_rmap(), which
  978. * requires page to be locked.
  979. */
  980. if (PageAnon(page) && compound_mapcount(page) != 1)
  981. goto skip_mlock;
  982. if (PageDoubleMap(page) || !page->mapping)
  983. goto skip_mlock;
  984. if (!trylock_page(page))
  985. goto skip_mlock;
  986. lru_add_drain();
  987. if (page->mapping && !PageDoubleMap(page))
  988. mlock_vma_page(page);
  989. unlock_page(page);
  990. }
  991. skip_mlock:
  992. page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
  993. VM_BUG_ON_PAGE(!PageCompound(page), page);
  994. if (flags & FOLL_GET)
  995. get_page(page);
  996. out:
  997. return page;
  998. }
  999. /* NUMA hinting page fault entry point for trans huge pmds */
  1000. int do_huge_pmd_numa_page(struct fault_env *fe, pmd_t pmd)
  1001. {
  1002. struct vm_area_struct *vma = fe->vma;
  1003. struct anon_vma *anon_vma = NULL;
  1004. struct page *page;
  1005. unsigned long haddr = fe->address & HPAGE_PMD_MASK;
  1006. int page_nid = -1, this_nid = numa_node_id();
  1007. int target_nid, last_cpupid = -1;
  1008. bool page_locked;
  1009. bool migrated = false;
  1010. bool was_writable;
  1011. int flags = 0;
  1012. /* A PROT_NONE fault should not end up here */
  1013. BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
  1014. fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
  1015. if (unlikely(!pmd_same(pmd, *fe->pmd)))
  1016. goto out_unlock;
  1017. /*
  1018. * If there are potential migrations, wait for completion and retry
  1019. * without disrupting NUMA hinting information. Do not relock and
  1020. * check_same as the page may no longer be mapped.
  1021. */
  1022. if (unlikely(pmd_trans_migrating(*fe->pmd))) {
  1023. page = pmd_page(*fe->pmd);
  1024. spin_unlock(fe->ptl);
  1025. wait_on_page_locked(page);
  1026. goto out;
  1027. }
  1028. page = pmd_page(pmd);
  1029. BUG_ON(is_huge_zero_page(page));
  1030. page_nid = page_to_nid(page);
  1031. last_cpupid = page_cpupid_last(page);
  1032. count_vm_numa_event(NUMA_HINT_FAULTS);
  1033. if (page_nid == this_nid) {
  1034. count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
  1035. flags |= TNF_FAULT_LOCAL;
  1036. }
  1037. /* See similar comment in do_numa_page for explanation */
  1038. if (!(vma->vm_flags & VM_WRITE))
  1039. flags |= TNF_NO_GROUP;
  1040. /*
  1041. * Acquire the page lock to serialise THP migrations but avoid dropping
  1042. * page_table_lock if at all possible
  1043. */
  1044. page_locked = trylock_page(page);
  1045. target_nid = mpol_misplaced(page, vma, haddr);
  1046. if (target_nid == -1) {
  1047. /* If the page was locked, there are no parallel migrations */
  1048. if (page_locked)
  1049. goto clear_pmdnuma;
  1050. }
  1051. /* Migration could have started since the pmd_trans_migrating check */
  1052. if (!page_locked) {
  1053. spin_unlock(fe->ptl);
  1054. wait_on_page_locked(page);
  1055. page_nid = -1;
  1056. goto out;
  1057. }
  1058. /*
  1059. * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
  1060. * to serialises splits
  1061. */
  1062. get_page(page);
  1063. spin_unlock(fe->ptl);
  1064. anon_vma = page_lock_anon_vma_read(page);
  1065. /* Confirm the PMD did not change while page_table_lock was released */
  1066. spin_lock(fe->ptl);
  1067. if (unlikely(!pmd_same(pmd, *fe->pmd))) {
  1068. unlock_page(page);
  1069. put_page(page);
  1070. page_nid = -1;
  1071. goto out_unlock;
  1072. }
  1073. /* Bail if we fail to protect against THP splits for any reason */
  1074. if (unlikely(!anon_vma)) {
  1075. put_page(page);
  1076. page_nid = -1;
  1077. goto clear_pmdnuma;
  1078. }
  1079. /*
  1080. * Migrate the THP to the requested node, returns with page unlocked
  1081. * and access rights restored.
  1082. */
  1083. spin_unlock(fe->ptl);
  1084. migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
  1085. fe->pmd, pmd, fe->address, page, target_nid);
  1086. if (migrated) {
  1087. flags |= TNF_MIGRATED;
  1088. page_nid = target_nid;
  1089. } else
  1090. flags |= TNF_MIGRATE_FAIL;
  1091. goto out;
  1092. clear_pmdnuma:
  1093. BUG_ON(!PageLocked(page));
  1094. was_writable = pmd_write(pmd);
  1095. pmd = pmd_modify(pmd, vma->vm_page_prot);
  1096. pmd = pmd_mkyoung(pmd);
  1097. if (was_writable)
  1098. pmd = pmd_mkwrite(pmd);
  1099. set_pmd_at(vma->vm_mm, haddr, fe->pmd, pmd);
  1100. update_mmu_cache_pmd(vma, fe->address, fe->pmd);
  1101. unlock_page(page);
  1102. out_unlock:
  1103. spin_unlock(fe->ptl);
  1104. out:
  1105. if (anon_vma)
  1106. page_unlock_anon_vma_read(anon_vma);
  1107. if (page_nid != -1)
  1108. task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, fe->flags);
  1109. return 0;
  1110. }
  1111. /*
  1112. * Return true if we do MADV_FREE successfully on entire pmd page.
