mvneta.c 87 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205
  1. /*
  2. * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
  3. *
  4. * Copyright (C) 2012 Marvell
  5. *
  6. * Rami Rosen <rosenr@marvell.com>
  7. * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
  8. *
  9. * This file is licensed under the terms of the GNU General Public
  10. * License version 2. This program is licensed "as is" without any
  11. * warranty of any kind, whether express or implied.
  12. */
  13. #include <linux/kernel.h>
  14. #include <linux/netdevice.h>
  15. #include <linux/etherdevice.h>
  16. #include <linux/platform_device.h>
  17. #include <linux/skbuff.h>
  18. #include <linux/inetdevice.h>
  19. #include <linux/mbus.h>
  20. #include <linux/module.h>
  21. #include <linux/interrupt.h>
  22. #include <linux/if_vlan.h>
  23. #include <net/ip.h>
  24. #include <net/ipv6.h>
  25. #include <linux/io.h>
  26. #include <net/tso.h>
  27. #include <linux/of.h>
  28. #include <linux/of_irq.h>
  29. #include <linux/of_mdio.h>
  30. #include <linux/of_net.h>
  31. #include <linux/of_address.h>
  32. #include <linux/phy.h>
  33. #include <linux/clk.h>
  34. /* Registers */
  35. #define MVNETA_RXQ_CONFIG_REG(q) (0x1400 + ((q) << 2))
  36. #define MVNETA_RXQ_HW_BUF_ALLOC BIT(1)
  37. #define MVNETA_RXQ_PKT_OFFSET_ALL_MASK (0xf << 8)
  38. #define MVNETA_RXQ_PKT_OFFSET_MASK(offs) ((offs) << 8)
  39. #define MVNETA_RXQ_THRESHOLD_REG(q) (0x14c0 + ((q) << 2))
  40. #define MVNETA_RXQ_NON_OCCUPIED(v) ((v) << 16)
  41. #define MVNETA_RXQ_BASE_ADDR_REG(q) (0x1480 + ((q) << 2))
  42. #define MVNETA_RXQ_SIZE_REG(q) (0x14a0 + ((q) << 2))
  43. #define MVNETA_RXQ_BUF_SIZE_SHIFT 19
  44. #define MVNETA_RXQ_BUF_SIZE_MASK (0x1fff << 19)
  45. #define MVNETA_RXQ_STATUS_REG(q) (0x14e0 + ((q) << 2))
  46. #define MVNETA_RXQ_OCCUPIED_ALL_MASK 0x3fff
  47. #define MVNETA_RXQ_STATUS_UPDATE_REG(q) (0x1500 + ((q) << 2))
  48. #define MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT 16
  49. #define MVNETA_RXQ_ADD_NON_OCCUPIED_MAX 255
  50. #define MVNETA_PORT_RX_RESET 0x1cc0
  51. #define MVNETA_PORT_RX_DMA_RESET BIT(0)
  52. #define MVNETA_PHY_ADDR 0x2000
  53. #define MVNETA_PHY_ADDR_MASK 0x1f
  54. #define MVNETA_MBUS_RETRY 0x2010
  55. #define MVNETA_UNIT_INTR_CAUSE 0x2080
  56. #define MVNETA_UNIT_CONTROL 0x20B0
  57. #define MVNETA_PHY_POLLING_ENABLE BIT(1)
  58. #define MVNETA_WIN_BASE(w) (0x2200 + ((w) << 3))
  59. #define MVNETA_WIN_SIZE(w) (0x2204 + ((w) << 3))
  60. #define MVNETA_WIN_REMAP(w) (0x2280 + ((w) << 2))
  61. #define MVNETA_BASE_ADDR_ENABLE 0x2290
  62. #define MVNETA_PORT_CONFIG 0x2400
  63. #define MVNETA_UNI_PROMISC_MODE BIT(0)
  64. #define MVNETA_DEF_RXQ(q) ((q) << 1)
  65. #define MVNETA_DEF_RXQ_ARP(q) ((q) << 4)
  66. #define MVNETA_TX_UNSET_ERR_SUM BIT(12)
  67. #define MVNETA_DEF_RXQ_TCP(q) ((q) << 16)
  68. #define MVNETA_DEF_RXQ_UDP(q) ((q) << 19)
  69. #define MVNETA_DEF_RXQ_BPDU(q) ((q) << 22)
  70. #define MVNETA_RX_CSUM_WITH_PSEUDO_HDR BIT(25)
  71. #define MVNETA_PORT_CONFIG_DEFL_VALUE(q) (MVNETA_DEF_RXQ(q) | \
  72. MVNETA_DEF_RXQ_ARP(q) | \
  73. MVNETA_DEF_RXQ_TCP(q) | \
  74. MVNETA_DEF_RXQ_UDP(q) | \
  75. MVNETA_DEF_RXQ_BPDU(q) | \
  76. MVNETA_TX_UNSET_ERR_SUM | \
  77. MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
  78. #define MVNETA_PORT_CONFIG_EXTEND 0x2404
  79. #define MVNETA_MAC_ADDR_LOW 0x2414
  80. #define MVNETA_MAC_ADDR_HIGH 0x2418
  81. #define MVNETA_SDMA_CONFIG 0x241c
  82. #define MVNETA_SDMA_BRST_SIZE_16 4
  83. #define MVNETA_RX_BRST_SZ_MASK(burst) ((burst) << 1)
  84. #define MVNETA_RX_NO_DATA_SWAP BIT(4)
  85. #define MVNETA_TX_NO_DATA_SWAP BIT(5)
  86. #define MVNETA_DESC_SWAP BIT(6)
  87. #define MVNETA_TX_BRST_SZ_MASK(burst) ((burst) << 22)
  88. #define MVNETA_PORT_STATUS 0x2444
  89. #define MVNETA_TX_IN_PRGRS BIT(1)
  90. #define MVNETA_TX_FIFO_EMPTY BIT(8)
  91. #define MVNETA_RX_MIN_FRAME_SIZE 0x247c
  92. #define MVNETA_SERDES_CFG 0x24A0
  93. #define MVNETA_SGMII_SERDES_PROTO 0x0cc7
  94. #define MVNETA_QSGMII_SERDES_PROTO 0x0667
  95. #define MVNETA_TYPE_PRIO 0x24bc
  96. #define MVNETA_FORCE_UNI BIT(21)
  97. #define MVNETA_TXQ_CMD_1 0x24e4
  98. #define MVNETA_TXQ_CMD 0x2448
  99. #define MVNETA_TXQ_DISABLE_SHIFT 8
  100. #define MVNETA_TXQ_ENABLE_MASK 0x000000ff
  101. #define MVNETA_GMAC_CLOCK_DIVIDER 0x24f4
  102. #define MVNETA_GMAC_1MS_CLOCK_ENABLE BIT(31)
  103. #define MVNETA_ACC_MODE 0x2500
  104. #define MVNETA_CPU_MAP(cpu) (0x2540 + ((cpu) << 2))
  105. #define MVNETA_CPU_RXQ_ACCESS_ALL_MASK 0x000000ff
  106. #define MVNETA_CPU_TXQ_ACCESS_ALL_MASK 0x0000ff00
  107. #define MVNETA_RXQ_TIME_COAL_REG(q) (0x2580 + ((q) << 2))
  108. /* Exception Interrupt Port/Queue Cause register */
  109. #define MVNETA_INTR_NEW_CAUSE 0x25a0
  110. #define MVNETA_INTR_NEW_MASK 0x25a4
  111. /* bits 0..7 = TXQ SENT, one bit per queue.
  112. * bits 8..15 = RXQ OCCUP, one bit per queue.
  113. * bits 16..23 = RXQ FREE, one bit per queue.
  114. * bit 29 = OLD_REG_SUM, see old reg ?
  115. * bit 30 = TX_ERR_SUM, one bit for 4 ports
  116. * bit 31 = MISC_SUM, one bit for 4 ports
  117. */
  118. #define MVNETA_TX_INTR_MASK(nr_txqs) (((1 << nr_txqs) - 1) << 0)
  119. #define MVNETA_TX_INTR_MASK_ALL (0xff << 0)
  120. #define MVNETA_RX_INTR_MASK(nr_rxqs) (((1 << nr_rxqs) - 1) << 8)
  121. #define MVNETA_RX_INTR_MASK_ALL (0xff << 8)
  122. #define MVNETA_MISCINTR_INTR_MASK BIT(31)
  123. #define MVNETA_INTR_OLD_CAUSE 0x25a8
  124. #define MVNETA_INTR_OLD_MASK 0x25ac
  125. /* Data Path Port/Queue Cause Register */
  126. #define MVNETA_INTR_MISC_CAUSE 0x25b0
  127. #define MVNETA_INTR_MISC_MASK 0x25b4
  128. #define MVNETA_CAUSE_PHY_STATUS_CHANGE BIT(0)
  129. #define MVNETA_CAUSE_LINK_CHANGE BIT(1)
  130. #define MVNETA_CAUSE_PTP BIT(4)
  131. #define MVNETA_CAUSE_INTERNAL_ADDR_ERR BIT(7)
  132. #define MVNETA_CAUSE_RX_OVERRUN BIT(8)
  133. #define MVNETA_CAUSE_RX_CRC_ERROR BIT(9)
  134. #define MVNETA_CAUSE_RX_LARGE_PKT BIT(10)
  135. #define MVNETA_CAUSE_TX_UNDERUN BIT(11)
  136. #define MVNETA_CAUSE_PRBS_ERR BIT(12)
  137. #define MVNETA_CAUSE_PSC_SYNC_CHANGE BIT(13)
  138. #define MVNETA_CAUSE_SERDES_SYNC_ERR BIT(14)
  139. #define MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT 16
  140. #define MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT)
  141. #define MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool)))
  142. #define MVNETA_CAUSE_TXQ_ERROR_SHIFT 24
  143. #define MVNETA_CAUSE_TXQ_ERROR_ALL_MASK (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT)
  144. #define MVNETA_CAUSE_TXQ_ERROR_MASK(q) (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q)))
  145. #define MVNETA_INTR_ENABLE 0x25b8
  146. #define MVNETA_TXQ_INTR_ENABLE_ALL_MASK 0x0000ff00
  147. #define MVNETA_RXQ_INTR_ENABLE_ALL_MASK 0xff000000 // note: neta says it's 0x000000FF
  148. #define MVNETA_RXQ_CMD 0x2680
  149. #define MVNETA_RXQ_DISABLE_SHIFT 8
  150. #define MVNETA_RXQ_ENABLE_MASK 0x000000ff
  151. #define MVETH_TXQ_TOKEN_COUNT_REG(q) (0x2700 + ((q) << 4))
  152. #define MVETH_TXQ_TOKEN_CFG_REG(q) (0x2704 + ((q) << 4))
  153. #define MVNETA_GMAC_CTRL_0 0x2c00
  154. #define MVNETA_GMAC_MAX_RX_SIZE_SHIFT 2
  155. #define MVNETA_GMAC_MAX_RX_SIZE_MASK 0x7ffc
  156. #define MVNETA_GMAC0_PORT_ENABLE BIT(0)
  157. #define MVNETA_GMAC_CTRL_2 0x2c08
  158. #define MVNETA_GMAC2_INBAND_AN_ENABLE BIT(0)
  159. #define MVNETA_GMAC2_PCS_ENABLE BIT(3)
  160. #define MVNETA_GMAC2_PORT_RGMII BIT(4)
  161. #define MVNETA_GMAC2_PORT_RESET BIT(6)
  162. #define MVNETA_GMAC_STATUS 0x2c10
  163. #define MVNETA_GMAC_LINK_UP BIT(0)
  164. #define MVNETA_GMAC_SPEED_1000 BIT(1)
  165. #define MVNETA_GMAC_SPEED_100 BIT(2)
  166. #define MVNETA_GMAC_FULL_DUPLEX BIT(3)
  167. #define MVNETA_GMAC_RX_FLOW_CTRL_ENABLE BIT(4)
  168. #define MVNETA_GMAC_TX_FLOW_CTRL_ENABLE BIT(5)
  169. #define MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE BIT(6)
  170. #define MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE BIT(7)
  171. #define MVNETA_GMAC_AUTONEG_CONFIG 0x2c0c
  172. #define MVNETA_GMAC_FORCE_LINK_DOWN BIT(0)
  173. #define MVNETA_GMAC_FORCE_LINK_PASS BIT(1)
  174. #define MVNETA_GMAC_INBAND_AN_ENABLE BIT(2)
  175. #define MVNETA_GMAC_CONFIG_MII_SPEED BIT(5)
  176. #define MVNETA_GMAC_CONFIG_GMII_SPEED BIT(6)
  177. #define MVNETA_GMAC_AN_SPEED_EN BIT(7)
  178. #define MVNETA_GMAC_AN_FLOW_CTRL_EN BIT(11)
  179. #define MVNETA_GMAC_CONFIG_FULL_DUPLEX BIT(12)
  180. #define MVNETA_GMAC_AN_DUPLEX_EN BIT(13)
  181. #define MVNETA_MIB_COUNTERS_BASE 0x3080
  182. #define MVNETA_MIB_LATE_COLLISION 0x7c
  183. #define MVNETA_DA_FILT_SPEC_MCAST 0x3400
  184. #define MVNETA_DA_FILT_OTH_MCAST 0x3500
  185. #define MVNETA_DA_FILT_UCAST_BASE 0x3600
  186. #define MVNETA_TXQ_BASE_ADDR_REG(q) (0x3c00 + ((q) << 2))
  187. #define MVNETA_TXQ_SIZE_REG(q) (0x3c20 + ((q) << 2))
  188. #define MVNETA_TXQ_SENT_THRESH_ALL_MASK 0x3fff0000
  189. #define MVNETA_TXQ_SENT_THRESH_MASK(coal) ((coal) << 16)
  190. #define MVNETA_TXQ_UPDATE_REG(q) (0x3c60 + ((q) << 2))
  191. #define MVNETA_TXQ_DEC_SENT_SHIFT 16
  192. #define MVNETA_TXQ_STATUS_REG(q) (0x3c40 + ((q) << 2))
  193. #define MVNETA_TXQ_SENT_DESC_SHIFT 16
  194. #define MVNETA_TXQ_SENT_DESC_MASK 0x3fff0000
  195. #define MVNETA_PORT_TX_RESET 0x3cf0
  196. #define MVNETA_PORT_TX_DMA_RESET BIT(0)
  197. #define MVNETA_TX_MTU 0x3e0c
  198. #define MVNETA_TX_TOKEN_SIZE 0x3e14
  199. #define MVNETA_TX_TOKEN_SIZE_MAX 0xffffffff
  200. #define MVNETA_TXQ_TOKEN_SIZE_REG(q) (0x3e40 + ((q) << 2))
  201. #define MVNETA_TXQ_TOKEN_SIZE_MAX 0x7fffffff
  202. #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff
  203. /* Descriptor ring Macros */
  204. #define MVNETA_QUEUE_NEXT_DESC(q, index) \
  205. (((index) < (q)->last_desc) ? ((index) + 1) : 0)
  206. /* Various constants */
  207. /* Coalescing */
  208. #define MVNETA_TXDONE_COAL_PKTS 1
  209. #define MVNETA_RX_COAL_PKTS 32
  210. #define MVNETA_RX_COAL_USEC 100
  211. /* The two bytes Marvell header. Either contains a special value used
  212. * by Marvell switches when a specific hardware mode is enabled (not
  213. * supported by this driver) or is filled automatically by zeroes on
  214. * the RX side. Those two bytes being at the front of the Ethernet
  215. * header, they allow to have the IP header aligned on a 4 bytes
  216. * boundary automatically: the hardware skips those two bytes on its
  217. * own.