  1113. * Otherwise, return false.
  1114. */
  1115. bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
  1116. pmd_t *pmd, unsigned long addr, unsigned long next)
  1117. {
  1118. spinlock_t *ptl;
  1119. pmd_t orig_pmd;
  1120. struct page *page;
  1121. struct mm_struct *mm = tlb->mm;
  1122. bool ret = false;
  1123. ptl = pmd_trans_huge_lock(pmd, vma);
  1124. if (!ptl)
  1125. goto out_unlocked;
  1126. orig_pmd = *pmd;
  1127. if (is_huge_zero_pmd(orig_pmd))
  1128. goto out;
  1129. page = pmd_page(orig_pmd);
  1130. /*
  1131. * If other processes are mapping this page, we couldn't discard
  1132. * the page unless they all do MADV_FREE so let's skip the page.
  1133. */
  1134. if (page_mapcount(page) != 1)
  1135. goto out;
  1136. if (!trylock_page(page))
  1137. goto out;
  1138. /*
  1139. * If user want to discard part-pages of THP, split it so MADV_FREE
  1140. * will deactivate only them.
  1141. */
  1142. if (next - addr != HPAGE_PMD_SIZE) {
  1143. get_page(page);
  1144. spin_unlock(ptl);
  1145. split_huge_page(page);
  1146. put_page(page);
  1147. unlock_page(page);
  1148. goto out_unlocked;
  1149. }
  1150. if (PageDirty(page))
  1151. ClearPageDirty(page);
  1152. unlock_page(page);
  1153. if (PageActive(page))
  1154. deactivate_page(page);
  1155. if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
  1156. orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
  1157. tlb->fullmm);
  1158. orig_pmd = pmd_mkold(orig_pmd);
  1159. orig_pmd = pmd_mkclean(orig_pmd);
  1160. set_pmd_at(mm, addr, pmd, orig_pmd);
  1161. tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
  1162. }
  1163. ret = true;
  1164. out:
  1165. spin_unlock(ptl);
  1166. out_unlocked:
  1167. return ret;
  1168. }
  1169. int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
  1170. pmd_t *pmd, unsigned long addr)
  1171. {
  1172. pmd_t orig_pmd;
  1173. spinlock_t *ptl;
  1174. ptl = __pmd_trans_huge_lock(pmd, vma);
  1175. if (!ptl)
  1176. return 0;
  1177. /*
  1178. * For architectures like ppc64 we look at deposited pgtable
  1179. * when calling pmdp_huge_get_and_clear. So do the
  1180. * pgtable_trans_huge_withdraw after finishing pmdp related
  1181. * operations.
  1182. */
  1183. orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
  1184. tlb->fullmm);
  1185. tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
  1186. if (vma_is_dax(vma)) {
  1187. spin_unlock(ptl);
  1188. if (is_huge_zero_pmd(orig_pmd))
  1189. tlb_remove_page(tlb, pmd_page(orig_pmd));
  1190. } else if (is_huge_zero_pmd(orig_pmd)) {
  1191. pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
  1192. atomic_long_dec(&tlb->mm->nr_ptes);
  1193. spin_unlock(ptl);
  1194. tlb_remove_page(tlb, pmd_page(orig_pmd));
  1195. } else {
  1196. struct page *page = pmd_page(orig_pmd);
  1197. page_remove_rmap(page, true);
  1198. VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
  1199. VM_BUG_ON_PAGE(!PageHead(page), page);
  1200. if (PageAnon(page)) {
  1201. pgtable_t pgtable;
  1202. pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
  1203. pte_free(tlb->mm, pgtable);
  1204. atomic_long_dec(&tlb->mm->nr_ptes);
  1205. add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
  1206. } else {
  1207. add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR);
  1208. }
  1209. spin_unlock(ptl);
  1210. tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
  1211. }
  1212. return 1;
  1213. }
  1214. bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
  1215. unsigned long new_addr, unsigned long old_end,
  1216. pmd_t *old_pmd, pmd_t *new_pmd)
  1217. {
  1218. spinlock_t *old_ptl, *new_ptl;
  1219. pmd_t pmd;
  1220. struct mm_struct *mm = vma->vm_mm;
  1221. if ((old_addr & ~HPAGE_PMD_MASK) ||
  1222. (new_addr & ~HPAGE_PMD_MASK) ||
  1223. old_end - old_addr < HPAGE_PMD_SIZE)
  1224. return false;
  1225. /*
  1226. * The destination pmd shouldn't be established, free_pgtables()
  1227. * should have release it.
  1228. */
  1229. if (WARN_ON(!pmd_none(*new_pmd))) {
  1230. VM_BUG_ON(pmd_trans_huge(*new_pmd));
  1231. return false;
  1232. }
  1233. /*
  1234. * We don't have to worry about the ordering of src and dst
  1235. * ptlocks because exclusive mmap_sem prevents deadlock.