  218. */
  219. #define MVNETA_MH_SIZE 2
  220. #define MVNETA_VLAN_TAG_LEN 4
  221. #define MVNETA_CPU_D_CACHE_LINE_SIZE 32
  222. #define MVNETA_TX_CSUM_MAX_SIZE 9800
  223. #define MVNETA_ACC_MODE_EXT 1
  224. /* Timeout constants */
  225. #define MVNETA_TX_DISABLE_TIMEOUT_MSEC 1000
  226. #define MVNETA_RX_DISABLE_TIMEOUT_MSEC 1000
  227. #define MVNETA_TX_FIFO_EMPTY_TIMEOUT 10000
  228. #define MVNETA_TX_MTU_MAX 0x3ffff
  229. /* TSO header size */
  230. #define TSO_HEADER_SIZE 128
  231. /* Max number of Rx descriptors */
  232. #define MVNETA_MAX_RXD 128
  233. /* Max number of Tx descriptors */
  234. #define MVNETA_MAX_TXD 532
  235. /* Max number of allowed TCP segments for software TSO */
  236. #define MVNETA_MAX_TSO_SEGS 100
  237. #define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
  238. /* descriptor aligned size */
  239. #define MVNETA_DESC_ALIGNED_SIZE 32
  240. #define MVNETA_RX_PKT_SIZE(mtu) \
  241. ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \
  242. ETH_HLEN + ETH_FCS_LEN, \
  243. MVNETA_CPU_D_CACHE_LINE_SIZE)
  244. #define IS_TSO_HEADER(txq, addr) \
  245. ((addr >= txq->tso_hdrs_phys) && \
  246. (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE))
  247. #define MVNETA_RX_BUF_SIZE(pkt_size) ((pkt_size) + NET_SKB_PAD)
  248. struct mvneta_pcpu_stats {
  249. struct u64_stats_sync syncp;
  250. u64 rx_packets;
  251. u64 rx_bytes;
  252. u64 tx_packets;
  253. u64 tx_bytes;
  254. };
  255. struct mvneta_port {
  256. int pkt_size;
  257. unsigned int frag_size;
  258. void __iomem *base;
  259. struct mvneta_rx_queue *rxqs;
  260. struct mvneta_tx_queue *txqs;
  261. struct net_device *dev;
  262. u32 cause_rx_tx;
  263. struct napi_struct napi;
  264. /* Core clock */
  265. struct clk *clk;
  266. u8 mcast_count[256];
  267. u16 tx_ring_size;
  268. u16 rx_ring_size;
  269. struct mvneta_pcpu_stats *stats;
  270. struct mii_bus *mii_bus;
  271. struct phy_device *phy_dev;
  272. phy_interface_t phy_interface;
  273. struct device_node *phy_node;
  274. unsigned int link;
  275. unsigned int duplex;
  276. unsigned int speed;
  277. int use_inband_status:1;
  278. };
  279. /* The mvneta_tx_desc and mvneta_rx_desc structures describe the
  280. * layout of the transmit and reception DMA descriptors, and their
  281. * layout is therefore defined by the hardware design
  282. */
  283. #define MVNETA_TX_L3_OFF_SHIFT 0
  284. #define MVNETA_TX_IP_HLEN_SHIFT 8
  285. #define MVNETA_TX_L4_UDP BIT(16)
  286. #define MVNETA_TX_L3_IP6 BIT(17)
  287. #define MVNETA_TXD_IP_CSUM BIT(18)
  288. #define MVNETA_TXD_Z_PAD BIT(19)
  289. #define MVNETA_TXD_L_DESC BIT(20)
  290. #define MVNETA_TXD_F_DESC BIT(21)
  291. #define MVNETA_TXD_FLZ_DESC (MVNETA_TXD_Z_PAD | \
  292. MVNETA_TXD_L_DESC | \
  293. MVNETA_TXD_F_DESC)
  294. #define MVNETA_TX_L4_CSUM_FULL BIT(30)
  295. #define MVNETA_TX_L4_CSUM_NOT BIT(31)
  296. #define MVNETA_RXD_ERR_CRC 0x0
  297. #define MVNETA_RXD_ERR_SUMMARY BIT(16)
  298. #define MVNETA_RXD_ERR_OVERRUN BIT(17)
  299. #define MVNETA_RXD_ERR_LEN BIT(18)
  300. #define MVNETA_RXD_ERR_RESOURCE (BIT(17) | BIT(18))
  301. #define MVNETA_RXD_ERR_CODE_MASK (BIT(17) | BIT(18))
  302. #define MVNETA_RXD_L3_IP4 BIT(25)
  303. #define MVNETA_RXD_FIRST_LAST_DESC (BIT(26) | BIT(27))
  304. #define MVNETA_RXD_L4_CSUM_OK BIT(30)
  305. #if defined(__LITTLE_ENDIAN)
  306. struct mvneta_tx_desc {
  307. u32 command; /* Options used by HW for packet transmitting.*/
  308. u16 reserverd1; /* csum_l4 (for future use) */
  309. u16 data_size; /* Data size of transmitted packet in bytes */
  310. u32 buf_phys_addr; /* Physical addr of transmitted buffer */
  311. u32 reserved2; /* hw_cmd - (for future use, PMT) */
  312. u32 reserved3[4]; /* Reserved - (for future use) */
  313. };
  314. struct mvneta_rx_desc {
  315. u32 status; /* Info about received packet */
  316. u16 reserved1; /* pnc_info - (for future use, PnC) */
  317. u16 data_size; /* Size of received packet in bytes */
  318. u32 buf_phys_addr; /* Physical address of the buffer */
  319. u32 reserved2; /* pnc_flow_id (for future use, PnC) */
  320. u32 buf_cookie; /* cookie for access to RX buffer in rx path */
  321. u16 reserved3; /* prefetch_cmd, for future use */
  322. u16 reserved4; /* csum_l4 - (for future use, PnC) */
  323. u32 reserved5; /* pnc_extra PnC (for future use, PnC) */
  324. u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */
  325. };
  326. #else
  327. struct mvneta_tx_desc {
  328. u16 data_size; /* Data size of transmitted packet in bytes */
  329. u16 reserverd1; /* csum_l4 (for future use) */
  330. u32 command; /* Options used by HW for packet transmitting.*/
  331. u32 reserved2; /* hw_cmd - (for future use, PMT) */
  332. u32 buf_phys_addr; /* Physical addr of transmitted buffer */
  333. u32 reserved3[4]; /* Reserved - (for future use) */
  334. };
  335. struct mvneta_rx_desc {
  336. u16 data_size; /* Size of received packet in bytes */
  337. u16 reserved1; /* pnc_info - (for future use, PnC) */
  338. u32 status; /* Info about received packet */
  339. u32 reserved2; /* pnc_flow_id (for future use, PnC) */
  340. u32 buf_phys_addr; /* Physical address of the buffer */
  341. u16 reserved4; /* csum_l4 - (for future use, PnC) */
  342. u16 reserved3; /* prefetch_cmd, for future use */
  343. u32 buf_cookie; /* cookie for access to RX buffer in rx path */
  344. u32 reserved5; /* pnc_extra PnC (for future use, PnC) */
  345. u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */
  346. };
  347. #endif
  348. struct mvneta_tx_queue {
  349. /* Number of this TX queue, in the range 0-7 */
  350. u8 id;
  351. /* Number of TX DMA descriptors in the descriptor ring */
  352. int size;
  353. /* Number of currently used TX DMA descriptor in the
  354. * descriptor ring
  355. */
  356. int count;
  357. int tx_stop_threshold;
  358. int tx_wake_threshold;
  359. /* Array of transmitted skb */
  360. struct sk_buff **tx_skb;
  361. /* Index of last TX DMA descriptor that was inserted */
  362. int txq_put_index;
  363. /* Index of the TX DMA descriptor to be cleaned up */
  364. int txq_get_index;
  365. u32 done_pkts_coal;
  366. /* Virtual address of the TX DMA descriptors array */
  367. struct mvneta_tx_desc *descs;
  368. /* DMA address of the TX DMA descriptors array */
  369. dma_addr_t descs_phys;
  370. /* Index of the last TX DMA descriptor */
  371. int last_desc;
  372. /* Index of the next TX DMA descriptor to process */
  373. int next_desc_to_proc;
  374. /* DMA buffers for TSO headers */
  375. char *tso_hdrs;
  376. /* DMA address of TSO headers */
  377. dma_addr_t tso_hdrs_phys;
  378. };
  379. struct mvneta_rx_queue {
  380. /* rx queue number, in the range 0-7 */
  381. u8 id;
  382. /* num of rx descriptors in the rx descriptor ring */
  383. int size;
  384. /* counter of times when mvneta_refill() failed */
  385. int missed;
  386. u32 pkts_coal;
  387. u32 time_coal;
  388. /* Virtual address of the RX DMA descriptors array */
  389. struct mvneta_rx_desc *descs;
  390. /* DMA address of the RX DMA descriptors array */
  391. dma_addr_t descs_phys;
  392. /* Index of the last RX DMA descriptor */
  393. int last_desc;
  394. /* Index of the next RX DMA descriptor to process */
  395. int next_desc_to_proc;
  396. };
  397. /* The hardware supports eight (8) rx queues, but we are only allowing
  398. * the first one to be used. Therefore, let's just allocate one queue.
  399. */
  400. static int rxq_number = 1;
  401. static int txq_number = 8;
  402. static int rxq_def;
  403. static int rx_copybreak __read_mostly = 256;
  404. #define MVNETA_DRIVER_NAME "mvneta"
  405. #define MVNETA_DRIVER_VERSION "1.0"
  406. /* Utility/helper methods */
  407. /* Write helper method */
  408. static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
  409. {
  410. writel(data, pp->base + offset);
  411. }
  412. /* Read helper method */
  413. static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
  414. {
  415. return readl(pp->base + offset);
  416. }
  417. /* Increment txq get counter */
  418. static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq)
  419. {
  420. txq->txq_get_index++;
  421. if (txq->txq_get_index == txq->size)
  422. txq->txq_get_index = 0;
  423. }
  424. /* Increment txq put counter */
  425. static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq)
  426. {
  427. txq->txq_put_index++;
  428. if (txq->txq_put_index == txq->size)
  429. txq->txq_put_index = 0;
  430. }
  431. /* Clear all MIB counters */
  432. static void mvneta_mib_counters_clear(struct mvneta_port *pp)
  433. {
  434. int i;
  435. u32 dummy;
  436. /* Perform dummy reads from MIB counters */
  437. for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
  438. dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
  439. }
  440. /* Get System Network Statistics */
  441. struct rtnl_link_stats64 *mvneta_get_stats64(struct net_device *dev,
  442. struct rtnl_link_stats64 *stats)
  443. {
  444. struct mvneta_port *pp = netdev_priv(dev);
  445. unsigned int start;
  446. int cpu;
  447. for_each_possible_cpu(cpu) {
  448. struct mvneta_pcpu_stats *cpu_stats;
  449. u64 rx_packets;
  450. u64 rx_bytes;
  451. u64 tx_packets;
  452. u64 tx_bytes;
  453. cpu_stats = per_cpu_ptr(pp->stats, cpu);
  454. do {
  455. start = u64_stats_fetch_begin_irq(&cpu_stats->syncp);
  456. rx_packets = cpu_stats->rx_packets;
  457. rx_bytes = cpu_stats->rx_bytes;
  458. tx_packets = cpu_stats->tx_packets;
  459. tx_bytes = cpu_stats->tx_bytes;
  460. } while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start));
  461. stats->rx_packets += rx_packets;
  462. stats->rx_bytes += rx_bytes;
  463. stats->tx_packets += tx_packets;
  464. stats->tx_bytes += tx_bytes;
  465. }
  466. stats->rx_errors = dev->stats.rx_errors;
  467. stats->rx_dropped = dev->stats.rx_dropped;
  468. stats->tx_dropped = dev->stats.tx_dropped;
  469. return stats;
  470. }
  471. /* Rx descriptors helper methods */
  472. /* Checks whether the RX descriptor having this status is both the first
  473. * and the last descriptor for the RX packet. Each RX packet is currently
  474. * received through a single RX descriptor, so not having each RX
  475. * descriptor with its first and last bits set is an error
  476. */
  477. static int mvneta_rxq_desc_is_first_last(u32 status)
  478. {
  479. return (status & MVNETA_RXD_FIRST_LAST_DESC) ==
  480. MVNETA_RXD_FIRST_LAST_DESC;
  481. }
  482. /* Add number of descriptors ready to receive new packets */
  483. static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
  484. struct mvneta_rx_queue *rxq,
  485. int ndescs)
  486. {
  487. /* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
  488. * be added at once
  489. */
  490. while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
  491. mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
  492. (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
  493. MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
  494. ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
  495. }
  496. mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
  497. (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
  498. }
  499. /* Get number of RX descriptors occupied by received packets */
  500. static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
  501. struct mvneta_rx_queue *rxq)
  502. {
  503. u32 val;
  504. val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
  505. return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
  506. }
  507. /* Update num of rx desc called upon return from rx path or
  508. * from mvneta_rxq_drop_pkts().