  1236. */
  1237. old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
  1238. if (old_ptl) {
  1239. new_ptl = pmd_lockptr(mm, new_pmd);
  1240. if (new_ptl != old_ptl)
  1241. spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
  1242. pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
  1243. VM_BUG_ON(!pmd_none(*new_pmd));
  1244. if (pmd_move_must_withdraw(new_ptl, old_ptl) &&
  1245. vma_is_anonymous(vma)) {
  1246. pgtable_t pgtable;
  1247. pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
  1248. pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
  1249. }
  1250. set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
  1251. if (new_ptl != old_ptl)
  1252. spin_unlock(new_ptl);
  1253. spin_unlock(old_ptl);
  1254. return true;
  1255. }
  1256. return false;
  1257. }
  1258. /*
  1259. * Returns
  1260. * - 0 if PMD could not be locked
  1261. * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
  1262. * - HPAGE_PMD_NR is protections changed and TLB flush necessary
  1263. */
  1264. int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  1265. unsigned long addr, pgprot_t newprot, int prot_numa)
  1266. {
  1267. struct mm_struct *mm = vma->vm_mm;
  1268. spinlock_t *ptl;
  1269. int ret = 0;
  1270. ptl = __pmd_trans_huge_lock(pmd, vma);
  1271. if (ptl) {
  1272. pmd_t entry;
  1273. bool preserve_write = prot_numa && pmd_write(*pmd);
  1274. ret = 1;
  1275. /*
  1276. * Avoid trapping faults against the zero page. The read-only
  1277. * data is likely to be read-cached on the local CPU and
  1278. * local/remote hits to the zero page are not interesting.
  1279. */
  1280. if (prot_numa && is_huge_zero_pmd(*pmd)) {
  1281. spin_unlock(ptl);
  1282. return ret;
  1283. }
  1284. if (!prot_numa || !pmd_protnone(*pmd)) {
  1285. entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
  1286. entry = pmd_modify(entry, newprot);
  1287. if (preserve_write)
  1288. entry = pmd_mkwrite(entry);
  1289. ret = HPAGE_PMD_NR;
  1290. set_pmd_at(mm, addr, pmd, entry);
  1291. BUG_ON(vma_is_anonymous(vma) && !preserve_write &&
  1292. pmd_write(entry));
  1293. }
  1294. spin_unlock(ptl);
  1295. }
  1296. return ret;
  1297. }
  1298. /*
  1299. * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
  1300. *
  1301. * Note that if it returns page table lock pointer, this routine returns without
  1302. * unlocking page table lock. So callers must unlock it.
  1303. */
  1304. spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
  1305. {
  1306. spinlock_t *ptl;
  1307. ptl = pmd_lock(vma->vm_mm, pmd);
  1308. if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd)))
  1309. return ptl;
  1310. spin_unlock(ptl);
  1311. return NULL;
  1312. }
  1313. static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
  1314. unsigned long haddr, pmd_t *pmd)
  1315. {
  1316. struct mm_struct *mm = vma->vm_mm;
  1317. pgtable_t pgtable;
  1318. pmd_t _pmd;
  1319. int i;
  1320. /* leave pmd empty until pte is filled */
  1321. pmdp_huge_clear_flush_notify(vma, haddr, pmd);
  1322. pgtable = pgtable_trans_huge_withdraw(mm, pmd);
  1323. pmd_populate(mm, &_pmd, pgtable);
  1324. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  1325. pte_t *pte, entry;
  1326. entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
  1327. entry = pte_mkspecial(entry);
  1328. pte = pte_offset_map(&_pmd, haddr);
  1329. VM_BUG_ON(!pte_none(*pte));
  1330. set_pte_at(mm, haddr, pte, entry);
  1331. pte_unmap(pte);
  1332. }
  1333. smp_wmb(); /* make pte visible before pmd */
  1334. pmd_populate(mm, pmd, pgtable);
  1335. put_huge_zero_page();
  1336. }
  1337. static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
  1338. unsigned long haddr, bool freeze)
  1339. {
  1340. struct mm_struct *mm = vma->vm_mm;
  1341. struct page *page;
  1342. pgtable_t pgtable;
  1343. pmd_t _pmd;
  1344. bool young, write, dirty;
  1345. unsigned long addr;
  1346. int i;
  1347. VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
  1348. VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
  1349. VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
  1350. VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd));
  1351. count_vm_event(THP_SPLIT_PMD);
  1352. if (!vma_is_anonymous(vma)) {
  1353. _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
  1354. if (is_huge_zero_pmd(_pmd))
  1355. put_huge_zero_page();
  1356. if (vma_is_dax(vma))
  1357. return;
  1358. page = pmd_page(_pmd);
  1359. if (!PageReferenced(page) && pmd_young(_pmd))
  1360. SetPageReferenced(page);
  1361. page_remove_rmap(page, true);
  1362. put_page(page);
  1363. add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR);
  1364. return;
  1365. } else if (is_huge_zero_pmd(*pmd)) {
  1366. return __split_huge_zero_page_pmd(vma, haddr, pmd);
  1367. }
  1368. page = pmd_page(*pmd);
  1369. VM_BUG_ON_PAGE(!page_count(page), page);
  1370. page_ref_add(page, HPAGE_PMD_NR - 1);
  1371. write = pmd_write(*pmd);
  1372. young = pmd_young(*pmd);
  1373. dirty = pmd_dirty(*pmd);
  1374. pmdp_huge_split_prepare(vma, haddr, pmd);
  1375. pgtable = pgtable_trans_huge_withdraw(mm, pmd);
  1376. pmd_populate(mm, &_pmd, pgtable);
  1377. for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
  1378. pte_t entry, *pte;
  1379. /*
  1380. * Note that NUMA hinting access restrictions are not
  1381. * transferred to avoid any possibility of altering
  1382. * permissions across VMAs.