  509. */
  510. static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
  511. struct mvneta_rx_queue *rxq,
  512. int rx_done, int rx_filled)
  513. {
  514. u32 val;
  515. if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
  516. val = rx_done |
  517. (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
  518. mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
  519. return;
  520. }
  521. /* Only 255 descriptors can be added at once */
  522. while ((rx_done > 0) || (rx_filled > 0)) {
  523. if (rx_done <= 0xff) {
  524. val = rx_done;
  525. rx_done = 0;
  526. } else {
  527. val = 0xff;
  528. rx_done -= 0xff;
  529. }
  530. if (rx_filled <= 0xff) {
  531. val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
  532. rx_filled = 0;
  533. } else {
  534. val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
  535. rx_filled -= 0xff;
  536. }
  537. mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
  538. }
  539. }
  540. /* Get pointer to next RX descriptor to be processed by SW */
  541. static struct mvneta_rx_desc *
  542. mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
  543. {
  544. int rx_desc = rxq->next_desc_to_proc;
  545. rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
  546. prefetch(rxq->descs + rxq->next_desc_to_proc);
  547. return rxq->descs + rx_desc;
  548. }
  549. /* Change maximum receive size of the port. */
  550. static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size)
  551. {
  552. u32 val;
  553. val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
  554. val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK;
  555. val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) <<
  556. MVNETA_GMAC_MAX_RX_SIZE_SHIFT;
  557. mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
  558. }
  559. /* Set rx queue offset */
  560. static void mvneta_rxq_offset_set(struct mvneta_port *pp,
  561. struct mvneta_rx_queue *rxq,
  562. int offset)
  563. {
  564. u32 val;
  565. val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
  566. val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK;
  567. /* Offset is in */
  568. val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3);
  569. mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
  570. }
  571. /* Tx descriptors helper methods */
  572. /* Update HW with number of TX descriptors to be sent */
  573. static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
  574. struct mvneta_tx_queue *txq,
  575. int pend_desc)
  576. {
  577. u32 val;
  578. /* Only 255 descriptors can be added at once ; Assume caller
  579. * process TX desriptors in quanta less than 256
  580. */
  581. val = pend_desc;
  582. mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
  583. }
  584. /* Get pointer to next TX descriptor to be processed (send) by HW */
  585. static struct mvneta_tx_desc *
  586. mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
  587. {
  588. int tx_desc = txq->next_desc_to_proc;
  589. txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
  590. return txq->descs + tx_desc;
  591. }
  592. /* Release the last allocated TX descriptor. Useful to handle DMA
  593. * mapping failures in the TX path.
  594. */
  595. static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq)
  596. {
  597. if (txq->next_desc_to_proc == 0)
  598. txq->next_desc_to_proc = txq->last_desc - 1;
  599. else
  600. txq->next_desc_to_proc--;
  601. }
  602. /* Set rxq buf size */
  603. static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
  604. struct mvneta_rx_queue *rxq,
  605. int buf_size)
  606. {
  607. u32 val;
  608. val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));
  609. val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
  610. val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);
  611. mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
  612. }
  613. /* Disable buffer management (BM) */
  614. static void mvneta_rxq_bm_disable(struct mvneta_port *pp,
  615. struct mvneta_rx_queue *rxq)
  616. {
  617. u32 val;
  618. val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
  619. val &= ~MVNETA_RXQ_HW_BUF_ALLOC;
  620. mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
  621. }
  622. /* Start the Ethernet port RX and TX activity */
  623. static void mvneta_port_up(struct mvneta_port *pp)
  624. {
  625. int queue;
  626. u32 q_map;
  627. /* Enable all initialized TXs. */
  628. mvneta_mib_counters_clear(pp);
  629. q_map = 0;
  630. for (queue = 0; queue < txq_number; queue++) {
  631. struct mvneta_tx_queue *txq = &pp->txqs[queue];
  632. if (txq->descs != NULL)
  633. q_map |= (1 << queue);
  634. }
  635. mvreg_write(pp, MVNETA_TXQ_CMD, q_map);
  636. /* Enable all initialized RXQs. */
  637. q_map = 0;
  638. for (queue = 0; queue < rxq_number; queue++) {
  639. struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
  640. if (rxq->descs != NULL)
  641. q_map |= (1 << queue);
  642. }
  643. mvreg_write(pp, MVNETA_RXQ_CMD, q_map);
  644. }
  645. /* Stop the Ethernet port activity */
  646. static void mvneta_port_down(struct mvneta_port *pp)
  647. {
  648. u32 val;
  649. int count;
  650. /* Stop Rx port activity. Check port Rx activity. */
  651. val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;
  652. /* Issue stop command for active channels only */
  653. if (val != 0)
  654. mvreg_write(pp, MVNETA_RXQ_CMD,
  655. val << MVNETA_RXQ_DISABLE_SHIFT);
  656. /* Wait for all Rx activity to terminate. */
  657. count = 0;
  658. do {
  659. if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
  660. netdev_warn(pp->dev,
  661. "TIMEOUT for RX stopped ! rx_queue_cmd: 0x08%x\n",
  662. val);
  663. break;
  664. }
  665. mdelay(1);
  666. val = mvreg_read(pp, MVNETA_RXQ_CMD);
  667. } while (val & 0xff);
  668. /* Stop Tx port activity. Check port Tx activity. Issue stop
  669. * command for active channels only
  670. */
  671. val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;
  672. if (val != 0)
  673. mvreg_write(pp, MVNETA_TXQ_CMD,
  674. (val << MVNETA_TXQ_DISABLE_SHIFT));
  675. /* Wait for all Tx activity to terminate. */
  676. count = 0;
  677. do {
  678. if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
  679. netdev_warn(pp->dev,
  680. "TIMEOUT for TX stopped status=0x%08x\n",
  681. val);
  682. break;
  683. }
  684. mdelay(1);
  685. /* Check TX Command reg that all Txqs are stopped */
  686. val = mvreg_read(pp, MVNETA_TXQ_CMD);
  687. } while (val & 0xff);
  688. /* Double check to verify that TX FIFO is empty */
  689. count = 0;
  690. do {
  691. if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
  692. netdev_warn(pp->dev,
  693. "TX FIFO empty timeout status=0x08%x\n",
  694. val);
  695. break;
  696. }
  697. mdelay(1);
  698. val = mvreg_read(pp, MVNETA_PORT_STATUS);
  699. } while (!(val & MVNETA_TX_FIFO_EMPTY) &&
  700. (val & MVNETA_TX_IN_PRGRS));
  701. udelay(200);
  702. }
  703. /* Enable the port by setting the port enable bit of the MAC control register */
  704. static void mvneta_port_enable(struct mvneta_port *pp)
  705. {
  706. u32 val;
  707. /* Enable port */
  708. val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
  709. val |= MVNETA_GMAC0_PORT_ENABLE;
  710. mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
  711. }
  712. /* Disable the port and wait for about 200 usec before retuning */
  713. static void mvneta_port_disable(struct mvneta_port *pp)
  714. {
  715. u32 val;
  716. /* Reset the Enable bit in the Serial Control Register */
  717. val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
  718. val &= ~MVNETA_GMAC0_PORT_ENABLE;
  719. mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
  720. udelay(200);
  721. }
  722. /* Multicast tables methods */
  723. /* Set all entries in Unicast MAC Table; queue==-1 means reject all */
  724. static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
  725. {
  726. int offset;
  727. u32 val;
  728. if (queue == -1) {
  729. val = 0;
  730. } else {
  731. val = 0x1 | (queue << 1);
  732. val |= (val << 24) | (val << 16) | (val << 8);
  733. }
  734. for (offset = 0; offset <= 0xc; offset += 4)
  735. mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
  736. }
  737. /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
  738. static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
  739. {
  740. int offset;
  741. u32 val;
  742. if (queue == -1) {
  743. val = 0;
  744. } else {
  745. val = 0x1 | (queue << 1);
  746. val |= (val << 24) | (val << 16) | (val << 8);
  747. }
  748. for (offset = 0; offset <= 0xfc; offset += 4)
  749. mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);
  750. }
  751. /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
  752. static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
  753. {
  754. int offset;
  755. u32 val;
  756. if (queue == -1) {
  757. memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
  758. val = 0;
  759. } else {
  760. memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
  761. val = 0x1 | (queue << 1);
  762. val |= (val << 24) | (val << 16) | (val << 8);
  763. }
  764. for (offset = 0; offset <= 0xfc; offset += 4)
  765. mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
  766. }
  767. /* This method sets defaults to the NETA port:
  768. * Clears interrupt Cause and Mask registers.
  769. * Clears all MAC tables.
  770. * Sets defaults to all registers.
  771. * Resets RX and TX descriptor rings.
  772. * Resets PHY.
  773. * This method can be called after mvneta_port_down() to return the port
  774. * settings to defaults.
  775. */
  776. static void mvneta_defaults_set(struct mvneta_port *pp)
  777. {
  778. int cpu;
  779. int queue;
  780. u32 val;
  781. /* Clear all Cause registers */
  782. mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
  783. mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
  784. mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
  785. /* Mask all interrupts */
  786. mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
  787. mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
  788. mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
  789. mvreg_write(pp, MVNETA_INTR_ENABLE, 0);
  790. /* Enable MBUS Retry bit16 */
  791. mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);
  792. /* Set CPU queue access map - all CPUs have access to all RX
  793. * queues and to all TX queues
  794. */
  795. for (cpu = 0; cpu < CONFIG_NR_CPUS; cpu++)
  796. mvreg_write(pp, MVNETA_CPU_MAP(cpu),
  797. (MVNETA_CPU_RXQ_ACCESS_ALL_MASK |
  798. MVNETA_CPU_TXQ_ACCESS_ALL_MASK));
  799. /* Reset RX and TX DMAs */
  800. mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
  801. mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
  802. /* Disable Legacy WRR, Disable EJP, Release from reset */
  803. mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
  804. for (queue = 0; queue < txq_number; queue++) {
  805. mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
  806. mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
  807. }
  808. mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
  809. mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
  810. /* Set Port Acceleration Mode */
  811. val = MVNETA_ACC_MODE_EXT;
  812. mvreg_write(pp, MVNETA_ACC_MODE, val);
  813. /* Update val of portCfg register accordingly with all RxQueue types */
  814. val = MVNETA_PORT_CONFIG_DEFL_VALUE(rxq_def);
  815. mvreg_write(pp, MVNETA_PORT_CONFIG, val);
  816. val = 0;
  817. mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
  818. mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);
  819. /* Build PORT_SDMA_CONFIG_REG */
  820. val = 0;
  821. /* Default burst size */
  822. val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
  823. val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
  824. val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP;
  825. #if defined(__BIG_ENDIAN)
  826. val |= MVNETA_DESC_SWAP;
  827. #endif
  828. /* Assign port SDMA configuration */
  829. mvreg_write(pp, MVNETA_SDMA_CONFIG, val);
  830. /* Disable PHY polling in hardware, since we're using the
  831. * kernel phylib to do this.
  832. */
  833. val = mvreg_read(pp, MVNETA_UNIT_CONTROL);
  834. val &= ~MVNETA_PHY_POLLING_ENABLE;
  835. mvreg_write(pp, MVNETA_UNIT_CONTROL, val);
  836. if (pp->use_inband_status) {
  837. val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
  838. val &= ~(MVNETA_GMAC_FORCE_LINK_PASS |
  839. MVNETA_GMAC_FORCE_LINK_DOWN |
  840. MVNETA_GMAC_AN_FLOW_CTRL_EN);
  841. val |= MVNETA_GMAC_INBAND_AN_ENABLE |
  842. MVNETA_GMAC_AN_SPEED_EN |
  843. MVNETA_GMAC_AN_DUPLEX_EN;
  844. mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
  845. val = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER);
  846. val |= MVNETA_GMAC_1MS_CLOCK_ENABLE;
  847. mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, val);
  848. }
  849. mvneta_set_ucast_table(pp, -1);
  850. mvneta_set_special_mcast_table(pp, -1);
  851. mvneta_set_other_mcast_table(pp, -1);
  852. /* Set port interrupt enable register - default enable all */
  853. mvreg_write(pp, MVNETA_INTR_ENABLE,
  854. (MVNETA_RXQ_INTR_ENABLE_ALL_MASK
  855. | MVNETA_TXQ_INTR_ENABLE_ALL_MASK));
  856. }
  857. /* Set max sizes for tx queues */
  858. static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size)
  859. {
  860. u32 val, size, mtu;
  861. int queue;
  862. mtu = max_tx_size * 8;
  863. if (mtu > MVNETA_TX_MTU_MAX)
  864. mtu = MVNETA_TX_MTU_MAX;
  865. /* Set MTU */
  866. val = mvreg_read(pp, MVNETA_TX_MTU);
  867. val &= ~MVNETA_TX_MTU_MAX;
  868. val |= mtu;
  869. mvreg_write(pp, MVNETA_TX_MTU, val);
  870. /* TX token size and all TXQs token size must be larger that MTU */
  871. val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE);
  872. size = val & MVNETA_TX_TOKEN_SIZE_MAX;
  873. if (size < mtu) {
  874. size = mtu;
  875. val &= ~MVNETA_TX_TOKEN_SIZE_MAX;
  876. val |= size;
  877. mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val);
  878. }
  879. for (queue = 0; queue < txq_number; queue++) {
  880. val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue));
  881. size = val & MVNETA_TXQ_TOKEN_SIZE_MAX;
  882. if (size < mtu) {
  883. size = mtu;
  884. val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX;
  885. val |= size;
  886. mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val);
  887. }
  888. }
  889. }
  890. /* Set unicast address */
  891. static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
  892. int queue)
  893. {
  894. unsigned int unicast_reg;
  895. unsigned int tbl_offset;
  896. unsigned int reg_offset;
  897. /* Locate the Unicast table entry */
  898. last_nibble = (0xf & last_nibble);
  899. /* offset from unicast tbl base */
  900. tbl_offset = (last_nibble / 4) * 4;
  901. /* offset within the above reg */
  902. reg_offset = last_nibble % 4;
  903. unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));
  904. if (queue == -1) {
  905. /* Clear accepts frame bit at specified unicast DA tbl entry */
  906. unicast_reg &= ~(0xff << (8 * reg_offset));
  907. } else {
  908. unicast_reg &= ~(0xff << (8 * reg_offset));
  909. unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
  910. }
  911. mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
  912. }
  913. /* Set mac address */
  914. static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr,
  915. int queue)
  916. {
  917. unsigned int mac_h;
  918. unsigned int mac_l;
  919. if (queue != -1) {
  920. mac_l = (addr[4] << 8) | (addr[5]);
  921. mac_h = (addr[0] << 24) | (addr[1] << 16) |
  922. (addr[2] << 8) | (addr[3] << 0);
  923. mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
  924. mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
  925. }
  926. /* Accept frames of this address */
  927. mvneta_set_ucast_addr(pp, addr[5], queue);
  928. }
  929. /* Set the number of packets that will be received before RX interrupt
  930. * will be generated by HW.