  1383. */
  1384. if (freeze) {
  1385. swp_entry_t swp_entry;
  1386. swp_entry = make_migration_entry(page + i, write);
  1387. entry = swp_entry_to_pte(swp_entry);
  1388. } else {
  1389. entry = mk_pte(page + i, vma->vm_page_prot);
  1390. entry = maybe_mkwrite(entry, vma);
  1391. if (!write)
  1392. entry = pte_wrprotect(entry);
  1393. if (!young)
  1394. entry = pte_mkold(entry);
  1395. }
  1396. if (dirty)
  1397. SetPageDirty(page + i);
  1398. pte = pte_offset_map(&_pmd, addr);
  1399. BUG_ON(!pte_none(*pte));
  1400. set_pte_at(mm, addr, pte, entry);
  1401. atomic_inc(&page[i]._mapcount);
  1402. pte_unmap(pte);
  1403. }
  1404. /*
  1405. * Set PG_double_map before dropping compound_mapcount to avoid
  1406. * false-negative page_mapped().
  1407. */
  1408. if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
  1409. for (i = 0; i < HPAGE_PMD_NR; i++)
  1410. atomic_inc(&page[i]._mapcount);
  1411. }
  1412. if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
  1413. /* Last compound_mapcount is gone. */
  1414. __dec_node_page_state(page, NR_ANON_THPS);
  1415. if (TestClearPageDoubleMap(page)) {
  1416. /* No need in mapcount reference anymore */
  1417. for (i = 0; i < HPAGE_PMD_NR; i++)
  1418. atomic_dec(&page[i]._mapcount);
  1419. }
  1420. }
  1421. smp_wmb(); /* make pte visible before pmd */
  1422. /*
  1423. * Up to this point the pmd is present and huge and userland has the
  1424. * whole access to the hugepage during the split (which happens in
  1425. * place). If we overwrite the pmd with the not-huge version pointing
  1426. * to the pte here (which of course we could if all CPUs were bug
  1427. * free), userland could trigger a small page size TLB miss on the
  1428. * small sized TLB while the hugepage TLB entry is still established in
  1429. * the huge TLB. Some CPU doesn't like that.
  1430. * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
  1431. * 383 on page 93. Intel should be safe but is also warns that it's
  1432. * only safe if the permission and cache attributes of the two entries
  1433. * loaded in the two TLB is identical (which should be the case here).
  1434. * But it is generally safer to never allow small and huge TLB entries
  1435. * for the same virtual address to be loaded simultaneously. So instead
  1436. * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
  1437. * current pmd notpresent (atomically because here the pmd_trans_huge
  1438. * and pmd_trans_splitting must remain set at all times on the pmd
  1439. * until the split is complete for this pmd), then we flush the SMP TLB
  1440. * and finally we write the non-huge version of the pmd entry with
  1441. * pmd_populate.
  1442. */
  1443. pmdp_invalidate(vma, haddr, pmd);
  1444. pmd_populate(mm, pmd, pgtable);
  1445. if (freeze) {
  1446. for (i = 0; i < HPAGE_PMD_NR; i++) {
  1447. page_remove_rmap(page + i, false);
  1448. put_page(page + i);
  1449. }
  1450. }
  1451. }
  1452. void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  1453. unsigned long address, bool freeze, struct page *page)
  1454. {
  1455. spinlock_t *ptl;
  1456. struct mm_struct *mm = vma->vm_mm;
  1457. unsigned long haddr = address & HPAGE_PMD_MASK;
  1458. mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
  1459. ptl = pmd_lock(mm, pmd);
  1460. /*
  1461. * If caller asks to setup a migration entries, we need a page to check
  1462. * pmd against. Otherwise we can end up replacing wrong page.
  1463. */
  1464. VM_BUG_ON(freeze && !page);
  1465. if (page && page != pmd_page(*pmd))
  1466. goto out;
  1467. if (pmd_trans_huge(*pmd)) {
  1468. page = pmd_page(*pmd);
  1469. if (PageMlocked(page))
  1470. clear_page_mlock(page);
  1471. } else if (!pmd_devmap(*pmd))
  1472. goto out;
  1473. __split_huge_pmd_locked(vma, pmd, haddr, freeze);
  1474. out:
  1475. spin_unlock(ptl);
  1476. mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
  1477. }
  1478. void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
  1479. bool freeze, struct page *page)
  1480. {
  1481. pgd_t *pgd;
  1482. pud_t *pud;
  1483. pmd_t *pmd;
  1484. pgd = pgd_offset(vma->vm_mm, address);
  1485. if (!pgd_present(*pgd))
  1486. return;
  1487. pud = pud_offset(pgd, address);
  1488. if (!pud_present(*pud))
  1489. return;
  1490. pmd = pmd_offset(pud, address);
  1491. __split_huge_pmd(vma, pmd, address, freeze, page);
  1492. }
  1493. void vma_adjust_trans_huge(struct vm_area_struct *vma,
  1494. unsigned long start,
  1495. unsigned long end,
  1496. long adjust_next)
  1497. {
  1498. /*
  1499. * If the new start address isn't hpage aligned and it could
  1500. * previously contain an hugepage: check if we need to split
  1501. * an huge pmd.