  931. */
  932. static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp,
  933. struct mvneta_rx_queue *rxq, u32 value)
  934. {
  935. mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id),
  936. value | MVNETA_RXQ_NON_OCCUPIED(0));
  937. rxq->pkts_coal = value;
  938. }
  939. /* Set the time delay in usec before RX interrupt will be generated by
  940. * HW.
  941. */
  942. static void mvneta_rx_time_coal_set(struct mvneta_port *pp,
  943. struct mvneta_rx_queue *rxq, u32 value)
  944. {
  945. u32 val;
  946. unsigned long clk_rate;
  947. clk_rate = clk_get_rate(pp->clk);
  948. val = (clk_rate / 1000000) * value;
  949. mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val);
  950. rxq->time_coal = value;
  951. }
  952. /* Set threshold for TX_DONE pkts coalescing */
  953. static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp,
  954. struct mvneta_tx_queue *txq, u32 value)
  955. {
  956. u32 val;
  957. val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id));
  958. val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK;
  959. val |= MVNETA_TXQ_SENT_THRESH_MASK(value);
  960. mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val);
  961. txq->done_pkts_coal = value;
  962. }
  963. /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
  964. static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
  965. u32 phys_addr, u32 cookie)
  966. {
  967. rx_desc->buf_cookie = cookie;
  968. rx_desc->buf_phys_addr = phys_addr;
  969. }
  970. /* Decrement sent descriptors counter */
  971. static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
  972. struct mvneta_tx_queue *txq,
  973. int sent_desc)
  974. {
  975. u32 val;
  976. /* Only 255 TX descriptors can be updated at once */
  977. while (sent_desc > 0xff) {
  978. val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
  979. mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
  980. sent_desc = sent_desc - 0xff;
  981. }
  982. val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
  983. mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
  984. }
  985. /* Get number of TX descriptors already sent by HW */
  986. static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
  987. struct mvneta_tx_queue *txq)
  988. {
  989. u32 val;
  990. int sent_desc;
  991. val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
  992. sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
  993. MVNETA_TXQ_SENT_DESC_SHIFT;
  994. return sent_desc;
  995. }
  996. /* Get number of sent descriptors and decrement counter.
  997. * The number of sent descriptors is returned.
  998. */
  999. static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp,
  1000. struct mvneta_tx_queue *txq)
  1001. {
  1002. int sent_desc;
  1003. /* Get number of sent descriptors */
  1004. sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
  1005. /* Decrement sent descriptors counter */
  1006. if (sent_desc)
  1007. mvneta_txq_sent_desc_dec(pp, txq, sent_desc);
  1008. return sent_desc;
  1009. }
  1010. /* Set TXQ descriptors fields relevant for CSUM calculation */
  1011. static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto,
  1012. int ip_hdr_len, int l4_proto)
  1013. {
  1014. u32 command;
  1015. /* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
  1016. * G_L4_chk, L4_type; required only for checksum
  1017. * calculation
  1018. */
  1019. command = l3_offs << MVNETA_TX_L3_OFF_SHIFT;
  1020. command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT;
  1021. if (l3_proto == htons(ETH_P_IP))
  1022. command |= MVNETA_TXD_IP_CSUM;
  1023. else
  1024. command |= MVNETA_TX_L3_IP6;
  1025. if (l4_proto == IPPROTO_TCP)
  1026. command |= MVNETA_TX_L4_CSUM_FULL;
  1027. else if (l4_proto == IPPROTO_UDP)
  1028. command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL;
  1029. else
  1030. command |= MVNETA_TX_L4_CSUM_NOT;
  1031. return command;
  1032. }
  1033. /* Display more error info */
  1034. static void mvneta_rx_error(struct mvneta_port *pp,
  1035. struct mvneta_rx_desc *rx_desc)
  1036. {
  1037. u32 status = rx_desc->status;
  1038. if (!mvneta_rxq_desc_is_first_last(status)) {
  1039. netdev_err(pp->dev,
  1040. "bad rx status %08x (buffer oversize), size=%d\n",
  1041. status, rx_desc->data_size);
  1042. return;
  1043. }
  1044. switch (status & MVNETA_RXD_ERR_CODE_MASK) {
  1045. case MVNETA_RXD_ERR_CRC:
  1046. netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n",
  1047. status, rx_desc->data_size);
  1048. break;
  1049. case MVNETA_RXD_ERR_OVERRUN:
  1050. netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n",
  1051. status, rx_desc->data_size);
  1052. break;
  1053. case MVNETA_RXD_ERR_LEN:
  1054. netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n",
  1055. status, rx_desc->data_size);
  1056. break;
  1057. case MVNETA_RXD_ERR_RESOURCE:
  1058. netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n",
  1059. status, rx_desc->data_size);
  1060. break;
  1061. }
  1062. }
  1063. /* Handle RX checksum offload based on the descriptor's status */
  1064. static void mvneta_rx_csum(struct mvneta_port *pp, u32 status,
  1065. struct sk_buff *skb)
  1066. {
  1067. if ((status & MVNETA_RXD_L3_IP4) &&
  1068. (status & MVNETA_RXD_L4_CSUM_OK)) {
  1069. skb->csum = 0;
  1070. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1071. return;
  1072. }
  1073. skb->ip_summed = CHECKSUM_NONE;
  1074. }
  1075. /* Return tx queue pointer (find last set bit) according to <cause> returned
  1076. * form tx_done reg. <cause> must not be null. The return value is always a
  1077. * valid queue for matching the first one found in <cause>.
  1078. */
  1079. static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp,
  1080. u32 cause)
  1081. {
  1082. int queue = fls(cause) - 1;
  1083. return &pp->txqs[queue];
  1084. }
  1085. /* Free tx queue skbuffs */
  1086. static void mvneta_txq_bufs_free(struct mvneta_port *pp,
  1087. struct mvneta_tx_queue *txq, int num)
  1088. {
  1089. int i;
  1090. for (i = 0; i < num; i++) {
  1091. struct mvneta_tx_desc *tx_desc = txq->descs +
  1092. txq->txq_get_index;
  1093. struct sk_buff *skb = txq->tx_skb[txq->txq_get_index];
  1094. mvneta_txq_inc_get(txq);
  1095. if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
  1096. dma_unmap_single(pp->dev->dev.parent,
  1097. tx_desc->buf_phys_addr,
  1098. tx_desc->data_size, DMA_TO_DEVICE);
  1099. if (!skb)
  1100. continue;
  1101. dev_kfree_skb_any(skb);
  1102. }
  1103. }
  1104. /* Handle end of transmission */
  1105. static void mvneta_txq_done(struct mvneta_port *pp,
  1106. struct mvneta_tx_queue *txq)
  1107. {
  1108. struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
  1109. int tx_done;
  1110. tx_done = mvneta_txq_sent_desc_proc(pp, txq);
  1111. if (!tx_done)
  1112. return;
  1113. mvneta_txq_bufs_free(pp, txq, tx_done);
  1114. txq->count -= tx_done;
  1115. if (netif_tx_queue_stopped(nq)) {
  1116. if (txq->count <= txq->tx_wake_threshold)
  1117. netif_tx_wake_queue(nq);
  1118. }
  1119. }
  1120. static void *mvneta_frag_alloc(const struct mvneta_port *pp)
  1121. {
  1122. if (likely(pp->frag_size <= PAGE_SIZE))
  1123. return netdev_alloc_frag(pp->frag_size);
  1124. else
  1125. return kmalloc(pp->frag_size, GFP_ATOMIC);
  1126. }
  1127. static void mvneta_frag_free(const struct mvneta_port *pp, void *data)
  1128. {
  1129. if (likely(pp->frag_size <= PAGE_SIZE))
  1130. put_page(virt_to_head_page(data));
  1131. else
  1132. kfree(data);
  1133. }
  1134. /* Refill processing */
  1135. static int mvneta_rx_refill(struct mvneta_port *pp,
  1136. struct mvneta_rx_desc *rx_desc)
  1137. {
  1138. dma_addr_t phys_addr;
  1139. void *data;
  1140. data = mvneta_frag_alloc(pp);
  1141. if (!data)
  1142. return -ENOMEM;
  1143. phys_addr = dma_map_single(pp->dev->dev.parent, data,
  1144. MVNETA_RX_BUF_SIZE(pp->pkt_size),
  1145. DMA_FROM_DEVICE);
  1146. if (unlikely(dma_mapping_error(pp->dev->dev.parent, phys_addr))) {
  1147. mvneta_frag_free(pp, data);
  1148. return -ENOMEM;
  1149. }
  1150. mvneta_rx_desc_fill(rx_desc, phys_addr, (u32)data);
  1151. return 0;
  1152. }
  1153. /* Handle tx checksum */
  1154. static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb)
  1155. {
  1156. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  1157. int ip_hdr_len = 0;
  1158. __be16 l3_proto = vlan_get_protocol(skb);
  1159. u8 l4_proto;
  1160. if (l3_proto == htons(ETH_P_IP)) {
  1161. struct iphdr *ip4h = ip_hdr(skb);
  1162. /* Calculate IPv4 checksum and L4 checksum */
  1163. ip_hdr_len = ip4h->ihl;
  1164. l4_proto = ip4h->protocol;
  1165. } else if (l3_proto == htons(ETH_P_IPV6)) {
  1166. struct ipv6hdr *ip6h = ipv6_hdr(skb);
  1167. /* Read l4_protocol from one of IPv6 extra headers */
  1168. if (skb_network_header_len(skb) > 0)
  1169. ip_hdr_len = (skb_network_header_len(skb) >> 2);
  1170. l4_proto = ip6h->nexthdr;
  1171. } else
  1172. return MVNETA_TX_L4_CSUM_NOT;
  1173. return mvneta_txq_desc_csum(skb_network_offset(skb),
  1174. l3_proto, ip_hdr_len, l4_proto);
  1175. }
  1176. return MVNETA_TX_L4_CSUM_NOT;
  1177. }
  1178. /* Returns rx queue pointer (find last set bit) according to causeRxTx
  1179. * value
  1180. */
  1181. static struct mvneta_rx_queue *mvneta_rx_policy(struct mvneta_port *pp,
  1182. u32 cause)
  1183. {
  1184. int queue = fls(cause >> 8) - 1;
  1185. return (queue < 0 || queue >= rxq_number) ? NULL : &pp->rxqs[queue];
  1186. }
  1187. /* Drop packets received by the RXQ and free buffers */
  1188. static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
  1189. struct mvneta_rx_queue *rxq)
  1190. {
  1191. int rx_done, i;
  1192. rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
  1193. for (i = 0; i < rxq->size; i++) {
  1194. struct mvneta_rx_desc *rx_desc = rxq->descs + i;
  1195. void *data = (void *)rx_desc->buf_cookie;
  1196. mvneta_frag_free(pp, data);
  1197. dma_unmap_single(pp->dev->dev.parent, rx_desc->buf_phys_addr,
  1198. MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE);
  1199. }
  1200. if (rx_done)
  1201. mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
  1202. }
  1203. /* Main rx processing */
  1204. static int mvneta_rx(struct mvneta_port *pp, int rx_todo,
  1205. struct mvneta_rx_queue *rxq)
  1206. {
  1207. struct net_device *dev = pp->dev;
  1208. int rx_done, rx_filled;
  1209. u32 rcvd_pkts = 0;
  1210. u32 rcvd_bytes = 0;
  1211. /* Get number of received packets */
  1212. rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
  1213. if (rx_todo > rx_done)
  1214. rx_todo = rx_done;
  1215. rx_done = 0;
  1216. rx_filled = 0;
  1217. /* Fairness NAPI loop */
  1218. while (rx_done < rx_todo) {
  1219. struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
  1220. struct sk_buff *skb;
  1221. unsigned char *data;
  1222. u32 rx_status;
  1223. int rx_bytes, err;
  1224. rx_done++;
  1225. rx_filled++;
  1226. rx_status = rx_desc->status;
  1227. rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE);
  1228. data = (unsigned char *)rx_desc->buf_cookie;
  1229. if (!mvneta_rxq_desc_is_first_last(rx_status) ||
  1230. (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
  1231. err_drop_frame:
  1232. dev->stats.rx_errors++;
  1233. mvneta_rx_error(pp, rx_desc);
  1234. /* leave the descriptor untouched */
  1235. continue;
  1236. }
  1237. if (rx_bytes <= rx_copybreak) {
  1238. /* better copy a small frame and not unmap the DMA region */
  1239. skb = netdev_alloc_skb_ip_align(dev, rx_bytes);
  1240. if (unlikely(!skb))
  1241. goto err_drop_frame;
  1242. dma_sync_single_range_for_cpu(dev->dev.parent,
  1243. rx_desc->buf_phys_addr,
  1244. MVNETA_MH_SIZE + NET_SKB_PAD,
  1245. rx_bytes,
  1246. DMA_FROM_DEVICE);
  1247. memcpy(skb_put(skb, rx_bytes),
  1248. data + MVNETA_MH_SIZE + NET_SKB_PAD,
  1249. rx_bytes);
  1250. skb->protocol = eth_type_trans(skb, dev);
  1251. mvneta_rx_csum(pp, rx_status, skb);
  1252. napi_gro_receive(&pp->napi, skb);
  1253. rcvd_pkts++;
  1254. rcvd_bytes += rx_bytes;
  1255. /* leave the descriptor and buffer untouched */
  1256. continue;
  1257. }
  1258. skb = build_skb(data, pp->frag_size > PAGE_SIZE ? 0 : pp->frag_size);
  1259. if (!skb)
  1260. goto err_drop_frame;
  1261. dma_unmap_single(dev->dev.parent, rx_desc->buf_phys_addr,
  1262. MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE);
  1263. rcvd_pkts++;
  1264. rcvd_bytes += rx_bytes;
  1265. /* Linux processing */
  1266. skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD);
  1267. skb_put(skb, rx_bytes);
  1268. skb->protocol = eth_type_trans(skb, dev);
  1269. mvneta_rx_csum(pp, rx_status, skb);
  1270. napi_gro_receive(&pp->napi, skb);
  1271. /* Refill processing */
  1272. err = mvneta_rx_refill(pp, rx_desc);
  1273. if (err) {
  1274. netdev_err(dev, "Linux processing - Can't refill\n");
  1275. rxq->missed++;
  1276. rx_filled--;
  1277. }
  1278. }
  1279. if (rcvd_pkts) {
  1280. struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
  1281. u64_stats_update_begin(&stats->syncp);
  1282. stats->rx_packets += rcvd_pkts;
  1283. stats->rx_bytes += rcvd_bytes;
  1284. u64_stats_update_end(&stats->syncp);
  1285. }
  1286. /* Update rxq management counters */
  1287. mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_filled);
  1288. return rx_done;
  1289. }
  1290. static inline void
  1291. mvneta_tso_put_hdr(struct sk_buff *skb,
  1292. struct mvneta_port *pp, struct mvneta_tx_queue *txq)
  1293. {
  1294. struct mvneta_tx_desc *tx_desc;
  1295. int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
  1296. txq->tx_skb[txq->txq_put_index] = NULL;
  1297. tx_desc = mvneta_txq_next_desc_get(txq);
  1298. tx_desc->data_size = hdr_len;
  1299. tx_desc->command = mvneta_skb_tx_csum(pp, skb);
  1300. tx_desc->command |= MVNETA_TXD_F_DESC;
  1301. tx_desc->buf_phys_addr = txq->tso_hdrs_phys +
  1302. txq->txq_put_index * TSO_HEADER_SIZE;
  1303. mvneta_txq_inc_put(txq);
  1304. }
  1305. static inline int
  1306. mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq,
  1307. struct sk_buff *skb, char *data, int size,
  1308. bool last_tcp, bool is_last)
  1309. {
  1310. struct mvneta_tx_desc *tx_desc;
  1311. tx_desc = mvneta_txq_next_desc_get(txq);
  1312. tx_desc->data_size = size;
  1313. tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data,
  1314. size, DMA_TO_DEVICE);
  1315. if (unlikely(dma_mapping_error(dev->dev.parent,
  1316. tx_desc->buf_phys_addr))) {
  1317. mvneta_txq_desc_put(txq);
  1318. return -ENOMEM;
  1319. }
  1320. tx_desc->command = 0;
  1321. txq->tx_skb[txq->txq_put_index] = NULL;
  1322. if (last_tcp) {
  1323. /* last descriptor in the TCP packet */
  1324. tx_desc->command = MVNETA_TXD_L_DESC;
  1325. /* last descriptor in SKB */
  1326. if (is_last)
  1327. txq->tx_skb[txq->txq_put_index] = skb;
  1328. }
  1329. mvneta_txq_inc_put(txq);
  1330. return 0;
  1331. }
  1332. static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev,
  1333. struct mvneta_tx_queue *txq)
  1334. {
  1335. int total_len, data_left;
  1336. int desc_count = 0;
  1337. struct mvneta_port *pp = netdev_priv(dev);
  1338. struct tso_t tso;
  1339. int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
  1340. int i;
  1341. /* Count needed descriptors */
  1342. if ((txq->count + tso_count_descs(skb)) >= txq->size)
  1343. return 0;
  1344. if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) {
  1345. pr_info("*** Is this even possible???!?!?\n");
  1346. return 0;
  1347. }
  1348. /* Initialize the TSO handler, and prepare the first payload */
  1349. tso_start(skb, &tso);
  1350. total_len = skb->len - hdr_len;
  1351. while (total_len > 0) {
  1352. char *hdr;
  1353. data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
  1354. total_len -= data_left;
  1355. desc_count++;
  1356. /* prepare packet headers: MAC + IP + TCP */
  1357. hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE;
  1358. tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
  1359. mvneta_tso_put_hdr(skb, pp, txq);
  1360. while (data_left > 0) {
  1361. int size;
  1362. desc_count++;
  1363. size = min_t(int, tso.size, data_left);
  1364. if (mvneta_tso_put_data(dev, txq, skb,
  1365. tso.data, size,
  1366. size == data_left,
  1367. total_len == 0))
  1368. goto err_release;
  1369. data_left -= size;
  1370. tso_build_data(skb, &tso, size);
  1371. }
  1372. }
  1373. return desc_count;
  1374. err_release:
  1375. /* Release all used data descriptors; header descriptors must not
  1376. * be DMA-unmapped.