  1502. */
  1503. if (start & ~HPAGE_PMD_MASK &&
  1504. (start & HPAGE_PMD_MASK) >= vma->vm_start &&
  1505. (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  1506. split_huge_pmd_address(vma, start, false, NULL);
  1507. /*
  1508. * If the new end address isn't hpage aligned and it could
  1509. * previously contain an hugepage: check if we need to split
  1510. * an huge pmd.
  1511. */
  1512. if (end & ~HPAGE_PMD_MASK &&
  1513. (end & HPAGE_PMD_MASK) >= vma->vm_start &&
  1514. (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  1515. split_huge_pmd_address(vma, end, false, NULL);
  1516. /*
  1517. * If we're also updating the vma->vm_next->vm_start, if the new
  1518. * vm_next->vm_start isn't page aligned and it could previously
  1519. * contain an hugepage: check if we need to split an huge pmd.
  1520. */
  1521. if (adjust_next > 0) {
  1522. struct vm_area_struct *next = vma->vm_next;
  1523. unsigned long nstart = next->vm_start;
  1524. nstart += adjust_next << PAGE_SHIFT;
  1525. if (nstart & ~HPAGE_PMD_MASK &&
  1526. (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
  1527. (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
  1528. split_huge_pmd_address(next, nstart, false, NULL);
  1529. }
  1530. }
  1531. static void freeze_page(struct page *page)
  1532. {
  1533. enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
  1534. TTU_RMAP_LOCKED;
  1535. int i, ret;
  1536. VM_BUG_ON_PAGE(!PageHead(page), page);
  1537. if (PageAnon(page))
  1538. ttu_flags |= TTU_MIGRATION;
  1539. /* We only need TTU_SPLIT_HUGE_PMD once */
  1540. ret = try_to_unmap(page, ttu_flags | TTU_SPLIT_HUGE_PMD);
  1541. for (i = 1; !ret && i < HPAGE_PMD_NR; i++) {
  1542. /* Cut short if the page is unmapped */
  1543. if (page_count(page) == 1)
  1544. return;
  1545. ret = try_to_unmap(page + i, ttu_flags);
  1546. }
  1547. VM_BUG_ON_PAGE(ret, page + i - 1);
  1548. }
  1549. static void unfreeze_page(struct page *page)
  1550. {
  1551. int i;
  1552. for (i = 0; i < HPAGE_PMD_NR; i++)
  1553. remove_migration_ptes(page + i, page + i, true);
  1554. }
  1555. static void __split_huge_page_tail(struct page *head, int tail,
  1556. struct lruvec *lruvec, struct list_head *list)
  1557. {
  1558. struct page *page_tail = head + tail;
  1559. VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
  1560. VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail);
  1561. /*
  1562. * tail_page->_refcount is zero and not changing from under us. But
  1563. * get_page_unless_zero() may be running from under us on the
  1564. * tail_page. If we used atomic_set() below instead of atomic_inc() or
  1565. * atomic_add(), we would then run atomic_set() concurrently with
  1566. * get_page_unless_zero(), and atomic_set() is implemented in C not
  1567. * using locked ops. spin_unlock on x86 sometime uses locked ops
  1568. * because of PPro errata 66, 92, so unless somebody can guarantee
  1569. * atomic_set() here would be safe on all archs (and not only on x86),
  1570. * it's safer to use atomic_inc()/atomic_add().
  1571. */
  1572. if (PageAnon(head)) {
  1573. page_ref_inc(page_tail);
  1574. } else {
  1575. /* Additional pin to radix tree */
  1576. page_ref_add(page_tail, 2);
  1577. }
  1578. page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  1579. page_tail->flags |= (head->flags &
  1580. ((1L << PG_referenced) |
  1581. (1L << PG_swapbacked) |
  1582. (1L << PG_mlocked) |
  1583. (1L << PG_uptodate) |
  1584. (1L << PG_active) |
  1585. (1L << PG_locked) |
  1586. (1L << PG_unevictable) |
  1587. (1L << PG_dirty)));
  1588. /*
  1589. * After clearing PageTail the gup refcount can be released.
  1590. * Page flags also must be visible before we make the page non-compound.
  1591. */
  1592. smp_wmb();
  1593. clear_compound_head(page_tail);
  1594. if (page_is_young(head))
  1595. set_page_young(page_tail);
  1596. if (page_is_idle(head))
  1597. set_page_idle(page_tail);
  1598. /* ->mapping in first tail page is compound_mapcount */
  1599. VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
  1600. page_tail);
  1601. page_tail->mapping = head->mapping;
  1602. page_tail->index = head->index + tail;
  1603. page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
  1604. lru_add_page_tail(head, page_tail, lruvec, list);
  1605. }
  1606. static void __split_huge_page(struct page *page, struct list_head *list,
  1607. unsigned long flags)
  1608. {
  1609. struct page *head = compound_head(page);
  1610. struct zone *zone = page_zone(head);
  1611. struct lruvec *lruvec;
  1612. pgoff_t end = -1;
  1613. int i;
  1614. lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
  1615. /* complete memcg works before add pages to LRU */
  1616. mem_cgroup_split_huge_fixup(head);
  1617. if (!PageAnon(page))
  1618. end = DIV_ROUND_UP(i_size_read(head->mapping->host), PAGE_SIZE);
  1619. for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
  1620. __split_huge_page_tail(head, i, lruvec, list);
  1621. /* Some pages can be beyond i_size: drop them from page cache */
  1622. if (head[i].index >= end) {
  1623. __ClearPageDirty(head + i);
  1624. __delete_from_page_cache(head + i, NULL);
  1625. if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
  1626. shmem_uncharge(head->mapping->host, 1);
  1627. put_page(head + i);
  1628. }
  1629. }
  1630. ClearPageCompound(head);
  1631. /* See comment in __split_huge_page_tail() */
  1632. if (PageAnon(head)) {
  1633. page_ref_inc(head);
  1634. } else {
  1635. /* Additional pin to radix tree */
  1636. page_ref_add(head, 2);
  1637. spin_unlock(&head->mapping->tree_lock);
  1638. }
  1639. spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
  1640. unfreeze_page(head);
  1641. for (i = 0; i < HPAGE_PMD_NR; i++) {
  1642. struct page *subpage = head + i;
  1643. if (subpage == page)
  1644. continue;
  1645. unlock_page(subpage);
  1646. /*
  1647. * Subpages may be freed if there wasn't any mapping
  1648. * like if add_to_swap() is running on a lru page that
  1649. * had its mapping zapped. And freeing these pages
  1650. * requires taking the lru_lock so we do the put_page
  1651. * of the tail pages after the split is complete.
  1652. */
  1653. put_page(subpage);
  1654. }
  1655. }
  1656. int total_mapcount(struct page *page)
  1657. {
  1658. int i, compound, ret;
  1659. VM_BUG_ON_PAGE(PageTail(page), page);
  1660. if (likely(!PageCompound(page)))
  1661. return atomic_read(&page->_mapcount) + 1;
  1662. compound = compound_mapcount(page);
  1663. if (PageHuge(page))
  1664. return compound;
  1665. ret = compound;
  1666. for (i = 0; i < HPAGE_PMD_NR; i++)
  1667. ret += atomic_read(&page[i]._mapcount) + 1;
  1668. /* File pages has compound_mapcount included in _mapcount */
  1669. if (!PageAnon(page))
  1670. return ret - compound * HPAGE_PMD_NR;
  1671. if (PageDoubleMap(page))
  1672. ret -= HPAGE_PMD_NR;
  1673. return ret;
  1674. }
  1675. /*
  1676. * This calculates accurately how many mappings a transparent hugepage
  1677. * has (unlike page_mapcount() which isn't fully accurate). This full
  1678. * accuracy is primarily needed to know if copy-on-write faults can
  1679. * reuse the page and change the mapping to read-write instead of
  1680. * copying them. At the same time this returns the total_mapcount too.
  1681. *
  1682. * The function returns the highest mapcount any one of the subpages
  1683. * has. If the return value is one, even if different processes are
  1684. * mapping different subpages of the transparent hugepage, they can
  1685. * all reuse it, because each process is reusing a different subpage.
  1686. *
  1687. * The total_mapcount is instead counting all virtual mappings of the
  1688. * subpages. If the total_mapcount is equal to "one", it tells the
  1689. * caller all mappings belong to the same "mm" and in turn the
  1690. * anon_vma of the transparent hugepage can become the vma->anon_vma
  1691. * local one as no other process may be mapping any of the subpages.
  1692. *
  1693. * It would be more accurate to replace page_mapcount() with
  1694. * page_trans_huge_mapcount(), however we only use
  1695. * page_trans_huge_mapcount() in the copy-on-write faults where we
  1696. * need full accuracy to avoid breaking page pinning, because
  1697. * page_trans_huge_mapcount() is slower than page_mapcount().
  1698. */
  1699. int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
  1700. {
  1701. int i, ret, _total_mapcount, mapcount;
  1702. /* hugetlbfs shouldn't call it */
  1703. VM_BUG_ON_PAGE(PageHuge(page), page);
  1704. if (likely(!PageTransCompound(page))) {
  1705. mapcount = atomic_read(&page->_mapcount) + 1;
  1706. if (total_mapcount)
  1707. *total_mapcount = mapcount;
  1708. return mapcount;
  1709. }
  1710. page = compound_head(page);
  1711. _total_mapcount = ret = 0;
  1712. for (i = 0; i < HPAGE_PMD_NR; i++) {
  1713. mapcount = atomic_read(&page[i]._mapcount) + 1;
  1714. ret = max(ret, mapcount);
  1715. _total_mapcount += mapcount;
  1716. }
  1717. if (PageDoubleMap(page)) {
  1718. ret -= 1;
  1719. _total_mapcount -= HPAGE_PMD_NR;
  1720. }
  1721. mapcount = compound_mapcount(page);
  1722. ret += mapcount;
  1723. _total_mapcount += mapcount;
  1724. if (total_mapcount)
  1725. *total_mapcount = _total_mapcount;
  1726. return ret;
  1727. }
  1728. /*
  1729. * This function splits huge page into normal pages. @page can point to any
  1730. * subpage of huge page to split. Split doesn't change the position of @page.