  1377. */
  1378. for (i = desc_count - 1; i >= 0; i--) {
  1379. struct mvneta_tx_desc *tx_desc = txq->descs + i;
  1380. if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
  1381. dma_unmap_single(pp->dev->dev.parent,
  1382. tx_desc->buf_phys_addr,
  1383. tx_desc->data_size,
  1384. DMA_TO_DEVICE);
  1385. mvneta_txq_desc_put(txq);
  1386. }
  1387. return 0;
  1388. }
  1389. /* Handle tx fragmentation processing */
  1390. static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb,
  1391. struct mvneta_tx_queue *txq)
  1392. {
  1393. struct mvneta_tx_desc *tx_desc;
  1394. int i, nr_frags = skb_shinfo(skb)->nr_frags;
  1395. for (i = 0; i < nr_frags; i++) {
  1396. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1397. void *addr = page_address(frag->page.p) + frag->page_offset;
  1398. tx_desc = mvneta_txq_next_desc_get(txq);
  1399. tx_desc->data_size = frag->size;
  1400. tx_desc->buf_phys_addr =
  1401. dma_map_single(pp->dev->dev.parent, addr,
  1402. tx_desc->data_size, DMA_TO_DEVICE);
  1403. if (dma_mapping_error(pp->dev->dev.parent,
  1404. tx_desc->buf_phys_addr)) {
  1405. mvneta_txq_desc_put(txq);
  1406. goto error;
  1407. }
  1408. if (i == nr_frags - 1) {
  1409. /* Last descriptor */
  1410. tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD;
  1411. txq->tx_skb[txq->txq_put_index] = skb;
  1412. } else {
  1413. /* Descriptor in the middle: Not First, Not Last */
  1414. tx_desc->command = 0;
  1415. txq->tx_skb[txq->txq_put_index] = NULL;
  1416. }
  1417. mvneta_txq_inc_put(txq);
  1418. }
  1419. return 0;
  1420. error:
  1421. /* Release all descriptors that were used to map fragments of
  1422. * this packet, as well as the corresponding DMA mappings
  1423. */
  1424. for (i = i - 1; i >= 0; i--) {
  1425. tx_desc = txq->descs + i;
  1426. dma_unmap_single(pp->dev->dev.parent,
  1427. tx_desc->buf_phys_addr,
  1428. tx_desc->data_size,
  1429. DMA_TO_DEVICE);
  1430. mvneta_txq_desc_put(txq);
  1431. }
  1432. return -ENOMEM;
  1433. }
  1434. /* Main tx processing */
  1435. static int mvneta_tx(struct sk_buff *skb, struct net_device *dev)
  1436. {
  1437. struct mvneta_port *pp = netdev_priv(dev);
  1438. u16 txq_id = skb_get_queue_mapping(skb);
  1439. struct mvneta_tx_queue *txq = &pp->txqs[txq_id];
  1440. struct mvneta_tx_desc *tx_desc;
  1441. int len = skb->len;
  1442. int frags = 0;
  1443. u32 tx_cmd;
  1444. if (!netif_running(dev))
  1445. goto out;
  1446. if (skb_is_gso(skb)) {
  1447. frags = mvneta_tx_tso(skb, dev, txq);
  1448. goto out;
  1449. }
  1450. frags = skb_shinfo(skb)->nr_frags + 1;
  1451. /* Get a descriptor for the first part of the packet */
  1452. tx_desc = mvneta_txq_next_desc_get(txq);
  1453. tx_cmd = mvneta_skb_tx_csum(pp, skb);
  1454. tx_desc->data_size = skb_headlen(skb);
  1455. tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data,
  1456. tx_desc->data_size,
  1457. DMA_TO_DEVICE);
  1458. if (unlikely(dma_mapping_error(dev->dev.parent,
  1459. tx_desc->buf_phys_addr))) {
  1460. mvneta_txq_desc_put(txq);
  1461. frags = 0;
  1462. goto out;
  1463. }
  1464. if (frags == 1) {
  1465. /* First and Last descriptor */
  1466. tx_cmd |= MVNETA_TXD_FLZ_DESC;
  1467. tx_desc->command = tx_cmd;
  1468. txq->tx_skb[txq->txq_put_index] = skb;
  1469. mvneta_txq_inc_put(txq);
  1470. } else {
  1471. /* First but not Last */
  1472. tx_cmd |= MVNETA_TXD_F_DESC;
  1473. txq->tx_skb[txq->txq_put_index] = NULL;
  1474. mvneta_txq_inc_put(txq);
  1475. tx_desc->command = tx_cmd;
  1476. /* Continue with other skb fragments */
  1477. if (mvneta_tx_frag_process(pp, skb, txq)) {
  1478. dma_unmap_single(dev->dev.parent,
  1479. tx_desc->buf_phys_addr,
  1480. tx_desc->data_size,
  1481. DMA_TO_DEVICE);
  1482. mvneta_txq_desc_put(txq);
  1483. frags = 0;
  1484. goto out;
  1485. }
  1486. }
  1487. out:
  1488. if (frags > 0) {
  1489. struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
  1490. struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id);
  1491. txq->count += frags;
  1492. mvneta_txq_pend_desc_add(pp, txq, frags);
  1493. if (txq->count >= txq->tx_stop_threshold)
  1494. netif_tx_stop_queue(nq);
  1495. u64_stats_update_begin(&stats->syncp);
  1496. stats->tx_packets++;
  1497. stats->tx_bytes += len;
  1498. u64_stats_update_end(&stats->syncp);
  1499. } else {
  1500. dev->stats.tx_dropped++;
  1501. dev_kfree_skb_any(skb);
  1502. }
  1503. return NETDEV_TX_OK;
  1504. }
  1505. /* Free tx resources, when resetting a port */
  1506. static void mvneta_txq_done_force(struct mvneta_port *pp,
  1507. struct mvneta_tx_queue *txq)
  1508. {
  1509. int tx_done = txq->count;
  1510. mvneta_txq_bufs_free(pp, txq, tx_done);
  1511. /* reset txq */
  1512. txq->count = 0;
  1513. txq->txq_put_index = 0;
  1514. txq->txq_get_index = 0;
  1515. }
  1516. /* Handle tx done - called in softirq context. The <cause_tx_done> argument
  1517. * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL.
  1518. */
  1519. static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done)
  1520. {
  1521. struct mvneta_tx_queue *txq;
  1522. struct netdev_queue *nq;
  1523. while (cause_tx_done) {
  1524. txq = mvneta_tx_done_policy(pp, cause_tx_done);
  1525. nq = netdev_get_tx_queue(pp->dev, txq->id);
  1526. __netif_tx_lock(nq, smp_processor_id());
  1527. if (txq->count)
  1528. mvneta_txq_done(pp, txq);
  1529. __netif_tx_unlock(nq);
  1530. cause_tx_done &= ~((1 << txq->id));
  1531. }
  1532. }
  1533. /* Compute crc8 of the specified address, using a unique algorithm ,
  1534. * according to hw spec, different than generic crc8 algorithm
  1535. */
  1536. static int mvneta_addr_crc(unsigned char *addr)
  1537. {
  1538. int crc = 0;
  1539. int i;
  1540. for (i = 0; i < ETH_ALEN; i++) {
  1541. int j;
  1542. crc = (crc ^ addr[i]) << 8;
  1543. for (j = 7; j >= 0; j--) {
  1544. if (crc & (0x100 << j))
  1545. crc ^= 0x107 << j;
  1546. }
  1547. }
  1548. return crc;
  1549. }
  1550. /* This method controls the net device special MAC multicast support.
  1551. * The Special Multicast Table for MAC addresses supports MAC of the form
  1552. * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
  1553. * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
  1554. * Table entries in the DA-Filter table. This method set the Special
  1555. * Multicast Table appropriate entry.
  1556. */
  1557. static void mvneta_set_special_mcast_addr(struct mvneta_port *pp,
  1558. unsigned char last_byte,
  1559. int queue)
  1560. {
  1561. unsigned int smc_table_reg;
  1562. unsigned int tbl_offset;
  1563. unsigned int reg_offset;
  1564. /* Register offset from SMC table base */
  1565. tbl_offset = (last_byte / 4);
  1566. /* Entry offset within the above reg */
  1567. reg_offset = last_byte % 4;
  1568. smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST
  1569. + tbl_offset * 4));
  1570. if (queue == -1)
  1571. smc_table_reg &= ~(0xff << (8 * reg_offset));
  1572. else {
  1573. smc_table_reg &= ~(0xff << (8 * reg_offset));
  1574. smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
  1575. }
  1576. mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4,
  1577. smc_table_reg);
  1578. }
  1579. /* This method controls the network device Other MAC multicast support.
  1580. * The Other Multicast Table is used for multicast of another type.
  1581. * A CRC-8 is used as an index to the Other Multicast Table entries
  1582. * in the DA-Filter table.
  1583. * The method gets the CRC-8 value from the calling routine and
  1584. * sets the Other Multicast Table appropriate entry according to the
  1585. * specified CRC-8 .
  1586. */
  1587. static void mvneta_set_other_mcast_addr(struct mvneta_port *pp,
  1588. unsigned char crc8,
  1589. int queue)
  1590. {
  1591. unsigned int omc_table_reg;
  1592. unsigned int tbl_offset;
  1593. unsigned int reg_offset;
  1594. tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */
  1595. reg_offset = crc8 % 4; /* Entry offset within the above reg */
  1596. omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset);
  1597. if (queue == -1) {
  1598. /* Clear accepts frame bit at specified Other DA table entry */
  1599. omc_table_reg &= ~(0xff << (8 * reg_offset));
  1600. } else {
  1601. omc_table_reg &= ~(0xff << (8 * reg_offset));
  1602. omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
  1603. }
  1604. mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg);
  1605. }
  1606. /* The network device supports multicast using two tables:
  1607. * 1) Special Multicast Table for MAC addresses of the form
  1608. * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
  1609. * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
  1610. * Table entries in the DA-Filter table.
  1611. * 2) Other Multicast Table for multicast of another type. A CRC-8 value
  1612. * is used as an index to the Other Multicast Table entries in the
  1613. * DA-Filter table.