  1731. *
  1732. * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
  1733. * The huge page must be locked.
  1734. *
  1735. * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
  1736. *
  1737. * Both head page and tail pages will inherit mapping, flags, and so on from
  1738. * the hugepage.
  1739. *
  1740. * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
  1741. * they are not mapped.
  1742. *
  1743. * Returns 0 if the hugepage is split successfully.
  1744. * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
  1745. * us.
  1746. */
  1747. int split_huge_page_to_list(struct page *page, struct list_head *list)
  1748. {
  1749. struct page *head = compound_head(page);
  1750. struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
  1751. struct anon_vma *anon_vma = NULL;
  1752. struct address_space *mapping = NULL;
  1753. int count, mapcount, extra_pins, ret;
  1754. bool mlocked;
  1755. unsigned long flags;
  1756. VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
  1757. VM_BUG_ON_PAGE(!PageLocked(page), page);
  1758. VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
  1759. VM_BUG_ON_PAGE(!PageCompound(page), page);
  1760. if (PageAnon(head)) {
  1761. /*
  1762. * The caller does not necessarily hold an mmap_sem that would
  1763. * prevent the anon_vma disappearing so we first we take a
  1764. * reference to it and then lock the anon_vma for write. This
  1765. * is similar to page_lock_anon_vma_read except the write lock
  1766. * is taken to serialise against parallel split or collapse
  1767. * operations.
  1768. */
  1769. anon_vma = page_get_anon_vma(head);
  1770. if (!anon_vma) {
  1771. ret = -EBUSY;
  1772. goto out;
  1773. }
  1774. extra_pins = 0;
  1775. mapping = NULL;
  1776. anon_vma_lock_write(anon_vma);
  1777. } else {
  1778. mapping = head->mapping;
  1779. /* Truncated ? */
  1780. if (!mapping) {
  1781. ret = -EBUSY;
  1782. goto out;
  1783. }
  1784. /* Addidional pins from radix tree */
  1785. extra_pins = HPAGE_PMD_NR;
  1786. anon_vma = NULL;
  1787. i_mmap_lock_read(mapping);
  1788. }
  1789. /*
  1790. * Racy check if we can split the page, before freeze_page() will
  1791. * split PMDs
  1792. */
  1793. if (total_mapcount(head) != page_count(head) - extra_pins - 1) {
  1794. ret = -EBUSY;
  1795. goto out_unlock;
  1796. }
  1797. mlocked = PageMlocked(page);
  1798. freeze_page(head);
  1799. VM_BUG_ON_PAGE(compound_mapcount(head), head);
  1800. /* Make sure the page is not on per-CPU pagevec as it takes pin */
  1801. if (mlocked)
  1802. lru_add_drain();
  1803. /* prevent PageLRU to go away from under us, and freeze lru stats */
  1804. spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
  1805. if (mapping) {
  1806. void **pslot;
  1807. spin_lock(&mapping->tree_lock);
  1808. pslot = radix_tree_lookup_slot(&mapping->page_tree,
  1809. page_index(head));
  1810. /*
  1811. * Check if the head page is present in radix tree.
  1812. * We assume all tail are present too, if head is there.
  1813. */
  1814. if (radix_tree_deref_slot_protected(pslot,
  1815. &mapping->tree_lock) != head)
  1816. goto fail;
  1817. }
  1818. /* Prevent deferred_split_scan() touching ->_refcount */
  1819. spin_lock(&pgdata->split_queue_lock);
  1820. count = page_count(head);
  1821. mapcount = total_mapcount(head);
  1822. if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
  1823. if (!list_empty(page_deferred_list(head))) {
  1824. pgdata->split_queue_len--;
  1825. list_del(page_deferred_list(head));
  1826. }
  1827. if (mapping)
  1828. __dec_node_page_state(page, NR_SHMEM_THPS);
  1829. spin_unlock(&pgdata->split_queue_lock);
  1830. __split_huge_page(page, list, flags);
  1831. ret = 0;
  1832. } else {
  1833. if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
  1834. pr_alert("total_mapcount: %u, page_count(): %u\n",
  1835. mapcount, count);
  1836. if (PageTail(page))
  1837. dump_page(head, NULL);
  1838. dump_page(page, "total_mapcount(head) > 0");
  1839. BUG();
  1840. }
  1841. spin_unlock(&pgdata->split_queue_lock);
  1842. fail: if (mapping)
  1843. spin_unlock(&mapping->tree_lock);
  1844. spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
  1845. unfreeze_page(head);
  1846. ret = -EBUSY;
  1847. }
  1848. out_unlock:
  1849. if (anon_vma) {
  1850. anon_vma_unlock_write(anon_vma);
  1851. put_anon_vma(anon_vma);
  1852. }
  1853. if (mapping)
  1854. i_mmap_unlock_read(mapping);
  1855. out:
  1856. count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
  1857. return ret;
  1858. }
  1859. void free_transhuge_page(struct page *page)
  1860. {
  1861. struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
  1862. unsigned long flags;
  1863. spin_lock_irqsave(&pgdata->split_queue_lock, flags);
  1864. if (!list_empty(page_deferred_list(page))) {
  1865. pgdata->split_queue_len--;
  1866. list_del(page_deferred_list(page));
  1867. }
  1868. spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
  1869. free_compound_page(page);
  1870. }
  1871. void deferred_split_huge_page(struct page *page)
  1872. {
  1873. struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
  1874. unsigned long flags;
  1875. VM_BUG_ON_PAGE(!PageTransHuge(page), page);
  1876. spin_lock_irqsave(&pgdata->split_queue_lock, flags);
  1877. if (list_empty(page_deferred_list(page))) {
  1878. count_vm_event(THP_DEFERRED_SPLIT_PAGE);
  1879. list_add_tail(page_deferred_list(page), &pgdata->split_queue);
  1880. pgdata->split_queue_len++;
  1881. }
  1882. spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
  1883. }
  1884. static unsigned long deferred_split_count(struct shrinker *shrink,
  1885. struct shrink_control *sc)
  1886. {
  1887. struct pglist_data *pgdata = NODE_DATA(sc->nid);
  1888. return ACCESS_ONCE(pgdata->split_queue_len);
  1889. }
  1890. static unsigned long deferred_split_scan(struct shrinker *shrink,
  1891. struct shrink_control *sc)
  1892. {
  1893. struct pglist_data *pgdata = NODE_DATA(sc->nid);
  1894. unsigned long flags;
  1895. LIST_HEAD(list), *pos, *next;
  1896. struct page *page;
  1897. int split = 0;
  1898. spin_lock_irqsave(&pgdata->split_queue_lock, flags);
  1899. /* Take pin on all head pages to avoid freeing them under us */
  1900. list_for_each_safe(pos, next, &pgdata->split_queue) {
  1901. page = list_entry((void *)pos, struct page, mapping);
  1902. page = compound_head(page);
  1903. if (get_page_unless_zero(page)) {
  1904. list_move(page_deferred_list(page), &list);
  1905. } else {
  1906. /* We lost race with put_compound_page() */
  1907. list_del_init(page_deferred_list(page));
  1908. pgdata->split_queue_len--;
  1909. }
  1910. if (!--sc->nr_to_scan)
  1911. break;
  1912. }
  1913. spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
  1914. list_for_each_safe(pos, next, &list) {
  1915. page = list_entry((void *)pos, struct page, mapping);
  1916. lock_page(page);
  1917. /* split_huge_page() removes page from list on success */
  1918. if (!split_huge_page(page))
  1919. split++;
  1920. unlock_page(page);
  1921. put_page(page);
  1922. }
  1923. spin_lock_irqsave(&pgdata->split_queue_lock, flags);
  1924. list_splice_tail(&list, &pgdata->split_queue);
  1925. spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
  1926. /*
  1927. * Stop shrinker if we didn't split any page, but the queue is empty.
  1928. * This can happen if pages were freed under us.
  1929. */
  1930. if (!split && list_empty(&pgdata->split_queue))
  1931. return SHRINK_STOP;
  1932. return split;
  1933. }
  1934. static struct shrinker deferred_split_shrinker = {
  1935. .count_objects = deferred_split_count,
  1936. .scan_objects = deferred_split_scan,
  1937. .seeks = DEFAULT_SEEKS,
  1938. .flags = SHRINKER_NUMA_AWARE,
  1939. };
  1940. #ifdef CONFIG_DEBUG_FS
  1941. static int split_huge_pages_set(void *data, u64 val)
  1942. {
  1943. struct zone *zone;
  1944. struct page *page;
  1945. unsigned long pfn, max_zone_pfn;
  1946. unsigned long total = 0, split = 0;
  1947. if (val != 1)
  1948. return -EINVAL;
  1949. for_each_populated_zone(zone) {
  1950. max_zone_pfn = zone_end_pfn(zone);
  1951. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
  1952. if (!pfn_valid(pfn))
  1953. continue;
  1954. page = pfn_to_page(pfn);
  1955. if (!get_page_unless_zero(page))
  1956. continue;
  1957. if (zone != page_zone(page))
  1958. goto next;
  1959. if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
  1960. goto next;
  1961. total++;
  1962. lock_page(page);
  1963. if (!split_huge_page(page))
  1964. split++;
  1965. unlock_page(page);
  1966. next:
  1967. put_page(page);
  1968. }
  1969. }
  1970. pr_info("%lu of %lu THP split\n", split, total);
  1971. return 0;
  1972. }
  1973. DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
  1974. "%llu\n");
  1975. static int __init split_huge_pages_debugfs(void)
  1976. {
  1977. void *ret;
  1978. ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
  1979. &split_huge_pages_fops);
  1980. if (!ret)
  1981. pr_warn("Failed to create split_huge_pages in debugfs");
  1982. return 0;
  1983. }
  1984. late_initcall(split_huge_pages_debugfs);
  1985. #endif