  1614. */
  1615. static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr,
  1616. int queue)
  1617. {
  1618. unsigned char crc_result = 0;
  1619. if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) {
  1620. mvneta_set_special_mcast_addr(pp, p_addr[5], queue);
  1621. return 0;
  1622. }
  1623. crc_result = mvneta_addr_crc(p_addr);
  1624. if (queue == -1) {
  1625. if (pp->mcast_count[crc_result] == 0) {
  1626. netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n",
  1627. crc_result);
  1628. return -EINVAL;
  1629. }
  1630. pp->mcast_count[crc_result]--;
  1631. if (pp->mcast_count[crc_result] != 0) {
  1632. netdev_info(pp->dev,
  1633. "After delete there are %d valid Mcast for crc8=0x%02x\n",
  1634. pp->mcast_count[crc_result], crc_result);
  1635. return -EINVAL;
  1636. }
  1637. } else
  1638. pp->mcast_count[crc_result]++;
  1639. mvneta_set_other_mcast_addr(pp, crc_result, queue);
  1640. return 0;
  1641. }
  1642. /* Configure Fitering mode of Ethernet port */
  1643. static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp,
  1644. int is_promisc)
  1645. {
  1646. u32 port_cfg_reg, val;
  1647. port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG);
  1648. val = mvreg_read(pp, MVNETA_TYPE_PRIO);
  1649. /* Set / Clear UPM bit in port configuration register */
  1650. if (is_promisc) {
  1651. /* Accept all Unicast addresses */
  1652. port_cfg_reg |= MVNETA_UNI_PROMISC_MODE;
  1653. val |= MVNETA_FORCE_UNI;
  1654. mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff);
  1655. mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff);
  1656. } else {
  1657. /* Reject all Unicast addresses */
  1658. port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE;
  1659. val &= ~MVNETA_FORCE_UNI;
  1660. }
  1661. mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg);
  1662. mvreg_write(pp, MVNETA_TYPE_PRIO, val);
  1663. }
  1664. /* register unicast and multicast addresses */
  1665. static void mvneta_set_rx_mode(struct net_device *dev)
  1666. {
  1667. struct mvneta_port *pp = netdev_priv(dev);
  1668. struct netdev_hw_addr *ha;
  1669. if (dev->flags & IFF_PROMISC) {
  1670. /* Accept all: Multicast + Unicast */
  1671. mvneta_rx_unicast_promisc_set(pp, 1);
  1672. mvneta_set_ucast_table(pp, rxq_def);
  1673. mvneta_set_special_mcast_table(pp, rxq_def);
  1674. mvneta_set_other_mcast_table(pp, rxq_def);
  1675. } else {
  1676. /* Accept single Unicast */
  1677. mvneta_rx_unicast_promisc_set(pp, 0);
  1678. mvneta_set_ucast_table(pp, -1);
  1679. mvneta_mac_addr_set(pp, dev->dev_addr, rxq_def);
  1680. if (dev->flags & IFF_ALLMULTI) {
  1681. /* Accept all multicast */
  1682. mvneta_set_special_mcast_table(pp, rxq_def);
  1683. mvneta_set_other_mcast_table(pp, rxq_def);
  1684. } else {
  1685. /* Accept only initialized multicast */
  1686. mvneta_set_special_mcast_table(pp, -1);
  1687. mvneta_set_other_mcast_table(pp, -1);
  1688. if (!netdev_mc_empty(dev)) {
  1689. netdev_for_each_mc_addr(ha, dev) {
  1690. mvneta_mcast_addr_set(pp, ha->addr,
  1691. rxq_def);
  1692. }
  1693. }
  1694. }
  1695. }
  1696. }
  1697. /* Interrupt handling - the callback for request_irq() */
  1698. static irqreturn_t mvneta_isr(int irq, void *dev_id)
  1699. {
  1700. struct mvneta_port *pp = (struct mvneta_port *)dev_id;
  1701. /* Mask all interrupts */
  1702. mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
  1703. napi_schedule(&pp->napi);
  1704. return IRQ_HANDLED;
  1705. }
  1706. static int mvneta_fixed_link_update(struct mvneta_port *pp,
  1707. struct phy_device *phy)
  1708. {
  1709. struct fixed_phy_status status;
  1710. struct fixed_phy_status changed = {};
  1711. u32 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);
  1712. status.link = !!(gmac_stat & MVNETA_GMAC_LINK_UP);
  1713. if (gmac_stat & MVNETA_GMAC_SPEED_1000)
  1714. status.speed = SPEED_1000;
  1715. else if (gmac_stat & MVNETA_GMAC_SPEED_100)
  1716. status.speed = SPEED_100;
  1717. else
  1718. status.speed = SPEED_10;
  1719. status.duplex = !!(gmac_stat & MVNETA_GMAC_FULL_DUPLEX);
  1720. changed.link = 1;
  1721. changed.speed = 1;
  1722. changed.duplex = 1;
  1723. fixed_phy_update_state(phy, &status, &changed);
  1724. return 0;
  1725. }
  1726. /* NAPI handler
  1727. * Bits 0 - 7 of the causeRxTx register indicate that are transmitted
  1728. * packets on the corresponding TXQ (Bit 0 is for TX queue 1).
  1729. * Bits 8 -15 of the cause Rx Tx register indicate that are received
  1730. * packets on the corresponding RXQ (Bit 8 is for RX queue 0).
  1731. * Each CPU has its own causeRxTx register
  1732. */
  1733. static int mvneta_poll(struct napi_struct *napi, int budget)
  1734. {
  1735. int rx_done = 0;
  1736. u32 cause_rx_tx;
  1737. unsigned long flags;
  1738. struct mvneta_port *pp = netdev_priv(napi->dev);
  1739. if (!netif_running(pp->dev)) {
  1740. napi_complete(napi);
  1741. return rx_done;
  1742. }
  1743. /* Read cause register */
  1744. cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE);
  1745. if (cause_rx_tx & MVNETA_MISCINTR_INTR_MASK) {
  1746. u32 cause_misc = mvreg_read(pp, MVNETA_INTR_MISC_CAUSE);
  1747. mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
  1748. if (pp->use_inband_status && (cause_misc &
  1749. (MVNETA_CAUSE_PHY_STATUS_CHANGE |
  1750. MVNETA_CAUSE_LINK_CHANGE |
  1751. MVNETA_CAUSE_PSC_SYNC_CHANGE))) {
  1752. mvneta_fixed_link_update(pp, pp->phy_dev);
  1753. }
  1754. }
  1755. /* Release Tx descriptors */
  1756. if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) {
  1757. mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL));
  1758. cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL;
  1759. }
  1760. /* For the case where the last mvneta_poll did not process all
  1761. * RX packets
  1762. */
  1763. cause_rx_tx |= pp->cause_rx_tx;
  1764. if (rxq_number > 1) {
  1765. while ((cause_rx_tx & MVNETA_RX_INTR_MASK_ALL) && (budget > 0)) {
  1766. int count;
  1767. struct mvneta_rx_queue *rxq;
  1768. /* get rx queue number from cause_rx_tx */
  1769. rxq = mvneta_rx_policy(pp, cause_rx_tx);
  1770. if (!rxq)
  1771. break;
  1772. /* process the packet in that rx queue */
  1773. count = mvneta_rx(pp, budget, rxq);
  1774. rx_done += count;
  1775. budget -= count;
  1776. if (budget > 0) {
  1777. /* set off the rx bit of the
  1778. * corresponding bit in the cause rx
  1779. * tx register, so that next iteration
  1780. * will find the next rx queue where
  1781. * packets are received on
  1782. */
  1783. cause_rx_tx &= ~((1 << rxq->id) << 8);
  1784. }
  1785. }
  1786. } else {
  1787. rx_done = mvneta_rx(pp, budget, &pp->rxqs[rxq_def]);
  1788. budget -= rx_done;
  1789. }
  1790. if (budget > 0) {
  1791. cause_rx_tx = 0;
  1792. napi_complete(napi);
  1793. local_irq_save(flags);
  1794. mvreg_write(pp, MVNETA_INTR_NEW_MASK,
  1795. MVNETA_RX_INTR_MASK(rxq_number) |
  1796. MVNETA_TX_INTR_MASK(txq_number) |
  1797. MVNETA_MISCINTR_INTR_MASK);
  1798. local_irq_restore(flags);
  1799. }
  1800. pp->cause_rx_tx = cause_rx_tx;
  1801. return rx_done;
  1802. }
  1803. /* Handle rxq fill: allocates rxq skbs; called when initializing a port */
  1804. static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
  1805. int num)
  1806. {
  1807. int i;
  1808. for (i = 0; i < num; i++) {
  1809. memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc));
  1810. if (mvneta_rx_refill(pp, rxq->descs + i) != 0) {
  1811. netdev_err(pp->dev, "%s:rxq %d, %d of %d buffs filled\n",
  1812. __func__, rxq->id, i, num);
  1813. break;
  1814. }
  1815. }
  1816. /* Add this number of RX descriptors as non occupied (ready to
  1817. * get packets)
  1818. */
  1819. mvneta_rxq_non_occup_desc_add(pp, rxq, i);
  1820. return i;
  1821. }
  1822. /* Free all packets pending transmit from all TXQs and reset TX port */
  1823. static void mvneta_tx_reset(struct mvneta_port *pp)
  1824. {
  1825. int queue;
  1826. /* free the skb's in the tx ring */
  1827. for (queue = 0; queue < txq_number; queue++)
  1828. mvneta_txq_done_force(pp, &pp->txqs[queue]);
  1829. mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
  1830. mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
  1831. }
  1832. static void mvneta_rx_reset(struct mvneta_port *pp)
  1833. {
  1834. mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
  1835. mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
  1836. }
  1837. /* Rx/Tx queue initialization/cleanup methods */
  1838. /* Create a specified RX queue */
  1839. static int mvneta_rxq_init(struct mvneta_port *pp,
  1840. struct mvneta_rx_queue *rxq)
  1841. {
  1842. rxq->size = pp->rx_ring_size;
  1843. /* Allocate memory for RX descriptors */
  1844. rxq->descs = dma_alloc_coherent(pp->dev->dev.parent,
  1845. rxq->size * MVNETA_DESC_ALIGNED_SIZE,
  1846. &rxq->descs_phys, GFP_KERNEL);
  1847. if (rxq->descs == NULL)
  1848. return -ENOMEM;
  1849. BUG_ON(rxq->descs !=
  1850. PTR_ALIGN(rxq->descs, MVNETA_CPU_D_CACHE_LINE_SIZE));
  1851. rxq->last_desc = rxq->size - 1;
  1852. /* Set Rx descriptors queue starting address */
  1853. mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys);
  1854. mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size);
  1855. /* Set Offset */
  1856. mvneta_rxq_offset_set(pp, rxq, NET_SKB_PAD);
  1857. /* Set coalescing pkts and time */
  1858. mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
  1859. mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
  1860. /* Fill RXQ with buffers from RX pool */
  1861. mvneta_rxq_buf_size_set(pp, rxq, MVNETA_RX_BUF_SIZE(pp->pkt_size));
  1862. mvneta_rxq_bm_disable(pp, rxq);
  1863. mvneta_rxq_fill(pp, rxq, rxq->size);
  1864. return 0;
  1865. }
  1866. /* Cleanup Rx queue */
  1867. static void mvneta_rxq_deinit(struct mvneta_port *pp,
  1868. struct mvneta_rx_queue *rxq)
  1869. {
  1870. mvneta_rxq_drop_pkts(pp, rxq);
  1871. if (rxq->descs)
  1872. dma_free_coherent(pp->dev->dev.parent,
  1873. rxq->size * MVNETA_DESC_ALIGNED_SIZE,
  1874. rxq->descs,
  1875. rxq->descs_phys);
  1876. rxq->descs = NULL;
  1877. rxq->last_desc = 0;
  1878. rxq->next_desc_to_proc = 0;
  1879. rxq->descs_phys = 0;
  1880. }
  1881. /* Create and initialize a tx queue */
  1882. static int mvneta_txq_init(struct mvneta_port *pp,
  1883. struct mvneta_tx_queue *txq)
  1884. {
  1885. txq->size = pp->tx_ring_size;
  1886. /* A queue must always have room for at least one skb.
  1887. * Therefore, stop the queue when the free entries reaches
  1888. * the maximum number of descriptors per skb.
  1889. */
  1890. txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS;
  1891. txq->tx_wake_threshold = txq->tx_stop_threshold / 2;
  1892. /* Allocate memory for TX descriptors */
  1893. txq->descs = dma_alloc_coherent(pp->dev->dev.parent,
  1894. txq->size * MVNETA_DESC_ALIGNED_SIZE,
  1895. &txq->descs_phys, GFP_KERNEL);
  1896. if (txq->descs == NULL)
  1897. return -ENOMEM;
  1898. /* Make sure descriptor address is cache line size aligned */
  1899. BUG_ON(txq->descs !=
  1900. PTR_ALIGN(txq->descs, MVNETA_CPU_D_CACHE_LINE_SIZE));
  1901. txq->last_desc = txq->size - 1;
  1902. /* Set maximum bandwidth for enabled TXQs */
  1903. mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff);
  1904. mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff);
  1905. /* Set Tx descriptors queue starting address */
  1906. mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys);
  1907. mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size);
  1908. txq->tx_skb = kmalloc(txq->size * sizeof(*txq->tx_skb), GFP_KERNEL);
  1909. if (txq->tx_skb == NULL) {
  1910. dma_free_coherent(pp->dev->dev.parent,
  1911. txq->size * MVNETA_DESC_ALIGNED_SIZE,
  1912. txq->descs, txq->descs_phys);
  1913. return -ENOMEM;
  1914. }
  1915. /* Allocate DMA buffers for TSO MAC/IP/TCP headers */
  1916. txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent,
  1917. txq->size * TSO_HEADER_SIZE,
  1918. &txq->tso_hdrs_phys, GFP_KERNEL);
  1919. if (txq->tso_hdrs == NULL) {
  1920. kfree(txq->tx_skb);
  1921. dma_free_coherent(pp->dev->dev.parent,
  1922. txq->size * MVNETA_DESC_ALIGNED_SIZE,
  1923. txq->descs, txq->descs_phys);
  1924. return -ENOMEM;
  1925. }
  1926. mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
  1927. return 0;
  1928. }
  1929. /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
  1930. static void mvneta_txq_deinit(struct mvneta_port *pp,
  1931. struct mvneta_tx_queue *txq)
  1932. {
  1933. kfree(txq->tx_skb);
  1934. if (txq->tso_hdrs)
  1935. dma_free_coherent(pp->dev->dev.parent,
  1936. txq->size * TSO_HEADER_SIZE,
  1937. txq->tso_hdrs, txq->tso_hdrs_phys);
  1938. if (txq->descs)
  1939. dma_free_coherent(pp->dev->dev.parent,
  1940. txq->size * MVNETA_DESC_ALIGNED_SIZE,
  1941. txq->descs, txq->descs_phys);
  1942. txq->descs = NULL;
  1943. txq->last_desc = 0;
  1944. txq->next_desc_to_proc = 0;
  1945. txq->descs_phys = 0;
  1946. /* Set minimum bandwidth for disabled TXQs */
  1947. mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0);
  1948. mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0);
  1949. /* Set Tx descriptors queue starting address and size */
  1950. mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0);
  1951. mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0);
  1952. }
  1953. /* Cleanup all Tx queues */
  1954. static void mvneta_cleanup_txqs(struct mvneta_port *pp)
  1955. {
  1956. int queue;
  1957. for (queue = 0; queue < txq_number; queue++)
  1958. mvneta_txq_deinit(pp, &pp->txqs[queue]);
  1959. }
  1960. /* Cleanup all Rx queues */
  1961. static void mvneta_cleanup_rxqs(struct mvneta_port *pp)
  1962. {
  1963. int queue;
  1964. for (queue = 0; queue < rxq_number; queue++)
  1965. mvneta_rxq_deinit(pp, &pp->rxqs[queue]);
  1966. }
  1967. /* Init all Rx queues */
  1968. static int mvneta_setup_rxqs(struct mvneta_port *pp)
  1969. {
  1970. int queue;
  1971. for (queue = 0; queue < rxq_number; queue++) {
  1972. int err = mvneta_rxq_init(pp, &pp->rxqs[queue]);
  1973. if (err) {
  1974. netdev_err(pp->dev, "%s: can't create rxq=%d\n",
  1975. __func__, queue);
  1976. mvneta_cleanup_rxqs(pp);
  1977. return err;
  1978. }
  1979. }
  1980. return 0;
  1981. }
  1982. /* Init all tx queues */
  1983. static int mvneta_setup_txqs(struct mvneta_port *pp)
  1984. {
  1985. int queue;
  1986. for (queue = 0; queue < txq_number; queue++) {
  1987. int err = mvneta_txq_init(pp, &pp->txqs[queue]);
  1988. if (err) {
  1989. netdev_err(pp->dev, "%s: can't create txq=%d\n",
  1990. __func__, queue);
  1991. mvneta_cleanup_txqs(pp);
  1992. return err;
  1993. }
  1994. }
  1995. return 0;
  1996. }
  1997. static void mvneta_start_dev(struct mvneta_port *pp)
  1998. {
  1999. mvneta_max_rx_size_set(pp, pp->pkt_size);
  2000. mvneta_txq_max_tx_size_set(pp, pp->pkt_size);
  2001. /* start the Rx/Tx activity */
  2002. mvneta_port_enable(pp);
  2003. /* Enable polling on the port */
  2004. napi_enable(&pp->napi);
  2005. /* Unmask interrupts */
  2006. mvreg_write(pp, MVNETA_INTR_NEW_MASK,
  2007. MVNETA_RX_INTR_MASK(rxq_number) |
  2008. MVNETA_TX_INTR_MASK(txq_number) |
  2009. MVNETA_MISCINTR_INTR_MASK);
  2010. mvreg_write(pp, MVNETA_INTR_MISC_MASK,
  2011. MVNETA_CAUSE_PHY_STATUS_CHANGE |
  2012. MVNETA_CAUSE_LINK_CHANGE |
  2013. MVNETA_CAUSE_PSC_SYNC_CHANGE);
  2014. phy_start(pp->phy_dev);
  2015. netif_tx_start_all_queues(pp->dev);
  2016. }
  2017. static void mvneta_stop_dev(struct mvneta_port *pp)
  2018. {
  2019. phy_stop(pp->phy_dev);
  2020. napi_disable(&pp->napi);
  2021. netif_carrier_off(pp->dev);
  2022. mvneta_port_down(pp);
  2023. netif_tx_stop_all_queues(pp->dev);
  2024. /* Stop the port activity */
  2025. mvneta_port_disable(pp);
  2026. /* Clear all ethernet port interrupts */
  2027. mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
  2028. mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
  2029. /* Mask all ethernet port interrupts */
  2030. mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
  2031. mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
  2032. mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
  2033. mvneta_tx_reset(pp);
  2034. mvneta_rx_reset(pp);
  2035. }
  2036. /* Return positive if MTU is valid */
  2037. static int mvneta_check_mtu_valid(struct net_device *dev, int mtu)
  2038. {
  2039. if (mtu < 68) {
  2040. netdev_err(dev, "cannot change mtu to less than 68\n");
  2041. return -EINVAL;
  2042. }
  2043. /* 9676 == 9700 - 20 and rounding to 8 */
  2044. if (mtu > 9676) {
  2045. netdev_info(dev, "Illegal MTU value %d, round to 9676\n", mtu);
  2046. mtu = 9676;
  2047. }
  2048. if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) {
  2049. netdev_info(dev, "Illegal MTU value %d, rounding to %d\n",
  2050. mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8));
  2051. mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8);
  2052. }
  2053. return mtu;
  2054. }
  2055. /* Change the device mtu */
  2056. static int mvneta_change_mtu(struct net_device *dev, int mtu)
  2057. {
  2058. struct mvneta_port *pp = netdev_priv(dev);
  2059. int ret;
  2060. mtu = mvneta_check_mtu_valid(dev, mtu);
  2061. if (mtu < 0)
  2062. return -EINVAL;
  2063. dev->mtu = mtu;
  2064. if (!netif_running(dev))
  2065. return 0;
  2066. /* The interface is running, so we have to force a
  2067. * reallocation of the queues
  2068. */
  2069. mvneta_stop_dev(pp);
  2070. mvneta_cleanup_txqs(pp);
  2071. mvneta_cleanup_rxqs(pp);
  2072. pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu);
  2073. pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) +
  2074. SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
  2075. ret = mvneta_setup_rxqs(pp);
  2076. if (ret) {
  2077. netdev_err(dev, "unable to setup rxqs after MTU change\n");
  2078. return ret;
  2079. }
  2080. ret = mvneta_setup_txqs(pp);
  2081. if (ret) {
  2082. netdev_err(dev, "unable to setup txqs after MTU change\n");
  2083. return ret;
  2084. }
  2085. mvneta_start_dev(pp);
  2086. mvneta_port_up(pp);
  2087. return 0;
  2088. }
  2089. /* Get mac address */
  2090. static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr)
  2091. {
  2092. u32 mac_addr_l, mac_addr_h;
  2093. mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW);
  2094. mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH);
  2095. addr[0] = (mac_addr_h >> 24) & 0xFF;
  2096. addr[1] = (mac_addr_h >> 16) & 0xFF;
  2097. addr[2] = (mac_addr_h >> 8) & 0xFF;
  2098. addr[3] = mac_addr_h & 0xFF;
  2099. addr[4] = (mac_addr_l >> 8) & 0xFF;
  2100. addr[5] = mac_addr_l & 0xFF;
  2101. }
  2102. /* Handle setting mac address */
  2103. static int mvneta_set_mac_addr(struct net_device *dev, void *addr)
  2104. {
  2105. struct mvneta_port *pp = netdev_priv(dev);
  2106. struct sockaddr *sockaddr = addr;
  2107. int ret;
  2108. ret = eth_prepare_mac_addr_change(dev, addr);
  2109. if (ret < 0)
  2110. return ret;
  2111. /* Remove previous address table entry */
  2112. mvneta_mac_addr_set(pp, dev->dev_addr, -1);
  2113. /* Set new addr in hw */
  2114. mvneta_mac_addr_set(pp, sockaddr->sa_data, rxq_def);
  2115. eth_commit_mac_addr_change(dev, addr);
  2116. return 0;
  2117. }
  2118. static void mvneta_adjust_link(struct net_device *ndev)
  2119. {
  2120. struct mvneta_port *pp = netdev_priv(ndev);
  2121. struct phy_device *phydev = pp->phy_dev;
  2122. int status_change = 0;
  2123. if (phydev->link) {
  2124. if ((pp->speed != phydev->speed) ||
  2125. (pp->duplex != phydev->duplex)) {
  2126. u32 val;
  2127. val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
  2128. val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED |
  2129. MVNETA_GMAC_CONFIG_GMII_SPEED |
  2130. MVNETA_GMAC_CONFIG_FULL_DUPLEX);
  2131. if (phydev->duplex)
  2132. val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
  2133. if (phydev->speed == SPEED_1000)
  2134. val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
  2135. else if (phydev->speed == SPEED_100)
  2136. val |= MVNETA_GMAC_CONFIG_MII_SPEED;
  2137. mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
  2138. pp->duplex = phydev->duplex;
  2139. pp->speed = phydev->speed;
  2140. }
  2141. }
  2142. if (phydev->link != pp->link) {
  2143. if (!phydev->link) {
  2144. pp->duplex = -1;
  2145. pp->speed = 0;
  2146. }
  2147. pp->link = phydev->link;
  2148. status_change = 1;
  2149. }
  2150. if (status_change) {
  2151. if (phydev->link) {
  2152. if (!pp->use_inband_status) {
  2153. u32 val = mvreg_read(pp,
  2154. MVNETA_GMAC_AUTONEG_CONFIG);
  2155. val &= ~MVNETA_GMAC_FORCE_LINK_DOWN;
  2156. val |= MVNETA_GMAC_FORCE_LINK_PASS;
  2157. mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
  2158. val);
  2159. }
  2160. mvneta_port_up(pp);
  2161. } else {
  2162. if (!pp->use_inband_status) {
  2163. u32 val = mvreg_read(pp,
  2164. MVNETA_GMAC_AUTONEG_CONFIG);
  2165. val &= ~MVNETA_GMAC_FORCE_LINK_PASS;
  2166. val |= MVNETA_GMAC_FORCE_LINK_DOWN;
  2167. mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
  2168. val);
  2169. }
  2170. mvneta_port_down(pp);
  2171. }
  2172. phy_print_status(phydev);
  2173. }
  2174. }
  2175. static int mvneta_mdio_probe(struct mvneta_port *pp)
  2176. {
  2177. struct phy_device *phy_dev;
  2178. phy_dev = of_phy_connect(pp->dev, pp->phy_node, mvneta_adjust_link, 0,
  2179. pp->phy_interface);
  2180. if (!phy_dev) {
  2181. netdev_err(pp->dev, "could not find the PHY\n");
  2182. return -ENODEV;
  2183. }
  2184. phy_dev->supported &= PHY_GBIT_FEATURES;
  2185. phy_dev->advertising = phy_dev->supported;
  2186. pp->phy_dev = phy_dev;
  2187. pp->link = 0;
  2188. pp->duplex = 0;
  2189. pp->speed = 0;
  2190. return 0;
  2191. }
  2192. static void mvneta_mdio_remove(struct mvneta_port *pp)
  2193. {
  2194. phy_disconnect(pp->phy_dev);
  2195. pp->phy_dev = NULL;
  2196. }
  2197. static int mvneta_open(struct net_device *dev)
  2198. {
  2199. struct mvneta_port *pp = netdev_priv(dev);
  2200. int ret;
  2201. pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
  2202. pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) +
  2203. SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
  2204. ret = mvneta_setup_rxqs(pp);
  2205. if (ret)
  2206. return ret;
  2207. ret = mvneta_setup_txqs(pp);
  2208. if (ret)
  2209. goto err_cleanup_rxqs;
  2210. /* Connect to port interrupt line */
  2211. ret = request_irq(pp->dev->irq, mvneta_isr, 0,
  2212. MVNETA_DRIVER_NAME, pp);
  2213. if (ret) {
  2214. netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq);
  2215. goto err_cleanup_txqs;
  2216. }
  2217. /* In default link is down */
  2218. netif_carrier_off(pp->dev);
  2219. ret = mvneta_mdio_probe(pp);
  2220. if (ret < 0) {
  2221. netdev_err(dev, "cannot probe MDIO bus\n");
  2222. goto err_free_irq;
  2223. }
  2224. mvneta_start_dev(pp);
  2225. return 0;
  2226. err_free_irq:
  2227. free_irq(pp->dev->irq, pp);
  2228. err_cleanup_txqs:
  2229. mvneta_cleanup_txqs(pp);
  2230. err_cleanup_rxqs:
  2231. mvneta_cleanup_rxqs(pp);
  2232. return ret;
  2233. }
  2234. /* Stop the port, free port interrupt line */
  2235. static int mvneta_stop(struct net_device *dev)
  2236. {
  2237. struct mvneta_port *pp = netdev_priv(dev);
  2238. mvneta_stop_dev(pp);
  2239. mvneta_mdio_remove(pp);
  2240. free_irq(dev->irq, pp);
  2241. mvneta_cleanup_rxqs(pp);
  2242. mvneta_cleanup_txqs(pp);
  2243. return 0;
  2244. }
  2245. static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  2246. {
  2247. struct mvneta_port *pp = netdev_priv(dev);
  2248. if (!pp->phy_dev)
  2249. return -ENOTSUPP;
  2250. return phy_mii_ioctl(pp->phy_dev, ifr, cmd);
  2251. }
  2252. /* Ethtool methods */
  2253. /* Get settings (phy address, speed) for ethtools */
  2254. int mvneta_ethtool_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  2255. {
  2256. struct mvneta_port *pp = netdev_priv(dev);
  2257. if (!pp->phy_dev)
  2258. return -ENODEV;
  2259. return phy_ethtool_gset(pp->phy_dev, cmd);
  2260. }
  2261. /* Set settings (phy address, speed) for ethtools */
  2262. int mvneta_ethtool_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  2263. {
  2264. struct mvneta_port *pp = netdev_priv(dev);
  2265. if (!pp->phy_dev)
  2266. return -ENODEV;
  2267. return phy_ethtool_sset(pp->phy_dev, cmd);
  2268. }
  2269. /* Set interrupt coalescing for ethtools */
  2270. static int mvneta_ethtool_set_coalesce(struct net_device *dev,
  2271. struct ethtool_coalesce *c)
  2272. {
  2273. struct mvneta_port *pp = netdev_priv(dev);
  2274. int queue;
  2275. for (queue = 0; queue < rxq_number; queue++) {
  2276. struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
  2277. rxq->time_coal = c->rx_coalesce_usecs;
  2278. rxq->pkts_coal = c->rx_max_coalesced_frames;
  2279. mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
  2280. mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
  2281. }
  2282. for (queue = 0; queue < txq_number; queue++) {
  2283. struct mvneta_tx_queue *txq = &pp->txqs[queue];
  2284. txq->done_pkts_coal = c->tx_max_coalesced_frames;
  2285. mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
  2286. }
  2287. return 0;
  2288. }
  2289. /* get coalescing for ethtools */
  2290. static int mvneta_ethtool_get_coalesce(struct net_device *dev,
  2291. struct ethtool_coalesce *c)
  2292. {
  2293. struct mvneta_port *pp = netdev_priv(dev);
  2294. c->rx_coalesce_usecs = pp->rxqs[0].time_coal;
  2295. c->rx_max_coalesced_frames = pp->rxqs[0].pkts_coal;
  2296. c->tx_max_coalesced_frames = pp->txqs[0].done_pkts_coal;
  2297. return 0;
  2298. }
  2299. static void mvneta_ethtool_get_drvinfo(struct net_device *dev,
  2300. struct ethtool_drvinfo *drvinfo)
  2301. {
  2302. strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME,
  2303. sizeof(drvinfo->driver));
  2304. strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION,
  2305. sizeof(drvinfo->version));
  2306. strlcpy(drvinfo->bus_info, dev_name(&dev->dev),
  2307. sizeof(drvinfo->bus_info));
  2308. }
  2309. static void mvneta_ethtool_get_ringparam(struct net_device *netdev,
  2310. struct ethtool_ringparam *ring)
  2311. {
  2312. struct mvneta_port *pp = netdev_priv(netdev);
  2313. ring->rx_max_pending = MVNETA_MAX_RXD;
  2314. ring->tx_max_pending = MVNETA_MAX_TXD;
  2315. ring->rx_pending = pp->rx_ring_size;
  2316. ring->tx_pending = pp->tx_ring_size;
  2317. }
  2318. static int mvneta_ethtool_set_ringparam(struct net_device *dev,
  2319. struct ethtool_ringparam *ring)
  2320. {
  2321. struct mvneta_port *pp = netdev_priv(dev);
  2322. if ((ring->rx_pending == 0) || (ring->tx_pending == 0))
  2323. return -EINVAL;
  2324. pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ?
  2325. ring->rx_pending : MVNETA_MAX_RXD;
  2326. pp->tx_ring_size = clamp_t(u16, ring->tx_pending,
  2327. MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD);
  2328. if (pp->tx_ring_size != ring->tx_pending)
  2329. netdev_warn(dev, "TX queue size set to %u (requested %u)\n",
  2330. pp->tx_ring_size, ring->tx_pending);
  2331. if (netif_running(dev)) {
  2332. mvneta_stop(dev);
  2333. if (mvneta_open(dev)) {
  2334. netdev_err(dev,
  2335. "error on opening device after ring param change\n");
  2336. return -ENOMEM;
  2337. }
  2338. }
  2339. return 0;
  2340. }
  2341. static const struct net_device_ops mvneta_netdev_ops = {
  2342. .ndo_open = mvneta_open,
  2343. .ndo_stop = mvneta_stop,
  2344. .ndo_start_xmit = mvneta_tx,
  2345. .ndo_set_rx_mode = mvneta_set_rx_mode,
  2346. .ndo_set_mac_address = mvneta_set_mac_addr,
  2347. .ndo_change_mtu = mvneta_change_mtu,
  2348. .ndo_get_stats64 = mvneta_get_stats64,
  2349. .ndo_do_ioctl = mvneta_ioctl,
  2350. };
  2351. const struct ethtool_ops mvneta_eth_tool_ops = {
  2352. .get_link = ethtool_op_get_link,
  2353. .get_settings = mvneta_ethtool_get_settings,
  2354. .set_settings = mvneta_ethtool_set_settings,
  2355. .set_coalesce = mvneta_ethtool_set_coalesce,
  2356. .get_coalesce = mvneta_ethtool_get_coalesce,
  2357. .get_drvinfo = mvneta_ethtool_get_drvinfo,
  2358. .get_ringparam = mvneta_ethtool_get_ringparam,
  2359. .set_ringparam = mvneta_ethtool_set_ringparam,
  2360. };
  2361. /* Initialize hw */
  2362. static int mvneta_init(struct device *dev, struct mvneta_port *pp)
  2363. {
  2364. int queue;
  2365. /* Disable port */
  2366. mvneta_port_disable(pp);
  2367. /* Set port default values */
  2368. mvneta_defaults_set(pp);
  2369. pp->txqs = devm_kcalloc(dev, txq_number, sizeof(struct mvneta_tx_queue),
  2370. GFP_KERNEL);
  2371. if (!pp->txqs)
  2372. return -ENOMEM;
  2373. /* Initialize TX descriptor rings */
  2374. for (queue = 0; queue < txq_number; queue++) {
  2375. struct mvneta_tx_queue *txq = &pp->txqs[queue];
  2376. txq->id = queue;
  2377. txq->size = pp->tx_ring_size;
  2378. txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS;
  2379. }
  2380. pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(struct mvneta_rx_queue),
  2381. GFP_KERNEL);
  2382. if (!pp->rxqs)
  2383. return -ENOMEM;
  2384. /* Create Rx descriptor rings */
  2385. for (queue = 0; queue < rxq_number; queue++) {
  2386. struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
  2387. rxq->id = queue;
  2388. rxq->size = pp->rx_ring_size;
  2389. rxq->pkts_coal = MVNETA_RX_COAL_PKTS;
  2390. rxq->time_coal = MVNETA_RX_COAL_USEC;
  2391. }
  2392. return 0;
  2393. }
  2394. /* platform glue : initialize decoding windows */
  2395. static void mvneta_conf_mbus_windows(struct mvneta_port *pp,
  2396. const struct mbus_dram_target_info *dram)
  2397. {
  2398. u32 win_enable;
  2399. u32 win_protect;
  2400. int i;
  2401. for (i = 0; i < 6; i++) {
  2402. mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
  2403. mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
  2404. if (i < 4)
  2405. mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
  2406. }
  2407. win_enable = 0x3f;
  2408. win_protect = 0;
  2409. for (i = 0; i < dram->num_cs; i++) {
  2410. const struct mbus_dram_window *cs = dram->cs + i;
  2411. mvreg_write(pp, MVNETA_WIN_BASE(i), (cs->base & 0xffff0000) |
  2412. (cs->mbus_attr << 8) | dram->mbus_dram_target_id);
  2413. mvreg_write(pp, MVNETA_WIN_SIZE(i),
  2414. (cs->size - 1) & 0xffff0000);
  2415. win_enable &= ~(1 << i);
  2416. win_protect |= 3 << (2 * i);
  2417. }
  2418. mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
  2419. }
  2420. /* Power up the port */
  2421. static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode)
  2422. {
  2423. u32 ctrl;
  2424. /* MAC Cause register should be cleared */
  2425. mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0);
  2426. ctrl = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
  2427. /* Even though it might look weird, when we're configured in
  2428. * SGMII or QSGMII mode, the RGMII bit needs to be set.
  2429. */
  2430. switch(phy_mode) {
  2431. case PHY_INTERFACE_MODE_QSGMII:
  2432. mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_QSGMII_SERDES_PROTO);
  2433. ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
  2434. break;
  2435. case PHY_INTERFACE_MODE_SGMII:
  2436. mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO);
  2437. ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
  2438. break;
  2439. case PHY_INTERFACE_MODE_RGMII:
  2440. case PHY_INTERFACE_MODE_RGMII_ID:
  2441. ctrl |= MVNETA_GMAC2_PORT_RGMII;
  2442. break;
  2443. default:
  2444. return -EINVAL;
  2445. }
  2446. if (pp->use_inband_status)
  2447. ctrl |= MVNETA_GMAC2_INBAND_AN_ENABLE;
  2448. /* Cancel Port Reset */
  2449. ctrl &= ~MVNETA_GMAC2_PORT_RESET;
  2450. mvreg_write(pp, MVNETA_GMAC_CTRL_2, ctrl);
  2451. while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) &
  2452. MVNETA_GMAC2_PORT_RESET) != 0)
  2453. continue;
  2454. return 0;
  2455. }
  2456. /* Device initialization routine */
  2457. static int mvneta_probe(struct platform_device *pdev)
  2458. {
  2459. const struct mbus_dram_target_info *dram_target_info;
  2460. struct resource *res;
  2461. struct device_node *dn = pdev->dev.of_node;
  2462. struct device_node *phy_node;
  2463. struct mvneta_port *pp;
  2464. struct net_device *dev;
  2465. const char *dt_mac_addr;
  2466. char hw_mac_addr[ETH_ALEN];
  2467. const char *mac_from;
  2468. int phy_mode;
  2469. int fixed_phy = 0;
  2470. int err;
  2471. /* Our multiqueue support is not complete, so for now, only
  2472. * allow the usage of the first RX queue
  2473. */
  2474. if (rxq_def != 0) {
  2475. dev_err(&pdev->dev, "Invalid rxq_def argument: %d\n", rxq_def);
  2476. return -EINVAL;
  2477. }
  2478. dev = alloc_etherdev_mqs(sizeof(struct mvneta_port), txq_number, rxq_number);
  2479. if (!dev)
  2480. return -ENOMEM;
  2481. dev->irq = irq_of_parse_and_map(dn, 0);
  2482. if (dev->irq == 0) {
  2483. err = -EINVAL;
  2484. goto err_free_netdev;
  2485. }
  2486. phy_node = of_parse_phandle(dn, "phy", 0);
  2487. if (!phy_node) {
  2488. if (!of_phy_is_fixed_link(dn)) {
  2489. dev_err(&pdev->dev, "no PHY specified\n");
  2490. err = -ENODEV;
  2491. goto err_free_irq;
  2492. }
  2493. err = of_phy_register_fixed_link(dn);
  2494. if (err < 0) {
  2495. dev_err(&pdev->dev, "cannot register fixed PHY\n");
  2496. goto err_free_irq;
  2497. }
  2498. fixed_phy = 1;
  2499. /* In the case of a fixed PHY, the DT node associated
  2500. * to the PHY is the Ethernet MAC DT node.
  2501. */
  2502. phy_node = of_node_get(dn);
  2503. }
  2504. phy_mode = of_get_phy_mode(dn);
  2505. if (phy_mode < 0) {
  2506. dev_err(&pdev->dev, "incorrect phy-mode\n");
  2507. err = -EINVAL;
  2508. goto err_put_phy_node;
  2509. }
  2510. dev->tx_queue_len = MVNETA_MAX_TXD;
  2511. dev->watchdog_timeo = 5 * HZ;
  2512. dev->netdev_ops = &mvneta_netdev_ops;
  2513. dev->ethtool_ops = &mvneta_eth_tool_ops;
  2514. pp = netdev_priv(dev);
  2515. pp->phy_node = phy_node;
  2516. pp->phy_interface = phy_mode;
  2517. pp->use_inband_status = (phy_mode == PHY_INTERFACE_MODE_SGMII) &&
  2518. fixed_phy;
  2519. pp->clk = devm_clk_get(&pdev->dev, NULL);
  2520. if (IS_ERR(pp->clk)) {
  2521. err = PTR_ERR(pp->clk);
  2522. goto err_put_phy_node;
  2523. }
  2524. clk_prepare_enable(pp->clk);
  2525. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  2526. pp->base = devm_ioremap_resource(&pdev->dev, res);
  2527. if (IS_ERR(pp->base)) {
  2528. err = PTR_ERR(pp->base);
  2529. goto err_clk;
  2530. }
  2531. /* Alloc per-cpu stats */
  2532. pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats);
  2533. if (!pp->stats) {
  2534. err = -ENOMEM;
  2535. goto err_clk;
  2536. }
  2537. dt_mac_addr = of_get_mac_address(dn);
  2538. if (dt_mac_addr) {
  2539. mac_from = "device tree";
  2540. memcpy(dev->dev_addr, dt_mac_addr, ETH_ALEN);
  2541. } else {
  2542. mvneta_get_mac_addr(pp, hw_mac_addr);
  2543. if (is_valid_ether_addr(hw_mac_addr)) {
  2544. mac_from = "hardware";
  2545. memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN);
  2546. } else {
  2547. mac_from = "random";
  2548. eth_hw_addr_random(dev);
  2549. }
  2550. }
  2551. pp->tx_ring_size = MVNETA_MAX_TXD;
  2552. pp->rx_ring_size = MVNETA_MAX_RXD;
  2553. pp->dev = dev;
  2554. SET_NETDEV_DEV(dev, &pdev->dev);
  2555. err = mvneta_init(&pdev->dev, pp);
  2556. if (err < 0)
  2557. goto err_free_stats;
  2558. err = mvneta_port_power_up(pp, phy_mode);
  2559. if (err < 0) {
  2560. dev_err(&pdev->dev, "can't power up port\n");
  2561. goto err_free_stats;
  2562. }
  2563. dram_target_info = mv_mbus_dram_info();
  2564. if (dram_target_info)
  2565. mvneta_conf_mbus_windows(pp, dram_target_info);
  2566. netif_napi_add(dev, &pp->napi, mvneta_poll, NAPI_POLL_WEIGHT);
  2567. dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO;
  2568. dev->hw_features |= dev->features;
  2569. dev->vlan_features |= dev->features;
  2570. dev->priv_flags |= IFF_UNICAST_FLT;
  2571. dev->gso_max_segs = MVNETA_MAX_TSO_SEGS;
  2572. err = register_netdev(dev);
  2573. if (err < 0) {
  2574. dev_err(&pdev->dev, "failed to register\n");
  2575. goto err_free_stats;
  2576. }
  2577. netdev_info(dev, "Using %s mac address %pM\n", mac_from,
  2578. dev->dev_addr);
  2579. platform_set_drvdata(pdev, pp->dev);
  2580. if (pp->use_inband_status) {
  2581. struct phy_device *phy = of_phy_find_device(dn);
  2582. mvneta_fixed_link_update(pp, phy);
  2583. }
  2584. return 0;
  2585. err_free_stats:
  2586. free_percpu(pp->stats);
  2587. err_clk:
  2588. clk_disable_unprepare(pp->clk);
  2589. err_put_phy_node:
  2590. of_node_put(phy_node);
  2591. err_free_irq:
  2592. irq_dispose_mapping(dev->irq);
  2593. err_free_netdev:
  2594. free_netdev(dev);
  2595. return err;
  2596. }
  2597. /* Device removal routine */
  2598. static int mvneta_remove(struct platform_device *pdev)
  2599. {
  2600. struct net_device *dev = platform_get_drvdata(pdev);
  2601. struct mvneta_port *pp = netdev_priv(dev);
  2602. unregister_netdev(dev);
  2603. clk_disable_unprepare(pp->clk);
  2604. free_percpu(pp->stats);
  2605. irq_dispose_mapping(dev->irq);
  2606. of_node_put(pp->phy_node);
  2607. free_netdev(dev);
  2608. return 0;
  2609. }
  2610. static const struct of_device_id mvneta_match[] = {
  2611. { .compatible = "marvell,armada-370-neta" },
  2612. { }
  2613. };
  2614. MODULE_DEVICE_TABLE(of, mvneta_match);
  2615. static struct platform_driver mvneta_driver = {
  2616. .probe = mvneta_probe,
  2617. .remove = mvneta_remove,
  2618. .driver = {
  2619. .name = MVNETA_DRIVER_NAME,
  2620. .of_match_table = mvneta_match,
  2621. },
  2622. };
  2623. module_platform_driver(mvneta_driver);
  2624. MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com");
  2625. MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>");
  2626. MODULE_LICENSE("GPL");
  2627. module_param(rxq_number, int, S_IRUGO);
  2628. module_param(txq_number, int, S_IRUGO);
  2629. module_param(rxq_def, int, S_IRUGO);
  2630. module_param(rx_copybreak, int, S_IRUGO | S_IWUSR);